CLOSED 1-FORMS WITH AT MOST ONE ZERO

M. FARBER, D. SCHÜTZ

ABSTRACT. We prove that in any nonzero cohomology class $\xi \in H^1(M; \mathbf{R})$ there always exists a closed 1-form having at most one zero.

1. STATEMENT OF THE RESULT

Let M be a closed connected smooth manifold. By Hopf's theorem, there exists a nowhere zero tangent vector field on M if and only if $\chi(M) = 0$. If $\chi(M) \neq 0$ one may find a tangent vector field on M vanishing at a single point $p \in M$. A Riemannian metric on M determines a one-toone correspondence between vectors and covectors; therefore on any closed connected manifold M there exists a smooth 1-form ω vanishing at most at one point $p \in M$. The question we address in this note is whether the 1-form ω which is nonzero on $M - \{p\}$ can be chosen to be closed, $d\omega = 0$?

The Novikov theory [8] gives bounds from below on the number of distinct zeros which have closed 1-forms ω lying in a prescribed cohomology class $\xi \in$ $H¹(M; \mathbf{R})$. However the Novikov theory imposes an additional requirement that all zeros of ω are non-degenerate in the sense of Morse. The number of zeros is then at least the sum $\sum_j b_j(\xi)$ of the Novikov numbers $b_j(\xi)$.

If ω is a closed 1-form representing the zero cohomology class then $\omega = df$ where $f : M \to \mathbf{R}$ is a smooth function; in this case ω must have at least $cat(M)$ geometrically distinct zeros, according to the classical Lusternik-Schnirelman theory [1].

Our goal in this paper is to show that in general, with the exception of two situations mentioned above, there are no obstructions for constructing closed 1-forms possessing a single zero. We prove the following statement:

Theorem 1. Let M be a closed connected n-dimensional smooth manifold, and let $\xi \in H^1(M; \mathbf{R})$ be a nonzero real cohomology class. Then there exists a smooth closed 1-form ω in the class ξ having at most one zero.

This result suggests that "the Lusternik-Schnirelman theory for closed 1 forms" (see [3, 4] and Chapter 10 of [5]) has a new character which is quite distinct from both the classical Lusternik-Schnirelman theory of functions and the Novikov theory of closed 1-forms.

Date: August 31, 2004.

¹⁹⁹¹ Mathematics Subject Classification. 58E05, 57R70.

Key words and phrases. Closed 1-form, Lusternik-Schnirelman theory, Novikov theory.

2 M. FARBER, D. SCHÜTZ

Theorem 1 was proven in [3] under an additional assumption that the class ξ is integral, $\xi \in H^1(M; \mathbf{Z})$. See also [5], Theorem 10.1. This essentially covers all rank 1 cohomology classes $\xi \in H^1(M; \mathbf{R})$ since any such class is a multiple of an integral class.

Theorem 1 has interesting implications in the theory of symplectic intersections, compare [9], [2]. Y. Eliashberg and M. Gromov mention in [2] that a statement in the spirit of Theorem 1 was made by Yu. Chekanov at a seminar talk in 1996. No written account of his work is available.

Let us mention briefly a similar question. We know that if $\chi(M) = 0$ then there exists a nowhere zero 1-form ω on M. Given $\chi(M) = 0$, one may ask if it is possible to find a nowhere zero 1-form ω on M which is closed $d\omega = 0$? The answer is negative in general. For example, vanishing of the Novikov numbers $b_i(\xi) = 0$ is a necessary condition for the class ξ to be representable by a closed 1-form without zeros. The full list of necessary and sufficient conditions (in the case dim $M > 5$) is given by the theorem of Latour $|6|$.

2. Preliminaries

Here we recall some basic terminology. We refer to [5] for more detail.

A smooth 1-form ω is a smooth section $x \mapsto \omega_x, x \in M$ of the cotangent bundle $T^*(M) \to M$. A zero of ω is a point $p \in M$ such that $\omega_p = 0$.

If ω is a closed 1-form on M, i.e. $d\omega = 0$, then in any simply connected domain $U \subset M$ there exists a smooth function $f: U \to R$ such that $\omega|_U =$ df. Zeros of ω are precisely the critical points of f. A zero $p \in M$, $\omega_p = 0$ is said to be *Morse type* iff p is a Morse type critical point for f .

The homomorphism of periods

$$
(1) \t\t Per_{\xi}: H_1(M) \to \mathbf{R}
$$

is defined by

(2)
$$
\operatorname{Per}_{\xi}([\gamma]) = \int_{\gamma} \omega \in \mathbf{R}.
$$

Here $\xi = [\omega] \in H^1(M; \mathbf{R})$ is the de Rham cohomology class of ω and γ is a closed loop in M; the symbol $[\gamma] \in H_1(M)$ denotes the homology class of γ .

The image of the homomorphism of periods (1) is a finitely generated free abelian subgroup of \mathbf{R} ; it is called the *group of periods*. Its rank is denoted $rk(\xi)$ – the rank of the cohomology class $\xi \in H^1(M; \mathbf{R})$.

A closed 1-form ω with Morse zeros determines a *singular foliation* $\omega = 0$ on M. It is a decomposition of M into leaves: two points $p, q \in M$ belong to the same leaf if there exists a path $\gamma : [0, 1] \to M$ with $\gamma(0) = p$, $\gamma(1) = q$ and $\omega(\dot{\gamma}(t)) = 0$ for all t. Locally, in a simply connected domain $U \subset M$, we have $\omega|_U = df$, where $f: U \to \mathbf{R}$; each connected component of the level set $f^{-1}(c)$ lies in a single leaf. If U is small enough and does not contain the zeros of ω , one may find coordinates x_1, \ldots, x_n in U such that $f \equiv x_1$; hence the leaves in U are the sets $x_1 = c$. Near such points the singular foliation

 $\omega = 0$ is a usual foliation. On the contrary, if U is a small neighborhood of a zero $p \in M$ of ω having Morse index $0 \leq k \leq n$, then there are coordinates x_1, \ldots, x_n in U such that $x_i(p) = 0$ and the leaves of $\omega = 0$ in U are the level sets $-x_1^2 - \cdots - x_k^2 + x_{k+1}^2 + \cdots + x_n^2 = c$. The leaf L with $c = 0$ contains the zero p. It has a *singularity* at p: a neighborhood of p in L is homeomorphic to a cone over the product $S^{k-1} \times S^{n-k-1}$. There are finitely many singular *leaves*, i.e. the leaves containing the zeros of ω .

We are particularly interested in the singular leaves containing the zeros of ω having Morse indices 1 and $n-1$. Removing such a zero p locally disconnects the leaf L. However globally the complement $L - p$ may or may not be connected.

The singular foliation $\omega = 0$ is *co-oriented*: the normal bundle to any leaf at any nonsingular point has a specified orientation.

We shall use the notion of a weakly complete closed 1-form introduced by G. Levitt [7]. A closed 1-form ω is called *weakly complete* if it has Morse type zeros and for any smooth path $\sigma : [0,1] \to M^*$ with $\int_{\sigma} \omega = 0$ the endpoints $\sigma(0)$ and $\sigma(1)$ lie in the same leaf of the foliation $\omega = 0$ on M^* . Here M^* denotes $M - \{p_1, \ldots, p_m\}$ where p_j are the zeros of ω .

A weakly complete closed 1-form with $\xi = [\omega] \neq 0$ has no zeros with Morse indices 0 and n. According to Levitt [7], any nonzero real cohomology class $\xi \in H^1(M; \mathbf{R})$ can be represented by a weakly complete closed 1-form.

The plan of our proof of Theorem 1 is as follows. We start with a weakly complete closed 1-form ω lying in the prescribed cohomology class $\xi \in H^1(M; \mathbf{R}), \xi \neq 0$. We show that assuming $rk(\xi) > 1$ all leaves of the singular foliation $\omega = 0$ are dense (see §3). We perturb ω such that the resulting closed 1-form ω' has a single singular leaf (see §4). After that we apply the technique of Takens [10] allowing us to collide the zeros in a single (highly degenerate) zero. We first prove Theorem 1 assuming that $n = \dim M > 2$; the special case $n = 2$ is treated separately later.

3. Density of the leaves

In this section we show that if ω is weakly complete and $rk(\xi) > 1$ then the leaves of $\omega = 0$ are dense.

Note that in general the assumption $rk(\xi) > 1$ alone does not imply that the leaves are dense, see the examples in §9.3 of [5].

4 M. FARBER, D. SCHÜTZ

Let ω be a weakly complete closed 1-form in class ξ . Consider the covering $\pi : M \to M$ corresponding to the kernel of the homomorphism of periods $Per_{\xi}: H_1(M) \to \mathbf{R}$, where $\xi = [\omega] \in H^1(M; \mathbf{R})$. Let $H \subset \mathbf{R}$ be the group of periods. The rank of H equals $rk(\xi)$; since we assume that $rk(\xi) > 1$, the group H is dense in **R**. The group of periods H acts on the covering space \tilde{M} as the group of covering transformations. We have $\pi^*\omega = dF$ where $F: \tilde{M} \to \mathbf{R}$ is a smooth function. The leaves of the singular foliation $\omega = 0$ are the images under the projection π of the level sets $\tilde{F}^{-1}(c)$; this property follows from the weak completeness of ω , see [7], Proposition II.1. For any $q \in H$ and $x \in \tilde{M}$ one has

(3)
$$
F(gx) - F(x) = g \in \mathbf{R}.
$$

Let $L = \pi(F^{-1}(c))$ be a leaf and let $x \in M$ be an arbitrary point. Our goal is to show that x lies in the closure \overline{L} of L. Let $U \subset M$ be a neighborhood of x. We want to show that U intersects L. We shall assume that U is "small" in the following sense: $\xi|_U = 0$.

Consider a lift $\tilde{x} \in \tilde{M}$, $\pi(\tilde{x}) = x$. Let \tilde{U} be a neighborhood of \tilde{x} which is mapped by π homeomorphically onto U. We claim that the set of values $F(U) \subset \mathbf{R}$ contains an interval $(a - \epsilon, a + \epsilon)$ where $a = F(\tilde{x})$ and $\epsilon > 0$.

This claim is obvious if \tilde{x} is not a critical point of F since in this case one may choose the coordinates x_1, \ldots, x_n around \tilde{x} such that $F(x) = a + x_1$. In the case when \tilde{x} is a critical point of F , one may choose the coordinates x_1, \ldots, x_n near the point $\tilde{x} \in \tilde{M}$ such that $F(x)$ is given by $a \pm x_1^2 \pm x_2^2 + \cdots$ $\pm x_n^2$ and our claim follows since we know that the Morse index is distinct from 0 and n.

Because of the density of the group of translations $H \subset \mathbf{R}$ one may find $g \in H$ such that the real number $F(g\tilde{x}) = F(\tilde{x}) + g = a + g$ lies in the interval $(c - \epsilon, c + \epsilon)$. Then we obtain

(4)
$$
c \in (a+g-\epsilon, a+g+\epsilon) \subset g + F(\tilde{U}) = F(g\tilde{U}).
$$

Hence we see that the sets $F^{-1}(c)$ and $g\tilde{U}$ have a nonempty intersection. Therefore the neighborhood $U = \pi(g\tilde{U})$ intersects the leaf $L = \pi(F^{-1}(c))$ as claimed.

An obvious modification of the above argument proves a slightly more precise statement:

Given a point $x \in M$ and a leaf $L \subset M$ of the singular foliation $\omega = 0$, there exist two sequences of points $x_k \in L$ and $y_k \in L$ such that

$$
(5) \t x_k \to x \t and \t y_k \to x,
$$

and, moreover,

(6)
$$
\int_x^{x_k} \omega > 0, \text{ while } \int_x^{y_k} \omega < 0.
$$

The integrals in (6) are calculated along an arbitrary path lying in a small neighborhood of x.

This can also be expressed by saying that the leaf L approaches x from both the positive and the negative sides.

4. MODIFICATION

Our next goal is to replace ω by a Morse closed 1-form ω' which has the property that all its zeros lie on the same singular leaf of the singular foliation $\omega' = 0$. In this section we assume that $n = \dim M > 2$.

Let ω be a weakly complete Morse closed 1-form in class ξ where $rk(\xi) > 1$. Let $p_1, \ldots, p_m \in M$ be the zeros of ω . For each p_j choose a small neighborhood $U_j \ni p_j$ and local coordinates x_1, \ldots, x_n in U_j such that $x_i(p_j) = 0$ for $i = 1, \ldots, n$ and

(7)
$$
\omega|_{U_j} = df_j
$$
, where $f_j = -x_1^2 - \cdots - x_{m_j}^2 + x_{m_j+1}^2 + \cdots + x_n^2$.

Here m_j denotes the Morse index of p_j . We assume that the ball $\sum_{i=1}^n x_i^2 \le 1$ is contained in U_j and that $U_j \cap U_{j'} = \emptyset$ for $j \neq j'$. Denote by $\widetilde{W}_j^{\iota-1}$ the open ball $\sum_{i=1}^n x_i^2 < 1$.

Let $\phi : [0, 1] \rightarrow [0, 1]$ be a smooth function with the following properties: (a) $\phi \equiv 0$ on [3/4, 1]; (b) $\phi \equiv \epsilon > 0$ on [0, 1/2]; (c) $-1 < \phi' \leq 0$. Such a

function exists assuming that $\epsilon > 0$ is small enough. (a), (b), (c) imply that

(8)
$$
\phi'(r) > -2r, \quad \text{for} \quad r > 0.
$$

We replace the closed 1-form ω by

(9)
$$
\omega' = \omega - \sum_{j=1}^{m} \mu_j \cdot dg_j
$$

where $g_i : M \to \mathbf{R}$ is a smooth function with support in U_i . In the coordinates x_1, \ldots, x_n of U_j (see above) the function g_j is given by $g_j(x) = \phi(||x||)$. The parameters $\mu_i \in [-1, 1]$ appearing in (9) are specified later.

One has $\omega \equiv \omega'$ on $M - \bigcup_j U_j$ and near the zeros of ω . Let us show that ω' has no additional zeros. We have $\omega'|_{U_j} = d(f_j - \mu_j g_j)$ (where f_j is defined in (7)) and

(10)
$$
\frac{\partial}{\partial x_i}(f_j - \mu_j g_j) = \pm 2x_i - \mu_j \phi'(||x||) \frac{x_i}{||x||}
$$

If this partial derivative vanishes and $x_i \neq 0$ then $\phi'(r) = \pm 2r\mu_j^{-1}$ which may happen only for $r = ||x|| = 0$ according to (8).

We now show how to choose the parameters μ_i so that the closed 1-form ω' given by (9) has a unique singular leaf. Let L be a fixed nonsingular leaf of $\omega = 0$. Since L is dense in M (see §3) for any $j = 1, \ldots, m$ the intersection $L \cap U_j$ contains infinitely many connected components approaching p_j from below and from above and the function f_i is constant on each of them. We

say that a subset $T_c \subset L \cap W_j$ is a level set if $T_c = f_i^{-1}$ $j^{-1}(c) \cap W_j$ for some $c \in \mathbf{R}$. Note that $f_i(p_i) = 0$. The level set $c = 0$ contains the zero p_i ; it is homeomorphic to the cone over the product $S^{m_j-1} \times S^{n-m_j-1}$. Each level set T_c with $c < 0$ is diffeomorphic to $S^{m_j-1} \times D^{n-m_j}$ and each level set T_c with $c > 0$ is diffeomorphic to $D^{m_j} \times S^{n-m_j-1}$. Recall that m_j denotes the Morse index of p_i .

Let $\mathcal{V}_j = f_j(L \cap W_j) \subset \mathbf{R}$ denote the set of values of f_j on different level sets belonging to the leaf L. The zero 0 does not lie in \mathcal{V}_j since we assume that the leaf L is nonsingular. However, according to the result proven in §3, the zero $0 \in \mathbb{R}$ is a limit point of \mathcal{V}_i and, moreover, the closure of either of the sets $\mathcal{V}_j \cap (0,\infty)$ and $\mathcal{V}_j \cap (-\infty,0)$ contains $0 \in \mathbb{R}$.

For the modification ω' (given by (9)) one has $\omega'|_{U_j} = dh_j$ where $h_j =$ $f_j - \mu_j g_j$. The level sets T'_c for h_j are defined as $h_j^{-1}(c) \cap W_j$. Clearly T'_c is given by the equation

$$
f_j(x) = \mu_j \phi(||x||) + c, \quad x \in W_j.
$$

Hence for $||x|| \geq 3/4$ this is the same as T_c ; for $||x|| \leq 1/2$ the level set T_c' coincides with $T_{c+\mu_j\epsilon}$. In the ring $1/2 \leq ||x|| \leq 3/4$ the level set T_c' is homeomorphic to a cylinder.

The following figure illustrates the distinction between the level sets T_c and T'_c in the case $\mu_j > 0$.

Examine the changes which undergoes the leaf L when we replace ω by ω' . Here we view L with the leaf topology; it is the topology induced on L from the covering M using an arbitrary lift $L \to M$. First, let us assume that: (1) the Morse index m_j satisfies $m_j < n-1$; (2) the coefficient $\mu_j > 0$ is positive; (3) the number $-\epsilon \mu_j$ lies in the set \mathcal{V}_j . Then the complement

$$
L - \bigcup_{\substack{c \in \mathcal{V}_j \\ -\epsilon \mu_j < c < 0}} T_c
$$

is connected and it lies in a single leaf L' of the singular foliation $\omega' = 0$. We see that the new leaf L' is obtained from L by infinitely many surgeries. Namely, each level set $T_c \subset L$, where $c \in V_j$ satisfies $-\epsilon \mu_j \langle c \rangle \langle c \rangle$, is removed and replaced by a copy of $D^{m_j} \times S^{n-m_j-1}$; besides, the set $T_c \subset L$ where $c = -\epsilon \mu_j$, is removed and gets replaces by a cone over the product $S^{m_j-1} \times S^{n-m_j-1}$. Hence the new leaf L['] contains the zero p_j .

Let us now show how one may modify the above construction in the case $m_j = n - 1$. Since $n > 2$ we have in this case $n - m_j - 1 < n - 2$; hence removing the sphere S^{n-m_j-1} from the leaf L does not disconnect L. We shall assume that the coefficient μ_j is negative and that the number $-\epsilon \mu_j$ lies in $\mathcal{V}_j \subset \mathbf{R}$. The complement

$$
L-\bigcup_{\substack{c\in\mathcal{V}_j\\0
$$

is connected and it lies in a single leaf L' of the singular foliation $\omega' = 0$. Clearly, L' is obtained from L by removing the level sets T_c where $c \in V_j$ satisfies $0 < c < -\epsilon \mu_j$ (each such T_c is diffeomorphic to $D^{m_j} \times S^{n-m_j-1}$) and by replacing them by copies of $S^{m_j-1} \times D^{n-m_j}$. In addition, the set $T_c \subset L$ where $c = -\epsilon \mu_j$, is removed and is replaces by a cone over the product $S^{m_j-1} \times S^{n-m_j-1}$.

We see that L' is a leaf of the singular foliation $\omega' = 0$ containing all the zeros p_1, \ldots, p_m .

5. Proof of Theorem 1

Below we assume that $rk(\xi) > 1$. The case $rk(\xi) = 1$ is covered by Theorem 2.1 from [3].

The results of the preceding sections allow to complete the proof of Theorem 1 in the case $n = \dim M > 2$. Indeed, we showed in §4 how to construct a Morse closed 1-form ω' lying in the prescribed cohomology class ξ such that all zeros of ω' are Morse and belong to the same singular leaf L' of the singular foliation $\omega' = 0$. Now we may apply the colliding technique of F. Takens [10], pages 203–206. Namely, we may find a piecewise smooth tree $\Gamma \subset L'$ containing all the zeros of ω' . Let $U \subset M$ be a small neighborhood of Γ which is diffeomorphic to \mathbf{R}^n . We may find a continuous map $\Psi : M \to M$ with the following properties:

 $\Psi(\Gamma)$ is a single point $p \in \Gamma$;

 $\Psi|_{M-\Gamma}$ is a diffeomorphism onto $M-p$;

 $\Psi(U) = U;$

 Ψ is the identity map on the complement of a small neighborhood $V \subset M$ of Γ where the closure \overline{V} is contained in U.

Consider a smooth function $f: U \to \mathbf{R}$ such that $df = \omega'|_{U}$; it exists and is unique up to a constant. The function $g = f \circ \Psi^{-1} : U \to \mathbf{R}$ is welldefined (since $f|_{\Gamma}$ is constant). g is continuous by the universal property of the quotient topology. Moreover, g is smooth on $M - p$. Applying Theorem 2.7 from [10], we see that we can replace g by a smooth function $h: U \to \mathbf{R}$ having a single critical point at p and such that $h = f$ on $U - \overline{V}$.

Let ω'' be a closed 1-form on M given by

(11)
$$
\omega''|_{M-\overline{V}} = \omega'|_{M-\overline{V}} \text{ and } \omega''|_{U} = dh.
$$

Clearly ω'' is a smooth closed 1-form on M having no zeros in $M - \{p\}.$ Moreover, ω'' lies in the cohomology class $\xi = [\omega']$ (since any loop in M is homologous to a loop in $M - \overline{V}$.

Now we prove Theorem 1 the case $n = 2$. We shall replace the construction of §4 (which requires $n > 2$) by a direct construction. The final argument using the Takens' technique [10] remains the same.

Let M be a closed surface and let $\xi \in H^1(M; \mathbf{R})$ be a nonzero cohomology class. We can split M into a connected sum

$$
M = M_1 \sharp M_2 \sharp \dots \sharp M_k
$$

where each M_i is a torus or a Klein bottle and such that the cohomology class $\xi_j = \xi|_{M_j} \in H^1(M_j; \mathbf{R})$ is nonzero. Let ω_j be a closed 1-form on M_i lying in the class ξ_i and having no zeros; obviously such a form exists. §9.3.2 of [5] describes the construction of connected sum of closed 1-forms

on surfaces. Each connecting tube contributes two zeros. In fact there are three different ways of forming the connected sum, they are denoted by A, B, C on Figure 9.8 in [5]. In the type C connected sum the zeros lie on the same singular leaf. Hence by using the type C connected sum operation we get a closed 1-form ω on M having $2k - 2$ zeros which all lie on the same singular leaf of the singular foliation $\omega = 0$. The colliding argument based on the technique of Takens [10] applies as in the case $n > 2$ and produces a closed 1-form with at most one zero lying in class ξ .

REFERENCES

- [1] B. Dubrovin, S. Novikov and A. Fomenko, Modern Geometry; Methods of the homology theory, 1984
- [2] Y. Eliashberg, M. Gromov, Lagrangian Intersection Theory, finite-dimensional approach, In: "Geometry of Differential Equations" , A. Khovanskii, A. Varchenko, V. Vassiliev, editors, AMS, volume 186, 1998.
- [3] M. Farber, Zeros of closed 1-forms, homoclinic orbits and Lusternik–Schnirelman theory, "Topological Methods in Nonlinear Analysis", 19(2002), 123 - 152.
- [4] M. Farber, Lusternik–Schnirelman Theory and Dynamics, in: "Lusternik Schnirelmann Category and related topics", Contemporary Mathematics, $316(2002)$, 95 - 111.
- [5] M. Farber, Topology of closed one-forms, Mathematical Surveys and Monographs, Vol 108, American Mathematical Society, 2004.
- [6] F. Latour, *Existence de 1-formes fermées non singulières dans une classe de coho*mologie de De Rham, Publ. IHES, 80, 1994.
- [7] G. Levitt, 1-formes fermées singulières et groupe fondamental, Invent. Math., 88(1987), 635 - 667.
- [8] S. P. Novikov, The Hamiltonian formalism and a multi-valued analogue of Morse theory, Russian Math. Surveys, $37:5(1982)$, pp. 1–56.
- $[9]$ J.-Cl. Sikorav, Un problem de disjonction par isotopie symplectique dans un fibré $cotangent$, Ann. Sci. École Norm. Sup. $(4)19(1986)$, 543-552.
- [10] F. Takens, The minimal number of critical points of a function on a compact manifold and the Lusternik - Schnirelman category, Invent. Math., 6(1968), pp. 197 - 244.

Department of Mathematical Sciences, University of Durham, Durham DH1 3LE, UK

E-mail address: Michael.Farber@durham.ac.uk

FACHBEREICH MATHEMATIK UND INFORMATIK, WESTFÄLISCHE WILHELMS - UNIVER-SITÄT MÜNSTER, EINSTEINSTR. 62, D-48149 MÜNSTER, GERMANY

E-mail address: schuetz@math.uni-muenster.de