
Guide to the Video

Part I and II of the video presentation follow rather closely Chapter 1 /resp.

Chapter 2 of the text. In the third part, however, the viewer might find it diffi-

cult to locate the details of what is discussed in the main text. Therefore we have

provided this guide. It gives precise references to the main text (bold face) and

repeats the formulae which were written on the black board for simple identification

(underlined).

Part III

We recall the long time behavior of the driven lattice and its dependence on the

driving frequency γ, which was described in detail in Part I. The goal of this pre-

sentation is to explain our result on the construction of 2π
γ – time periodic solutions

of the semi-infinite lattice, (cf Chapters 3-5), which are in good agreement with

the numerically observed time asymptotic motion of the lattice. More precisely we

construct solutions of

ẍn = F (xn−1 − xn)− F (xn − xn+1), n ≥ 1,(1)

with

x0(t) := ε
∑
m∈Z

bme
iγmt(2)

(cf (3.1), (3.2)). For ε = 0 the lattice at rest xn(t) = cn solves (1), (2). We ask

whether these solutions persist for ε 6= 0? Our results can be summarized as follows.

Let γk := 2
k

√
F ′(−c), k ∈ N, be the sequence of threshold values for the driving

frequency.

• In the case of arbitrary force functions F (cf Section 3.2.2, General As-

sumptions) and for γ > γ1 or γ1 > γ > γ2 there exist ε0 > 0 such that for all

0 ≤ ε < ε0 we can construct 2π
γ – time periodic solutions of (1), (2), satisfying

xn(t)− cn = O(ε) (cf Theorems 3.56 and 4.24).

• In the case of the Toda lattice (F (x) = ex), for all γ ∈ R+ \ {γk : k ∈ N} there

exist ε0 > 0 such that for all 0 ≤ ε < ε0 we can construct 2π
γ – time periodic

solutions of (1), (2), satisfying xn(t)− cn = O(ε) (cf Theorem 5.13).
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It is instructive to consider the linear case F (x) = x. By separation of variables

we find that

xn(t) = ε
∑
m∈Z

bmz
n
me

iγmt(3)

solves (1), (2) , if

z2
m + δmzm + 1 = 0, with δm = −2 + (γm)2.(4)

We notice that a mode znme
iγmt corresponds to a travelling wave in the case |δm| ≤ 2,

( zm = eiβm for βm ∈ R). For |δm| > 2 one can choose |zm| < 1, i.e. the correspond-

ing mode is decaying exponentially in n. (cf (1.25)). The solutions we will construct

in Chapters 3-5 will be nonlinear versions of (3).

Our first result in Chapter 3 (Lemma 3.31 and Theorem 3.38) will reduce

the construction of the desired solutions of (1), (2) to showing that there exists a

sufficiently large parameter family of travelling wave solutions of the doubly infinite

lattice. More precisely, in the case that the driving frequency satisfies γk > γ > γk+1,

we have to construct a 2k – parameter family of k-phase waves. This reduction is

proved by separating the equations for the “travelling wave part” and the “exponen-

tially decaying part” (cf Lemma 3.31) and then by solving for the exponentially

decaying part (cf Theorem 3.38) (see also Section 3.1).

In the case of the Toda lattice the multi-phase travelling waves can be con-

structed for arbitrary number of phases in terms of theta functions, using the well

known g-gap solutions. Due to limited time these solutions are not discussed any

further in this presentation. See Chapter 5, Appendix A and Appendix B for

more detail.

We will spend the remaining time to show how one can obtain single – phase

waves in the case of arbitrary force functions F and what the difficulties are in the

construction of multi-phase waves (in particular two-phase waves), which we have

not yet overcome. By a two-phase wave we denote a solution of the doubly infinite

lattice of the form

xn(t) = cn+ χ2(nβ1 + γt, nβ2 + 2γt),(5)

where χ2 is 2π-periodic in both arguments. Functions of this form are 2π
γ – time

periodic. The spatial frequencies β1, β2 turn out to be approximately given by the

dispersion relation for the linearized lattice,

2 cosβk = 2− (γk)2

F ′(−c)
.(6)
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Remarks:

(1) This formula was given incorrectly in the video presentation.

(2) As mentioned above, two-phase waves are considered in the case γ2 > γ > γ3,

which means that there exist real solutions βk of (6) only in the case |k| ≤ 2.

We first dicuss the construction of single-phase waves (see Chapter 4). Expand

xn(t) = cn+ χ1(nβ + γt)(7)

in a Fourier series

χ1(θ) =
∑
m∈Z

r(m)eimθ.(8)

The resulting equation for the sequence r can be written in the form

Λ(β)r +W (r) = 0,(9)

where Λ(β) is a linear operator depending on β and W (r) denotes the nonlinear

term. The operator Λ(β) is diagonal and its entries are given by

Λ(β)(m,m) = 2 cosβm− 2 +
(γm)2

F ′(−c)

= −4 sin2 βm

2
+

(γm)2

F ′(−c)
(10)

(See Lemma 4.10 for a derivation of (9), (10)).

Remark:

In the video presentation we have given a different formula for Λ(β) which can

be obtained by dividing (9) by −4 sin2 βm
2 , which then represents the equation for

the sequence r̃(m) := r(m)(e−iβm − 1). Furthermore we have assumed F ′(−c) = 1,

which can always be achieved by rescaling time. Therefore we obtain

Λ(β)(m,m) = 1− (γm)2

4 sin2 βm
2

.(11)

In the video we proceed to give a brief description of the Lyapunov – Schmidt

decomposition which is explained in the introduction of Chapter 4 and after

the proof of Remark 4.12. The final result is that we construct a two-parameter

family of single phase waves of the doubly infinite lattice.
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We repeat this ansatz in the case of two-phase waves,

xn(t) = cn+ χ2(nβ1 + γt, nβ2 + 2γt),(12)

χ2(θ1, θ2) =
∑
m∈Z2

r(m)ei<m,θ>.(13)

The equation for r̃(m) := r(m)(e−i<β,m> − 1) can be written as

Λ(β)r +W (r) = 0,(14)

with

Λ(β)(m,m) = 1− γ2(m1 + 2m2)2

4 sin2 <β,m>
2

.(15)

Note that we have again set F ′(−c) = 1 without loss of generality. Proceed-

ing analogously to the single-phase case, we define the projection P , (Pr)(m) :=

1{|m|6=1}r(m), (|m| = |m1| + |m2|), Q := I − P . Equation (14) is equivalent to the

following two equations. Denote µ := Pr, ϕ := Qr.

PΛ(β)µ+ PW (µ+ ϕ) = 0.(16)

QΛ(β)ϕ+QW (µ+ ϕ) = 0.(17)

The first step in the Lyapunov-Schmidt decomposition is to satisfy the infinite di-

mensional equation (16) by choosing µ ∈ Ran (P ) as a function of β and ϕ ∈ Ran

(Q) for (β, ϕ) in a neighborhood of (β(0), 0). We choose β(0) such that QΛ(β(0)) = 0,

i.e. β(0) = (β(0)
1 , β

(0)
2 ), with

4 sin2 β
(0)
1

2
= γ2,(18)

4 sin2 β
(0)
2

2
= (2γ)2.(19)

Note again that (18) and (19) have real solutions β(0)
1 , β

(0)
2 because of the condition

γ2 > γ > γ3.

In order to solve (16) by implicit function theory, we have to investigate the

invertibility of Λ(β) : Ran (P ) → Ran (P ). In contrast to the construction of the

single-phase waves it is here that we encounter a major obstacle. In fact, a small

divisor problem occurs, as there exist sites m ∈ Z for which Λ(β)(m,m) is arbitrarily

close to zero. We call such sites singular sites.
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We will determine the location of the singular sites of Λ(β(0)) (cf Fig. below).

First of all one realizes that γ2 > γ > γ3 implies that m ∈ Z2 can only be a singular

site if m1 + 2m2 = ±1,±2. We find the following cases.

• For m ∈ Z, satisfying m(−2β(0)
1 + β

(0)
2 ) ≈ 0 (mod 2π):

(±1− 2m,m), (−2m,m± 1) are singular sites. They form a cross.

• For m ∈ Z, satisfying m(−2β(0)
1 + β

(0)
2 ) ≈ 2β(0)

1 (mod 2π):

(−1− 2m,m) is a singular site.

• For m ∈ Z, satisfying m(−2β(0)
1 + β

(0)
2 ) ≈ −2β(0)

1 (mod 2π):

(1− 2m,m) is a singular site.

• For m ∈ Z, satisfying m(−2β(0)
1 + β

(0)
2 ) ≈ 2β(0)

2 (mod 2π):

(−2m,m− 1) is a singular site.

• For m ∈ Z, satisfying m(−2β(0)
1 + β

(0)
2 ) ≈ −2β(0)

2 (mod 2π):

(−2m,m+ 1) is a singular site.
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Figure 20: The location of the singular sites of Λ(β(0))

A guide of how to construct solutions of (16) in such a situation is the work of

W. Craig and C. E. Wayne on the existence of small solutions of the nonlinear wave

equation [CW], where a similar small divisor problem occured. Their construction

proceeds via a Newton iteration scheme. The crucial point is to control the small

eigenvalues of a truncation of the linearized operator. One recalls that in a Newton

scheme it is necessary to linearize around the last approximation un in order to

obtain the better approximation un+1 and therefore the linearized operator is in

general not in diagonal form with respect to the standard basis. The main technical
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tool in [CW] is a technique introduced by J. Fröhlich and T. Spencer([FS]) for

the construction of inverse operators which makes it possible to first examine one

singular site at a time and then to control the interaction between them.

If one tries to apply this procedure to our problem one recognizes that the

singular sites are not as well seperated as in [CW]. This causes additional difficulties

which we have not resolved yet. Recent work of Surace ([S1], [S2]) contains a

version of the Fröhlich-Spencer technique which might be helpful in overcoming

these difficulties.
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