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Abstract                                                       

The Navier-Stokes equations have been solved by transforming the dynamic 

Navier-Stokes equation into a differential one-form on an odd-dimensional differentiable 

manifold and then using the principle that this one-form predicts, by analysis with 

exterior calculus, a set of characteristic differential equations and vortex vector 

characteristic of Hamiltonian geometry. The solution was shown to be divergence-free by 

contracting the differential 3-form corresponding to the divergence of the gradient of the 

velocity with a triple of tangent vectors, implying constraints on two of the tangent 

vectors for the system. Analysis of the solution showed that it is bounded since it remains 

finite as Ex →∞ , and is physically reasonable since the square of the gradient of the 

principal function  is bounded. By contracting this differential one-form with the vortex 

vector, the Lagrangian was obtained. 
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1. INTRODUCTION 

 In fluid dynamics, the Euler and Navier-Stokes equations model the dynamics of 

a fluid in  Rn (n = 2 or 3) for times  t ≥ 0. For incompressible fluids the Navier-Stokes 

equations are given by   

 

�
( )

�

� �
�

P
t x x

v v

v v fν
=

∂ ∂ ∂  = − ∇ + −∇ + +  ∂ ∂ ∂  
∑i      (1)                                                

  

     div v  =  0                                                                                                                 (2)  

 

with initial conditions       

 

      
� � �

�( , ..., , ) ( , ..., )
� �

x x t x xv v=                                                                        (3) 

 

For the case of zero viscosity ν,  these equations are the Euler equations. Eqn.(3) is the 

initial condition for position coordinates kx  and time 0t t= , eqn.(2) is the condition for 

incompressibility and eqn. (1) is the equation  describing the dynamics, with externally 

applied force  f (x 1,…, x n, t ), velocity v (x 1,…, x n, t ), pressure P(x1,…, x n, t ), and with 

forces due to pressure gradient  ∇∇∇∇P and viscous friction  �
�

� �
�

x x

vν
=

∂ ∂ 
 ∂ ∂ 

∑ . Many 

investigations have focused on finding v satisfying eqns.(1, 2 and 3) or on proving or 
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disproving the global existence, smoothness and breakdown of Navier-Stokes solutions 

on  R3  or on  R3/ Z 3; a critical discussion as to what constitutes a solution and the state of 

such investigations in 2000 and 1998 have been given by Fefferman[1] and by Arnold 

and Khesin[2].  

In the present investigation the Navier-Stokes dynamic equation (eqn.(1)) is 

rearranged to an expression which can be written as a differential one-form, then an 

extension of a principle proposed in a previous manuscript [3] is applied. This principle 

states that the description of a dynamic system with a characteristic differential one-form 

on an odd-dimensional differentiable manifold leads, by analysis with exterior calculus, 

to a set of characteristic differential equations and a characteristic tangent vector which 

define transformations of the system. The extension of this principle arises because the 

differential one-form used in reference 2 is the exterior derivative of a scalar function; 

however, the present application to the Navier-Stokes equation involves the exterior 

derivative of a vector field.  Solution to the Navier-Stokes equation reduces to synthesis 

and solution of a set of differential equations analogous to Hamilton’s equations and the 

synthesis of a characteristic tangent vector which describes the direction of the system 

motion. 

The appropriate differentiable manifold for describing the system is a cotangent 

bundle rather than a tangent bundle; hence the solution is the position and the conjugate 

to the position( , )
�

�x b , rather than the position and the velocity. This solution is shown 

to be divergence-free by contracting the differential 3-form corresponding to the 

divergence of the gradient of the velocity on a triple of tangent vectors, and setting the 
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result to zero; this implies constraints on two of the tangent vectors for the system. 

Analysis of the solution showed it is bounded since it remains finite as 
�

x →∞ , and is 

physically reasonable since the square of the gradient of the principal function is 

bounded. The characteristic tangent vector (vortex vector) indicating the direction of the 

system change was determined; the Lagrangian was calculated by contracting the 

characteristic differential one-form with the vortex vector. 

 

2. Differential One-Form for the Navier-Stokes Equation 

 Since  1( ,..., , )nx x t=v v   and  ( )d

dt t

v v

v v

∂ = − ∇
∂

i , then eqn.(1) becomes, upon 

substitution, the following equation:  

   

�
( () )

�

� �
�

d

dt x x

P
v v

v v v v fν
=

∂ ∂
−

∂ ∂
  

    
∇ = − ∇ + − ∇ + +∑i i                   (4) 

 

Multiplying this equation by  dt−  gives 

  

  −
�

� dx dB v −=
�

� dx dtB Ω                                                                    (5) 

 

where 
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( ),

� �

�
x t

x
B

B

v≡

=

∂
∂

                   (5-1) 

                  

                      = ∇i( )
�

� dx dtB v v                                                                          (5-2) 

                        Ω ≡ ν
=

∂ −  ∂ 
∇ + +∑�[ ]

� �
�� �

x

P
B

f                                                 (5-3)                           

  

Upon equating each side of eqn.(5) to the exact differential  d S , eqn.(5) becomes for the 

right-hand side 

                          j
j dx dtd −= ΩS B                                                                          (6) 

 
where S  will be referred to as the principal function. It is important to note that eqn.(6) is 

the same as eqn.(1) after substituting  ( )∂ = − • ∇
∂

d

dt t

v v

v v  and then multiplying each 

side of the resulting equation by  dt− . An equivalent route to eqn.(6) is the 

multiplication of eqn.(1) by 
����  and setting  d dt

t

 ∂ = −   ∂

v
S .  

       To analyze 	 	
x

B
v≡ ∂

∂
, recall that the general concept of the gradient of a tensor 

field requires  ∇∇∇∇ 
   to be given by:   

∇∇∇∇ 
 ( )����
, , ,ξe e e  = [Value of contraction ( )����

, ,v e e e at the tip of  vector  ξ ] 

                           − [Value of contraction ( )�����
, ,v e e e at the tail of vector ξ ] 
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where ( )�����

, ,e e e  are unit vectors and ξ  is an arbitrary tangent vector all belonging to 

( )* �T T M , the tangent space to the cotangent space at the position of manifold 
�

x M . 

For a Lorentz frame, ∇∇∇∇ v ( )�	��

, , ,ξe e e   = �

x

v∂
∂


ξ = �B


ξ  , hence  �B  is the gradient of 

the velocity contracted with unit vectors and divided by the j–th coordinate for the 

tangent vector  ξ . �B  will be simply referred to as the gradient of  v.  

       To analyze the quantity 
∂ 

 ∂ 

�

�

�x

B
 in  ΩΩΩΩ and develop the 

expression ( ), ,

�
� x t=Ω Ω B , note that in the neighborhood of initial 

position � �( (0), , )
�

� x tB ,   Taylor’s expansion gives  jB    as 

 

 

� �

� �
� �

( , ) (0) ( ) (0) ( ) (0)

1
( ) ( ) (0)

!

�

�

� � �
� � � ����

�
��� ���� � � �

����
� �

x t x x t t

N
x x t t

rN

 
! !

" "

= + − ∂ + − ∂

  + − − ∂ ∂   
∑ ∑

B B B B

B

                 (7)  

 

 where  andN r  are integers such that  2 N≤ ≤∞  and  0 r N≤ ≤ , with notation  

 

      0 0(0) ( , )j
j j x t=B B ,            

( )j

N
jN r r

t j j N r rx x t
−

−

∂
∂ ∂ =

∂ ∂
B

B                                              (8) 

 

Upon taking the partial derivative of eqn.(7) with respect to   jx   it results that 
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1
0 0

2 0

0)( ( ) ( ) (0)
!

j j j

N
j j N r r N r r

j j t jx x x
N r

NN r
x x t t

rN

∞
− − −

= =

 − ∂ = ∂ + − − ∂ ∂   
   

∑∑B B B       (9)            

                                                                                                                                                                                                                                                                                   

Upon substituting  0)(j jx
∂ B  from Taylor’s expansion (eqn.(7)) into eqn.(9),  it results 

that 

 

1
0 0

1
0 0

2 0

0)(0) ( ) ( ( )

1
( ) ( ) (0)

!

j

j

j

j j
j j t jx

N
j j N r r N r r

t jx
N r

t t x x

NN r
x x t t

rN

−

∞
− − −

= =

 ∂ = − − − ∂ − 

 − − + − − ∂ ∂   
  

∑∑

B B BB

B

                      (10) 

                                                                                                                            

                                  

Replacing the quantity  � �� B∂  in  ΩΩΩΩ (eqn.(5-3))  by this quantity in eqn.(10) gives  ΩΩΩΩ  

as                                                            

 

 

1
0 0

1

1
0 0

1 2 0

0)(0) ( ) ( ( )

1
( ) ( ) (0)

!
j

j

n
j j

j t j
j

n N
j j N r r N r r

t jx
j N r

P

t t x x

NN r
x x t t

rN

ν

−

=

∞
− − −

= = =

= − ∇ +

 
 − − − ∂ −  

 
 +
 

 − −  + − − ∂ ∂        

∑

∑ ∑∑

B B

Ω f

B

B

                        

                                                                                                                                  (11) 

                                                                                                                                                                                                                                                                                                                                                                                                                

The differential one-form corresponding to eqn.(6) is 
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−= Ω
�

� x tdS B d d                                 (12-1) 

 

where symbol “d”  is the exterior derivative operator and dS is the exterior derivative of a 

vector field  S.  Let the set of  x j  now represent a configuration space.  In order for  x j  

and  jB   to be a conjugate pair, three conditions must be satisfied; namely, (1) jB  must 

be the gradient of the function S, (2) jx  and  jB  must be functions of  temporal 

coordinate  t  alone and (3) ( ), ,

�

� x tΩ = Ω B   The first condition is automatically 

satisfied by reference to eqn.(12-1), i.e.,  jB  is the gradient of S. Since the existence of v 

implies ( )j jx x t=  and since ( ) ( ), ( ), ( )j j
j j j jx t x t t t= = =B B B b , then the second 

condition is satisfied. Condition three is satisfied by the definition of  Ω  in eqn.(11). 

Hence eqn.(12-1) becomes, 

  

�

� x tdS b d d−= Ω         (12-2) 

 

which is analogous to the expression for the differential one-form for the action in 

Hamiltonian mechanics. 

 The geometric object  dS  is called a vector-valued differential one-form on 

extended cotangent space * ��T M with coordinates ( jb , x j, t ), with basic differential 

one-forms  d jb  ,  dx j  and  dt   and characteristic function  ( , , )j

jx tΩ b . With this 

development, the Navier-Stokes equation is expressed as a differential form (eqn.(12-2)) 

useful for applying exterior calculus to analyze Navier-Stokes dynamics. 
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3. Navier-Stokes Dynamics on a Differential One-Form 

3.1.  Differential equations. Using the symbol  ωωωω ≡≡≡≡ dS  , the exterior  

derivative of eqn.(12-2) is  

 

dωωωω �

�

xbd d= ∧ �

�

�

� x t

x t

d db d
b

  ∂Ω ∂Ω ∂Ω   − + +     ∂ ∂ ∂      
∧ dt   (13) 

 

Following the procedure of reference 3, note that if  
�

x and  jb   are to describe mappings 

of the temporal coordinate  t  onto the direction of the system phase flow, then   
�

x and  

jb   must be functions of  t  alone, and vector  ξξξξ  which belongs to the tangent space 

( )* ��T T M  at a point  
�

x  of manifold  M , where 

 

     �
�

�

	


�

d dx

dt dt

�

b
ξ

   = ∂ + ∂ + ∂  
  

                                                                   (14) 

 

must satisfy at each point  ( , , )j

jx tb  of the transformation, the equation 

 

 dωωωω (ξξξξ , ηηηη )  =  0        (15) 
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for arbitrary tangent vector  ηηηη  at each point. This contraction of differential one-form dωωωω  

is a mapping of a pair of tangent vectors onto an oriented surface, a mapping defined only 

if the coordinates of   

�

dx

dt
 and  

�d

dt

b
  of  ξξξξ  have the values 

 

 

�

dx

dt
 =  

�b

∂Ω
∂

       and   
�d

dt

b
= �

x

∂−
∂
Ω

     (16) 

 

Using the definition of  ΩΩΩΩ(eqn.(11) ,  eqns.(16) become     

     

 
�

�

� �

dx

dt x x

ν=
−

                     (17-1)  

and  

( )

1
0 0

1

1
0 0

1 2 0

0)(0) ( ) ( ( )

1
( ) ( ) (0)

!

k k

k

j

j

k
x x

n
j j

j t j
j

x

n N
j j N r r N r r

t jx
j N r

d
P

dt

t t x x

NN r
x x t t

rN

ν

−

=

∞
− − −

= = =

= ∂ ∇ − ∂

 
 − − − ∂ −  

 
 − ∂
 

 − −  + − − ∂ ∂        

∑

∑ ∑∑

B B

b
f

b

B

          (17-2)  

  

Note that this is a differential equation whose solution  is jb ; only constant coefficients 

of the type (0)j

N r r
t jx

−∂ ∂ B  appear, not  jB . 
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3.2.      The solution                                                                                                                                    

The solution to eqn.(17-1) is 

 

                0 02 ( )kk t tx x ν −= ±                                                                                  (18) 

 
To change eqn.(17-2) so that a series expansion method can be used for its solution, first  

P  and  f  are approximated by a Taylor’s series to second order and 
��

 is taken, then 

partial derivatives  kx
∂ f  and  kx

P∂ ∇   are taken. When comparing the terms 

( )� � ��(0)� � � �� � x x� 	 	 ∂ ∂ −  
f  and ( )
 � ��(0)  � ��� x x� � � ∂ ∂ −  

f  with 2
0(0) ( )k

k k

x
x x ∂ − f , all  

in kx
∂ f , it is assumed � (0)� �� ��� ∂ ∂  

f  �  2 (0)kx
 ∂ f  and  � (0)� ����� ∂ ∂  

f  �  2 (0)kx
 ∂ f  ; 

these terms are excluded as an approximation. The notation , 1, 2k k k+ +  is intended to 

imply cyclic order in  �������� . 

 Following the above indicated procedure and noting once again that  ( )j j t=b b , 

eqn.(17-2) becomes 

( )
( )

( ) ( ) ( )

( )

1 1 2 2

2

2
0 01

2 0

0

2
0

2

0)

0)

1
(0) ( ) ( )

2 2 !

( ( )

(0) ( )

(0) (0) (0) (

(0) (

k

k

k

k k k k k k k k

k

N
N r r k k N r rk

t kx
N r

tx

k k

x

k x x x x x x x x

k
k

NN rd
x x t t

rdt N

t t

x x

P P P

x

ν

ν

+ + + +

∞
− − −

−
= =

+

+

 − −  = − ∂ ∂ − −  
   

 + −∂ ∂ − 

 −∂ − 

 + ∂ + ∂ ∂ + ∂ ∂ − ∂ 

− −  

∑∑

B

B

f

f

e e e f

b

b

2 2
0 0 00)) ( ( ) ( )k k k

t kx x x t tν− −+  − ∂ − − B

  (19) 
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where ke  are unit vectors arising from use of the gradient. After multiplying eqn.(19) by  

2
0( )k kx x− and using eqn.(18) to remove the remaining 0( )t t− dependence, then eqn.19) 

becomes  

   

( )
( )

( ) ( ) ( )1 1 2 2

2

2
0 01

2 0

1 4 2 3
0 0

2

0) 0)

1
( ) (0) ( )

2 2 !

(2 ) (0) ( ) (0) ( )

1
( (

2

(0) (0) (0)

k

k k

k

k k k k k k k

N
k k N r r k k N rk

t kr x
N r

k k k k
tx x

t k x

k x x x x x x x

NN rd
x x x x

rdt N

x x x x

P P P

ν

ν

+ + + +

∞
− +

−
= =

−+ +

 − −  − = − ∂ ∂ −  
   

   − ∂ ∂ − −∂ −   

− ∂ − ∂

+

∂ + ∂ ∂ + ∂ ∂

∑∑

B

B

f f

f

e e e

b

( )

2
0( )

(0)k

k k

k

x x

ν+


 
  − 
 
 
 

−  Bb

 (20) 

     

 The series solution to eqn.(20) proceeds by assuming  �b  is given by 

 

( )
1

2 2
0 0

1

( ) exp ( )
N

k k N
N

t t t Na t t
∞

=

 
= = − − − 

 
∑ Cb b                                                      (21-1) 

 

Because of eqn.(18), it is possible to express �b  by 
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( )
0 0

1 2

( ) ( ) exp ( )
22

k

Nk k k N k k
k N

N

Na
x x x x x

νν

∞

=

 = = − − − 
 

∑
C

b b                       (21-2)                     

 

where the  NC  and  
���
�   are constants. Computation of  kd

dt

b
 with the use of eqn.(21-

1), followed by use of eqn.(18) to express it as a function of ( )0
k kx x−   and use of 

eqn.(21-2), gives the following result when substituted into eqn.(20): 
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( ) ( )

( ) ( )

( )

( )
( )

0 0
11 2

1

0 01
1 2 2

0 0
11 2

2

1
2 0

exp
2

2(2 )

exp
2

2(2 )

( ) exp ( )
22 2

1

2 2 !

Nk k k kN
N

N

Nk k k kN
N

N

N k k N k k
N

N

N

r
N r

N N a
x x x x

N a N a
x x x x

Na
x x x x

NN r

rN

νν

νν

νν

ν

∞

−=

∞ +

−=

∞

−=

∞

−
= =

 
   − − −    

  

 
  − − − −    

  

 
  − − − −    

 

− −  +  
 

∑

∑

∑

∑∑

C

C

C

( ) ( ) ( )

[ ]

1 1 2 2

0

1 4 2 3
0 0

2
0

2

0) 0)

(0) ( )

(2 ) (0) ( ) (0) ( )

1
( (

2
( )

(0) (0) (0)

(0)

0

k

k k

k

k k k k k k k

N r r k k N r
t kx

k k k k
tx x

t k x

k k

k x x x x x x x

k

x x

x x x x

x x

P P P

ν

ν

+ + + +

− +

−+ +

+

+

 
∂ ∂ − 

  

   ∂ ∂ − ∂ −   

 ∂ ∂ 
 + − 
 − ∂ − ∂ ∂ − ∂ ∂
 
 

=

B

B

B

f f

f

e e e                   (22-1)    

 

Replacing the exponential function by a Taylor’s series to second order and rearranging 

gives, 
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( ) ( )

( ) ( ) ( )

( )
( )

3 3 2 2
3 2

0 01
1 12 2 2

2
1

0 01
11 12 2 2

2

1
2 0

( 1)

4(2 ) 4(2 )

1

2(2 ) 2(2 )

1

2 2 !
k

N Nk k k kN N
N N

N N

N Nk k k kNN
N N

N N

N
N r

r x
N r

a N a N N
x x x x

Na N
x x x x

NN r

rN

ν ν

ν ν

ν

∞ ∞+ +

+= =

∞ ∞+

− −= =

∞
−

−
= =

   +   − − + −
   
      

   −   − − + −
   
      

− −  + ∂ 
 

∑ ∑

∑ ∑

∑∑

C C

CC

( ) ( ) ( )

[ ]

1 1 2 2

0

1 4 2 3
0 0

2
0

2

0) 0)

(0) ( )

(2 ) (0) ( ) (0) ( )

1
( (

2
( )

(0) (0) (0)

(0)

0

k k

k

k k k k k k k

r k k N r
t k

k k k k
tx x

t k x

k k

k x x x x x x x

k

x x

x x x x

x x

P P P

ν

ν

+ + + +

+

−+ +

+

+

 
∂ − 

  

   ∂ ∂ − ∂ −   

 ∂ ∂ 
 + − 
 − ∂ − ∂ ∂ − ∂ ∂
 
 

=

B

B

B

f f

f

e e e
  (22-2) 

Combining terms gives      
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( )
( )

( ) ( ) ( )

( ) ( )
( )

2

01
2 0

3 23 2
3 2

0
14 2 2

1

1 4
0

2
2

1
(0) ( )

2 2 !

3 2 1
1

4(2 ) 2 1 2 1

(2 ) (0) ( )

(0)
2 2

k

k

k

N
N r r k k N r

t kr x
N r

N N
Nk k

N
N

N N

k k
tx

x

NN r
x x

rN

a N a N N

x x

a N N

x x

a

ν

ν

ν

ν

∞
− +

−
= =

− −
∞

−=

−

−

+

 − −   ∂ ∂ −  
   

 − − + − −   
 + − 
    
  − − + −  

 + ∂ ∂ − 

∂ + 


∑∑

∑

B

C C

C C

f

f

( ) ( ) ( )

[ ]

1 1 2 2

3
1 2 3 0

1 2

2
0

2

0) 0)

2 1
( )

2 2

1 1
( (

2 2 2

( )

(0) (0) (0)

(0)

0

k

k k k k k k k

k k

t k x

k k

k x x x x x x x

k

a
C x x

a

x x

P P P

ν ν

ν

+ + + +

− +

+

     − + −     
    

    + + ∂ ∂    
    

+ − 
 
− ∂ − ∂ ∂ − ∂ ∂ 

  

=

B

B

C C

C C f

e e e

 (22-3) 

Changing  ( )�
���� �

x x

�
− to   ( )�

�� �
x x−  gives 

 

( ) ( )

( )

( ) ( )

	�
 


�  
 




�

 

(0)

2

1
(0) ( )

2 2 ! !
�

��� �� � � �� �
�����

� �

�
��� ���� � �

� �� �
� �

x x x x

N r
x x

r N rν

��

�
� �

�
� �

�
� �

 ∂
− − − 

  

 − − = ∂ ∂ − 
−  

∑ ∑

∑∑

B
A

B

           (23-1) 
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where  
( )

( ) ( )

�
�

� �
2 1

( 0 ) , f o r 2 0
2 2 ! 2 !

�
� � �

����� �
	� �N r
N r

r N rν

�
� �

 − − = ∂ ∂ − ≥ 
−  

A B   (23-2) 

 

and where the term   ( )


�(0)

2

� �� �
x x

 ∂
− 

  

B
 is generated by the sums   

���

� �

���

� �

��

� �∑ ∑ but is not 

generated by the sums   � �
�

� �

�

  ∑∑ , hence it is subtracted; there are no other terms of this 

type. The meaning of the limit  !#"%$
2

N
r ≤  is illustrated as follows: if  

odd number,say 3,N N= = then  &('*) 1r =  since  +#,%- 2r =  would contradict .#/10
2

N
r ≤ . 
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r ≤ .  

 This new sum is expanded to a sum starting at 4N=  giving   
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The terms with like coefficients can now be combined, giving 
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 The sum is expanded to begin at  N = 5  in order to generate and group 

coefficients of  4
0( )k kx x− , hence eqn.(24-1) becomes 
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Evaluating the ������A �  values in eqn.(24-2) gives 
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 The right side of eqn.(24-3) is zero only if the coefficients of the individual 

powers of  �( )
� �

x x−  are zero; hence, 

 

(0) 0k =B  (25-1) 
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Eqns.(25-1) through (25-5) (recursion formula for 5N≥ ) can be used to compute all 

constants relative to the value of  �C  , but do not provide an explicit calculation of  �C . 

These constants are functions of constant coefficients of the type (0)k t kx

α β∂ ∂ B , 

(0)k tx

α β∂ ∂ f  and (0)k tx
Pα β∂ ∂ . Referring back to the analysis in the paragraph before 
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eqn.(12-2), namely, ( , ) ( ( ), ) ( )k k
k k k kx t x t t t= = =B B B b , it is seen that eqn.(25-1) states 

that at the initial conditions defined by  �( ) 0� t =b , �

� �

x x= ,  �t t= , the gradient of the 

velocity is zero.  

 
3.3 Analysis of Solution  

 The present solution to the Navier-Stokes equations is based upon transformation 

of the Navier-Stokes dynamic equation(eqn.(1)) to Hamiltonian form. Hence, the 

appropriate space for characterizing the solution to this equation is the extended 

cotangent space with coordinates   ( ), ,

�

� x tb   rather than the extended tangent space 

with coordinates( ), ,

�

x tv . This procedure leads to a description of Navier-Stokes 

dynamics by a pair of equations analogous to Hamiltonian’s equations and a 

characteristic tangent vector(the vortex vector) to define the direction of system change. 

The solutions to these equations are  
�

x  and  �b , as  given in eqns.(18 and 21-1). 

 This analysis is an analysis of  �b   when the gradient of the velocity �B , the 

externally applied force  f  and the pressure  P  are expanded according to Taylor’s 

theorem. �B , f and P  are assumed to be smooth  C
	

 functions on  



R X (0, ]∞ , 

although f and P are approximated by an expansion only to second order. The constants 

in the series expansion of �b  are considered as parameters which can be determined by 

experiment, thereby giving a technique for obtaining �C  and some of the Taylor 

expansion coefficients for �B , f  and  P. This technique is employed for measuring 

characteristic interaction constants of atoms by some of the most precise quantum 

mechanical methods, e.g., the use of coupling constants for interaction energy terms as 
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parameters in the analysis of frequency standard experiments using atomic beam 

magnetic resonance spectroscopy.  

3.3.1 Initial conditions 

 One part of the solution (eqn.(18)) to the Navier-Stokes dynamic equation(1) gave 

the explicit functional dependence of  
�

x   on  t . This dependence,  

0 02 ( )kk t tx x ν −= ± , shows that if  �t t=  then  �

� �

x x=  and so eqns.(21-1 and 21-2) 

give  0�b = . It is noted that since the appropriate variables for cotangent space are 

( ), , )
�

� x tb  rather than( ), ,

�

x tv , the initial conditions are  0� =b , �

	 	

x x= ,  
t t= . 

3.3.2 The solution  

(a) �B  , f  and  P  as smooth functions on Rn X [0, ∞∞∞∞) 

 
 The solution to eqn.(1) depends on the existence of smooth functions �B ,  f,  and 

P such that Taylor’s expansion theorem can be used; hence the solution depends on these 

functions being C
�

, although  f and  P   are expanded only to second - order. It will be 

shown in 3.3.2(b) that when eqn.(21-2) is used, the solution b  is also  C
�

.  All these 

functions are real and belong to Rn X [0, ∞). 

(b) Behavior of  �b   as  
�

x →∞ .  

  Eqn.(18), which is the solution to one of the set of differential equations 

(eqn.(17-1)), was employed in subsequent equations whenever it was useful to express 

particular equations as functions of  �

� �

x x−   rather than  �t t− . This knowledge was 

used to obtain  
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( )
�� � xb b= . Using this form of  �b and for arbitrary α, the α-th derivative of  �b  is  

 

( )
� �

( )� �� � exp
2

� � �� � � �� �	� �
 � �
a N

x x x x

� �� �β
ν

� �
� �

 −
 ∂ = − −
  

∑ ∑b C                            (26) 

where   
( )

1 !

!2 2

�
� � a N N

m N m
� α

β
αν ν

   −   =           − −     
 (27) 

 

and where  N mα≥ − . At   �t t= , note that ( )� 0� ��� x

�
∂ =b  since, eqn.(18) implies  

�=

� �
x x    at  � . t t= This analysis shows lim�� � � ( )! 0" ##$ x

%
∂ =b  for any α . Hence  

&b will not grow large as 'x →∞ .  

 The behavior of   &b  as  'x →∞  can also be examined directly from eqn.(21-

2). As 'x →∞ , it is noted that 

0

1
0

exp ( )
2

k kNa
x x

ν

→
 −  

  faster than 0( )k k Nx x− → ∞ , 

therefore 0( →b  ; the solution does not blow-up. 

(c) Bounded energy.  

 Since the motion of the system occurs in cotangent space rather than tangent 

space, evaluation of the following integral will show that  
)*b  is bounded: 

 

+ ,
    for all  and .

--. dx C t t C< ≥ <∞∫ b/      (28-1) 

 
Evaluation of this integral gives 
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 f o r  a l l   
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, w h e r e 0
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d x t t
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K K
a

ν

ν
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		�	
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 + = ≥ 
+  
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C C

b

C
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Hence eqn.(28-2) implies the function  


�b  is bounded.  

 A physically reasonable solution has a bounded energy in field-free space when 

 

�

Constant, for all  0 
�

dx t< ≥∫ p
�

                                                             (28-3) 

 

since in this case, the energy is proportional to the square of the momentum 
�

p . The 

solution �b  (the gradient of S) can be used as the integrand in eqn.(28-3) in place of the 

momentum (the gradient of the action) for proof of a physically reasonable solution. This 

is based on the fact that both principal functions( S and the action) can be represented by 

a family of surfaces and  the gradient of the principal function is always perpendicular to 

any surface at a point; the larger the gradient, the slower the front. When the gradient of 

the principal function is a function of time ( )( )or ( )� �t tb p  it characterizes the motion in 

field-free space; hence, the square of the gradient of the principle function is proportional 

to the kinetic energy. Therefore, eqn.(28-2) shows the solution is physically reasonable.  

(d) Graphing the solution 

 The solution  �b  contains constants  NC   and 
����  and hence cannot be graphed 

without knowledge of these constants. Quantity 
����  is merely a unit constant present to 
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make the argument of the exponential dimensionless; hence, its value 1
� �����

sec . The 

constants NC  are functions of the constant coefficients (0)k t kx

α β∂ ∂ B , (0)k tx

α β∂ ∂ f  and  

(0)k tx
Pα β∂ ∂ . The procedure to obtain the expansion coefficients is to treat them as 

parameters and determine them experimentally. This involves fitting the experimental 

data with the use of these parameters, then designating these evaluated parameters as the 

characteristic constants for the system. This was suggested earlier as a commonly used 

technique for precise quantum mechanical measurements, for example the frequency 

standard work on cesium by means of atomic beam magnetic resonance spectroscopy, 

where hyperfine structure constants are treated as parameters. 

 
(e) Solution for �b  when f = 0 

 By setting the external force  f = 0, �b   then depends on the expansion 

coefficients   (0)k t kx

α β∂ ∂ B   and (0)k tx
Pα β∂ ∂ . By this procedure it is possible to eliminate 

some of parameters required to fit experimental data and hence allow a first 

approximation for determination of some of the required coefficients.  

3.3.3 Incompressibility.  

 Eqn.(2) is the condition for the velocity vector field  v to be divergence-free. If  

�
�∂  is taken on each side of eqn.(2), this equation becomes 0�div =B . In differential 

geometry the divergence of a vector field on an oriented Euclidean space is the density in 

the expression for the 3-form on that space. Extending this definition to higher 

dimensions, the divergence of vector field 	B  on the oriented cotangent space  * 
T M  is 

the density in the expression for the 3-form on * 
T M , given by 
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( )
� �

� �div x t= ∧ ∧ω B db d d  (29) 

 

where 
�

ω  characterizes the sources in an elementary parallelepiped with edges 

( ), ,� � �εξ εξ εξ  and tangent vectors ( )*T T Mξ ∈ , and where , and
�

� x tdb d d  are basis 

differential one-forms for cotangent space �
� 	

 at point ( )


, ... , �x x  of M ⊂ Rn.  In order 

for 0�div =B , then ( )


, , 0��� �ξ ξ ξ =ω .  For tangent vector  �ξ  

  

��
�� ��x�ξ = ∂ + ∂ + ∂�b

��
        (30-1) 

 
and arbitrary tangent vectors (also belonging to ( )*T T M ) 

 
 

� �� �
�� �� �x�ξ β β= ∂ + ∂ + ∂� �b

  
                                                                           (30-2) 

 
and 
 

 ! !! !
"" #$ $x%ξ κ κ= ∂ + ∂ + ∂& &b

''
                                                                           (30-3)  

 
 

it results that ( )
(

, , 0)+*+,ξ ξ ξ =ω  only if  

   
 

( ) ( ) ( )- .0/ - 12/ - 34/ - 12/ - 34/ - .0/ - 34/ - . / - 12/ 05 5 5 5 5 5 5 5 5β κ κ β κ κ β κ κ− + − + − =     (30-4 ) 

 
 

where ( ), ,
66 78∂ ∂ ∂9  are basis tangent vectors for tangent space ( * ):T T M . The 

condition on ;<β  and =>κ   given in eqn.(30-4) implies that the vectors  ?ξ   and @ξ   are 
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not entirely arbitrary; the condition distorts the parallelepiped ( ), ,�����ξ ξ ξ  to allow the 

gradient of  v to be divergence-free.  

 This condition on �<β  and =>κ  is strictly true from a mathematical point of view, 

but involves assumptions which have not been adequately studied in terms of physical 

reasonableness. However, if the volume of this parallelepiped is in the same region of 

space in which the motion of the system occurs, then the requirements of eqn.(2)  are 

fulfilled.  

 

3.3.4     Vortex vector 

 The vortex vector R , the vector which gives the direction of the system change, is 

obtained by noting that the coordinate values for the coordinates of the tangent vector �ξ  

are given by eqns.(16). By substituting these values into eqn.(30-1), it results that 

 

�

��

��

�
	
 �

	
 
 
 �

x

x x x

ν

   ∂ Ω ∂ Ω   = − ∂ + ∂ + ∂      ∂ ∂  

   ∂ Ω    = − ∂ + ∂ + ∂      ∂ −   

�

�

R
b

      (31) 

 

This form of the vortex vector can be made more detailed by means of eqn.(17-2), since      


x

−∂
∂

Ω
 =  

�d

dt

b
.  

 To obtain the Lagrangian for the system the fundamental differential one-form 

dS  is contracted with the vortex vector giving 



 30 

 

( )

�

�

�
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x x

R
b

dS b

b
ν

 ∂ Ω − ∂ 

 
− − 

= Ω

= Ω

                                                                                  (32)  

 
This equation can be made more detailed by substitution for  �b  (eqn.(21-1) and  

Ω (eqn.(11)). This technique for obtaining the Lagrangian has been demonstrated in 

reference 2 in Hamiltonian mechanics, geometric optics, irreversible thermodynamics, 

black hole mechanics, and electromagnetic and string field theory [2]. 

  
4. Conclusion 

 The technique employed in this paper for solving the Navier-Stokes model for 

fluid dynamics in the case of incompressible fluids was to transform the dynamic 

equation into a differential one-form, and then use methods from exterior calculus to 

generate a pair of differential equations and a vortex vector satisfying Hamiltonian 

geometry. This pair of equations was solved for the position 
�

x  as a function of time and 

for �b  (the conjugate to the position) as a function of time.  

 The value of the solution �b  as 
�

x →∞  was shown to be finite, hence the 

solution is bounded; blow-up does not occur. The solution was shown to be physically 

reasonable since the gradient of the principal function is bounded. It is not possible to 

plot the solution without knowledge of some of the constants contained in the solution, 

but these constants can be treated as parameters and evaluated experimentally. One 

example of this procedure is the frequency standard work on cesium atom using atomic 
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beam magnetic resonance spectroscopy, where the hyperfine interaction constants are 

treated as parameters and determined with experimental data. This procedure has led to 

results which are accurate to better than one part in 106. 

 The gradient was taken on each side of the equation for the divergence of the 

velocity, resulting in an expression for the divergence-free gradient of the velocity.   Then 

the differential 3-form corresponding to the divergence of the gradient of the velocity was 

contracted on a triple of tangent vectors and set to zero. As a result, a condition was 

placed on arbitrary tangent vectors in ( * )�T T M , distorting the volume where the motion 

of the system occurs in a manner which restricts the gradient of the velocity to be 

incompressible.  

 The vortex vector (characteristic tangent vector) giving the direction of the system 

change was constructed by substituting coordinate values for coordinates of a basic 

tangent vector in ( * )�T T M . By contracting the characteristic differential one-form 

defining the system with the vortex vector, the Lagrangian was obtained. 

 The present solution to the Navier-Stokes equations is based on several 

assumptions, namely, (1) assuming the gradient of the velocity v, the pressure P, the 

force f, and the exponential part of the series solution for  �b  are all smooth functions 

which can be represented by Taylor’s expansion theorem, with all but �B (infinite order 

expansion) expanded to second order, (2) assuming the cross terms in kx
∂ f (see paragraph 

after eqn.(19-1) can be neglected and (3) assuming a certain condition on the coordinates 

of two otherwise arbitrary tangent vectors in the tangent space to the cotangent space 

where the motion of the system occurs.  
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 The proposed series solution satisfies all the requirements for the Navier-Stokes 

equations for a physically reasonable bounded solution which is divergence-free and 

which predicts that the gradient of the principal function is bounded. The solution was 

obtained by (1) representing the dynamic Navier-Stokes equation as a characteristic 

differential one-form; this form generates a pair of characteristic differential equations for 

the dynamics and a characteristic tangent vector for the direction of system change, and 

(2) using the definition of divergence form differential geometry to represent the 

divergence equation by a volume 3-form, whose contraction on a triple of tangent vectors 

implies incompressibility when a certain condition is placed on two of the tangent vectors 

for the system. 
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