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Abstract. A monomial curve is a curve parametrized by monomials. The degree of
the secant variety of a monomial curve is given in terms of the sequence of exponents
of the monomials defining the curve. Likewise, the degree of the join of two monomial
curves is given in terms of the two sequences of exponents.
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1. Introduction

A monomial curve C is the image of an injective morphism of f : P1 → Pr defined by
monomials. After ordering the monomials by ascending degree it is therefore given by

(s : t) 7→ (sd : sd−a1ta1 : . . . : sd−ar−1tar−1 : td)

where a1 < a2 < . . . < ar = d. So this latter sequence completely determines C. We
define the first secant variety SecC to be the closure of the union of lines that meet C

in two distinct points. The first aim of this note is to compute the degree of this secant
variety as a subvariety of Pr. A simple wellknown argument using a general projection
π : C → C ⊂ P2 shows that this degree is given by the formula

degSecC =

(

d − 1

2

)

− δp − δq

where δp and δq are the genus contributions or equivalently, 2δp and 2δq are the Milnor
numbers of the cusps at p = π([1 : 0 . . . : 0]) and q = π([0 : . . . : 0 : 1]) on C. To compute
δp and δq given C, we find the characteristic terms of the Puiseux expansion of C at the
cusps. From the characteristic terms of the Puiseux expansion the genus contribution is
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computed by an algorithm due to Chisini and Enriques, eventually refined and given a
closed form by Casas-Alvero.

Given two curves C and D in Pr we define their join Join(C,D) to be the closure of
the union of lines that meet C and D in two distinct points. We consider the join of two
monomial curves C and D: In the notation of the previous section we ask that the two
curves are defined by

C : (s : t) 7→ (sdC : sdC−a1ta1 : . . . : sdC−ar−1tar−1 : tdC )

where a1 < a2 < . . . < ar = dC , and

D : (s : t) 7→ (sd
D : sdD−b1tb1 : . . . : sdD−br−1tbr−1 : tdD)

where b1 < b2 < . . . < br = dB. Again the two sequences

a1 < a2 < . . . < ar = dC , b1 < b2 < . . . < br = dB

determine the two curves completely, and our second goal is to compute the degree of
the join of C and D as a subvariety of Pr. In this case the general projection of the two
curves to P2 gives the formula

degJoin(C,D) = dC · dD − Is(C,D),

where Is(C,D) is the sum of the intersection multiplicities in P2 of the two curves at the
images of intersection points between the two curves in Pr. An algorithm computing the
sum of intersection multiplicity Is(C,D) is given in section 4.

A closed formula for the degree of the join in terms of the sequences a1 < a2 < . . . <

ar = dC and b1 < b2 < . . . < br = dB, like the formula for the degree of the secant
variety, would have been prefered. So far we can only give an explicit algorithm for its
computation.

The author thanks MSRI for excellent working conditions, Bernd Sturmfels for posing
the problem and Eduardo Casas-Alvero for giving the solution a nicer form.

2. The multiplicity sequence of a plane curve singularity

A crucial ingredient in the two algorithms below is the multiplicity sequence of a plane
curve singularity. Given a point p in the plane and a sequence of blowups at simple
points (p = p0, p1, p2, ..., ps), such that all exceptional divisors lie over p, i.e. is mapped
to p by the natural map to the original plane, and such that the strict transform of the
curve is smooth. The multiplicities m0(C), (resp. mi(C), i > 0) of C at p (respectively
its strict transforms at pi), form the multiplicity sequence of C at p with respect to the
sequence of blowups. Equivalently, the multiplicity sequence coincides with the sequence
of intersection numbers of the strict transform of the C with the exceptional divisor of
each blow up. The multiplicity sequence may contain 1’s, but these would not appear
in a blowup that provides a minimal resolution of the singularity. In the latter case we
say that the multiplicity sequence is minimal. Note that by the unicity of a minimal
resolution of a plane curve singularity, the minimal multiplicity sequence is unique. Both
minimal and nonminimal cases will however occur in our setting.
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We shall use the multiplicity sequence of plane singularities with given Puiseux series.
Consider the parameterized affine plane curve

C : t 7→ tm, tk1 + tk2 + · · · .

This plane curve has a cusp at the origin, where t = 0. The multiplicity sequence is
computed from the sequence m, k1, k2, . . . as described in a result of Enriques and Chisini
[1] Theorem 8.4.12. We give this algorithm. The genus contribution may be computed
from the multiplicity sequence. Casas-Alvero have found a closed form for this genus
contribution which we present below.

2.1. Algorithm computing the multiplicity sequence. Consider the strictly increas-
ing sequence

m < k1 < k2 < . . .

Step 1. The gcd-sequence and characteristic terms. (This step is not neccessary to com-
pute the multiplicity sequence, but clearifies the role of the different terms ki.) Let g0 = m

and gi = gcd{m, k1, . . . , ki} for i > 0. The gi form the gcd-sequence of m, k1, . . . , kr:

g0 ≥ g1 ≥ g2 ≥ g3 . . . .

Clearly, in the gcd-sequence, gi = 1 for some i, since otherwise the parametrization is
not 1 : 1. The characteristic terms in the sequence tk1 + tk2 + · · · are the terms

ki1 , ..., kis

where i1 = min{i|gi < m}, i2 = min{i|gi < gi1} etc. Thus m = g0 > gi1 and

gi1 > ... > gis = 1.

In particular the number of characteristic terms is finite and bounded by the number of
prime factors in m.

Step 2. The multiplicity sequence. Given the sequence

m < k1 < k2 < . . .

let κi = ki − ki−1 where k0 = 0 and i = 1, 2, .... We call

κ1, κ2, . . .

the difference sequence of the cusp. We will only need a finite number of terms in this
sequence. In fact the difference sequence of the finite sequence of characteristic terms
form will do. So we assume we have a difference sequence with s terms.

Apply the Euclidean algorithm successively to the elements of the difference sequence:
Let

κi = ei,1ri,1 + ri,2

ri,1 = ei,2ri,2 + ri,3

...

ri,w(i)−1 = ei,w(i)ri,w(i)

with 0 ≤ ri,j+1 < ri,j and r1,1 = m, ri,1 = ri−1,w(i−1), i > 1. Note that

ri+1,1 = gi = gcd(m, k1, ..., ki).
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The multiplicity sequence is ei,j times the multiplicity ri,j , with 1 ≤ i ≤ s and 1 ≤ j ≤ w(i).
As a common convention we write the sequence in the order it is computed, and with

repetitions in stead of the numbers ei,j . To separate the output between each subrou-
tine i above, we sometimes use a semicolon. Note that the overall sequence anyway is
nonincreasing. The genus contribution or δ-invariant of the sequence is given by

δ =
∑

i,j

ei,j

(

ri,j

2

)

.

This sum is given a closed form in terms of the original sequence and its gcd-sequence
by the following result due to Casas-Alvero:

Proposition 2.1. [2] Given the sequence

m < k1 < k2 < . . .

Let

g0 ≥ g1 ≥ g2 ≥ g3 . . .

be its gcd-sequence. Then the δ-invariant of the sequence is

δ =
1

2
(
∑

i≥1

ki(gi−1 − gi) − m + 1.

Proof. See [2] page 194 exercise 5.6. ˜

3. The degree of the secant variety of a monomial curve

Let C ⊂ Pr be a monomial curve defined by the sequence of positive integers a1 <

a2 < . . . < ar = d as above. Consider the secant variety SecC of C. This is a threefold,
so its degree is counted by the intersection of this variety with a general codimension
three subspace, or equivalently by the number of ordinary double points of the general
projection π : C → P2. For a general projection the only other singularities on C = π(C)
are possible cusps at the image of the points π(p) and π(q) where p = (1 : . . . : 0) and
q = (0 : . . . : 1) in Pr. The formula for the arithmetic genus of a plane curve of degree d

and the computation of the genus contribution at these cups provides a formula for the
degree of SecC.

Proposition 3.1. Let C ⊂ Pr be a monomial curve defined by the sequence of positive

integers a1 < a2 < . . . < ar = d. Let bi = d − ar−i, for i = 1, ..., r − 1 and br = d. Let

gi = gcd(a1, ..., ai) and hi = gcd(b1, ..., bi), then

degSecC =

(

d − 1

2

)

−
1

2
(
∑

i

ai+1(gi − gi+1) − a1 +
∑

i

bi+1(hi − hi+1) − b1) − 1.

Proof. The arithmetic genus p(C) for a curve C on a smooth surface S is given by the
adjunction formula [3] on the surface:

2p(C) − 2 = C · C + C · KS
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where KS is the canonical divisor on S. If C has multiplicity m at a point q on S, and
S′ → S is the blowup of S at q, then the adjunction formula on S ′ says

2p(C ′) − 2 = C ′ · C ′ + C ′ · KS′ =

= (C∗ − mE) · (C∗ − mE) + (C∗ − mE) · (KS + E) = 2p(C) − 2 − m2 + m

where E is the exceptional divisor and C∗ is the total transform and C ′ is the strict
transform of C(cf. [3] chapter V). Thus

p(C ′) = p(C) −

(

m

2

)

.

After resolving all singularities on C ⊂ P2 by a series of blow ups centered at singular
points of C or its strict transform, the arithmetic genus of the strict transform C ′ is 0 since
it is a rational curve. At the ordinary double points the difference between the arithmetic
genus of the curve and its strict transform after blowing up the point is

(

2
2

)

= 1. The

points π(p) and π(q) are the only other singularities on C. The contribution δp is by
definition the difference between the arithmetic genus of C and a smooth strict transform
C ′ that is isomorphic to C outside the point p. Likewise for δq. Since KP2

∼= −3L, where
L is a line in the plane, the arithmetic genus of C is given by 2p(C) − 2 = dC(dC − 3).
Adding all genus contributions we get the formula:

degSecC =

(

d − 1

2

)

− δp − δq.

It remains therefore to give an explicit computation of the genus contributions at p and
q. As explained above the genus contribution of a plane curve singularity is determined
by the multiplicity sequence of the singularity. The first term in this sequence is the
multiplicity of the curve in the singular point, the next term is the multiplicity of the
strict transform at the singular point on the exceptional divisor (if the strict transform
is not already smooth) etc. The algorithms 2.1 computes this multiplicity sequence from
the exponents of the Puiseux expansion, so the genus contribution is nothing but the δ

invariant of the sequence of exponents in the Puiseux expansion.
The parametrization of the cusp at p is given by

x = ta1 + b13t
a3 + ... + b1rt

ar , y = ta2 + b23t
a3 + ... + b2rt

ar .

To compute the multiplicity sequence of the Puiseux expansion we need only the charac-
teristic terms in a Puiseux expansion of our curve at π(p).

Lemma 3.2. The characteristic terms in the Puiseux expansion of C at p coincides with

the characteristic terms in the Puiseux expansion

x = ta1 , y = ta2 + b23t
a3 + ... + b2rt

ar .

Proof. To start with, the exponents ai are coprime. The ideal in k[t] generated by x and
y therefore has finite codimension as a vectorspace, and there is an N0 such that tN is in
the ideal when N ≥ N0. So it is enough to prove the statement of the lemma modulo
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tN0 . We therefore reparameterize C by substituting t with t + uta3−a1+1 for suitable u to
cancel the coefficient of ta3 . In the new parametrization we get:

x = ta1 + b′14t
a′

4 + ... + b′1rt
a′

r′ , y = ta2 + b23t
a3 + ... + b2rt

ar + c1t
b1 + ....

where a′
4 > a3, and all new exponents appearing are of the form ai + k(a3 − a1) for

some positive integer k. Compare the greatest common divisors gi of a1 and the i lowest
exponents of t occuring in y, before and after the reparametrization. The only difference
is a possible repetition of some terms, so the characteristic terms remain the same. Now,
we may reparameterize until x has only one term with exponent less than N and we are
done. ˜

Since non-characteristic terms do not contribute to the δ-invariant the proposition
follows from 2.1. ˜

Example 3.3. Consider the monomial curve C given by the sequence (0, 30, 45, 55, 78).
At p = (1 : 0), we may compute the δ-invariant from the Puiseux expansion with ex-
ponents m = 30, (a3, a4, a5) = (45, 55, 78) The gcd-sequence is (30, 15, 5, 1) and the δ-
invariant is

δp =
1

2
(45(30 − 15) + 55(15 − 5) + 78(5 − 1) − 30 + 1) = 754.

At q = (0 : 1) we compute the δ-invariant from the Puiseux expansion with exponents
m = 23 and (a3, a4, a5) = (33, 48, 78). Since m is prime and coprime to 33, the only
characteristic term is 33 with gcd-sequence (23, 1). The δ-invariant is

δq =
1

2
(33(23 − 1) − 23 + 1) = 352

The degree of the secant variety of C is

degSecC =

(

77

2

)

− δp − δq = 2926 − 754 − 352 = 1820

4. The degree of the join of two monomial curves

Consider the join of two monomial curves C and D in Pr defined by

C : (s : t) 7→ (sdC : sdC−a1ta1 : . . . : sdC−ar−1tar−1 : tdC )

where a1 < a2 < . . . < ar = dC , and

D : (s : t) 7→ (sd
D : sdD−b1tb1 : . . . : sdD−br−1tbr−1 : tdD)

where b1 < b2 < . . . < br = dB. The two sequences

a1 < a2 < . . . < ar = dC , b1 < b2 < . . . < br = dB

therefore determine the two curves completely. For the parametrizations to be 1− 1 onto
the image, we ask that the ai have no common factor, and likewise for the bi. The join
is a threefold, so its degree coincides with the number of lines meeting the two curves in
distinct points that also meet a given codimension 3 linear space L in Pr. But this number
equals the number of new intersection points obtained by projecting the union of the two
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curves from L to a plane. Denote by πL the projection from L, and let C = πL(C) and
D = πL(D) be the images of C and D respectively. The total intersection number

C · D = dC · dD

by Bezout’s theorem, so to get the degree we have to subtract the intersection multiplicity
at the points of πL(C ∩ D). In our special situation there certainly are points in C ∩ D:

{p = (1 : 0 . . . : 0), q = (0 : · · · : 0 : 1), u = (1 : . . . : 1)} ⊂ C ∩ D.

Furthermore, if
β = gcd(b1 − a1, b2 − a2, ..., br − ar),

then all roots of tβ −1 define intersection points. This is, however, all as is easily checked.
Namely, we may assume that the first coordinate is 1 at an intersection point and that
tai

1 = tbi

2 for i = 1, .., r, for some t1, t2 in the ground field. Then we may assume (over C)
that there is an α such that tα

1 = t2. Then we get tai

1 = tα·bi

1 , i.e. t1 = 1 or ai = α · bi for
i = 1, ..., r, or there is some integer β such that β · ai = α · bi. Therefore α is a rational
number. Furthermore the bi have no common factor, so α must be an integer. Since the
ai also have no common factor, we may assume that α = 1, and we have precisely the
intersection points described above.

The intersections at the roots of tβ−1 are always transversal, i.e. with distinct tangents:
The tangent direction is given by the derivatives (a1t

a1−1, ..., art
ar−1) and (b1t

b1−1, ..., brt
br−1).

Here the powers of t coincide, but the coefficients are not proportional, so the tangent
directions are distinct. Therefore the intersection multiplicity is 1 at the image of these
points by πL.

For the points πL(p) and πL(q) the intersection multiplicity is at least two, since the
two curves have the same tangent(cone) at those points. In fact, since the curves are
unibranched, there is a unique tangent direction at the point, i.e. if they are singular
they have a cusp there. The intersection multiplicity at these points is determined by
a procedure similar to the one given in the previous section. More precisely consider
say the point πL(p). Blow it up and let p1 be the common intersection point of the
strict transforms of the two curves on the exceptional divisor. There is a unique such
intersection point, since the two curves are unibranched and the tangents to C and D at
πL(p) coincide. Now blow up in the point p1. If the strict transforms meet on the new
exceptional divisor, then denote it by p2 and blow up in this point. Continue, until the
strict transforms do not intersect on the exceptional divisor. Thus we get a finite sequence
p0 = πL(p), p1, . . . , pk, and together with it the multiplicities of the strict transforms of
the two curves at each pi. We denote these multiplicity sequences by m0(C), . . . ,mk(C)
and m0(D), . . . ,mk(D). The intersection multiplicity between the two curves at the point
πL(p) is:

k
∑

i=0

mi(C)mi(D).

The multiplicity sequences m0(C), . . . ,mk(C) and m0(D), . . . ,mk(D) are decreasing
and similar to the multiplicity sequences constructed in the previous section. There are
however a main difference in that the new ones may contain 1’s. Because of the unibranch
property these 1’s could only be added to the end of the sequence though. Thus the new



8 K. RANESTAD

sequences coincides with part of the old one, extended possibly with 1’s only in case it
contains all of the old one.

The problem is how to compute these sequences from sequences a1, ..., ar and b1, ..., br of
the curves C and D. In this case the non-characteristic terms are as important as the char-
acteristic ones, since the intersection point of the strict transforms with the exceptional
divisor is crucial. Some special cases may illustrate the issue:

Example 4.1. Consider monomial curves C : (1, 2, 3, 4) and D : (1, 2, 3, 5). Then the
two curves separate after four blowups and the multiplicity sequences are mi(C) : 1, 1, 1, 1
and mi(D) : 1, 1, 1, 1. The intersection multiplicity at πL(p) is 1 + 1 + 1 + 1 = 4.

Example 4.2. The monomial curves C : (1, 2, 3, 4) and D : (2, 4, 6, 9) separate after
4 blowups starting at p (t = 0), the multiplicity sequences are mi(C) : 1, 1, 1, 1 and
mi(D) : 2, 2, 2, 2. The intersection multiplicity at πL(p) is 2 + 2 + 2 + 2 = 8. Similarly if
bi = eai, i = 1, . . . , s, then mi(D) = emi(C) for i = 1, ..., k where k is the length of the
multiplicity sequence for a curve D′ : (b1, . . . , bs, bs+1).

Example 4.3. For C : (1, 2, 3, 4) and D : (b0, b1, b2, b3) where b0 > 1 and b1 6= 2b0, then
k = 2 and mi(C) = (1, 1) and mi(D) = (b0,min{(b1 − b0), b0}).

With these examples in mind we formulate the algorithm computing the degree of the
join.

4.1. Intersection multiplicity algorithm. Given two monomial curves C and D de-
fined by the sequences

a1 < a2 < . . . < ar = dC , b1 < b2 < . . . < br = dD

respectively, and assume that for some j ≥ 1 bi ≥ ai for i < j while bj > aj . The
following three steps computes the intersection multiplicity of the general projection of
the two curves to a plane in the image of the origin.

Step 1. Let α = b1
a1

. If α is not an integer, then set k = 0, otherwise let

k = max{i|bi = αai}

Let m1,m2, . . . ,ms be the multiplicity sequence, the outcome of the algorithm 2.1, of
the sequence (b1, b2, . . . , bk).

Set

δk =
1

α
(m2

1 + · · · + m2
s),

and let g = gcd(b1, ..., bk).

Step 2. Apply the multiplicity algorithm 2.1 to the sequences ( g

α
, ak+1−ak) and (g, bk+1−

bk), with outcome

(e1, r1), (e2, r2), ..., (em, rm) and (e′1, r
′
1), ..., (e

′
n, r′n)

respectively. Let l = min{j|ej = e′j} and f = min{el+1, e
′
l+1} and let

ε =

l
∑

j

ej · rjr
′
j + f · rl+1r

′
l+1.



THE DEGREE OF THE SECANT VARIETY AND THE JOIN OF MONOMIAL CURVES 9

Step 3. The intersection multiplicity between the curves C and D at the origin is

I(C,D) = δk + ε.

Proof. To start we project C and D into the plane and may choose coordinates in the
plane such that π(C) and π(D) have the parametrizations

π(C) : x = ta1 + c1,3t
a3 + ... + c1,rt

ar , y = ta2 + c2,3t
a3 + ... + c2,rt

ar

and
π(D) : x = tb1 + c1,3t

b3 + ... + c1,rt
br , y = tb2 + c2,3t

b3 + ... + c2,rt
br .

By assumption a1 < a2 and b1 < b2, so both curves are tangent along the x-axis. Now,
we blow up the plane in the origin. The strict transforms of these curves on the blowup
intersect the exceptional curve in the x-chart (with coordinates (x, xy)). In this chart the
strict transforms π(C)′ and π(D)′ have local parameterizations:

π(C)′ : x = ta1+c1,3t
a3+...+c1,rt

ar , y = ta2−a1+c2,3t
a3−a1+...+c2,rt

ar−a1−c1,3t
a2+a3−2a1+. . .

and

π(D)′ : x = tb1+c1,3t
b3+...+c1,rt

br , y = tb2−b1+c2,3t
b3−b1+...+c2,rt

br−b1−c1,3t
b2+b3−2b1+. . . .

The tangent at the origin is y = 0 if a1 < a2 − a1, it is x = 0 if a1 − a2 < a1 and it is
x = y if a1 = a2 − a1.

Notice, that the terms of order less than ak −a1 and bk − b1 respectively, have the same
coefficients and differ only by the factor tαp . Therefore, if k > 0 the two curves π(C)′ and
π(D)′ have the same tangent direction at the origin, and their strict transform on the
blow up in the origin intersect. Proceeding we need to know after how many blowups, the
strict transforms does not intersect, and keep track of the multiplicities of the two strict
transforms up to that point. Computing the number of blowups needed to separate the
two curves, comes down to keeping track of first terms of the parametrizations of the strict
transforms after successive blowups. The tangent direction decides the parametrization
of the strict transform: If the tangent direction is y = 0 then the strict transform is
parametrized by x, y

x
, if the tangent direction is x = 0, then the strict transform is

parametrized by x
y
, y, and if the tangent direction is x = y, then the strict transform is

parametrized by x, y−x

x
. Now, the multiplicities of the strict transforms at the origin form

the multiplicity sequence obtained by the algorithm 2.1, but keeping track of which of the
tangent directions at each point, we actually also control the intersection between the two
curves. The change from y = 0 to x = 0 of tangent direction correspond to going from
(i, j) to (i, j + 1) in the Euclidean algorithm, while the third kind of tangent corresponds
to going from (i, w(i)) to (i+1,1) or to non-characteristic terms. In this algorithm, as
long as i ≤ k, the leading terms of the parametrizations differ only by a factor of tα.
So the corresponding tangent directions coincide. When i = k + 1 and j = 1 we have
parametrizations tg + ..., tak+1−ak + ... and tα+g + ..., tbk+1−bk + .... To see when these
two curves separate, we apply again the Euclidean algorithm. So here we compare the
coefficients ek,j for the two curves. The curves split after ek,1+ek,2+ ...+ek,s−1+ε blowups
if ek,j = e′k,j for j < s, while ε = min{ek,s, e

′
k,s}. ˜
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Proposition 4.4. Given two monomial curves C and D defined by the sequences

a1 < a2 < . . . < ar = dC , b1 < b2 < . . . < br = dD

respectively, then the intersection multiplicity Ip of C and D at p is computed by the

algorithm 4.1. Likewise the intersection multiplicity Iq of C and D is computed.

Let β = gcd(b1 − a1, ...br − ar), then the degree of the join of C and D is

degJoin(C,D) = dC · dD − Ip − Iq − β.
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