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Abstract. Let dk,n and #k,n denote the dimension and the degree of the Grass-
mannian Gk,n, respectively. For each 1 ≤ k ≤ n − 2 there are 2dk,n · #k,n (a priori
complex) k-planes in Pn tangent to dk,n general quadratic hypersurfaces in Pn. We
show that this class of enumerative problem is fully real, i.e., for 1 ≤ k ≤ n − 2
there exists a configuration of dk,n real quadrics in (affine) real space Rn so that
all the mutually tangent k-flats are real.

Introduction

Understanding the real solutions of a system of polynomial equations is a funda-
mental problem in mathematics (see, e.g., [13] for some recent lines of research and
applications). However, as pointed out in [3, p. 55], even for problem classes with
a finite number of complex solutions (enumerative problems), the question of how
many solutions can be real is still widely open. A class of enumerative problems is
called fully real if there are general real instances for which all the (a priori complex)
solutions are real.

One of us (Sottile) began a systematic study of this question in the special Schubert
calculus [9, 10], a class of enumerative problems from classical algebraic geometry.
This special Schubert calculus asks for linear subspaces of a fixed dimension meeting
some given (general) linear subspaces (whose dimensions and number ensure a finite
number of solutions) in n-dimensional complex projective space Pn. For any given
dimensions of the subspaces, this problem is fully real, i.e., there exist real linear
subspaces for which each of the a priori complex solutions are real. In particular, for
1 ≤ k ≤ n − 2 there are dk,n := (k + 1)(n − k) real (n−k−1)-planes U1, . . . , Udk,n

in
Pn with

#k,n :=
1!2! · · ·k!((k + 1)(n − k))!

(n − k)!(n − k + 1)! · · ·n!

real k-planes meeting U1, . . . , Udk,n
. Here, dk,n and #k,n are the dimension and the

degree of the Grassmannian Gk,n, respectively (see [5, 7]). These were the first results
showing that a large class of non-trivial enumerative problems is fully real.

We continue this line of research by considering k-flats tangent to quadratic hy-
persurfaces (hereafter quadrics). This is also motivated by recent investigations in
computational geometry (see [6, 11, 12]). It was shown in [12] that 2n−2 general
spheres in affine real space R

n have at most 3 · 2n−1 common tangent lines in C
n,
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and that there exist spheres for which all the a priori complex tangent lines are real.
The present paper addresses the following question: What is the maximum number
of real k-flats simultaneously tangent to dk,n general quadrics in Rn (respectively in
Pn� )? As this problem may be formulated as the complete intersection of dk,n qua-
dratic equations on the Grassmannian of k-planes in P

n, the expected number of
complex solutions is the product of the degrees of the equations with the degree of
the Grassmannian, i.e., 2dk,n · #k,n. We show that the problem is fully real:

Theorem 1. Let 1 ≤ k ≤ n−2. Given dk,n general quadrics in Pn there are 2dk,n ·#k,n

complex k-planes that are simultaneously tangent to all dk,n quadrics. Furthermore,
there is a choice of quadrics in Rn for which all the k-flats are real, distinct, and lie
in affine space Rn.

When k = 1, we have d1,n = 2(n − 1) and #1,n is the Catalan number #1,n =
1
n

(

2n−2
n−1

)

. The following table exhibits the large discrepancy between the number of
lines tangent to spheres and the number of lines tangent to general quadrics. When
n = 3 this discrepancy was accounted for by Aluffi and Fulton [1].

n 3 4 5 6 7 8 9

3 · 2n−1 12 24 48 96 192 384 768

2d1,n · #1,n 32 320 3584 43008 540672 7028736 93716480

In Section 1, we review some facts on Plücker coordinates of k-planes in projective
space. In Section 2, we combine recent results in the real Schubert calculus with
classical perturbation arguments adapted to the real numbers to prove Theorem 1.
Since the proof for general (k, n) is non-constructive, we give a symbolic, constructive
proof for the case (k, n) = (1, 3) in Section 3.

1. Preliminaries

We review the well-known Plücker coordinates of k-dimensional linear subspaces
(hereafter k-planes) in complex projective space Pn (see, e.g., [4]). Let U be a k-plane
in Pn which is spanned by the columns of an (n + 1) × (k + 1)-matrix L. For every
subset I ⊂ {0, . . . , n} of size k +1 let pI be the (k +1)× (k +1)-subdeterminant of L
given by the rows in I and let N :=

(

n+1
k+1

)

− 1. Then p := (pI)I⊂{0,...,n},|I|=k+1 ∈ P
N is

the Plücker coordinate of U . The set of all k-planes in Pn is called the Grassmannian
of k-planes in P

n and is denoted by Gk,n. If the indices are written as ordered
tuples then the Plücker coordinates are skew-symmetric in the indices. Gk,n is in
1-1-correspondence with the set of vectors in P

N satisfying the Plücker relations, i.e.,

(1)
k+1
∑

l=1

(−1)lpi1...îl...ik+1
pj1...jk−1il = 0

for every I = {i1, . . . , ik+1}, J = {j1, . . . , jk−1} ⊂ {0, . . . , n} of strictly ordered index
sets (where ˆ over an index means that it is omitted). See, e.g., [4, §VII.6]. By
Schubert’s results [7], the dimension of Gk,n is dk,n = (k + 1)(n− k) and its degree is
#k,n.



REAL k-FLATS TANGENT TO QUADRICS IN � n 3

If an (n−k−1)-plane V is given as the intersection of the k + 1 hyper-

planes
∑n

i=0 v
(0)
i xi = 0, . . . ,

∑n

i=0 v
(k)
i xi = 0, then the dual Plücker coordinate q =

(qI)I⊂{0,...,n},|I|=k+1 ∈ P
N of V is defined by the (k + 1) × (k + 1)-subdeterminants of

the matrix with columns v(0), . . . , v(k).
A k-plane U intersects an (n−k−1)-plane V in Pn if and only if the dot product of

the Plücker coordinate p of U and the dual Plücker coordinate q of V vanishes, i.e.,
if and only if

(2)
∑

I⊂{0,...,n},|I|=k+1

pIqI = 0

(see, e.g., [4, Theorem VII.5.I]).
We use Plücker coordinates to characterize the k-planes tangent to a given quadric

in Pn (see [11]). We identify a quadric xTQx = 0 in Pn with its symmetric (n+1) ×
(n+1)-representation matrix Q. Further, for r ∈ N let ∧r denote the r-th exterior
power of matrices

∧r : C
m×n → C(m

2 )×(n

2)

(see [11]). The row and column indices of the resulting matrix are subsets of cardi-
nality r of {1, . . . , m} and {1, . . . , n}, respectively. For I ⊂ {1, . . . , m} with |I| = r
and J ⊂ {1, . . . , n} with |J | = r,

(

∧rA
)

I,J
is the subdeterminant of A whose rows are

indexed by I and whose columns are indexed by J . If a k-plane U ⊂ Pn is spanned
by the columns of an (n+1) × (k + 1)-matrix L, then the

(

n+1
k+1

)

× 1-matrix ∧k+1L,

considered as a vector in PN , is the Plücker coordinate of U .
Recall the following algebraic characterization of tangency: A k-plane U is tangent

to a quadric Q if the restriction of the quadratic form to U is singular (which includes
the case U ⊂ Q). When the quadric is smooth, this implies that U is tangent to the
quadric in the usual geometric sense.

Proposition 2 (Proposition 5.5.3 of [11]). A k-plane U ⊂ Pn is tangent to a quadric
Q if and only if the Plücker coordinate pU of U satisfies

(3) pT
U

(

∧k+1Q
)

pU = 0 .

A k-flat in affine real space Rn is a k-dimensional affine subspace in Rn. Through-
out the paper we assume that Rn is naturally embedded in the real projective space
Pn� via (x1, . . . , xn) 7→ (1, x1, . . . , xn) ∈ Pn� .

2. Proof of the main theorem

We first illustrate the essential geometric idea underlying our constructions for
(k, n) = (1, 3), which is the first nontrivial case. Here, Theorem 1 states that there
exists a configuration of four quadrics in R3 with 32 distinct real common tangent
lines.

By (2), the set of lines meeting four given lines in P3 is the intersection of four
hyperplanes on the Grassmannian G1,3, and hence there are at most two or infinitely
many common lines meeting `1, . . . , `4. If e1 and e2 are opposite edges in a tetrahedron
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∆ ⊂ R3, then the lines underlying e1 and e2 are the two common transversals of the
four lines underlying the other four edges (see Figure 1).

`1

`2

`3

`4

e1

e2

Figure 1. A tetrahedron configuration of four lines in R3 with two
real transversals and a configuration of four quadrics with 32 real tan-
gents.

Consider the lines `1, . . . , `4 as (degenerate) infinite circular cylinders with radius
r = 0. When the radius is slightly increased, then the cylinders intersect pairwise
in the regions (combinatorially) given by the four vertices of ∆, and the common
tangents roughly have the direction of e1 or e2. Since the neighborhood of a vertex is
divided into four regions by the two cylinders, and since each region contains common
tangents, this gives 4 · 4 tangents close to the direction of e1 and 4 · 4 tangents close
to the direction of e2 (see Figure 1.)

For the general case, let 1 ≤ k ≤ n − 2. By Section 1, the number of k-planes
in Pn simultaneously meeting dk,n general (n−k−1)-planes is #k,n. We begin with a
configuration of dk,n real (n−k−1)-flats U1, . . . , Udk,n

in R
n having #k,n real (n−k−1)-

flats simultaneously meeting U1, . . . , Udk,n
. We then argue that we can replace each

of these (n−k−1)-flats by a real quadric such that for each of the k-flats, there are
2dk,n nearby real k-flats tangent to each quadric.

Proposition 3. For 1 ≤ k ≤ n−2, there exists a configuration of dk,n real (n−k−1)-
flats U1, . . . , Udk,n

in R
n such that there exist exactly #k,n real k-flats simultaneously

meeting U1, . . . , Udk,n
.

Proof. The corresponding statement for real projective space P
n� was proven for k = 1

in [9, Theorem C] and for k ≥ 2 in [10]. We deduce the affine counterpart above
simply by removing a real hyperplane that contains none of the (n−k−1)-flats or any
of the transversal k-flats. �

For k = 1, the purely existential statement in [9] and Proposition 3 was improved
by Eremenko and Gabrielov [2] who gave the following explicit construction of such
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a collection of (n−2)-flats. Let γ : R → Rn, γ(s) := (1, s, s2, . . . , sn−1)T be the
moment curve in Rn. For each s ∈ R, set U(s) to be

U(s) := linear span
(

γ(s), γ′(s), . . . , γ(n−3)(s)
)

.

Geometrically, U(s) is the (n−2)-flat osculating the moment curve at the point γ(s).
By [2], for any distinct s1, . . . , s2n−2 ∈ R, the (n−2)-flats U(s1), U(s2), . . . , U(s2n−2)
have exactly #1,n = Cn−1 common real transversals, where Cn = 1

n+1

(

2n

n

)

is the
n-th Catalan number. For general k, it is only known that there exist distinct
s1, . . . , sdk,n

∈ R such that there are #k,n distinct real k-flats meeting the oscu-
lating (n−k−1)-flats to the moment curve at s1, . . . , sdk,n

[10]. The conjecture on
total reality in [8, §1 and §4] conjectures that any choice of distinct s1, . . . , sdk,n

∈ R

implies reality of all transversal subspaces.

Definition. Suppose that 1 ≤ k ≤ n − 2, and let U ⊂ R
n be a k-flat and r > 0.

The k-cylinder Cy(U, r) is the set of points having Euclidean distance r from U .

This quadratic hypersurface is smooth in Rn but its extension to Pn is singular. A
k′-flat V ⊂ Rn is tangent to Cy(U, r) if and only if its Euclidean distance to U is r.

We will use the following basic property of intersection multiplicities [3, p. 1].

Proposition 4. Let A be an algebraic curve in Pn, and let x be a singular point
on A. For any hyperplane H ⊂ Pn such that x is an isolated point in A ∩ H, the
intersection multiplicity of A and H in x is greater than 1.

Theorem 5. Let 1 ≤ k ≤ n−2, and let U1, U2, . . . , Udk,n
be (n−k−1)-flats in Rn hav-

ing exactly #k,n common transversal k-flats, all real. For each i = 0, 1, . . . , dk,n, there
exist r1, . . . , ri > 0 such that there are exactly 2i · #k,n distinct k-flats, each of them
real, that are simultaneously tangent to each of the (n−k−1)-cylinders Cy(Uj, rj),
j = 1, . . . , i, and also meet each of the (n−k−1)-flats Ui+1, . . . , Udk,n

.

The case of i = dk,n implies Theorem 1.

Proof. We induct on i, with the case of i = 0 being the hypothesis of the theorem.
Suppose that i ≤ dk,n and that there exist r1, . . . , ri−1 > 0 such that there are

exactly 2i−1 · #k,n distinct k-flats V1, . . . , V2i−1#k,n
which are simultaneously tangent

to Cy(Uj, rj) for each j = 1, . . . , i − 1, and meet each of Ui, . . . , Udk,n
, and each of

these k-flats is real.
Now we drop the condition that the k-flats meet Ui. Let A ⊂ Gk,n be the curve of k-

flats that are tangent to the cylinders Cy(Uj, rj) for j = 1, . . . , i−1 and that also meet
each of the (n−k−1)-flats Ui+1, . . . , Udk,n

. Since A is the intersection of i−1 quadrics
(the tangency conditions) with dk,n−i hyperplanes (conditions to meet the remaining
Uj) on the Grassmannian, it has degree at most 2i−1dk,n. Since its intersection with
the hyperplane defined by Ui consists of 2i−1dk,n points, we conclude that the degree
of A is 2i−1dk,n and (by Proposition 4) that each of these points is a smooth point of
A.

Let V ∈ {V1, . . . , V2i−1#k,n
}. Since V is a smooth real point of the real curve A ⊂

Gk,n (i.e., V ⊂ Pn� ), the real points of A contain a smooth arc α containing V with
α∩ ({V1, . . . , V2i−1#k,n

} \V ) = ∅. Let ϕ : (−δ, δ) → α be a smooth parametrization of
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the arc α with ϕ(0) = V . Such a parametrization exists, for example, by the Implicit
Function Theorem.

Thus, for t ∈ (−δ, δ) \ {0}, the real k-flat ϕ(t) does not meet Ui and so it has a
positive Euclidean distance d(t) from Ui. Since d(t) is a continuous function of t, for
ρ ∈ R with 0 < ρ < min{d(−δ/2), d(δ/2)} there are at least two distinct real k-flats
in α whose Euclidean distance to Ui is ρ.

In this way, we obtain 2i−1 ·#k,n such arcs, each containing one of V1, . . . , V2i−1#k,n
.

We may assume that these arcs are pairwise disjoint. Let 0 < ri be small enough to
ensure that each arc contains two k-flats having Euclidean distance ri from Ui. This
gives at least 2 · 2i−1 · #k,n real k-planes in A whose Euclidean distance to Ui is ri.
Since 2i ·#k,n is the maximum number of k-flats with this property, there are exactly
2i ·#k,n distinct k-flats tangent to Cy(Uj, rj) for j = 1, . . . , i and that also meet each
of the (n−k−1)-flats Ui+1, . . . , Udk,n

. �

Since the number of real k-flats will not change under a small perturbation of the
k-cylinders Cy(Uj, rj), we may replace them by quadrics which are smooth in Pn. Let
sign(Q) denote the signature of a quadric Q ⊂ Pn.

Corollary 6. Let 1 ≤ k ≤ n − 2. For

(s1, . . . , sdk,n
)T ∈

{

{n − 1, n − 3, . . . , 2k − n + 1}dk,n if k ≥ n/2 ,

{n − 1, n − 3, . . . , 2 ·
(

n−1
2

− bn−1
2
c
)

}dk,n if k < n/2

there exist smooth quadrics Q1, . . . , Qdk,n
⊂ Pn� with |sign(Qi)| = si, 1 ≤ i ≤ dk,n,

such that the #k,n (complex) common tangent k-flats to Q1, . . . , Qdk,n
are all real,

distinct, and lie in affine space R
n.

Proof. Since the signature of an (n − k − 1)-cylinder is k, the proof immediately
follows from the possible perturbations of the quadratic form in Pn of the type

−r2x2
0 + x2

1 + · · · + x2
k+1 . �

We conjecture that the reality statement holds for signatures not covered by Corol-
lary 6.

Conjecture 7. Let 1 ≤ k ≤ n − 2. For

(s1, . . . , sdk,n
)T ∈ {n − 1, n − 3, . . . , 2 ·

(

n−1
2

− bn−1
2
c
)

}dk,n

there exist smooth quadrics Q1, . . . , Qdk,n
⊂ P

n� with |sign(Qi)| = si, 1 ≤ i ≤ dk,n,
such that the #k,n (complex) common tangent k-flats to Q1, . . . , Qdk,n

are all real,
distinct, and lie in affine space Rn.

The first case of this conjecture which is not covered by Corollary 6 is when k =
3 and n = 5 and the signature is zero. That is, for 3-flats tangent to 8 smooth
quadrics in P5� , with at least one having signature zero. We remark that an argument
perturbing cylinders to singular quadrics gives an analog to Corollary 6 concerning
k-flats tangent to singular quadrics. We omit its complicated formulation.
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3. A constructive proof for lines in dimension 3

Our proof of Theorem 1 was non-constructive. We close this paper by providing
a constructive proof in the first nontrivial case, (k, n) = (1, 3), i.e., the real lines
tangent to four quadrics in 3-space. In order to realize the tetrahedral configuration
of Figure 1 in P3� , let `1, . . . , `4 be given by the following equations:
(4)

`1 : x0 = x3 = 0 ; `2 : x0 = x1 = 0 ; `3 : x1 = x2 = 0 ; `4 : x2 = x3 = 0 .

The two common transversal lines are given by x2 = x4 = 0 and by x1 = x4 = 0.
For parameters α, β ∈ R, consider the four quadrics

Q1 : x2
0 + x2

3 − β(x2
1 + x2

2) = 0 ,

Q2 : x2
0 + x2

1 − β(x2
2 + x2

3) = 0 ,

Q3 : x2
1 + x2

2 − α(x2
0 + x2

3) = 0 ,

Q4 : x2
2 + x2

3 − α(x2
0 + x2

1) = 0 .

For α = β = 0, the four quadrics become the corresponding lines in P3� . For small
α, β > 0, these quadrics are deformations of the lines with rank 4 and signature 0—
smooth ruled surfaces.

Theorem 8. Let (α, β) ∈ R2 satisfy

αβ(1 − αβ)(1 − β2)(1 − α2)
(

(1 − α)2(1 − β)2 − 16αβ
)

6= 0 .

Then there are 32 distinct (possibly complex) common tangent lines to Q1, . . . , Q4. If
0 < α, β < 3 − 2

√
2, then each of these 32 tangent lines are real.

Proof. Since the quadrics only contain monomials of the form x2
i , the tangent equa-

tions (3) of Q1, . . . , Q4 only contain monomials of the form p2
ij. Hence, the four

tangent equations give the following system of linear equations in p2
01, . . . , p

2
23:









−β −β 1 β2 −β −β
1 −β −β −β −β β2

−α −α α2 1 −α −α
α2 −α −α −α −α 1























p2
01

p2
02

p2
03

p2
12

p2
13

p2
23















= 0 .

Permute the variables into the order (p02, p13, p03, p12, p01, p23). For α, β satisfying

(5) αβ(1 − αβ)(1 + β)(1 + α) 6= 0 ,

Gaussian elimination yields the following system:









−β −β (1 − α)(1 − β) 0 0 0
0 0 α −β 0 0
0 0 0 −β α 0
0 0 0 0 α −β























p2
02

p2
13

p2
03

p2
12

p2
01

p2
23















= 0 .
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Together with the Plücker equation (1), this gives the following system of equations:

−βp2
02 − βp2

13 + (1 − α)(1 − β)p2
03 = 0 ,(6)

p01p23 − p02p13 + p03p12 = 0 ,(7)

αp2
01 = αp2

03 = βp2
12 = βp2

23 .(8)

For α, β satisfying (5) as well as (1−α)(1−β) 6= 0, we distinguish the following three
disjoint cases.

Case 1: p02 = 0.
Since p13 = 0 would imply that all components are zero and hence contradict
(p01, . . . , p23)

T ∈ P5, we can assume p13 = 1. Then (6) and (8) imply

αp2
01 = αp2

03 = βp2
12 = βp2

23 =
αβ

(1 − α)(1 − β)
6= 0 .

Since (7) implies sgn(p01p23) = −sgn(p03p12), only 8 of the 24 = 16 sign combinations
for p01, p03, p12, p23 are possible. Namely, the 8 (complex) solutions for p01, p03, p12, p23

are

(9) (p01, p03, p12, p23)
T =

1
√

(1 − α)(1 − β)
(γ01β, γ03β, γ12α,−sgn(γ01γ03γ12)α)T

with γ01, γ03, γ12 ∈ {−1, 1}. Hence, for α, β ∈ R2 satisfying (5), this case gives 8
distinct common tangents.

Case 2: p13 = 0.
This case is symmetric to case 1. Setting p13 = 1, the resulting 8 solutions for the
variables p01, p03, p12, p23 are the same ones as in (9).

Case 3: p02p13 6= 0.
Without loss of generality, we can assume p02 = 1. Solving (7) for p13 and substituting
this expression into (6) yields

−β − βp2
01p

2
23 − βp2

03p
2
12 − 2βp01p03p12p23 + (1 − α)(1 − β)p2

03 = 0 .

We use (8) to write this in terms of p01. This is straightforward for the squared
terms, but for the other terms, we observe that, by (8), p01p23 = ±p03p12 and since
p02p13 6= 0, the Plücker equation (7) implies these have the same sign. This gives the
quartic equation in p01

−β + (1 − α)(1 − β)p2
01 − 4αp4

01 = 0 ,

whose discriminant is

(10) (1 − α)2(1 − β)2 − 16αβ .

Hence, for α, β ∈ R2 satisfying (5), and for which this discriminant does not vanish,
there are two different solutions for p2

01. For each of these two solutions for p2
01, there

are 8 distinct solutions for p01, p03, p12, p23, namely

(11) (p01, p03, p12, p23)
T =

√

p2
01 (γ01, γ03, γ12, sgn(γ01γ03γ12))

T
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with γ01, γ03, γ12 ∈ {−1, 1}. Since p13 is uniquely determined by p01, p02, p03, p12,
case 3 gives 16 distinct common tangents.

In order to determine when all solutions are real, suppose first that α = β. Then
the discriminant (10) becomes (α2 − 6α +1)(α + 1)2, and its smallest positive root is
α0 := 3 − 2

√
2 ≈ 0.17157. In particular, for 0 < α < α0, the discriminant in case 3

is positive and both solutions for p2
01 are positive. Thus, for 0 < β = α < α0, the

solutions of all three cases are distinct and real. Next, fix 0 < α < α0 and suppose
that 0 < β < α. Then the discriminant (10) is positive: for fixed 0 < α < α0, the
discriminant (10) is decreasing in β for 0 < β < α and positive when β = α. This
concludes the proof of Theorem 8. �

Figure 2 illustrates the construction and the 32 tangents for α = 1/10 and β =
1/20.

Figure 2. The configuration of quadrics from Theorem 8.
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