
ON A GENERALIZATION OF SCH ÖNHARDT’S POLYHEDRON

JÖRG RAMBAU

ABSTRACT. We show that the non-convex twisted prism over ann-gon cannot be triangu-
lated without new vertices. For this, it does not matter what the coordinates of then-gon
are as long as the top and the bottomn-gon are congruent and the twist is not too large.
This generalizes Schönhardt’s polyhedron, which is the non-convex twisted prism over a
triangle.

1. THE BACKGROUND

Back in 1911, Lennes [4] presented the first simple three-dimensional non-convex poly-
hedron whose interior cannot be triangulated without new vertices. The more famous
example, however, was given in 1927 by Schönhardt: he observed that in the non-convex
twisted triangular prism (subsequently called “Schönhardt’s polyhedron”) every diagonal
that is not a face lies completely in the exterior [6]. This implies immediately that there can
be no triangulation of it without new vertices because there is simply no interior tetrahe-
dron: all possible tetrahedra spanned by four of its six vertices would introduce new edges.
Moreover, he proved that every simple polyhedron with the same properties must have at
least six vertices. Later, further such non-convex, non-triangulable polyhedra with an arbi-
trary number of points have been presented. Among them, Bagemihl’s polyhedron [1] also
has the feature that every non-facial diagonal is in the exterior.

The twisted prism over an arbitraryn-gon would arguably be the most natural general-
ization of Scḧonhardt’s polyhedron. Surprisingly enough, there has been no proof so far
that it cannot be triangulated without new vertices. One of the reasons seems to be that—
in contrast to Scḧonhardt’s and Bagemihl’s polyhedra—not every non-facial diagonal lies
completely outside the polygonal prism. Yet, the non-convex twisted polygonal prism can
indeed not be triangulated without new vertices, as we will show below. For this, it does
not matter what the coordinates of then-gon are as long as the top and the bottomn-gon
are congruent and the twist is just a perturbation by rotation, i.e., it is not too large.

There is a relation between Schönhardt’s polyhedron and the (untwisted) triangular
prism with a prescribed boundary triangulation that is cyclically symmetric: there is no
triangulation of the triangular prism that extends a cyclically symmetric boundary triangu-
lation without new vertices. Similarly, there is no a triangulation of the general polygonal
prism inducing a cyclically symmetric triangulation of the boundary quadrilaterals.

Besides the fact that the (frequently asked) question about the existence of triangula-
tions of the non-convex twisted polygonal prism deserves a conclusive answer at last, we
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mention one other motivation for studying problems like this. Deciding the existence of
a triangulation without new vertices for a fixed polyhedron is NP-hard [5]. In studying
the twisted polygonal prism we surprisingly hit the borderline between existence and non-
existence of triangulations without new vertices in a single type of point configurations, and
this could make the twisted or untwisted polygonal prism a handy gadget for NP-hardness
proofs.

2. THE OBJECTS

Consider a two-dimensional point configurationCn := {v0,v1, . . . ,vn−1} in strictly con-
vex position labeled counter-clockwise. Fix a pointo in the interior ofCn in R2. For
α ∈ [0,2π), let Cn(α) be a copy ofCn rotated byα around the pointo (rotation by an
angle in (0,2π) means counter-clockwise rotation). We call the corresponding points
w0,w1, . . . ,wn−1. TheCayley embeddingof Cn andCn(α) is defined by

Pn(α) := conv
(
(Cn×{0})∪ (Cn(α)×{1})

)
.

A triangulation of a three-dimensional polyhedronP is a dissection into finitely many
tetrahedra such that any two intersect in a common face (possibly empty). For a triangu-
lation of P and a simplexF of arbitrary dimension we sayT uses Fif F is a face of some
tetrahedron inT. Faces are denoted by their sets of vertices. Atriangulation without new
verticesor av-triangulationof P is a triangulation all of whose vertices are vertices ofP.

Pn := Pn(0) is known as aprismoverCn. Thecyclic set of diagonals

Dc :=
{
{vi ,wi+1} : i = 0,1, . . . ,n−1

}
induces a triangulation of the quadrilateral facets ofPn(0) into the triangles{vi ,wi ,wi+1}
and{vi ,wi+1,vi+1}, i = 0,1, . . . ,n−1 (all indices regarded modulon).

The continuity of the determinant function ensures that there is anα > 0 such that no
full-dimensional tetrahedron inPn(0) has a reversed orientation (sign of determinant of
the points in homogeneous coordinates) inPn(α). In that case, thevertical edges{vi ,wi}
and thereverse cyclic edges{wi ,vi+1} are among the boundary edges ofPn(α), for all
i = 0,1, . . . ,n−1. For such anα, we callPn(α) a convex twisted prism over Cn. (Pn(α)
is a convex twisted prism overCn if and only if the map sendingvi ,wi ∈ Pn(α) to the
correspondingvi ,wi ∈ Pn(0) induces a weak map of oriented matroids [2].)

For a convex twisted prism overCn, thecyclic set of tetrahedrais the set of tetrahedra

Tc :=
{
{vi ,vi+1,wi ,wi+1} : i = 0,1, . . . ,n−1

}
.

Any two of these tetrahedra intersect in a common edge.

3. THE RESULTS

Theorem 1. For all n ≥ 3, no prism Pn(0) over an n-gon admits a triangulation without
new vertices that uses the cyclic set Dc of diagonals.

Theorem 2. For all n ≥ 3, no convex twisted prism Pn(α) admits a triangulation that
contains the cyclic set Tc of tetrahedra.
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We define thenon-convex twisted prism̌Pn(α) to be the topological closure ofPn(α)\Tc.
Since the twist is not too large, this is a non-convex simple polyhedron. Here is now the
generalization of Scḧonhard’s polyhedron:

Corollary 1. For all n ≥ 3, the non-convex twisted prism̌Pn(α) cannot be triangulated
without new vertices.

Remark1. WhenCn is a regular triangle andα ∈ (0,2π/3), the twisted prismP3(α) coin-
cides with Scḧonhardt’s twisted prism.

4. THE TOOLS

For a more detailed background about the following consult [3] and the references
therein.

4.1. Minkowski sums and mixed subdivisions.Let P and Q be point configurations
in R2. Then theMinkowski sum of P and Q scaled byλ ∈ (0,1) is the point configura-
tion

(1−λ )P+λQ := {(1−λ )p+λq : p∈ P,q∈Q} ⊂ R2.

We make the following simplifying assumption: we consider only genericλ ∈ (0,1), for
which (1−λ )p+ λq = (1−λ )p′+ λq′ implies thatp = p′ andq = q′. A mixed cellin
(1−λ )P+λQ is the Minkowski sum(1−λ )σ +λτ of subsetsσ ⊆P andτ ⊆Q. A mixed
subdivisionof (1−λ )P+ λQ is a dissection of(1−λ )P+ λQ into finitely many mixed
cells such that any two intersect in common faces (possibly empty).

A two-dimensional mixed cell isfine if it is the Minkowski sum of either two edges or
of a point and a triangle. In the first case, the cell is a parallelogram, in the second case the
cell is a triangle. A mixed subdivision isfine if it contains only fine mixed cells.

4.2. Cayley embeddings.Let P andQ as above. Then theCayley embeddingof P andQ
is the point configuration

C (P,Q) := {(p,0) : p∈ P}∪{(q,1) : q∈Q} ⊂ R3.

For example,Pn(α) from above is a Cayley embedding for allα.

4.3. The Cayley trick. The Cayley trick states that for allP andQ as above, triangulations
of C (P,Q) are in one-to-one correspondence with fine mixed subdivisions of(1−λ )P+
λQ for all λ ∈ (0,1). We will only need the fact that every triangulation ofC (P,Q) induces
a fine mixed subdivision of(1−λ )P+λQ for all λ ∈ (0,1).

The correspondence is given by intersectingC (P,Q) by a horizontal hyperplaneH
λ

at
heightλ . The intersection of any tetrahedron in a triangulation ofC (P,Q) with H

λ
is a

fine mixed cell in
(
(1−λ )P+λQ

)
×{λ}⊂R3. Since intersection with affine hyperplanes

preserves face relations, the set of all fine mixed cells so obtained yields a fine mixed
subdivision of(1−λ )P+λQ.

Applied to Pn(α) this means: each triangulation ofPn(α) induces a fine mixed subdi-
vision of Sn(α,λ ) := (1−λ )Cn + λCn(α) for everyλ ∈ (0,1). In summary, we have the
following correspondences between objects in the Cayley embedding and the Minkowski
sum:
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Pn(α) Sn(α,λ )
tetrahedra fine mixed polygons
tetrahedra with a triangle in the bottom or the top fine mixed triangles
tetrahedra with edges both in the top and in the bottom fine mixed parallelograms
non-horizontal triangles fine mixed edges
non-horizontal edges fine mixed points
orientation counter-clockwise orientation

Since the Minkowski sum lives in one dimension less than the Cayley embedding, we
rather work withSn(α,λ ).

5. THE PROOFS

Let α ≥ 0 be small enough such thatPn(α) is a prism or a twisted prism. Fixε ∈ (0,1)
such that‖ε(v j − vi)‖ < ‖(1− ε)(w j −wi)‖ for all i, j = 0,1, . . . ,n− 1. (All following
considerations are also true for arbitraryε ∈ (0,1); the choice of a smallε makes some
arguments more transparent, though.) In particular,Sn(α) := Sn(α,1− ε) = εPn + (1−
ε)Pn(α) does not contain multiple points. For brevity, we will use the notation(i, j) for
the pointεvi +(1− ε)w j , i, j = 0,1, . . . ,n−1.

5.1. Some notions and notation.Consider mixed edges. All mixed edges are, by defi-
nition, Minkowski sums of either a point and an edge or of an edge and a point. In our
notation, they are of the form(e, i) := {(k, i),(l , i)} or of the form( j,e) := {( j,k),( j, l)}
for some edgee= {k, l} in Cn or Cn(α), resp.

The following notions are motivated by regardingε as being small. We highlight the
most important one as a definition.

Definition 1 (Short and Long Edges). Call a mixed edgeshort if it is of the form(e, i), call
it longotherwise. The short mixed edgeei := {(i, i),(i +1, i)} is calledspecial. �

The special edges are interesting inSn because – via the Cayley trick – they correspond
to triangles that are incompatible with the cyclic set of diagonalsDc in Pn. Moreover,
they are interesting inSn(α) for α > 0 because the cyclic set of tetrahedraTc covers the
corresponding triangles inPn(α) so that in any triangulation containingTc no other cell
can use them.

For i = 0,1, . . . ,n− 1, there are the convex sub-n-gons(Cn, i) := εCn + (1− ε)wi and
(i,Cn(α)) := εvi +(1−ε)Cn(α) in Sn. By construction, all(Cn, i) are translates ofCn, and
all (i,Cn(α)) are translates ofCn(α), which itself is an angle-preserving image ofCn under
a (small) rotation that we callr(α). The long translation that shifts(Cn, i) to (Cn, j) along
the long edge{(i, i),(i, j)} is denoted byTi j ; theshort translation that moves(i,Cn(α)) to
( j,Cn(α)) along the short edge{(i, i),( j, i)} is denoted byti j .

Call then-gons(Cn, i) small and then-gons( j,Cn) large. Similarly, we call a mixed
triangle with only short edgessmall; we call a mixed triangle with only long edgeslarge.
By definition of the Minkowski sum, each mixed triangle is either small or large. We can
regard short mixed edges as edges that have both end points in the same small sub-n-gon.
SinceCn is convex, no line spanned by a short edgee in (Cn, i) cuts the interior of any
other short edge in(Cn, i). The special short mixed edgeei lies in the boundary ofSn(α).
Figure 1 illustrates the setup.
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Cn(α)×{1}

Cn×{0}

ei

(Cn, i)

εCn +(1− ε)Cn(α)

(i, i)

i

FIGURE 1. Cutting the Cayley embedding of twon-gons with a horizontal
hyperplane close to the top yields their Minkowski sum scaled as inSn(α);
the cyclic set of diagonals and the special edges are drawn thicker

5.2. Roadmap of the proofs. Note that any triangulation ofPn that uses the cyclic set
of diagonals induces a mixed subdivisionM of Sn in which no special edgeei is used.
Consider any non-special short edgee in M in some smalln-gon(Cn, i). Then the “region”
betweene andei must be covered byM somehow. We want to show that this cannot be
accomplished unless at least one special edge is used. We even show that at least one
special edge must be used as an edge of some mixed triangle (Theorem 3).

How can the region betweene and ei be subdivided? There must be a cell adjacent
to e on the same side asei . If we use a mixed triangle, i.e., a small triangle, then we
harvest new short edges in the same smalln-gon. One of these new short edges is “closer”
to ei in a sense to be defined precisely below, and we can proceed. If we use a mixed



6 JÖRG RAMBAU

parallelogram then there is another short edgee′ opposite toe in some other smalln-
gon (Cn, j) at a “partner vertex”j of e. But the “regions” containing potential partner
vertices fore′ towardsej will turn out to be strictly smaller than fore.

But what happens if we use a mixture of mixed triangles and parallelograms? It fact,
both ideas from above can be merged by using a certain lexicographic partial order on short
edges, in which the short edges that are hit by “chasing the mixed subdivisionM towards
special short edges” are strictly decreasing. This shows that not all special short edges can
be avoided byM.

We can make this idea precise for both the prism and the twisted prism. In the latter
case, it is no surprise that even all special edges must be used, since they are boundary
edges ofSn(α). However, using the cyclic set of tetrahedra means covering all special
short edges by parallelograms, and we will show that at least one of them must be in a
small triangle.

In the sequel, we will formalize these arguments in order to obtain rigorous proofs of
Theorems 1 and 2.

5.3. Ordering short mixed edges.For the following, lete be a short edge in(Cn, i).
We want to give an orientation to the halfplanes separated by the linel(e) spanned bye.
If e = ei , then we make use of the fact thatei is in the boundary ofSn, thus l(e) is a
supporting hyperplane forSn. Therefore, we can define the positive sidel(e)+ of e to be
the halfplane not containingSn. If e 6= ei , we define the positive sidel(e)+ of e to be the
halfplane containingei . This idea of investigating the subdivision betweene andei can
now be formulated as looking at cells on the positive side ofl(e).

The following is a simple observation.

Lemma 1. Let σ be a mixed parallelogram in Sn(α) with short edges e and e′. Then:

(i) If σ is on the positive sides or on the negative sides of both of its short edges then l(e)
and l(e′) have opposite orientations.

(ii) If σ is on the positive side of e and on the negative side of e′, or vice versa, then l(e)
and l(e′) have parallel orientations. �

One of the cases mentioned in Lemma 1 can actually never occur. This will allow us to
keep on finding new cells on the positive sides of short edges.

Lemma 2 (Orientation Lemma). There is no fine mixed2-cell σ in Sn on the positive side
of all of its short edges.

Remark2. The correctness of the Orientation Lemma heavily depends on the congruence
of the top/bottom polygons ofPn(α) and on the restriction ofα. That the lemma is false in
even slightly more general situations can be seen in the example in Figure 2.

Proof. Assume, for the sake of contradiction, thatσ is a mixed 2-cell inSn lying on the
positive side of all of its short edges. Sinceσ contains the short edgee, it must be either a
small triangle or a parallelogram.

Consider the case whereσ is a small triangle on the positive side of all of its edges. The
special edgeei cannot be an edge ofσ , sinceσ is contained in convSn, and l(ei)

+ was
defined to be the side ofl(ei) not containingSn. By definition of the orientations of short
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α

(3,3)

(4,4)

(4,1)

(3,2)

(2,2)

(1,1) (2,1)

(4,3)

FIGURE 2. Parallelograms which are on the positive sides of both of their
short edges exist whenα is too large; in the pictureα = π

3 . However, it can
be seen that the bad parallelogram flips its orientation whenP4(α) is un-
twisted

edges other thanei , we conclude thatei must be contained inσ . Since(Cn, i) is convex,
this can only be the case ifei is an edge ofσ : contradiction.

Therefore,σ must be a parallelogram lying on the positive sides of both of its short edges
e in (Cn, i) ande′ in (Cn, j) for somei, j ∈ {0,1, . . . ,n−1}. We first consider this in the
case of the prism, i.e., whenα = 0. We will also include the degenerate case, i.e., where
σ is a line segment, into our considerations. Sinceσ ⊂ l(e)+ ∩ l(e′)+, the orientations
of e and e′ must be opposite (Lemma 1). In terms of translations,Ti j (l(e)

+) = l(e′)−

andTji (l(e
′)+ = l(e)−. By definition of the orientation,ei is on the positive side ofe, and

hence(i, i) ∈ l(e)+. Similarly, ( j, j) ∈ l(e′)+. This implies

(i, i) ∈ l(e)+, (1)

( j, i) = Tji ( j, j) ∈ Tji (l(e
′)+) = l(e)−, (2)

(i, j) = Ti j (i, i) ∈ Ti j (l(e)
+) = l(e′)−, (3)

( j, j) ∈ l(e′)+. (4)

These are necessary conditions for a non-degenerateσ being on the positive side of both
of its short edges. While being on the positive side of short edges does not make sense for
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degenerateσ , Conditions (1) through (4) have a meaning in the degenerate case as well.
For further reference, we call these necessary conditions theorientation conditions.

Sinceα = 0, the points(i, i), ( j, i), (i, j), and( j, j) lie on a straight linè . Sinceε is
very small, the points appear on` in the order(i, i), ( j, i), (i, j), and( j, j). This tells us
that` starts inl(e)+, entersl(e)−, and then returns intol(e)+. This implies that̀ = l(e).
By the symmetric argument, also` = l(e′). Therefore,σ is a segment. Moreover, its short
edges are actuallye= {(i, i),( j, i)} ande′ = {(i, j),( j, j)} because the points in(Cn, i) are
in strictly convex position.

This shows that a non-degenerateσ cannot exist in the prism. Moreover, we have learned
the following useful fact: if the points(i, i), ( j, i), (i, j), and( j, j) satisfy the orientation
conditions (1) through (4) for the short edgeseande′ of some (possibly degenerate) paral-
lelogramσ thenσ = {(i, i),( j, i),(i, j),( j, j)}.

Sinceσ cannot exist in the prism, consider the case whereα > 0 so thatPn(α) is still
a twisted prism. That means, no full-dimensional tetrahedron inPn switches orientation
during the twisting towardsPn(α). That implies that no full-dimensional parallelogram
in Sn(0) changes its orientation w.r.t. its short edges (by the Cayley trick correspondence
in Section 4.3; easy exercise in linear algebra).

Now, untwistPn(α), and henceσ . Then,σ must degenerate to a segment inPn. During
the untwist, for allα > 0 the points(i, i), ( j, i), (i, j), and( j, j) must always satisfy the
orientation conditions. Since the conditions define a closed space and untwisting changes
all data continuously inα, they must also hold in the degenerate positionα = 0. Hence,σ
must be of the form{(i, i),( j, i),(i, j),( j, j)} for somei, j ∈ {0,1, . . . ,n−1}. In particular,
e= {(i, i),( j, i)}.

We finally show that during the twist,σ folds up in the “wrong” direction. Consider the
order of the short edges incident to(i, i) counter-clockwise starting at an edge ofSn. In this
orderei is the first edge, by definition. TwistingPn again counter-clockwise byα will turn
the slope of the short edgee= {(i, i),( j, i)} counter-clockwise into the slope of the long
edge{(i, i),(i, j)}. Therefore, the long edge{(i, i),(i, j)} and the special short edgeei are
on different sides ofe. This means,σ lies on the negative side ofe: contradiction. �

(Cn, i)

ei

e

(i, i)

+

ind1(e)

FIGURE 3. Primary index ind1(e) of a short edgee

The following quantity defines how close a short edge is to the corresponding special
short edge. See Figure 3 for an illustration.



ON A GENERALIZATION OF SCHÖNHARDT’S POLYHEDRON 9

Definition 2 (Primary Index). We define theprimary indexind1(e) of any short edgeeby

ind1(e) := vol
(
conv(Cn, i)∩ l(e)+

)
�

We now turn our attention to measuring how many short partner edges a short edge can
find to build a parallelogram on its positive side. Consider the unique linel(e, i) parallel to
e through(i, i). Let l(e, i,α) be the line that is obtained froml(e, i) by a rotation by−α

around(i, i). Its orientation is obtained by rotating the orientation ofl(e) by−α as well.
The resulting positive halfplane defined byl(e, i,α) is calledl(e, i,α)+.

Lemma 3 (Partner Lemma). Let σ be a mixed parallelogram with short edges e and e′ so
that σ lies on the positive side of e. Assume, e lies in the small polygon(Cn, i) and e′ lies
in the small polygon(Cn, j). Then( j, i) lies in the interior of l(e, i,α)+.

Proof. Assume, for the sake of contradiction, that( j, i) lies in l(e, i,α)−. By definition,ei
is insidel(e)+. Sinceei is a boundary edge ofSn(α), one of the long edgesE of σ must
separateei from σ . Let (k, i) := E∩e, wherek = i is possible.

Let β be the angle frome to E around(k, i). This angle is the same as the angle
from l(e, i) to {(i, i),(i, j)} around(i, i): the short translationtki moves(k, i) to (i, i), E
onto{(i, i),(i, j)}, ande into l(e, i)∩convSn(α). There are two cases: either 0< β < π or
−π < β < 0.

If 0 < β < π then the slope ofe turns counter-clockwise around(k, l) into the slope
of E. Sinceσ , and henceE, are in l(e)+, the interior of the positive sidel(e)+ of l(e)
can be characterized as follows: a pointx ∈ R2 is in the interior ofl(e)+ if and only if
the angle frome to {(k, i),x} around(k, i) is in the interval(0,π). Since the orientation
of l(e, i) is parallel to this, the analogous characterization holds for the interior ofl(e, i)+.
The characterization of the interior of the positive sidel(e, i,α)+ of l(e, i,α) is analogous.

−

(i, i)

σ

β

l(e, i)

l(e, i,α)

α

β γ

( j, i)

e

E

(i, j)

ei
(k, l)

FIGURE 4. The case 0< β < π in the proof of the Partner Lemma

Let γ be the angle from{(i, i),( j, i)} to l(e, i,α) around(i, i). The assumption that( j, i)
lies in l(e, i,α)− can now be expressed as−γ ∈ [−π,0] ⇐⇒ γ ∈ [0,π]. The angle from
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{(i, i),( j, i)} to {(i, i),(i, j)} around(i, i) equalsα, by construction ofPn(α). (See Figure 4
for an illustration.) Therefore:

α = ∠
(
{(i, i),( j, i)},{(i, i),(i, j)}

)
= ∠

(
{(i, i),( j, i)}, l(e, i,α)

)
)+∠

(
l(e, i,α), l(e, i)

)
)+∠

(
l(e, i),{(i, i),( j, i)}

)
= γ︸︷︷︸
∈[0,π]

+α + β︸︷︷︸
∈(0,π)

∈ (α,α +2π).

This is a contradiction.

−
σ

e

(i, i)

β

ei

l(e, i)

(i, j)
l(e, i,α)

E

β

α

( j, i)

γ

(k, l)

FIGURE 5. The case−π < β < 0 in the proof of the Partner Lemma

If −π < β < 0 then we get analogouslyγ ∈ [−π,0]. (See Figure 5 for an illustration.)
Thus:

α = ∠
(
{(i, i),( j, i)},{(i, i),(i, j)}

)
= ∠

(
{(i, i),( j, i)}, l(e, i,α)

)
)+∠

(
l(e, i,α), l(e, i)

)
)+∠

(
l(e, i),{(i, i),( j, i)}

)
= γ︸︷︷︸
∈[−π,0]

+α + β︸︷︷︸
∈(−π,0)

∈ (α−2π,α).

Contradiction again, and we are done. �

The following secondary index measures for any short edge the size of the region in
which partner edges for a parallelogram can be found. See Figure 6 for a sketch.

Definition 3 (Secondary Index). Thesecondary indexof a short edgee is defined as

ind2(e) := vol
(
conv(Cn, i)∩ l(e, i,α)+

)
�

We can now define a lexicographic partial order induced by primary and secondary
index. This will turn out to be the crucial relation among short edges inM. It is the partial
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+

α

l(e, i,α)

+

(Cn, i) e

ei(i, i)
ind2(e)

l(e, i)
+

FIGURE 6. Secondary index ind2(e) of a short edgee

order that will always decrease when we “chaseM along short edges towards special short
edges”.

Definition 4. Let eande′ be short edges inM′. Then

e≺ e′ :⇐⇒

{
either ind1(e) < ind1(e

′)
or ind1(e) = ind1(e

′) and ind2(e) < ind2(e
′). �

The following lemma is the formalization of “chasing the mixed subdivision towards
special short edges”.

Lemma 4 (Order Lemma). Let e be a short edge in a mixed subdivision M of Sn(α). Then
the following hold:

(i) ind1(e)≥ 0 and ind2(e)≥ 0.
(ii) ind1(e) = 0 if and only if e= ei for some i= 0,1, . . . ,n−1.

(iii) If e 6= ei for all i = 0,1, . . . ,n−1, then there exists another short edge e′ in M with
e′ ≺ e; moreover, there exists a2-cell σ such that both e and e′ are short edges ofσ ,
andσ is on the positive side of e and on the negative side of e′.

Proof. Assertions (i) and (ii) are by definition.
In order to prove (iii), consider a short edgee in M. Assume thate is in (Cn, i) and that

e 6= ei . Then the mixed subdivisionM must contain cells that subdivide the convex hull of
eandei . In particular, there must be a cellσ on the positive side ofe. There are two cases:
Either σ is a simplex containing only short edges inside(Cn, i), or σ is a parallelogram
containing two short and two long edges.

Case 1:The cellσ is a simplex with short edges. By construction,l(e)+ containsσ .
By Lemma 2,σ lies on the negative side of one of its short edges, saye′. Then l(e′)+

does not containσ . Moreover, since(Cn, i) is convex, l(e) and l(e′) do not cross in-
side conv(Cn, i). Thus,l(e′)+∩conv(Cn, i)⊆ l(e)+∩conv(Cn, i)\σ . Therefore, ind1(e

′)≤
ind1(e)−vol(σ) < ind1(e), whencee′ ≺ e.

Case 2:The cellσ is a parallelogram containing two short and two long edges. Consider
the short edgee′ in σ opposite toe. It lies in (Cn, j) for somej = 0,1, . . . ,n−1 with j 6= i.

We first prove thateande′ have the same primary index. By Lemma 2,σ lies on the neg-
ative side ofe′. By construction,σ lies on the positive side ofe. Therefore, by Lemma 1,
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the parallel linesl(e) andl(e′) have parallel orientations. That means,Ti j (l(e)
+) = l(e′)+.

BecauseTi j (conv(Cn, i)) = conv(Cn, j), we conclude ind1(e
′) = ind1(e).

Next, we show that the secondary index ofe′ is strictly smaller than that ofe. By
Lemma 3,( j, i) lies in the interior ofl(e, i,α)+. This implies that( j, j) = Ti j ( j, i) lies in the
interior of Ti j (l(e, i,α)+). Since the parallel linesl(e) andl(e′) have parallel orientations,
the parallel linesl(e, i,α) andl(e′, j,α) also have parallel orientations. Thus,l(e′, j,α)+

is strictly contained inTi j (l(e, i,α)+). Therefore,

ind2(e
′) = vol

(
conv(Cn, j)∩ l(e′, j,α)+

)
= vol

(
convTi j (Cn, i)∩ l(e′, j,α)+

)
< vol

(
convTi j (Cn, i)∩Ti j (l(e, i,α)+)

)
= vol

(
conv(Cn, i)∩ (l(e, i,α)+)

)
= ind2(e

′).

This proves thate′ ≺ e, and (iii) is proven as well. �

5.4. The neighborhood of special short edges.We are now in a position to prove the
main property of mixed subdivisions ofSn(α).

Theorem 3. Let α ≥ 0 such that Pn(α) is a prism or a twisted prism. Then every mixed
subdivision M of Sn(α) contains at least one triangle one of whose edges is some special
short edge.

Remark3. If α is too large then not only the Order Lemma is false but also Theorem 3,
which can be seen in Figure 7. Theorem 2, however, might still be true for largeα because
the cyclic set of tetrahedra defines parallelograms that are incompatible with the parallelo-
gram that is on the positive sides of both of its short edges in Figure 7. One could consider
all α ≥ 0 for which the face lattice ofPn(α) equals the one of the twisted prism in our
sense. Since the existence of triangulations depends on the orientations of tetrahedra (the
oriented matroid) rather than on the face lattice, we decided not to investigate this any fur-
ther. If the top and the bottomn-gons are not congruent, Theorem 3 – and even Theorem 1
– do not hold either, as can be seen in Figure 8.

Proof. Since every triangulation ofPn(α) induces a triangulation of its top and its bottom
polygon, at least one short triangle must be used. Not all of its short edges can be edges
of Sn(α). Therefore, there is a short edge having cells on both of its sides. Hence, there is
at least on 2-cell that is on the positive side of some short edge. By Lemma 2, every such
cell lies on the negative side of one of its other short edges.

Let σ be a cell on the positive side of its short edgeeand on the negative side of its short
edgee′ such thate′ is minimal w.r.t. “≺”. Then, by Lemma 2(iii),e′ is a special edge.

Every parallelogramσ with a special short edgeei must lie on the negative side ofei ,
since the positive side ofei is outsideSn(α). Therefore, the parallelogramσ lies on
the same side ofei as(Cn, i). Assume the opposite edgee of σ lies in (Cn, j) for some
j ∈ {0,1, . . . ,n− 1}. Then, by Lemma 1,σ lies on the opposite side ofe as(Cn, j). In
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(3,2)

(2,2)
(4,1)

(4,4)

(2,1)(1,1)

(4,3) (3,3)e3

e1

e2
e4

FIGURE 7. Whenα is too large (in the pictureα = π

3 ) then a mixed sub-
division exists where no special edge is covered by a mixed triangle; the
parallelogram of Figure 2 serves as kind of an adapter between two part of
the subdivision that would be incompatible otherwise. This mixed subdivi-
sion disappears whenP4(α) is untwisted. The indicated mixed subdivision
does, however, not contradict the statement in Theorem 2 for largerα, since
it does not use the parallelograms corresponding to the cyclic set of tetrahe-
dra

particular,σ lies on the opposite side ofe asej , which means,σ lies also on the negative
side ofe. �

5.5. The proof of Theorem 1 (prism). For the sake of contradiction, assume that there
is a triangulationT of Pn that uses the cyclic setDc of diagonals. Using the Cayley trick,
T induces a fine mixed subdivisionM of Sn that uses, among others, the set of points
(i, i +1) for all i = 0,1, . . . ,n−1, corresponding to the cyclic set of diagonals (labels again
regarded modulon). The triangles in the quadrilateral facets ofPn induce the mixed edges
{(i, i),(i, i + 1)} in the boundary ofSn. They already cover the whole boundary ofSn.
Thus, the special edgesei := {(i, i),(i + 1, i)} in the boundary ofSn, which correspond
to the reverse cyclic set of diagonals in the quadrilateral facets ofPn, are not used inM.
However, by Theorem 3, at least oneei must be inM: contradiction. �
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(4,1)

(1,4)

(1,1) (2,1) (1,2) (2,2)

(3,2)

(2,3)

(3,3)(4,3)(3,4)(4,4)

e3

e1
e2

e4

FIGURE 8. Congruence of top and bottomn-gons is important: even if the
top and the bottomn-gon of a Cayley embedding of twon-gons are nor-
mally equivalent, there may be triangulations using the cyclic set of diag-
onals of the resulting combinatorial polygonal prism; the figure shows the
corresponding mixed subdivision; note that indeed no special edge is used

5.6. The proof of Theorem 2 (twisted prism). For the sake of contradiction, assume
that there is a triangulationT of Pn that uses the cyclic setTc of tetrahedra. Construct the
corresponding mixed subdivisionM of Sn(α). The setMc of mixed cells corresponding
to Tc are parallelograms that cover all the special edgesei . Therefore, there can be no other
cell that contains a special edge. By Theorem 3, there must be at least one mixed triangle
containing a special edgeei : contradiction. �
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[6] Erich Scḧonhardt,Über die Zerlegung von Dreieckspolyedern in Tetraeder, Mathematische Annalen89
(1927), 309–312.

JÖRG RAMBAU , ZUSE-INSTITUTE BERLIN, TAKUSTR. 7, 14195 BERLIN, GERMANY

E-mail address: rambau@zib.de


	1. The Background
	2. The Objects
	3. The Results
	4. The Tools
	4.1. Minkowski sums and mixed subdivisions
	4.2. Cayley embeddings
	4.3. The Cayley trick

	5. The Proofs
	5.1. Some notions and notation
	5.2. Roadmap of the proofs
	5.3. Ordering short mixed edges
	5.4. The neighborhood of special short edges
	5.5. The proof of Theorem 1 (prism)
	5.6. The proof of Theorem 2 (twisted prism)

	Acknowledgements
	References

