COHOMOLOGICAL DIMENSION AND SCHREIER'S FORMULA IN GALOIS COHOMOLOGY

JOHN LABUTE, NICOLE LEMIRE[†], JÁN MINÁČ[‡], AND JOHN SWALLOW

ABSTRACT. Let p be a prime and F a field containing a primitive pth root of unity. If $p > 2$ assume also that F is perfect. Then for $n \in \mathbb{N}$, the cohomological dimension of the maximal pro-pquotient G of the absolute Galois group of F is n if and only if the corestriction maps $H^n(H, \mathbb{F}_p) \to H^n(G, \mathbb{F}_p)$ are surjective for all open subgroups H of index p . Using this result we derive a surprising generalization to $\dim_{\mathbb{F}_p} H^n(H, \mathbb{F}_p)$ of Schreier's formula for $\dim_{\mathbb{F}_p} H^1(H, \mathbb{F}_p)$.

For a prime p, let $F(p)$ denote the maximal p-extension of a field F. One of the fundamental questions in the Galois theory of p -extensions is to discover useful interpretations of the cohomological dimension cd(G) of the Galois group $G = \text{Gal}(F(p)/F)$ in terms of the arithmetic of p-extensions of F. When $cd(G) = 1$, for instance, we know that G is a free pro-*p*-group [\[S1,](#page-6-0) §3.4], and when $cd(G) = 2$ we have important information on the G -module of relations in a minimal presentation $[K,$ §7.3].

For a fixed $n > 2$, however, little is known about the structure of p-extensions when $cd(G) = n$. Now when $n = 1$ and G is finitely generated as a pro-p-group, we have Schreier's well-known formula

(1) $h_1(H) = 1 + [G : H](h_1(G) - 1)$

for each open subgroup H of G , where

$$
h_1(H) := \dim_{\mathbb{F}_p} H^1(H, \mathbb{F}_p).
$$

(See, for instance, [\[K,](#page-6-1) Example 6.3].)

Date: November 17, 2004.

²⁰⁰⁰ Mathematics Subject Classification. Primary 12G05, 12G10.

Key words and phrases. cohomological dimension, Schreier's formula, Galois theory, p-extensions, pro-p-groups.

[†]Research supported in part by NSERC grant R3276A01.

[‡]Research supported in part by NSERC grant R0370A01, by the Mathematical Sciences Research Institute, Berkeley, and by a 2004/2005 Distinguished Research Professorship at the University of Western Ontario.

Observe that from basic properties of p -groups it follows that for each open subgroup H of G there exists a chain of subgroups

$$
G = G_0 \supset G_1 \supset \cdots \supset G_k = H
$$

such that G_{i+1} is normal in G_i and $[G_i: G_{i+1}] = p$ for each $i =$ $0, 1, \ldots, k-1$. Since closed subgroups of free pro-p-groups are free [\[S1,](#page-6-0) Corollary 3, §I.4.2], Schreier's formula [\(1\)](#page-0-0) is equivalent to the seemingly weaker statement that the formula holds for all open subgroups H of G of index p :

(2)
$$
h_1(H) = 1 + p(h_1(G) - 1).
$$

We deduce a remarkable generalization of Schreier's formula for each $n \in \mathbb{N}$, as follows. Let F^{\times} denote the nonzero elements of a field F , and for $c \in F^{\times}$, let $(c) \in H^1(G, \mathbb{F}_p)$ denote the corresponding class. For $\alpha \in H^m(G, \mathbb{F}_p)$ abbreviate by $ann_n \alpha$ the annihilator

$$
\operatorname{ann}_n \alpha = \{ \beta \in H^n(G, \mathbf{F}_p) \mid \alpha \cup \beta = 0 \}.
$$

Finally, set $h_n(G) = \dim_{\mathbb{F}_p} H^n(G, \mathbb{F}_p)$.

Theorem 1. Suppose that $\xi_p \in F$ and assume that F is perfect if $p > 2$. Suppose that $h_n(G) < \infty$. Let H be an open subgroup of G of index p, with fixed field $F(\sqrt[p]{a})$. Then

$$
h_n(H) = a_{n-1}(G, H) + p(h_n(G) - a_{n-1}(G, H)),
$$

where $a_{n-1}(G, H)$ is the codimension of $ann_{n-1}(a)$:

$$
a_{n-1}(G, H) := \dim_{\mathbb{F}_p} (H^{n-1}(G, \mathbb{F}_p)/\operatorname{ann}_{n-1}(a)).
$$

The proof of Theorem [1](#page-1-0) brings additional insight into the structure of Schreier's formula; in fact, it makes Schreier's formula transparent for any $n \in \mathbb{N}$. In section [1,](#page-2-0) we derive several interpretations for the statement $cd(G) = n$. First, we prove in Theorem [2](#page-2-1) that if F contains a primitive pth root of unity ξ_p and F is perfect if $p > 2$, then $cd(G) \leq n$ if and only if the corestriction maps cor : $H^{n}(H, \mathbb{F}_{p}) \rightarrow$ $Hⁿ(G, F_p)$ are surjective for all open subgroups H of G of index p. As a corollary, we show that the corresponding cohomology groups $H^{n+1}(H, \mathbb{F}_p)$ are all free as $\mathbb{F}_p[G/H]$ -modules if and only if $\text{cd}(G) \leq n$, under the additional hypothesis that $F = F^2 + F^2$ when $p = 2$. Finally, we show in Theorem [3](#page-4-0) that if G is finitely generated, then $\text{cd}(G) \leq n$ if and only if a single corestriction map, from the Frattini subgroup $\Phi(G) = G^p[G, G]$ of G, is surjective. In section [2](#page-5-0) we prove Theorem [1.](#page-1-0)

For basic facts about Galois cohomology and maximal p-extensions of fields, we refer to [\[K\]](#page-6-1) and [\[S1\]](#page-6-0). In particular, we work in the category of pro-p-groups.

1. When is
$$
cd(G) = n
$$
?

As a consequence of recent results of Rost and Voevodsky on the Bloch-Kato conjecture, we have the following interesting translation of the statement $cd(G) \leq n$ for a given $n \in \mathbb{N}$.

Theorem 2. Suppose that $\xi_p \in F$ and assume that F is perfect if $p > 2$. Then for each $n \in \mathbb{N}$ we have $\text{cd}(G) \leq n$ if and only if

$$
\mathrm{cor}: H^n(H,\mathbb{F}_p) \to H^n(G,\mathbb{F}_p)
$$

is surjective for every open subgroup H of G of index p.

Proof. Suppose that F satisfies the conditions of the theorem, and let $G_{F(p)}$ be the absolute Galois group of $F(p)$.

Observe that since F contains ξ_p , the maximal p-extension $F(p)$ is closed under taking pth roots and hence $H^1(G_{F(p)}, F_p) = \{0\}$. By the Bloch-Kato conjecture, proved in [\[V1,](#page-6-2) Theorem 7.1], the subring of the cohomology ring $H^*(G_{F(p)}, F_p)$ consisting of elements of positive degree is generated by cup-products of elements in $H^1(G_{F(p)}, F_p)$. Hence $H^n(G_{F(p)}, F_p) = \{0\}$ for $n \in \mathbb{N}$. Then, considering the Lyndon-Hochschild-Serre spectral sequence associated to the exact sequence

$$
1 \to G_{F(p)} \to G_F \to G \to 1,
$$

we have that

(3)
$$
\inf: H^*(G, \mathbf{F}_p) \to H^*(G_F, \mathbf{F}_p)
$$

is an isomorphism.

Now suppose that $\text{cor} : H^n(H, \mathbf{F}_p) \to H^n(G, \mathbf{F}_p)$ is surjective for all open subgroups H of G of index p . Let K be the fixed field of such a subgroup H. Then $K = F(\sqrt[p]{a})$ for some $a \in F^{\times}$. From Voevodsky's theorem [\[V1,](#page-6-2) Proposition 5.2], modified in [\[LMS1,](#page-6-3) Theorem 5] and translated to G from G_F via the inflation maps [\(3\)](#page-2-2) above, we obtain the following exact sequence:

(4)
$$
H^n(H, \mathbb{F}_p) \xrightarrow{\text{cor}} H^n(G, \mathbb{F}_p) \xrightarrow{-\cup(a)} H^{n+1}(G, \mathbb{F}_p) \xrightarrow{\text{res}} H^{n+1}(H, \mathbb{F}_p).
$$

Therefore res : $H^{n+1}(G, \mathbb{F}_p) \to H^{n+1}(H, \mathbb{F}_p)$ is injective for every open subgroup H of G of index p .

Now consider an arbitrary element

$$
\alpha = (a_1) \cup \cdots \cup (a_{n+1}) \in H^{n+1}(G, \mathbf{F}_p),
$$

where $a_i \in F^\times$ and (a_i) is the element of $H^1(G, \mathbb{F}_p)$ associated to a_i , $i = 1, 2, \ldots, n + 1$. Suppose that $(a_1) \neq 0$, and set $K = F(\sqrt[p]{a_1})$ and $H = \text{Gal}(F(p)/K)$. We have $0 = \text{res}(\alpha) \in H^{n+1}(H, \mathbb{F}_p)$. Since res is injective, $\alpha = 0$. Again by the Bloch-Kato conjecture [\[V1,](#page-6-2) Theorem 7.1], we know that $H^{n+1}(G, \mathbb{F}_p)$ is generated by the elements α above. Hence $H^{n+1}(G, \mathbb{F}_p) = \{0\}$ and therefore $\text{cd}(G) \leq n$. (See [\[K,](#page-6-1) page 49].)

Conversely, if $cd(G) \leq n$ then from exact sequence [\(4\)](#page-2-3) we conclude that cor : $H^n(H, \mathbb{F}_p) \to H^n(G, \mathbb{F}_p)$ is surjective for open subgroups H of G of index p .

Using conditions obtained in [\[LMS2\]](#page-6-4) for $Hⁿ(H, F_p)$ to be a free $F_p[G/H]$ -module, we obtain the following corollary. We observe the convention that $\{0\}$ is a free $F_p[G/H]$ -module.

Corollary. Suppose that $\xi_p \in F$ and assume that F is perfect if $p > 2$. If $p = 2$ assume also that $F = F^2 + F^2$. Then for each $n \in \mathbb{N}$, we have that $H^{n+1}(H, \mathbb{F}_p)$ is a free $\mathbb{F}_p[G/H]$ -module for every open subgroup H of G of index p if and only if $cd(G) \leq n$.

Observe that the condition $F = F^2 + F^2$ is satisfied in particular when F contains a primitive fourth root of unity *i*: for all $c \in F^{\times}$, $c = ((c+1)/2)^2 + ((c-1)i/2)^2.$

Proof. Assume that F is as above, $n \in \mathbb{N}$, and that $H^{n+1}(H, \mathbb{F}_p)$ is a free $F_p[G/H]$ -module for every open subgroup H of G of index p. If $p > 2$, then it follows from [\[LMS2,](#page-6-4) Theorem 1] that the corestriction maps cor : $H^n(H, \mathbb{F}_p) \to H^n(G, \mathbb{F}_p)$ are surjective for all such subgroups H.

If $p = 2$, then we consider open subgroups H of index 2 with corresponding fixed fields $K = F(\sqrt{a})$. From [\[LMS2,](#page-6-4) Theorem 1] we obtain that $\operatorname{ann}_n(a) = \operatorname{ann}_n((a) \cup (-1))$. It follows from the hypothesis $F = F^2 + F^2$ that $(c) \cup (-1) = 0 \in H^2(G, \mathbb{F}_2)$ for each $c \in F^{\times}$ and in particular for $c = a$. Hence $ann_n(a) = Hⁿ(G, F_2)$. But then from exact sequence [\(4\)](#page-2-3) above, we deduce that cor : $H^n(H, \mathbb{F}_2) \to H^n(G, \mathbb{F}_2)$ is surjective.

Since our analysis holds for all open subgroups H of index p , by Theorem [2](#page-2-1) we conclude that $cd(G) \leq n$.

Assume now that $\text{cd}(G) \leq n$. Then by Serre's theorem in [\[S2\]](#page-6-5) we find that $\text{cd}(H) \leq n$ for every open subgroup H of G. Hence $H^{n+1}(H, \mathbb{F}_p)$ = ${0}$ which, by our convention, is a free $F_p[G/H]$ -module, as required.

Remark. When $p = 2$ and $F \neq F^2 + F^2$, the statement of the corollary may fail. Consider the case $F = \mathbb{R}$. Then the only subgroup H of index 2 in $G = \mathbb{Z}/2\mathbb{Z}$ is $H = \{1\}$. Then for all $n \in \mathbb{N}$, $H^{n+1}(H, \mathbb{F}_2) = \{0\}$ and is free as an $\mathbb{F}_2[G/H]$ -module. However, $\text{cd}(G) = \infty$.

Under the additional assumption that G is finitely generated, we show that the surjectivity of a single corestriction map is equivalent to $cd(G) \leq n$.

Theorem 3. Suppose that $\xi_p \in F$ and assume that F is perfect if $p > 2$. Suppose that G is finitely generated. Then for each $n \in \mathbb{N}$ we have $cd(G) \leq n$ if and only if

$$
cor: H^n(\Phi(G), \mathbf{F}_p) \to H^n(G, \mathbf{F}_p)
$$

is surjective.

Proof. Because G is finitely generated, the index $[G : \Phi(G)]$ is finite, and we may consider a suitable chain of open subgroups

$$
G = G_0 \supset G_1 \supset \cdots \supset G_k = \Phi(G)
$$

such that $[G_i: G_{i+1}] = p$ for each $i = 0, 1, ..., k - 1$.

By Serre's theorem in [\[S2\]](#page-6-5), $cd(H) = cd(G)$ for every open subgroup H of G. Hence if $cd(G) \leq n$ we may iteratively apply Theorem [2](#page-2-1) to the chain of open subgroups to conclude that

$$
cor: H^n(\Phi(G), \mathbf{F}_p) \to H^n(G, \mathbf{F}_p)
$$

is surjective.

Assume now that $\text{cor} : H^n(\Phi(G), \mathbb{F}_p) \to H^n(G, \mathbb{F}_p)$ is surjective. For each open subgroup H of G of index p we have a commutative diagram of corestriction maps

since $\Phi(G) \subset H$. We obtain that cor : $H^{n}(H, \mathbb{F}_p) \to H^{n}(G, \mathbb{F}_p)$ is surjective, and by Theorem [2](#page-2-1) we deduce that $\text{cd}(G) \leq n$, as required.

2. SCHREIER'S FORMULA FOR H^n

We now prove Theorem [1.](#page-1-0) Suppose that $cd(G) = n$, and let H be an open subgroup of G of index p . By Theorem [2,](#page-2-1) the corestriction map cor : $H^n(H, \mathbb{F}_p) \to H^n(G, \mathbb{F}_p)$ is surjective.

Let $K = F(\sqrt[p]{a})$ be the fixed field of H. Since $H^{n+1}(G, \mathbb{F}_p) = \{0\}$ by hypothesis, we conclude that $\text{ann}_{n-1}((a) \cup (\xi_p)) = H^{n-1}(G, \mathbb{F}_p)$. Then by [\[LMS1,](#page-6-3) Theorem 1], we obtain the decomposition

$$
H^n(H, \mathbf{F}_p) = X \oplus Y,
$$

where X is a trivial $F_p[G/H]$ -module and Y is a free $F_p[G/H]$ -module. Moreover

 $x := \text{rank}_{\mathbb{F}_p} X = \dim_{\mathbb{F}_p} H^{n-1}(G, \mathbb{F}_p) / \operatorname{ann}_{n-1}(a) = a_{n-1}(G, H)$, and $y := \text{rank } Y = \dim_{\mathbb{F}_p} H^n(G, \mathbb{F}_p)/(a) \cup H^{n-1}(G, \mathbb{F}_p).$

Therefore $h_n(H) = \dim_{\mathbb{F}_p} H^n(H, \mathbb{F}_p) = x + py.$

Now, considering the exact sequence

$$
0 \to \frac{H^{n-1}(G, \mathbf{F}_p)}{\operatorname{ann}_{n-1}(a)} \xrightarrow{-\cup(a)} H^n(G, \mathbf{F}_p) \to \frac{H^n(G, \mathbf{F}_p)}{(a) \cup H^{n-1}(G, \mathbf{F}_p)} \to 0,
$$

we see that $\dim_{\mathbb{F}_p} H^n(H, \mathbb{F}_p)$ is equal to the sum of the dimension x of the kernel and p times the dimension y of the cokernel, and the theorem follows.

Observe that we have established a more general formula than the formula displayed in Theorem [1,](#page-1-0) since we have not assumed that $h_n(G)$ is finite.

When $n = 1$, $ann_{n-1}(a) = \{0\}$ so that $a_{n-1}(G, H) = 1$. Therefore when G is finitely generated we recover Schreier's formula (2) :

$$
h_1(H) = 1 + p(h_1(G) - 1).
$$

REFERENCES

- [K] H. Koch, Galois theory of p-extensions. Berlin: Springer-Verlag, 2002.
- [LMS1] N. Lemire, J. Mináč, and J. Swallow. Galois module structure of Galois cohomology. ArXiv:math.NT/0409484 (2004).
- [LMS2] N. Lemire, J. Mináč, and J. Swallow. When is Galois cohomology free or trivial? ArXiv:math.NT/0410617 (2004).
- [S1] J.-P. Serre. Galois cohomology. Heidelberg: Springer-Verlag, 1997.
- [S2] J.-P. Serre. Sur la dimension cohomologique des groupes profinis. Topology 3 (1965), 413–420.
- [V1] V. Voevodsky. Motivic cohomology with Z/2-coefficients. Publ. Inst. Hautes Études Sci., No. 98 (2003), 59-104.
- [V2] V. Voevodsky. On motivic cohomology with Z/l coefficients. K-theory preprint archive 639 (2003). www.math.uiuc.edu/K-theory/0639/.

Department of Mathematics and Statistics, McGill University, Burnside Hall, 805 Sherbrooke Street West, Montreal, Quebec H3A 2K6 CANADA

E-mail address: labute@math.mcgill.ca

Department of Mathematics, Middlesex College, University of Western Ontario, London, Ontario N6A 5B7 CANADA

E-mail address: nlemire@uwo.ca

 $E-mail$ address: minac@uwo.ca

Department of Mathematics, Davidson College, Box 7046, Davidson, North Carolina 28035-7046 USA

 E -mail address: joswallow@davidson.edu