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Abstract. Lalonde and McDuff showed that the natural action of the rational
homology of the group of Hamiltonian diffeomorphisms of a closed symplectic man-
ifold (M, ω) on the rational homology groups H∗(M, Q) is trivial. In this note,
given a symplectic action of SU(2), φ : SU(2)×M → M , we will construct a sym-

plectic fiber bundle Pφ → CP 2 with fiber (M, ω) and use it to construct the chains,
which bound the images of the homology cycles under the trace map given by the
SU(2)-action. It turns out that the natural chains bounded by the SU(2)-orbits in
M are punctured CP 2’s, the counter parts of holomorphic discs bounding circles in
case of Hamiltonian circle actions. We will also define some invariants of the action
φ and do some explicit calculations.

1. Introduction

Let φ : G ×M → M be a smooth action of a compact Lie group G on a smooth
manifold M . The action induces a homomorphism on homology, called the trace
homomorphism, ∂φ : Hk(M,Q) → Hk+d(M,Q) defined as follows: If α ∈ Hk(M,Q)
is a class represented by a cycle a : A → M , then ∂φ(α) is the class in Hk+d(M,Q)
represented by the cycle G× A → M , (g, x) 7→ φ(g, a(x)), where d is the dimension
of G. In general this homomorphism is not trivial (just consider product spaces
G × M). However, if M is a closed symplectic manifold and G is a compact Lie
group acting on M in a Hamiltonian fashion, then McDuff and Lalonde showed
that the homomorphism ∂φ : Hk(M,Q) → Hk+d(M,Q) is trivial. Indeed, they have
proved a much stronger result that the natural action of the homology of the group of
Hamiltonian diffeomorphisms of the closed manifold (M,ω) on the homology groups
H∗(M,Q),

Hk(Ham(M,ω),Q) ×Hl(M,Q) → Hk+l(M,Q)

is trivial ([LM, LMP]).
Below is the main result of this note, which determines the chains bounded by the

images of the trace homomorphism in the case of G = SU(2).

Theorem 1.1. Let φ : SU(2)×M →M be a symplectic action on a closed symplectic

manifold (M,ω). Then there is a closed symplectic manifold (Pφ, ωφ), which fibers

over CP 2 with fiber M such that,

i) the rational homology of the fiber M injects into the rational homology of Pφ,

ii) the symplectic form ωφ restricts to ω at each fiber, and
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iii) if α ∈ Hk(M,Q) is a class represented by a cycle a : A → M , then in the

manifold Pφ, the cycle

SU(2) × A→M ⊆ Pφ

representing the class ∂φ(α), bounds a chain of the form CP0
2 × A → Pφ,

where CP0
2 = CP 2 − Int(D4) is the punctured projective plane.

In particular, the induced homomorphism on homology ∂φ : Hk(M,Q) → Hk+3(M,Q)
is trivial.

Remark 1.2. Since SU(2) is simply connected any symplectic SU(2)-action on a
symplectic manifold is Hamiltonian ([MS]).

Example 1.3. Let SU(2) act linearly on CP 2 in the usual way (see the next section).

Blowing up the isolated fixed point of the action we get an SU(2)-action on CP 2]CP
2
.

The action is Hamiltonian since it is algebraic. The orbit of a point with trivial
stabilizer is a copy of SU(2) = S3, which separates the two copies of the projective
planes. So, the homology class represented by this orbit is trivial and it bounds a
punctured CP 2, not a 4-ball.

The next section is devoted to the proof of Theorem 1.1. In the third section, we
will construct some invariants of the action φ : SU(2)×M →M and compute them
in some cases. Finally, we will mention some applications of these results to the study
of the topology of real algebraic varieties.

2. Proof of Theorem 1.1

Let (M,ω) be a closed 2n-dimensional symplectic manifold and

φ : SU(2) ×M →M

a symplectic action. The proof of Theorem 1.1 consists of three parts. In the first
part, we will construct a smooth symplectic fiber bundle πS4 : P 0

φ → S4 with fiber
(M,ω) using the action φ : SU(2)×M →M as the clutching function. Moreover, the
fibre bundle, both the total space and the base, will have an SU(2) and an S1-action
both preserving a closed two form ωS4 on P 0

φ , which restricts to ω on each fiber.
Moreover, the projection map will be equivariant with respect to both actions.

In the second part, using a natural SU(2) and S1-equivariant degree one map
CP 2 → S4, where the SU(2) and the S1-action on the complex projective space are
obtained from the natural actions of these groups on C2, we will pull back the bundle
over the sphere to a bundle over CP 2, which we will denote π : Pφ → CP 2. Using
the pull back of the two form ωS4 on P 0

φ and the Fubuni-Study form on CP 2 we will
construct a symplectic form ωφ on Pφ, which restricts to ω in each fiber. Moreover,
the SU(2) and the S1−actions on P 0

φ will induce Hamiltonian actions on Pφ.
In the last part, we will consider a symplectic reduction of the total space of the

bundle π : Pφ → CP 2 using the S1-action. Finally, Kirwan’s Surjectivity Theorem
on symplectic quotients ([K]) together with a topological observation will finish the
proof.
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2.1. Symplectic M-bundles over S4 with structure group SU(2). Given any
smooth action φ : SU(2) × M → M we define the smooth manifold P 0

φ as the
identification space

D4
+ ×M ∪D4

− ×M/(g, x) ∼ (g, φ(g, x)), for (g, x) ∈ ∂D4
+ ×M

where we identify ∂D4
± with S3 = SU(2). Note that we have a fiber bundle P 0

φ → S4

with fiber M , induced by the projection maps D4
± ×M → D4

±.
Another description for this bundle, which is more suitable to define the SU(2)-

action on, is as follows: Let H denote the quaternion line and U(H2) the set of
unit length vectors in H2. Also identify SU(2) with the set of unit quaternions
H. Let L → S4 denote the quaternion line bundle, whose unit disc bundle is the
SU(2)-bundle U(H2) → S4, (v1, v2) 7→ [v1 : v2], for (v1, v2) ∈ U(H2). Note that
the latter map is nothing but the orbit map of the SU(2)-action on U(H2) given by
(v1, v2) 7→ (v1g, v2g), for g ∈ SU(2) and (v1, v2) ∈ U(H2).

Similarly, on U(H2) ×M we have an SU(2)-action defined by

(g, (v1, v2), x) 7→ ((v1g, v2g), φ(g, x))

for g ∈ SU(2), x ∈M and (v1, v2) ∈ U(H2). The projection map U(H2)×M → U(H2)
is equivariant and taking quotients by the respective actions on U(H2)×M and U(H2)
we recover the fiber bundle P 0

φ → S4.

There is a second SU(2)-action on U(H2)×M , which commutes with the first one:

(h, (v1, v2), x) 7→ ((h−1v1, v2), x)

for h ∈ SU(2), x ∈ M and (v1, v2) ∈ U(H2). Clearly, this induces an action on S4

given as

(h, [v1 : v2]) 7→ [h−1v1 : v2]

which makes the projection map equivariant. Since the two actions commute the
second action induces actions on both the total space and the base of the fiber bundle
P 0

φ → S4, which makes the projection map equivariant. Note that the action on S4

is free outside the poles, namely [0 : 1] and [1 : 0], the only fixed points of the action.
There is also a left circle action on this space: Identify H with C2, on which SU(2)

acts by matrix multiplication. Also regard S1 as the set of matrices {eiθI2 | e
iθ ∈ S1},

where I2 is the 2 × 2 identity matrix. Now let S1 act on U(H2) ×M by

(eiθ, (v1, v2), x) 7→ ((e−iθI2v1, v2), x)

for eiθ ∈ S1, x ∈M and (v1, v2) ∈ U(H2). Since e−iθ I2 commutes with all elements in
SU(2) we get an S1-action on both the total space and the base of the fiber bundle
P 0

φ → S4, which makes the projection map equivariant. The circle action on S4

commutes with the SU(2)-action described in the above paragraph and it is a free
action outside the poles.

The Wang sequence for cohomology associated to the M -bundle P 0
φ → S4 yields

the isomorphism

0 = H−2(M,Q) → H2(P 0
φ ,Q)

rest.
→ H2(M,Q)

∂∗
φ
→ H−1(M,Q) = 0
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given by the restriction map, where the last map is the dual of the trace homomor-
phism ∂φ : Hk(M,Q) → Hk+3(M,Q) (k = −1 in this case). In particular, there is
unique cohomology class on P 0

φ , which restricts to the cohomology class [ω] on each
fiber. Indeed, we will construct a two form representing this cohomology class, which
we will use to get a symplectic form on the M -fiber bundle over CP 2.

Lemma 2.1. There is an SU(2) and S1-invariant closed two form ωS4 on P 0
φ , which

restricts to ω on each fiber and such that [ωS4]n+1 = 0 in cohomology, where the

SU(2) and S1-actions are the ones described in the above paragraphs. Moreover, the

cohomology class of ωS4 is uniquely determined by these conditions.

Before we prove this lemma we need some preliminaries. Let f : S3×M → S3×M
be the smooth map given by f(g, x) = (g, φ(g, x)), (g, x) ∈ S3 ×M . Consider the
following diagram, where πi, i = 1, 2, are the projections onto the second factors.

M M
π1 ↑ ↑ π2

S3 ×M
f
→ S3 ×M

Using the decomposition T∗(S
3×M) = T∗S

3 ×T∗M we will write any tangent vector
X on S3 ×M as X = (XS, XM). Note that the differential of f has the form

f∗ =

(
Id 0
∂φ
∂g

∂φ
∂x

)
.

Hence f∗((XS, 0)) = (XS, X
]
S) and f∗((0, XM)) = (0, φ∗(XM)), where X ]

S is the vector
field on M generated by the vector XS via the action.

The SU(2) = S3-action on M is Hamiltonian means that there is a smooth map
µ : M → su(2)∗ such that for any vector XS ∈ T∗S

3 we have

iX]
S
ω = d(µ(XS)).

Since SU(2) = S3 is parallelizable choosing a global frame de1, de2, de3 for the
cotangent bundle for S3 we can regard µ as a one form on S3 ×M , namely

µ(g, x) = A(x) de1 +B(x) de2 + C(x) de3

for (g, x) ∈ S3 ×M . One can easily check that d(µ(XS)) = −iXS
dµ. Now we can

state the next lemma.

Lemma 2.2. π∗
1(ω) − (π2 ◦ f)∗(ω) is an exact two form on S3 ×M , which vanishes

on T∗M identically.

Proof. Let X = (XS, XM) and Y = (YS, YM) be tangent vectors at any point of
S3 ×M . Then

I = (π∗
1(ω) − (π2 ◦ f)∗(ω)) ((XS, XM), (YS, YM))

= ω(XM , YM) − ω(X ]
S + φ∗(XM), Y ]

S + φ∗(YM))
= ω(XM , YM) − ω(φ∗(XM), φ∗(YM))

− ω(X ]
S, Y

]
S + φ∗(YM)) − ω(φ∗(XM), Y ]

S)

= −ω(X ]
S, Y

]
S + φ∗(YM)) − ω(φ∗(XM), Y ]

S),
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because ω(φ∗(XM), φ∗(YM)) = φ∗(ω)(XM , YM) = ω(XM , YM). Note that this calcu-
lation already shows that π∗

1(ω) − (π2 ◦ f)∗(ω) is identically zero on T∗M .
Now using iX]

S
ω = d(µ(XS)) we can write

I = −d(µ(XS))(Y ]
S + φ∗(YM)) + d(µ(YS))(φ∗(XM)). Since

d(µ(XS)) = −iXS
dµ

we get
I = dµ(XS, Y

]
S + φ∗(YM)) − dµ(YS, φ∗(XM))

= dµ(XS, Y
]
S) + dµ(XS, φ∗(YM)) + dµ(φ∗(XM), YS).

On the other hand, similar calculations yield
dµ(f∗(X), f∗(Y )) = dµ(XS, Y

]
S) + dµ(X ]

S, YS)
+ dµ(XS, φ∗(YM)) + dµ(φ∗(XM), YS).

Comparing the two equations we deduce that
I = dµ(f∗(X), f∗(Y )) − dµ(X ]

S, YS). For the last term we can write

dµ(X ]
S, YS) = −dµ(YS, X

]
S) = −(iYS

dµ)(X ]
S) = d(µ(YS))(X ]

S)

= (iY ]
S
ω)(X ]

S) = ω(Y ]
S , X

]
S). So, we have obtained

I = dµ(f∗(X), f∗(Y )) + ω(X ]
S, Y

]
S).

Writing ω(X ]
S, Y

]
S) = I − (f ∗(dµ))(X, Y ) we see that the map

(X, Y ) 7→ ω(X ]
S, Y

]
S)

is a closed two form on S3 × M . Moreover, it vanishes if XS or YS is zero and
hence it is identically zero on the T∗M component of the tangent space. So, the de
Rham cohomology class represented by this closed two form evaluates zero on any
two dimensional homology class of the product S3 ×M provided that the homology
class is represented by a cycle lying in some {pt}×M . However, since S3 has no first
and second homology, by the Künneth formula, this de Rham class must be trivial.
Hence, there is a one form u on S3 ×M such that I = (f ∗(dµ))(X, Y ) + du(X, Y ).
This finishes the proof of the lemma. �

Proof of Lemma 2.1. By the isomorphism obtained from the Wang sequence, the
cohomology class of ωS4 is uniquely determined by that of ω (see the paragraph
above Lemma 2.1).

We will regard the total space P 0
φ as the identification space

R4
+ ×M ∪ R4

− ×M/(t, g, x) ∼ F (t, g, x)
.
= (t−1, g, φ(g, x)),

for (t, g, x) ∈ (R4
+ − {0}) × M , where we identify R4 − {0} with (0,∞) × S3 in

the obvious way. Let π1 and π2 denote the projections onto the M factors of the
products R4

+ ×M and R4
− ×M , respectively. Also, we will denote the projection of

(0,∞) × S3 ×M onto the S3 ×M component by πSM .
Let ωi = π∗

i (ω), i = 1, 2. Then by Lemma 2.2

ω1 − F ∗(ω2) = π∗
SM(dv1)
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for some one form v1 on S3 ×M . Let v2 = (f−1)∗(v1), where f is as in Lemma 2.2.
So, ω1 = F ∗(ω2 + dv2) on (R4

+ − {0}) ×M . Let ω̃2 = ω2 + d(ρ(t)v2), where ρ is a
smooth function on R, which vanishes on (−∞, 0.5] and equals one on [0.75,∞).

Now we have

F ∗(ω̃2) = F ∗(ω2) + d(F ∗(ρ(t)v2)) = ω1 − dv1 + d(ρ(1/t)v1).

So, letting ω̃1 = ω1 + d((ρ(1/t)− 1)v1) we obtain F ∗(ω̃2) = ω̃1. By the choice of the
function ρ the forms ω̃i are defined on all of R4 ×M , and indeed, they are equal to
ωi on D1/2 ×M , where D1/2 denotes the disc of radius 1/2 in R4. Moreover, since
both dvi and dt vanishes on T∗M , each ω̃i restricts to ω on each fiber {pt} ×M .
Hence, together they define a global closed two form on P 0

φ , say ωS4, which restricts
to ω in each fiber.

To see that [ωS4]n+1 is zero just open up ω̃n+1
i and note that ωn+1

i = 0.
The form ωS4 may not be SU(2)-invariant. However, we can average it over the

SU(2)-orbits to get an SU(2)-invariant form with the desired properties. Namely, let
dH denote the Haar measure on SU(2) with total volume one and define the average
of ωS4 as the form

(X, Y ) 7→

∫

SU(2)

(ψ∗(h, p) (ωS4)) (X, Y ) dH

where ψ : SU(2) × P 0
φ → P 0

φ is the action map and the integration is over h ∈

SU(2) for fixed vectors X, Y ∈ Tp(P
0
φ). Since on U(H2) ×M the action is given by

(h, ((v1, v2), x)) 7→ ((h−1v1, v2), x) and the restriction of ωS4 to each fiber, which is
a copy of M , is just ω, so will be the restriction of the average of ωS4. Once, the
form is SU(2)-invariant then we can average it to make also S1-invariant in the same
way. Since the two actions commute, averaging over the S1-orbits will not spoil the
SU(2)−invariance of the form. Also averaging commutes with exterior derivative and
therefore the averaged two form will be still closed. �

2.2. Symplectic M-bundles over CP 2 with structure group SU(2). By a fiber
bundle π : Pφ → CP 2, with fiber M and structure group SU(2) we mean a group
homomorphism φ : SU(2) → Symp(M,ω), where the latter is the group of sym-
plectomorphisms of the symplectic manifold (M,ω) and a principal SU(2)-bundle
P → CP 2 such that Pφ is obtained from P via the representation φ in the usual way.
The classifying space for SU(2)-bundles is HP∞, whose 7th skeleton is HP 1 = S4

and therefore any principal SU(2)-bundle over a closed 4-manifold N is obtained
form the universal bundle L→ S4 by pulling it over N by a map ξ : N → S4. Since
e(L) = c2(L) ∈ H4(S4,Z) is a generator we have e(ξ∗(L)) = c2(ξ

∗(L)) = deg(ξ).
Let ξ : CP 2 → S4 be the map given by the formula

ξ([z0 : z1 : z2]) = (
2z̄0z1
||z||2

,
2z̄0z2
||z||2

,
|z1|

2 + |z2|
2 − |z0|

2

||z||2
)

where ||z||2 = |z0|
2 + |z1|

2 + |z2|
2, for [z0 : z1 : z2] ∈ CP 2. Here we consider the

4-sphere as

S4 = {(w1, w2, t) ∈ C × C × R | |w1|
2 + |w2|

2 + t2 = 1}.
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Note that ξ([0 : z1 : z2]) = (0, 0, 1), the North pole and ξ([0 : 0 : 1]) = (0, 0,−1), the
South pole. So, the map ξ maps the complex line z0 = 0 to the North pole and is a
diffeomorphism onto its image outside the line z0 = 0. In particular its degree is one.

Consider the linear SU(2)-action on CP 2 given as

[z0 : z1 : z2] 7→ [z0 : a′z1 + b′z2 : c′z1 + d′z2]

where

(
a′ b′

c′ d′

)
∈ SU(2) is the inverse of

(
a b
c d

)
∈ SU(2). Writing

w = (w1, w2) = (z1/z0, z2/z0)

we get

ξ([z0 : z1 : z2]) = (
2w1

1 + ||w||2
,

2w2

1 + ||w||2
, 1 −

2

1 + ||w||2
).

Hence, ξ becomes equivariant if we endow S4 with the SU(2)-action given by

(w1, w2, t) 7→ (a′w1 + b′w2, c
′w1 + d′w2, t).

However, the latter is just the action of Lemma 2.1. Similarly, ξ is S1-equivariant
where the S1-action CP 2 is given by

[z0 : z1 : z2] 7→ [z0 : e−iθz1 : e−iθz2].

Let Pφ = ξ∗(P 0
φ), the pull back of the M -bundle P 0

φ → S4 via the SU(2) and

the S1-equivariant map ξ : CP 2 → S4. Since ξ is an equivariant map the bundle
π : Pφ → CP 2 gets both SU(2) and S1-actions, for which the projection map π
is equivariant. Moreover, the pull back cohomology class ξ∗(ωS4) is invariant with
respect to both actions and restricts to ω on each fiber. On the other hand, the
cohomology class [ξ∗(ωS4)]n+1 = ξ∗([ωS4]n+1) = 0.

Let ωFS denote the Fubuni-Study symplectic form on CP 2. The form π∗(ωFS) is
invariant under the SU(2) and the S1-action on the complex projective plane and is
identically zero when restricted to each fiber {pt} ×M . Hence for any positive large
enough constant κ� 0 the 2-form ωφ = ξ∗(ωS4) + κ π∗(ωFS) is a symplectic form on
Pφ. Moreover, both actions on Pφ are Hamiltonian. This is obvious for SU(2) since
it is simply connected. For the S1-action one can argue as follows: Since averaging
commutes with exterior derivative locally we have ωφ = π∗

i (ω) + dv + κ π∗(ωFS) for
some equivariant one form v on Pφ. Let χ be a vector field generated by the S1-
action. Since the form is invariant the Lie derivative of dv along χ will be zero. Now
by the Cartan formula we get iχ]dv = −d(iχ]v) and hence the S1-action on Pφ is also
Hamiltonian.

Remark 2.3. 1) By multiplying the last coordinate of the map ξ : CP 2 → S4 by −1,
if necessary, we can arrange so that the pull back SU(2)-bundle ξ∗(L) → CP 2 has
c2 = −1. Since SU(2)-bundles are determined by c2 we see that ξ∗(L) is smoothly
isomorphic to O(1) ⊕ O(−1). Therefore, the construction of Pφ could be made just
over CP 2 using the bundle O(1) ⊕ O(−1) with appropriate SU(2) and S1-actions.

2) We will orient the bundles P 0
φ and Pφ as follows: The manifold Pφ is oriented

with the orientation coming from the symplectic form ωφ. Since Pφ is the pull back
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of P 0
φ via the map ξ : CP 2 → S4, whose degree is chosen as above, the orientation

on Pφ induces one on P 0
φ .

2.3. Hamiltonians and symplectic reduction. Let µ : Pφ → R be a Hamiltonian
for the S1-action on Pφ. Recall that the S1-equivariant map ξ : CP 2 → S4 maps the
line z0 = 0 to the North pole and sends the point [0 : 0 : 1] to the South pole of the
sphere. So, over some small S1-invariant disjoint tubular neighborhoods U and V of
the line z0 = 0 and the point [0 : 0 : 1], respectively, the bundle π : Pφ → CP 2 is
isomorphic to the product bundles U ×M → U and V ×M → V , where the S1-
action on the M -factor is trivial. Moreover, by the construction, ωφ when restricted
to π−1(U) and π−1(V ), is just (ωφ)| = ω + κ π∗(ωFS). Since the action on the M -
factor is trivial we see that the moment map restricted to π−1(U) and π−1(V ) is just a
multiple of the moment map µ0 : CP 2 → R of the S1-action on CP 2 plus a constant,
which depends only on the open set U or V ; i.e., µ(p) = κ π(µ0(p)) + C(p), for all
p ∈ π−1(U) ∪ π−1(V ), where C is a locally function on the union π−1(U) ∪ π−1(V ).

We are ready now to prove the main theorem.

Proof of Theorem 1.1. Replacing the Hamiltonians by adding constants if necessary
we can assume that 0 is a regular value for µ and hence for µ0 such that µ−1

0 (0) = S3

lies in U . Note that this S3 divides CP 2 into two pieces. By multiplying all the
symplectic forms with −1 if necessary we can assume that CP 2

0 = µ−1
0 ((−∞, 0]) is

a closed tubular neighborhood of the line z0 = 0 and D4 = µ−1
0 ([0,∞)) is a closed

4-ball with common boundary S3 = µ−1(0). The M -fiber bundle over these pieces
are just products and

Pφ = CP 2
0 ×M ∪D4 ×M/(g, x) ∼ (g, φ(g, x)), for (g, x) ∈ ∂(CP 2

0) ×M.

Let α ∈ Hk(M,Q) be a class represented by a cycle a : A → M . We need to show
that the class ∂φ(α), represented by the cycle S3 × A → M , (g, x) 7→ φ(g, a(x)), is
trivial in Hk+3(M,Q). We can clearly view S3 × A as a subset of the boundary of
CP 2

0 ×M . The identification in the above decomposition of Pφ maps S3 ×A into the
other piece by the map (g, x) 7→ φ(g, a(x)). On the other hand, the radial contraction
of D4 to its center {0} induces a radial contraction of D4×M to {0}×M . Moreover,
the composition of the identification map with the contraction will map S3 ×A into
M exactly via the map (g, x) 7→ φ(g, a(x)). Since S3 × A = ∂(CP 2

0 × A) the class
∂φ(α) is trivial in Hk+3(Pφ,Q).

Now consider the symplectic quotient µ−1(0)/S1, which is equal to the product
S3/S1 ×M = S2 ×M , because S1 acts trivially on M by the construction of the
S1-action. By the Kirwan’s Surjectivity Theorem ([K]) the map, induced by the
inclusion µ−1(0) ⊆ Pφ, K : H i(Pφ,Q) → H i(S2 ×M,Q) is onto, for all i. So the
restriction map H i(Pφ,Q) → H i(M,Q) is surjective. Hence the map in homology
induced by the inclusion of a fiber Hi(M,Q) → Hi(Pφ,Q) is injective. Finally, by
the above paragraph ∂φ(α) is trivial in Hk+3(M,Q). �
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3. Some invariants of the SU(2)-action

In this section we will study the sections of the bundles P 0
φ and Pφ, define some

invariants of the SU(2)-action on (M,ω), make some computations and mention some
applications to the study of the topology of real algebraic varieties.

The orientations on the manifolds P 0
φ and Pφ, which we will need when we consider

integrals over them, are the ones described in Remark 2.3.

3.1. Sections of P 0
φ . The lemma below describes the SU(2)-equivariant (with re-

spect to the SU(2)-action on P 0
φ and on S4 described in Subsection 2.1) sections of

the bundle P 0
φ → S4 up to homotopy.

Lemma 3.1. There is an SU(2)-equivariant section s : S4 → P 0
φ if and only if the

SU(2)-action on M has a fixed point. Moreover, if si : S4 → P 0
φ , i = 1, 2, are two

such sections then the difference of (s2)∗([S
4])− (s2)∗([S

4]) as a homology class is in

the image of the map π4(M) → π4(P
0
φ), induced by the inclusion of a fiber.

Proof. Let l(t) : [−1, 1] → S4 be a one to one geodesic arc from the point (0, 0,−1)
to the point (0, 0, 1). If s : S4 → P 0

φ is an equivariant section then s is determined
completely by its values s(l(t)), t ∈ [−1, 1]. On the other hand, the points (0, 0,±1)
are the fixed points of the action on the sphere and hence the points s(0, 0,±1) are
in the fixed point set of action on M . Moreover, since the action on S4 is free outside
the poles, any section s defined on the arc l(t) with s(0, 0,±1) ∈ M fixed points of
the SU(2)-action, extends uniquely to a section. Indeed, the section s : S4 → P 0

φ is

just the trace of the section s(l(t)), t ∈ [−1, 1], under the SU(2)-action on P 0
φ .

The second statement follows the long exact sequence corresponding to the fibra-
tion M → P 0

φ → S4,

· · · → π4(M) → π4(P
0
φ) → π4(S

4) = Z → · · · .

�

Theorem 1.1 implies the following result.

Proposition 3.2. If the SU(2) action on M is symplectic then the homology class

s∗([S
4]) of an equivariant section s : S4 → P 0

φ is determined only by the connected

components of the fixed point set containing the fixed points s(0, 0,−1) and s(0, 0, 1).

Proof. Assume the set up in the proof of the Lemma 3.1. If s1 and s2 are two such
sections with s1(0, 0,−1) = s2(0, 0,−1) and s1(0, 0, 1) = s2(0, 0, 1) then the difference
homology class can be identified with the trace of a loop in M based at one of these
two fixed points. However, by Theorem 1.1 the latter is trivial. Now assume that
s1(0, 0,−1), s2(0, 0,−1) ∈ F0 and s1(0, 0, 1), s2(0, 0, 1) ∈ F1, for some connected
components F0 and F1 of the fixed point set. Join the fixed points in F0 and F1 by
arcs contained completely in the fixed point sets. The trace of a path that lies in the
fixed point set is just the path itself and hence these arcs do not contribute to the
difference of the homology classes. This finishes the proof. �
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We will call a cohomology class u ∈ H4(M,Q) monotone if it vanishes on spherical
classes, i.e., on the image of π4(M) → H4(M,Q).

We know that the cohomology class [ωS4] ∈ H2(P 0
φ ,Q), which restricts to [ω] on

each fiber with ωn+1
S4 = 0. Following [LMP, S], we denote the Chern classes of the

vertical tangent bundle

T vert
∗ = ker(π∗ : T∗P

0
φ → T∗S

4)

by cφi . These classes are clearly invariants of the action φ and hence, so is any integral
of the form

I0(k, k1, · · · , kn) =

∫

P 0

φ

ωk
S4 (cφ1)

k1 · · · (cφn)kn

where k, ki are non negative integers with 2k+2k1 + · · ·+2nkn = 2n+4 = dim(P 0
φ).

Let x ∈ M be any fixed point of the SU(2)-action. Then the function v 7→ (v, x),
v ∈ S4, defines a section, say sx : S4 → P 0

φ . Note that the pull back bundle over S4

of the vertical bundle via the section sx is nothing but the associated complex vector
bundle of the principal SU(2)-bundle U(H2) → S4 (see Subsection 2.1) corresponding
to the representation of SU(2) on tangent space TxM . We have then the following
result about the representations of SU(2) on tangent spaces of the fixed points, which
follows easily from Lemma 3.1.

Corollary 3.3. Let (M,ω) and φ be as above. Assume that c2(M) is a monotone

class. Then for any two fixed points x1 and x2 of the action on M , the vector bundles

over S4, corresponding to the SU(2)-representations at the tangent spaces Txi
, i =

1, 2, have the same second Chern class.

Remark 3.4. Lemma 3.1 and the above corollary are valid indeed for any smooth
action on M since we do not make use of the symplectic form at all.

Example 3.5. 1) If the action φ : SU(2) ×M →M is trivial then the integrals

I0(k, k1, · · · , kn) =

∫

P 0

φ

ωk
S4 (cφ1)

k1 · · · (cφn)kn

are all zero, because in this case P 0
φ = S4 ×M and all the forms in the integral are

trivial on T∗S
4.

2) Consider the standard action of SU(2) on (CP 2, ω), where ω = ωFS, and
consider

I0(2, 0, 1) =

∫

P 0

φ

ω2
S4 c

φ
2 .

Note that c2(CP
2) is a monotone class because π4(CP

2) = 0. It follows from the

Wang sequence of the fibration that cφ2 = λ[ωS4 ]2 + π∗
S4(v) for some v ∈ H4(S4,Q)

and real number λ. Let x0 = [1 : 0 : 0], the only fixed point of the action, and denote
the corresponding section of P 0

φ → S4 by sx0
. Then

cφ2([sx0
]) = λ[ωS4]2([sx0

]) + π∗
S4(v)([sx0

]) = π∗
S4(v)([sx0

]) = v([S4]),

where the first equality follows from the fact s∗x0
([ωS4]) = 0 and the second one from

that πS4 ◦sx0
= idS4. It follows from the representation of SU(2) on the tangent space
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Tx0
CP 2 that cφ2([sx0

]) = c2(L) = −1, where L → S4 is the canonical SU(2)-bundle
(see Section 2.1).

Now, I0(2, 0, 1) =
∫

P 0

φ
ω2

S4 c
φ
2 =

∫
P 0

φ
ω2

S4 π∗
S4(v)

=
∫

P 0

φ
−(one fiber) ω

2
S4 π∗

S4(v) =
∫

�
4× � P 2 ω2

S4 π∗
S4(v)

= (
∫

�
4 v) (

∫
� P 2 ω2

S4) = v([S4]) ω2([CP 2])

= −c21([CP
2]) = −9.

Note that we can define analogous integrals over Pφ: There is a unique cohomology
class uφ = ξ∗([ωS4]) ∈ H2(Pφ,Q), which restricts to [ω] on each fiber with un+1

φ = 0.
Similarly, we define

I(k, k1, · · · , kn) =

∫

Pφ

uk
φ (cφ1)

k1 · · · (cφn)kn

where k, ki are non negative integers with 2k+2k1 + · · ·+2nkn = 2n+4 = dim(Pφ).
Note that the two invariants are indeed equal, where the first one may be more
suitable for computations. However, if the action has no fixed points then the bundle
over S4 may have no section, as the next example shows.

Example 3.6. The bundle corresponding to the standard action of SU(2) on CP 1,
P 0

φ → S4, has no section. Otherwise, by deforming the section to a constant, say

[1 : 0], over D4 we would arrive at the contradiction that the map SU(2) → CP 1

given by

g =

(
a b
c d

)
7→ [ā : b̄] = φ(g, [1 : 0])

is homotopically trivial, which is nothing but basically the Hopf map (see Section 2.2).
On the other hand, as we will see in the next section that the bundle π : Pφ → CP 2

has always a section.

3.2. Sections of Pφ. Since the SU(2) action on CP 2 has a fixed point, an equivariant
section exists if and only if the SU(2)-action on M has a fixed point. Note also that,
any equivariant section of P 0

φ → S4 pulls back to an equivariant section of Pφ → CP 2.

Indeed, these pull back sections are those equivariant sections s : CP 2 → Pφ such
that s(z0 = 0) and s([1 : 0 : 0]) are two fixed points of the action on M (since the
map ξ : CP 2 → S4 maps the line z0 = 0 to a pole of S4 the bundle Pφ restricted to
the line z0 = 0 is trivial). In particular, for this class of equivariant sections of Pφ

the analogues of Lemma 3.1, Proposition 3.2 and Corollary 3.3 will hold.
Another source of equivariant sections of the bundle is the set of points of M

whose stabilizers is a circle. Namely, let H = StabSU(2)([0 : 1 : 1]) and consider

the path r(t) = [1 − t : t : t], t ∈ [0, 1], in CP 2. Let x0, x1 be points in M with
StabSU(2)(x0) = SU(2) (x0 is a fixed point) and H 6 StabSU(2)(x1). Choose a section
of the bundle over the path r(t) with s([1 : 0 : 0]) = x0 and s([0 : 1 : 1]) = x1.
Then this extends uniquely to an equivariant section s : CP 2 → Pφ. Moreover, any
equivariant section is of this form and the analogues of Lemma 3.1 and Corollary 3.3
will hold in this case also.

Unlike the bundle P 0
φ → S4 the bundle over CP 2 has always a section.
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Lemma 3.7. Let p0 be any point in the fiber π−1([1 : 0 : 0]) = M . Then the bundle

π : Pφ → CP 2 has a section s : CP 2 → Pφ with s([1 : 0 : 0]) = p0.

Proof. Recall the decomposition of Pφ from the proof of the Theorem 1.1

Pφ = CP 2
0 ×M ∪D4 ×M/(g, x) ∼ (g, φ(g, x)), for (g, x) ∈ ∂(CP 2

0) ×M.

We define a section s : CP 2 → Pφ as follows: For v ∈ D4 let s(v) = (v, p0). Over
∂(D4) the section looks like v 7→ (v, p0) and over ∂(CP 2

0) it is given by the formula
v 7→ (v, φ(v−1, p0)).

Since the action of the maximal torus H = StabSU(2)([0 : 1 : 1]) on M is also
Hamiltonian it has a fixed point, say p1 ∈ M . Hence, StabSU(2)(p1) contains H. Let
σ : [0, 1] →M be a path from p0 to p1. The SU(2)-orbit of this path,

SU(2) × [0, 1] →M, (g, t) 7→ φ(g, σ(t))

gives a map β : CP 2
0 →M , whose restriction to the boundary ∂(CP 2

0) is the orbit of
p0. Now we can extend the section over CP 2

0 as v 7→ (v, β(v)). �

Remark 3.8. i) For the last part of the above proof we could use also the chain
constructed in Theorem 1.1 bounded by the cycle ∂φ(p0).

ii) Note that if the point p0 ∈M is not a fixed point of the SU(2)-action then the
section of the above lemma is not equivariant. In particular, if M = CP 1 with the
SU(2)-action as in Example 3.6, then neither bundles have an equivariant section.

We believe that J-holomorphic sections of Pφ → CP 2 deserve some attention also.

3.3. Algebraic actions on real algebraic varieties. The analogous constructions
in case of Hamiltonian circle actions on closed symplectic manifolds can be done (cf.
see also [LMP, S]). This result has the following consequence. Let M = X � be a
nonsingular projective complexification of a nonsingular real algebraic variety X and
assume that we have a linear (hence Hamiltonian) S1-action on M = X � . Assume
that the action leaves the real part invariant and the action on X is free. Then
the S1-analogue of Theorem 1.1 implies that we can map D2 × X into Pφ via an
equivariant map, which extends the action φ : S1 × X → X. Moreover, the map
descends to a map

D2 ×S1 X → Pφ

which shows that X bounds, in the manifold PΦ, the mapping cylinder of the quotient
map p : X → X/S1 = B. In particular, this implies that all the homology classes in
X represented by cycles of the form p−1(A), where A is a cycle in B, are homologous
to zero in the complexification X � , a fact proven in [O1] previously.

Lastly, we will mention another application along the same lines. The result men-
tioned in the introduction that the natural action of the homology of the group of
Hamiltonian diffeomorphisms of a closed symplectic manifold (M,ω) on the homology
groups H∗(M,Q),

Hk(Ham(M,ω),Q) ×Hl(M,Q) → Hk+l(M,Q)

is trivial ([LM, LMP]) has an immediate consequence in the study of topology of
real algebraic varieties: Let X be a nonsingular compact real algebraic variety with



TRIVIALITY OF SYMPLECTIC SU(2)-ACTIONS ON HOMOLOGY 13

a nonsingular projective complexification i : X → X � . Clearly X � carries a Kähler
and hence a symplectic structure such that X is a Lagrangian submanifold. De-
fine KHi(X,Q) as the kernel of the homomorphism i∗ : Hi(X,Q) → Hi(X � ,Q) and
ImH i(X,R) as the image of the homomorphism i∗ : H i(X � ,Q) → H i(X,Q). In
[O1, O2] it is shown that both KHi(X,Q) and ImH i(X,Q) are independent of the
projective complexification i : X → X � and thus (entire rational) isomorphism in-
variants of X. We know also that the natural linear action of a unitary group on a
complex projective variety is Hamiltonian. We have then the following corollary.

Corollary 3.9. Let X and X � be as above and G be a compact Lie group acting

unitarily on X � , leaving the real part X invariant. Then the image of the trace map

Hk(G,Q) ×Hl(X,Q) → Hk+l(X,Q)

lies in KHk+l(X,Q).
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