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Chapter 1IntroductionWe begin with a description of recent numerical and analytical results that areclosely related to the results of this paper.In 1978 Holian and Straub [HS] conducted an extensive series of numerical ex-periments on a driven, semi-in�nite lattice�xn = F (xn�1 � xn)� F (xn � xn+1); n = 1; 2; : : : ;(1.1)with initial conditionsxn(0) = nd; _xn(0) = 0; n = 1; 2; : : : ; d constant;(1.2)for a variety of force laws F , and in the case that the velocity of the driving particlex0 is �xed, x0(t) = 2at; t � 0; a > 0:(1.3)They discovered, in particular, a striking new phenomenon { the existence of acritical \shock" strength acrit. If a < acrit = acrit(F ), then in the frame movingwith the particle x0, they observed behavior similar to that shown in Figure 1.4.Thus the particles come to rest in a regular lattice behind the driver. However, ifa > acrit = acrit(F ), then, again in the frame of the driver, they observed behavior asin Figure 1.5. Now the particles do not come to rest behind the driver, but executean on-going binary oscillation (i.e. xn(t + T ) = xn(t); xn(t) = xn+2(t) + const:).This is a marvelous, fundamentally nonlinear phenomenon; if F is linear, the e�ectis absent.This phenomenon has now been observed for many di�erent singular and non-singular, nonlinear force laws F , but an explanation of the phenomenon from �rst1
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n = 9Figure 1.4: Motion of the �rst ten particles of a lattice described by the above system(1.1) { (1.3) with F (x) = ex; d = 0; a = :5, in the frame of x0 (case a < acrit).
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Figure 1.5: Motion of the �rst ten particles of a lattice described by the above system(1.1) { (1.3) with F (x) = ex; d = 0; a = 2, in the frame of x0 (case a > acrit).
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principles in the general case has not yet been given. We believe that the phe-nomenon is present for a very wide class of genuinely nonlinear F (in particular, ifF 00 > 0) with F 0 > 0. Observe that if F 0 > 0, then the force on the nth particle�xn = F (xn�1�xn)�F (xn�xn+1) is negative for xn > 12 (xn�1+xn+1) and positivefor xn < 12 (xn�1 + xn+1). Thus the only equilibrium con�guration is the regularlattice xn = cn; c 2 , and moreover, in this case, all the forces are restoring.In 1981, Holian, Flaschka and McLaughlin [HFM] considered the shock problemin the special case in which F is an exponential F (x) = ex, the so-called Toda shockproblem. They considered this case because the Toda equation�xn = exn�1�xn � exn�xn+1 ;(1.6)with appropriate boundary conditions, is well-known to be completely integrable (afact discovered by Flaschka [F] and Manakov [Man]; see also [H]) and hence therewas the possibility of solving (1.1) { (1.3) explicitly and so explaining the phenomenaobserved by Holian and Straub in the special case where F (x) = ex. However, thedriven system (1.1) { (1.3) is non-autonomous and it was not clear a priori that the(formal) integrability of the Toda equation could be used to analyze the system.For example, the one-dimensional oscillator �x+ ax+ bx3 = 0 is certainly integrable;however, the driven oscillator �x+ ax+ bx3 = f(t), the so-called Du�ng system, isfar from \integrable" and requires highly sophisticated techniques for its analysis.Nevertheless, Holian, Flaschka and McLaughlin ([HFM]) realized that if they wentinto the frame of the driver, so that (1.2), (1.3) becomexn(0) = nd; _xn(0) = �2a; n � 1;(1.7) x0(t) � 0;(1.8)and doubled up the system xn(t) � �x�n(t); n < 0;(1.9)then the full system fxng1n=�1 solves the autonomous Toda equations�xn = exn�1�xn � exn�xn+1 ; �1 < n <1;(1.10)with initial conditionsxn(0) = dn; _xn(0) = �2a( sgn n); �1 < n <1:(1.11) 3



But the solutions of these equations lie in a class to which the method of inversescattering applies. To see what is involved we use Flaschka's variables,an = � _xn=2; bn = 12 e 12 (xn�xn+1); �1 < n <1;(1.12)and arrange these variables into a doubly-in�nite tridiagonal matrix
eL = 0BBBBBBBBBBBB@

. . . . . . . . .b�2 a�1 b�1 
b�1 a0 b0b0 a1 b1
 b1 . . . . . .. . .
1CCCCCCCCCCCCA ;(1.13)

which represents the state of the system at any given time, with companion matrix
eB = 0BBBBBBBBBBBB@

. . . . . . . . .�b�2 0 b�1 
�b�1 0 b0�b0 0 b1
 �b1 0 . . .. . . . . .
1CCCCCCCCCCCCA :(1.14)

Then, remarkably, (1.10) is equivalent to the so-called Lax-pair systemd~Ldt = [ eB; eL] = eB eL� eL eB:(1.15)Thus the Toda equations are equivalent to an iso-spectral deformation of the matrixoperator eL. Inverse scattering theory tells us that one can solve (1.15), and hence(1.1) { (1.3), through the scattering map for eL. Rescaling time, one sees that it issu�cient to consider the case where the initial spacing d = 0. Then at t = 0,an = a sgn n; bn = 12 ;(1.16)and one sees that the essential spectrum of eL is given by two bands (cf Figure 1.17).The bands overlap if and only if a < 1. Holian, Flaschka and McLaughlin observedthat supercritical behavior occurred for the Toda shock problem only if the gap was4



1 - a a - 1- a - 1 a + 1Figure 1.17: The spectrum of ~L(0)open. Hence they identi�ed acrit(F = ex) = 1. Using the inverse method they wereable to calculate a number of other features of the Toda shock problem, such as thespeed and the form of the shock front, and also the form of the binary oscillations.The problem of how to extract detailed information about the long-time behaviorof the Toda shock problem from knowledge of the initial data using the ratherformidable formulae of inverse scattering theory, however, remained open.In the early 80's, a very important development took place in the analysis ofin�nite-dimensional integrable systems in the form of the calculation by Lax andLevermore ([LL]) of the leading order asymptotics for the zero-dispersion limit of theKortweg de Vries equation, in which the weak limit of the solution as the dispersioncoe�cient tends to zero is derived and the small scale oscillations that arise areaveraged out. This was followed in the late 80's by the calculation of Venakides [V]for the higher order terms in the Lax-Levermore theory which produces the detailedstructure of the small scale oscillations. These developments raised the possibilityof being able to analyze the inverse scattering formulae for the solution of the Todashock problem e�ectively as t!1, and in [VDO], Venakides, Deift and Oba provedthe following result in the supercritial case a > 1:In addition to the shock speed vs calculated by Holian, Flaschka and McLaughlin,there is a second speed 0 < v0 < vs.In the frame moving with the driver, as t!1,� for 0 < n=t < v0, the lattice converges to a binary oscillation xn(t + T ) =xn(t); xn+2(t) = xn(t)+ constant, (cf Figure 1.5). The band structure corre-sponding to the asymptotic solution is [�a� 1; �a+ 1] [ [a� 1; a+ 1]. Thebinary oscillation is connected to the driver x0(t) � 0, through a boundarylayer, in which the local disturbance due to the driver decays exponentially inn.� for v0 < n=t < vs, the asymptotic motion is a modulated, single-phase, quasi-periodic Toda wave with band structure [�a�1; 
(n=t)] [ [a�1; a+1], where5




(n=t) varies monotonically from �a+1 to �a� 1 as n=t increases from v0 tovs.� for n=t > vs, the deviation of the particles from their initial motion �2at isexponentially small. The in
uence from the shock has not yet been felt. Asnoted in [HFM], for n=t � vs, the motion of the lattice is described by a Todasolution with associated spectrum f�a� 1g [ [a� 1; a+ 1].In 1991, again using the techniques in [LL] and [V], Kamvissis ([Kam]) showedthat in the subcritical case a < 1, in the frame moving with the driver, as t ! 1,the oscillatory motion behind the shock front dies down to a quiescent regular latticewith spacing xn+1 � xn ! �2 log(1 + a), (cf Figure 1.4).A \Thermodynamic" Remark.It is easy to see that the average spacing of the binary oscillation of the asymp-totic state in the case a > 1 is given by � ln 4a. Thus the average spacing of theasymptotic states is given by�2 ln(1 + a); for a < 1;� ln 4a; for a > 1:Observe that these expressions and their �rst derivatives agree at a = 1. Thus wemay say that the density of the asymptotic state has a second order phase transitionat a = 1.As in [LL] and [V], the above results are not fully rigorous and rely on certain(reasonable) asymptions that have not yet been justi�ed from �rst principles. Inparticular, as in [LL], the contribution of the re
ection coe�cient associated withthe band [a � 1; a + 1] is ignored. Also, as in [V], an ansatz is needed to controlthe long-time behavior of certain integrals. Recently in [DMV], the authors, againusing the approach of [LL] and [V], circumvented the �rst di�culty by considering�nite dimensional approximations to the lattice of length `(t) � t, but they stillneed the above mentioned ansatz in order to re-derive the results in [VDO]. In [BK],Bloch and Kodama consider the Toda shock problem, both in the subcritical andthe supercritical cases, from the point of view of Whitham modulation theory inwhich the validity of a modulated wave form for the solution is assumed a priori,and the parameters of the modulated wave form are calculated explicitly. More6



recently in [GN], Greenberg and Nachman have considered the shock problem for ageneral force law in the weak shock limit; they are able to describe many aspectsof the solution, including the modulated wave region where they use a KdV-typecontinuum limit.In a slightly di�erent direction, motivated by the so-called von-Neumann problemarising in the computation of shock fronts using discrete approximations, Goodmanand Lax [GL] and Hou and Lax [HL] observed and analyzed features strikinglysimilar to those in [HS]. Finally, Kaup and his collaborators, [Kau], [KN], [WK],use various integrable features of the non-autonomous system (1.1) { (1.3) to gainvaluable insight into the Toda shock problem. We will return to these papers below.In this paper we consider the driven lattice (1.1), (1.2) in the case where theuniform motion of the driving particle x0 is periodically perturbed18>><>>: �xn = F (xn�1 � xn)� F (xn � xn+1); n � 1;xn(0) = _xn(0) = 0; n � 1;x0(t) = 2at+ h(
t):(1.18)Here h(�) is periodic with period 2� and the frequency 
 > 0 is constant. We restrictour attention to the case where the average value of the velocity of the driver _x0 = 2ais subcritical, i.e. a < acrit. (For some discussion of the supercritical case a > 1,see Problem 3 at the end of the Introduction below). Again we consider a varietyof force laws F , but henceforth we restrict our attention to forces which are realanalytic and monotone increasing in the region of interest.Typically we observed the following phenomena:In the frame moving with the average velocity 2a of the driver, as t ! 1, theasymptotic motion of the particles behind the shock front, is 2�
 -periodic in time,xn(t+ 2�
 ) = xn(t); 0 < n� t:(1.19)Moreover, there is a sequence of thresholds,(1.20) 
1 = 
1(a; h; F ) > 
2 = 
2(a; h; F ) > � � � > 
k = 
k(a; h; F ) > � � � > 0;
k ! 0 as k !1:1The more general initial value xn(0) = dn; _xn(0) = 0, can clearly be converted to (1.18) byshifting the argument of F; F (�)! F (��d) : in the case of Toda, as noted above, this shift convertsinto a rescaling of the time. 7



� If 
 > 
1, there exist constants c; d such that xn�cn�d converges exponentiallyto zero as n!1, (cf Figure C.6). In other words, the e�ect of the oscillatorycomponent of the driver does not propagate into the lattice and away fromthe boundary n = 0. The lattice behaves in a similar way to the subcriticalcase of constant driving considered by Holian, Flaschka and McLaughlin.� If 
1 > 
 > 
2, then the asymptotic motion is described by a travelling wavexn(t) = c1n+X1(�1n+ 
t); 1� n� t;(1.21)transporting energy away from the driver x0. (See Figure C.7). Here c1 =c1(a; h; F; 
) and X1(�) = X1(� ; a; h; F; 
) is a 2�-periodic function.� More generally, if 
k > 
 > 
k+1, a multi-phase wave emerges which is well-described by the wave form(1.22) xn = ckn+Xk(�1n+ 
t; �2n+ 2
t; : : : ; �kn+ k
t); 1� n� t;again transporting energy away from the driver (see Figure C.8 for the casek = 2). Here ck = ck(a; h; F; 
) and Xk(�; : : : ; �; a; h; F; 
) is 2�-periodic ineach of its k variables.Thus, at the phenomenological level, we see that the periodically driven latticebehaves like a long, heavy rope which one shakes up and down at one end.Remark:We have restricted our experiments to the asymptotic region 1� n� t. However,we expect that the solution also exhibits many interesting phenomena when studiedas a function of n=t. For example (see discussion on page 5), we expect that for
k > 
 > 
k+1, there will be a sequence of 2k speeds s1 > s2 > : : : > s2k, with theproperty that for t large,� for s2 < n=t < s1, the solution is a modulated one-phase wave,� for s3 < n=t < s2, the solution is a pure one-phase wave,� for s4 < n=t < s3, the solution is a modulated two-phase wave,and so on, until 8



� for s2k < n=t < s2k�1, the solution is a modulated k-phase wave,and� for 1=t� n=t < s2k, the region studied in this paper, we have a pure k-phasewave.Note from the Figures C.9 { C.11 that the above phenomena are present for bothsmall and large values of the amplitude of the periodic component h of the driver.In the linear case, F (x) = �x; � > 0, the origin of the thresholds 
1 > 
2 > : : : issimple to understand. The solution of the lattice equations
(1.23) �xn = F (xn�1 � xn)� F (xn � xn+1) = �(xn+1 + xn�1 � 2xn); n � 1;xn(0) = _xn(0) = 0; n � 1;x0(t) = 2at+ Xm2 bm ei
mt; b�m = �bm;is easy to evaluate using Fourier methods and one sees that as t!1,xn(t) �! 2a(t� n) +Xm bm znm ei
mt; 0 < n� t;(1.24)where zm; jzmj � 1, is the root ofz2m +  (
m)2� � 2! zm + 1 = 0;(1.25)chosen, in the case jzmj = 1, such that the energy is transported away from thedriver. Observe that if m0 > 0 is the largest integer m for which (
m)2=�� 2 � 2,then jzmj = 1 for 0 � jmj � m0, and jzmj < 1 for jmj > m0. Inserting thisinformation into (1.24), we �nd that, away from the driver, an m0-phase wavepropagates through the lattice in the region 0 < n � t. Thus the threshold valuesof 
k are given, in this case, by
k = 2p�k ; k = 1; 2; : : : :(1.26)As we will see below, the above calculations are useful in understanding the asymp-totic state of the solution of (1.18) as t!1 in the case that h is small.In the case of the Toda lattice, when the driving is constant the doubling-up trickconverts the shock problem into an iso-spectral deformation (1.15) for the operator9



eL. When h is non-zero, it is no longer clear how to convert the shock problem (1.18)into an integrable form (although recent results of Fokas and Its [FI] suggest thatthis may still be possible to do). As a tool for analyzing (1.18) in the Toda case weconsider, rather, the Lax pair of operatorsL = 0BBBBBB@ a1 b1 0b1 a2 b2b2 . . . . . .0 . . .
1CCCCCCA ; B = 0BBBBBB@ 0 b1 0�b1 0 b2�b2 . . . . . .0 . . .

1CCCCCCA(1.27)for the semi-in�nite lattice an = � _xn=2; bn = 12 e 12 (xn�xn+1); n � 1.A straightforward calculation shows that L solves the equation_L = [B;L]� 2 b20(t)P; b0 = 12 e 12 (x0�x1);(1.28)which we think of as a forced Lax system. Here P = (Pij)i;j�1, is a matrix operatorwith Pij = 0 unless i = j = 1, and P11 = 1. The equation describes a motionthat is almost, but not quite, an iso-spectral deformation of L. As t evolves, theessential spectrum of L(t) remains �xed, �ess(L(t)) = �ess(L(0)) = [a � 1; a + 1],but eigenvalues may \leak out" from the continuum. This is true, in particular, inthe case of constant driving x0 = 2at, as was �rst observed by Kaup and Neuberger[KN].In the case of constant driving with a < 1, what happens to �(L(t))? We see inFigure 1.29 that the eigenvalues emerge from the band [a� 1; a+1] and eventually�ll the larger band [�a � 1; a + 1] = [�a � 1;�a + 1] [ [a � 1; a + 1]. (In the casea > 1, the bands [�a�1;�a+1]; [a�1; a+1] are disjoint and the spectrum of L(t)�lls these two bands separated by a gap). Thus this \ghost" band, which appearedas an artifact of the solution procedure through the introduction of the doubled-upoperator eL, now emerges in real form, populated by eigenvalues emerging from theoriginal band [a � 1; a + 1]. We learn from Figure 1.29 that for a < 1 there is nogap in the spectrum at t =1, and (hence) there are no oscillations.In the periodically driven case, x0 = 2at+ h(
t), where 
 > 
1 (and a < 1), we�nd a similar picture to Figure 1.29 for the evolution of �(L(t)) which is displayed inFigure 1.30 at some later time, so that more eigenvalues are present than in Figure1.29. As t ! 1; �(L(t)) again converges to a single band and no travelling waveemerges. However, if 
1 > 
 > 
2, we �nd di�erent behavior (Figure 1.31). We see10
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Figure 1.29: Evolution of �(L(t)); driver: x0(t) = t
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Figure 1.30: Evolution of �(L(t)); driver: x0(t) = t + 0:2(sin 
t + 0:5 cos 2
t); 
 =3:1 > 
1
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Figure 1.31: Evolution of �(L(t)); driver: x0(t) = t + 0:2(sin 
t + 0:5 cos 2
t); 
 =1:8; 
1 > 
 > 
2that �(L(t)) converges to two bands separated by a gap, and a single phase waveemerges. For 
2 > 
 > 
3, we see from Figure 1.32 that �(L(t)) converges to threebands separated by two gaps, and a two phase wave emerges, etc.Remarks on the eigenvalues in the gap.(1) The eigenvalues which can be observed in the gaps of the spectrum of thesemi-in�nite Lax operator L(t) (compare with Figures 1.31 and 1.32) are oftwo di�erent types. They are either constant in time or they move down fromthe lower edge of one band to the upper edge of the next band. Eigenvaluesof the second kind can be understood from the corresponding g-gap solutionThey are connected to the zeros of a theta function, which is used in theconstruction of the g-gap solution (see Chapter 5). Eigenvalues which areconstant in time can be interpreted as follows. Numerical computations showthat they correspond to eigenvectors which are moving out as t!1. Hencethe eigenvalues do not survive in the spectrum of the limiting operator L, whichcorresponds to a lattice where all particles perform time periodic motion. Inother words, from the spectral theoretic point of view, this is an example of thegeneral phenomenon that under strong convergence of operators the spectrumis not necessarily conserved.(2) Figures 1.31 and 1.32 give the impression that the eigenvalue branches which12
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Figure 1.32: Evolution of �(L(t)); driver: x0(t) = t + 0:2(sin 
t + 0:5 cos 2
t); 
 =1:1; 
2 > 
 > 
3come down cross the eigenvalues, that remain constant in time. This, of course,is not possible as the symmetric, tridiagonal operator L cannot have doubleeigenvalues. Instead, a close look demonstrates, that a billard ball collision istaking place as shown in Figure 1.33. It is possible to analyze the interactionof �k and �k+1 in detail by using equation (2.5) of Chapter 2 for j = k andj = k + 1, together with the asymptotic assumption that j�k � �k+1j is muchsmaller than the distance between any two other eigenvalues, but we do notpresent the details.
k + 1

time

λ

λ k

Figure 1.33: Close look at a \collision" of two eigenvaluesFor � < inf �ess(L(0)), an interesting quantity to compute isJ(�) = limt!1 ] feigenvalues of L(t) that are < �gt :(1.34) 13



Clearly J(�) represents the asymptotic 
ux of eigenvalues of L(t) across the value�. In Chapter 2 we will extend the de�nition of J to all values of �.It is observed numerically that J(�) indeed exists and for 
2 > 
 > 
3, say, we�nd that J(�) looks as displayed in Figure 1.35 Thus J(�) is constant in the gaps
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Figure 1.35: Numerically observed J(�) in the case 
2 > 
 > 
3; 
 = 1:1and indeed we observe more generally thatJ(�) = j
2� for � in the jth gap:(1.36)This is a very intriguing fact, reminiscent of the Johnson-Moser gap labelling the-orem [JM] in the spectral theory of one-dimensional Schr�odinger operators withalmost periodic potentials (see also the analogous gap labelling theorem for Jacobimatrices [B], [S]).Finally we are at the stage where we can describe our analytical results, whosegoal is to explain the above numerical experiments. In the Toda case with constantdriving, it was possible, using the exact formulae of inverse scattering, to show thatthe solution of the initial value problem converges as t ! 1 to the binary motionif a > 1, and to a quiescent lattice if a < 1. In the present case, where we no longerhave these formulae, our goals are more modest and we restrict our attention to adescription of the observed attractor. Our results are the following:I. Strongly nonlinear case.Here we consider (1.18) in the case of the Toda lattice without any smallnessrestriction on the size of the oscillatory component h of the driver x0. The main14



result is Theorem 2.38 below in which we show how to compute the normalizeddensity of state J(�) through the solution of a linear integral equation, once thenumber and endpoints of the bands in �(L(1)) are known. This linear equation, inturn, can be solved explicitly via an associated Riemann-Hilbert problem.At this stage it is not clear how to relate the number and endpoints of thebands to the parameters of the problem a; 
; h. To test Theorem 2.38 in any givensituation, one reads o� the discrete information given by the number and endpointsof the bands from the numerical experiment, and then compares the solution ofthe integral equation with the normalized density of states J(�) obtained directlyfrom de�nition (1.33) using the numerically computed eigenvalues of L(t) at largetimes. The numerical and analytical solutions for J(�) agree to very high order: seeAppendix C (Figures C.12, C.13) for further details.The proof of this result proceeds by deriving an equation of motion (see (2.5))for the eigenvalues of a truncated version of L(t) of size N � t as t ! 1. Thecontinuum limit of the time average of these equations, leads to the linear integralequation (2.28) for J(�).II. Weakly nonlinear case.Here we consider general F , but the periodic component h is now required tobe suitably small. From the numerical experiments we see that if h = 0("), then ast!1; xn(t) converges to an asymptotic state which is a 2�
 -time periodic solutionxasymp; n(t) with xasymp; n(t) = cn+0(") for some lattice spacing c. The goal here isprove that such time periodic asymptotic states xasymp; n(t) indeed exist for " small.We proceed by linearizing around the particular solution xasymp; n(t) = cn; n � 0,of the equations �xn = F (xn�1 � xn) � F (xn � xn+1); n � 1, and use various toolsfrom implicit function theory.Our �rst result (Theorem 3.38) is a nonlinear version of the classical linearmethod of separation of variables. For example, in solving the heat equation ut =uxx on a half-line x � 0 with boundary conditions at x = 0, one proceeds byexpressing the solution as a combinationZ a+(z) e�(tz2+ixz)dz + Z a�(z) e�(tz2�ixz)of elementary solutions e�(tz2�ixz) of the heat equation on the full line, and thenchoosing the parameters a+; a� to satisfy the boundary condition at x = 0. In thenonlinear case (Theorem 3.38) we show that provided a su�ciently large parameter15



family of travelling wave solutions of the doubly in�nite lattice�xn = F (xn�1 � xn)� F (xn � xn+1); �1 < n <1;(1.37)exist, then (modulo technicalities, see Chapter 3) the parameters can always bechosen to produce the desired asymptotic states xasymp; n(t) of the driven semi-in�nite problem.Thus the problem of the existence of the observed asymptotic states, reducesto the problem of constructing su�ciently large parameter families of travellingwaves of the full lattice equation (1.37). As we will see in Chapter 3, for 
k >
 > 
k+1 k � 1, we will need 2k-parameter families of k-phase travelling wavesof type (1.22) on the full lattice in order to construct the solution of the drivenlattice observed as t!1 in the numerical experiments. If 
 > 
1 (see Section 3.4)the requirement of travelling wave solutions of (1.37) trivializes, and Theorem 3.38guarantees the existence of the desired asymptotic states xasymp; n(t) of the drivenlattice for su�ciently small h and general real analytic F which are monotone inthe region of interest, and this explains Figure C.6.The next result (Theorem 4.24) concerns general F in the case that 
1 > 
 > 
2.Here we show that a 2-parameter family of one-phase travelling wave solutions of(1.37) always exist for general F . Together with Theorem 3.38, this implies thatfor 
1 > 
 > 
2 the desired states xasymp; n(t) of the driven lattice exist, and thisexplains Figure C.7. This 2-parameter family is constructed by deriving an equationfor the Fourier coe�cients of the travelling wave solution, which can be solved by aLyapunov-Schmidt decomposition. The in�nite dimensional part does not pose anyproblems (see Lemma 4.19) and the degenerate �nite dimensional equations can besolved by using certain symmetries of the equation (see Lemma 4.20).If we try a similar construction for m0-phase waves, m0 > 1, then we encounterin the in�nite dimensional part of the Lyapunov-Schmidt decomposition, a smalldivisor problem related to the small divisor problem occurring in [CW], where pe-riodic solutions of the nonlinear wave equation are constructed, and which we hopeto solve in the near future. In the special case of Toda, however, the family oftravelling waves can be constructed explicitly. Indeed in our third, and �nal, result(Theorem 5.13) we use the integrability of the doubly in�nite Toda lattice and showhow the well-known class of g-gap solutions contains a su�ciently large family oftravelling waves to apply to Theorem 3.38 and so construct the desired asymptotics16



states xasymp; n(t) of the driven lattice for any 
 2 +nf
1; 
2; � � �g.Finally we want to pose four open problems, which are connected to our inves-tigations, some of which were mentioned above.(1) The \critical shock" phenomena.As discussed in the very beginning of the introduction, Holian and Straubhave numerically discovered a critical shock strength acrit(F ) in the case ofconstant driving velocity x0(t) = 2at. For a < acrit(F ) the lattice comes torest behind the shock front as t ! 1, whereas for a > acrit(F ) the particlesof the lattice will execute binary oscillations as t ! 1. So far this resulthas been analytically explained in the case of the Toda lattice (F (x) = ex)(cf [HFM], [VDO]) and can be seen to be absent for linear force functions byexplicit calculation.The question is to �nd general conditions on the force F for which one canprove the existence of a critical shock strength.(2) Existence of multi-phase travelling waves.Let F; c satisfy the general assumptions (cf Section 3.2.2) and let 
 2 satisfy2kpF 0(�c) > 
 > 2k+1pF 0(�c) for some k 2 .Does there exist a smooth 2k-real parameter family of solutionsxn(q)(t) = cn+ �k(q)(n�1(q) + 
t; : : : ; n�k(q) + k
t);(1.38)for q 2 2k; q small, of the equation�xn(t) = F (xn�1 � xn)� F (xn � xn+1); n 2 ;(1.39)where �k(q) is for each q a function periodic in its k arguments, �k(0) = 0 andDq�k(0) has maximal rank 2k? Note that these solutions exist in the case ofthe Toda lattice and are given by (5.10). For general force functions the workof Craig and Wayne ([CW]) indicates that it might be necessary to aim for aslightly weaker result, namely, that the smooth family of functions xn(q)(t) ofthe form (1.38) are solutions of (1.39) only for a Cantor set in the parameterspace q 2 2k, which has almost full measure.17



(3) The case a > acrit.In the paper we always assume that the driver is of the form x0(t) = 2at+h(
t)with a < acrit. In the case of the Toda lattice we have also conducted someexperiments for a > acrit(Toda) = 1. We have made the following observation:for h small, the limiting operator L(t); t ! 1 seems to have in�nitly manygaps and again we obtain a version of gap labelling. In fact, for all the gapswe have observed that one can write the numerically determined integratedspectral density J(�) (cf 1.34) in the formJ(�) = j
 + k!2� ; j; k 2 ; � lies in a gap,(1.40)where 
 denotes the frequency of the driver and ! is given by the frequencyof the time-asymptotic oscillations, which are observed in the case that thedriver has constant speed x0(t) = 2at; a > 1.Corresponding to our results in Chapter 5, we ask whether it is possible toconstruct solutions of the driven semi-in�nite Toda lattice with driver x0(t) =2at + h(
t), such that the spectrum of the corresponding Lax-operator hasin�nitely many gaps and bands.(4) Connection to the initial value problem.All of our results were motivated by the numerically observed long-time be-havior of a certain initial value problem (with shock initial data). However,so far we are not able to prove from �rst principles, that the solution of theinitial value problem actually converges as t ! 1 to one of the asymptoticstates described in Chapters 2-5. This basic problem remains open and, alas,seems far from a resolution.Acknowledgments.The work of the �rst author was supported in part by NSF Grant No. DMS{9203771. The work of the second author was supported in part by an Alfred P. SloanDissertation Fellowship. The work of the third author was supported by ARO GrantNo. DAAH04-93-G-0011 and by NSF Grant No. DMS-9103386-002. The authorswould also like to acknowledge the support of MSRI and the Courant Institutein preparing this videotext. Finally, the authors are happy to acknowledge usefulconversations with many of their colleagues, and in particular, with Gene Wayne and18
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Chapter 2An asymptotic calculation inthe strongly nonlinear case
2.1 The evolution equationsWe recall from the Introduction the Flaschka variables (see (1.12))an = � _xn2 ; bn = 12e(xn�xn+1)=2; n = 0; 1; 2; : : : ;(2.1) an ! a; bn ! 12 as n! +1;and we note that the function a0(t) is the given time-periodic forcing function. Forthe semi-in�nite Toda chain with F (x) = ex, equation (1.1) reduces to the perturbedLax pair equation dLdt + LB �BL = ��(t)P;(2.2)where L is the tridiagonal operator (cf (1.27))L = 0BBBBBB@ a1 b1 0b1 a2 b2b2 a3 b30 . . . . . . . . .

1CCCCCCA :
20



B is the antisymmetric tridiagonal operator given byB = 0BBBBBB@ 0 b1 0�b1 0 b2�b2 0 b30 . . . . . . . . .
1CCCCCCA :P is the rank-one matrix given by:Pij = 8<: 1; if i = j = 10; otherwiseand �(t) is the function:�(t) = 2b20(t) = 2b21(t)� _a1(t); � = ddt :(2.3)The matrices L and B are semi-in�nite. We truncate the chain at some particleof very large index N , and work with the truncated �nite matrices LN and BN .The disturbance in the chain caused by the truncation, travels essentially with�nite velocity. Only exponentially small e�ects display in�nite speed. The bulk ofthe chain essentially does not feel the truncation until a time t = O(N). Thus, weexpect that the �nite system is a good approximation to the full semi-in�nite systemin the space-time region 1 << t << N and n << N . In what follows, when we takethe limit as t!1, we always understand t!1; N !1; tN ! 0.We remark that on �ess(L(t)) = �ess(L(0)), by standard spectral methods, thematrix LN (t) has a set of discrete eigenvalues tightly packed at densities of orderO(N). On the other hand, we expect that the discrete spectrum of L(t), whichemerges from �ess(L(0)) as described in the introduction, is well approximated bythe eigenvalues of LN (t) which lie outside �ess(L(0)). This is because the associatedeigenvectors are typically exponentially decreasing in n and hence do not feel thetruncation at N .A word of explanation: Typically an eigenvalue of LN (t) starts o� as an eigen-value of LN (0) lying in �ess(L(0)). As t increases, the eigenvalue moves with velocityO( 1N ) until it emerges from �ess(L(0)). It is only after this point that the motion ofthe eigenvalue becomes relevant to the evolution of the discrete spectrum of L(t).Our strategy is to derive evolution equations for(a) the eigenvalues �Nj of the truncated matrix LN ,21



(b) the �rst entry fj of the jth eigenvector of LN (j = 1; : : : ; N) when it isnormalized to have Euclidean length equal to one.It is well known that the set f�j ; fjgNj=1 determines the tridiagonal matrix LN .Theorem 2.4 The evolution of the �j's and fj's is given by:8<: 12 ddt ln(� _�j) = �j � a0(t) +PNi=1i6=j _�i�j��i ; j = 1; : : : ; N ;f2j = � _�j� ;(2.5)where � = 2b20(t) = �PNi=1 _�i. The initial values �i(0) are the eigenvalues of LN att = 0 while the initial values _�i(0) are given by_�i(0) = �2b20(0)f2i (0):(2.6)Proof : Let � be the diagonal matrix of the eigenvalues �j of LN and let 	be the orthogonal matrix whose jth column is the normalized eigenvector of LNcorresponding to the eigenvalue �j . We have:LN	 = 	�;(2.7)and we de�ne the matrix � by: � = _	�BN	:(2.8)Utilizing equations (2.7) and (2.8) and (2.2), we easily calculate:LN���� = 	 _� + �P	:(2.9)We now de�ne the matrix A = (aij) byA = 	�1� = 	T�:(2.10)We calculate A+AT = 	T�+�T	= 	T ( _	�BN	) + ( _	T �	TBTN )	= 	T _	 + _	T	 = ddt(	T	) = 0:
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Thus A+AT = 0;(2.11)i.e. A is antisymmetric. Using (2.9) we obtainLN�� �� = LN	A�	A� = 	(�A�A�):(2.12)Comparing (2.9) with (2.12) we obtain easily:_� = [�; A]� �	TP	:(2.13)Let fT = (f1; f2; : : : ; fN ) be the �rst row of 	. Then 	TP	 = ffT . We insert thisrelation in (2.13), _� = [�; A]� �ffT :(2.14)Equating the diagonal elements on both sides we obtain:_�j = ��f2j ; NXj=1 _�j = ��:(2.15)This proves the second relation in Theorem 2.4. Furthermore we note that the �rstcomponents fj of the eigenvectors of the tridiagonal matrix LN do not vanish andwe conclude by (2.15) that � _�j > 0. Hence the �rst relation in Theorem 2.4 is wellde�ned.O� the diagonal in (2.14) we have �iaij � aij�j = �fifj. On the other handaii = 0 by (2.11). Thus8<: aij = �fifj�i��j ; when i 6= j;aii = 0:(2.16)We now calculate the evolution of fj. By (2.8):_	 = �+BN	 = 	A+BN	:Specializing to the �rst row we obtain _fT = fTA + BR1	, where BR1 is the �rstrow of BN . This implies_fT = fTA+ (LN � a1I)R1	 = fTA+ (L	)R1 � a1fT= fTA+ (	�)R1 � a1fT = fTA+ fT�� fTa1;or, taking transposes _f = (�� a1I �A)f:(2.17) 23



But, by (2.16), A = �FDF;(2.18)where F is the invertible diagonal matrix with entries f1; : : : ; fN andD is the matrix� 1�i��j � with zero entries on the diagonal. Thus _f = (��a1I��FDF )f , and henceF�1 _f = F�1�f � a1F�1f � �DFf:(2.19)Now note that(i) �Ff = �0BBB@ f21f22... 1CCCA = �0BBB@ _�1_�2... 1CCCA by (2.15),
(ii) F�1f = 0BBB@ 11... 1CCCA, F�1� = �F�1.Substituting in (2.19) we obtain_fjfj = �j � a1 + NXi=1i6=j _�i�j � �i :(2.20)The evolution of the �i's in (2.5) is �nally obtained by eliminating fj between (2.20)and (2.15) and using the expression for � given in (2.3). 32.2 The continuum limit of eigenvalue dynamicsThe results of the numerical experiments described in the Introduction, (cf Figures1.29-(1.32 lead us to consider the 
ux of eigenvalues of the matrix LN across a value�. Noting that the eigenvalues of LN move toward lower values ( _�i = ��f2i < 0),we de�ne the eigenvalue 
ux at � averaged over a time interval (t; t+ T ) byJt;T (�) = 1T card fi : �i(t+ T ) < � < �i(t); i = 1; 2 : : : Ng:(2.21)We pose the following ansatz. 24



Ansatz 2.22 There exists a continuous, almost everywhere continuously di�eren-tiable function J(�) such thatJt;T (�)! J(�); when T; t;N !1 subject to T < t� N:(2.23)When � < inf �ess(L), it is clearly true thatJ(�) = limt!1 # eigenvalues of L(t) that are smaller than �t ;(2.24)as de�ned in the Introduction. The net gain in eigenvalues of LN of an interval (�; �̂)over a long time T is given asymptotically by [J(�̂)�J(�)]T: Dividing by (�̂��)T andletting �̂ ! � we obtain that the asymptotic rate of increase in eigenvalue concen-tration at � is given by dJd� = J 0(�); thus, the di�erence in eigenvalue concentrationat � between times t and zero is asymptotically tJ 0(�). When � < inf �ess(L),necessarily J 0(�) � 0 since there is no original eigenvalue concentration at �. Onthe other hand J 0(�) can take negative values when � 2 �ess(L).We will now use the function J(�) and some assumptions based on numericalobservations to derive the continuum limit of the eigenvalue evolution equations(2.5). We begin by averaging the system (2.5) of equations (j = 1; : : : N) over thetime interval (t; t+ T ) to obtain 12T ln _�j(t+ T )_�j(t) =(2.25)1T Z t+Tt �j(t0)dt0 � 1T Z t+Tt a0(t0)dt0 + 1T NXi=1i6=j Z t+Tt d�i(t0)�j(t0)� �i(t0) ; j = 1; : : : N:Let � satisfy J 0(�) 6= 0, and let j = j(t) be such that in the asymptotic limit1 � T � t � N (note that we require T � t, not just T < t as in (2.23)) thefollowing is true,�j(t)(t0)! � for any t0 that satis�es t < t0 < t+ T:(2.26)In practical terms, this means that we expect eigenvalues �j to stay close to thevalue � throughout the time interval [t; t+ T ]. This fact is clearly borne out in theresults of numerical experiments as long as J 0(�) 6= 0.We make two more simplifying assumptions when J 0(�) 6= 0 that are againjusti�ed by numerical experiments: 25



(a) The left hand side of (2.25) is negligible.(b) The \singular contribution" in the sum of the right hand side correspond-ing to indices i that are close to j is also negligible. In practical termswe interpret this to mean that the limiting integral kernel is the Hilberttransform.Under these conditions we can take the limit 1� T � t� N in (2.25)-(2.26).Theorem 2.27 (Continuum Limit of (2.25)-(2.26)). Under Ansatz (2.22) and un-der the further assumption described above we have:J 0(�) 6= 0) �� < a0 > � 1Z�1= J(�)�� �d� = 0;(2.28)where < a0 > is the mean value of the periodic driver a0(t), and as usual the doublebars on the integral indicate that the principal value is taken.Proof : By the assumptions, and by (2.26) the only thing to be shown is thatthe sum in (2.25) tends to the integral in (2.28). If we partition the eigenvalue axisinto a set of in�nitesimal intervals and if (� � d�; �) is such an interval then thecontribution 1T � �d��� �� should arise in as many terms of the sum in (2.26) as thereare eigenvalues that cross the value � during the time interval (t; t+T ). This numberis asymptotically TJ(�). The sum in (2.26) therefore tends to � 1Z�1= J(�)d��� � . 32.3 The asymptotic spectral density of LNWe now consider the problem of determining J(�). Our solution is partial in thesense that we can calculate the function J(�) if we are given the set f� : J 0(�) 6= 0g.Numerical calculations (see Figures 1.31, 1.32, 1.35) show that this set is a �niteunion of intervals. Thus, we are assuming knowledge of a �nite set of numbersthat are in principle determined by the 
uctuating part of the periodic driver a0(t).Determining these numbers is, unfortunately, the part of the problem that we havenot yet been able to solve.We proceed to give some basic de�nitions.26



De�nition 2.29 Let the points p0 < q1 < p1 < q2 < p2 < : : : < pg < qg+1 begiven. These are 2g+2 points in all. We de�ne the set of bands B, where we haveJ 0(�) 6= 0, B = [p0; q1] [ [p1; q2] [ � � � [ [pg; qg+1];(2.30)and the set of gaps G, where J 0(�) = 0, byGk = (qk; pk); k = 1; 2; : : : g; G = [gk=1Gk(2.31)(cf Figure 2.36 below). We then de�ne the hyperelliptic curveR(�) = f�gk=0(�� pk)(�� qk+1)g1=2(2.32)with branch cuts along the set B and sign determination such that R(�) > 0 when�! + 1. Finally, we de�ne the polynomialP (�) = g+1Xi=1(�� �i) ; �i 2 R;(2.33)where the �i's; i = 1; : : : g + 1, are uniquely determined by the g + 1 relations.ZGk P (�)R(�)d� = 0 ; k = 1; 2; : : : g:(2.34) ZB P (�)R(�)d� = 0:(2.35)
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1 2 gFigure 2.36: The band { gap structure of the spectrumWe observe that the integrals in (2.34) and (2.35) can be easily understoodas contour integrals on the Riemann surface associated with R. The contour in(2.35) can be replaced by a circle of (large) radius. We then obtain P (�)R(�) = 1 +O( 1�2 ) as �!1, which implies through an easy asymptotic calculation that2 g+1Xi=1 �i = gXi=0(pi + qi+1):(2.37) 27



Theorem 2.38 Let J(�) be a continuous function supported on the set B [ G,di�erentiable at all points, except possibly the boundary points of B, satisfying�� < a0 > � 1Z�1= J(�)�� �d� = 0 � 2 B;(2.39) J(�) = ck = const., � 2 Gk; k = 1 : : : ; g;(2.40) J(�) = 0 � 62 B [G;(2.41)where < a0 > is a constant. Then J(�)+ iHJ(�) is the limiting value as z ! �+ i0,of the analytic functionf(z) = �i� 1Zz 1� P (z0)R(z0)dz0; Im z 6= 0:(2.42)Precisely: J(�) = 1� Im 1Z� �1� P (�)R(�)� d�;(2.43) HJ(�) = 1� 1Z�1 J(�)�� �d� = � 1�Re 1Z� �1� P (�)R(�)� d�:(2.44)The endpoints of B satisfy the compatibility conditionqg+1 + 1Zqg+1 �1� P (�)R(�)d�� =< a0 > :(2.45)Remark 2.46 on condition (2.40).In the above Theorem 2.38 we have not speci�ed the value ck which the function J(�)obtains in the k-th gap. In fact, ck will be determined by all the other conditionsof Theorem 2.38. However, as remarked in the Introduction (1.36), one observesin numerical experiments that ck should equal k
=2�. Figures C.12 and C.13 inAppendix C demonstrate that the solution J(�) of the integral equation (2.39) {(2.41) indeed satis�es this additional relation.Proof : The di�erentiability properties of J(�) in the interior of B as well as itsconstancy on the Gk's is immediately obvious as soon as one sees that R is pureimaginary in the interior of B, and pure real elsewhere. The function J(�) is clearlycontinuous at the endpoints of each Gk and at qg+1. Also J(p0) = 0 by (2.35) and28



consequently J(�) = 0 when � < p0. Condition (2.39) follows from (2.34), (2.44)and (2.45) in a straightforward way, using once again the pure real/pure imaginarystructure of R.The function J(�) constructed is unique. Indeed, if by �(�) we denote thedi�erence of two solutions of (2.39)-(2.41), then �(�) satis�es the equations8>><>>: H�(�) = 0; when � 2 B;�(�) = c0k = const:; when � 2 Gk; n = 1; : : : g;�(�) = 0; when � 62 B [G;(2.47)and its derivative �0(�) satis�es8<: H�0(�) = 0; when � 2 B;�0(�) = 0; when � 62 B:(2.48)By (2.48) and the third relation in (2.47) the derivative �0(�) of �(�) is identicallyzero; since �(�) is compactly supported we also have �(�) = 0: 3The above derivation of the equation for J(�) has been obtained under a varietyof assumptions. A fully rigorous derivation still eludes us. At this stage howeverthe justi�cation lies in the comparison with experiments as described e.g. in FiguresC.12 and C.13 of Appendix C.
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Chapter 3A boundary matchingtechnique
3.1 IntroductionIn this chapter we construct 2�
 { time periodic solutions of�xn(t) = F (xn�1(t)� xn(t)) � F (xn(t)� xn+1(t)); n � 1;(3.1)with x0(t) := �Xm2 bmei
mt; Xm2 jbmj = 1;(3.2)satisfying xn(t) = cn+O(�):(3.3)Throughout this chapter we assume that F is real analytic and monoton increasingon an open interval. We will construct solutions satisfying (3.1)-(3.3) for any c 2 ,such that �c lies in the interval. Not all values of c, however, can be observed asthe spacing of an asymptotic state of the driven lattice, described by the initialboundary value problem 1.18. To see this we look at the Toda lattice. For a < 1,in the case where h = 0, the solution xn(t) converges as t!1 to xasymp; n(t) = cn,with spacing c = �2 ln(1+a). Thus the values of the spacing c that can be observedby driving the Toda lattice with constant velocity 2a, lie between � ln 4 and 0.For a > 1, as we know, the solution of the driven lattice does not converge to aquiescent state xasymp; n(t) = cn and, in particular, the values c = �2 ln(1 + a), fora > 1 cannot be observed in this experiment.30



Expand xn(t) in a Fourier series,xn(t) = cn+ Xm2 a(n;m)ei
mt; for n � 0:(3.4)For n = 0 we have a(0;m) = �bm. Expanding F in a power series at �c, we obtainF (xn�1 � xn)� F (xn � xn+1)= F 0(�c) Xm2 [a(n� 1;m)� 2a(n;m) + a(n+ 1;m)]ei
mt + higher order terms :Equation (3.1) with (3.2) is equivalent to(Lma(�;m))(n) +W (a)(n;m) + a(0;m)�1;n = 0; for all m 2 ; n � 1;(3.5)where for m 2 the linear operators Lm acting on the n-variable are given byLm = 0BBBBBB@ �m 1 01 �m 11 �m . . .0 . . . . . .
1CCCCCCA ; �m := �2 + (m
)2F 0(�c) :(3.6)W (a) contains all terms of higher order and �1;n denotes the Kronecker symbol.We note that for � = 0 equation (3.5) is solved by a = 0. However, we cannotapply the implicit function theorem to obtain solutions of equation (3.5) for � 6= 0,because the linearized operator, L = Mm2 Lm;(3.7)is not invertible. Indeed, the spectrum of the operator Lm acting on `2 sequencesis given by �(Lm) = [�m � 2; �m + 2]. This implies that 0 2 �(Lm) for all m 2satisfying 0 � (
m)2F 0(�c) � 4. Denotem0 := maxfm 2 : 0 � (
m)2F 0(�c) � 4g;(3.8)then the multiplicity of 0 in the `2 spectrum of L is 2m0 + 1. However, due to thesimple form of the operator Lm we are able to \ invert " the operator explicitly. Infact, consider the important case 0 < (
m)2F 0(�c) < 4. For a given vector (yn)n�1 andgiven u1, the vector (un)n�2 solves the equationLmu = y;31



if and only ifun = 1sin�m "u1 sinn�m + n�1Xk=1 yk sin(n� k)�m#= 1sin�m "sinn�m u1 + n�1Xk=1 yk cos k�m!� cosn�m n�1Xk=1 yk sin k�m# ;�m := � sgn (m) arccos���m2 � :(3.9)Note, that the value of un is independent of the sign of �m. We will justify theparticular choice we have made in Section 3.3 (see (3.35)) below.The following observation will prove to be useful. Suppose (yn)n�1 decaysexponentially, i.e. there exists a � > 0, such that supn�1 jyne�nj < 1, thensupn�1 june�nj <1, provided the following two relations hold.u1 + 1Xk=1 yk cos k�m = 0(3.10)and 1Xk=1 yk sin k�m = 0:(3.11)Equation (3.10) can always be satis�ed by an appropriate choice of u1, whereasequation (3.11) is a condition on the sequence (yn)n�1. Therefore the operator Lmacts 1-1 on spaces of exponentially decaying sequences and the range has codimen-sion 1. Furthermore a simple calculation shows that the inverse operator acts onthe range as a bounded operator with respect to the corresponding exponentiallyweighted supremum norms. Still we cannot apply a standard implicit function the-orem to obtain solutions of equation (3.5). Nevertheless, proceeding formally, wetransform equation (3.5) into a �xed-point equation.a(n;m) = �L�1m [W (a)(n;m) + �bm�1;n]:(3.12)As W is of higher order we can in principle apply a Banach �xed-point argumentto obtain a solution of (3.12) as long as L�1m is a bounded operator. We have seenabove that this can be achieved, if condition (3.11) is satis�ed, i.e.�bm sin�m + 1Xk=1W (a)(k;m) sin k�m = 0; for 0 < (
m)2F 0(�c) < 4:(3.13)
32



Equation (3.13) indicates that we will be able to solve equation (3.12) for su�cientlysmall � in a space of sequences decaying exponentially in n, only if the Fouriercoe�cients of the driver bm take on a special value for those m 2 satisfying0 < (
m)2F 0(�c) < 4.This observation is consistent with the linear case where we conclude from for-mulae (1.23) { (1.25) that the solutions decay exponentially in n, only if bm = 0 for0 � (
m)2F 0(�c) � 4. The linear case also suggests that we should add multiphase wavesin order to obtain solutions of equations (3.1),(3.2) for general driving functions.This leads to the following ansatz for a(n;m):a(n;m) = u(n;m) + v(n;m) + (�bm � u(0;m)� v(0;m)); n � 0;m 2 ;(3.14)where u denotes the travelling wave part and v corresponds to the exponentiallydecaying modes. Note that (3.14) implies a(0;m) = �bm, for all m 2 .De�nition 3.15 We will refer to the Fourier modes m with 0 � (
m)2F 0(�c) � 4, orequivalently jmj � m0, as resonant Fourier modes. On the other hand we saythat a frequency 
 2 + is resonant if (
m)2F 0(�c) = 4 for some m 2 .The present chapter is organized as follows. We begin Section 3.2 by derivingequations for the sequences of Fourier coe�cients u(n;m) and v(n;m) (given by (3.4)and (3.14) above), which are su�cient to prove that the corresponding functionsxn(t) solve (3.1), (3.2). These equations, which are given in Lemma 3.31 below, canbe made rather explicit because of the assumption, that the force function F canlocally be expanded in a power series and therefore we will obtain good estimates onthe higher order terms by carefully choosing the norm on the sequences of Fouriercoe�cients. In the notation of Lemma 3.31, these equations can be described asfollows.(1) is an equation for u, which is satis�ed by the Fourier coe�cients of solutionsxn(t;u) :=Pm2 u(n;m)ei
mt of the doubly in�nite lattice.(2) is an equation for v, depending on u, which guarantees that u+ v correspondsto a solution of the semi-in�nite lattice.(3) represents the boundary condition by requiring �bm � u(0;m) � v(0;m) = 0,for m 6= 0. The case m = 0 is special; we do not have to require �b0 �33



u(0; 0) � v(0; 0) = 0 for the reason that solutions of (3.1) are invariant undertranslations xn ! xn + const.We then proceed in Section 3.3 to prove the basic result (Theorem 3.38) of thischapter. Assume 
 is non resonant (see De�nition 3.15, then for (small) � andfor given (small) travelling wave solutions u of the doubly in�nite lattice, we canconstruct sequences v satisfying equation (2) above and solving equation (3) for allnon resonant Fourier modes m (compare with De�nition 3.15), i.e. for those m 2satisfying jmj > m0. Furthermore suppose that u is given as a C1 function of aparameter q. Then we will show that the resulting v is a C1 function of q and �.Note that this statement is needed in order to ensure that the remaining equationsof (3) (for resonant Fourier modes) can be solved by constructing a su�ciently largeparameter family of travelling wave solutions u(q), and then applying a standardimplicit function theorem.The proof of this basic result (Theorem 3.38) rests on a Banach �xed-pointargument. The equation for v takes the form(Lv)(n;m) +W (u; v)(n;m) + v(0;m)�1;n = 0; for n � 1;m 2 :(3.16)L =Lm2 Lm was de�ned in (3.6) and (3.7) and W (u; v) denotes the higher orderterms. We turn (3.16) formally into a �xed-point equation,v(�;m) = �L�1m (W (u; v)(�;m) + v(0;m)�1;�) :(3.17)Denote S� := ((yn)n�1 : supn�1 jyne�nj <1) :As indicated above we will be able to prove the following results on the invertibilityof Lm by explicit calculation (see proof of Theorem 3.38).� For 0 < jmj � m0 and � > 0, the linear operator Lm maps S� onto fy 2 S� :Pk�1 yk sin(k�m) = 0g. (The quantities �m were de�ned in (3.9). The inverseoperator acting on the range is bounded with respect to the correspondingnorms.� There exist weights � > 0, such that the operators Lm : S� ! S� are bijectiveand have a bounded inverse for all jmj > m0.34



� Again the case m = 0 is somewhat special as the Green's function of theoperator L0 grows linearly and we will have to use the special structure ofW (u; v) in order to de�ne a bounded inverse. See the proof of Theorem 3.38below for more details.Although u(n;m) does not decay in n, we will nevertheless see by explicit calcu-lation that W (u; v) decays exponentially in n. This makes it possible to prove theexitence of a solution of (3.17) by a Banach �xed-point argument. For jmj > m0we can choose v(0;m) = �bm � u(0;m) and hence satisfy the boundary conditionas described in equation (3) above, whereas in the case 0 < jmj � m0 the choiceof v(0;m) is determined by the condition that W (u; v)(�;m) + v(0;m)�1;� has to liein the range of Lm. A small technical problem arises when proving the smooth de-pendence of v on the parameters. It will turn out that the travelling wave solutionsconstructed in the subsequent chapters depend smoothly on q, but @u@q (n;m) growslinearly in n. Therefore @u@q does not lie in a space which is suitable for our calcula-tions. We will verify the smooth dependence of v on q and � explicitly by applyinga Banach �xed-point argument to the partial derivatives in the appropriate spaces.In Section 3.4 we show that the results of Sections 3.2 and 3.3 su�ce to constructperiodic solutions of the driven lattice in the case that m0 = 0, which correspondsto high driving frequencies.3.2 The equation for the Fourier coe�cientsIn this section we introduce norms, which are suitable for the sequences of Fouriercoe�cients, and prove some of their basic properties. Then the general assump-tions on the force function F and on the driver will be stated precisely. Using theassumptions on F we derive estimates on the nonlinear terms which allow us togive conditions on the Fourier coe�cients which are su�cient for proving that thecorreponding functions xn(t) given by (3.4) and (3.14) solve equations (3.1) and(3.2).3.2.1 Sequence spacesThe choice for the norms on the sequences of Fourier coe�cients u(n;m) and v(n;m)(compare with equation (3.14)) is motivated by the following observations. The35



nonlinear terms of the force function make it necessary to take convolutions withrespect to the m-variable (see Section 3.2.3 below). Therefore we choose an `1-normfor m. In fact we use a weighted `1-norm in order to control the regularity of thesolution. Furthermore the weight function has to satisfy some additional conditionsto insure that the norm is still compatible with respect to convolution (see De�nition3.18 of admissible weight functions). For the n-variable a supremum norm with anexponential weight is chosen which is suitable for inverting the linearized operatorsLm.De�nition 3.18 A map w : ! is said to be an admissible weight function, ifw(m) � 1; for all m 2 ;(3.19)and w(m) � w(m� n)w(n); for all m;n 2 :(3.20)De�nition 3.21 Let w be an admissible weight function. We denote`1;w := (u : ! �����Xm2 w(m)ju(m)j <1) ;with the corresponding normkuk`1;w := Xm2 w(m)ju(m)j:Note that `1;w is a Banach space which lies in `1 by condition (3.19). The in-equality (3.20) insures that the `1;w-norm is submultiplicative with respect to con-volution (see Proposition 3.23 below). It also implies that the weight functioncan not grow faster than exponentially. Indeed, it is easy to prove that w(m) �w(0) (max(w(1); w(�1)))jmj. We shall be interested in three types of weight func-tions which will all satisfy the conditions speci�ed in De�nition 3.18.(i) 8m 2 : w(m) := 1 .(ii) 8m 2 : w(m) := (1 + jmj)� , for � � 0 .(iii) 8m 2 : w(m) := e�jmj, for � � 0.Finally note that the product of two admissible weight functions is again an admis-sible weight function. 36



De�nition 3.22 Let w be an admissible weight function and let � 2 . ThenL�;w := (u : 0 � ! ����� supn�0 e�nju(n; �)j!m2 2 `1;w) ;with the corresponding normkuk�;w := Xm2 w(m) supn�0 e�nju(n;m)j:It is easy to check that L�;w are Banach spaces and that L�1;w � L�2;w for �1 � �2.In the following proposition we recall some simple properties of the convolution ofsequences, which is de�ned by (u � v)(m) := Pl2 u(m � l)v(l). Furthermore weprovide estimates on the convolution in terms of the norms de�ned above.Proposition 3.23 Let c 2 ; u1; u2; u3; u4 2 `1, then(i) u1 � u2 2 `1 and ku1 � u2k`1 � ku1k`1ku2k`1 :(ii) u1 � u2 = u2 � u1:(iii) u1 � (u2 � u3) = (u1 � u2) � u3:(iv) u1 � (u2 + cu3) = u1 � u2 + c(u1 � u3):(v) If u1 and u2 satisfy the reality condition (i.e. 8m 2 : ui(m) = ui(�m); i =1; 2), then u1 � u2 also satis�es the reality condition.(vi) If for all m 2 : ju1(m)j � u2(m) and ju3(m)j � u4(m), then j(u1 �u3)(m)j �(u2 � u4)(m) for all m 2 .(vii) Convolution respects the `1;w norm, i.e. let v1; v2 2 `1;w then v1 � v2 2 `1;wand kv1 � v2k`1;w � kv1k`1;wkv2k`1;w .(viii) Let �1; �2 2 and u 2 L�1;w; v 2 L�2;w and de�ne their m - convolution yby y(n;m) := Pl2 u(n;m � l)v(n; l). Then y 2 L�1+�2;w and kyk�1+�2;w �kuk�1;wkvk�2;w:Proof : Properties (i)-(vi) are standard. In order to show (vii) we note thatthe inequality (3.20) impliesXm w(m)j(u1 � u2)(m)j � Xm;nw(m� n)ju1(m� n)jw(n)ju2(n)j= k(wju1j) � (wju2j)k`1 ;and by (i) this is all we need. Property (viii) is a consequence of (vi) and (vii).37



33.2.2 The general assumptionsRecall the notation which was introduced in equations (3.1) and (3.2). We now statethe assumptions on the force function F , the frequency 
 and the Fourier coe�cients(bm)m2 of the driver.The general assumptions.(1) F : ! is real analytic in a neighborhood of �c; c 2 , andF 0(�c) > 0:(3.24)(2) 
 2 + n f
 : (m
)2F 0(�c) = 4 for some m 2 g.(3) (bm)m2 2 `1;w for some admissible weight function w and kbmk`1;w = 1.Remark:� We are looking for a solution of the type xn(t) = cn+O(�). Therefore F (xn�1�xn) = F (�c + O(�)). Condition (1) will allow us to expand F (xn�1 � xn) �F (xn � xn+1) in a power series where the linear term does not vanish.� It will be shown that the exceptional set of resonant frequencies (see De�nition3.15) f
 : (m
)2F 0(�c) = 4 for somem 2 g consists of precisely those frequencies forwhich the number of phases in the travelling wave solution described abovechanges. In the case of the Toda lattice these are also the frequencies forwhich the number of gaps in the spectrum of the corresponding Lax operatorat t =1 changes.� It turns out that the weighted spaces `1;w are well suited to proving that theregularity of the solution is comparable to the regularity of the driver.3.2.3 The nonlinear termsThe force function F is assumed to be a real analytic function at �c (see generalassumptions above) and we can de�ne for all k � 0,�k := @k@xkF (�c):(3.25) 38



By �F;c we denote the minimum of 1 and the radius of convergence of the powerseries P1k=0 �kk! (x + c)k. Recall that �1 6= 0 by the general assumptions. Thereforewe obtain the following estimates by standard arguments for power series.Proposition 3.26 There exists a constant ~CF;c, such that for all y, jyj � �F;c2 ,1j�1j 1Xk=2 j�kjk! jyjk � ~CF;cjyj2:1j�1j 1Xk=2 j�kj(k � 1)! jyjk�1 � ~CF;cjyj:1j�1j 1Xk=2 j�kj(k � 2)! jyjk�2 � ~CF;c:We now de�ne the higher order terms of the equations for the Fourier coe�cientsas formal power series. The convergence of these series and various di�erentiabilityproperties will be discussed in the subsequent proposition. In order to see that thefollowing expressions indeed represent the higher order terms of the equation, onemay look at Lemma 3.31 below.If u = u(n;m) 2 L�;w, we use u(n; �)�k to denote the k -th m-convolution of u,that is u(n; �)�k(m) = Xl1+���+lk=mu(n; l1) � : : : � u(n; lk):(3.27)De�nition 3.28 For � � 0; u; v 2 L�;w and n � 1, denote4u(n;m) := u(n� 1;m) � u(n;m):W (u)(n;m) := 1�1 1Xk=2 �kk! �(4u)(n; �)�k � (4u)(n+ 1; �)�k� (m):Y (u; v)(n;m) := 1�1 1Xk=2 �kk! �(4(u+ v))(n; �)�k � (4u)(n; �)�k� (m):W (u; v)(n;m) := Y (u; v)(n;m) � Y (u; v)(n + 1;m):For n = 0 and for all m 2 set 4u(0;m) := W (u)(0;m) := Y (u; v)(0;m) :=W (u; v)(0;m) := 0.Proposition 3.29 There exists a constant CF;c, such that for all 0 � � � 1; u 2L0;w and v 2 L�;w with kuk0;w; kvk�;w < �F;c8 the following is true. The series inthe de�nition of W and Y converge absolutely with W (u) 2 L0;w; Y (u; v) 2 L�;w.Furthermore 39



(i) kW (u)k0;w � CF;ckuk20;w.(ii) kY (u; v)k�;w � CF;ckvk�;wmax(kuk0;w; kvk0;w).(iii) The map F1 : fv 2 L�;w : kvk�;w < �F;c8 g ! L�;w; v 7! Y (u; v) is C2 and thederivatives satisfy the following estimates8x 2 L�;w : k(DvY )(u; v)xk�;w � CF;cmax(kuk0;w; kvk0;w)kxk�;w:8x1; x2 2 L�;w : k(D2vY )(u; v)[x1; x2]k�;w � CF;ckx1k�;wkx2k�;w:(iv) The map F2 : fu 2 L0;w : kuk0;w < �F;c8 g ! L�;w; u 7! Y (u; v) is C1 withderivativeDuY (u; v)x = 1�1 1Xk=2 �kk! k�1Xl=1 0@ kl 1A (k� l)(4u)�(k�l�1) � (4v)�l �4x:(3.30)DuY (u; v) as given in equation (3.30) can be regarded as a bounded linearoperator from L�0;w into L�+�0 ;w for �0 2 and the corresponding operatornorm is bounded by (1 + e�0)CF;cmax(kuk0;w; kvk�;w).(v) Let �0 � 0 and �x x 2 L��0;w. The mapF3 : L�;w ! L���0 ;w; v 7! (DuY )(u; v)x is C1 and the derivative satis�es theestimate8z 2 L�;w : kDvF3(v)zk���0 ;w � CF;ckxk��0 ;wkzk�;w:Remark: The di�erentiability properties (iii)-(v) will not be used in the presentsection, but they are needed in Section 3.3 when we prove di�erentiability of thesolution of the �xed-point equation with respect to certain parameters (comparewith the proof of Theorem 3.38 ).Proof : (i) We begin by remarking that u 2 L0;w implies 4u 2 L0;w andk4uk0;w � 2kuk0;w. By Proposition 3.23 (viii) and Proposition 3.26 it is easy tosee, that kW (u)k0;w � 2 1j�1j 1Xk=2 j�kjk! k4ukk0;w� 2 ~CF;c(2kuk0;w)2:(ii) In this case one has to evaluate(4(u+ v))(n; �)�k � (4u)(n; �)�k = kXl=10@ kl 1A (4v)(n; �)�l � (4u)(n; �)�(k�l):40



Using again Proposition 3.23 (viii) and Proposition 3.26 we obtainkY (u; v)k�;w � 1j�1j 1Xk=2 j�kjk! kXl=1 2kk4vkl�10;wk4ukk�l0;w k4vk�;w� 1j�1j 1Xk=2 j�kj(k � 1)! (2max(k4uk0;w; k4vk0;w))k�1 2k4vk�;w� 8 ~CF;cmax(kuk0;w; kvk0;w)k4vk�;w:Observing that k4vk�;w � (1 + e�)kvk�;w the claim follows.(iii) The proof of di�erentiability for F1 (as well as F2 and F3) uses the fact thatthese functions are sums over l and k; l � k, of monomials of the form (4v)(n; �)�l �(4u)(n; �)�(k�l). Therefore it su�ces to �rst prove the continuous di�erentiability ofeach term in the sum and to show secondly that the sum of the derivatives convergesuniformly in the corresponding norm.Because of the simple algebraic rules for convolution (see Proposition 3.23) it isstraightforward to check that for l � 1 the mapF4 : v 7! (4v)(n; �)�l � (4u)(n; �)�(k�l)is a C1 map from L�;w into L�;w with derivativeDF4(v)x = l(4v)(n; �)�(l�1) � (4u)(n; �)�(k�l) � (4x)(n; �):Proposition 3.23 (viii) yields the estimate in the corresponding operator normkDF4(v)k � (1 + e�)l (max(k4uk0;w; k4vk0;w))k�1and with Proposition 3.26 we conclude the uniform convergence of the sum, as1j�1j 1Xk=2 j�kjk! kXl=10@ kl 1A (1 + e�)l (2max(kuk0;w; kvk0;w))k�1� 1j�1j 1Xk=2 j�kj(k � 1)! (1 + e�)2 (4max(kuk0;w; kvk0;w))k�1� 2(1 + e�) ~CF;c4max(kuk0;w; kvk0;w):This proves everything about the �rst derivative. For the second derivative we canproceed similarily. We getD2F4(v)[x; y] = l(l � 1)(4v)(n; �)�(l�2) � (4u)(n; �)�(k�l) � (4x)(n; �) � (4y)(n; �):41



The convergence of the sum is guaranteed by1j�1j 1Xk=2 j�kjk! kXl=10@ kl 1A (1 + e�)2l(l � 1) (2max(kuk0;w; kvk0;w))k�2� 1j�1j 1Xk=2 j�kj(k � 2)! (1 + e�)24 (4max(kuk0;w; kvk0;w))k�2� 4(1 + e�)2 ~CF;c:(iv) The proof is rather similar to the one just given. For k � 2; l � 1 letF5 : u 7! (4u)�(k�l) � (4v)�l:F5 is a C1 map from L0;w into L�;w withDF5(u)x = (k � l)(4u)�(k�l�1) � (4v)�l � 4x:kDF5(u)xk�;w � (k � l) (2max(kuk0;w; kvk0;w))k�2 (1 + e�)kvk�;w2kxk0;w:Proposition 3.26 gives the uniform convergence of the sum. The remaining part of(iv) can be easily seen from Proposition 3.26, Proposition 3.23 (viii) and the justgiven formula.(v) Applying the procedure again, we �rst convince ourselves that for l � 1 thefunction F6 : v 7! (4u)�(k�l�1) � (4v)�l � 4xis a C1 map from L�;w into L���0;w with derivativeDF6(v)z = l(4u)�(k�l�1) � (4v)�(l�1) � 4x � 4z:The sum of the operator norms of the derivatives can uniformly be estimated by1j�1j 1Xk=2 j�kj(k � 2)!2k (2max(kuk0;w; kvk0;w))k�2 2kxk��0 ;w(1 + e�)� 8(1 + e�) ~CF;ckxk��0;w:This concludes the proof of the proposition. 3
42



3.2.4 The equations for the Fourier coe�cientsFollowing the ansatz described in Section 3.1, we are now ready to give su�cientconditions for the Fourier coe�cients u(n;m) and v(n;m) in order to obtain realsolutions for the driven nonlinear lattice described by equations (3.1) and (3.2).Recall from equation (3.6) the de�nition �m = �2 + (m
)2F 0(�c) :Lemma 3.31 Let F; c; 
; (bm)m2 ; w satisfy the general assumptions. Suppose thereexist u; v 2 L0;w, for which the following conditions hold.(1) 8n � 1;m 2 : u(n� 1;m) + �mu(n;m) + u(n+ 1;m) +W (u)(n;m) = 0:8n � 0;m 2 : u(n;�m) = u(n;m):kuk0;w < �F;c8 :(2) 8n � 1;m 2 : v(n� 1;m) + �mv(n;m) + v(n+ 1;m) +W (u; v)(n;m) = 0:8n � 0;m 2 : v(n;�m) = v(n;m):kvk0;w < �F;c8 :(3) 8m 6= 0 : �bm � v(0;m) � u(0;m) = 0:Then the family of real valued and periodic functionsxn(t) := cn+ Xm2 a(n;m)eim
t; for n � 1;with a(n;m) := u(n;m) + v(n;m) + �bm � u(0;m)� v(0;m); for n � 0;solves the equations�xn = F (xn�1 � xn)� F (xn � xn+1); n � 1;where x0(t) = �Xm2 bmeim
t:43



Note that the sequence a is also de�ned for n = 0 and that a(0;m) = �bm, theFourier coe�cients of the driver.Proof : First we note that the xn are twice di�erentiable functions for n � 1.In fact, we know that (�mu(n;m))m2 and (�mv(n;m))m2 are sequences in `1 , asthey can be expressed in terms of the `1 sequences u(n� 1; �); u(n+1; �);W (u)(n; �)and v(n � 1; �); v(n + 1; �);W (u; v)(n; �) . But this implies that (m2a(n;m))m2 isin `1, which yields the C2 regularity of xn. Furthermore it is immediate that allfunctions xn are real valued and periodic with period 2�
 .Let us now turn to the main point of the proof, namely to verify that the xnare solutions of the driven lattice. As �xn and F (xn�1 � xn) � F (xn � xn+1) areboth continuous functions of the same period, it su�ces to show that their Fouriercoe�cients coincide. One checks from the de�nitions that8n � 1 : xn�1(t)� xn(t) = �c+ Xm2 4a(n;m)eim
t= �c+ Xm2 4(u+ v)(n;m)eim
t:Substituting into the Taylor series for F yieldsF (xn�1(t)� xn(t)) = Xk�0 �kk!  Xm2 4(u+ v)(n;m)eim
t!k= Xk�0 �kk! Xm2 (4(u+ v))(n; �)�k(m)eim
t= Xm2 0@Xk�0 �kk! (4(u+ v))(n; �)�k(m)1A eim
t;where all the manipulations are justi�ed as the sums converge absolutely (comparewith proof of Proposition 3.29). We can now read o� the Fourier coe�cients.
2� Z 2�
0 [F (xn�1(t)� xn(t))� F (xn(t)� xn+1(t))] e�im
tdt= �1 [4(u+ v)(n;m)�4(u+ v)(n+ 1;m) +W (u)(n;m) +W (u; v)(n;m)] :On the other hand, using condition (3) of the hypothesis
2� Z 2�
0 �xn(t)e�im
tdt = �(
m)2a(n;m)= �(
m)2(u+ v)(n;m):The equality of the Fourier coe�cients follows from (1) and (2) of the hypothesis.44



3It is a simple corollary of the proof of the Lemma, to see that condition (1) issatis�ed if we have a \small" solution of the doubly in�nite lattice equation. Thisis stated more precisely in the following remark.Remark 3.32 Suppose that u : � ! satis�es Pm2 supn2 ju(n;m)j < �F;c8 .For n 2 set x(0)n (t) := cn+ Xm2 u(n;m)eim
t:Then u satis�es condition(1') 8n 2 ;m 2 : u(n� 1;m) + �mu(n;m) + u(n+ 1;m) +W (u)(n;m) = 0;8n 2 ;m 2 : u(n;�m) = u(n;m);if and only if x(0)n (t) is a real valued solution of the di�erential equation�xn(t) = F (xn�1(t)� xn(t))� F (xn(t)� xn+1(t)); for n 2 :3.3 Solving for the non resonant modesThe present section is devoted to the proof of our basic result, which was explainedand motivated in Chapter 1 and in the introduction to this chapter. Before thetheorem can be stated we recall some notation of Section 3.1 and we add a fewde�nitions.In equation (3.6) we have set�m = �2 + (m
)2F 0(�c) :Furthermore we denoted in equation (3.8),m0 = maxfm 2 : 0 � (m
)2F 0(�c) � 4g:By separation of variables one obtaines solutions of the free linearized problem ofthe form yn(t) = znmei
mt; m 2 ;45



where z2m + �mzm + 1 = 0:(3.33)The case jmj > m0 corresponds to �m > 2 and therefore we can pick zm to be thesolution of the above equation with jzmj < 1, which is given by8jmj > m0 : zm := ��m2 +s�2m4 � 1; for �m > 2:(3.34)In the case 0 < jmj � m0, the general assumptions on the frequency 
 implythat j�mj < 2. We choose for zm the solution of equation (3.33), which correspondsto an outgoing wave yn(t), i.e. zm = ei�m with�m = � sgn (m) arccos���m2 � :(3.35)This explains the choice of the sign in equation (3.9). Note, that for all 0 < jmj � m0we have j sin�mj > 0;(3.36)as j�mj < 2.De�nition 3.37 Let 
; F; c; (bm)m2 ; w satisfy the general assumptions.�0 := min(1;�12 ln(jzm0+1j)):�1 := 14�0:CK := max"1 + e�2�01� e�4�0 � 1e�0 � 1 + 11� e�2�0 � ;21� e��1 max� 1j sin�mj : 0 < m � m0�� :�u := Xjmj>m0w(m)ju(0;m)j:Remarks :� The constant CK is well de�ned, as �0; �1 > 0 and jsin�mj > 0 for 0 < jmj �m0. We will see below, that CK is an upper bound on a linear operator Kwhich is related to the to the inverse of the operatorLm2 Lm (see Proposition3.50 below).
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� The use of �u will not become clear before Chapter 4. There we will see thatthis quantity is the main tool for proving that the sequence v ( in the notationof Lemma 3.31), which will be constructed in the next theorem, is of higherorder.The following is the main result of this chapter.Theorem 3.38 Let 
; F; c; (bm)m2 ; w satisfy the general assumptions. Further-more we assume that there exists a choice of constants N 2 ; c0 > 0; C0 > 1, anda map fq 2 N : jqj � c0g ! L0;w : q 7! u(q), such that(1) 8jqj � c0 : ku(q)k0;w � c1 and �u(q) � c14 , wherec1 := min 14CKCF;c ; �F;c8 ! :(3.39)(2) q 7! u(q) is a C1 map from fq 2 N : jqj � c0g to L��1;w and the followingestimates hold. 8jqj � c0; 1 � j � N : 




 @@qj u(q)




��1;w � C0:(3) For all jqj � c0; n � 0 and m 2 : u(q)(n;�m) = u(q)(n;m).Then for all (q; �) 2 N+1 with jqj; j�j � min(c0; c14C0 ) there exists a unique v 2 L�0;wwith the following properties (i)-(iii).(i) 8m 2 ; n � 1 : v(n� 1;m)+ �mv(n;m)+ v(n+1;m)+W (u(q); v)(n;m) = 0:(ii) kvk�0;w � 2(�u(q) + j�j) � c1 � �F;c8 :(iii) 8jmj > m0 : v(0;m) = �bm � u(q)(0;m):Furthermore the following holds.(iv) For all n � 0 and m 2 : v(n;�m) = v(n;m).(v) The map (q; �) 7�! v is a C1 map into L�1;w:
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Proof : The proof proceeds via a Banach �xed-point argument for v andthe derivatives of v with respect to the parameters qj; �. First we de�ne a map ~T(Step 1), which we then show to be a contraction on a certain set (Step 2). Weconclude that the �rst component of the �xed-point of this map is a solution of theequations given in (i) and (iii) (Step 3). Step 4 settles the question of di�erentiabil-ity for v and Step 5 deals with the remaining properties (ii) and (iv).Step 1: De�nition of the contraction.First we will turn equation (2) of Lemma 3.31 into a �xed-point equation v =T (q; �; v), depending on the parameters q and �, by applying the inverse ofLm2 Lmon it. As it was pointed out in the introduction of the present chapter, the oper-ators Lm are not invertible for jmj � m0. Nevertheless we will de�ne a formalinverse for jmj � m0, acting on exponentially decaying sequences, as motivatedin the introduction. Note the special role of m = 0, where the Green's func-tion of L0 grows linearly. Using the fact that the nonlinear term is given byW (u; v)(n; 0) = Y (u; v)(n; 0) � Y (u; v)(n + 1; 0), we end up with a bounded ker-nel acting on Y (u; v)(n; 0). We then proceed to de�ne the maps ~Tq;�;j, which giverise to the �xed-point equation for v in their �rst argument and to the �xed-pointequation for the partial derivative of v with respect to the j-th component of theparameters in their second argument. The map ~T is introduced in order to showthat the �xed-point v of the map T depends smoothly on the parameters q; � inStep 4.Let � := (q; �) denote the parameters in the construction. Furthermore it isconvenient to scale these parameters by a factor� := min�c0; c14C0� :(3.40)Hence we can choose � 2 U , withU := f(q; �) 2 N+1 : jqj; j�j < 1g:(3.41)Let us further de�ne two sets on which the map will act.B := fv 2 L�0;w : kvk�0;w � c1g:(3.42) B0 := fy 2 L�0�2�1;w : kyk�0�2�1;w � c1g:(3.43)We now de�ne the map T (�; v) explicitly. For � 2 U; v 2 B let48



� m = 0; n � 0 : T (�; v)(n; 0) := � 1Xk=n+1Y (u(�q); v)(k; 0):� 0 < jmj �m0; n � 0 :T (�; v)(n;m) := 1sin�m 1Xk=n+1W (u(�q); v)(k;m) sin(n� k)�m:� jmj > m0; n = 0 : T (�; v)(0;m) := ��bm � u(�q)(0;m):� jmj > m0; n � 1 :T (�; v)(n;m) := 1Xk=1 1� z2min(n;k)m1� z2m zjn�kj+1m W (u(�q); v)(k;m)+ znm(��bm � u(�q)(0;m)):It is useful to rewrite T in the following way. De�ne the linear map K, which actson spaces L�;w: (Ky)(n;m) := 1Xk=1K(k; n;m)y(k;m);(3.44)with kernel K(k; n;m).� m = 0 : K(k; n; 0) := 8<: 0; for k � n�1; for k � n+ 1:� 0 < jmj �m0 :K(k; n;m) := 8<: 0; for k � n1sin �m [sin(n� k)�m � sin(n+ 1� k)�m]; for k > n:� jmj > m0 :K(k; n;m) := 1� z2min(n;k)m1� z2m zjn�kj+1m � 1� z2min(n;k�1)m1� z2m zjn+1�kj+1m :
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It is straightforward to check thatT (�; v)(n;m) = [KY (u(�q); v)](n;m) + (��bm � u(�q)(0;m))znm1fjmj>m0g:(3.45)Now we can de�ne the map ~T , which acts on the complete metric space B�B0,equipped with the normk(v; y)kB�B0 := max (kvk�0;w; kyk�0�2�1) :(3.46)Fix � 2 U; 1 � j � N + 1.~T�;j : B �B0 �! B �B0,~T�;j 0@ vy 1A := 0@ T (�; v)hj(�; v) +K(DvY )(u(�q); v)y 1A ;(3.47)where we now give explicit expressions for hj(�; v). There are two cases.Case 1: �j = � hj(�; v)(n;m) := �bmznm1fjmj>m0g:(3.48)Case 2: �j = qj .hj(�; v)(n;m) := �[K(DuY )(Dju)](n;m)� �(Dju)(0;m)znm1fjmj>m0g:(3.49)This completes the de�nition of ~T .Step 2: ~T�;j : B �B0 �! B �B0 is a contraction.We �rst obtain a bound on the norm of the linear operator K.Proposition 3.50 For all �1 � � � �0, the linear operator K maps L�;w into L�;wand the corresponding operator norms of K are bounded by CK. (See De�nition3.37).Proof : The proof is a consequence of the following estimates.� m = 0; n � 0 :j(Ky)(n; 0)je�n � e�n 1Xk=n+1 e��k supj�0 je�jy(j; 0)j� 11� e��1 supj�0 je�jy(j; 0)j:50



� 0 < jmj �m0; n � 0 :j(Ky)(n;m)je�n � 2sin�m 1Xk=n+1 e��k supj�0 je�jy(j;m)j� 11� e��1 2sin�m supj�0 je�jy(j;m)j:� jmj > m0; n = 0 : K(k; 0;m) = 0.� jmj > m0; n � 1 : By de�nition of �0, jzmj � e�2�0 (see De�nition 3.37),which yields the estimate for the Greens function ����1�z2min(n;k)m1�z2m zjn�kj+1m ���� �e�2�01�e�4�0 e�2�0jn�kj. Convolution of this bound with an exponentially decay-ing sequence gives1Xk=1 e�2�0jn�kje��k � n�1Xk=0 e�2�0(n�k)��k + 1Xk=n e�2�0(k�n)��k� e�2�0n e(2�0��)n � 1e(2�0��) � 1 + e��n 11� e�2�0��� e��n � 1e�0 � 1 + 11� e�2�0 � ;and we arrive atj(Ky)(n;m)je�n � 1 + e�2�01� e�4�0 � 1e�0 � 1 + 11� e�2�0 � supj�0 je�jy(j;m)j: 3Now we are ready to prove that ~T�;j is a contraction. We use the estimates ofProposition 3.29 and equations (3.45)-(3.49).� kT (�; v)k�0 ;w � CKCF;cc21 + c14 + c14 � 34c1:Furthermore it was shown in Proposition 3.29 (iii) that, for the u; v in question,the map v 7! Y (u; v) is C1 from L�0;w into L�0;w and the ususal operator normof the derivative is bounded by CF;cc1. ThereforekT (�; v0)� T (�; v)k�0;w � CKCF;cc1kv0 � vk�0;w � 14kv0 � vk�0;w:51



� We have for � 2 U; v 2 B; y 2 B0, thatkK(DvY )(u(�q); v)yk�0�2�1;w � CKCF;cc21 � 14c1:The bound on the second derivative of Y with respect to v (see Proposition3.29 (iii)) allows us to make the following estimate.kK(DvY )(u; v0)y0 �K(DvY )(u; v)yk�0�2�1;w� kK[(DvY )(u; v0)� (DvY )(u; v)]y0k�0�2�1;w+kK(DvY )(u; v)(y0 � y)k�0�2�1;w� CKCF;cc1kv0 � vk�0;w + CKCF;cc1ky0 � yk�0�2�1;w� 12 max �kv0 � vk�0;w; ky0 � yk�0�2�1;w� :� Finally we are dealing with the estimates for hj(�; v). Corresponding to thede�nition (3.48), (3.49) we have to distinguish two cases.Case 1: �j = � k�bmznm1fjmj>m0gk�0�2�1;w � � � 14c1:Case 2: �j = qj.Using hypothesis (2) of Theorem 3.38 we see immediately thatk�(Dju)(0;m)znm1fjmj>m0gk�0�2�1;w � �C0 � 14c1:From Proposition 3.29 (iv), we obtaink�K(DuY )(u; v)(Dju)k�0�2�1;w � 2�CKCF;cc1C0 � 18c1:Finally we use that for �xed x 2 L��1;w, the map v 7! (DuY )(u; v)x is C1 fromL�0;w into L�0�2�1;w with a bound on the derivative as given in Proposition3.29 (v).k�K[(DuY )(u; v0)� (DuY )(u; v)](Dju)k�0�2�1;w � �CKCF;cC0kv0 � vk�0 ;w� 14kv0 � vk�0;w:The claim of the present step is a consequence of all these estimates. Thus wehave proven the existence of a �xed-point of ~T�;j in B �B0.52



Step 3 : For v 2 B the following eqivalence holds.v satis�es properties (i) and (iii) of Theorem 3.38 () T (�; v) = v.(= :Recall that we have scaled � by the factor � in the beginning of the proof. Thenproperty (iii) is evident as T (�; v) satis�es it by de�nition. Therefore it su�ces toprove that for all v 2 B;n � 1;m 2 :T (�; v)(n� 1;m) + �mT (�; v)(n;m) + T (�; v)(n+ 1;m) = �W (u; v)(n;m):We will verify this by evaluating the lefthandside for all di�erent cases.� m = 0; n � 1 :LHS = � 1Xk=nY (u; v)(k; 0) + 2 1Xk=n+1Y (u; v)(k; 0) � 1Xk=n+2Y (u; v)(k; 0)= �Y (u; v)(n; 0) + Y (u; v)(n+ 1; 0):� 0 < jmj �m0; n � 1 :LHS = 1sin�m 0@ 1Xk=n+1W (u; v)(k;m)G(k; n;m) +W (u; v)(n;m) sin(��m)1A ;where by the de�nition of �m (see (3.9))G(k; n;m) := sin(n� 1� k)�m � 2 cos �m sin(n� k)�m + sin(n+ 1� k)�m:As sin(n� 1� k)�m + sin(n+ 1� k)�m = 2 cos �m sin(n� k)�m, we concludeG(k; n;m) = 0:� jmj > m0; n = 1 :LHS = (1 + �mzm + z2m)(��bm � u(�q)(0;m))+ 1Xk=1W (u; v)(k;m) �mzkm + 1� z2min(2;k)m1� z2m zj2�kj+1m ! :
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The identity 1+ �mzm+ z2m = 0 implies that all terms in the sum vanish withthe exception of k = 1. In fact� k = 1 : �mzkm + 1� z2min(2;k)m1� z2m zj2�kj+1m = �mzm + z2m = �1:� k � 2 :�mzkm + 1� z2min(2;k)m1� z2m zj2�kj+1m = �mzkm + zk�1m (1 + z2m) = 0:� jmj > m0; n � 2 :LHS = �zn�1m + �mznm + zn+1m � (��bm � u(�q)(0;m))+ 1Xk=1W (u; v)(k;m)G(k; n;m);withG(k; n;m) := 1� z2min(n�1;k)m1� z2m zjn�1�kj+1m + �m 1� z2min(n;k)m1� z2m zjn�kj+1m+1� z2min(n+1;k)m1� z2m zjn+1�kj+1m :We show thatG(k; n;m) = ��k;n. To that end we evaluate (1�z2m)G(k; n;m) =� for k < n:= (1� z2km )zn�km (1 + �mzm + z2m) = 0:� for k = n:= (z2m + �mzm + z2m)� z2(n�1)m (z2m + �mz3m + z4m) = z2m � 1:� for k > n:= zk�nm (1 + �mzm + z2m)� zk�nm z2(n�1)m (z2m + �mz3m + z4m) = 0:=) :Let v 2 B satisfy (i) and (iii). Denote d := v�T (�; v): We want to show that d = 0.The following list of properties for d is immediate.54



(I) d 2 L�0;w:(II) d(0;m) = 0 for jmj > m0 (as v satis�es (iii)).(III) 8m 2 ; n � 1 : d(n� 1;m) + �md(n;m) + d(n+ 1;m) = 0:The last relation enables us to express d(n;m) in terms of d(0;m) and d(1;m):� m = 0 : d(n; 0) = nd(1; 0) � (n � 1)d(0; 0) . As d has to decay exponentiallywith n!1 there is no other choice than 8n � 0 : d(n; 0) = 0:� 0 < jmj �m0 :d(n;m) = sinn�msin�m d(1;m) � sin(n� 1)�msin�m d(0;m)= sinn�msin�m (d(1;m) � d(0;m) cos �m) + cosn�md(0;m):�m 2 (0; �) and again the exponential decay of d(�;m) force d(0;m) and d(1;m)to be zero and hence d(n;m) = 0 for all n � 0:� jmj > m0 : Recall that we know already by (II) that d(0;m) = 0: Thend(n;m) = d(1;m) znm�z�nmzm�z�1m . Again we conclude that d(1;m) = 0:This concludes the proof of Step 3.Step 4: Di�erentiability of v with respect to the parameters �.It is a standard and well known problem to prove smooth dependence of the solutionof a contraction problem on the parameters. There is a small technical problem asu is a C1-function of the parameter q only in the space L��1;w, and not in the spaceL0;w. But, at least formally, di�erentiating v = T (�; v) with respect to �j gives@v@�j = (1�DvT )�1 @@�j T (�; v):The lack of di�erentiability of u(q) in L0;w prevents that @@�j T lies in L�0;w , butit lies in L�0�2�1;w. Fortunately, however, DvT maps any L�;w, �1 � � � �0, intoitself with small norm. Hence v is di�erentiable in an appropriate norm. We �nd itconvenient to proceed as follows. 55



The �xed-point (v; y)(�) of ~T�;j can be constructed as the limit of the iterativesof the map, i.e. let (v0(�); y0(�)) := (0; 0)and de�ne inductively(vs+1(�); ys+1(�)) := ~T�;j(vs(�); ys(�));then (v(�); y(�)) = lims!1(vs(�); ys(�)). The limit is in the norm of B � B0 anduniform in �.We will prove inductively for each choice of �j and for all s � 0 that the followingproperties hold.(I) U ! L�0��1;w : � 7! vs(�) is continuous.(II) For each variable �j, the map �j 7! vs(�) is di�erentiable as a map intoL�0�2�1;w and @@�j vs(�) = ys(�):(III) U ! L�0�3�1;w : � 7! ys(�) is continuous.Once we have established (I)-(III), the proof of the claim is immediate. In fact, wecan deduce that for all s 2 0 : � 7! vs(�) is a C1 map from U into L�0�3�1;w = L�1;w(see De�nition 3.37), with partial derivatives @vs@�j = ys. The uniform convergenceof (vs; ys)(�) to the �xed-point of ~T�;j, (v; y)(�), in the norm of B � B0 yields thedesired information, that � 7! v(�) is a C1 map from U into L�1;w and that @v@�j = y.Let us therefore return to the statements (I)-(III). They are trivially satis�ed fors = 0. We will now prove the induction step s! s+ 1.(I) Continuity:Let �; � 0 2 U . We have to show thatkT (� 0; vs(� 0))� T (�; vs(�))k�0��1;w �! 0; as � 0 ! �:(3.51)To simplify the notation, denote v := vs(�); v0 := vs(� 0); u := u(�q); u0 := u(�q0). Itis not hard to verify thatk[(��0bm�u0(0;m))�(��bm�u(0;m))]znm1fjmj>m0gk�0��1;w � �j�0��j+ku0�uk��1;w:(3.52) 56



Expressing the di�erence by telescoping sums, one obtains for l � 1k(4u0)�(k�l) � (4v0)�l � (4u)�(k�l) � (4v)�lk�0��1;w� (1 + e�0)k(2c1)k�1 �ku0 � uk��1;w + kv0 � vk�0��1;w� :Proposition 3.26 and Proposition 3.50 implykKY (u0; v0)�KY (u; v)k�0��1;w� 8(1 + e�0)CK ~CF;cc1 �ku0 � uk��1;w + kv0 � vk�0��1;w� :(3.53)Equations (3.52), (3.53), assumption (2) of the Theorem and the induction hypoth-esis su�ce to prove equation (3.51).(II) Existence of partial derivatives:We consider only the more di�cult case �j = qj. The proof for the case �j = �requires only a proper subset of the arguments given below. Denote � 0 := (q+hqj; �)and let u0; v0; u; v;Dju0;Dju;Djv0;Djv have the obvious meaning. We have to provelimh!0 



 1h �T (� 0; v0)� T (�; v)� � ys+1(�)



�0�2�1;w = 0:(3.54)We break this statement up into several estimates.



�1h �u0(0;m)� u(0;m)� � �(Dju)(0;m)� znm1fjmj>m0g



�0�2�1;w� 



1h(u0 � u)� �Dju



��1;w ;(3.55)which tends to 0 as h! 0 by assumption (2). Next we look at the monomials, fromwhich Y;DuY and DvY are built up. We use the induction hypothesis, which saysthat ys = Djvs.1h h(4u0)�(k�l) � (4v0)�l � (4u)�(k�l) � (4v)�li�(k � l)(4u)�(k�l�1) � (4v)�l � �4(Dju)�l(4u)�(k�l) � (4v)�(l�1) � 4(Djv)= �1h �(4u0)�(k�l) � (4u)�(k�l)�� (k � l)(4u)�(k�l�1) � �4(Dju)� � (4v0)�l+(k � l)(4u)�(k�l�1) � �4(Dju) � �(4v0)�l � (4v)�l�+(4u)�(k�l) � �1h �(4v0)�l � (4v)�l�� l(4v)�(l�1) � 4(Djv)�= (a) + (b) + (c): 57



The three terms are now investigated seperately. Assume l � 1.(a) Telescoping di�erences twice we obtain1h �(4u0)�(k�l) � (4u)�(k�l)�� (k � l)(4u)�(k�l�1) � �4(Dju)= k�l�1Xj=1 j�1Xi=0(4u0)�i � (4u)�(k�l�i�2) � 4(u0 � u) � 4�u0 � uh �+(k � l)(4u)�(k�l�1) � 4�u0 � uh � �Dju� :This implies, thatk(a)k�0�2�1;w � 2(1 + e�0)k(k � 1)(2c1)k�2� ku0 � uk��1 ;w 



u0 � uh 



��1;w + c1 



u0 � uh � �Dju



��1;w! :(b) Recalling the de�nition of C0 in the statement of the theorem, it is easy to seethat k(b)k�0�2�1;w � 2(1 + e�0)k(k � 1)(2c1)k�2�C0kv0 � vk�0��1;w:(c) Proceeding as in (a) we obtaink(c)k�0�2�1;w � 2(1 + e�0)k(k � 1)(2c1)k�2� kv0 � vk0;w 



v0 � vh 



�0�2�1;w + c1 



v0 � vh �Djv



�0�2�1;w! :Substituting all these estimates in the power series and using Proposition 3.26, theinduction hypothesis, assumption (2) and equation (3.55) we arrive at the assertionof equation (3.54).(III) Continuity of partial derivatives:Using the notation and the methods of the last two proofs, we see that the fol-lowing estimates are enough to prove the claim.� k�((Dju0)(0;m) � (Dju)(0;m))znm1fjmj>m0gk�0�3�1;w� �kDju0 �Djuk��1;w:58



� The usual telescoping technique readily yields for l � 1 the following estimate.


(4u0)�(k�l�1) � (4v0)�l � 4(Dju0)� (4u)�(k�l�1) � (4v)�l � 4(Dju)


�0�3�1;w� 2(1 + e�0)k(2c1)k�2� �C0ku0 � uk��1 ;w + C0kv0 � vk�0��1;w + c1kDju0 �Djuk��1;w� :� We know from Step 2 that kDjv0k�0�2�1;w; kDjvk�0�2�1;w � c1. Proceeding asabove we obtain


(4u0)�(k�l) � (4v0)�(l�1) � 4(Djv0)� (4u)�(k�l) � (4v)�(l�1) � 4(Djv)


�0�3�1;w� (1 + e�0)k(2c1)k�1� �ku0 � uk��1;w + kv0 � vk�0��1;w + kDjv0 �Djvk�0�3�1;w� :The proof of Step 4 is completed.Step 5: The remaining properties (ii) and (iv).(ii) is a consequence of the fact that for all � 2 U the map v 7! T (�; v) sendsfv 2 L�0;w : kvk�0;w � 2(�j�j + �u(�q))g into itself. In fact, from Proposition 3.29and equation (3.45) it follows, thatkT (�; v)k�0 ;w � CKCF;cc1kvk�0;w + (�j�j + �u(�q))� (�j�j+ �u(�q))(2CKCF;cc1 + 1):Note that the appearance of � in the proof, which is not present in the formulationof property (ii) in the theorem, comes from the scaling of the parameters which weperformed at the beginning of the proof.(iv) can be shown inductively, following the iterative construction of the �xed-point which we have already employed in Step 4. v0 = 0 clearly satis�es the realitycondition, i.e. v0(n;�m) = v0(n;m), for all n � 0;m 2 . Using Propositon 3.23(v) it follows that vs+1 satis�es the reality condition as (bm)m2 ; u(�q) and vs do.This property is preserved as we pass to the limit s �! 1. 3
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3.4 An immediate application: high frequency drivingSuppose that m0 = 0, or equivalently 
2 > 4F 0(�c). In this case we can choose u(q)identically equal to zero in Theorem 3.38 and we obtain v(�) with the correspondingproperties. If we now take these choices for u and v we see immediately that all theconditions in Lemma 3.31 are satis�ed and hence we have constructed a periodicsolution of the di�erential equation given by (3.1), (3.2). This proves the followingresult.Theorem 3.56 Let F; c; (bm)m2 ; w satisfy the general assumptions. Furthermorelet 
2 > 4F 0(�c). Then there exists a neighborhood D of 0, such that for all � 2 Dthere exists a sequence v(�) 2 L�0;w with �0 > 0 as de�ned in De�nition 3.37 suchthat xn(t) := cn+ �b0 � v(�)(0; 0) + Xm2 v(�)(n;m)eim
t; for n � 1;is a time periodic, real valued solution of the the di�erential equation, given by (3.1)and (3.2).Remark 3.57 We have restricted our attention to the case where F 0(�c) > 0. IfF 0(�c) is negative, however, then 
2 > 4F 0(�c) for all 
 2 + and it is easy to seethat Theorem 3.56 holds without any restrictions on the driving frequency.
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Chapter 4General LatticesIn the last section of the last chapter we have seen that in the case of m0 = 0, it ispossible to construct periodic solutions for arbitrary lattices, where the interactingforces between neighboring particles satisfy the general assumptions. The goal ofthis chapter is to obtain the same result in the case of m0 = 1, i.e.F 0(�c) < 
2 < 4F 0(�c):(4.1)The di�erence from the case m0 = 0 is that now Theorem 3.38 no longer yields asequence v which solves �bm = u(0;m)+v(0;m), for all m 6= 0, but only for jmj > 1.Therefore we have a resonance equation for m = 1. In order to be able to solve thiscomplex valued equation ( for m = �1 the equation is the complex conjugate ofthe equation for m = 1), we must obtain a family of sequences u(q) depending ontwo real parameters q1 and q2. The idea is to obtain u(q) by constructing travellingwave solutions for the doubly in�nite lattice. Physically one may view these as thewaves the driver excites and which travel through the lattice. They can be observedalmost unperturbed away from the boundary some time after we let the driver acton the system (see Figures C.7 and C.10).More precisely we make the ansatzx(0)n (t) := cn+ Xm2 r(m)eim(�n+
t):(4.2)In Section 4.1 we will give an equation for r which we then solve by a Lyapunov-Schmidt decomposition. The idea is as follows. It is easy to see that the linearizedequation at r = 0 is given by a diagonal operator �(�) with entries�(�)(m;m) := �(�;m) := 2 cos �m+ �m:(4.3) 61



If we choose � = �1 (see (3.9), �1 exists as j�1j < 2) , then �(�) has a nontrivialkernel and we can apply the decomposition procedure. The assumptions on 
 asgiven in (4.1) imply that �m > 2 for jmj > 1 and therefore �(�)(m;m) is boundedaway from zero for arbitrary � 2 . Hence the in�nite dimensional part of thedecomposition poses no problems. The �nite dimensional part needs additionalconsideration. First, one has to use various symmetries to obtain the correct countof variables. Then by expanding the degenerate equation to second order one provesthat the �nite dimensional part can be solved by choosing the spatial frequency �as a function of the two remaining real parameters q1 and q2 withj�(q)� �1j � Cjqj2:In Section 4.2 we then take these solutions r(q) and show thatu(q)(n;m) := r(q)(m)eimn�(q)(4.4)satis�es all the conditions of Theorem 3.38 in Chapter 3. Note, that from equation(4.4) it is already obvious that the map q 7! u(q) cannot even be continuous in L0;w,if �(q) is not identically constant. This is why we had to introduce the weaker spaceL��1;w in the previous chapter, which led to some additional di�culties. Further-more, as we will see below, it will be necessary to relax the weight function w by afactor m2. We will anticipate this loss and construct r(m) in `1; ~w, with~w(m) := w(m)(1 + jmj)2:(4.5)Note that ~w is again an admissible weight function.4.1 Construction of travelling wavesWe make the following de�nitions.[�(�)r](m) := �(�;m)r(m); with �(�;m) = 2 cos(�m) + �m:(4.6) 4r(m) := (e�i�m � 1)r(m):(4.7) ~W (r)(m) := (1� ei�m) 1�1 1Xk=2 �kk! (4r)�k(m):(4.8) 62



Finally, de�ne an operator T� acting on `1; ~w in the following way.(T�r)(m) := ei�mr(m):(4.9)This multiplication operator on a Fourier sequence corresponds to a translationof the function, an operation under which the autonomous di�erential equation isinvariant.The next lemma follows easily from Remark 3.32.Lemma 4.10 Suppose that � 2 and r : ! satis�es krk`1 < �F;c8 . For n 2set x(0)n (t) := cn+ Xm2 r(m)eim(�n+
t):Then r satis�es conditions (A) and(B), with(A) �(�)r + ~W (r) = 0,(B) 8m 2 : r(�m) = r(m),if and only if x(0)n (t) is a real valued solution of the di�erential equation�xn(t) = F (xn�1(t)� xn(t))� F (xn(t)� xn+1(t)); for n 2 :Before starting the construction of solutions of equation (A), we have to inves-tigate the smoothness and symmetry properties of the nonlinearity ~W .Proposition 4.11 There exists a constant CF;c (which can be taken to be the sameas in Proposition 3.29) such that for all r 2 `1; ~w with krk`1; ~w � �F;c8 the followingholds. The series in the de�nition of ~W (r) converges absolutely to an element in`1; ~w. Furthermore(i) ~W : nr 2 `1; ~w : krk`1; ~w � �F;c8 o �! `1; ~w is a smooth map and the followingestimates hold. k ~W (r)k`1; ~w � CF;ckrk2̀1; ~w :8x 2 `1; ~w : kD ~W (r)xk`1; ~w � CF;ckrk`1; ~wkxk`1; ~w :8x1; x2 2 `1; ~w : kD2 ~W (r)[x1; x2]k`1; ~w � CF;ckx1k`1; ~wkx2k`1; ~w :(ii) If for all m 2 ; r(�m) = r(m), then we have ~W (r)(�m) = ~W (r)(m), for allm 2 . 63



(iii) ~W (T�r) = T� ~W (r):(iv) r(m) 2 i for all m 2 implies ~W (r)(m) 2 i for all m 2 .Remark 4.12 Property (iii) re
ects that the underlying equation is autonomous.Property (iv) corresponds in the original space to the fact that if xn(t) is a solution,then �x�n(�t) is again a solution.Proof : The methods for proving (i) form a proper subset of what has alreadybeen done in Section 3.2.3, Proposition 3.29, and therefore these arguments are notrepeated here. The properties (ii) and (iii) can be deduced from the correspondingproperties of the convolution (see Proposition 3.23). Finally we observe that r(m) 2i implies (4r)(m) 2 e� i�2 m . Arguing as in (iii) we conclude for all k � 1, that(4r)�k(m) 2 e� i�2 m , which yields (iv). 3For the construction of the solution we will use a Lyapunov-Schmidt decompo-sition. We introduce the projectionsP : `1; ~w ! `1; ~wr 7! (Pr)(m) := 8<: r(m); for jmj > 10; else :(4.13) Q := I � P:(4.14)Denoting ' := Qr; � := Pr, we obtain two equations:�(�)�+ P ~W ('+ �) = 0(4.15) �(�)' +Q ~W ('+ �) = 0(4.16)For given ' and � we will be able to solve the �rst, in�nite dimensional equationfor � (see Lemma 4.19 below). Substituting this solution into the second equationand using various symmetries we end up with one equation which we can solve bychoosing � as a function of ', with � close to �1 and ' close to 0. As mentionedin the introduction of the present chapter the spatial frequency �1 was chosen, be-cause �(�1; 1) = 0. It is obviously true that �(��1; 1) = 0 (recall from (3.9), that�1 = ���1) and therefore one could replace �1 by ��1 in the construction which64



follows. However, in all the numerical experiments that we have performed (see e.g.Figures C.7 and C.10) we only observe solutions corresponding to �1. This is relatedto the direction in which the energy 
ows in the lattice and is explained in moredetail in Remark 4.23 at the end of this section.Let us now parameterize '. Observe that the second equation (4.16) is automat-ically satis�ed for m = 0 (use (4.6) and (4.8)). On the other hand (4r)(0) = 0,independent of the value of r(0), i.e. the value of r(0) has no in
uence and we cannormalize it to be zero. This freedom re
ects an additional symmetry, namely ifx(0)n (t) is a solution of the di�erential equation of the doubly in�nite lattice, thenx(0)n (t) + constant is again a solution for any constant. Consequently we parame-terize only a subspace of the range of Q, namely'(q1; q2)(m) := 8>><>>: 12 (q1 + iq2); for m = 112 (q1 � iq2); for m = �10; else :(4.17)Under a slight abuse of notation we de�ne T� : 2 ! 2,T� 0@ q1q2 1A := 0@ cos � � sin �sin � cos � 1A0@ q1q2 1A :(4.18)We then have '(T�q) = T�('(q)):Let us now solve the �rst equation (4.15).Lemma 4.19 There exists a neighborhood U � 3 of (�1; 0; 0), a C2 map � : U !`1; ~w; (�; q1; q2) 7! �(�; q) and a constant C, such that(i) �(�)�(�; q) + P ~W ('(q) + �(�; q)) = 0.(ii) Q�(�; q) = 0.(iii) 8� : �(�; 0) = 0.(iv) k�(�; q)k`1; ~w � Cjqj2.(v) k'(q) + �(�; q)k`1; ~w � �F;c8 .(vi) �(�; q)(�m) = �(�; q)(m), for all m 2 .65



(vii) �(�; T�q) = T��(�; q).(viii) �(�; 0; q2) 2 i .Proof : We show �rst that the existence of the function � can be deduced fromthe implicit function theorem applied to the mapG : ~U � �� 2 Ran (P ) : k�k`1; ~w � �F;c16 � ! Ran (P );(�; q; �) 7! �+�(�)�1P ~W ('(q) + �):Indeed, note that �(�)�1 is well de�ned on Ran(P ), as �(�;m) 6= 0 for jmj > 1 (fol-lows from condition (4.1) in the introduction of the present chapter). Furthermoreit is easy to check that ��1 is a C2 function of � in the operator norm, which showstogether with Proposition 4.11 that G is a C2 map, if ~U is chosen as a suitably smallneighborhood of (�1; 0) in 3. Using Proposition 4.11 again we see, thatG(�1; 0; 0) = 0;and D�G(�1; 0; 0) = id Ran(P ):which allows us to apply the implicit function theorem and to obtain properties (i)and (ii) immediately. (iii) follows from the uniqueness of the implicit function the-orem and the observation, that 8� : G(�; 0; 0) = 0. In order to show the remainingproperties we will investigate the family of mapsH�;q : � 7! ��(�)�1P ~W ('(q) + �):Note that a �xed-point ofH�;q corresponds to a zero of G. ThatH�;q is a contractionfor suitably small values of q and � is a consequence of Proposition 4.11. In order toprove (iv) it su�ces to show that H�;q maps n� 2 Ran (P ) : k�k`1; ~w � Cjqj2o intoitself for a constant C, which will be chosen below. In order to verify this claim, letus denote C� := supjmj>1 1�2 + �m = 1�2 + �2 :Proposition 4.11 implieskH�;q(�)k`1; ~w � C�CF;c2 � ~w(1) + ~w(�1)2 �2 jqj2 + k�k2̀1; ~w!� Cjqj2; 66



if we choose C := 4C�CF;c� ~w(1) + ~w(�1)2 �2 ;and we only allow q 2 2 such that2C�CF;cCjqj2 � 12 :Property (v) follows trivially from (iv) by making jqj su�ciently small.The last three properties can be proved in the following way. �(�; q) is the �xed-point of H�;q and can be constructed as the limit of the sequence �k(�; q) as k !1.We de�ne inductively �0(�; q) := 0;�k+1(�; q) := H�;q(�k(�; q)):(vi),(vii),(viii) are trivially satis�ed for �0 as well as for the sequence '(q). Proposi-tion 4.11 permits us to conclude inductively that all �k possess the three properties,which then is preserved under the limit k !1. 3We turn now to the �nite dimensional equation (4.16).�(�)'(q) +Q ~W ('(q) + �(�; q)) = 0:Let us �rst reduce the dimensions of these equations by factoring out all the sym-metries. We recall that the equation is satis�ed for m = 0 by (4.6) and (4.8). Fur-thermore it su�ces to solve equation (4.16) for m = 1 as the equation for m = �1only yields the complex conjugate of the same equation. This leaves us with onecomplex valued or equivalently with two real valued equations. Finally we can makeone further reduction using the T� invariance. It implies that a choice of (�; q1; q2)is a solution if and only if (�; 0; jqj) is a solution (jqj := qq21 + q22). But we haveseen that for arguments of the form (�; 0; jqj), all the terms in equation (4.16) arepurely imaginary and hence we have reduced equation (4.16) to one equation in twounknowns. Accordingly de�neg(�; p) := 1i ��(�; 1)'(0; p)(1) + ~W ('(0; p) + �(�; 0; p))(1)�= (2 cos � + �1)p2 + 1i ~W ('(0; p) + �(�; 0; p))(1):67



We want to identify the set of zeros of the C2 function g. Property (iii) of the lastlemma implies that g(�; 0) = 0 for all �. We introduce the associated function~g(�; p) := g(�; p)p :Note that this function has a C1 extension for p = 0. Furthermore~g(�1; 0) = @pg(�1; 0)= (2 cos �1 + �1)12 + 1i D ~W (0)[@p('+ �)](1) = 0:We compute@�~g(�1; 0) = @�@pg(�1; 0)= � sin�1 + 1i D ~W (0)[@�;p�](1) + 1i D2 ~W (0)[@p('+ �); @��](1)= � sin�1 6= 0:In the above calculation we used that D ~W (0) = 0 and that @��(�1; 0) = 0, as�(�; 0) = 0 for all �. Hence we can again apply the implicit function theorem andobtain in this way an even C1 function �(p), de�nd as map from a neighborhood ofzero to a neighborhood of �1, such thatg(�(p); p) = 0:The evenness of � is a consequence of the uniqueness in the implicit function theoremand the evenness of ~g in p. We can summarize our considerations.Lemma 4.20 Given the function �(�; q) from Lemma 4.19, there exists an even C1function �(q), mapping from a neighborhood of zero to a neighborhood of �1 suchthat the set of zeros of �(�)'(q) +Q ~W ('(q) + �(�; q)) = 0in a neighborhood U0 of (�1; 0; 0) is given byf(�; q) 2 U0 : q = 0g [ f(�; q) 2 U0 : � = �(qq21 + q22)g:Combining the last two lemmas we have proved the following theorem.
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Theorem 4.21 There exists a neighborhood D0 of 0 in 2, a C1 mapr : D0 ! `1; ~w; (q1; q2) 7! r(q1; q2)and a C1 map ~� : D0 ! ; (q1; q2) 7! ~�(q1; q2);such that(i) 8q 2 D0 : �( ~�(q))r(q) + ~W (r(q)) = 0:(ii) r(q)(�m) = r(q)(m) for all m 2 ; q 2 D0.(iii) 8q 2 D0 : kr(q)k`1; ~w � �F;c8 :(iv) 9C > 08q 2 D0 :Pjmj>1 ~w(m)jr(q)(m)j � Cjqj2:Proof : Let ~�(q) := �(jqj);r(q) := '(q) + �( ~�(q); q):Then all the properties follow immediately from the last two lemmas. The di�eren-tiability of ~� at 0 follows from the fact that �(�) is an even C1 function. 3As we have proved Lemma 4.19 and Lemma 4.20 using implicit function theorems,we can prove a uniqueness result for the constructed sequences r(q).Corollary 4.22 There exists a � > 0, such that the following holds. Let s 2 `1; ~wand � 2 , satisfying(I) 0 < ksk1; ~w < �:(II) s(0) = 0:(III) s(�m) = s(m), for all m 2 .(IV) j� � �1j < �.
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If yn(t) := cn+ Xm2 s(m) exp(im(�n+ 
t)); n 2 ;is a solution of �yn = F (yn�1 � yn)� F (yn � yn+1); n 2 ;then s = r(q) and � = ~�(q), withq = (q1; q2) = 2( Re(s(1)); Im(s(1)));and r; ~� are the functions de�ned in Theorem 4.21 above.Proof : If � is chosen suitably small, it follows from Lemma 4.10 above that�(�)s+ ~W (s) = 0:De�ning q as above, we see that the projection of s, Ps, satis�es assumptions (i) and(ii) of Lemma 4.19. Consequently we have Ps = �(�; q). Furthermore the spatialfrequency � satis�es the equation in Lemma 4.20 with q 6= 0 (otherwise � = s = 0,which contradicts assumption (I)). Lemma 4.20 yields that � = ~�(q) which �nallyimplies s = r(q) and the Corollary is proved. 3Remark 4.23 Heuristic explanation of the choice of the sign of �.We investigate the transport of energy of the travelling wave solutions constructedin Theorem 4.21. The amount of energy exchanged between the particles x0 and x1is given by E = � Z 2�
0 F (x0(t)� x1(t)) _x0(t)dt:Note that E < 0 means that on the average energy 
ows from x0 to x1. Recall fromequation (4.2) in the introduction of this chapter, thatx(0)n (t) = cn+ Xm2 r(m)ei�mneim
t:
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Let ~r(m) := (1� ei�m)r(m):r0(m) := i
mr(m):Then E = �2�
 " 1Xk=0 �kk! ~r�k � r0# (0):Note from Lemma 4.19 (iv) that only r(1) and r(�1) are of �rst order in q, all othersare of higher order. We now evaluate the formula above.� 1 st order: �2�
 �0r0(0) = 0:� 2 nd order:�2�
 �1(~r � r0)(0) ' �2�
 �1(~r(1)r0(�1) + ~r(�1)r0(1))= �4�
 �1 Re h(1� ei�)jr(1)j2(�i
)i= 4��1jr(1)j2 sin�:� 3 rd order: no terms 6= 0.In the system we are investigating we expect, that the driver excites outgoing waves,hence the energy should be transported in direction of increasing n. The abovecalculation shows up to third order in q, that this this is achieved for � with sin� < 0.Therefore we have chosen solutions with � close to �1 rather than close to ��1 = ��1.4.2 Construction of the periodic solution via Chap-ter 3The following theorem is the main result of the present chapter.Theorem 4.24 Let F; c; (bm)m2 ; w satisfy the general assumptions and let F 0(�c) <
2 < 4F 0(�c). Then there exists a neighborhood D of 0 such that for all � 2 D thereexist sequences u(�) 2 L0;w; v(�) 2 L�0;w (�0 > 0 de�ned in De�nition 3.37) suchthatxn(t) := cn+ �b0 � (u+ v)(�)(0; 0) + Xm2 (u+ v)(�)(n;m)eim
t; for n � 1;is a time periodic solution of the di�erential equation given by (3.1) and (3.2).71



Proof : We start the construction with r(q) 2 `1; ~w, which was obtained inTheorem 4.21. Recall the de�nition in equation (4.5), namely ~w(m) := w(m)(1 +jmj)2, which again is an admissible weight function. According to the ansatz whichwas explained in the beginning of the present chapter, we de�neu(q)(n;m) := r(q)(m) exp(i~�(q)mn); for q 2 D0:(4.25)From Theorem 4.21 it follows that all of the conditions of Theorem 3.38 on thefunction u(q) are trivially satis�ed, with the exception of condition (2), which statesthe di�erentiability with respect to the parameter q in a certain norm. It is obviousfrom Theorem 4.21 that each component of u is a C1 function of q with@@qj u(q)(n;m) =  @@qj r(q)(m) + ir(q)(m) @@qj ~�(q)mn! exp(i~�(q)mn):In order to show the C1 dependence of u on q in the L��1;w norm, we only have toverify that q 7! @@qj u(q) is a continuous map from D0 into L��1;w. It is straightfor-ward to check this by hand, using the following observations.� j exp(i~�(q0)mn)� exp(i~�(q)mn)j� mnjq0 � qj sups2[0;1] ����� @@qj ~�(q + s(q0 � q))����� :� w(m)m2 � ~w(m):� supn�0 n2e��1n <1.Therefore we are in a position to apply Theorem 3.38 of Chapter 3 and obtainthis way the function v(q; �). Equipped with both, u and v, we turn now to Lemma3.31 of Chapter 3. Using Lemma 4.10 it only remains to solve�bm � v(0;m) � u(0;m) = 0; for jmj = 1;(4.26)as by the conditions on 
 we have m0 = 1. It su�ces to solve equation (4.26) form = 1, because form = �1 we obtain the complex conjugate of the equation. Hencethere are two real equations to be solved (real part and imaginary part). Letg(q; �) := �b1 � v(q; �)(0; 1) � u(q)(0; 1) 2 2:72



Note that v(0; 1) is a C1 function of (q; �) (see Theorem 3.38 (v)) with jv(q; �)(0; 1)j �2(j�j+Cjqj2) (see Theorem 3.38 (ii), Lemma 4.19 (iv)) and thereforeDqv(0; 0)(0; 1) =0. Furthermore u(q)(0; 1) = 12(q1; q2). We concludeg(0; 0) = 0;(Dqg)(0; 0) = 12 0@ 1 00 1 1A :The implicit function theorem then guarantees the existence of a neighborhood Dof 0 and a C1 function q(�) such that g(q(�); �) = 0. This proves that foru(�) := u(q(�));v(�) := v(q(�); �);the hypothesis of Lemma 3.31 is satis�ed and we have successfully constructed thesolution to the di�erential equation given by (3.1) and (3.2). 3
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Chapter 5The Toda LatticeIn this chapter we will use the complete integrability of the doubly in�nite Todalattice (F (x) = ex) and show how the well known g -gap solutions contain a su�-ciently large family of travelling waves to construct solutions of equations (3.1) and(3.2) for any number of resonances m0.G-gap solutions were �rst constructed for the continuous analog of the Todalattice, the KdV equation. Combining the complete integrability of the systemas given in ([L]) with methods, developed in algebraic geometry (see [A]), thesesolutions can be expressed in terms of ratios of theta functions (see [D], [IM]).Although these solutions have been studied and used in many di�erent contexts(see e.g.[DT], [Kr1], [Kr2],[McKT], etc.), we repeat their construction in the Todacase, because we will need some speci�c details about these solutions, which arenot readily available in the literature. The resulting formulae will be evaluated inthe case of small gaps and we derive a C1 parameterization of time-periodic g-gapsolutions. This will be done in Section 5.1. In order to keep the presentation selfcontained we provide the details of the construction in the Appendix A, where we willuse only some general facts about hyperelliptic curves. The resulting parametersare closely related to those introduced �rst by T. Kappeler ([Kap]) for spatiallyperiodic potentials in the case of KdV, then by T. Kappeler et al. [BGGK] in theToda case. It turns out that the condition of time periodicity determines the positionof the midpoints of the gaps. In fact, there are two possible positions for each gap,corresponding to outgoing and incoming waves. We then proceed to prove in Section5.2 that the basic result of Chapter 3 can be applied to obtain periodic solutionsof the driven lattice for an arbitrary number of resonances. In the case of m0 � 174



these solutions are shown to coincide with those constructed for general lattices inthe previous two chapters. Finally the essential spectrum of the corresponding Laxoperator is investigated. Clearly it has a band { gap structure and we will determinethe width of the gaps and their dependence on the Fourier coe�cients of the driverto �rst order in �.5.1 The g-gap solutionsFirst we brie
y describe the construction of g-gap solutions via Baker-Akhiezerfunctions. We follow the construction in [Kr1] (see also [A],[D], [IM]).Let g 2 0 = fn 2 : n � 0g and denote by Rg the hyperelliptic curve of genusg, which is constructed by pasting together two copies of the Riemann sphere [f1galong the slits [E0; E1]; [E2; E3]; : : : ; [E2g; E2g+1] ,where (E0 < E1 < � � � < E2g+1):Denote by � the canonical projection of Rg on the Riemann sphere. We �x g pointsPj 2 Rg; 1 � j � g, satisfying �(Pj) 2 [E2j�1; E2j ].Then for each n 2 ; t 2 , there exists an unique Baker-Akhiezer function n(t; �) (up to multiplication by a constant) meromorphic on Rg nfP1; P �1g, with atmost simple poles at Pj ; 1 � j � g and a certain prescribed behavior at the essentialsingularities P1 and P �1, depending on n and t. See Theorem A.11 in Appendix A.for the precise statement. The existence of these functions is proved by explicitlyconstructing them in terms of theta functions and uniqueness is a consequence of theRiemann-Roch theorem applied to Rg. Using the de�ning properties of the Baker-Akhiezer functions one is able to obtain functions xn(t) such that the correspondingoperators ~L and ~B (see (1.13) and (1.14)) satisfy for all t 2 and P 2 Rg thefollowing equations. (~L )n(t; P ) = 12�(P ) n(t; P ):(5.1) @@t n(t; P ) = ( ~B )n(t; P ):(5.2)From equations (5.1), (5.2) we conclude for t 2 , that~Lt = [ ~B; ~L]:(5.3)Hence xn(t) is a solution of the doubly in�nite Toda chain. Furthermore xn(t) canbe expressed in terms of theta functions, namelyxn(t) = nI + tR+ f� (Un+ V t� Z) :(5.4) 75



The function f� : g= g �! is essentially given by the logarithm of a ratio oftheta functions with period matrix � . In general these solutions are quasiperiodicin n and t. The parameters I;R; �; U; V; Z depend on the spectral data chosen inthe construction, i.e. they depend on the 3g + 2 real parameters Ei; 0 � i � 2g + 1and Pj ; 1 � j � g, or equivalently on (a; b; �j ; pj; Pj ; 1 � j � g), where �j denotesthe midpoint and pj the half-width of the j-th gap. We are interested in obtainingthe following choice for the parameters.I = c:(5.5) R = 0:(5.6) V = � 
2� 0B@ 1...g 1CA :(5.7)The next theorem will show that we can choose the parameters a; b; �j ; 1 � j � g asC1 functions of the remaining 2g parameters pj; Pj ; 1 � j � g such that equations(5.5), (5.6), (5.7) are satis�ed.Theorem 5.8 We assume that g 2 0; 
 > 0; c 2 satisfyg
 < 2e� c2 < (g + 1)
:(5.9)Then there exists a positive number � and C1 functions a; b; �j ; Uj ; � (reg)i;j ; 1 � i; j �g, mapping f(p1; : : : ; pg) 2 g : jpkj < �; 1 � k � gg into and which are even ineach argument pk; 1 � k � g such that the following holds.For 0 < p1; : : : ; pg < � the g -gap solution corresponding to the choice of param-eters pj ; Pj ; a(p1; : : : ; pg); b(p1; : : : ; pg); �j(p1; : : : ; pg); 1 � j � g;is given by xn(t) = cn+ ln #(12U � Zj�)#((n� 12)U + tV � Zj�)#(�12U � Zj�)#((n+ 12 )U + tV � Zj�)(5.10)with(i) V = � 
2� 0B@ 1...g 1CA : 76



(ii) The map (P1; : : : ; Pg) 7�! Z is a surjective map from (S1)g to g= g for allchoices of parameters 0 < p1; : : : ; pg < �.(iii) �i� = diag (ln pk) + � (reg):(5.11)Furthermore formula (5.10) is also well de�ned for pj � 0 and the function weobtain by letting some or all of the pj converge to 0 agrees with the correspondinglower gap solution.Remark 5.12 (1) The proof of Theorem 5.8 is given in the Appendix B.(2) In fact there are two possible choices for each function �j The special choicemade in the proof of Theorem 5.8 corresponds to the numerical observation,that gaps open up only in the lower half of the band. We will see in Remark5.30 at the end of the next section, that the physical reason for this lies in thedirection in which energy is transported in the corresponding g -gap solution.The reader may recall that exactly the same situation occurred in Chapter 4with the choice of the spatial frequency � (see Remark 4.23).(3) The functions in Theorem 5.8 are also de�ned for negative values of the pk's.This extension is purely formal and is used to simplify regularity proofs atpk = 0.5.2 Construction of the periodic solution via Chap-ter 3In this section we use the g-gap solutions of the last section to construct periodicsolutions of the driven lattice by means of the procedure in Chapter 3. Our goal isto prove the following theorem.Theorem 5.13 Let c; 
; (bm)m2 ; w satisfy the general assumptions. Then thereexists a neighborhood D of 0, such that for all � 2 D, there exist sequences u(�) 2L0;w; v(�) 2 L�0;w (where �0 > 0 was introduced in De�nition 3.37) andxn(t) := cn+�b0�(u+v)(�)(0; 0)+Xm2 (u+v)(�)(n;m)eim
t; for n � 1;(5.14)is a time periodic solution of the di�erential equation given by (3.1) and (3.2).77



Proof : By the general assumptions on 
, there exists a m0 2 0, such that(m0
)2e�c < 4 < ((m0 + 1)
)2e�c :We choose g := m0 and thus satisfy the assumptions (5.9) of Theorem 5.8. To putthe results of the preceeding sections in a form that is suitable for the procedureof Chapter 3, we still have to make some technical de�nitions and remarks. Let usbegin with the de�nition of the parameters. Denote~pj := pj exp(2�iZj) 2 ; 1 � j � g:(5.15)The 2g real variables qj are then de�ned by~pj = q2j�1 + iq2j :(5.16)Note that any choice of q in a su�ciently small neighborhood of 0 in 2g cor-responds to a choice of spectral data. In fact, let pj := jq2j�1 + iq2j j. FurthermoreLemma B.47 in Appendix B shows that for any given choice of phase Zj 2 [0; 1),there is a choice of points Pj which corresponds to the phase . Using (B.63) we cannow write equation (5.10) in the following form,x(0)n (t) = cn+ ln 1 + �n(t; q)1 + �n+1(t; q) + ln 1 + �1(0; q)1 + �0(0; q) ;(5.17)with �n(t; q) := Xl2zgnf0g r(q)(n; l) exp (�i (l1 + 2l2 + � � �+ glg) 
t) ;(5.18) = Xm2Z s(q)(n;m)ei
mt; where(5.19) r(q)(n; l) := 0@ gYj=1 ~pljj plj(lj�1)j 1Aexp�2�i < l; U(p) > (n� 12)+ < l; � (reg)(p)l >� ;(5.20) s(q)(n;m) := Xl 2 g n f0gl1 + � � � glg = �m r(q)(n; l):(5.21)The Fourier series of the g-gap solution is now given byx(0)n (t) = cn+ Xm2 u(q)(n;m)eim
t; with(5.22) 78



u(q)(n;m) := u1(q)(n;m)� u1(q)(n+ 1;m) + u2(q)1fm=0g;(5.23) u1(q)(n;m) := 1Xk=1 (�1)k�1k s(q)(n; �)�k(m);(5.24) u2(q) := ln(1 + Xl2zgnf0g r(q)(1; l)) � ln(1 + Xl2zgnf0g r(q)(0; l)):(5.25)The convergence of the above series follows from the smallness of p1; : : : ; pg and willbe veri�ed below.Claim:There exists a neighborhood D0 of 0 in 2g and a constant C > 0, such that(I) for all q 2 D0 : u(q) 2 L0;w and ku(q)k0;w � Cjqj.(II) for all q 2 D0 :Pjmj>m0 w(m)ju(q)(0;m)j � Cjqj2:(III) u : D0 ! L��1;w; q 7! u(q), is a C1 map, where �1 was introduced in De�nition3.37.(IV) f : D0 ! 2g; q 7! (u(q)(0;m))gm=1 is continuously di�erentiable anddet(Dqf(0)) 6= 0:(V) x(0)n (t); n 2 is a smooth, real valued solution of the doubly in�nite Todalattice.Before we proceed to check all these properties, let us show that they su�ce toprove the theorem. First we have to verify that u(q) satis�es the conditions (1)-(3)in Theorem 3.38, but this is an immediate consequence of (I),(III) and (V). Hencewe obtain a v(q; �) 2 L�0;w, satisfying conditions (i) to (v) of the Theorem 3.38.Using (II) we obtain in addition, thatkv(q; �)k�0 ;w � 2(j�j+ Cjqj2):(5.26)We now show that it is possible to satisfy (1), (2) and (3) in Lemma 3.31.(1) follows for u(q) from (V) and the Remark 3.32.(2) follows for v(q; �) from Theorem 3.38.By Theorem 3.38 it su�ces to solve (3) for 1 � m � g. This gives 2g real equations,for which we have the 2g real variables qj available. De�neg(q; �) := (�bm � u(q)(0;m) � v(q; �)(0;m))gm=1 2 2g:79



Using Theorem 3.38 (v), equation (5.26) and what we know about function f fromclaim (IV), we see that g is a C1 function andg(0; 0) = 0:Dqg(0; 0) = �Dqf(0);which is an invertible matrix by (IV). The implicit function theorem yields a functionq(�), such that g(q(�); �) = 0. Thusu(�) = u(q(�)):v(�) = v(q(�); �):satis�es all the conditions of Lemma 3.31.It remains to prove properties (I)-(V).(I):It is easy to read o� the following estimates from the above de�nitions. Denote forl 2 g : jlj := ql21 + � � �+ l2g.9C; � > 0 : 8jqj � �; n 2 0; l 2 g : jr(q)(n; l)j � C jlj2jqjjlj2 :l1 + 2l2 + � � �+ glg = �m implies that jlj � jmjg1:5 . Furthermore9C; � > 0 : 8jqj � �; n 2 0; k0 2 : Xjlj�k0 jr(q)(n; l)j � C jk0j2 jqjjk0j2 :Together with the observation, that the sum de�ning s(q) does not contain the termwhere l = 0, it follows, that9C; � > 0 : 8jqj � �; n 2 0;m 2 : js(q)(n;m)j � (Cjqj)max(1;m2g3 ):Because of the estimate on the weightfunction w(m) � Ce�m, for some constantsC; � > 0 (see De�nition 3.21 and below), we conclude that s(q) 2 L0;w for jqj smallenough and 9C; � > 0 : 8jqj � � : ks(q)k0;w � Cjqj:Equation (5.24) shows, that u1(q) 2 L0;w and ku1(q)k0;w � Cjqj for jqj small enough.Applying the same kind of estimates again we obtain9C; � > 0 : 8jqj � � : ju2(q)j � Cjqj:80



This completes the proof of (I).(II):The de�nitions at the beginning of the proof yield8jmj > m0 : u(0;m) = s(0;m)�s(1;m)+ 1Xk=2 (�1)k�1k �s(0; �)�k(m)� s(1; �)�k(m)� :Reworking the corresponding estimates in the proof of (I) one obtains9C; � > 0 : 8jqj � �; n 2 0; jmj > m0 : js(q)(n;m)j � (Cjqj)max(2;m2g3 );from which we easily conclude that9C; � > 0 : 8jqj � � : ks(q)1fjmj>m0gk0;w � Cjqj2:On the other hand the estimate above on ks(q)k0;w implies,9C; � > 0 : 8jqj � �; n 2 0 : k 1Xk=2 (�1)k�1k s(q)(n; �)�kk0;w � Cjqj2:This proves (II).(III):Let us start with the di�erentiability of each r(q)(n; l) with respect to qj. Fromequation (5.20) and Theorem 5.8 we learn that the only possible problem lies atpoints where one of the pj = 0, as pj = qq22j�1 + q22j is not a di�erentiable functionof q in those points. However, the functions U and � (reg) are even in each variablepj (see Theorem 5.8, lj(lj � 1) is even and ~pj = q2j�1 + iq2j . Hence r(q)(n; l) is C1.Simple estimates show that9C; ~C; � > 0 : 8jqj � �; n 2 0; l 2 g n f0g : j @@qj r(q)(n; l)j � ~CC jlj2jqjjlj2�1(n+ 1):9C; ~C; � > 0 : 8jqj; jq0j � �; n 2 0; l 2 g n f0g :j @@qj r(q0)(n; l)� @@qj r(q)(n; l)j � ~CC jlj2 max(jq0j; jqj)max(jlj2�2;0)(n+ 1)24(q0; q);with4(q0; q) := max jq0 � qj; j @@qjU(q0)� @@qjU(q)j; j @@qj � (reg)(q0)� @@qj � (reg)(q)j! :81



Note that the powers of jlj, which are produced by the di�erentiation have beensubsumed into the C jlj2 term, simply by increasing the constant C.Our next goal is to prove that q 7! s(q) is a C1 map into L��2;w, with �2 := �12 .The di�erentiability of r(q)(n; l) with respect to q and the absolute and uniformconvergence of the sum Xl 2 g n f0gl1 + � � � glg = �m @@qj r(q)(n; l);shows that for all n 2 0;m 2 : s(q)(n;m) is a C1 function of q. Therefore wehave only to prove that the map q 7! @@qj s(q)(n;m) is a continuous map into L��2;w.This, however, follows by applying the arguments given in the proof of (I) to theestimates for j @@qj r(q)(n; l)j and j @@qj r(q0)(n; l)� @@qj r(q)(n; l)j given above and fromthe observations that 4(q0; q)! 0, as q0 ! q and that supn�0(n+ 1)2e��2n � 1.Let us now investigate the di�erentiability of u1(q). Employing the calculationswe made in the proof of Theorem 3.38, step 4, where we were in a similar situation,we obtain @@qj u1(q) = 1Xk=0(�1)ks(q)(n; �)�k � @@qj s(q):Standard arguments yield the continuity of the map q 7! @@qj u1(q) in L�2�2;w =L��1;w.The di�erentiability of the function u2(q) can be established from the di�eren-tiability of r(q)(n; l), the absolute and uniform convergence of the correspondingsums (see equation (5.25)) and the di�erentiability of the logarithm away from 0.The proof of property (III) is completed.(IV):The di�erentiability was already proven in (III). We only have to investigate theterms of �rst order in q of u(q)(0;m) for 1 � m � g. Following the reasoningin the proof of (II), we see that we only have to consider the �rst order terms ofs(q)(0;m) � s(q)(1;m) which are given by r(q)(0; em) � r(q)(1; em), where em :=(0; : : : ;�1; : : : ; 0) denotes the unit vector in g with �1 at the m -th entry. Thisimplies81 � m � g : u(q)(0;m) = ~pm2i sin(�Um(0)) exp(� (reg)m;m (0)) +O(jqj2):(5.27) 82



We are done if we can show that sin(�Um(0)) 6= 0. It turns out that we can computethis quantity explicitly. By Lemmas B.19, B.36 and Proposition B.62 we conclude,that Um(0) = � 2� arctan s b� �m�m � a! :(5.28)Thereforesin(�Um(0)) = �2 tan arctan s b� �m�m � a!! cos2  arctan s b� �m�m � a!!= � 2b� aq(�m � a)(b� �m)= � 2b� am
 6= 0;(5.29)by Lemma B.41.(V): See Appendix A, Theorem A.21 3Remark 5.30 The choice of �j (compare with Remark 5.12 (2), see also (B.6)).In Appendix B it is shown that the condition of time periodicity of the g-gap solutionleads to equation (B.42) in Lemma B.41. This equation was solved by choosing the�j 's as functions of the remaining parameters. As it was stated in Remark 5.12 (2),there exist two choices for each �j, one in the lower half of the spectrum and onein the upper half of the spectrum. We will now discuss the di�erence of these twochoices. Proceeding as in Remark 4.23, we investigate in which direction the energyis transported in the g-gap solution up to second order in q. The arguments givenin the proof of property (IV) in the proof of Theorem 5.13 above yieldx(0)0 (t) = gXm=1 u(q)(0;m)ei
mt +O(jqj2);x(0)1 (t) = c+ gXm=1 u(q)(0;m) exp(�2�iUm(0))ei
mt +O(jqj2);where u(q)(0;m) was determined in (5.27). Now we compute the energy whichis exchanged between particles x(0)0 and x(0)1 during one period. Repeating the83



calculations in Remark 4.23 we arrive atE = � Z 2�
0 F (x(0)0 (t)� x(0)1 (t)) _x(0)0 (t)dt= 4� exp(�c) gXm=1mju(q)(0;m)j2 sin(�2�Um(0)) +O(jqj3):Each term in the sum corresponds to the energy transported by one phase of themultiphase solution. It is transported in the direction of increasing n, ifsin(�2�Um(0)) < 0:Equation (5.28) implies that�2�Um(0) = 4 arctan s b� �m�m � a! :Therefore �2�Um(0) 2 (�; 2�), if �m < a+b2 and �2�Um(0) 2 (0; �), if �m > a+b2 .Thus the choice we make in (B.6), corresponds to a solution where the energy istransported outwards in the direction of increasing n. As described above our choiceimplies that all gaps open up only in the lower half of the spectrum.Remark 5.31 Comparison with solutions of general lattices for g = 0; 1.Recall, that for m0 = 0 and m0 = 1, we were able to construct periodic solutionsfor general lattices (see Sections 3.4 and 4.2 respectively). We will verify that thesesolutions are the same as we have constructed in the present section in the Toda case,by showing that they produce the same families of sequences of Fourier coe�cientsu(q), which are used in the construction described in Chapter 3.The case g = 0 is trivial, as the 0-gap solution is simply given by xn(t) = cn, i.e.u(q) = 0, which is the choice we made in Section 3.4.In the case g = 1 equation (5.10) and the periodicity of the theta function in thereal direction shows that the one-gap solution is of a form to which Corollary 4.22applies. We have to check the assumptions (I)-(IV) in the Corollary. (I) and (III)are trivially satis�ed.Property (IV) is satis�ed, if we can prove, that �2�U(0) = �1, where �1 wasde�ned in (3.9). By the Remark 5.30 above we know already that both quantities lie
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in (�; 2�) (mod 2�) and therefore it su�ces to show that cos(�2�U(0)) = cos(�1).Equation (3.9) yields cos(�1) = � �12 . Using (5.29) we computecos(�2�U(0)) + �12 =  1� 8
2(b� a)2!+  �1 + 
22 exp(�c)!= 0;as by the choice of b(0) (see (B.55)) in the proof of Lemma B.52, we have b � a =4 exp(� c2 ).Property (II) of Corollary 4.22 is not satis�ed as the zero Fourier coe�cients(0) = ln #(12U � Zj�)#(�12U � Zj�)does not necessarily vanish. But this corresponds only to adding a constant tou(q)(n; 0), which does not change the equation for v in Lemma 3.31 (note thatW (u; v) only contains 4u, see De�nition 3.28) and which does not change the valueof a(n;m) in Lemma 3.31.Remark 5.32 The opening of the gaps to �rst order in �.We will now investigate the size of the instability regions and their dependenceon � and the Fourier coe�cients of the driver. This question of basic interest waswell studied in the continuous case for periodic potentials (see [MW] and referencestherein). In our situation recall that L denotes the semi-in�nite Lax operator corre-sponding to the solution constructed in Theorem 5.13 above (see also 1.27). As L isobtained from the doubly in�nite operator ~L by restricting it to n � 1 and addingan operator decaying exponentially in n (which corresponds to the v-term in 5.14)standard arguments of spectral theory imply that�ess(L) = �ess(~L);and hence�ess(L(t)) = �a2 ; �1 � p12 � [ ��1 + p12 ; �2 � p22 � [ � � � [ ��g + pg2 ; b2� :(See equation (5.1)). Therefore the width of the j-gap in the spectrum of L(t) isgiven by jpj j; 1 � j � g. They were determined as functions of �, when we solved theresonance equations �bm = u(q)(0;m) + v(q; �)(0;m); 1 � m � g in Theorem 5.13.85



As v(q; �) is a �xed-point of the operator T (q; �; �) given by (3.45) in Chapter 3, weconclude from Theorem 3.38 (ii), Proposition 3.29 (ii) and the fact that q(�) = O(�)that v(q; �)(0;m) = O(�2); for 1 � m � g. Equation (5.27) then yields that thefollowing relation holds.j�bmj = 2j sin(�Um(0))j exp(� (reg)m;m (0))jpmj+O(�2):(5.33)Below we will show that � (reg)m;m (0) = � ln 8(m
)2b� a :(5.34)Using (5.29) and (5.33) we can express jpmj.jpmj = 2j�bmjm
 +O(�2):(5.35)We compare this formula with numerical results shown in Figures 1.31 and 1.32. Werecall the choice of parameters, j�b1j = 0:1; j�b2j = 0:05. Up to �rst order, equation(5.35) yields� 
 = 1:8 : p1 � 0:36.� 
 = 1:1 : p1 � 0:22; p2 � 0:22.These values are in good agreement with the numerical experiments. In fact,� 
 = 1:8; Figure 1.31 : p1 = 0:34 � 0:007.� 
 = 1:1; Figure 1.32 : p1 = 0:223 � 0:005; p2 = 0:215 � 0:15.We will now sketch the derivation of formula (5.34). By Theorem 5.8 and PropositionB.62 (vi), we may consider the one-gap situation, where only the m -th gap is openand all other gaps are closed. Using equations (B.32),(B.33),(B.34) (B.21),(B.15)and (B.9) and Lemmas B.14, B.19 we arrive at� (reg)m;m (0) = � 1hm limpm!0 Z �m�pma 1p(E � a)(b�E)[(E � �m)2 � p2m]dE � hm ln 1pm!:(5.36)The quantity hm was de�ned in (B.13) and is given in this case byhm = 1p(�m � a)(b� �m) :(5.37)
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We de�ne the auxiliary functionsf(E) := 1p(E � a)(b�E) ;(5.38) g(E) := f(E)� f(�m)E � �m :(5.39)Then limpm!0 Z �m�pma 1p(E � a)(b�E)[(E � �m)2 � p2m]dE � hm ln 1pm!= limpm!0 Z �m�pma f(�m)p(E � �m)2 � p2mdE � hm ln 1pm!+ limpm!0 Z �m�pma (E � �m)g(E)p(E � �m)2 � p2m dE!= (I) + (II):(5.40)Using the appropriate changes of variables we evaluate(I) = hm ln 2(�m � a):(5.41) (II) = Z �ma g(E)dE= lim�!0 Z �m��a f(E)E � �mdE � hm ln �m � a� ! :(5.42)The remaining integral can be integrated and we obtainZ �m��a f(E)E � �mdE = 1m
  ln 1� + ln 4(m
)2b� a + ln(1 +O(�))! :(5.43)Note that for �m = �m(pm = 0) equation (B.43) yields hm = 1m
 . Therefore we candetermine (II) = hm  ln 4(m
)2b� a � ln(�m � a)! :(5.44) (I) + (II) = hm ln 8(m
)2b� a :(5.45)It follows from (5.36) and (5.40) that � (reg)m;m (0) = � ln 8(m
)2b�a , which proves (5.34).
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Appendix ADe�nition of the g-gap solutionIt is our goal to derive a formula for the well known g-gap solutions of the Todalattice.Let g 2 0 = fn 2 : n � 0g and denote by Rg the hyperelliptic curve of genusg, which is constructed by pasting together two copies of the Riemann sphere [f1galong the slits [E0; E1]; [E2; E3]; : : : ; [E2g; E2g+1] ,where (E0 < E1 < � � � < E2g+1):A point on Rg is denoted by P , and the canonical projection of Rg on theRiemann sphere is given by �. We write E = �(P ):� For 1 � k � g let Pj 2 Rg be a point in the j-th gap, i.e �(Pj) 2 [E2j�1; E2j ]:� �k; �k; 1 � k � g denote the canonical homology basis for Rg (see [FK, III.1]for a de�nition of a canonical homology basis) as shown in the Figure A.1below.
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0 1 2 3 2g-2 2g-1 2g 2g+1E E E E E E EFigure A.1: The canonical homology basis of the Riemann surfaceThe existence and uniqueness of the following di�erentials can be deduced from theRiemann Roch Theorem (see [FK, III.4.8]) applied to Rg (see e.g. [BS, VI.4, Satz32], [G1, Remark 16.17]). 88



� ! := (!l)1�l�g is de�ned as the unique basis of holomorphic di�erentials onRg, which is normalized by the condition R�k !l = �k;l. Note that all theholomorphic di�erentials on Rg can be written in the following form.� = p(E)pR(E)dE;(A.2) R(E) := 2g+1Yj=0 (E �Ej);(A.3)where p is any polynomial in E of degree � g � 1 (see [FK, III.7.5, Corollary1]).� !(1) is the unique meromorphic di�erential on Rg with simple poles at P1 andP �1(residues: 1 /resp. �1), holomorphic everywhere else and normalized byR�k !(1) = 0, for 1 � k � g. Here the points P1 and P �1 denote the point atin�nity on the upper and lower sheet respectively. We can write!(1) = p(1)(E)pR(E)dE;(A.4)where p(1) denotes an uniquely determined polynomial of degree g.� !(2) is the unique meromorphic di�erential on Rg with second order polesat P1 and P �1 (principal parts: 12�2d� /resp. �12�2 d�, where � is the coordi-nate around 1 : � := 1�(P )); holomorphic everywhere else and normalized byR�k !(2) = 0, for 1 � k � g. Again this di�erential can be written in thefollowing way. !(2) = p(2)(E)pR(E)dE;(A.5)where p(2) denotes an uniquely determined polynomial of degree g + 1.� We de�ne the following � periods.� := (�k;l)1�k;l�g; with �k;l := Z�k !l:(A.6)The Riemann bilinear relations imply that � is a symmetric matrix with pos-itive de�nite imaginary part (see [FK, III.3.1, III.3.2]).Uk := 12�i Z�k !(1):(A.7) Vk := 12�i Z�k !(2):(A.8) 89



� We denote K to be the vector of Riemann constants with respect to the base-point E2g+1 (compare [FK, VI.2.4]).The following three integral functions are multivalued and depend on the pathof integration.A(P ) := R PE2g+1 !:
(1)(P ) := R PE2g+1 !(1) on Rg n fP1; P �1g .
(2)(P ) := R PE2g+1 !(2) on Rg n fP1; P �1g.We recall the de�nition of the Riemann theta function (see e.g. [FK, VI.1]). Fora symmetric matrix �, with positive de�nite imaginary part,#(vj�) := Xm2 g e2�i<m;v>+�i<m;�m>;where < u; v >:= Pgj=1 ujvj : The \periodicity" properties of the Riemann thetafunction are as follows. Let 1 � m � g and denote by em the m -th column of theg� g identity matrix and by �m the m-th column of �. Then (see e.g. [FK, VI.1.2])#(v + emj�) = #(vj�):(A.9) #(v + �mj�) = exp(�2�ivm � �i�m;m)#(vj�):(A.10)The main tool for the construction of the g-gap solutions is the following exis-tence and uniqueness theorem for the Baker - Akhiezer function. Using the abovenotation, we have:Theorem A.11 ([Kr1], see also [A],[D], [IM]) For all n 2 ; t 2 , there is aunique (up to multiplication by a constant ) function  n(t; �), which is not identicallyequal to 0 and satis�es(i)  n(t; �) is meromorphic on Rg n fP1; P �1g:(ii)  n(t; �) has at most simple poles at P1; : : : ; Pg 2 Rg n fP1; P �1g and is holo-morphic elsewhere on Rg n fP1; P �1g.(iii)  n(t; �)E�nexp(� t2E) has a holomorphic continuation at P1 /resp. P �1:Proof : This result is well known and we only sketch the proof. First we proveexistence. De�ne	n(t; P ) := exp(n
(1)(P ) + t
(2)(P ))#(A(P ) + Un+ V t� Zj�)#(A(P )� Zj�) ;(A.12) 90



where 
(1);
(2); A; U; V and � were de�ned above and Z will be introduced below.Before we can check that this function satis�es all the conditions of the theorem,some more remarks are needed.� As already mentioned above the functions A;
(1);
(2) are multivalued. Wewill show below that nevertheless the function 	n(t; P ) is well de�ned if weinsist that the path of integration is the same for all three functions.� Z := K +P1�m�g A(Pm). As we want 	n(t; P ) to be well de�ned we nowspecify the path of integration from E2g+1 to Pm. We �rst integrate on theupper sheet along on the + := fE 2 : Im(E) > 0g side from E2g+1 tothe branchpoint E2m�1 and then from E2m�1 to Pm along the real axis, wherethe path always �rst stays on the upper sheet, and in case that Pm lies on thelower sheet, we switch the sheet at E2m. Of course we could have chosen any�xed path from E2g+1 to Pm, but the preceeding choice leads to an especiallysimple formula for Z in (B.46) below.� In the case that g = 0 the theta functions are simply replaced by the factor 1.One checks that all the steps of the proof given below are trivially satis�ed inthis case.In order to see that 	n(t; P ) is well de�ned we have to examine what happens ifwe add to the path of integration one of the cycles �k; �k; 1 � k � g or 
j ; j = 1; 2,where the 
 's are the cycles around P1 /resp. P �1. The 
 cycles only e�ect
(1) by adding a multiple of 2�i, which does not change the value of 	n(t; P )because of the exponentiation. The � cycles only change the entries of A(P ) byadding integers which has no e�ect because of the periodicity of the theta functionin the real direction (see (A.9)). The � cycles change all three integrals and it isstraightforward to show that all the factors cancel out by the monodromy propertyof the theta function (A.10) and by the choice of the vectors U and V (see (A.7)and (A.8)).As A;
(1);
(2) are holomorphic in Rg n fP1; P �1g, properties (i) and (ii) areequivalent to showing that the zeros of #(A(P )� Zj�) are all simple and that theyare given by P1; P2; : : : ; Pg. By de�nition of Z and by [FK, Theorem b,VI.3.3],(see also [G1, Thm 17.9]) this is equivalent to proving that the divisor P1P2 : : : Pgis nonspecial, i.e that there exists no holomorphic di�erential on Rg vanishing at91



P1; P2; : : : ; Pg and which is not identically equal to zero. But this is easily deducedfrom the characterisation of holomorphic di�erentials as given in (A.2) and from thefact that �(Pi) 6= �(Pj) for i 6= j.Property (iii) can be veri�ed from the de�nitions of !(1) and !(2):This settles existence and we can now turn to the question of uniqueness. Sup-pose ~	n(t; �) satis�es (i),(ii) and (iii). We consider the function ~	n(t;�)	n(t;�) . It is mero-morphic and its poles are the zeros of #(A(P ) + Un+ V t� Zj�). It will be shownbelow (see Remark B.48) that for all n and t, #(A(P )+Un+V t�Zj�) has exactlyg zeros, one in each gap, which form a nonspecial divisor and by the Riemann-Rochtheorem it follows that ~	n(t;�)	n(t;�) must be a constant (see e.g. [FK, III.4.8], [G1, Thm16.11]). 3We now introduce a normalization of the Baker -Akhiezer function. Denote by n(t; �) the uniquely de�ned BA-function which has the following expansion at P1. n(t; P ) = E�nexp(� t2E)(1 + 1Xs=1 �+s (n; t)E�s):(A.13)This is possible as we see from (A.12) and the position of the zeros of #(A(�) +Un+ V t�Zj�) described above, that 	n(t; P1) 6= 0. The expansion at P �1 is thenwritten as  n(t; P ) = Enexp( t2E)(��0 (n; t) + 1Xs=1 ��s (n; t)E�s):(A.14)We can express ��0 (n; t) in the following way. Let us expand 	n(t; P ) as givenin equation (A.12) around P1 and P �1. From the de�nition of !(1) and !(2) it isobvious that we can expand their integrals in the following way around the in�nities.
(1)(P ) = �(lnE + 1Xl=0 I�l E�l) around P1 /resp. P �1:(A.15) 
(2)(P ) = �12(E + 1Xl=0R�l E�l) around P1 /resp. P �1:(A.16)In order to have the zero order terms I�0 and R�0 well de�ned we shall now �xthe path of integration from E2g+1 to P1 and P �1 as the path along the real axis
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from E2g+1 to +1 on the upper sheet /resp. on the lower sheet. The holomorphiccontinuation of 	n(t; P )Enexp( tE2 ) takes at P1 the valueexp(�nI+0 � t2R+0 )#(A(P1) + Un+ V t� Zj�)#(A(P1)� Zj�) :The path in the integration of ! is chosen as above, which determines the valueof A(P1) uniquely. It follows by the Riemann bilinear relations (see e.g. [FK,III(3.6.3)]), that 12�i Z� !(1) = Z P1P �1 ! = A(P1)�A(P �1):(A.17)As ! di�ers on the di�erent sheets only by a sign we obtain with (A.7), thatA(P1) = 12U = �A(P �1):(A.18)At P �1 the holomorphic continuation of 	n(t; P )E�nexp(� tE2 ) takes the valueexp(nI�0 + t2R�0 )#(A(P �1) + Un+ V t� Zj�)#(A(P �1)� Zj�) :Hence ��0 (n; t) = exp�n(I+0 + I�0 ) + t2(R+0 +R�0 )�#(U(n� 12) + V t� Zj�)#(12U � Zj�)#(U(n+ 12) + V t� Zj�)#(�12U � Zj�) :(A.19)In Appendix B we will determine formulae for I+0 ; I�0 ; R+0 ; R�0 ; U; V; Z, from whichit is easy to see that all the parameters are real and hence ��0 (n; t) 2 n f0g. But��0 (0; 0) = 1 and by the hence by continuity (regard n as an arbitrary real variable)��0 (n; t) > 0. We de�ne xn(t) := ln ��0 (n; t)(A.20)as a real number. The next theorem shows that xn(t) is a solution of the Todalattice.Theorem A.21 ([Kr1], [G2]) Let xn(t) be de�ned as in (A.20). Then xn is twicedi�erentiable (in fact in�nite di�erentiable) for all n 2 and furthermore8n 2 ; t 2 : �xn(t) = exp(xn�1(t)� xn(t))� exp(xn(t)� xn+1(t)):
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Proof : Recall from the Introduction that we can write the Toda equation inLax pair form by using Flaschka variables (see (1.12) { (1.15)). We will show belowthat for ~ n(t; P ) := exp(�xn2 ) n(t; P );(A.22)the following equations are satis�ed for all t 2 and P 2 Rg n fP1; P �1g:~L ~ = 12E ~ :(A.23) @@t ~ = ~B ~ :(A.24)Equation (1.15) follows as the compatibility condition of equations (A.23) and(A.24).Proof of equations (A.23) and (A.24).We de�ne the auxiliary function 41 := ((~L� E2 ) ~ )n. Using (A.13) we can calculatethe behavior of 41Enexp( t2E) around P1 and we arrive at12exp(�xn2 )(�+1 (n� 1; t)� �+1 (n; t)� _xn) +O(E�1):In the same way we determine from equation (A.14) the behavior of41E�nexp(� t2E)around P �1: It is given by12exp(xn2 )(e�xn+1��1 (n+ 1; t)� e�xn��1 (n; t)� _xn) +O(E�1):The quantity 41 satis�es conditions (i) and (ii) of Theorem A.11 and thus we canconclude that�+1 (n� 1; t)� �+1 (n; t)� _xn = e�xn+1��1 (n+ 1; t)� e�xn��1 (n; t)� _xn:(A.25)Proceeding in an analog way for the auxiliary function 42 = (( @@t � ~B) ~ )n weconclude again from Theorem A.11 that�+1 (n� 1; t)� �+1 (n; t)� _xn = �e�xn+1��1 (n+ 1; t) + e�xn��1 (n; t) + _xn:(A.26)Adding equations (A.25) and (A.26) we see that �+1 (n� 1; t)� �+1 (n; t)� _xn = 0and again by Theorem A.11 it follows that 41 and 42 are both equal to zero andthis proves equations (A.23) and (A.24). 394



Appendix BEvaluation of the g-gapsolution for small gapsThe goal of this appendix is to prove Theorem 5.8 , that is to produce a 2g-parameterfamily of time periodic solutions of the doubly in�nite Toda lattice with period 2�
satisfying certain regularity conditions. We use the g -gap solutions produced in thelast section in the case that the gaps are small. First we introduce some notation.We choose the variables �j ; pj ; 1 � j � g in such a way, that E2j�1 = �j � pjand E2j = �j + pj; 1 � j � g. In addition we call a := E0 and b := E2g+1.Hence the g-gap solutions are completely parameterized by the 3g+2 real quantitiesa; b; �j ; pj ; Pj ; 1 � j � g. The plan of the present Appendix is as follows. We willdetermine the dependence of the quantities �; U; V; Z; I�0 ; R�0 in equation (A.19)on the parameters a; b; �j ; pj; Pj ; 1 � j � g. Then we will proceed to show thatfor small gaps there is indeed a choice of parameters, such that the correspondingsolution xn(t) as given by (A.20) has all the properties of Theorem 5.8. Specialemphasis will be given to the limits pj ! 0, i.e. when gaps close. Even though theanalytic expressions will achieve some limit value it is not clear a priori, that thislimit coincides with the formula for the corresponding lower-gap solution. Thereforethis has to be checked separately.Remark B.1 During the Appendix we will always assume that the hypothesis ofTheorem 5.8 holds, i.e. g
 < 2e� c2 < (g + 1)
:
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We specify the range for the di�erent parameters.a 2 (�2e� c2 � �a;�2e� c2 + �a):(B.2) b 2 (2e� c2 � �b; 2e� c2 + �b):(B.3) pj 2 (0; �pj ):(B.4) �j 2 (�(0)j � ��j ; �(0)j + ��j ); where(B.5) �(0)j := a+ b2 �s�b� a2 �2 � j2
2; 1 � j � g:(B.6) �(Pj) 2 [�j � pj ; �j + pj]:(B.7)The main requirements which have to be satis�ed for the choice of the various � 'sis that we have to ensure that the bands do not vanish, i.e. a < �1 � p1 < � � � <�g + pg < b. Furthermore we want �(0)j to be real, which can be achieved by theassumption (5.9) above together with the choice of a and b. During the calculationssome other conditions on the smallness of the � 's will occur (e.g. induced by theuse of the implicit function theorem) and of course we want them to be satis�ed aswell.B.1 The holomorphic di�erentials and the � matrixThe holomorphic di�erentials on Rg can be written as p(E)pR(E)dE (compare withA.2), where p is a polynomial of degree � g � 1 ,R(E) = 2g+1Yj=0 (E �Ej) = (E � a)(E � b) gYj=1((E � �j)2 � p2j);and pR(E) is de�ned on Rg with the usual convention, that on the upper sheetpR(E) ! +1; as E ! +1. Our �rst goal is to determine the canonical basisof the holomorphic di�erentials !l = rl(E)pR(E)dE, which has to be chosen such thatR�k !l = �k;l:For the calculations it turns out that the following basis of polynomials of degree� g � 1 is useful. We denoteej(E) := gYm = 1m 6= j E � �m�j � �m :(B.8)
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We begin with the calculation of some elementary integrals. The �rst candidateis ~bk;j := Z E2k�1E2k�2 ej(E)pjR(E)jdE; 1 � k � g;(B.9)and ~B := (~bk;j)gk;j=1:(B.10)Here the square root in the denominator always denotes the positive root. In orderto demonstrate how this integral will be analyzed (especially in the limit as pk !0) we split the integral in two parts. Let d be any �xed number in the interval[E2k�2; E2k�1], which is away from the edges of the bands independently of thechoice of the parameters as they vary over the allowed regions. Letfj;k(E) := ej(E) 1p(E � a)(b�E) gYm = 1m 6= k 1p(E � �m)2 � p2m ;(B.11)then there exists a smooth function ~fj;k such that we can writefj;k(E) = fj;k(�k) + (E � �k) ~fj;k(E)(B.12)for E 2 [d; �k]. By simple changes of variables we haveZ �k�pkd 1q(E � �k)2 � p2k dE = Z �k�dpk1 dsps2 � 1= arccosh ��k � dpk �= ln 2�k � dpk + ln0@12 +s14 � p2k4(�k � d)21A :Z �k�pkd (E � �k) ~fj;k(E)q(E � �k)2 � p2k dE = � Z p(d��k)2�p2k0 ~fj;k ��k +qs2 + p2k� ds:Note that the last quantity is a C1 function of all the parameters, namely (a; b; �j ; pj).Furthermore we see that the expression just depends on p2j and therefore we cande�ne it for pj � 0 such that the smooth dependence on the parameters is preserved
97



and we obtain a function, which is even in all (small) pj 's. This continuation ispurely formal. Using the abbreviationhk := 1p(�k � a)(b� �k) gYm = 1m 6= k 1p(�k � �m)2 � p2m ;(B.13)we stateLemma B.14 Given the de�nitions as above, then~bk;j = �k;jhk ln 1pk + �k�1;jhk�1 ln 1pk�1 +~b(reg)k;j ;(B.15)where ~b(reg)k;j is a C1 function of the parameters (a; b; �j ; pj), which can be extendedfor nonpositive values of the pj 's in an even way, preserving the smoothness.Proof : We split the integrals as described above. The integrals from E2k�2to d can be dealt with in a similar way. 3There is a second elementary integral which we wish to discuss. De�ne~ak;j := Z �k+pk�k�pk ej(E)pjR(E)jdE:(B.16)Utilizing the notation introduced in equation (B.11) we obtain without e�ort~ak;j = Z 1�1 fj;k(�k + pks)p1� s2 ds;(B.17)from which it is obvious that ~ak;j is a smooth function of the parameters and can beextended to (small) nonpositive values of pj as an even and smooth function. Fromthe formula (B.17) we can also read o� that~ak;j = �k;j�hk + ~a(ho)k;j ;(B.18)with ~a(ho)k;j = O(p2k).( (ho) stands for higher order). Let us introduce the matrices~A := (~ak;j)gk;j=1, ~A(ho) := (~a(ho)k;j )gk;j=1 and ~C := ~A�1. We can again state a lemma.
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Lemma B.19 Given the de�nitions as above. Then~A = diag (�hk) + ~A(ho):(B.20) ~C = diag ( 1�hk ) + ~C(ho):(B.21)All entries of the matrices are smooth in the parameters (a; b; �j ; pj) and have aneven and smooth extension for (small) nonpositive pj. Finally we have the estimates81 � j; k � g : ~a(ho)k;j = O(p2k) and ~c(ho)k;j = O(p2k):Proof : The claim has been shown for ~A. Expanding ~C in a Neumann seriescompletes the proof. 3Using these two lemmas we can evaluate the corresponding integrals over thecycles of the canonical homology basis. Letak;j := Z�k ej(E)pR(E)dE and A := (ak;j)gk;j=1:(B.22) bk;j := Z�k ej(E)pR(E)dE and B := (bk;j)gk;j=1:(B.23)Looking at Figure A.1 in the beginning of Appendix A and keeping track of thesigns we obtain the following formulaeA = diag (2(�1)g�k) ~A:(B.24) B = 0B@ 1 0... . . .1 � � � 1 1CA diag (2i(�1)g�k)~B:= B(sing) +B(reg);(B.25)with B(sing) = diag (�2i(�1)g�khk ln pk);(B.26) B(reg) = 0B@ 1 0... . . .1 � � � 1 1CA diag (2i(�1)g�k)~B(reg):(B.27) 99



We return to determining the basis of the holomorphic di�erentials!l = rl(E)pR(E)dE:(B.28)Obviously we can write rl(E) =Pgj=1 rl(�j)ej(E), i.e. using vector notationr = RT e; with R = (rj;l)gj;l=1; rj;l := rl(�j):(B.29)The normalization condition for the !l reduces toPgj=1 ak;jrj;l = �k;l or equivalentlyR = A�1:(B.30)Note that the last three equations together with Lemma B.19 determine the holo-morphic di�erential completely.Finally the matrix of � periods of the !l 's can be expressed as�k;l = Z�k rl(E)pR(E)dE = gXj=1 bk;jrj;l:Therefore � = BR = BA�1:(B.31)We combine equations (B.24),(B.25),(B.26),(B.27), (B.31) and Lemma B.19 to com-pute �i� .�i� = 264 diag (2�(�1)g�khk ln pk) + 0B@ 1 0... . . .1 � � � 1 1CA diag (�2�(�1)g�k)~B(reg)375� ~C diag (12(�1)g�k):Introducing the matrices�1 := diag (�(�1)g�khk ln pk) ~C(ho) diag ((�1)g�k);(B.32) �2 := 0B@ 1 0... . . .1 � � � 1 1CA diag (��(�1)g�k)~B(reg) ~C diag ((�1)g�k);(B.33) � (reg) := �1 + �2;(B.34)we can summarize the information about �i� as follows.100



Lemma B.35 Given the de�nitions made above, we can express�i� = diag (ln pk) + � (reg);where the entries of the matrix � (reg) are C1 functions of the parameters (a; b; �j ; pj).Furthermore they have an even extension for nonpositive values of pj, which pre-serves the C1 regularity.Proof : It is only the matrix �1, which needs some consideration, namely thequestions of a smooth and even extension for the terms (ln pk)~c(ho)k;j . But this is animmediate consequence of Lemma B.19. 3B.2 Frequencies and phase - U; V and ZAs already remarked in Appendix A (A.18), the vector U can be expressed as anintegral of the !l 's. More preciselyU = 12�i Z� !(1)= Z P1P �1 != RT  2 Z 1b e(E)pR(E)dE! :The last integration is performed on the upper sheet along the real axis. Usingequations (B.24), and (B.30) we conclude the following.Lemma B.36 Given the notation as above. ThenU = diag (12(�1)g�k) ~CT  2 Z 1b e(E)pR(E)dE! :(B.37)U is a smooth function of all the parameters (a; b; �j ; pj). Again there is an exten-sion for nonpositive values of the pj 's, which is even in each pj and preserves thesmoothness.
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Proof : The methods are the same as in all the other lemmas. Looking atthe formula one might expect some di�culties for the di�erentiation with respectto b, but the transformation E ! E + b resolves the situation. Secondly one mightwonder whether the in�nite domain of integration causes problems, but it is easy tocheck that all derivatives have uniformly at least as good a decay as 1E2 , which isintegrable. 3In order to evaluate V (see (A.8)), we have to determine the zero order coe�cientof !l at P1 and P �1 (see [FK, III.3.8 (3.8.2)]). Denote rl(E) = Pg�1j=0 dl;jEj and� = 1E as the local coordinates at the in�nities. Then!l = � Pg�1j=0 dl;j�g�j�1qQ2g+1j=0 (1� �Ej)d�:This implies !l = (�dl;g�1 +O(�))d� at P1;!l = (dl;g�1 +O(�))d� at P �1:We obtain Vl = 12�i Z� !(2) = �dl;g�1:Introducing the abbreviation gk := gYm = 1m 6= k 1�k � �m ;(B.38)it follows from (B.8) and (B.28) { (B.30), thatVl = � gXj=1 rj;lgj :We can rewrite this equation asV = �RT diag (gk)0B@ 1...1 1CA :(B.39)
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V = � diag (12(�1)g�k) ~CT diag (gk)0B@ 1...1 1CA :(B.40)The next lemma will �nally tell us that we can choose the �j 's as functions ofthe other parameters such that the solution of the Toda lattice which we haveconstructed in Appendix A is time periodic with frequency 
.Lemma B.41 There are smooth functions �j(a; b; p1; : : : ; pg); 1 � j � g, which areeven in each pk such that V = � 12� 0B@ 
...g
 1CA :(B.42)Proof : This lemma is a consequence of the implicit function theorem. To seethis more explicitly, we use Lemma B.19 and equations (B.13), (B.38) to evaluatethe formula (B.40).V = 2666664 diag 0BBBBB@� 12�q(�k � a)(b� �k) gYm = 1m 6= k s1� p2m(�k � �m)21CCCCCA+O(p2)37777750BBB@ 1...1 1CCCA :(B.43)If all the pk 's are equal to zero, we choose�j = �(0)j = a+ b2 �s�b� a2 �2 � j2
2(�(0)j is real, see (B.6) and remark below), in order to solve equation (B.42). Observethat the �(0)j 's are distinct and lie in (a; a+b2 ) � (a; b). We compute the derivative@�V (p = 0; a; b; �(0)j ) = diag 0@� �2�(0)k + a+ b4�q(�(0)k � a)(b� �(0)k )1A ;which is invertible as k
 < 2e� c2 for all 1 � k � g and one can therefore choose�a and �b in (B.2), (B.3) small enough such that k
 < b�a2 for all 1 � k � g. Theevenness of the �j 's in the pk 's is a consequence of the evenness of all the terms inthe equation and the uniqueness of the solution. 3103



Remark B.44 We have chosen for each �(0)j only one of the two possible solutionsof the equation (B.42) for p = 0. We have seen in Remark 5.30, that the physicalreason for this lies in the direction in which energy is transported in the correspond-ing g-gap solution. The reader may recall that exactly the same situation occurredin Chapter 4 with the choice of the spatial frequency �.Next we compute the phase Z. Therefore it is necessary to determine the vectorof Riemann constants K. Proceeding as in [FK, VII.1.2] we obtainK = � gXm=1A(E2m�1);as it is easy to check that the zeros of P ! #(A(P )) are given by E2m�1; 1 � m � g.This impliesZ = gXm=1A(Pm) +K(B.45) = gXm=1 Z PmE2m�1 ! = RT gXm=1 Z PmE2m�1 e(E)pR(E)dE= � diag (12(�1)g�k) ~CT (Z PmE2m�1 ej(E)pR(E)dE)gj;m=1 0B@ 1...1 1CA :(B.46)The path of integration from E2m�1 to Pm is chosen along the real axis, beginningon the upper sheet and in case that Pm lies on the lower sheet we switch sheets atE2m. This choice is consistent with the description at the beginning of the proof ofTheorem A.11.The following lemma states that we can choose the Pj 's such that all phases Zare obtained. Recall that Pj is a point on Rg such that �(Pj) 2 [E2j�1; E2j ], (see(B.7)) i.e. each Pj lies on a cycle di�eomorhic to S1.Lemma B.47 The map (P1; : : : ; Pg) 7�! Z is a surjective map from (S1)g to g= gfor all choices of parameters (a; b; �j ; pj).Proof : By inspection of equation (B.46) it is clear that Z 2 (see Lemma B.19).It su�ces to show that the image of the map is open and closed. First of all wehave to convince ourselves that the map is di�erentiable. The only problem mayoccur at points Pm = E2m�1 as the path of integration changes discontinously at104



this point. More precisely, we have to investigate what happens if we add to thepath of integration a cycle �m. By equation (B.45) and the de�nition of ! we seethat this adds a vector to Z, which is zero in g= g. This settles the question ofdi�erentiability. Furthermore we know (see [FK, III.11.11 (Remark 1)] or [G1, Thm17.20]) that the di�erential of the map has maximal rank g at any point. This showsthat the image is open. That the image is closed is a consequence of the well knownfact that the image of a compact set under a continuous map is again compact andhence closed. 3Remark B.48 The zeros of #(A(�) + Un+ V t� Zj�).We now prove the asssertion, that the function P 7! #(A(P ) +Un+ V t� Zj�) hasexactly g one zero in each gap for all n 2 ; t 2 ,which was used in the proof ofTheorem A.11. By [FK, VI.3.3, Theorem b] it su�ces to show that there exists achoice of P 0j with �(P 0j) 2 [E2j�1; E2j ], such thatUn+ V t� Z(P1; : : : ; Pg) = �Z(P 01; : : : ; P 0g) in g= g:As U; V; Z(P1; : : : ; Pg) are easily seen to be real valued vectors, the existence of suchpoints follows from the Lemma B.47 above.B.3 I�0 and R�0I�0 :Recall the de�nition of I�0 in (A.15). Let!(1)0 := �Qgj=1(E � �j)pR(E) dE:(B.49)This di�erential has the desired behavior at the poles and hence we only have tonormalize in order to obtain !(1).!(1) = !(1)0 � gXj=1 Z�j !(1)0 !!j:(B.50)
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Note that !(1) just changes sign if we switch from the upper to the lower sheet, andtherefore 8s � 0 : I+s = I�s (see equation (A.15)). We can expressI+0 = limE!1� Z Eb !(1) + lnE!= limE!1� Z Eb !(1)0 + lnE!+ < Z� !(1)0 ; 12U > :The above integration takes place on the upper sheet. We recall, that the g-gapsolution should be brought into the form xn(t) = cn+ small. Comparing with(A.19) and (A.20), we see that this implies a condition on the following quantity.I := I+0 + I�0 :(B.51)Lemma B.52 I = limE!1�2 Z Eb !(1)0 + lnE!+ < Z� !(1)0 ; U >(B.53)is a smooth function of all the parameters (a; b; �j ; pj) and has an even and smoothextension for nonpositive values of the pj 's. Furthermore there exists a uniquesmooth function b(a; p1; : : : ; pg), which is even in each pk, such thatI(a; b; �j ; pj) = c:(B.54)It is understood that �j is a function of a; b; pk as determined in Lemma B.41.Proof : We break I into several pieces which we examine seperately. Duringthis proof it is understood that all the square roots that appear take on positivevalues. Let us �rst examine the dependence of I on the parameters.� � Z Eb d�p(�� a)(�� b) + lnE= � arccosh � 2b� a �E � a+ b2 ��+ lnE= � lnE + ln� 4b� a �1� a+ b2E ��+ ln 12 +s14 � (b� a)24(a+ b� 2E)2!!+ lnE;which tends to ln b�a4 as E !1. 106



� The remainder of the �rst term of I in equation (B.53) is given byZ 1b 1p(�� a)(�� b) 0BB@ gYj=1 1r1� p2j(���j)2 � 11CCA d�:In order to faciliate the di�erentiaton with respect to b, we shift the variableof integration by b. Furthermore it is not too complicated to see that all thederivatives of the integrands with respect to the parameters are uniformlybounded by O( 1�3 ) on the domain of integration and hence integrable.� For the last term < R� !(1)0 ; U >, it is enough to cite Lemma B.36 and to referto the techniques introduced in the proof of Lemma B.19.Our second goal is to determine b from the implicit function theorem. Let �j dependon a; b; pk as given in Lemma B.41. Then we can write I = I(a; b; pj), a smoothfunction satisfying I(a; b; 0) = �2 ln b� a4 :Let b(0) := a+ 4e� c2 ;(B.55)then I(a; b(0); 0) = c:@@bI(a; b(0); 0) = e c22 6= 0:The implicit function theorem yields the remaining claims of the Lemma. 3R�0 :Recall the de�nition of R�0 in (A.16). We proceed as above. De�ne!(2)0 := ��E � a+b2 �Qgj=1(E � �j)2pR(E) dE:(B.56)Then !(2) = !(2)0 � gXj=1 Z�j !(2)0 !!j:(B.57) 107



Equation (A.16) yieldsR+0 = R�0 = limE!1 �2 Z Eb !(2) �E!= limE!1 �2 Z Eb !(2)0 �E!+ < Z� !(2)0 ; U > :The following lemma states that we can choose the parameter a in such a way, thatthe average speed of the solution will be 0.Lemma B.58 Denote R := R+0 +R�0 :(B.59)Then R = limE!1 �4 Z Eb !(2)0 � 2E!+ 2 < Z� !(2)0 ; U > :(B.60)There exists a unique smooth function a(p1; : : : ; pg), which is even in each pk, suchthat R(a; b; �j ; pj) = 0;(B.61)where it is understood, that the �j 's depend on a; b and the pk 's as it is determinedin Lemma B.41 and b depends on a; pk as described in the previous Lemma.Proof : We proceed as in the proof of Lemma B.52. The only di�erence isthat the �rst term in equation (B.60) is split up in2 Z Eb �� a+b2p(�� a)(�� b)d�� 2Eand a remainder2 Z 1b �� a+b2p(�� a)(�� b) 0BB@ gYj=1 1r1� p2j(���j)2 � 11CCA d�:The �rst part tends to �(a + b), as E ! 1, whereas the second part can bedealt with as in the previous lemma. Furthermore this part vanishes identically forp1 = � � � = pg = 0. With the techniques of the proof of Lemma B.19 we observethat R�k !(2)0 = O(p2k). Finally we examine R as a function of a and pk. From whatwas just said it is immediate, thatR(a; pj = 0) = �(a+ b(a; 0)) = �(2a+ 4e� c2 ):108



de�ning a(0) := �2e� c2 we obtain R(a(0); 0) = 0;@@aR(a(0); 0) = �2;which allows the use of the implicit function theorem. 3Note that (A.19), (A.20) together with Lemmas B.35, B.36, B.41, B.47, B.52,B.58 already prove Theorem 5.8 with the exception of the last statement, concerningthe limits pj ! 0.B.4 The closing of gapsAll the formulae of the last sections were derived under the assumption that all thethe gaps are open, i.e. for all 1 � j � g : pj > 0: Nevertheless we have made ita point that almost all of the analytical expressions which we have calculated havea smooth (at least C1) continuation for nonpositive values of the pj 's. It is nota priori clear that the limits we obtain if we let some of the pj 's tend to zero,coincide with the formulae for the corresponding lower gap solution. It is the goal ofthis section to convince ourselves that the expression for ��0 (n; t) which is given inequation (A.19) has a continuous limit if some or all gaps close as described above.Clearly it su�ces to examine the case that only one of the gaps closes at a time.To be more speci�c, �x pj > 0 for 1 � j � g; j 6= � and p� = 0, as well as theother parameters a; b; �j ; Pj . We further assume that g > 1. The case that the lastgap closes will be dealt with at the end of this subsection.We use the following notation. All quantities which have to be evaluated willin two versions, namely with or without 0 (e.g. ~A; ~A0). Without 0 denotes thequantity for the g-gap case, in the limit p� ! 0, whereas the quantity with 0 standsfor the corresponding g � 1 gap expression with the same choice of the remainingparameters. Note that the parameters �� ; p� and P� do not appear in the g� 1 gapcase.For a g� g matrix M , we de�ne by Mk;j 6=� the (g� 1)� (g� 1) matrix which isobtained from M by cancelling the � -th row and column. Similarily for a vector v,we denote by vj 6=� the vector where the � -th entry is cancelled. Finally the (k; j)109



entry of a matrix M will sometimes be denoted by M(k; j). Let us now collect allthe technical information, we will need.Proposition B.62 With the notation introduced above, the following relations holdfor g > 1.(i) ~Ak;j 6=� = diag ( sgn (�k � ��)) ~A0 diag ( 1�k��� ):~A(�; j) = 0; for j 6= �:(ii) ~Ck;j 6=� = diag (�k � ��) ~C 0 diag ( sgn (�k � ��)):~C(�; j) = 0; for j 6= �:~C(ho)k;j 6=� = diag (�k � ��) ~C 0(ho) diag ( sgn (�k � ��)):~C(ho)(�; j) = 0; for j 6= �:(iii) Uj 6=� = U 0:(iv) Vj 6=� = V 0:(v) Zj 6=� = Z 0:(vi) � (reg)k;j 6=� = �� (reg)�0 :(vii) I = I 0:(viii) R = R0:Proof :(i) j; k 6= � : ~ak;j = Z �k+pk�k�pk ej(E)pjR(E)jdE= 1�j � �� Z �k+pk�k�pk e0j(E)pjR0(E)j sgn (E � ��)dE:k = � : ~ak;j = ��;j�h� (see equation (B.18) ) :(ii) We obtain the information about ~C from evaluating the relation ~A ~C = I in thefollowing order. From the (�; �) entry conclude that ~C(�; �) = 1�h� . Lookingat the � -th row we see that 8j 6= � : ~C(�; j) = 0. This shows that ~Ck;j 6=� is
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the inverse of ~Ak;j 6=�, and this yields the claim for ~C. To prove the claim for~C(ho) it is enough (see (B.21)) to observe from (B.13) that for k 6= �1�hk = (�k � ��) 1�h0k sgn (�k � ��):(iii) For j 6= �, we check that R1b ej(E)pR(E)dE = 1�j��� R1b e0j(E)pR0(E)dE. The claimthen follows from equation (B.37) and from property (ii) (esp. ~CT (k; �) = 0for k 6= �).(iv) The proof is similar to (iii). Here it su�ces by equation (B.40) to show that264 diag (gk)0B@ 1...1 1CA375j 6=� = diag ( 1�k � �� ) diag (g0k)0B@ 1...1 1CA :But this follows directly from (B.38).(v) Looking at formula (B.46) it is su�cient to verify that8><>:24 Z PmE2m�1 ej(E)pR(E)dE!j;m35 0B@ 1...1 1CA9>=>;j 6=�= diag ( 1�k � �� )24 Z PmE2m�1 e0j(E)pR0(E)dE!j;m6=�35 0B@ 1...1 1CA :It is not di�cult to check this relation, if one observes that for j 6= � :R P�E2� ej(E)pR(E)dE = 0 in the limit of p� ! 0.(vi) We have to examine the behavior of �1 and of �2 (see equations (B.32),(B.33)).The fact that (�1)k;j 6=� = (�1)0 follows directly from (ii) above and (B.32), usingthe fact that for k 6= � : hk = 1j�k��� jh0k. The proof that (�2)k;j 6=� = (�2)0 needsmore consideration. First we remark, that because of ~C(�; j) = 0 for j 6= �(see (ii)), it su�ces to prove the following equality.2640B@ 1 0... . . .1 � � � 1 1CA diag (�2�(�1)g�k)~B(reg)375k;j 6=�= 0B@ 1 0... . . .1 � � � 1 1CA diag (�2�(�1)g�1�k)�~B(reg)�0 diag ( 1�k � �� ):111



Write ~B(reg) = ~B � ~B(sing). Observe that by equation (B.25)2640B@ 1 0... . . .1 � � � 1 1CA diag (�2�(�1)g�k)~B(sing)375k;j 6=�= h diag (2�(�1)g�khk ln pk)ik;j 6=� ;and one checks easily that this equals0B@ 1 0... . . .1 � � � 1 1CA diag (�2�(�1)g�1�k)�~B(sing)�0 diag ( 1�k � �� ):To complete the proof we must check the relation for ~B itself. It su�ces tocompute ~bk;j for j 6= �. It is enough to verify the following two relations.� For k 6= � and k 6= � + 1: ~bk;j = sgn (�k���)�j��� ~b0k0;j0,where k0 = k, for k < � and k0 = k � 1, for k > �,and j0 = j, for j < � and j0 = j � 1, for j > �.� �~b�;j +~b�+1;j = 1�j��� ~b0�;j0 .The �rst relation follows directly from the de�nitions. The crucial point forproving the second relation is the following calculation. In order to investigatethe limit p� ! 0 explicitly, let us now assume for a moment that p� > 0. Let� > 0 be an arbitrary but small number and let p� < �. Then� Z ���p����� ej(E)pjR(E)jdE + Z ��+���+p� ej(E)pjR(E)jdE= 1�j � ��  � Z ���p����� e0j(E)(E � ��)pjR0(E)jp(E � ��)2 � p2� dE+ Z ��+���+p� e0j(E)(E � ��)pjR0(E)jp(E � ��)2 � p2� dE!= 1�j � �� 0@� Z 0p�2�p2� e0j(�� �ps2 + p2�)qjR0(�� �ps2 + p2�)jds+ Z p�2�p2�0 e0j(�� +ps2 + p2�)qjR0(�� +ps2 + p2�)jds1A! 1�j � ��  Z ��� e0j(�� + s)pjR0(�� + s)jds! ; as p� ! 0:112



(vii), (viii)The proof for I and R follows trivially from the formulae which were producedin the proofs of Lemma B.52 and Lemma B.58, properties (iii) and (iv) of thisproposition and the observation, that R�� !(m)0 ! 0, as p� ! 0 for m = 1; 2.3Remarks:(1) In the above proposition we have kept a; b; �j �xed as p� ! 0, but this isclearly not necessary. Indeed, if a; b; �j are given continuous functions of p� thenthe obvious analog of the proposition holds true. For example in the formula (vii),I(a; b; �j ; p1; : : : ; 0; : : : ; pg) = I 0(a; b; �j ; pj 6=�);simply replace a; b; �j by their limiting values at p� = 0.(2) During the proposition we assumed that g > 1, as most of the terms do notcarry any meaning for the 0-gap case. Only the quantities I and R are also wellde�ned for g = 0 and without changing the proof of property (vii) and (viii), wesee that the proposition also holds in the transition from the 1 -gap to the 0-gapsituation.We �nally turn to the question of basic interest, namely how the formula for thesolutions xn(t) in Theorem 5.8 (see equation (5.10)) behaves, if we let some or allof the p� tend to zero. Recall that we have determined the parameters a; b and �jas functions of p1; : : : ; pg such that xn(t) is a periodic function in t, which is of theform xn(t) = cn+ ln #(12U � Zj�)#((n� 12)U + tV � Zj�)#(�12U � Zj�)#((n+ 12)U + tV � Zj�) :Let us now again investigate what happens if one of the gaps closes, i.e. p� ! 0.The �rst question is, whether the choice of the parameters a; b and �j as functionsof the pk 's have the proper limit as p� ! 0, i.e. whether for examplelimp�!0 a(p1; : : : ; p� ; : : : ; pg) = a0(p1; : : : ; p��1; p�+1; : : : ; pg):But this can be seen from properties (iv),(vii) and (viii) of Proposition B.62, as thesolution of the determining equations (B.42), (B.54) and (B.61) for a = a(p1; : : : ; pg); b =b(p1; : : : ; pg) and �j = �j(p1; : : : ; pg) are unique. We are now in the position to apply113



the Proposition B.62 in order to investigate equation (5.10). It su�ces to look atthe behavior of the theta functions. Using Lemma B.35 and Lemma B.41 we obtain#((n� 12)U + tV � Zj�)= Xl2 g pl211 � : : : � pl2gg exp�2�i(< l; U > (n� 12)� < l; Z >)+ < l; � (reg)l >�exp0B@�i < l; 0B@ 12...g 1CA > 
t1CA :(B.63)We see, that in the limit p� ! 0 only those terms in the sum survive, for whichl� = 0. Using in addition the relevant results from Proposition B.62 we see that thelimit of the g-gap theta function is the appropriate g � 1-gap theta function. Theother three theta functions in equation (5.10) can be dealt with in exactly the sameway. Hence we have completed the proof of Theorem 5.8.
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Appendix CNumerical experiments
C.1 Figures of lattice motionFigures C.6-C.11 below display the motion of the �rst ten particles (x0 { x9 withthe zeroth particle on top and the nineth particle on the bottom of each �gure) oflattices, which are described by the following system of equations:�xn = F (xn�1 � xn)� F (xn � xn+1); n � 1;(C.1)with driver x0 of the formx0(t) = t+ "(sin 
t+ 0:5 cos 2
t)(C.2)and initial values given at t = 0xn(0) = _xn(0) = 0; n � 1:(C.3)We remark that we have also made experiments with driving particles x0(t) =2at+h(
t) and h being periodic functions di�erent from type (C.2) (e.g. h piecewiselinear) and we have always obtained results similar to those described below. Thechoice of parameters "; 
; F is made as follows. On each page there are four �gures.They correspond to di�erent force functions F :top left : F (x) = ex (Toda lattice)top right : F (x) = 2:25x (linear lattice)bottom left : F (x) = 1:71(x + 0:2x3)bottom right : F (x) = 2:531� 0:4x115



The parameters for these four types of force functions were chosen such that in thecase of � = 0, the system behaves subcritical (i.e. 0:5 < acrit(F )) and the latticecomes to rest (xn(t) ! cn as t ! 1). For better comparison of the di�erent forcelaws, we ensured in addition that F 0(�c) � 2:25 in all for cases. Therefore we expectfrom the linear calculations (cf equation (1.26)) that the threshold values for thefrequencies should be approximately the same in all four cases (at least for small�), namely 
k � 3=k. Hence the di�erent values which we selected for the drivingfrequency, 
 = 3:1; 2:1; 1:2 satisfy 3:1 > 
1 > 2:1 > 
2 > 1:2 > 
3. Finally allexperiments were made for two di�erent values of the driver' s amplitude, namely" = 0:2 (see Figures C.6, C.7, C.8) and " = 0:5 (see Figures C.9, C.10, C.11).C.2 Spectral densitiesWe consider equations (C.1), (C.3) in the case of the Toda lattice (F (x) = ex).As described in the Introduction we observe numerically that the spectrum of thecorresponding Lax operator obtains a band-gap structure as t!1 (cf Figures 1.29{ 1.32). In Chapter 2 we derived under various assumptions an integral equationfor the time-asymptotic spectral densityJ(�) = limt!1 ] feigenvalues of L(t) that are < �gt ;(C.5)(cf (1.34), Ansatz 2.22 and Theorem 2.27), which we solved explicitly in Theorem2.38, provided a discrete number of data is known, namely the number and endpointsof the bands. In order to test the results of Chapter 2 we proceed as follows. Wecompute J(�) for � < inf �ess(L(t)) numerically by evaluating (C.5) for large times t.This computation also yields a good approximation of the position of the endpointsof the spectral bands. Finally we determine the \predicted spectral density" bysolving the integral equation given by (2.39)-(2.41), using the numerically obtainedknowledge about the endpoints of the bands. In Figures C.12 and C.13 below wedisplay the results of these experiments for two di�erent drivers x0 of type (C.2),representing the cases 
1 > 
 > 
2 and 
2 > 
 > 
3, i.e. the one-gap and thetwo-gap situation. Both �gures containtop left : the lattice motiontop right : the time evolution of the spectrum of the corresponding116



Lax operatorbottom left : the numerically computed spectral density at t = 200bottom right : the \predicted spectral density"One observes very good agreement of numerical and predicted spectral densities,which a posteriori justi�es the assumptions introduced in Chapter 2.
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F (x) = ex (Toda lattice)

F (x) = 2:531�0:4xF (x) = 1:71(x + 0:2x3)

F (x) = 2:25x (linear lattice)

Figure C.6: Motion of lattices (cf (C.1) { (C.3)) with " = 0:2; 
 = 3:1
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F (x) = ex (Toda lattice)

F (x) = 2:531�0:4xF (x) = 1:71(x + 0:2x3)

F (x) = 2:25x (linear lattice)

Figure C.7: Motion of lattices (cf (C.1) { (C.3)) with " = 0:2; 
 = 2:1
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F (x) = ex (Toda lattice)

F (x) = 2:531�0:4xF (x) = 1:71(x + 0:2x3)

F (x) = 2:25x (linear lattice)

Figure C.8: Motion of lattices (cf (C.1) { (C.3)) with " = 0:2; 
 = 1:2
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Figure C.9: Motion of lattices (cf (C.1) { (C.3)) with " = 0:5; 
 = 3:1
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Figure C.10: Motion of lattices (cf (C.1) { (C.3)) with " = 0:5; 
 = 2:1
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Figure C.11: Motion of lattices (cf (C.1) { (C.3)) with " = 0:5; 
 = 1:2
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Figure C.12: Toda lattice with driver x0(t) = t+ 0:2 sin 
t+ 0:1 cos 
t; 
 = 1:8, i.e.
1 > 
 > 
2; see Section C.2 for detailed description.
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Figure C.13: Toda lattice with driver x0(t) = t+ 0:2 sin 
t+ 0:1 cos 
t; 
 = 1:1, i.e.
2 > 
 > 
3; see Section C.2 for detailed description.
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