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ABSTRACT: Using a global version of the equivariant Chern character, we describe
an effective method for computing the complexified twisted equivariant K-theory of a
space with a compact Lie group action, in terms of fixed-point data. We apply this to
the case of a compact group acting on itself by conjugation, and relate the result to the
Verlinde algebra of the group, and to the Kac character formula. The Verlinde formula
for the dimension of the space of conformal blocks is also discussed in this context.

0. Introduction
Let X be a locally compact topological space acted upon by a compact Lie group G. The equivariant
K-theory K XG

∗ ( ) was defined by Atiyah and Segal; some foundational papers are [S] and [AS1].
Twisted versions of K-theory, both equivariant and not, have recently attracted some attention. The
equivariant twistings we consider are classified, up to isomorphism, by an equivariant cohomology
class 

  
( , ) ; ;ε τ ∈ ( ) × ( )H X H XG G

1 32� � . (A twisting is a representative cocycle for such a class, in some
model of equivariant cohomology). For torsion, non-equivariant twistings, the relevant K-theory was
first introduced in [DK]; subsequent treatments ([R] and, more recently, [BCMMS], [A]), remove
this torsion assumption. We recall, for convenience, the topologist’s definition. Because the projec-
tive unitary group �U has classifying space  K( ; )� 3 , a class τ ∈ H X3( )defines a principal �U-
bundle over X, up to isomorphism. To such a bundle we associate the Ad-bundle �X of Fredholm
operators. The negative τ K X( ) groups are the homotopy groups of the space of sections of 

  
�X ; the

others are determined by Bott periodicity. In the presence of a group action, the equivariant groups
arise similarly, from invariant sections. In this paper, we shall implicitly assume the basic topologi-
cal properties of twisted K-theory, whose justification is postponed to future work. Also, we confine
ourselves to H 3 twistings in the body of the paper; H 1 twistings are discussed in the Appendix.

One of the basic results [S] of the equivariant theory expresses, in terms of fixed-point data,
the localization of K XG

∗ ( ) at prime ideals in the representation ring RG of G. The situation simplifies
considerably after complexification, when the maximal ideals in RG are the conjugacy classes4 . Re-
call that, in the non-equivariant case, the Chern character maps complex K-theory isomorphically
onto complex cohomology; the localization results can be assembled into a description of complex
equivariant K-theory by a globalized Chern character ([AS2], [Ro]), supported over the entire
group. Part I of our paper generalizes these results to the twisted case: in §3, we discuss the twisted
Chern character, while the main result, Theorem 2.4, describes   

τ K XG
∗ ( ; )� in terms of (twisted)

equivariant cohomology of fixed-point sets, with coefficients in certain equivariantly flat complex
line bundles. (For orbifolds, this is Vafa’s discrete torsion [V], [VW]).

In Part II, we apply our main result to the G-space X G= , with G acting by conjugation. For
simplicity, we restrict most of the discussion to the case of connected groups with torsion-free π1.
(The nice property shared by such groups is that all centralizers of group elements are connected).
For non-singular twistings, the RG -module τ K XG

∗ ( ; )� is supported at finitely many conjugacy class-
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es in G (§4). Furthermore,   
τ K XG

∗ ( ; )� is an algebra under the Pontryagin product, and in §6 we shall
see that this conjugacy-class decomposition diagonalizes the product. For any compact group G, the
integral τ K GG ( ) is isomorphic to the Verlinde algebra of the theory of loop groups, at a certain level
related to the twisting τ (see [F1] for the announcement and [F2] for a more detailed discussion).
The proof will have wait for [FHT], but in §5, we give a canonical isomorphism between the com-
plexifications of these objects, in terms of the Kac character formula. Finally, it is known that the
Verlinde algebra encodes the dimensions of the spaces of “non-abelian θ-functions”, and in §7 we
incorporate this into the twisted K-theory framework.

Acknowledgments. We are indebted to G. Segal for helpful conversations. 

Part I. The twisted equivariant Chern character

1. The idea 
Twisted K-theory τ K XG

∗ ( ) is a module over the untwisted K XG
∗ ( ), and in particular over the ring

K RG G
0 ( )∗ = of virtual complex representations of G. (Integer coefficients are understood, unless oth-

ers are indicated). Similarly,  
τ τK X K XG G

∗ ∗= ⊗( ; ) ( ; )� � �� is a module over 
  
RG ⊗

�
� , henceforth

denoted �RG . The character identifies the latter with the ring of complex-valued algebraic class
functions on G, or algebraic class functions over the complexification 

  
G

�
. This is (by definition) the

ring of regular functions over the quotient variety 
  
Q G G: //= � � of geometric invariant theory. Its

points correspond to the semi-simple conjugacy classes in 
 
G

�
, and also to the G-orbits of normal 5

elements in G
�

. When G is connected, Q is also the quotient T W
�

of the complex maximal torus
by the Weyl group. Because Q is an affine variety, the  

τ K XG
∗ ( ; )� are spaces of global sections of

sheaves of �-modules   
τ
�

∗ ( )X , obtained by Zariski localization over Q (see e.g. Ch. II of [H]). The
sheaves are coherent, if   

τ K XG
∗ ( ; )� is a finite 

  
�RG -module; for instance, this is the case if X is a

finite, G-equivariant CW-complex. If so, the main theorem (2.4) identifies, via the Chern character,
the formal completions 

  
τ
�

0 1/ ( )X q
∧ of the stalks at a point q Q∈ with twisted equivariant cohomolo-

gies
  
τ τH X gZ g

even odd g
( )

/ ( ; ( ))� . Here, g is a normal group element associated to q, Z g G( ) ⊂ the unitary
part of its centralizer and Xg the fixed-point set in X of (the unitary part of) the algebraic subgroup
generated by g. The coefficients live in an equivariantly flat line bundle   

τ
�( )g (2.11), which varies

continuously with g. The only novelty is the twisting; in its absence, the τ
�( )g are trivial and the re-

sult is well-known. (For torsion twistings on orbifolds, a closely related result was independently ob-
tained in [LU]).

A detailed description of all these objects, for the group G = SU( )2 acting on itself by conju-
gation, is discussed in Example (2.5).

Passage from   
τ K XG

∗ ( ; )� to sections of   �∗ is a global version of the twisted Chern character

  
τ τ τch K X H XG G: ( ; ) ( ; )∗ ∗→� � (§3). Just as its untwisted version, this only sees the completion of K-
theory at the augmentation ideal; this is a consequence of the Atiyah-Segal completion theorem
[AS1]. The idea of “repairing” this problem by defining a global Chern character over G, while im-
plicit in [S] (Prop. 4.1) and perhaps folklore, was proposed explicitly in [BBM] (and carried out for
Abelian groups); [AS2] discussed finite groups, and a plethora of variations for compact groups fol-
lowed ([BG], [DV], [G], [Ro]). We reprove the theorem here in its cleanest, algebraic form, as a spe-
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cial case of our twisted result.
Before proceeding, we should clarify why a reduction to twisted equivariant cohomology is

helpful. Computation of the latter reduces to ordinary cohomology with coefficients in  
τ
�( )g via an

Atiyah-Hirzebruch spectral sequence (§3). Its analogue for twisted K-theory only yields the comple-
tion at the augmentation ideal: this is our completed stalk  

τ
�

∗ ∧( )X 1 at the identity6, which is only
part of the answer, and can vanish in interesting cases, such as τ K GG ( ) for semi-simple G. In this re-
spect, equivariant τ K -theory for compact G can behave like the (untwisted) equivariant theory for a
finite group, and the   τ � ∗ -sheaves can be skyscrapers supported at finitely many conjugacy classes.

One may ask whether our description of the completions determines τ KG
∗ . In the sky-scraper

case, the picture is completely satisfactory. In general, the functor taking a coherent sheaf to the pro-
duct of its formally completed stalks is exact and fully faithful, but it takes some benevolence to de-
clare τ KG

∗ known. A better approach to that problem proceeds via reduction to homogeneous spaces,
leading to G-equivariant coherent sheaves 	h X0 1, ( ) on G

�
, whose invariant direct images to Q are

the   �
0 1, ( )X . This is prettier in two respects. First, 	h is “less singular” than �; for instance, when

X is a point, the twisting defines a central extension of G by the circle group 
, and the sheaf  	h0 is
the associated line bundle; whereas   �0 is a torsion-free sheaf of rank one, which can be singular
where Q is so. Second, when suitably defined7, the derived fibers 	h X g

0 1, ( ) are naturally isomorphic
to the K-theories of the fixed-point set Xg with   

τ
�( )g coefficients, whereas the derived fibers of the

  �
∗ yield only the Z g( ) -invariant parts of the same. (The case of finite groups provides a good illus-

tration for this phenomenon: compare the formulations (2.1) and (2.2) below). Sadly, no immediate
applications of this refined picture are known to us, which is why we refrain from including it here.

2. The main result
We assume that X is a finite CW-complex with G-action, in which case the definition of K-theory is
uncontroversial. The main result (2.4) generalizes to other G-spaces, but may require a slight adjust-
ment, depending on which version of K-theory is used; for instance, τ K X RG R G gG

∗ ∧⊗( ; ) ( )� �� must
appear in lieu of the completion, if proper supports are used. Recall first the result for a finite group.

(2.1) Theorem ([AS2]). For finite G, 
 
K X K XG g G

g G∗
∈( ) ≅ ( )[ ]⊕; ;� � .

Here, G acts on the sum by conjugating the labels, and on X by translation. The right-hand side can
be rewritten as a sum over the conjugacy classes q of G, with representatives g q( ) :

(2.2) K X K XG q
g q Z g q∗ ( )≅ ( )⊕; ;( ) ( ( ))

� � .

The isomorphism (2.1) extends the complex-linear identification of representations with class func-
tions by the character. Namely, for each g G∈ , the restriction to Xg of a G-vector bundle V on X
splits into eigen-bundles V ( )α under the fibrewise g-action, and (2.1) sends V to the complex linear
combination  α α⋅∑ V ( ) . More abstractly, let g G⊂ be the subgroup generated by g; a class in
K XG

∗ ( ) restricts to one in K X R K Xg
g

g
g∗ ∗≅ ⊗( ) ( ), and taking the trace of g on the first factor pro-

duces a Z g( )-invariant element in   K Xg∗ ( ; )� . 
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Applying the Chern character gives two versions of the equivariant Chern isomorphisms:

(2.3)

  

ch K X H X

ch K X H X

G g G
even odd g G

G q Z g q
even odd g q

: ; ; ,

: ; ; .

, ~ /

, ~
( ( ))

/ ( )

0 1

0 1

� �

� �

( )  → ( )[ ]
( )  → ( )

∈⊕
⊕

To describe their twisted analogues for arbitrary compact groups, we fix some notation. Since
we take the algebraic route, we must discuss the complex group 

  
G

�
, even though all information

will be contained in the unitary part G. Let g G∈
�

be a normal element, generating an algebraic
subgroup 

  
g G

� �⊂ , with centralizer   Z�. Normality of g ensures that these subgroups are the com-
plexifications of their intersections g and Z Z g= ( ) with G, that g is topologically cyclic, and
that Z is its commutant in G. (This follows easily from the fact that normal elements are precisely
those contained in the complexification of a quasi-torus in G, a subgroup meeting all components of
G, whose neutral component is a maximal torus). As before, call X Xg ⊂ the g -fixed point set and
τ K XG g

∗ ∧( ; )� the formal completion of twisted K-theory at the conjugacy class of g. Recall that the

  
�RG -modules τ K XG

∗ ( );� are the spaces of sections of sheaves τ �
∗ ( )X over    Q G G= � �// ; the com-

pletions of their stalks at g are the τ K XG g
∗ ∧( ; )� . The following theorem generalizes the second iso-

morphism in (2.3), and the remainder of the section is devoted to its proof.

(2.4) Theorem. The formal completions τ K XG g
0 1, ( ; )�

∧ are isomorphic to the twisted cohomologies
τ τH X gZ g

even odd g
( )

, ; ( )�( ) , with coefficients in the flat line bundle  
τ
�( )g of (2.11).

(2.5) Example. Let G = SU( )2 , acting on X = SU( )2 by conjugation. Then,   G� �= SL( ; )2 , and Q
may be identified with the affine line, with coordinate q, as follows: the conjugacy class of the ma-
trix g = −diag( , )λ λ 1 corresponds to the point q = + −λ λ 1, for  λ ∈ ×

� . These matrices form a com-
plexified maximal torus   T� , and the Weyl group S2 interchanges λ and λ−1. The closed interval
[ , ]−2 2 is the image of SU( )2 in Q. The unitary centralizer Z g( ) is the maximal torus T, unless
q = ±2 , in which case it is the entire group G. The algebraic group g G

� �⊆ generated by g is  T� ,
and its unitary part g equals T, unless λ is a root of unity, in which case g g=

�
is the finite

cyclic group generated by g. The fixed-point set X Tg = , unless λ = ±1, in which case X Gg = . The
twistings are classified by H GG

3 ( ) ≅ � ; we focus on the case τ ≠ 0. If g I≠ ± , the flat line bundle

  
τ
�( )g over T has holonomy λ τ2 (see §4); so the cohomology in (2.4) is nil, unless λ τ2 1= . At

λ π τk k i= exp( ) ( k = −1 1, ,K τ ), the line bundle is trivial, but the differential which computes the
twisted cohomologies in (2.4) is non-trivial, and is described as follows (cf. 3.4.iii). We can write

  H TT
∗ ≅( ; )� H BT H T∗ ∗⊗ ≅( ; ) ( ; )� �  �[[ , ]]u θ θ2 , where u is the coordinate on the Lie algebra of T

(so λ λ= k uexp( ) is a local coordinate on T); the twisted cohomology group is then identified with
the cohomology of the differential 2τ θu , and is one-dimensional. On the other hand, at g I= ± ,

  
τ
�( )g is trivial, but now   H GG

∗ ( ; )� is identified with the subring of Weyl invariants in   H TT
∗ ( ; )� ,

which is   �[[ , ]] ( )u u u2 2θ θ ; the twisting differential 2τ θu has zero cohomology, so there is no con-
tribution from those points if τ ≠ 0. All in all, we obtain  

τ K GG
0 0( ; )� = ,  

τ τK GG
1 1( ; )� �= − , supported

at the points qk k k= + −λ λ 1. (When τ = 0, a similar discussion shows that �0 1, are both locally free of
rank one over Q; for a generalization of this result, see [BZ]).

Proof of (2.4). We start with a point X = ∗ , when τ KG
0 ( )∗ is the module, also denoted τ RG , of τ-
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projective representations. More precisely, the class 
  
τ ∈ ∗( )HG

3 ;� defines an isomorphism class of
central extensions of G by the circle group 
. Fixing such an extension G̃ — which can be viewed
as a cocycle representative for τ — allows one to define the abelian group of those virtual  represen-
tations of G̃ on which the central 
 acts naturally. This is the topologist’s definition8 of τ KG

0 ( )∗ ; it is
evidently an RG -module under tensor product. The complexification of G̃ defines an algebraic line
bundle   

τ
	h0 over 

  
G

�
, carrying a natural lifting of the conjugation action. Its fibers are the lines

  
τ
�( )g over X = ∗ . Its invariant direct image to Q is a torsion-free sheaf   τ �

0 ; this need not be a line
bundle, because the centralizers may act non-trivially on some fibres. Characters of τ -projective rep-
resentations are invariant sections of   

τ
	h0, and examining class functions on G̃ shows that the com-

plexification   
τ KG

∗ ∗( ; )� gets identified, in this way, with the space of invariant sections of   
τ
	h0

(which is also the space of sections of  
τ
�

0). This completes the proof for a point.  

(2.6) Proposition. The restriction 
  

τ τK X K XG g Z
g

g
∗ ∧ ∗ ∧( ) →; ;( )� � is an isomorphism.

(2.7) Remark. This is closely related to Prop. 4.1 of [S], but is not quite equivalent to it. As the proof
below shows, our proposition still holds if étale localisation (Henselisation) at g is used, instead of
completion, but it usually fails for the usual (Zariski) localisation, even when X is a point: the frac-
tion field of T is not equal to that of Q, which is the Weyl-invariant subfield.

Proof. Consider first the case when X is a point and τ = 0 . We are then asserting that the completed
ring ( )�RG g

∧ of class functions is isomorphic, under restriction from G to Z, to ( )�RZ g
∧ . This is true

because 
  
Z

�
is a local (étale) slice at g for the adjoint action of 

  
G

�
. For general τ, the sheaf τ

	h0 on
Z

�
is the restriction of its G-counterpart, so the two direct images τ

�
0 on Q, coming from G

�
and

from 
  
Z

�
, agree near g.

To extend the result to a general X, it suffices, by a standard argument, to settle the case of a
homogeneous space. In that case, τ τK G H KG H

∗ ∗( ) = ∗( ). The conjugacy class of g in G
�

meets H
�

in a finite number of classes, for which we can choose normal representatives h k gki i i= −1 , with
k Gi ∈ , and get a natural isomorphism

(2.8) τ τ τ
K G H K KG g i H h i k Hk gi i i

∗ ∧ ∗ ∧ ∗ ∧( ) ≅ ∗( ) ≅ ∗( )⊕ ⊕ −; ; ;� � �1 .

A coset kH G H∈ is invariant under g -translation iff k g k H− ∈1 . This holds precisely when

  k gk H− ∈1
� ; thus, k gk hh hi

− −=1 1, for some   h H∈ � and a unique i. As k gk−1 and hi are both nor-
mal, we can assume h H∈ . As khk Zi

− ∈1
�, and k Z k Hi∈ , for a unique i. The fixed-point set of g

on G H is then the disjoint union over i of the subsets Z k Hi . These are isomorphic, as Z-varieties,
to the homogeneous spaces Z Z k Hki i∩ −1 . From here,

(2.9) τ τ
K G H KZ

g
i Z k Hki i

∗
∩

∗( ) ≅ ∗( )⊕ −( ) 1 ,

and, as Z k Hki i∩ −1 is the centralizer of g in k Hki i
−1, equality of right-hand sides in (2.8) and (2.9),

after completion at g, follows from the known case when X is a point. �

We will now identify the completions in terms of cohomology. Let Y (soon to be Xg) be a Z-
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space on which g acts trivially. Because g is topologically cyclic, H g
3 0∗( ) = , so τ ∈ ( )H YZ

3

defines, in the Leray sequence H H Y H YZ g
p

g
q

Z
p q( ( )) ( )⇒ + , a class 

(2.10)
  
gr Homτ( ) ∈ ∗( ) = ( ) ×( )H Y H H Y gZ g g

Z g1 2
1; ( ) ;
 .

(2.11) Definition. The Z g -equivariant flat complex line bundle τ
�( )g over Y is defined, up to iso-

morphism, by evaluating the complexification of the homomorphism (2.10) at g.

(2.12) Construction. We can describe   
τ
�( )g on the nose in the following two equivalent ways, after

choosing a cocycle representing τ. The cocycle takes the form of a projective Hilbert space bundle

  
�Y over Y, with a projective-linear lifting of the Z-action. Over every point of Y, a central extension
of the group g by the circle is defined from the action of  g Z⊂ on the fibers of 

  
�Y .

(i) The structural bundle of  
τ
�( )g is the bundle of central  �

× ’s of the complexified extensions over
Y g× { } . Flatness is seen as follows. Since g is topologically cyclic, the extensions are trivial, but
not canonically split. Two splittings differ by a homomorphism 

 
g

�
�→ × , and the latter form a dis-

crete set. Following a splitting around a closed loop defines such a homomorphism, and its value at
g gives the holonomy of   

τ
�( )g around the loop. 

(ii) The 1-dimensional characters of the centrally extended g ’s which restrict naturally to the cen-
ters form a principal bundle p H Y: → with fibre H B g2( ) , equivariant under Z g . The isomor-
phism class of H is gr( )τ in (2.10). Evaluation at g defines a homomorphism H B g2( ) → ×

� ;
thereunder, the line bundle τ

�( )g is associated to H. 

(2.13) Remark. Note, in (ii), that the pull-back 
 
� �H Yp:= ∗ to H has a global g-eigenspace decompo-

sition: that is, we can define global sub-bundles labeled by the characters of g , which split the
Hilbert spaces associated to the fibres of 

  
�H . The twisted K-groups defined by any non-empty sub-

bundle are naturally isomorphic to those defined by 
  
�H . The inclusion of the 1-eigenbundle

′ ⊂� �H H , on which the g -action is trivial, is a cocycle-level refinement of the fact that the class
p H HZ

∗ ∈τ 3 ( ) comes from a naturally defined ′τ in H HZ g
3 ( ). (We can ensure non-emptiness of the

eigenbundle by arranging that the linear spaces associated to the fibres of 
  
�Y contain all characters

of g ).  

Before completing the proof, we indicate a heuristic argument which illuminates the appear-
ance of the flat line bundles. Translation by g on conjugacy classes defines an automorphism Tg of
the algebra   �RZ ; this sends an irreducible representation V of Z, on which g must act as a scalar ξ, to
ξ ⋅V . We can lift Tg to an intertwining automorphism of the module   K YZ

∗ ( ; )� , by decomposing vec-
tor bundles and taking linear combinations in the same way. We would like to assert the following
twisted analogue of this.

“Proposition”. Tg lifts to an intertwining   �RZ -module isomorphism 
  

τ τ τK Y K Y gZ Z
∗ ∗( ) ≅ ( ); ; ( )� � .

This would identify the completion of  
τ K YZ

∗ ( ; )� at g with that of 
  

τ τK Y gZ
∗ ( ); ( )� at 1, leading, via the

Atiyah-Segal completion theorem, to the equivariant cohomology in Thm. (2.4). The map from left
to right should send a cocycle V to the complex linear combination  α α⋅∑ V ( ) , defined from its
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eigenspace  decomposition under g. This time, however, g acts projectively, so the eigenvalues α
are sections of a   �× -torsor, rather than complex functions on Y; so the output would be a “K-cocycle
with values in  

τ
�( )g .”

Unfortunately, no sensible general definition of equivariant K-theory with coefficients in flat
line bundles seems to exist, and the “Proposition” is, at best, a definition. This is of no help in the
proof of (2.4), so we must work around it. The following lemma gives the rigorous implementation
of this eigenspace decomposition, with integer coefficients. Recall the twisting  ′τ defined in (2.13). 

(2.14) Lemma. The composition  
′ ∗ ′ ∗ ∗( ) → ( )  → ( )∗τ τ τK H K H K YZ g cpt Z cpt

p
Z is an isomorphism

(where the subscript indicates that the K-theory has compact vertical supports).

Proof. The maps can be defined on K-cocycles. Functoriality of all the constructions allows us, by
standard arguments, to reduce the question to the case when Y is a homogeneous Z-space, or equiva-
lently (after replacing Z by the isotropy subgroup) to the case when Y is a point. The lemma then
says  

τ τR K HZ Z g= ′ 0 ( ); but, in view of our definition of ′τ , that simply expresses the decomposition
of τ-projective Z-representations according to the projective character of the central element g. �

Remark. A similar argument shows that the inverse map is the g-invariant part of  p
∗ .

We now complete the �RZ -modules in (2.14) at g, in two stages. Combining the completion
theorem [AS1] with the twisted Chern character of §3 shows that tensoring with the completion of
�RZ along the subvariety g Z Z

� � �⊂ // converts the left-hand side into ′ ∗τ H HZ g cpt( ; )� . Now,
completion at g can be performed fibrewise, with respect to the projection p H Y: → . After identify-
ing 

  
( )�R g g

∧ with H B g∗ ( ; )� , this leads to    
′ ∗ ∗⊗τ τH Y g H B gZ g ( ; ( ) ( ))� . But the last space is iso-

morphic to τ τH Y gZ
∗ ( ; ( ))� ; this is clear, for instance, in the Cartan model for equivariant cohomolo-

gy. All in all, we have established the following natural isomorphism.

(2.15) Proposition. τ τ τK X H X gZ
g

g Z
g∗ ∧ ∗≅ ( )( ; ) ; ( )� � . �

Propositions (2.6) and (2.15) together imply theorem (2.4).

3. Twisted cohomology with complex coefficients
We now review the cohomological analogue of twisted K-theory. Let ( , )•A d be a commutative dif-
ferential graded algebra model for the complex cocycles on the space X, with product denoted “∧ ”.
This can be de Rham’s complex, if X is a manifold. Let  τ ∈ H X3( ; )� be a complex twisting, and
choose a cocycle η ∈ A3 representing τ. We shall complete the cohomology ring with respect to its
natural grading, so that, for instance, Aeven is the direct product of the A n2 , and not the sum. This is
only relevant when X is an infinite CW-complex (such as the classifying space BG of a compact
group); if so, we must take care to define complex cohomology and K-theory of X as the limits over
the finite subcomplexes of X; that is, we complexify the coefficients before computing cohomology. 

(3.1) Definition. The τ-twisted cohomologies τ H X∗ ( );� are the cohomology spaces of the complex
A d• (( )),β β η+ ⋅ ∧( ), where the formal variable β has degree (-2).

The complex in (3.1) is a differential graded module over ( , )•A d , which makes τ H X∗ ( );� into a
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graded module over the ordinary cohomology ring. For any ω ∈ A2 , multiplication by e−βω

identifies the cohomologies of d + ⋅ ∧β η and d d+ ⋅ + ∧β η ω( ) , which shows that, up to non-
canonical automorphism,   

τ H X∗ ( ; )� depends on τ alone and not on η; the automorphisms come
from the multiplicative action of exponentials of classes in  H X2( ; )� .

(3.2) Proposition. There exists a spectral sequence with 
 
E H Xp q p

2
, ;= ( )� for even q, vanishing for

odd q, with δ2 0= and δ τ3 = ∧ , converging weakly to 
 

τ H Xp q+ ( );� . It converges completely, if
H X•( ) is finite-dimensional in each degree.

We recall that “weak convergence” means that E H∞
∗= gr for an induced filtration on  H ∗ , under

which the latter is complete; strong convergence means that H ∗ is Hausdorff; see [Mc], Ch. 3. 

Proof. The filtration on A• (( ))β by the powers of β1 2 is complete and Hausdorff; this leads to a
weakly convergent spectral sequence. Complete convergence follows, under our finiteness assump-
tion, from the Mittag-Leffler conditions. �

(3.3) Remarks. (i) Additional twistings, by a flat line bundle on X, can be used; the same line bundle
will appear in the cohomology coefficients, in (3.2).
(ii) When a compact group G acts on X and τ ∈ H XG

3 ( ; )� , we define τ H XG
∗ ( ; )� to be the twisted

cohomology of the Borel construction (homotopy quotient) EG XG× .

(3.4) Examples. (i) Assume that τ is a free generator of H X∗ ( ; )� : that is, the latter is isomorphic to
R[ ]τ , for some graded ring R. Then, τ H X∗ =( ; )� 0. Indeed, E4 0= in (3.2). 
(ii) For an example of (i), take X to be a compact connected Lie group G, and a τ which is non-trivial
on π3( )G . More relevant to us, with the same assumptions, is the homotopy quotient G G for the
adjoint action; the equivariant cohomology  H GG

∗ ( ; )� breaks up as  H BG H G∗ ∗⊗( ; ) ( ; )� � . 
(iii) Take X T= , a torus, G T= acting trivially on X, and let τ ∈ ⊗ ⊂H BT H T H TT

2 1 3
( � � �; ) ( ; ) ( ; )

be defined by a non-degenerate bilinear form on the Lie algebra t of T. Then,   
τH TT

∗ =( ; )� � , in de-
gree  ∗ = dimT (mod 2). More precisely,    

τH T H T∗ ∗≅( ; ) ( ; )� � (canonically, if τ factored as a cocy-
cle), and the restriction    

τ H T H TT
∗ ∗→( ; ) ( ; )� � lands in top degree. This time, the E3 term in (3.2) is a

(sum of copies of the) Koszul complex Λt t
∗ ∗⊗ S , with differential τ∧ . 

(3.5) Proposition. There exists a natural twisted Chern character   
τ τ τch K X H X: ; ;∗ ∗( )→ ( )� � , which

is a module isomorphism over the Chern isomorphism 
 
ch K X H X: ; ;∗ ∗( ) → ( )� � .

Proof. In the classifying space interpretations BU( )1 and BU( )∞ of the projective unitary group   �U
and the space �0 of Fredholm operators of index 0, the Ad-action classifies the tensor product of the
universal line bundle Det with the universal vector bundle. The Chern character identifies the ratio-
nal homotopy type   � �

0 ⊗ with the product of Eilenberg-MacLane spaces K n( ; )� 2 ( n > 0), and the
Ad-action becomes   ω ϕ ω ϕ⊗ ∧a exp( ) , where ω is a 2-cocycle and ϕ an even one. Recall that the
(negative) τ K ∗ are the homotopy groups of the space Γ( ; )X X�

0 of sections of a Fredholm Ad-bundle

  �X
0 classified by τ ; morally, the term βη ∧ in the twisted differential (3.1) is the connection form on

the bundle of coefficients   � �X
0 ⊗ over X. This is made precise in the differential graded Lie algebra

(DGLA) model for the rational homotopy type Γ( ; )X X� �
0 ⊗ . 

Because the action of   �U on  �
0 fixes the identity, its rational homotopy type is captured by
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a split extension, in the category DGLAs,

(3.6)   0 00
3→ ⊗ → → ⊗ →π π• • ( )� � � �E B U ,

which represents the fibre bundle   � �X
0 ⊗ in the universal case when  X K= ( ; )� 3 ,  τ = ∈1 3H X( ; )� .

An obvious homotopical invariant in (3.6) is the bracket b m m: ( ( (π π π2 2
0

2 2
0

� � �U) ) )⊗ → + . It is in-
duced by a homotopical realization of the map   “Ad Id U− × →”:� � �

0 0 . On classifying bundles, the
relevant map is tensoring with ( )Det −1 , which restricts to the Thom class on any generating sphere
in   �U. Thus, restricted to the generator of  π2(�U), b is the Bott periodicity isomorphism β.

In view of this bracket, the obvious candidate for E• (but not the only one) is the semi-direct
sum   π π3

0( ) ( )•B� �U ⊕ with bracket b. Pulling back to arbitrary X would imply (using Sullivan’s
determination of the rational homotopy of a space of sections) that   Γ( ; )X X� �

0 ⊗ was represented by
the positive homology degree part of the abelian DGLA  A X• •( ) ⊗ π �

0 , with differential d + ⋅ ∧β η
(where we have set  A Ak

k:= − ). As the Chern character converts the Bott isomorphism into the self-
identifications of the K n( ; )� 2 , it follows that the homotopy groups of the resulting candidate for
Γ( ; )X X� �

0 ⊗ are isomorphic to the negative cohomology degree groups of (3.1), under ch. 
Thus, proposition (3.5) reduces to the statement that the obvious candidate for (3.6) is the

correct one. In fact, the semi-direct sum describes the only action of    � �U⊗ on   � �
0 ⊗ compatible

with b, which preserves the addition (loop space) structure on  � �
0 ⊗ , as our action must do. In-

deed, such actions are classified by maps from K( ; )� 3 to  BAut( )� �
0 ⊗ up to homotopy; or again,

by π3 of the latter, which is also π2
0 0Map( , )B B� � � �⊗ ⊗ . But an element in last group is defined

precisely by a collection of maps π π2 2 2m m( (� �) )→ + , and these are the ones detected by bracket-
ing with the generator of   π2( )�U . �

(3.7) Remark. Another, more elegant proof of (3.5) follows from the existence, outlined in [F2], of a
cocycle-level twisted Chern character from τ K -cocycles to differential forms, which specializes to
the usual one, when the twisting can be trivialized. There results a functorial homomorphism be-
tween the theories, which is an isomorphism over small enough sets (where τ is trivial); the Mayer-
Vietoris principle implies that it is a global isomorphism. 

Part II. A special case: computation of τ K GG
∗ ( );�

4. Reduction to the maximal torus
Let τ ∈ H GG

3 ( ) be an integral class which restricts trivially to H T3( ) , the maximal torus. Call τ non-
singular when its restriction to H TT

3( ) , viewed as a linear map H BT H T2
1( ) ( )→ , has full rank; we

shall assume this to be so. The last map defines, after tensoring with 
, an isogeny λ:T T→ ∨ to the
dual torus  T ∨ . The kernel of λ is a finite subgroup F T⊂ . Interpreting points in T ∨ as isomorphism
classes of flat line bundles on T, we observe the following.

(4.1) Proposition. The flat line bundle   
τ
�( )t over T, associated to τ in (2.11), is λ ( )t . �

Using Theorem (2.4), this suffices to determine   
τ K GG

∗ ( );� in some important special cases.

(4.2) Theorem. (i) For the trivial action of T on itself, τ� ∗ ( )T is a sky-scraper sheaf with one-
dimensional stalks supported at the points of F, in dimension dimT mod 2.
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(ii) Let G be connected, with π1 G( ) torsion-free. For the conjugation action of G on itself,   
τ
�

∗ ( )G
is a skyscraper sheaf on 

 
Q T W= � with 1-dimensional stalks, in dimension d G= dim mod 2, sup-

ported at the regular Weyl orbits in F.

Proof. This follows from Examples (3.4.ii) and (iii), together with part (i) of the following. �

(4.3) Lemma. Let G be connected.
(i) If π1 G( ) is torsion-free, the centralizer of any element is connected.
(ii) In general, for any g G∈ , π0Z g( ) is naturally a subgroup of π1( )G . 
(iii) If g is regular, π0Z g( ) is a subgroup of the Weyl group of G, natural up to conjugation.

Proof. (i) The short exact sequence 0 01 1 1→ ′ → → →π π π( ) ( ) ( )G G Gab , where ′ =G G G: [ , ] is the
commutator subgroup and Gab the abelianization of G, shows that the torsion subgroup of π1( )G is

 π1( )′G ; hence,  ′G is simply connected. The neutral component Z 0 of the center of G surjects onto
the quotient Gab , because the two Lie algebras are isomorphic and Gab is connected; so G G Z= ′ 0 .
Translating by Z 0 shows that it suffices to check the assertion for ′G ; but this is a result of [Bo].
(ii) Write G G= ˜ π, where the central subgroup π in the covering group G̃ is isomorphic to the tor-
sion subgroup of π1( )G , and π1( ˜ )G is torsion-free. The Z g( ) -conjugate of a lifting g̃ of g is another
lift of g, and this defines a homomorphism from Z g Z g( ) ( )0 to π. If zgz g˜ ˜− =1 , then z lifts to an ele-
ment of the centralizer of g̃ in G̃; but the latter is connected, by (i), so z must lie in Z g( )0, and our
homomorphism is injective.
(iii) Clearly, Z g( ) must normalize the unique maximal torus containing g, so Z g Z g( ) ( )0 embeds
into the normalizer of that torus, which is the Weyl group, up to conjugation. �

(4.4) Remark. There always exists a regular conjugacy class whose fundamental group (which is π0

of the centralizer) is the full torsion subgroup of π1( )G . When G is simple, such a point is exp( )ρ c ,
where ρ is the half-sum of the positive roots, c the dual Coxeter number of g, and t is identified with

   t ∗ via the basic inner product, which matches the long roots with the short coroots. In general, the
product of the corresponding points in the simple factors of G has this property.

As in the case of torsion-free π1, singular conjugacy classes do not contribute to τ K GG ( ; )�

(the relevant twisted cohomology vanishes when the centralizer contains an SU2). The contribution
at a regular point f T∈ is the space of invariants under Z Z f: ( )= in    

τ τH Z fT
∗ ( ; ( ))� . Each compo-

nent Z w of Z (labeled by a Weyl group element, as in 4.3.iii) is now a torus, and contributes to coho-
mology only if   

τ
�( )f has trivial holonomy. If τ is non-singular, this will happen at isolated points f.

If so, the generator of    
τ τH Z fT

w∗ ( ; ( ))� is then the fibre of  
τ
�( )f tensored with the volume form on

Z Tw (which is also the one on the invariant subspace tw ). All in all, we get one line from Z w

when   
τ
�( )f is isomorphic to   det( )t

w , as a Z-equivariant line bundle over Z w , and zero otherwise.
So τ

�
∗ ( )G is still a sum of sky-scraper sheaves, but it is difficult to give a clean, explicit general ex-

pression for the dimensions of its stalks. Instead, a direct relation to the representations of the loop
group of G can be given in terms of the Kac character formula, whose numerator is a distribution
supported at distinguished conjugacy classes in a subgroup of LG isomorphic to Z. However, as the
necessary general results do not seem to appear in the literature in the precise form we need, we
shall confine the discussion in the next section, to the case when π1 has no torsion (when Z T= ).
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5. The Kac numerator and the τ K -class of an LG -representation 
Our description of   

τ K GG
∗ ( );� leads to a concrete, if intriguing, isomorphism with the complexified

space of positive energy representations (PERs) of the loop group LG at a certain shifted level,
which relates τ K -classes to distributional characters. The discussion that follows is quite crude, as it
ignores the energy action on representations, so that we only see the value of the Kac numerator at

 q =1; detecting the q-powers requires the 
-equivariant version of  
τ K GG

∗ ( ), which will be treated
elsewhere.

The representations that concern us are projective, and the relevant central extensions of LG
by 
 turn out to be classified by their topological level in H GG

3 ( ), arising form the connecting homo-
morphism ∂ in the exponential sequence for group cohomology with smooth coefficients,

(5.1) H H H HLG LG LG LG
2 2 3 3( ) ( ) ( ) ( )� 
 � �→  → →∂ ,

and the identification, for connected G, of  HLG
3 (�) with H GG

3 ( ). (For connected G, BLG LBG= ,
and the latter is the homotopy quotient G G under the adjoint action). When G is semi-simple, the
outer terms vanish ([PS], Ch. 14) and the topological level completely determines the extension. For
any G, the levels that are relevant to us restrict trivially to H T3( ) ; their restriction to H TT

3( ) define
Weyl-invariant, integral bilinear forms on the integer lattice of T. From a bilinear form B, an exten-
sion of the Lie algebra   Lg is defined by the 2-cocycle    ( , ) ( , )ξ η ξ ηa Resz B d dz=0 , and the remain-
ing information about the group extension is contained in the torsion part of the level.

A distinguished topological level, the adjoint shift σ, is the pull-back under the adjoint repre-
sentation Ad SO: ( )G→ g of the element ( , )11 in HSO SO3 2( ) = ⊕� � . (The splitting comes from the
inclusion of the identity in SO; the free summand has a distinguished positive direction, for which
the associated bilinear form B is positive definite; the non-trivial torsion element is the integral lift
W H e3 ∈ SO

3 ( ) of the third Stiefel-Whitney class.) When G is simple and simply connected, H GG
3 ( ) ≅

   H BG4 ( ) ≅ � and  σ = c , the dual Coxeter number.
There is also a component   ′ ∈σ H GG

1 2( ; )� of the adjoint shift, pulled back by Ad from the
non-trivial element of   HSO SO; 21 2( )� �= . On the loop group side, this is a homomorphism from
LG to � 2 (or grading, cf. Appendix A). The presence of this grading means that the “usual” Ver-
linde algebra is really a ′σ τ, K -theory, as in Appendix A; the τ K -theory, on the other hand, corre-
sponds to a graded version of the Verlinde algebra, built from the ′σ –graded representations of the
loop group (see the definitions A.1 of the modules of graded representations of a graded group). 

(5.2) Remark. The adjoint shift  is best understood in terms of the positive energy spinors on   Lg .
The central extension σ of the loop group arises by pulling back the Spin representation of LSO( )g ;
similarly, the grading is pulled back from the Clifford algebra on   Lg . Without unduly labouring this
point here, we mention that the truly canonical loop group counterpart of τ K GG

∗ ( ) is not the Verlinde
algebra, but the K-group of graded, τ-projective PERs of the crossed product  LG L� gCliff( ) . The
adjoint and dimension shifts arise when relating the latter to PERs of the loop group, by factoring
out the Spin representation. 

(5.3) Remark. When π1( )G has no torsion, the only truly conspicuous part of the adjoint shift is the
dual Coxeter number. Indeed, Ad∗ =( )W3 0; further, if τ is non-singular (which we always assume),
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we do not err too much by ignoring the H 1-component ′σ , in the following sense. It turns out that
all PER’s of the loop group can be ′σ -graded, so the usual and the ′σ -graded Verlinde algebras are
isomorphic (though some sign choices are involved in an isomorphism). See also Remark (5.5). The
last statement usually fails when π1 has torsion, e.g. for G = SO( )3 .

By definition, positive energy representations of LG carry an intertwining energy action of
the circle group of rotations of the loop, with spectrum bounded below. Denoting the energy variable
by q, irreducible PERs admit formal characters in R qG (( )) . We focus on the case when π1( )G has
no torsion; on the loop group side, this ensures that representations are determined by their (q–)re-
striction to T. The corresponding topological fact is the injectivity of the restriction morphism9

 
τ τK G K TG

d
T
d( ) ( )→ . The restriction to T of the formal character of the irreducible PER of level χ and

zero-energy space of highest weight  λ ∈ ∗
t is given by the Kac formula:

(5.4)

  

( ) exp( )

exp( ) exp( ) exp( )

( ) ( , ) ( , )

( )

;

− ⋅

− −( )⋅ −( )

− + +

∈ ⋅ +

> >

∑

∏ ∏

1

2 2 1
0 0

l µ β µ µ β λ ρ λ ρ

µ λ ρ

α α

µ

α α α

q

q

W

n
n

aff ,

where β is the bilinear form on    t ∗ associated to the level τ χ σ= + , α ranges over the roots of g and
µ over the affine Weyl orbit of  λ ρ+ ;   l( )µ is the length of the affine Weyl element w taking µ to

 λ ρ+ . The Kac denominator in (5.4) is the formal super-character of the spinors on   Lg t . 

(5.5) Remark. Two subtleties are concealed in (5.4). First, the character is not a function, but a sec-
tion of the line bundle �( )χ over LG , associated to the central extension at level χ. Similarly, the
numerator is the section of �( )τ . These central extensions are of course trivial over  T, but not
canonically so; and the weights λ, ρ and µ of T are projective weights, of levels χ, σ and τ, respec-
tively. Second, in the presence of an H 1 component ′σ of the adjoint shift, the formula (5.4) gives
the super-character of a graded PER; the usual character is obtained by modifying the signs in the
numerator of (5.4) by the sign representationof the affine Weyl group defined by ′σ .

The following is obvious by inspection.

(5.6) Proposition. The numerator in (5.4), at  q =1, is a distribution on T; more precisely, a Weyl
anti-invariant linear combination of δ-sections of   �( )τ , based at the regular points of F. �

There results an obvious isomorphism between    
τ K GG

d ;�( ) and the complex span of irreducible
PERs at level χ: the “value” of our K-class at any f F∈ reg gives the coefficient of the δ-function
based there. To read off this value, we identify τ K GG

d
f;�( )∧ with  

τ τH T fT
∗ ( ; ( ))� , as in §4, restrict to

  
τ τH T ftop( ; ( ))� and integrate over T; the answer takes values in the fibre of �( )τ over f. The last in-
tegration step also accounts for the Weyl anti-invariance of the answer.

6. The Pontryagin product on τ K GG
∗ ( ) by localization

We now define and compute the Pontryagin product on   
τ K GG

∗ ( ; )� , under the simplifying assump-
tion that G is connected and π1( )G is torsion-free. There is a good a priori reason (6.3) why the an-
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swer is a quotient of 
  
�RG , but we shall make the homomorphism explicit by localization, and recov-

er a well-known description (6.4) of the complex Verlinde algebra. 
In the notation of §4, comparing the sequence 1 10→ → → ′ →Z G GAd( ) with the sequence of

§4 leads to a rational splitting of H GG
3 ( ),

(6.1) H G H G H G H BG H GG G
ab ab ab3 3 3 2 1( ) ( ) ( ) ( ) ( )⊗ = ′ ⊕ ⊕ ⊗[ ]⊗′� � .

If our twisting τ vanishes in H T3( ) , then its middle component is null. In this case, τ is equivariant-
ly primitive under the multiplication map  m G G G: × → , meaning that m ∗ =τ τ τ( , ), the latter denot-
ing the restriction to  H G GG

3 ( )× of    τ τ� �1 1+ in  H G GG G× ×3 ( ) . A priori, this holds only rationally,
but the absence of torsion in H GG

3 ( ) shows that equality holds over �. Using the Künneth and re-
striction maps  

τ τ τ τ τ τK G K G K G G K G GG G G G G
∗ ∗

×
∗ ∗⊗ → × → ×( ) ( ) ( ) ( )( , ) ( , ) , we define the Pontryagin (con-

volution) product on  
τ K GG

∗ ( ) as the push-forward along m: 

(6.2) m K G K G K GG G G!: ( ) ( ) ( )τ τ τ∗ ∗ ∗⊗ → .

The absence of torsion in H 3 implies the vanishing of the Stiefel-Whitney obstruction W3 to Spinc-
orientability, ensuring that m! can be defined. However, choices are involved when π1 0( )G ≠ , and
the map (6.2) is only defined up to tensoring with a 1-dimensional character of G. There are two
sources for this ambiguity, and they are resolved in different ways.

The first, and more obvious ambiguity lies in a choice of Spinc structure. This is settled by
choosing an Ad-invariant Spinc structure on g; but the true explanation of this ambiguity, and the
correct way to remove it, emerges from the use of the twisted K-homology τ K GG

0 ( ), in which push-
forward is the natural map. The Spinc lifting ambiguity gets transferred into the Poincaré duality
identification of τ K GG

0 ( ) with τ K GG
d ( ) ( d G= dim ).

The second, and more subtle indeterminacy, comes from the need to represent τ by a cocycle,
in order to fix the τ K -group; otherwise, τ K GG

∗ ( ) is only known up to multiplication by a K-theory
unit. To remove this ambiguity in (6.2), we need to lift the equality m ∗ =τ τ τ( , ) from cohomology
classes to 3-cocycles. When τ is transgressed from an integral four-dimensional class on BG , there
is a distinguished such lifting, and a canonical multiplication results [FHT]. A natural multiplication
also exists, for any class τ , when π1 has no torsion, for a different reason. As H eG

3 0({ }) = , we can
represent τ by a  cocycle vanishing on BG e×{ }. This defines an isomorphism R RG G≅ τ and, after a
choice of  Spinc structure, a direct image e R K GG G

d
!: ( )→τ . We normalize (6.2) by declaring

 m e e e! ! ! !( )1 1 1⊗ = . Clearly, this makes τ K GG
d ( ) into an RG -algebra, and our normalization is the only

one with this property.

(6.3) Remark. When π1 has no torsion, e! is surjective, so τ K GG
d ( ) is a quotient of RG , and the mul-

tiplication is determined by this. But we still want to “see” it by localization.  

(6.4) Theorem.   
τ K GG

∗ ( );� , with the Pontryagin product (6.2), is isomorphic to the ring of Weyl-
invariant functions on the regular points of the subset F of (4.2), with pointwise multiplication.

(6.5) Remark. There seems to be no description of comparable elegance for the multiplication when
π1( )G has torsion.
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Proof. The map (6.2) turns τ K GG
d ( ) into an RG -algebra. Localizing over 

  
Spec( )�RG , as in (4.2), we

obtain 1-dimensional fibres over the regular elements of F W T W⊂ . This already proves the theo-
rem; but we can exhibit the “localized convolution product” concretely, in relation to the isomor-
phism in §5. At a regular point  f F∈ , whose centralizer, by (4.3), is T, the localized K-theory is iso-
morphic to    

τ H TT
∗ ( ; )� . Dividing by the K-theoretic Euler class for the inclusion  T G⊂ — which is

the Weyl denominator — converts G-convolution to T-convolution. As noted in (3.4.iii), the genera-
tor of    

τ H TT
∗ ( ; )� sees the volume form on T, upon forgetting the T-action; so this last convolution al-

gebra is isomorphic to �. The isomorphism in (6.4) is related to the one in §5 by division by the
Weyl denominator. �

7. Verlinde’s formula as a topological index in τ K -theory
The Verlinde formula expresses the dimension of the spaces of sections of positive holomorphic line
bundles over the moduli space M of semi-stable G� -bundles over a compact Riemann surface Σ of
genus g > 0. A version of the formula exists for all semi-simple groups [AMW], but we confine our-
selves to simple, simply connected ones, in which case  Pic( )M =� , line bundles being classified by
their Chern class in H M2( ). This embeds in H GG

3 ( ) ≅ � , and it is in the latter10 that we shall mea-
sure it. Positive line bundles have no higher cohomology [KN], and the dimension of their space of
sections is

(7.1)
   
h M h M h F fg g

f F W
0 1 2 2; ( ) ; ( ) ( )� �( ) = ( ) = − −

∈∑χ ∆reg .

where the group F of §4 is defined with respect to the shifted level h c+ , and ∆ is the anti-
symmetric (spinorial) Weyl denominator. We shall replicate the right-hand side of (7.1) in twisted
K-theory. This does not give yet another proof of the Verlinde formula; rather, it interprets it as an
infinite-dimensional index theorem, in which τ K -theory carries the topological index.

Reinterpretation of the left side of (7.1)
Let  Σ× be the complement of a point z = 0, in a local coordinate z on Σ, G z(( )) the “formal loop
group” of Laurent series with values in 

  
G� and G[ ]Σ× the subgroup of 

  
G� -valued algebraic maps

on Σ× , and let X G z G: (( )) [ ]= ×Σ be a generalized flag variety for G z(( )) . X is related to M via the
quotient stack X G z[[ ]] by the group of formal regular loops, which is also the moduli stack of alge-
braic G-bundles on Σ. (For more background on these objects, we refer to [BL1], [Fa], [LS]).

(7.2) Remark. If  Σ° is the complement  Σ ∆− of a small open disk centered at z = 0, LG� the
smooth loop group based on ∂∆ and Hol G( , )Σ° � the subgroup of loops extending holomorphically
over Σ°, X is an algebraic model for the homogeneous space    ′ = °X LG Hol G: ( , )� �Σ , which is
dense in X and homotopy equivalent to it [T1].

Algebraic line bundles over  X are classified by their Chern class in H X H G2 3( ) ( )≅ ≅ �

[T1]. Theorem 4 of loc.cit. asserts that   H X h0( ; ( ))� is a finite sum of duals of irreducible PERs of
G z(( )) of level h, whereas higher cohomologies vanish. The multiplicity of the vacuum representa-
tion is given by (7.1); more generally, the dual    �( )V ∗ of the PER with ground space V appears mV
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times, where

(7.3)
 
m F f fV

g g
Vf F W

= ⋅− −
∈∑1 2 2∆( ) ( )χreg .

We can reformulate this, using the inner product11 on the Verlinde algebra V h( ) , in which the irre-
ducible PERs form an orthonormal basis. On functions on F Wreg , this product is given by

(7.4)
 
ϕ ψ ϕ ψ= ⋅ ⋅−

∈∑F f f f
f F W

1 2∆( ) ( ) ( )reg .

Formulae (7.1), (7.3) are then succinctly captured by the following identity in the Verlinde algebra: 

(7.5)    χ X h H X h F g g; ( ) ; ( )� �( ) = ( ) = ⋅∗ ∗ −0 2∆ .

Twisted K meaning of the right-hand side of (7.5)
Consider the product of commutators map  Π:G Gg× →2 defined by  Σ°: viewing G g2 and G as the
moduli spaces of based, flat G-bundles over Σ°, resp. ∂ °Σ , Π is the restriction of bundles to the
boundary. It is equivariant for G-conjugation; dividing by that amounts to forgetting the base-point,
but we shall not do so, and work equivariantly instead. (Reference to a base-point can be removed
by using the moduli stacks of unbased flat bundles, the quotient stacks G Gg2 and G G ). 

The twisting    τ = + ∈ ≅h c H GG
3 ( ) � lifts trivially to H GG

g3 2( ), and is canonically trivialized
as follows. Any τ is transgressed from a class  ′ ∈τ H BG4 ( ), under the tautological classifying map
∂ ° × →Σ G G BG ; in any reasonable model for cocycles, Π∗ τ is the co-boundary of the slant pro-
duct with  Σ° of the pull-back of  ′τ under  Σ° × →G G BGg2 . So we have a natural isomorphism
K G K GG

g
G

g∗ ∗=( ) ( )2 2τ ; in particular, a canonical class “ τ 1” is defined in τ K GG
g0 2( ). 

(7.6) Theorem.  Π!( ) ( )τ τ1 ∈ K GG
d is the right-hand side of (7.5). In other words, the multiplicities of

Π!( )τ 1 in the basis of PERs are the Verlinde numbers (7.3). 

Proof. Localizing to a regular f F W∈ ,  Π!( )τ 1 agrees with the push-forward of  
τ 1 2∆( )f g along

T g2 , where  ∆( )f g2 is the relative K-theory Euler class of T Gg g2 2⊂ . T g2 maps to  e G∈ , so  Π! factors
as the push-forward to KT

0( )∗ , followed by e! of §6. It may seem at first glance that the K-theoretic
integral of τ 1 over T g2 is nought, but that is not so. When factoring Π!, we have trivialized Π∗ τ on
T g2 , by doing so first in H eG

3 ( ) . This differs from the  Σ°-transgression trivialization, coming from
G g2 : the difference is the 2-dimensional transgression of ′ ∈τ H BG4 ( ) over Σ, via the tautological
classifying map  Σ× →T BTg2 . The associated line bundle over T g2 is the restriction of �( )h c+ , and
its integral over T g2 is F g [AMW]. All in all, the T-restriction of our push-forward is

 F f eg g⋅ ⋅−∆( ) ( )!
2 1 ; but this is the right side of (7.5), evaluated at f. �

Interpretation as an index theorem
We have the following set-up in mind. Let π:S B→ be a proper submersion of manifolds of relative
dimension d, τ ∈ H B3( ) an integral class whose lift to S is null. Representing τ by a cocycle defines
the twisted groups  

τ K B∗ ( ),  
π τ∗ ∗K S( ) , and expressing π τ∗ as a co-boundary δω fixes an isomor-

phism  
π τ∗ ∗ ∗≅K S K S( ) ( ) . As a result, a class  

τ π τ1∈
∗ ∗K S( ) is unambiguously defined. If πis K-

oriented, we obtain an index class  π
τ τ

! ( )1∈ K Bd . On a fibre Sb , π τ∗ = 0 as a cocycle, allowing one
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to identify  
π τ∗ ∗K Sb( ) with K Sb

∗ ( ) . However,  the new  identification differs from the old one, over
all of S, where  π τ δω∗ = ; so the restriction of τ 1 corresponds to a line bundle   �( )ω over Sb with

 c1 = ω. The fibre of π τ
! 1 at b is then the index of   �( )ω over Sb .

We apply this to our situation, where the index (7.5) should be captured by the map from the
manifold  ′X of (7.2) to a point, in LG -equivariant K-theory — if the latter existed. Take for B the
classifying stack BLG , and for S the quotient stack  ′X LG . As a real manifold,  ′X is the moduli
space of flat G-connections on  Σ°, trivialized on the boundary; so ′X LG is equivalent to the quo-
tient stack  G Gg×2 . BLG has the homotopy type of G G , and in these identifications, the projection

 ′ → ∗X becomes our map Π:G G G Gg× →2 .  
Twistings are required, since the LG -action is projective on H 0 and on the line bundle. In

§5, we identified  
h c

G
dK G+ ( ) with the Verlinde algebra V h( ) , which is where our analytic index lives.

This leads us to the push-forward  Π!: ( ) ( )h c
G

g h c
GK G K G+ +→0 2 0 . We can reconcile this shifted twist-

ing with the level h in (7.5) by reinterpreting the left-hand side there as the Dirac index of �( )h c+ ;
the c-shift is the projective cocycle of the LG -action on spinors on X. (This is one of the ways in
which    �( )−2c behaves like the canonical bundle of X). Thus, (7.5) and (7.6) express the equality of
the analytic (algebraic, really) and topological indices.

We can summarize and clarify our discussion by introducing the space � of G-connections
on  ∂ °Σ . The stack   � LG is equivalent to G G ; so    

h c
G
d h c

LG
dK G K+ +=( ) ( )� ; moreover, the boundary

restriction    ′ →X LG LG� is exactly Π. We are then saying that the LG -equivariant analytic index
over ′X , rigorously defined in the algebraic model, is computed topologically, by factoring the
push-forward to a point into the rigorously defined  Π!: ( ) ( )h c

LG
h c

LGK X K+ +′ →0 0
� , and the LG -

equivariant push-forward �→ ∗ ; the latter, we interpret as the isomorphism h c
G
dK G V h+ ≅( ) ( ) . 

Appendix A. Gradings, or twistings by H 1 2�( )
We discuss here the changes to Theorem (2.4) in the presence of an additional K-theory twisting

  ε ∈ H XG
1 2( ; )� ; the final result (A.11) is not altogether obvious. The ideas and definitions should be

clear to readers familiar with the K-theory of graded C∗ algebras, as in [B], §14; see also Remark
(A.7). However, we discuss the case of groups in more detail, which we need in order to understand
the sheaves ε

�
∗ . In this section, G is any compact Lie group.

When X is a point
In this case, ε gives a homomorphism ε:G → ±{ }1 , which we call a � 2-grading of G. The fibers
G± of ε are conjugation-stable unions of components of G. A graded representation is a   � 2-
graded vector space with a linear action of G, where even elements preserve, and odd ones reverse
the grading. We use the notation   M M+ −

� , the superscript indicating the eigenvalue of the degree
operator D; the reason for this (purely symbolic) “direct difference” notation will be clear below. A
super-symmetry of such a representation is an odd automorphism, skew-commuting with G; repre-
sentations which admit a super-symmetry are called super-symmetric. 

(A.1.i) Definition.  
ε τ ε τ, , ( )R KG G= ∗0 is the abelian group of finite-dimensional, τ-projective, graded

representations, modulo supersymmetric ones.

The sum of any graded representation with a degree-reversed copy of itself is super-symmetric; be-
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cause of this, flipping the grading acts as a sign change on K 0 , and so (A.1.i) defines an abelian
group and not just a semi-group. Restriction of graded representations, from G to G+ , sends

  M M+ −
� to the virtual representation M M+ −− . Restriction has a right adjoint graded induction

functor from τ RG + to ε τ, RG . Both are RG -module maps. It is fairly easy to see that graded induction
identifies ε τ, RG with the cokernel of the ordinary restriction map from τ RG to τ RG + , and graded re-
striction with the kernel of ordinary induction from τ RG + to τ RG. (This is further clarified by the
exact sequences (A.3) below). The last description shows that ε τ, RG is torsion-free.

We define the graded K1 by an implicit Thom isomorphism. The group   G × � 2 carries a
{ }±1 -valued 2-cocycle κ, lifted, under ε × Id , from the Heisenberg extension of   � �2 2× . Call ν
the non-trivial grading on   � 2, and also, somewhat abusively, its pull-back to   G × � 2 .

(A.1.ii) Definition.    
ε τ ν τ κ, ,( ):K RG G

1
2∗ = +

×� . 

This can be made more concrete. Denote by   ε� the sign representation of G. A graded,  ( )τ κ+ -
projective representation M M+ −

� of ( , )G×� 2 ν is determined, up to canonical isomorphism, by

 M + : the isomorphism    S M M: − +→ ⊗ ε
� , defined by    ( , )1 1 2− ∈ ×G � , pins down the other factor. Su-

persymmetric representations are those for which M + is isomorphic to its ε-twist; these are precise-
ly the representations induced from G+ . In particular, ε τ τ τ, ( )K R RG G G

1 ∗ ≅ +Ind . 

(A.2) Remark. The graded C ∗ algebra version of the Thom isomorphism identifies ε τ, ( )KG
1 ∗ with the

τ K 0-group of the graded product of ( , )G ε with the rank 1 Clifford algebra C1. This graded product
is the graded convolution algebra τ κ+

∗ ×C G( )� 2 , with product grading ε ν× : the cocycle κ stems
from the anticommutation of odd elements. Now, the right-hand side in (A.1.ii) is the τ κ+ K 0–group
of the convolution algebra of  ( , )G × � 2 ν , which may seem different at first. However, an obvious
shearing map identifies the latter with ( , )G× ×� 2 ε ν , as graded groups; and the shearing can be lift-
ed to 
-extensions. (Restricted to the diagonal subgroup G G+ −× ∪ × −{ } { }1 1 , κ is not trivial as a   � 2
-cocycle; its class is the square of ε. However, it is trivialized, as a 
-valued extension, after a
choice of −1 , and this allows us to lift the shearing automorphism).

Identifying the trivially graded group G with the subgroup of even elements in G × � 2
defines graded restriction and induction maps, Res′ ∗ →: ( ),ε τ τK RG G

1 , Ind′ → ∗: ( ),τ ε τR KG G
1 . In our

concrete description of K1, they send M + to M M+ +− ⊗ ε
� and M to M M+ =: . These maps assem-

ble into two exact sequences relating the graded and ungraded K-theories:

(A.3.i) 0 01 0 0 0→ ∗( )  → ∗ ( )  → ∗ ( )  → ∗ ( ) →′
+

ε τ τ τ ε τ, ,K K K KG G G G
Res Res Ind

(A.3.ii) 0 01 0 0 0← ∗( ) ←  ∗ ( ) ←  ∗ ( ) ←  ∗ ( ) ←′
+

ε τ τ τ ε τ, ,K K K KG G G G
Ind Ind Res .

Recall from §2 that τ defines a 
 
G

�
-equivariant line bundle   

τ
	h over 

  
G

�
, whose invariant

sections are spanned by the characters of irreducible, τ-projective representations. Anti-invariant
sections are those transforming under the character ε of 

 
G

�
; the super-character of a graded repre-

sentation,   g Tr Dga ( ) , is an example. The super-character of a graded G-representation is support-
ed on G+ , because odd group elements are off-diagonal in the M ± -decomposition, while that of a

 ν τ κ, +( )-twisted representation of  G × � 2 lives on G�

−×{ }1 , because Tr Dg( ) =  Tr SDgS−( ) =1

 − ( )Tr Dg , if g G∈ + . The following is clear from the exact sequences (A.3).
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(A.4) Proposition. The 
 
�RG -module    

ε τ, ( ; )KG
0 ∗ � is isomorphic to the space of anti-invariant alge-

braic sections of τ
	h on 

 
G

�

+ , while  
ε τ, ( ; )KG

1 ∗ � is isomorphic to the space of invariant sections of

  
τ
	h over    G�

− . Both isomorphisms are realized by the super-character. �

(A.5) Remark. In terms of the “odd line” �− , 
  
�

ε τ, RG is the graded module of skew-invariant sec-
tions of   

τ
	 �h ⊗ − over G. Over G+ ,  �

− -valued functions are odd, so skew invariance means anti-
invariance. Over G− , the sections are even, and skew invariance means invariance.

The General Case
On a space X,   ε ∈ H XG

1 2( ; )� defines a real G-line bundle � over X, with unit interval bundle D. 

(A.6) Definition. The groups ε τ, ( )K XG
∗ are the relative τ KG

∗− 1-groups of ( , )D D∂ .

Remark. This is really a twisted Thom isomorphism theorem; we thank G. Segal for the suggestion
of using it as a definitional shortcut.

(A.7) Remark. The boundary  ∂D is a double G-cover  p X X: ˜→ , and we can give a  C ∗ -friendly de-
scription of ε τ, ( )K XG

∗ as the  τ K ∗+ 1-groups of the crossed product    G C X�
∗ ( ˜ ) , graded by the eigen-

values of the deck transformation. These K-groups do not usually have a naive description in terms
of graded projective modules, as in the case of a group algebra (A.1); see [B] for the definitions. 

Note the vanishing of the first and third Stiefel-Whitney classes of the bundle � �⊕ over X;
the Thom isomorphism allows us to identify the doubly ε-twisted K-groups  

2ε τ, KG
∗ with  

τ KG
∗ , but a

choice of sign is needed.
The various K-groups are related by two six-term exact sequences analogous to (A.3), in-

volving the double cover X̃ (for notational convenience, we omit the twisting τ, which is present ev-
erywhere). The first one is the six-term sequence for D and its boundary; the second follows from
the first, by replacing X by the pair ( , )D D∂ and using the vanishing of  p

∗ ε on X̃ .

(A.8.i)

K X K X K X

K X K X K X

G
p

G
p

G

G
p

G
p

G

0 0 0

1 1 1

( ) ( ˜ ) ( )

( ) ( ˜ ) ( )

!

!

∗

∗

 →  →
↑ ↓

←  ← 

ε

ε

ε

ε

(A.8.ii)

K X K X K X

K X K X K X

G
p

G
p

G

G
p

G
p

G

0 0 0

1 1 1

( ) ( ˜ ) ( )

( ) ( ˜ ) ( )

!

!

←  ← 
↓ ↑

 →  →

∗

∗

ε

ε

ε

ε

Moreover, denoting by α the non-trivial deck transformation on X̃ and by   ε� the flat line bundle

   � �⊗ on X, we have 
  
p p! ( )∗ = + ⊗1 ε

� , 
  
ε ε εp p! ( )∗ = − ⊗1 � ,  p p∗ ∗= +! ( )1 α ,  

ε ε αp p∗ ∗= −! ( )1 . Noting
that the operations  α ∗ , resp. tensoring with   ε�, both square to 1, we can decompose, modulo 2-
torsion, all the K-groups in (A.8) according to the eigenvalues of these operations.    

(A.9) Proposition.   
ε τ τ τ, ( ; ) ( ˜ ; ) ( ; )K X K X K XG G G

0 0 1
� � �≅ ⊕− −,   

ε τ τ τ, ( ; ) ( ˜ ; ) ( ; )K X K X K XG G G
1 1 0

� � �≅ ⊕− −
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where the superscripts indicate the eigenvalue of  α ∗ , resp.   
ε
� ⊗ . �

Localisation in the graded case
Finally, we have the following H 1-twisted version of the results in §2.

(A.10) Proposition. The restriction    
ε τ ε τ, ,; ;( )K X K XG g Z

g
g

∗ ∧ ∗ ∧( ) →� � is an isomorphism. 

Proof. Same as for Prop. (2.6), by reduction to homogeneous spaces, in view of our description
(A.4) of the graded equivariant K-theory of a point. �

An element  g G∈ is called even or odd, over a component Y of its fixed-point set X g, according to its
action on the fibres of   ε�; the former happens when g fixes p Y−1( ) , the latter when it interchanges
the fibres over Y. Let    

ε τ τ ε, ( ) : ( )� � �g g= ⊗ . 

(A.11) Theorem. If g is even over a component Y of X g, 
 

ε τ τ ε τ, ,( ; ) ; ( )K Y H Y gZ g Z
∗ ∧ ∗≅ ( )� � ; while, if g is

odd over Y, 
 

ε τ τ τ, ( ; ) ; ( )K Y H Y gZ g Z
∗ ∧ ∗+≅ ( )� �

1 . 

Proof. When g is even over Y, the proof of (2.14) proceeds without change, with the additional H 1-
twisting on both sides, and no change is needed in the proof of (2.15). We can also give a different
argument, based on (A.8). Irrespective of the parity of g, we have 

(A.12)
  

ε τ τ τ, ( ; ) ( ); ;K Y K p Y K YZ g Z g Z g
∗ ∧ ∗ − ∧ − ∗+ ∧ −≅ ( ) ⊕ ( )� � �

1 1 .

When g is even, (2.4) gives natural isomorphisms 

(A.13)
  

τ τ τK p Y H p Y p gZ g Z
∗ − ∧ ∗ − ∗( ) ≅ ( )1 1( ); ( ); ( )� � , τ τ τK Y H Y gZ g Z

∗+ ∧ ∗+( ) ≅ ( )1 1; ; ( )� � .

The −( )1 -eigenspace for a∗ in the first term is τ ε τH Y gZ
∗ ( ); ( ),

� , whereas tensoring with ε
� on the

second term acts as the identity, because  chε
�=1 and g acts trivially on its fibres; so the second

summand in (A.12) is nil in this case. This vanishing also follows from the surjectivity of the com-
plexified maps p! in (A.8.ii), which is clear when they are identified, by (2.4), with the maps

(A.14)
  
p H p Y p g H Y gZ Z!: ( ); ( ) ; ( )τ τ τ τ∗ − ∗ ∗( )→ ( )1

� � .

On the other hand, when g is odd, it acts freely on p Y−1( ) , so τ K p YZ g
∗ − ∧ =( ( ); )1 0� , by (2.6);

whence, using either one of the sequences (A.8), we get that 
  
ε τ τ, ( ; ) ( ; )K Y K YZ g Z g

∗ ∧ ∗+ ∧≅� �
1 , which is

τ τH Y gZ
∗+ ( )1 ; ( )� , as in Theorem (2.4). �
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