
CLOSED 1-FORMS WITH AT MOST ONE ZERO

M. FARBER, D. SCHÜTZ

Abstract. We prove that in any nonzero cohomology class ξ ∈ H1(M ;R)
there always exists a closed 1-form having at most one zero.

1. Statement of the result

Let M be a closed connected smooth manifold. By Hopf’s theorem, there
exists a nowhere zero tangent vector field on M if and only if χ(M) = 0.
If χ(M) 6= 0 one may find a tangent vector field on M vanishing at a
single point p ∈ M . A Riemannian metric on M determines a one-to-
one correspondence between vectors and covectors; therefore on any closed
connected manifold M there exists a smooth 1-form ω vanishing at most
at one point p ∈ M . The question we address in this note is whether the
1-form ω which is nonzero on M − {p} can be chosen to be closed, dω = 0?

The Novikov theory [8] gives bounds from below on the number of distinct
zeros which have closed 1-forms ω lying in a prescribed cohomology class ξ ∈
H1(M ;R). However the Novikov theory imposes an additional requirement
that all zeros of ω are non-degenerate in the sense of Morse. The number
of zeros is then at least the sum

∑
j bj(ξ) of the Novikov numbers bj(ξ).

If ω is a closed 1-form representing the zero cohomology class then ω = df
where f : M → R is a smooth function; in this case ω must have at least
cat(M) geometrically distinct zeros, according to the classical Lusternik-
Schnirelman theory [1].

Our goal in this paper is to show that in general, with the exception of
two situations mentioned above, there are no obstructions for constructing
closed 1-forms possessing a single zero. We prove the following statement:

Theorem 1. Let M be a closed connected n-dimensional smooth manifold,
and let ξ ∈ H1(M ;R) be a nonzero real cohomology class. Then there exists
a smooth closed 1-form ω in the class ξ having at most one zero.

This result suggests that “the Lusternik-Schnirelman theory for closed 1-
forms” (see [3, 4] and Chapter 10 of [5]) has a new character which is quite
distinct from both the classical Lusternik-Schnirelman theory of functions
and the Novikov theory of closed 1-forms.
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Theorem 1 was proven in [3] under an additional assumption that the class
ξ is integral, ξ ∈ H1(M ;Z). See also [5], Theorem 10.1. This essentially
covers all rank 1 cohomology classes ξ ∈ H1(M ;R) since any such class is a
multiple of an integral class.

Theorem 1 has interesting implications in the theory of symplectic inter-
sections, compare [9], [2]. Y. Eliashberg and M. Gromov mention in [2] that
a statement in the spirit of Theorem 1 was made by Yu. Chekanov at a
seminar talk in 1996. No written account of his work is available.

Let us mention briefly a similar question. We know that if χ(M) = 0
then there exists a nowhere zero 1-form ω on M . Given χ(M) = 0, one may
ask if it is possible to find a nowhere zero 1-form ω on M which is closed
dω = 0? The answer is negative in general. For example, vanishing of the
Novikov numbers bj(ξ) = 0 is a necessary condition for the class ξ to be
representable by a closed 1-form without zeros. The full list of necessary
and sufficient conditions (in the case dimM > 5) is given by the theorem of
Latour [6].

2. Preliminaries

Here we recall some basic terminology. We refer to [5] for more detail.
A smooth 1-form ω is a smooth section x 7→ ωx, x ∈ M of the cotangent

bundle T ∗(M) → M . A zero of ω is a point p ∈ M such that ωp = 0.
If ω is a closed 1-form on M , i.e. dω = 0, then in any simply connected

domain U ⊂ M there exists a smooth function f : U → R such that ω|U =
df . Zeros of ω are precisely the critical points of f . A zero p ∈ M , ωp = 0
is said to be Morse type iff p is a Morse type critical point for f .

The homomorphism of periods

Perξ : H1(M) → R(1)

is defined by

Perξ([γ]) =

∫
γ

ω ∈ R.(2)

Here ξ = [ω] ∈ H1(M ;R) is the de Rham cohomology class of ω and γ is a
closed loop in M ; the symbol [γ] ∈ H1(M) denotes the homology class of γ.

The image of the homomorphism of periods (1) is a finitely generated free
abelian subgroup of R; it is called the group of periods. Its rank is denoted
rk(ξ) – the rank of the cohomology class ξ ∈ H1(M ;R).

A closed 1-form ω with Morse zeros determines a singular foliation ω = 0
on M . It is a decomposition of M into leaves: two points p, q ∈ M belong
to the same leaf if there exists a path γ : [0, 1] → M with γ(0) = p, γ(1) = q
and ω(γ̇(t)) = 0 for all t. Locally, in a simply connected domain U ⊂ M ,
we have ω|U = df , where f : U → R; each connected component of the level
set f−1(c) lies in a single leaf. If U is small enough and does not contain the
zeros of ω, one may find coordinates x1, . . . , xn in U such that f ≡ x1; hence
the leaves in U are the sets x1 = c. Near such points the singular foliation
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ω = 0 is a usual foliation. On the contrary, if U is a small neighborhood of a
zero p ∈ M of ω having Morse index 0 ≤ k ≤ n, then there are coordinates
x1, . . . , xn in U such that xi(p) = 0 and the leaves of ω = 0 in U are the level
sets −x2

1 −· · ·−x2
k +x2

k+1 + · · ·+x2
n = c. The leaf L with c = 0 contains the

zero p. It has a singularity at p: a neighborhood of p in L is homeomorphic
to a cone over the product Sk−1 ×Sn−k−1. There are finitely many singular
leaves, i.e. the leaves containing the zeros of ω.

We are particularly interested in the singular leaves containing the zeros
of ω having Morse indices 1 and n − 1. Removing such a zero p locally
disconnects the leaf L. However globally the complement L− p may or may
not be connected.

The singular foliation ω = 0 is co-oriented: the normal bundle to any leaf
at any nonsingular point has a specified orientation.

We shall use the notion of a weakly complete closed 1-form introduced
by G. Levitt [7]. A closed 1-form ω is called weakly complete if it has Morse
type zeros and for any smooth path σ : [0, 1] → M ∗ with

∫
σ

ω = 0 the
endpoints σ(0) and σ(1) lie in the same leaf of the foliation ω = 0 on M ∗.
Here M∗ denotes M − {p1, . . . , pm} where pj are the zeros of ω.

A weakly complete closed 1-form with ξ = [ω] 6= 0 has no zeros with Morse
indices 0 and n. According to Levitt [7], any nonzero real cohomology class
ξ ∈ H1(M ;R) can be represented by a weakly complete closed 1-form.

The plan of our proof of Theorem 1 is as follows. We start with a
weakly complete closed 1-form ω lying in the prescribed cohomology class
ξ ∈ H1(M ;R), ξ 6= 0. We show that assuming rk(ξ) > 1 all leaves of the
singular foliation ω = 0 are dense (see §3). We perturb ω such that the
resulting closed 1-form ω′ has a single singular leaf (see §4). After that
we apply the technique of Takens [10] allowing us to collide the zeros in a
single (highly degenerate) zero. We first prove Theorem 1 assuming that
n = dim M > 2; the special case n = 2 is treated separately later.

3. Density of the leaves

In this section we show that if ω is weakly complete and rk(ξ) > 1 then
the leaves of ω = 0 are dense.

Note that in general the assumption rk(ξ) > 1 alone does not imply that
the leaves are dense, see the examples in §9.3 of [5].
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Let ω be a weakly complete closed 1-form in class ξ. Consider the covering
π : M̃ → M corresponding to the kernel of the homomorphism of periods
Perξ : H1(M) → R, where ξ = [ω] ∈ H1(M ;R). Let H ⊂ R be the group
of periods. The rank of H equals rk(ξ); since we assume that rk(ξ) > 1, the
group H is dense in R. The group of periods H acts on the covering space
M̃ as the group of covering transformations. We have π∗ω = dF where
F : M̃ → R is a smooth function. The leaves of the singular foliation ω = 0
are the images under the projection π of the level sets F−1(c); this property
follows from the weak completeness of ω, see [7], Proposition II.1. For any

g ∈ H and x ∈ M̃ one has

F (gx) − F (x) = g ∈ R.(3)

Let L = π(F−1(c)) be a leaf and let x ∈ M be an arbitrary point. Our goal
is to show that x lies in the closure L̄ of L. Let U ⊂ M be a neighborhood of
x. We want to show that U intersects L. We shall assume that U is “small”
in the following sense: ξ|U = 0.

Consider a lift x̃ ∈ M̃ , π(x̃) = x. Let Ũ be a neighborhood of x̃ which
is mapped by π homeomorphically onto U . We claim that the set of values
F (Ũ) ⊂ R contains an interval (a − ε, a + ε) where a = F (x̃) and ε > 0.

This claim is obvious if x̃ is not a critical point of F since in this case one
may choose the coordinates x1, . . . , xn around x̃ such that F (x) = a + x1.
In the case when x̃ is a critical point of F , one may choose the coordinates
x1, . . . , xn near the point x̃ ∈ M̃ such that F (x) is given by a±x2

1±x2
2+· · ·+

±x2
n and our claim follows since we know that the Morse index is distinct

from 0 and n.

Because of the density of the group of translations H ⊂ R one may find
g ∈ H such that the real number F (gx̃) = F (x̃) + g = a + g lies in the
interval (c − ε, c + ε). Then we obtain

c ∈ (a + g − ε, a + g + ε) ⊂ g + F (Ũ) = F (gŨ).(4)

Hence we see that the sets F−1(c) and gŨ have a nonempty intersection.

Therefore the neighborhood U = π(gŨ) intersects the leaf L = π(F−1(c))
as claimed.
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An obvious modification of the above argument proves a slightly more
precise statement:

Given a point x ∈ M and a leaf L ⊂ M of the singular foliation ω = 0,
there exist two sequences of points xk ∈ L and yk ∈ L such that

xk → x and yk → x,(5)

and, moreover, ∫ xk

x

ω > 0, while

∫ yk

x

ω < 0.(6)

The integrals in (6) are calculated along an arbitrary path lying in a small
neighborhood of x.

This can also be expressed by saying that the leaf L approaches x from
both the positive and the negative sides.

4. Modification

Our next goal is to replace ω by a Morse closed 1-form ω ′ which has
the property that all its zeros lie on the same singular leaf of the singular
foliation ω′ = 0. In this section we assume that n = dim M > 2.

Let ω be a weakly complete Morse closed 1-form in class ξ where rk(ξ) > 1.
Let p1, . . . , pm ∈ M be the zeros of ω. For each pj choose a small neighbor-
hood Uj 3 pj and local coordinates x1, . . . , xn in Uj such that xi(pj) = 0 for
i = 1, . . . , n and

ω|Uj
= dfj , where fj = −x2

1 − · · · − x2
mj

+ x2
mj+1 + · · · + x2

n.(7)

Here mj denotes the Morse index of pj . We assume that the ball
∑n

i=1 x2
i ≤ 1

is contained in Uj and that Uj ∩ Uj′ = ∅ for j 6= j′. Denote by Wj the open
ball

∑n
i=1 x2

i < 1.
Let φ : [0, 1] → [0, 1] be a smooth function with the following properties:

(a) φ ≡ 0 on [3/4, 1]; (b) φ ≡ ε > 0 on [0, 1/2]; (c) −1 < φ′ ≤ 0. Such a

function exists assuming that ε > 0 is small enough. (a), (b), (c) imply that

φ′(r) > −2r, for r > 0.(8)

We replace the closed 1-form ω by

ω′ = ω −
m∑

j=1

µj · dgj(9)
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where gj : M → R is a smooth function with support in Uj . In the coordi-
nates x1, . . . , xn of Uj (see above) the function gj is given by gj(x) = φ(||x||).
The parameters µj ∈ [−1, 1] appearing in (9) are specified later.

One has ω ≡ ω′ on M−∪jUj and near the zeros of ω. Let us show that ω′

has no additional zeros. We have ω′|Uj
= d(fj − µjgj) (where fj is defined

in (7)) and

∂

∂xi

(fj − µjgj) = ±2xi − µjφ
′(||x||)

xi

||x||
(10)

If this partial derivative vanishes and xi 6= 0 then φ′(r) = ±2rµ−1
j which

may happen only for r = ||x|| = 0 according to (8).
We now show how to choose the parameters µj so that the closed 1-form

ω′ given by (9) has a unique singular leaf. Let L be a fixed nonsingular leaf
of ω = 0. Since L is dense in M (see §3) for any j = 1, . . . ,m the intersection
L∩Uj contains infinitely many connected components approaching pj from
below and from above and the function fj is constant on each of them. We

say that a subset Tc ⊂ L ∩ Wj is a level set if Tc = f−1
j (c) ∩ Wj for some

c ∈ R. Note that fj(pj) = 0. The level set c = 0 contains the zero pj ; it is
homeomorphic to the cone over the product Smj−1 × Sn−mj−1. Each level
set Tc with c < 0 is diffeomorphic to Smj−1 × Dn−mj and each level set Tc

with c > 0 is diffeomorphic to Dmj × Sn−mj−1. Recall that mj denotes the
Morse index of pj .

Let Vj = fj(L ∩Wj) ⊂ R denote the set of values of fj on different level
sets belonging to the leaf L. The zero 0 does not lie in Vj since we assume
that the leaf L is nonsingular. However, according to the result proven in
§3, the zero 0 ∈ R is a limit point of Vj and, moreover, the closure of either
of the sets Vj ∩ (0,∞) and Vj ∩ (−∞, 0) contains 0 ∈ R.

For the modification ω′ (given by (9)) one has ω′|Uj
= dhj where hj =

fj − µjgj . The level sets T ′
c for hj are defined as h−1

j (c) ∩ Wj . Clearly T ′
c is

given by the equation

fj(x) = µjφ(||x||) + c, x ∈ Wj .

Hence for ||x|| ≥ 3/4 this is the same as Tc; for ||x|| ≤ 1/2 the level set
T ′

c coincides with Tc+µjε. In the ring 1/2 ≤ ||x|| ≤ 3/4 the level set T ′
c is

homeomorphic to a cylinder.
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The following figure illustrates the distinction between the level sets Tc

and T ′
c in the case µj > 0.

Examine the changes which undergoes the leaf L when we replace ω by
ω′. Here we view L with the leaf topology; it is the topology induced on L
from the covering M̃ using an arbitrary lift L → M̃ . First, let us assume
that: (1) the Morse index mj satisfies mj < n− 1; (2) the coefficient µj > 0
is positive; (3) the number −εµj lies in the set Vj . Then the complement

L −
⋃

c∈Vj

−εµj<c<0

Tc

is connected and it lies in a single leaf L′ of the singular foliation ω′ = 0.
We see that the new leaf L′ is obtained from L by infinitely many surgeries.
Namely, each level set Tc ⊂ L, where c ∈ Vj satisfies −εµj < c < 0, is
removed and replaced by a copy of Dmj ×Sn−mj−1; besides, the set Tc ⊂ L
where c = −εµj , is removed and gets replaces by a cone over the product
Smj−1 × Sn−mj−1. Hence the new leaf L′ contains the zero pj .

Let us now show how one may modify the above construction in the case
mj = n − 1. Since n > 2 we have in this case n − mj − 1 < n − 2; hence
removing the sphere Sn−mj−1 from the leaf L does not disconnect L. We
shall assume that the coefficient µj is negative and that the number −εµj

lies in Vj ⊂ R. The complement

L −
⋃

c∈Vj

0<c<−εµj

Tc

is connected and it lies in a single leaf L′ of the singular foliation ω′ = 0.
Clearly, L′ is obtained from L by removing the level sets Tc where c ∈ Vj

satisfies 0 < c < −εµj (each such Tc is diffeomorphic to Dmj × Sn−mj−1)
and by replacing them by copies of Smj−1 × Dn−mj . In addition, the set
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Tc ⊂ L where c = −εµj , is removed and is replaces by a cone over the
product Smj−1 × Sn−mj−1.

We see that L′ is a leaf of the singular foliation ω′ = 0 containing all the
zeros p1, . . . , pm.

5. Proof of Theorem 1

Below we assume that rk(ξ) > 1. The case rk(ξ) = 1 is covered by
Theorem 2.1 from [3].

The results of the preceding sections allow to complete the proof of Theo-
rem 1 in the case n = dim M > 2. Indeed, we showed in §4 how to construct
a Morse closed 1-form ω′ lying in the prescribed cohomology class ξ such
that all zeros of ω′ are Morse and belong to the same singular leaf L′ of the
singular foliation ω′ = 0. Now we may apply the colliding technique of F.
Takens [10], pages 203–206. Namely, we may find a piecewise smooth tree
Γ ⊂ L′ containing all the zeros of ω′. Let U ⊂ M be a small neighborhood of
Γ which is diffeomorphic to R

n. We may find a continuous map Ψ : M → M
with the following properties:

Ψ(Γ) is a single point p ∈ Γ;
Ψ|M−Γ is a diffeomorphism onto M − p;
Ψ(U) = U ;
Ψ is the identity map on the complement of a small neighborhood V ⊂ M

of Γ where the closure V is contained in U .
Consider a smooth function f : U → R such that df = ω′|U ; it exists

and is unique up to a constant. The function g = f ◦ Ψ−1 : U → R is well-
defined (since f |Γ is constant). g is continuous by the universal property of
the quotient topology. Moreover, g is smooth on M − p. Applying Theorem
2.7 from [10], we see that we can replace g by a smooth function h : U → R

having a single critical point at p and such that h = f on U − V .
Let ω

′′

be a closed 1-form on M given by

ω
′′

|M−V = ω′|M−V and ω
′′

|U = dh.(11)

Clearly ω
′′

is a smooth closed 1-form on M having no zeros in M − {p}.
Moreover, ω

′′

lies in the cohomology class ξ = [ω′] (since any loop in M is
homologous to a loop in M − V ).

Now we prove Theorem 1 the case n = 2. We shall replace the con-
struction of §4 (which requires n > 2) by a direct construction. The final
argument using the Takens’ technique [10] remains the same.

Let M be a closed surface and let ξ ∈ H1(M ;R) be a nonzero cohomology
class. We can split M into a connected sum

M = M1]M2] . . . ]Mk

where each Mj is a torus or a Klein bottle and such that the cohomology
class ξj = ξ|Mj

∈ H1(Mj ;R) is nonzero. Let ωj be a closed 1-form on
Mj lying in the class ξj and having no zeros; obviously such a form exists.
§9.3.2 of [5] describes the construction of connected sum of closed 1-forms
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on surfaces. Each connecting tube contributes two zeros. In fact there are
three different ways of forming the connected sum, they are denoted by A,
B, C on Figure 9.8 in [5]. In the type C connected sum the zeros lie on the
same singular leaf. Hence by using the type C connected sum operation we
get a closed 1-form ω on M having 2k − 2 zeros which all lie on the same
singular leaf of the singular foliation ω = 0. The colliding argument based
on the technique of Takens [10] applies as in the case n > 2 and produces a
closed 1-form with at most one zero lying in class ξ.
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