ON A GENERALIZATION OF SCH ONHARDT’'S POLYHEDRON
JORG RAMBAU

ABSTRACT. We show that the non-convex twisted prism ovenagon cannot be triangu-
lated without new vertices. For this, it does not matter what the coordinates nfgbe

are as long as the top and the bottargon are congruent and the twist is not too large.
This generalizes Séimhardt’'s polyhedron, which is the non-convex twisted prism over a
triangle.

1. THE BACKGROUND

Backin 1911, Lennes [4] presented the first simple three-dimensional non-convex poly-
hedron whose interior cannot be triangulated without new vertices. The more famous
example, however, was given in 1927 by Schardt: he observed that in the non-convex
twisted triangular prism (subsequently called “S8ohardt’s polyhedron”) every diagonal
that is not a face lies completely in the exterldr [6]. This implies immediately that there can
be no triangulation of it without new vertices because there is simply no interior tetrahe-
dron: all possible tetrahedra spanned by four of its six vertices would introduce new edges.
Moreover, he proved that every simple polyhedron with the same properties must have at
least six vertices. Later, further such non-convex, non-triangulable polyhedra with an arbi-
trary number of points have been presented. Among them, Bagemihl’'s polyhedron [1] also
has the feature that every non-facial diagonal is in the exterior.

The twisted prism over an arbitranygon would arguably be the most natural general-
ization of Scldnhardt’s polyhedron. Surprisingly enough, there has been no proof so far
that it cannot be triangulated without new vertices. One of the reasons seems to be that—
in contrast to Schnhardt’s and Bagemihl’s polyhedra—not every non-facial diagonal lies
completely outside the polygonal prism. Yet, the non-convex twisted polygonal prism can
indeed not be triangulated without new vertices, as we will show below. For this, it does
not matter what the coordinates of thegon are as long as the top and the bottmgon
are congruent and the twist is just a perturbation by rotation, i.e., it is not too large.

There is a relation between Swmthardt’s polyhedron and the (untwisted) triangular
prism with a prescribed boundary triangulation that is cyclically symmetric: there is no
triangulation of the triangular prism that extends a cyclically symmetric boundary triangu-
lation without new vertices. Similarly, there is no a triangulation of the general polygonal
prism inducing a cyclically symmetric triangulation of the boundary quadrilaterals.

Besides the fact that the (frequently asked) question about the existence of triangula-
tions of the non-convex twisted polygonal prism deserves a conclusive answer at last, we
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mention one other motivation for studying problems like this. Deciding the existence of
a triangulation without new vertices for a fixed polyhedron is NP-hard [5]. In studying
the twisted polygonal prism we surprisingly hit the borderline between existence and non-
existence of triangulations without new vertices in a single type of point configurations, and
this could make the twisted or untwisted polygonal prism a handy gadget for NP-hardness
proofs.

2. THE OBJECTS

Consider a two-dimensional point configuration:= {v,,Vv;,...,V,_;} in strictly con-
vex position labeled counter-clockwise. Fix a poinin the interior ofC, in R2. For
o € [0,27), let Ch(a) be a copy ofC, rotated byo around the poinb (rotation by an
angle in (0,2r) means counter-clockwise rotation). We call the corresponding points
Wy, Wy, ..., W,_;. TheCayley embeddingf C, andC,(«) is defined by

Pa(a) :=cony((Cp x {0}) U (Cn(x) x {1})).

A triangulation of a three-dimensional polyhedrdnis a dissection into finitely many
tetrahedra such that any two intersect in a common face (possibly empty). For a triangu-
lation of P and a simplex of arbitrary dimension we say uses Ff F is a face of some
tetrahedron inl. Faces are denoted by their sets of verticestighgulation without new
verticesor av-triangulationof P is a triangulation all of whose vertices are vertice®of

Py := Py (0) is known as arismoverC,. Thecyclic set of diagonals

Dc:= {{v,w, 4} :i=01,...,n—1}

induces a triangulation of the quadrilateral facet®D) into the triangleg{v;,w;,w; , ; }
and{v;,w;, ;,vi,¢},i=0,1,...,n—1 (all indices regarded modutg.

The continuity of the determinant function ensures that there ig an0 such that no
full-dimensional tetrahedron iR, (0) has a reversed orientation (sign of determinant of
the points in homogeneous coordinatesRifc). In that case, theertical edgesv;,w; }
and thereverse cyclic edge$§w;,v, ,} are among the boundary edgesRaf«), for all
i=0,1,...,n—1. For such amx, we callP,(a) aconvex twisted prism over,C (P,(a)
is a convex twisted prism oveZ, if and only if the map sending;,w; € Py(«) to the
corresponding;,w; € Py(0) induces a weak map of oriented matroids [2].)

For a convex twisted prism ov€,, thecyclic set of tetrahedrgs the set of tetrahedra

Any two of these tetrahedra intersect in a common edge.

3. THE RESULTS

Theorem 1. For all n > 3, no prism R(0) over an n-gon admits a triangulation without
new vertices that uses the cyclic setd@ diagonals.

Theorem 2. For all n > 3, no convex twisted prismyfx) admits a triangulation that
contains the cyclic set.of tetrahedra.
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We define thaon-convex twisted prisi () to be the topological closure 8 (o) \ Te.
Since the twist is not too large, this is a non-convex simple polyhedron. Here is now the
generalization of Samhard’s polyhedron:

Corollary 1. For all n > 3, the non-convex twisted prisFVm(oc) cannot be triangulated
without new vertices.

Remarkl. WhenCG, is a regular triangle and € (0,2r/3), the twisted prisni;(o) coin-
cides with Sclnhardt’s twisted prism.

4. THE TooLs

For a more detailed background about the following consult [3] and the references
therein.

4.1. Minkowski sums and mixed subdivisions.Let P and Q be point configurations
in R%. Then theMinkowski sum of P and Q scaled lyc (0,1) is the point configura-
tion

(1-A)P+2Q:={(1-A)p+Aq: pcPgeQ} CR%
We make the following simplifying assumption: we consider only generie(0,1), for
which (1—21)p+Ag=(1-A)p + Ad implies thatp = p’ andq= . A mixed cellin
(1-A)P+AQis the Minkowski sunm(1—21)c + A7 of subsetss C Pandt C Q. A mixed
subdivisionof (1— 1)P+ AQ is a dissection of1— A)P+ AQ into finitely many mixed
cells such that any two intersect in common faces (possibly empty).

A two-dimensional mixed cell ifineif it is the Minkowski sum of either two edges or

of a point and a triangle. In the first case, the cell is a parallelogram, in the second case the
cellis a triangle. A mixed subdivision f@eif it contains only fine mixed cells.

4.2. Cayley embeddings.Let P andQ as above. Then th@ayley embeddingf P andQ
is the point configuration

¢(PQ :={(p,0) : peP}U{(g,1) : e Q} C R
For exampleP, () from above is a Cayley embedding for &l

4.3. The Cayley trick. The Cayley trick states that for &landQ as above, triangulations
of €(P,Q) are in one-to-one correspondence with fine mixed subdivisiori$ -efA )P +
AQforall 2 € (0,1). We will only need the fact that every triangulation®tP, Q) induces
a fine mixed subdivision oft — A)P+AQfor all 2 € (0,1).

The correspondence is given by intersectifigP, Q) by a horizontal hyperplané, at
heightA. The intersection of any tetrahedron in a triangulatiors@P, Q) with H, is a
fine mixed cellin((1—A)P+AQ) x {1} C R3. Since intersection with affine hyperplanes
preserves face relations, the set of all fine mixed cells so obtained yields a fine mixed
subdivision of(1-A1)P+AQ.

Applied to Py(a) this means: each triangulation Bf(c¢c) induces a fine mixed subdi-
vision of §y(a,A) 1= (1— 1)C+ ACh(a) for everyA € (0,1). In summary, we have the
following correspondences between objects in the Cayley embedding and the Minkowski
sum:
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Pr(o) Si(a, )

tetrahedra fine mixed polygons
tetrahedra with a triangle in the bottom or the top fine mixed triangles
tetrahedra with edges both in the top and in the bottom fine mixed parallelograms
non-horizontal triangles fine mixed edges
non-horizontal edges fine mixed points

orientation counter-clockwise orientation

Since the Minkowski sum lives in one dimension less than the Cayley embedding, we
rather work withS,(c, 4).

5. THE PROOFS

Let o > 0 be small enough such th{(«) is a prism or a twisted prism. Fixe (0,1)
such thatlle(v; —v)[| < [|(1—¢&)(w; —w;)|| for all i,j =0,1,...,n—1. (All following
considerations are also true for arbitrary (0,1); the choice of a smak makes some
arguments more transparent, though.) In particBe) = Sy(a,1—¢€) = ePh+ (1 —
€)Py(a) does not contain multiple points. For brevity, we will use the notation) for
the pointev, +(1—8)Wj, i,j=0,1,...,n—1.

5.1. Some notions and notation.Consider mixed edges. All mixed edges are, by defi-
nition, Minkowski sums of either a point and an edge or of an edge and a point. In our
notation, they are of the forrte,i) := {(k,i),(l,i)} or of the form(j,e) := {(],k),(j,1)}
for some edge = {k,1} in C, or C,(«), resp.

The following notions are motivated by regardiags being small. We highlight the
most important one as a definition.

Definition 1 (Short and Long EdgesCall a mixed edgshortif it is of the form (e,i), call
it long otherwise. The short mixed edge= {(i,i), (i+1,i)} is calledspecial O

The special edges are interestinggybecause — via the Cayley trick — they correspond
to triangles that are incompatible with the cyclic set of diagolalsn B,. Moreover,
they are interesting i, () for & > 0 because the cyclic set of tetrahedgecovers the
corresponding triangles iR,(«) so that in any triangulation containifig no other cell
can use them.

Fori=0,1,...,n—1, there are the convex subgons(Cy,i) := eCy + (1 —€)w; and
(i,Ch(o)) :=ev;+ (1—¢€)Cph(x) in S,. By construction, al(C,, i) are translates d&,, and
all (i,Cn(v)) are translates @y (a), which itself is an angle-preserving imageGfunder
a (small) rotation that we calfl ct). Thelongtranslation that shiftéCy,i) to (Cy, j) along
the long edge(i,i), (i, j) } is denoted byfj;; the shorttranslation that move@, Cq(t)) to
(1:Cn(a)) along the short edgf(i,i), (j,i)} is denoted by;;.

Call then-gons(C,,i) smalland then-gons(j,Cy) large. Similarly, we call a mixed
triangle with only short edgesmalt we call a mixed triangle with only long edg&sge.

By definition of the Minkowski sum, each mixed triangle is either small or large. We can
regard short mixed edges as edges that have both end points in the same smajbsub-
SinceC, is convex, no line spanned by a short edge (C,,i) cuts the interior of any
other short edge i(Cy,i). The special short mixed edgglies in the boundary o0&, ().
Figure[1 illustrates the setup.
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FIGURE 1. Cutting the Cayley embedding of twegons with a horizontal
hyperplane close to the top yields their Minkowski sum scaled &g(in);
the cyclic set of diagonals and the special edges are drawn thicker

5.2. Roadmap of the proofs. Note that any triangulation d®, that uses the cyclic set
of diagonals induces a mixed subdivisibh of S, in which no special edge, is used.
Consider any non-special short edge M in some smalh-gon(C,,i). Then the “region”
betweene andg must be covered byl somehow. We want to show that this cannot be
accomplished unless at least one special edge is used. We even show that at least one
special edge must be used as an edge of some mixed triangle (Ttigéorem 3).

How can the region betweemand g be subdivided? There must be a cell adjacent
to e on the same side as. If we use a mixed triangle, i.e., a small triangle, then we
harvest new short edges in the same smaglbn. One of these new short edges is “closer”
to g in a sense to be defined precisely below, and we can proceed. If we use a mixed



6 JIORG RAMBAU

parallelogram then there is another short edgepposite toe in some other smalh-
gon (Cy, j) at a “partner vertex”j of e. But the “regions” containing potential partner
vertices fore/ towardsej will turn out to be strictly smaller than fce.

But what happens if we use a mixture of mixed triangles and parallelograms? It fact,
both ideas from above can be merged by using a certain lexicographic partial order on short
edges, in which the short edges that are hit by “chasing the mixed subdiMsiowards
special short edges” are strictly decreasing. This shows that not all special short edges can
be avoided byM.

We can make this idea precise for both the prism and the twisted prism. In the latter
case, it is no surprise that even all special edges must be used, since they are boundary
edges ofS,(«). However, using the cyclic set of tetrahedra means covering all special
short edges by parallelograms, and we will show that at least one of them must be in a
small triangle.

In the sequel, we will formalize these arguments in order to obtain rigorous proofs of
Theorem$1l and 2.

5.3. Ordering short mixed edges. For the following, lete be a short edge ifC,,i).
We want to give an orientation to the halfplanes separated by thé(Bhapanned b.
If e= g, then we make use of the fact thgtis in the boundary of5,, thusl(e) is a
supporting hyperplane fd,. Therefore, we can define the positive side)* of e to be
the halfplane not containing,. If e # e, we define the positive sidée)™ of e to be the
halfplane containings. This idea of investigating the subdivision betwezande can
now be formulated as looking at cells on the positive side f
The following is a simple observation.

Lemma 1. Leto be a mixed parallelogram in,$a) with short edges e and.eThen:

(i) If o is on the positive sides or on the negative sides of both of its short edgesehen |
and I(¢) have opposite orientations.

(i) If o is on the positive side of e and on the negative sidé, afrevice versa, then(k)
and I(€¢') have parallel orientations. O

One of the cases mentioned in Lemma 1 can actually never occur. This will allow us to
keep on finding new cells on the positive sides of short edges.

Lemma 2 (Orientation Lemma) There is no fine mixed&-cell ¢ in S, on the positive side
of all of its short edges.

Remark2. The correctness of the Orientation Lemma heavily depends on the congruence
of the top/bottom polygons d#,(o) and on the restriction ak. That the lemma is false in
even slightly more general situations can be seen in the example in Fjgure 2.

Proof. Assume, for the sake of contradiction, tlais a mixed 2-cell inS, lying on the
positive side of all of its short edges. Sineecontains the short edgg it must be either a
small triangle or a parallelogram.

Consider the case wheeeis a small triangle on the positive side of all of its edges. The
special edges cannot be an edge a@f, sincec is contained in con&,, andl(g)* was
defined to be the side dfe ) not containingS,. By definition of the orientations of short
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(4,3) (3,3)

(474).0}. o ® 032

o o
4100 e ° 22

(1,1) (2,1)

FIGURE 2. Parallelograms which are on the positive sides of both of their
short edges exist whem s too large; in the picture: = Z. However, it can

be seen that the bad parallelogram flips its orientation whéa) is un-
twisted

edges other thag, we conclude thag, must be contained i, Since(Cy,i) is convex,
this can only be the casedf is an edge ot contradiction.

Thereforeo must be a parallelogram lying on the positive sides of both of its short edges
ein (Cp,i) and€ in (Cy, j) for somei, j € {0,1,...,n—1}. We first consider this in the
case of the prism, i.e., whem = 0. We will also include the degenerate case, i.e., where
o is a line segment, into our considerations. Siece |(e)™ NI(€)™, the orientations
of e and€ must be opposite (Lemnﬁ 1). In terms of translatioRg| (e)") =1(e)”
andT; (I (€¢)" =1(e)~. By definition of the orientatiorg, is on the positive side &, and
hence(i,i) € I(e)". Similarly, (j,j) € 1(¢)*. This implies

(i,iyel®, (1)
(j,l):T”(j,J)GT“(l(e,)jL):Ne)i, (2)
(i,)) =T (0,) e T (I(e) ") = 1(€) ™, ©)
(J,0) ()™ (4)
These are necessary conditions for a non-degeneragEng on the positive side of both
of its short edges. While being on the positive side of short edges does not make sense for
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degenerates, Conditions[(IL) througH {4) have a meaning in the degenerate case as well.
For further reference, we call these necessary conditionsribetation conditions

Sincea = 0, the points(i,i), (j,i), (i,]), and(j, j) lie on a straight lin¢. Sincee is
very small, the points appear d@rin the order(i,i), (j,i), (i,j), and(j,j). This tells us
that/ starts inl(e)™, enterd (e)~, and then returns inte) ™. This implies that =1 (e).

By the symmetric argument, alée=1(€). Thereforeo is a segment. Moreover, its short
edges are actually= {(i,i),(j,i)} and€ = {(i, }), (], ])} because the points {iCy,i) are
in strictly convex position.

This shows that a non-degenerateannot exist in the prism. Moreover, we have learned
the following useful fact: if the point§i,i), (j,i), (i, ), and(j, j) satisfy the orientation
conditions|[(1) througH {4) for the short edgeasnde’ of some (possibly degenerate) paral-
lelogramo theno = {(i,i), (j,1), (i, ), (J, 1) }-

Sinceo cannot exist in the prism, consider the case wieere 0 so thatP, () is still
a twisted prism. That means, no full-dimensional tetrahedrd®, iswitches orientation
during the twisting toward®, (o). That implies that no full-dimensional parallelogram
in S,(0) changes its orientation w.r.t. its short edges (by the Cayley trick correspondence
in Sectior] 4.B; easy exercise in linear algebra).

Now, untwistP,(a), and hences. Then,c must degenerate to a segmenPBjin During
the untwist, for allec > 0 the points(i,i), (j,i), (i, ]), and(j, j) must always satisfy the
orientation conditions. Since the conditions define a closed space and untwisting changes
all data continuously i, they must also hold in the degenerate positios 0. Henceo
must be of the forn{ (i,i), (j,i),(i,]),(j,])} forsomei,j € {0,1,...,n—1}. In particular,
e={(i,i),(j.i)}.

We finally show that during the twist; folds up in the “wrong” direction. Consider the
order of the short edges incident(ioi) counter-clockwise starting at an edgeSqf In this
ordereg, is the first edge, by definition. Twistirg again counter-clockwise by will turn
the slope of the short edge= {(i,i),(j,i)} counter-clockwise into the slope of the long
edge{(i,i), (i, ])}. Therefore, the long edgfi,i), (i, j) } and the special short edgeare
on different sides oé. This meansg lies on the negative side ef contradiction. O

ind, (e) (i Ei
FIGURE 3. Primary index ing((e) of a short edge

The following quantity defines how close a short edge is to the corresponding special
short edge. See Figuré 3 for an illustration.
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Definition 2 (Primary Index) We define therimary indexind, (e) of any short edge by
ind, () := vol(conV(Cp,i)NI(e)") O

We now turn our attention to measuring how many short partner edges a short edge can
find to build a parallelogram on its positive side. Consider the uniquéd (&g parallel to
e through(i,i). Letl(e/i,o) be the line that is obtained frohfe,i) by a rotation by—a
around(i,i). Its orientation is obtained by rotating the orientatiorl @) by —c as well.
The resulting positive halfplane defined g, i, &) is called! (e,i, @) ™.

Lemma 3 (Partner Lemma)Let o be a mixed parallelogram with short edges e ahdee
that o lies on the positive side of e. Assume, e lies in the small pol§@qn) and € lies
in the small polygoriCy, j). Then(j,i) lies in the interior of [e,i, o).

Proof. Assume, for the sake of contradiction, thi@ti) lies inl(e,i, o). By definition,g,
is insidel (e)*. Sinceg is a boundary edge @&, (), one of the long edgées of o must
separat@ from o. Let (k,i) := ENe, wherek =i is possible.

Let B be the angle frome to E around(k,i). This angle is the same as the angle
from I(e,i) to {(i,i),(i,])} around(i,i): the short translatiof; moves(k,i) to (i,i), E
onto{(i,i), (i, )}, andeintol(e,i)Nconvs,(a). There are two cases: eithekQ3 < & or
—rT<fB<0.

If 0 < B < « then the slope oé turns counter-clockwise arour(d,|) into the slope
of E. Sinceo, and hence, are inl(e)™, the interior of the positive sidge)™ of I(e)
can be characterized as follows: a point R? is in the interior ofl (€)™ if and only if
the angle frome to {(k,i),x} around(k;i) is in the interval(0, ). Since the orientation
of I(e i) is parallel to this, the analogous characterization holds for the interigedj .
The characterization of the interior of the positive difei, )" of I (g,i, @) is analogous.

l(ei,a)

(i,1)

FIGURE 4. The case & B < & in the proof of the Partner Lemma

Let y be the angle frord (i,i),(j,i)} tol(e i, ) around(i,i). The assumption thdf,i)
liesinl(ei,o)” can now be expressed ay € [—x,0] <= 7 € [0,x]. The angle from
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{(i,0),(j,i)} to{(i,i), (i, j)} around(i,i) equalsc, by construction oP,(c). (See Figurg|4
for an illustration.) Therefore:

ox= 4({0")7(Jal)}7{(|7|)7(|7J)})
= Z({(,1),(J,D)} 1 (ed, )+ Z(1 (e, ), 1 (&) + 2 (1 (&), {(0,), (},1)})

= v +ta+ B
~~ ~~

€[0,x] €(0,m)
€ (a,o+2m).
This is a contradiction.
I(ei)
o (('I’J) l(ei, )

(i,1)
FIGURES. The case-m < 8 < 0 in the proof of the Partner Lemma

If —w < B < 0 then we get analogouslyc [—x,0]. (See Figure]s for an illustration.)
Thus:

o= Z({(0,1),(J,)}{(0,0),(,1)})
= Z({(i,D), (i, 11 (ei, @)+ Z(I(ei, a),1(ei)) + £ (1 (e i), {(0,i), (i,i)})
= v +a+ P
~—~ ~—~
€[—mn,0] e(—m,0)
€(a—2m,a)
Contradiction again, and we are done. O

The following secondary index measures for any short edge the size of the region in
which partner edges for a parallelogram can be found. See Figure 6 for a sketch.

Definition 3 (Secondary Index)The secondary inderf a short edge is defined as
ind,(e) := vol(con(Cp,i)NI(ei,a)*) O

We can now define a lexicographic partial order induced by primary and secondary
index. This will turn out to be the crucial relation among short edgé4.itt is the partial
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l(ei,a)

FIGURE 6. Secondary index inde) of a short edge
order that will always decrease when we “chisalong short edges towards special short
edges”.
Definition 4. Lete and€ be short edges iM’. Then
either ind(e) <ind,(€)
or ind, (e) = ind, (€') and ind,(e) < ind,(¢/). O

The following lemma is the formalization of “chasing the mixed subdivision towards
special short edges”.

e<€d:<— {

Lemma 4 (Order Lemma) Let e be a short edge in a mixed subdivision M gfS. Then
the following hold:
(i) ind,(e) > 0andind,(e) > 0.
(i) ind,(e) =0if and only if e= g for some i=0,1,...,n—1.
(i) If e# ¢ foralli =0,1,...,n—1, then there exists another short eddgereM with
€ < e; moreover, there existszcell o such that both e and are short edges aof,
ando is on the positive side of e and on the negative sidé.of e

Proof. Assertions[{i) and (ji) are by definition.

In order to prove|(ifi), consider a short edg@n M. Assume thaeis in (Cy,i) and that
e# g. Then the mixed subdivisioll must contain cells that subdivide the convex hull of
eands. In particular, there must be a cellon the positive side of. There are two cases:
Either o is a simplex containing only short edges insi@,i), or o is a parallelogram
containing two short and two long edges.

Case 1:The cello is a simplex with short edges. By constructidfg)™ containso.

By Lemma@,c lies on the negative side of one of its short edges,esayrhenl (€)™
does not contairc. Moreover, sincgCy,i) is convex,l(e) andl(€') do not cross in-
side conyCh,i). Thus,I(¢)* NconvCy,i) C1(e)* NconuCy,i)\ o. Therefore, ing(€) <
ind, (e) —vol(o) < ind,(e), whenced < e.

Case 2:The cello is a parallelogram containing two short and two long edges. Consider
the short edge€’ in o opposite tce. Itliesin (Cy, j) for somej =0,1,...,n— 1 with j #1.

We first prove thaé ande’ have the same primary index. By Lempjas2jes on the neg-
ative side ofe. By constructiong lies on the positive side @& Therefore, by Lemmga 1,
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the parallel lines(e) andl(€¢/) have parallel orientations. That meaifis(| (™) =I(e)*.
Becausd; (con\(Cn, i)) = con\Cn, j), we conclude ing(€/) = ind, (e).

Next, we show that the secondary indexebfis strictly smaller than that of. By
Lemme@,(j,i) lies in the interior of (e,i, ) ™. Thisimpliesthatj, j) = Tij(i,1) liesinthe
interior of T;; (I (e,i, ) ™). Since the parallel linel{e) andl (¢/) have parallel orientations,

the parallel lined(e,i, @) andl (€, j, o) also have parallel orientations. Thuigg, j, )"
is strictly contained irT;; (I (e,i, a)™). Therefore,

ind,(€¢/) = vol(con\Cy, j) NI(€, j,a)")
= vol (convT;; (Cn,i) NI (€, j,a) ")
< vol(convT; (Cn,i) NT;; (I ()i, ) "))
= vol(con\(Cy, i) N (|(e,l,06)+))
= ind,(€).
This proves tha¢ < e, and (iii) is proven as well. O

5.4. The neighborhood of special short edgesWe are now in a position to prove the
main property of mixed subdivisions &(«).

Theorem 3. Let o > 0 such that R(«) is a prism or a twisted prism. Then every mixed
subdivision M of § «) contains at least one triangle one of whose edges is some special
short edge.

Remark3. If « is too large then not only the Order Lemma is false but also Thepfem 3,
which can be seen in Figurg 7. Theorgm 2, however, might still be true fordabgeause

the cyclic set of tetrahedra defines parallelograms that are incompatible with the parallelo-
gram that is on the positive sides of both of its short edges in Fjgure 7. One could consider
all o > 0 for which the face lattice of,(a) equals the one of the twisted prism in our
sense. Since the existence of triangulations depends on the orientations of tetrahedra (the
oriented matroid) rather than on the face lattice, we decided not to investigate this any fur-
ther. If the top and the bottomgons are not congruent, Theorgn 3 — and even Thegrem 1
—do not hold either, as can be seen in Figure 8.

Proof. Since every triangulation d%(«) induces a triangulation of its top and its bottom
polygon, at least one short triangle must be used. Not all of its short edges can be edges
of Sy(a). Therefore, there is a short edge having cells on both of its sides. Hence, there is
at least on 2-cell that is on the positive side of some short edge. By Lénma 2, every such
cell lies on the negative side of one of its other short edges.

Let o be a cell on the positive side of its short edgend on the negative side of its short
edge€ such tha¥ is minimal w.r.t. “<”. Then, by LemmaR(iii) € is a special edge.

Every parallelograns with a special short edge must lie on the negative side ef,
since the positive side o is outsideS,(«). Therefore, the parallelogram lies on
the same side of as(Cy,i). Assume the opposite edgeof o lies in (Cy, j) for some
j€{0,1,...,n—1}. Then, by Lemma]lg lies on the opposite side &fas(Cp,j). In
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FIGURE 7. Whena is too large (in the picturec = 7) then a mixed sub-
division exists where no special edge is covered by a mixed triangle; the
parallelogram of Figurg|2 serves as kind of an adapter between two part of
the subdivision that would be incompatible otherwise. This mixed subdivi-
sion disappears whey(«) is untwisted. The indicated mixed subdivision
does, however, not contradict the statement in Thepirem 2 for lex,ggénce

it does not use the parallelograms corresponding to the cyclic set of tetrahe-
dra

particular,o lies on the opposite side efasej, which meansg lies also on the negative
side ofe. OJ

5.5. The proof of Theorem([] (prism). For the sake of contradiction, assume that there
is a triangulationT of R, that uses the cyclic sé&. of diagonals. Using the Cayley trick,

T induces a fine mixed subdivisiod of S, that uses, among others, the set of points
(i,i+1)foralli=0,1,...,n—1, corresponding to the cyclic set of diagonals (labels again
regarded modula). The triangles in the quadrilateral facetsRyfinduce the mixed edges
{(i,1),(i,i+ 1)} in the boundary ofS,. They already cover the whole boundary $f
Thus, the special edges:= {(i,i),(i+ 1,i)} in the boundary of5,, which correspond

to the reverse cyclic set of diagonals in the quadrilateral faceBs,adre not used M.
However, by Theoreijn| 3, at least ogamust be inM: contradiction. O
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FIGURE 8. Congruence of top and bottamgons is important: even if the
top and the bottonm-gon of a Cayley embedding of twe-gons are nor-
mally equivalent, there may be triangulations using the cyclic set of diag-
onals of the resulting combinatorial polygonal prism; the figure shows the
corresponding mixed subdivision; note that indeed no special edge is used

5.6. The proof of Theorem|2 (twisted prism). For the sake of contradiction, assume
that there is a triangulation of P, that uses the cyclic st of tetrahedra. Construct the
corresponding mixed subdivisidv of S,(a). The setM; of mixed cells corresponding

to Tc are parallelograms that cover all the special edgeBherefore, there can be no other

cell that contains a special edge. By Theofeém 3, there must be at least one mixed triangle
containing a special edge contradiction. O
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