
ON THE HOMOTOPY LIE ALGEBRA OF AN ARRANGEMENT

GRAHAM DENHAM1 AND ALEXANDER I. SUCIU2

Abstract. Let A be a graded-commutative, connected |-algebra generated in de-
gree 1. The homotopy Lie algebra gA is defined to be the Lie algebra of primitives of
the Yoneda algebra, ExtA(|, |). Under certain homological assumptions on A and
its quadratic closure, we express gA as a semi-direct product of the well-understood
holonomy Lie algebra hA with a certain hA-module. This allows us to compute
the homotopy Lie algebra associated to the cohomology ring of the complement of
a complex hyperplane arrangement, provided some combinatorial assumptions are
satisfied. As an application, we give examples of hyperplane arrangements whose
complements have the same Poincaré polynomial, the same fundamental group, and
the same holonomy Lie algebra, yet different homotopy Lie algebras.

1. Definitions and statements of results

1.1. Holonomy and homotopy Lie algebras. Let A be a graded, graded-commuta-
tive algebra over a field |, with graded piece Ak, k ≥ 0. We will assume that A is
locally finite, connected, and generated in degree 1. In other words, A = T (V )/I,
where V is a finite-dimensional |-vector space, T (V ) =

⊕
k≥0 V ⊗k is the tensor alge-

bra on V , and I is a two-sided ideal, generated in degrees 2 and higher. To such an
algebra A, one naturally associates two graded Lie algebras over | (see for instance
[12]).

Definition 1.1. The holonomy Lie algebra hA is the quotient of the free Lie algebra
on the dual of A1, modulo the ideal generated by the image of the transpose of the
multiplication map µ : A1 ∧ A1 → A2:

(1) hA = Lie(A∗
1)
/
ideal (im(µ∗ : A∗

2 → A∗
1 ∧ A∗

1)).

Note that hA depends only on the quadratic closure of A: if we put A = T (V )/(I2),
then hA = hA.

Definition 1.2. The homotopy Lie algebra gA is the graded Lie algebra of primitive
elements in the Yoneda algebra of A:

(2) gA = Prim(ExtA(|, |)).
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In other words, the universal enveloping algebra of the homotopy Lie algebra is
the Yoneda algebra:

(3) U(gA) = ExtA(|, |).

The algebra U = ExtA(|, |) is a bigraded algebra; let us write Upq to denote
cohomological degree p and polynomial degree q. Then Upq = 0, unless −q ≥ p. The
subalgebra R =

⊕
p≥0 Up,−p is called the linear strand of U . For convenience, we will

let Up
q = Up,−p−q. The lower index q is called the internal degree. Then U is a graded

R-algebra, with R = U0.
The relationship between the holonomy and homotopy Lie algebras of A is provided

by the following well-known result of Löfwall.

Lemma 1.3 (Löfwall [17]). The universal enveloping algebra of the holonomy Lie
algebra, U(hA), equals the linear strand, R =

⊕
p≥0 Up

0 , of the Yoneda algebra U =

U(gA).

Particularly simple is the case when A is a Koszul algebra. By definition, this
means the homotopy Lie algebra gA coincides with the holonomy Lie algebra hA,
i.e., U = R. Alternatively, A is quadratic (i.e., A = A), and its quadratic dual,
A! = T (V )/(I⊥

2 ), coincides with the Yoneda algebra: A! = U . For an expository
account of Koszul algebras, see [11].

As a simple (yet basic) example, take E =
∧

V , the exterior algebra on V . Then
E is Koszul, and its quadratic dual is E! = Sym(V ∗), the symmetric algebra on the
dual vector space. Moreover, gA = hA is the abelian Lie algebra on V .

1.2. Main result. The computation of the homotopy Lie algebra of a given algebra
A is, in general, a very hard problem. Our goal here is to determine gA under certain
homological hypothesis. First, we need one more definition.

Let B = A be the quadratic closure of A. View J = ker(B “ A) as a graded left
module over B.

Definition 1.4. The homotopy module of a graded algebra A is

(4) MA = ExtB(J, |),

viewed as a bigraded left module over the ring R = U(hA) = ExtB(|, |) via the
Yoneda product.

Theorem 1.5. Let A be a graded algebra over a field |, with quadratic closure B = A,
and homotopy module M = MA. Assume B is a Koszul algebra, and there exists an
integer ` such that Mq = 0 unless ` ≤ q ≤ ` + 1. Then, as graded Hopf algebras,

(5) U(gA) ∼= T (MA[−2]) ⊗̂| U(hA),

where M [q]r = M q+r, and the action of U(h) on the tensor algebra of M [−2] is
induced from the U(h)-module structure of M [−2].

Taking the Lie algebras of primitive elements in the respective Hopf algebras, we
obtain the following.
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Corollary 1.6. Under the above hypothesis, the homotopy Lie algebra of A splits as
a semi-direct product of the holonomy Lie algebra with the free Lie algebra on the
(shifted) homotopy module,

(6) gA
∼= Lie(MA[−2]) o hA,

where the action of h on Lie(M) is given by [m,h] = −hm for h ∈ h and m ∈ M .

1.3. Hyperplane arrangements. Let A = {H1, . . . , Hn} be an arrangement of
hyperplanes in C`, with intersection lattice L(A) and complement X(A). The coho-
mology ring A = H•(X(A), |) admits a combinatorial description (in terms of L(A)),
due to Orlik and Solomon:

(7) A = E/I,

where E is the exterior algebra over |, on generators e1, . . . , en in degree 1, and I is
the ideal generated by all elements of the form

∑r

q=1(−1)q−1ei1 · · · êiq · · · eir for which

rk(Hi1 ∩ · · · ∩ Hir) < r; see [20].
The holonomy Lie algebra of the Orlik-Solomon algebra also admits an explicit

presentation, this time solely in terms of L≤2(A). Identify Lie(A∗
1) with the free Lie

algebra over |, on generators xH = e∗H , H ∈ A. Then:

(8) hA = Lie(A∗
1)
/

ideal
{[

xH ,
∑

H′∈A : H′⊃F

xH′

] ∣∣ F ∈ L2(A) and F ⊂ H
}

.

As we shall see in Section 5, the homotopy Lie algebra gA also admits a finite
presentation, for a certain class of hypersolvable arrangements, to be defined below.

Question 1.7. Do there exist arrangements for which gA is not finitely presented?
For which the (bigraded) Hilbert series of U(gA) is not a rational function?

1.4. Hypersolvable arrangements. An arrangement A is called supersolvable if
its intersection lattice admits a maximal modular chain. The OS algebra of a super-
solvable arrangement has a quadratic Gröbner basis, and thus, it is a Koszul algebra
(this result, implicit in Björner and Ziegler [2], was proven in Shelton and Yuzvinsky
[28]).

An arrangement A is called hypersolvable if it has the same intersection lattice up to
rank 2 as that of a supersolvable arrangement. This “supersolvable deformation,” B,
is uniquely defined, and has the property that the two complements have isomorphic
fundamental groups; see Jambu and Papadima [14, 15]. Let A = H•(X(A), |) and
B = H•(X(B), |) be the respective OS algebras. It is readily seen that B = A; thus,
A and B share the same holonomy Lie algebra: h = hA = hB. Furthermore, since B
is Koszul, we have gB = h.

The hypothesis of Theorem 1.5 holds in two nice situations, which can be checked
combinatorially; for precise definitions, see §4.2 and §4.3, respectively.

Theorem 1.8. Let A be an arrangement, and let A be its Orlik-Solomon algebra.
Suppose either

(1) A is hypersolvable, and its singular range has length 0 or 1; or
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(2) A is obtained by fibred extensions of a generic slice of a supersolvable arrange-
ment.

Then gA
∼= Lie(MA[−2]) o hA.

An explicit finite presentation for gA is given in Theorem 5.1, in the case when A
is a generic slice of a supersolvable arrangement. The Eisenbud-Popescu-Yuzvinsky
resolution [5] permits us to compute the Hilbert series of MA (and hence, that of gA)
in the case when A is a 2-generic slice of a Boolean arrangement.

Theorem 1.8 allows us to distinguish between hyperplane arrangements whose ho-
lonomy Lie algebras are isomorphic. In Example 6.2, we exhibit a pair of 2-generic,
4-dimensional sections of the Boolean arrangement in C7; the two arrangements have
the same fundamental group, the same Poincaré polynomial, and the same holonomy
Lie algebra, yet different homotopy Lie algebras.

In Section 7, we provide some topological interpretations. As noted in [3], [22], the
holonomy Lie algebra of a supersolvable arrangement equals, up to a rescaling factor,
the topological homotopy Lie algebra of the corresponding “redundant” subspace
arrangement. We extend this result, and relate the homotopy Lie algebra of an
arbitrary hyperplane arrangement to the topological homotopy Lie algebras of the
redundant subspace arrangements. As a consequence, we find a pair of codimension-2
subspace arrangements in C8, whose complements are simply-connected and have the
same homology groups, yet distinct higher homotopy groups.

2. Some homological algebra

2.1. The homotopy module. Let A be graded, graded-commutative, connected,
locally finite algebra. Assume A is generated in degree 1, and its quadratic closure,
B = A is a Koszul algebra. Let E be the exterior algebra on A1 = B1. Let I and
J be, respectively, the kernels of the natural surjections E “ B and B “ A, giving
the exact sequences

0 // I // E // B // 0 ,(9)

0 // J // B // A // 0 .(10)

In what follows, we will record some homological properties of the ring A, viewed
as a B-module. Recall if N is a B-module, the Yoneda product gives ExtB(N, |)
the structure of a left module over the ring R = U(hA) = ExtB(|, |). An object of
primary interest for us will be the homotopy module of A,

(11) M = MA = ExtB(J, |).

This bigraded R-module will play a crucial role in the determination of the homotopy
Lie algebra gA.

Our grading conventions shall be as follows. Suppose V and W are Z-graded |-
vector spaces. Then f ∈ Hom|(V,W ) has degree r if f : V q → W q+r for all q. For
any Z-graded |-vector space V , we shall let V ∗ denote the graded |-dual of V . In
particular, then, (V ∗)q = Hom|(V

−q, |). If V has finite |-dimension in each graded
piece, then (V ∗)∗ ∼= V .
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We shall treat all boundary maps in chain complexes as having polynomial degree
0 and homological degree +1. Then, in particular, chain complexes will be regarded
as cochain complexes in negative degree. We shall indicate shifts of polynomial
grading by defining V (q)r = V q+r, and shifts of homological grading by writing V [q]
analogously.

Following these conventions, Mpq = Extp
B(J, |)q is nonzero only for q ≤ −p. Then,

taking Mp
q = Mp,−p−q (the internal grading), we have Mp

q 6= 0 only for q ≥ 0. The
grading is such that, for each fixed q, the action of R on M satisfies Rr⊗Mp

q → M r+p
q .

Lemma 2.1. ExtB(A, |) ∼= | ⊕ M [−1] as graded R-modules.

Proof. Consider the long exact sequence for ExtB(−, |) applied to (10):

(12) · · · // Extq−1
B (J, k) // Extq

B(A, k) // Extq
B(B, k) // · · ·

Since Ext0
B(A, |) ∼= Ext0

B(B, |) ∼= | and Extq
B(B, |) = 0 for all q > 0, the map

ExtB(B, |) → ExtB(J, |) is zero. So the long exact sequence breaks into short exact
sequences which, using (11), we will write as a single short exact sequence of graded
R-modules,

(13) 0 // M [−1] // ExtB(A, |) // | // 0 .

For each q, one of the two maps is zero and the other is an isomorphism, so the short
exact sequence splits. ˜

2.2. Injective resolutions. For any E-module N , let

(14) N◦ = {a ∈ E : ax = 0 for all x ∈ N},

the annihilator of N in E. Later on, we require explicit, injective resolutions.

Lemma 2.2. Suppose the ring B = E/I is an arbitrary quotient of a finitely-
generated exterior algebra E. If

(15) 0 |oo B ⊗| F 0oo B ⊗k F 1oo · · ·oo

is a minimal, free resolution of | over B, then

(16) 0 // | // B∗ ⊗| (F 0)∗ // B∗ ⊗k (F 1)∗ // · · ·

is an injective resolution of | over B.

Proof. The resolution (15) is an acyclic complex of E-modules, so its vector space
dual (16) is an acyclic complex as well, since each F i has finite |-dimension.

Now B∗ ∼= I◦(n) as E-modules, via the determinantal pairing in E. On the other
hand, E is injective as a module over itself, so I◦ is injective as an E-module; see [27,
Prop. 2.27]. Since each F i has finite |-dimension, each B∗ ⊗| (F i)∗ is injective. ˜

Lemma 2.3. Let A and B two algebras, with A = B Koszul. Write B = E/I,
A = B/J , h = hA = hB, and R = U(h). Then:
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(1) The complex

(17) 0 // | // I◦(n) ⊗| R0 // I◦(n) ⊗| R1 // · · ·

is an injective resolution of | over B, with boundary map described below.
(2) Extq

B(A, |) ∼= Hq(J◦(n) ⊗| R•), for all q ≥ 0.

Proof. The Koszul complex K∗ = B ⊗| R∗ is a free B-module resolution of |, so it is
also an acyclic complex of E-modules, with boundary map induced from

(18) ∂∗ : 1 ⊗ x∗
i 7→ ei ⊗ 1.

Then Hom|(B⊗| R∗, |) = B∗⊗| R is an injective resolution, by the previous Lemma.
To establish (2), it suffices to note that HomB(A, I◦) ∼= J◦. ˜

3. Proof of the main result

Our approach to the proof of Theorem 1.5 is to construct a spectral sequence
comparing the minimal resolution and the Koszul complex of A. We show the spec-
tral sequence collapses at E2 under suitable hypotheses in Proposition 3.2, though
not in general (Example 3.3). This collapsing is enough to prove the theorem, via
Proposition 3.1.

3.1. A spectral sequence. Using the previous notation, A ⊗| U∗ → | → 0 is a
minimal free resolution of | over A. It is filtered by degree, and the linear strand is
A ⊗| R∗. That is, there is a short exact sequence of chain complexes

(19) 0 // A ⊗| R∗ 1⊗ε∗
// A ⊗| U∗ // A ⊗| U∗

+
// 0 .

Now B⊗| R∗ is a free resolution of | over B, since B is Koszul. Using Lemma 2.1,
we find that the homology of the linear strand (Koszul complex) is

H
•
(A ⊗ R∗) ∼= TorB(A, |)

∼= ExtB(A, |)∗(20)
∼= | ⊕ M [−1]∗.

The long exact sequence in homology then reveals that

(21) H
•
(A ⊗| U∗

+) ∼= M [−2]∗

as A-modules. Recall that A acts trivially on M (and hence on M [−2]∗), so

(22) HomA(H
•
(A ⊗| U∗

+), |) ∼= M [−2].

On the other hand, since our complex is a quotient of a minimal resolution,

(23) H
•
(HomA(A ⊗| U∗

+, |)) ∼= U+.

Comparing the two gives a universal coefficients spectral sequence of the form

(24) Epq
2 = Extp

A((M [−2]∗)q, |) ∼= M [−2]q ⊗| Up =⇒ Up+q
+ .

The spectral sequence is used as follows.
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Proposition 3.1. If E∞ = E2 in the spectral sequence (24), then

0 // U ⊗| M [−2]
φ

// U
ε

// R // 0

is exact, and the conclusion of Theorem 1.5 holds.

Proof. If E∞ = E2, then U ⊗ M [−2] ∼= U+ as a (left) U -module. Now U+ = ker ε,
giving the short exact sequence. Since h is a Lie subalgebra of g, R = U(h) is a Hopf
subalgebra of U = U(g), so the sequence splits. The isomorphism of Theorem 1.5
can then be obtained by induction. ˜

3.2. Collapsing conditions. In order to show that the higher differentials in the
spectral sequence (24) vanish, we use a degree argument that begins by considering
the E0 term. Since

(25) 0 // | // A∗ ⊗| U0 // A∗ ⊗| U1 // · · ·

is an injective resolution of | over A, (Lemma 2.2) we consider the double complex

Cpq = HomA(A ⊗| (U q)∗+, A∗ ⊗| Up)(26)
∼= U q

+ ⊗| A∗ ⊗| Up,

with induced boundary maps ∂h and ∂v. Then our spectral sequence (24) is obtained
by filtering C•• by columns. Checking the grading, we see

(27) ∂v : U q
+ ⊗| (A∗)s ⊗| Up → U q+1

+ ⊗| (A∗)s+1 ⊗| Up

and

(28) ∂h : U q
+ ⊗| (A∗)s ⊗| Up → U q

+ ⊗| (A∗)s+1 ⊗| Up+1.

By looking at E2 and ∂v, we see that we must have E1 = E2.
We first consider the case where the ideal J has a (shifted) linear resolution.

Proposition 3.2. Suppose A is a hypersolvable arrangement for which Mp
q = 0

unless q = `, for some fixed `. Then E2 = E∞.

Proof. In this case, M [−2]qr = 0 unless r = ` − 2. Then Hq(Cp•, ∂v)r = 0 unless
r = ` − 2.

First we note that (U+)q
t = 0 unless t ≥ ` − 2. This can be seen from the fact

that U+ is a graded subquotient of M [−2] ⊗| U , from (24): the support of M [−2] is
described above, and Up

q = 0 unless q ≥ 0.
Regard A∗ as a chain complex concentrated in homological degree 0. Then observe

that the internal degree of a nontrivial cocycle representative in (U+)q
t ⊗| (A∗)s is

s + t = ` − 2, by the first observation above. It follows s ≤ 0 from the inequality
above. However, (A∗)s = 0 unless 0 ≤ s ≤ `, so the representative of a nonzero,
homogeneous E2-cocycle in E0 must have s = 0.

Now suppose x ∈ Epq
2 is such a cocycle, with representative x̃ in Cpq. By the above,

x̃ ∈ U q
+ ⊗| (A∗)0. Then ∂h(x̃) = 0 in Cp+1,q by (28). This means d2(x) = 0, and

similarly for higher differentials. ˜
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Proof of Theorem 1.5. In view of Proposition 3.1, it remains only to show the spectral
sequence collapses when Mp

q = 0 unless 0 ≤ ` − q ≤ 1 for some `. In this case, let
N = M` denote the R-submodule of M of internal degree `.

By the same reasoning as in the proof of Proposition 3.2, N [−2] ⊗ U ⊆ ker dk for
k ≥ 2. Now N [−2] ∼= N [−2]⊗U0 is a submodule of the p = 0 column of E2. Since it
is (trivially) not in the image of any nonzero differentials, N [−2] is an R-submodule
of U .

Let K denote the Hopf subalgebra of U generated by R and N [−2]. By [18,
Theorem 4.4], U is a free K-algebra. It follows that K ∼= T (N [−2]) ⊗| R. In the
notation of the previous proposition, any nontrivial differential dk with k ≥ 2 would
lift in E0 to a map U+ ⊗ (A∗)1 ⊗ U → U+ ⊗ (A∗)0 ⊗ U . We have shown that the
targets of these maps are unchanged between E2 and E∞, so it follows that the maps
themselves must also all be zero. ˜

3.3. A non-collapsing spectral sequence. Calculations with the Macaulay 2 pack-
age [13] show that the hypotheses of Theorem 1.5 cannot in general be relaxed: dif-
ferentials in the spectral sequence (24) may not be zero.

Example 3.3. Consider the graphic arrangement associated with the following graph,

›̆‹̄‚̇¸̨

›̆‹̄‚̇¸̨
OOOOOOOOOOOOOOOO ›̆‹̄‚̇¸̨??????????

›̆‹̄‚̇¸̨ ›̆‹̄‚̇¸̨

›̆‹̄‚̇¸̨??????????
oooooooooooooooo

















Let A be the Orlik-Solomon algebra, and M = MA its homotopy module. It is readily
seen that Mq 6= 0 for q = 3, 4, 5. An Euler characteristic calculation shows that the
spectral sequence (24) must have a nonzero differential

d04
2 : M [−2]46 ⊗| U0 → M [−2]35 ⊗| U2.

It follows that the Hopf algebra U(gA) will not have the structure we find in Theo-
rem 1.5.

4. Hypersolvable arrangements

In this section, we apply our main result to certain classes of hypersolvable ar-
rangements.

4.1. Solvable extensions. We start by reviewing in more detail the notion of a
hypersolvable arrangement, introduced by Jambu and Papadima in [14]. Roughly, a
hypersolvable arrangement is a linear projection of a supersolvable arrangement that
preserves intersections through codimension two.

Definition 4.1 ([14]). An arrangement A is hypersolvable if there exist subarrange-
ments {0} = A1 ⊂ A2 ⊂ · · · ⊂ Am = A, so that each inclusion Ai ⊂ Ai+1 is solvable.
In turn, an inclusion of hyperplane arrangements A ⊂ B is called a solvable extension
if:
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(1) There are no hyperplanes H ∈ B \ A and H ′, H ′′ ∈ A with H ′ 6= H ′′ and
rk(H ∩ H ′ ∩ H ′′) = 2;

(2) For any H,H ′ ∈ B\A, there is exactly one H ′′ ∈ A with rk(H∩H ′∩H ′′) = 2,
denoted by f(H,H ′);

(3) For any H,H ′, H ′′ ∈ B \A, one has rk(f(H,H ′)∩ f(H,H ′′)∩ f(H ′, H ′′)) ≤ 2.

It turns out that if A is hypersolvable with a sequence of solvable extensions as
above, then for all i, the rank of Ai and Ai+1 differ by at most one. If the ranks are
equal, the extension is said to be singular; otherwise, the extension is nonsingular (or
fibred, in the sense of Falk and Randell, [9]).

If s denotes the number of singular extensions, then, rkA = m − s. Jambu and
Papadima show in [15] that one can replace the singular extensions by nonsingular
ones in order to construct a supersolvable arrangement B of rank m that projects
onto A, preserving the intersection lattice through rank 2. That is,

Theorem 4.2. An arrangement A is hypersolvable iff there exists a supersolvable
arrangement B and a linear subspace W for which A = B∩W and L(A)≤2

∼= L(B)≤2.

Proof. The implication “⇒” is Theorem 2.4 of [15]. The converse, due to Jambu
(private communication), runs as follows. Suppose B is supersolvable and there
exists a subspace W as above. By definition, B has a maximal modular chain F1 <
F2 < · · · < Fm. Putting Bi = BXi

gives a sequence of solvable extensions for B, all
fibred. For 1 ≤ i ≤ m, let Ai = Bi ∩ W . Since collinearity relations are preserved,
each Ai ⊂ Ai+1 is also a solvable extension, so A is hypersolvable. ˜

We remark that, in the above proof, Ai ⊂ Ai+1 is a singular extension if and only
if Fi ∩ W = Fi+1 ∩ W . The arrangement B in called the supersolvable deformation
of A. For example, any arrangement A for which no three hyperplanes intersect in
codimension three is hypersolvable, and its supersolvable deformation is the Boolean
arrangement in Cn, where n = |A|.

Lemma 4.3. Suppose A′ ⊂ A is a fibred extension. The projection p : X(A) →
X(A′) induces an inclusion A′ ↪→ A of the respective Orlik-Solomon algebras which
makes A into a free A′-module of rank k = |A \ A′|.

Proof. The projection p : X → X ′ is a bundle map, with fiber C \ {k points}. As
noted by Falk and Randell [9], this bundle admits a section, and thus the Serre
spectral sequence collapses at the E2 term. Hence, H•(X) ∼= H•(X ′) ⊗ H•(∨kS1).
The result follows. ˜

4.2. Singular range. We now give some easy to check combinatorial conditions
insuring that a hypersolvable arrangement satisfies the hypothesis of Theorem 1.5.
We start by attaching a pair of relevant integers to a hypersolvable arrangement.

Definition 4.4. Suppose A is hypersolvable with supersolvable deformation B, and
A 6= B. Let c be the least integer for which L(A)≤c 6∼= L(B)≤c. Since A 6= B, there is a
largest integer i for which the extension Ai ⊂ Ai+1 is singular. Let d the rank of these
two arrangements. We will call the pair (c, d) the singular range of the arrangement
A, and |d − c| the length of this range.
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Lemma 4.5. If A is hypersolvable with singular range (c, d), then 3 ≤ c ≤ d.

Proof. The inequality c ≥ 3 follows from Theorem 4.2. Suppose d < c; then L(A)≤d
∼=

L(B)≤d. It follows that L(Ad+1)≤d
∼= L(Bd+1)≤d, whence Ad+1 = Bd+1 since the

arrangements are central. Since d is greater than or equal to the index of the last
singular extension, however, Ai = Bi for d+1 ≤ i ≤ m, so A = B, a contradiction. ˜

Let A = H•(X(A), |) and B = H•(X(B), |) be the respective Orlik-Solomon alge-
bras. Since L(A)≤2

∼= L(B)≤2, and since the Orlik-Solomon algebra of a supersolvable
arrangement is quadratic, the algebra B = E/I is the quadratic closure of A. Let
J = ker(B “ A), and let M = ExtB(J, |), viewed as a module over R = ExtB(|, |).
Since B is supersolvable, the algebra B is Koszul (see [28]); thus, R = B!.

Lemma 4.6. If A is a hypersolvable arrangement with singular range (c, d), then
Mp

q = 0 unless p ≥ 0 and c ≤ q ≤ d.

Proof. The ideal J has a minimal, (infinite) free resolution over B of the form

(29) 0 Joo B ⊗| (M0,−)∗oo B ⊗| (M1,−)∗oo · · ·oo

Recall that J is generated by Orlik-Solomon relations. By Definition 4.4, the least
degree of a generator of J is c, so M0

c 6= 0 and M0
q = 0 for q < c. Thus Mp

q = 0 for
q < c, establishing the first inequality.

To show Mp
q = 0 for q > d, too, let i be the largest index of a singular exten-

sion Ai ⊂ Ai+1. let Bi+1 = H•(X(Bi+1), |) and Ai+1 = H•(X(Ai+1), |), and let
B′

i+1 = H•(X(B′
i+1), |) be the cohomology ring of the projectivization (decone) of

Bi+1. Recall from [20] that X(Bi+1) = X(B′
i+1) × C×. From the Künneth formula,

we obtain the following exact sequence of B′
i+1-modules:

(30) 0 // B′
i+1

// Bi+1
// B′

i+1(−1) // 0.

Let Ji+1 denote the kernel of the canonical projection Bi+1 “ Ai+1. If we let
J ′ = Ji+1 ∩ B′

i+1, then Ji+1 = Bi+1 ⊗B′

i+1
J ′, as a module over Bi+1. Since A,

B are obtained from Ai+1, Bi+1, respectively, by a sequence of fibred extensions,
J = B ⊗Bi+1

Ji+1.
On the other hand, Bi+1 is a free module over B′

i+1, and by applying Lemma 4.3
inductively, B is free over Bi+1. Therefore, B′

i+1 → B is a flat change of rings, and it
is enough to check that

(31) Extp

B′

i+1
(J ′, |)q = 0

if q > d. By Lemma 2.1, Extp

B′

i+1
(J ′, |)q = Extp+1

B′

i+1
(A′

i+1, |)q−1. Since B′
i+1 is Koszul

and (A′
i+1)q = 0 for q > d− 1, the rank of the arrangement, the groups (31) are zero

for q > d by [16, Lemma 2.2]. ˜

The Lemma says, in particular, that the B-module J(−c) has Castelnuovo-Mumford
regularity no greater than the length of the singular range, d − c. Moreover, the
Lemma gives a combinatorial condition for the hypotheses of Theorem 1.5 to be
satisfied.
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Corollary 4.7. If A is hypersolvable and its singular range has length 0 or 1, then
gA

∼= Lie(M [−2]) o hA.

Example 4.8 (2-generic arrangements of rank 4). Suppose A is a central arrange-
ment in C4, with the property that no three hyperplanes contain a common plane.
Such an arrangement is hypersolvable, by Theorem 4.2, with supersolvable deforma-
tion B a Boolean arrangement. From Definition 4.4 and Lemma 4.5, 3 ≤ c ≤ d ≤ 4,
so the singular range has length 0 or 1.

On the other hand, the graphic arrangement from Example 3.3 is hypersolvable,
with singular range (3, 5), and Corollary 4.7 does not apply (indeed, its conclusion
fails).

4.3. Generic slices of supersolvable arrangements. Lemma 4.6 provides bounds
on the polynomial degrees of the homotopy module M , which cannot be improved
without imposing further restrictions on the arrangement. In general, it is not obvious
how to characterize the support of M combinatorially; the problem seems similar to
that of characterizing which arrangements have quadratic defining ideals, investigated
in particular in [8, 4]. To this end, we isolate a class of hypersolvable arrangements
for which the situation is more manageable.

Definition 4.9. A codimension-k linear space W is said to be generic with respect
to an arrangement B if rk(X ∩W ) = rk X +k for all X ∈ L(B) with rk X ≤ rkB−k.

If B is an essential, supersolvable arrangement of rank m and W is a proper, linear
space of dimension ` ≥ 3, then by Theorem 4.2, the arrangement A = B ∩ W is
hypersolvable. We call such an arrangement a generic (hypersolvable) slice of rank `.

Not every hypersolvable arrangement is a generic slice, see Example 4.15 from [21].

Lemma 4.10. Let B be a rank m supersolvable arrangement, and let A be a rank `
generic slice. Then the singular range of A is (`, `).

Proof. The assumption of genericity means L(A)≤`−1
∼= L(B)≤`−1. However, X∩W =

0 for all X ∈ L(B)`, so since W is proper and B is essential, the singular range of A is
(`, d) for some d. On the other hand, rkA` = rkAm = `, so the last m− ` extensions
are all singular, and d = `. ˜

This is to say that, for generic slice arrangements, the module J(−`) has a linear
resolution. Slightly more generally:

Proposition 4.11. Let A be a rank ` hypersolvable arrangement. Suppose there
exists a generic slice C and fibred extensions C = Am−i ⊂ · · · ⊂ Am−1 ⊂ Am = A,
for some i ≥ 0. Then the singular range of A is (`, `).

Proof. As in the proof of Lemma 4.6, we may reduce to the case where A = C, a
generic slice of rank `. Let B be the supersolvable deformation of A. Denote by A′ and
B′ the Orlik-Solomon algebras of the respective decones, and let J ′ = ker(B′

“ A′).
Let R′ = (B′)!, and let K = R′ ⊗| (B′)∗ be the corresponding Koszul complex.

That is, Kq = R′(−q) ⊗| (B′q)∗ for q ≥ 0, with differential ∂ : e∗i ⊗ 1 7→ 1 ⊗ xi. Since
B′ is a Koszul algebra, K is a free resolution of | over R′.
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Let M ′ be the `-th syzygy module in the resolution K → | → 0. That is, M ′ is
the cokernel of ∂`+1, a left R′-module, which means M ′ has minimal free resolution

(32) 0 // Km
∂m

// · · · // K`+1
∂`+1

// K`
η

// M ′ // 0.

From this we see that M ′ is concentrated in internal degree `, and ExtR′(M ′, |) ∼= J ′,
as a B′-module. Since Koszul duality is an involution, ExtB′(J ′, |) ∼= M ′ as a left
R′-module, and M ′ is bigraded as claimed. ˜

The Proposition gives another criterion for the hypotheses of Theorem 1.5 to be
satisfied. We obtain:

Corollary 4.12. If A is obtained by fibred extensions of a generic slice of a super-
solvable arrangement, then gA

∼= Lie(M [−2]) o hA.

4.4. Hilbert series. Expressions for the Hilbert series of the graded module M =
ExtB(J, |) are not known in general: compare with [26]. However, a simple formula
exists for generic slices, which can be extended to fibred extensions of generic slices.

Let βi denote the ith Betti number of B′, so that h(B′, t) =
∑m

i=0 βit
i is its Hilbert

series. The following fact is well-known; see [20].

Lemma 4.13. There exist positive integers 1 = d1 ≤ d2 ≤ · · · ≤ dm for which

h(B′, t) =

m∏

j=2

(1 + djt).

By taking the Euler characteristic of (32), we note that for a generic slice of
dimension `,

(33) hR(M, t) = hR′(M ′, t) = h(R′, t)

m−∑̀

i=0

(−1)iβi+`t
i.

More generally, a fibred extension results in the same formula. Under the hypotheses
of Theorem 1.5, together with formula (33), we have:

Corollary 4.14. If h(U, t, u) =
∑

p,q dim| Up
q tpuq is the bigraded Hilbert series of

U = U(gA), then

(34) h(U, t, u) = h(R, t)
(
1 − u−2hR(M, t, u)

)−1
.

In the case of a generic slice of dimension `,

(35) h(U, t, u) = h(R, t)

(
1 − t2u−2h(R, t)

m−∑̀

i=0

(−1)iβi+`t
i

)−1

.

5. A presentation for the homotopy Lie algebra

For the hypersolvable arrangements satisfying the hypotheses of Theorem 1.8, the
problem of writing an explicit presentation for the homotopy Lie algebra gA is equiv-
alent to that of presenting the homotopy module MA = ExtB(J, |). We carry out
this computation for generic slices of supersolvable arrangements.
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Let A = {H1, . . . , Hn} be a hypersolvable arrangement, with supersolvable de-
formation B. As usual, let h denote the holonomy Lie algebra, and R = U(h) its
enveloping algebra. Recall h has a presentation with n generators x1, . . . , xn in de-
gree (1, 0), one for each hyperplane Hi ∈ A, and for each flat F ∈ L2(A) = L2(B),
relations

(36) [xi,
∑

j∈F

xj ] = 0,

for all i for which i ∈ F (i.e., F ⊂ Hi).
Now assume A is a generic slice of a supersolvable arrangement. Then the resolu-

tion (32) gives a presentation of the (deconed) homotopy module M ′ as an R′-module.
In order to use this presentation explicitly, we will choose the basis for B′∗ given by
identifying it with the flag complex of B′, for which we refer to [4].

Recall Flp is a free |-module on “flags” (F1, . . . , Fp), where Fi ∈ Li(B
′) for 1 ≤ i ≤

p, and Fi < Fi+1, modulo the following relations:

(37)
∑

G: Fi−1<G<Fi+1

(F1, . . . , Fi−1, G, Fi+1, . . . , Fp),

for each i, 1 < i < p. Moreover, the map f : Flp → (B′p)∗ given by

(38) f : (F1, . . . , Fp) 7→
(∑

i∈F1

e∗i

)( ∑

i∈F2−F1

e∗i

)
· · ·
( ∑

i∈Fp−Fp−1

e∗i

)
,

is an isomorphism, cf. [25, dual of (2.3.2)].
Under the identification Fl ∼= B′∗, the boundary map in the Koszul complex be-

comes the following. Given a flag F = (F1, . . . , Fp) and i ∈ Fp, define an element
F − i ∈ Flp−1 by finding the integer j for which i ∈ Fj − Fj−1, and letting

(39) F − i = (−1)j−1
∑

(F1, . . . , Fj−1, Gj , Gj+1, . . . , Gp−1),

where the sum is taken over all flags with the property that i 6∈ Gp−1 and Gk < Fk+1

for all k, j ≤ k < p. Then the boundary map is given by extending

(40) ∂ : (F1, . . . , Fp) 7→
∑

i∈Fp

(F − i) ⊗ xi

R-linearly.
For each element F ∈ Fl`, let yF denote the corresponding element of M ′; that is,

yF = η ◦ (f ⊗ 1)(F ⊗ 1). In particular, we find a minimal generating set for M ′ by
choosing a set of β` flags of length ` in L(B) appropriately. In particular, one may
construct a basis for Fl` using nbc-sets: see, for example, [4, Lemma 3.2].

Then the relations in M ′ are given by the image of ∂`+1 in (32). We have, for each
flag F = (F1, . . . , F`+1), a relation in M ′ of the form

(41)
∑

i∈F`+1

yF−ixi.



14 G. DENHAM AND A. I. SUCIU

It follows that in gA, for each flag F = (F1, . . . , F`+1), we have a relation

(42)
∑

i∈F`+1

[xi, yF−i].

Now M ′ is the restriction of the module M from R to R′, so the above gives
a presentation for M as well, noting that the central element

∑n

i=1 xi in R acts
trivially. One can find a minimal set of relations just by taking the flags F above to
come from a basis of Fl`+1. We summarize this discussion, as follows.

Theorem 5.1. Let A = {H1, . . . , Hn} be a generic slice of a supersolvable arrange-
ment, and let A be the Orlik-Solomon algebra of A. Then, the homotopy Lie algebra
gA has presentation with generators

• xi in degree (1, 0), for each i ∈ [n],
• yF in degree (2, ` − 2), for each F ∈ Fl`,

and relations

•
[
xi,
∑

j∈F xj

]
= 0, for each flat F ∈ L2(A) and each i ∈ F ,

•
∑

i∈F`+1

[
xi, yF−i

]
= 0, for each flag F = (F1, . . . , F`+2) ∈ Fl`+1,

•
[∑n

i=1 xi, yF

]
= 0, for each F ∈ Fl`.

We illustrate the above with an example.

Example 5.2. Consider the arrangement A defined by the polynomial

QA = xyz(x − z)(y − z)(2x − y − 4z)(2x − y − 5z)(x + 5y + 2z)(x + 5y + z).

This is a generic slice of the supersolvable arrangement B, the cone over the arrange-
ment defined by the polynomial QB′ = vwxy(x−1)(y−1)(v−1)(w−1). The Poincaré
polynomials of the deconed arrangements are given by

π(A′, t) = 1 + 8t + 24t2,

π(B′, t) = (1 + 2t)4 = 1 + 8t + 24t2 + 32t3 + 16t4.

Thus the homotopy module M ′ has 32 generators and 16 relations, which can be
described as follows.

Label the hyperplanes of B′ as 00, 10, 20, 30, 01, 11, 21, 31, in the order above. A basis
of 32 flags of length 3 can be constructed by choosing three intersecting hyperplanes
ia, jb, kc, with 0 ≤ i < j < k ≤ 3 and a, b, c ∈ {0, 1}, and forming a flag by successively
intersecting the hyperplanes, from right to left. We will call this flag Fiajbkc

. A basis
of 16 flags of length 4 in B′ is constructed by choosing four intersecting hyperplanes,
0a, 1b, 2c, 3d, for all choices of a, b, c, d ∈ {0, 1}, and forming a flag again by successive
intersection.

Let gA be the holonomy Lie algebra of A. Then gA has one generator xH for each
hyperplane H, together with 32 additional generators yiajbkc

in degree (2, 1), and
relations

[x0a
, y1b2c3d

] − [x1b
, y0a2c3d

] + [x2c
, y0a1b3d

] − [x3d
, y0a1b2c

],
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for each a, b, c, d ∈ {0, 1}, in addition to the holonomy relations (8), and relations
[∑

H∈A

xH , yiajbkc

]

for each choice of i, j, k, a, b, c.

6. Two-generic arrangements of rank four

We now present a method for computing the Hilbert series of the homotopy Lie
algebra of a particularly nice class of arrangements: rank-4 arrangements for which
no three hyperplanes contain a common plane.

For any rank ` arrangement A with n hyperplanes, let E =
∧

|(e1, . . . , en) be the
exterior algebra, A = E/I the Orlik-Solomon algebra, and S = |[x1, . . . , xn] the
polynomial algebra. We recall the following.

Theorem 6.1 (Eisenbud-Popescu-Yuzvinsky [5]). The complex of S-modules

0 F (A)oo A` ⊗ Soo . . .oo A1 ⊗ Soo A0 ⊗ Soo 0oo

is exact, where the boundary maps are induced by multiplication by
∑n

i=1 ei ⊗ xi, and
the S-module F (A) is taken as the cokernel of the map A`−1 ⊗ S → A` ⊗ S.

It follows from Bernstein-Gelfand-Gelfand duality that, for each p ≥ 0, there is a
graded isomorphism of S-modules,

(43) Extp
E(A, |)q = Ext`−q

S (F (A), S)p+q.

We refer to [26] for the case of the smallest q > 0 for which this is nonzero. Details
will appear in further work.

Now let A be a 2-generic arrangement. Notice that B = E and U(h) = B! = S.
Then, applying Lemma 2.1 to (43), we obtain

(44) Mp
q = Ext`−q+1

S (F (A), S)p+q,

for p ≥ 0 and 0 ≤ q ≤ `. As a result, presentations for the S-modules Mq can be
obtained computationally for specific examples, using formula (44).

We recall from Example 4.8 that, if the rank of the arrangement ` = 4, then A
satisfies hypotheses (1) of Theorem 1.8: Mq = 0 unless q = 3 or q = 4, i.e., the
singular range of A is (3, 4).

Example 6.2. Consider arrangements A1 and A2 defined by the polynomials

Q1 = xyzw(x + y + z)(y + z + w)(x − y + z + w),

Q2 = xyzw(x + y + z)(y + z + w)(x − y + z − w).

Both arrangements have 7 hyperplanes and 5 lines that each contain 4 hyperplanes,
so the characteristic polynomials are π(A1, t) = π(A2, t) = 1+7t+21t2 +30t3 +15t4.
Since there are no nontrivial intersections in codimension 2, the fundamental group
of both complements is Z7, and R = U(h) is a polynomial ring.
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We now use (44) to compute the Hilbert series of the graded modules M3 and M4

(recalling Mq = 0 for q 6= 3, 4). With the help of Macaulay 2, we find for A1

h(M3, t) = (5 + 2t)/(1 − t)3 = 5 + 17t + 36t2 + 62t3 + · · ·

h(M4, t) = (2 − t)(1 + 2t + 2t2)/(1 − t)6 = 2 + 15t + 62t2 + 185t3 + · · ·

while for A2,

h(M3, t) = (5 + t)/(1 − t)3 = 5 + 16t + 33t2 + 56t3 + · · ·

h(M4, t) = (1 + 6t − t2 − t3)/(1 − t)6 = 1 + 12t + 56t2 + 175t3 + · · ·

Using formula (34), this yields expressions for the Hilbert series of U(g1) and
U(g2). Comparing these Hilbert series shows U(g1) 6∼= U(g2), and hence the two
arrangements must have non-isomorphic homotopy Lie algebras.

Example 6.3. In 1946, Nandi [19] showed that there are exactly three inequivalent
block designs with parameters (10, 15, 6, 4, 2). We list the blocks of each below. Each
block design gives rise to a rank-4 matroid on ten points by taking the dependent
sets to be those subsets that either contain one of the blocks or contain at least five
elements.

D1 {abcd, abef, aceg, adhi, bchi, bdgj, cdfj, afhj, agij,
behj, bfgi, ceij, cfgh, defi, degh}

D2 {abcd, abef, aceg, adhi, bcij, bdgh, cdfj, afhj, agij,
aehj, bfgi, cehi, cfgh, defi, degj}

D3 {abcd, abef, acgh, adij, bcij, bdgh, cdef, aegi, afhj,
behj, bfgi, cehi, cfgj, degj, dfhi}

By construction, there are no nontrivial, dependent sets of size three, so each
arrangement is 2-generic.

If we call the corresponding Orlik-Solomon algebras A1, A2, and A3, it is straight-
forward to calculate that h(Ai, t) = 1 + 10t + 45t2 + 105t3 + 69t4 for i = 1, 2, 3. In
each case, the singular range is (3, 4). The ideals J1, J2, J3 have differing resolutions,
however, from which it follows that gA1 , gA2 , and gA3 are pairwise non-isomorphic.

7. Topological interpretations

7.1. Generic slices. A particularly simple situation, analyzed in detail by Dimca
and Papadima in [6], is when A is a generic slice of rank ` > 2 of a supersolvable
arrangement B. Let A′ and B′ be the respective decones, with complements X =
X(A′) and Y = X(B′). The two spaces share the same fundamental group, π, and
the same integral holonomy Lie algebra, h.

In [6, Theorems 18(ii) and 23], Dimca and Papadima establish the following facts.
The universal enveloping algebra U(h) is isomorphic (as a Hopf algebra) to the as-
sociated graded algebra grIπ(Zπ), where Zπ is the group ring of π, with filtration
determined by the powers of the augmentation ideal Iπ. The first non-vanishing
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higher homotopy group of X is π`−1(X); when viewed as a module over Zπ, it has
resolution of the form

(45) 0 // Hm(Y ) ⊗ Zπ // · · · // H`(Y ) ⊗ Zπ // π`−1(X) // 0 .

Finally, the associated graded module of π`−1(X), with respect to the filtration by
powers of Iπ, has Hilbert series

(46) h(gr•Iπ π`−1(X), t) = (−1/t)`

(
1 −

∑`−1
j=0(−1)jβjt

j

∑m

j=0(−1)jβjtj

)
,

where βj are the Betti numbers of Y .
Consider the integral cohomology rings A = H•(X, Z) and B = H•(Y, Z). We

have (Bi)∗ = Hi(Y, Z), since the homology of an arrangement complement is torsion-
free. Thus, tensoring with |, and passing to the associated graded in resolution (45)
recovers resolution (32). As a consequence, we obtain the following.

Proposition 7.1. Let A be a generic slice of rank ` > 2 of a supersolvable arrange-
ment, and let X = X(A′) be the complement of its decone. The homotopy module
of the algebra A = H•(X, |) is isomorphic to the graded module associated to the the
first nonvanishing higher homotopy group of X:

(47) MA
∼= gr•I π`−1(X) ⊗ |.

7.2. Rescaling. Fix an integer q ≥ 1. The q-rescaling of a graded algebra A is

the graded algebra A[q], with A
[q]
i(2q+1) = Ai and A

[q]
j = 0 if (2q + 1) - j, and with

multiplication rescaled accordingly. When taking the Yoneda algebra of A[q], the
internal degree of the Yoneda algebra of A gets rescaled, while the resolution degree
stays unchanged:

(48) ExtA[q](|, |) = ExtA(|, |)[q].

Similarly, the q-rescaling of a graded Lie algebra L is the graded Lie algebra L[q],

with L
[q]
2iq = Li and L

[q]
j = 0 if 2q - j, and with Lie bracket rescaled accordingly.

Rescaling works well with the holonomy and homotopy Lie algebras:

(49) hA[q] = h
[q]
A , gA[q] = g

[q]
A .

The Hilbert series of the enveloping algebras of g
[q]
A and gA are related as follows:

(50) h(U(g
[q]
A ), t, u) = h(U(gA), tu2q, u2q+1).

Now let X be a connected, finite-type CW-complex. A simply-connected, finite-
type CW-complex Y is called a q-rescaling of X (over a field |) if the cohomology
algebra H•(Y, |) is the q-rescaling of H•(X, |), i.e.,

(51) H•(Y, |) = H•(X, |)[q].

Rational rescalings always exist: take a Sullivan minimal model for the 1-connected,
finite-type differential graded algebra (H•(X, Q)[q], d = 0), and use [29] to realize it
by a finite-type, 1-connected CW-complex, Y . The space constructed this way is the
desired rescaling. Moreover, Y is formal, i.e, its rational homotopy type is a formal
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consequence of its rational cohomology algebra. Hence, Y is uniquely determined,
up to rational homotopy equivalence, among spaces with the same cohomology ring
(though there may be other, non-formal rescalings of X, see [22]).

Proposition 7.2. Let X be a finite-type CW-complex, with cohomology algebra A =
H•(X; Q). Let Y be a finite-type, simply-connected CW-complex with H•(Y ; Q) ∼=
A[q]. If Y is formal, then

(52) π
•
(ΩY ) ⊗ Q ∼= g

[q]
A .

Proof. Since Y is formal, the Eilenberg-Moore spectral sequence of the path fibra-
tion ΩY → PY → Y collapses, yielding an isomorphism of Hopf algebras between
the Yoneda algebra of H•(Y ; Q) and the Pontryagin algebra H

•
(ΩY ; Q). From the

rescaling assumption, we obtain

(53) ExtA[q](Q, Q) ∼= H
•
(ΩY ; Q),

By Milnor-Moore [18], we find that gA[q]
∼= π

•
(ΩY ) ⊗ Q, as Lie algebras. Using (49)

finishes the proof. ˜

As a consequence, we obtain a quick proof of a special case of Theorem A from
[22].

Corollary 7.3 ([22]). Suppose X and Y are spaces as above. If both X and Y are
formal and A is Koszul, then

(54) π
•
(ΩY ) ⊗ Q ∼= (gr

•
(π1X) ⊗ Q)[q] .

Proof. Since A is Koszul, gA = hA. Since X is formal, gr
•
(π1X) ⊗ Q ∼= hA, cf. [29].

The conclusion follows from (52). ˜

Remark 7.4. When X is formal (but not necessarily simply connected), a theorem
of Papadima and Yuzvinsky [23] states that the cohomology algebra A = H•(X; Q)
is Koszul if and only if the Bousfield-Kan rationalization XQ is aspherical. Now, by
a classical result of Quillen [24], U(hA) ∼= grIπ Qπ1(XQ). More generally, it seems
likely that

(55) U(gA) ∼= U(π
•
(ΩX̃Q)) ⊗̂ grIπ Qπ1(XQ),

in view of a result of Félix and Thomas [10]. (Here again, Qπ1(XQ) acts on the

left-hand factor by the action induced from π1(XQ) on the universal cover X̃Q.)
However, if X is a hyperplane arrangement complement, then X is not in general

a nilpotent space. This means that we can expect to find such spaces X for which
πi(XQ) 6∼= πi(X) ⊗ Q. The first such example was found by Falk [7], who noted that
the complement X of the D4 reflection arrangement is aspherical, while its Bousfield-
Kan rationalization XQ is not. In general, then, we know of no way to relate gA with
the topological homotopy Lie algebra, π

•
(ΩX) ⊗ Q.
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7.3. Redundant subspace arrangements. Let A = {H1, . . . , Hn} be an arrange-
ment of hyperplanes in C`. If q is a positive integer, then A(q) = {H×q

1 , . . . , H×q
n } is

an arrangement of codimension q subspaces in Cq`. For example, if A is the braid
arrangement in C`, with complement equal to the configuration space of ` distinct
points in C, then the complement of A(q) is the configuration space of ` distinct points
in Cq.

Proposition 7.5. Let A be a hyperplane arrangement, with Orlik-Solomon algebra
A = H•(X; Q). Fix q ≥ 1, and let Y = X(A(q+1)) be the complement of the corre-
sponding subspace arrangement. Then:

(56) π
•
(ΩY ) ⊗ Q ∼= g

[q]
A .

Proof. Clearly, Y is simply-connected. As shown in [3], H•(Y ; Q) is the q-rescaling
of H•(X; Q). Since A(q+1) has geometric intersection lattice, its complement Y is
formal, see [30, Prop. 7.2]. The conclusion then follows from Proposition 7.2. ˜

Corollary 7.6. Let A be a hypersolvable arrangement, satisfying either of the hy-
pothesis of Theorem 1.8. Then

π
•
(ΩY ) ⊗ Q ∼= (Lie(MA[−2]) o hA)[q].

Example 7.7. Let A1 and A2 be the hyperplane arrangements from Example 6.2.
Denote by gi = gAi

the respective homotopy Lie algebras, i = 1, 2. Consider

the redundant subspace arrangements A
(2)
1 and A

(2)
2 . Both are arrangements of 7

codimension-2 complex subspaces of C8. Denoting their complements by Y1 and Y2,
respectively, we have π1(Y1) = π1(Y2) = 0 and H∗(Y1) ∼= H∗(Y2) as graded abelian
groups.

Let π
•
(ΩYi)⊗Q be the respective (topological) homotopy Lie algebras. By Propo-

sition 7.2, we have π
•
(ΩYi) ⊗ Q ∼= g

[1]
i . Making use of the previous calculations for

the arrangements A1 and A2, together with formula (50), we find that U(g
[1]
i )p has

rank 1, 0, 7, 0, 28, 0, 84, 5, 210 for 0 ≤ p ≤ 8, for both i = 1, 2. It follows that, for
p ≤ 9, the group πp(Yi) ⊗ Q = 0, except for π3(Yi) ⊗ Q ∼= Q7 and π8(Yi) ⊗ Q ∼= Q5.

However, for p = 9, the ranks of U(g
[1]
i )p are 52 and 51, respectively. Hence,

π10(Y1) ⊗ Q ∼= Q17 and π10(Y2) ⊗ Q ∼= Q16,

and so Y1 6' Y2.
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