
A User's Guide to the Mapping Class Group:Once Punctured SurfacesLee MosherSeptember, 1994An automatic structure for the mapping class group of a surface of �nite type was de-scribed in [M]. This document is intended as a practical guide to computations using avariant of this automatic structure, in the special case of a once-punctured, oriented surfaceS. As such, we shall try to be more descriptive and less theoretical than in [M], leaving thereader to consult [M] for detailed proofs. Our primary goal is that the reader may learn,as quickly as possible, how to compute in the mapping class group of a once-puncturedsurface: we describe a quadratic time algorithm for the word problem, henceforth calledthe algorithm, which can be implemented with pencil and paper. A Mathematica versionof the algorithm is (or will soon be) available; check the software library at the Mathe-matical Sciences Research Institute (e-mail address: msri.org), or the Geometry Center(geom.umn.edu).As with any computational method, it is necessary to learn some of the theory in orderto learn the algorithm. We spend some time developing various combinatorial tools, withenough justi�cation supplied to aid understanding and lessen the steepness of the learningcurve. There is a trade-o� involved here: time invested understanding theory may be timewasted gaining pro�ciency; I do not know if I have found the right balance. Also, despitemy stated purpose, in a few places I have put in perhaps too much detail about itemsof combinatorica that interest me, but which are not really to the point, so the reader isforewarned.The algorithm described herein can be adapted to arbitrary punctured surfaces, withor without boundary and orientation. The data structures needed do not lend themselvesquite so nicely to pencil and paper calculation, so we do not pursue the issue here; detailscan be found in [M]. And while an automatic structure for the mapping class group ofa closed surface is described in [M], in this case the results are not suited for practicalcalculation, because of the non-constructive nature of the proof; hopefully a practicalautomatic structure will emerge from a deeper understanding of closed surfaces.For the rest of the paper, let S be an oriented, once-punctured surface which is not the2-sphere. We regard S as a closed surface with a distinguished point p, the puncture. Themapping class group is MCG(S) = Homeo(S)=Homeo0(S), where Homeo(S) is the groupof all orientation preserving homeomorphisms of S �xing p, and Homeo0(S) is the normalsubgroup of all homeomorphisms isotopic to the identity leaving p stationary throughoutthe isotopy.The author was partially supported by NSF grant # DMS-9204331Research at MSRI partially supported by NSF grant # DMS-9022140 Typeset by AMS-TEX1



2 LEE MOSHERWe shall describe an explicit 2-complex X = X(S) whose fundamental group is themapping class groupMCG(S). The set of homotopy classes of edge paths in any complexform a groupoid under the operation of concatenation, called the edge path groupoid of thatcomplex; a more descriptive but longer name would be \edge path homotopy groupoid",but we stick with the shorter name. In the particular case of X(S), the edge path groupoidwill be called the mapping class groupoid , denoted MCGD(S).Recall that a combing (with uniqueness) for the edge path groupoid of X consists ofa base vertex in X, and a choice of a unique representative called the normal form foreach homotopy class of edge paths in X starting at the base vertex. When these normalforms satisfy certain computational properties we say that the set of normal forms is anautomatic structure. First, there is a �nite automaton which checks whether a given pathis a normal form, so the set of normal forms is a regular language. Second, for each edgein X there is a �nite automaton called a multiplier automaton, which checks whethertwo normal forms di�er by that edge, up to homotopy. The second condition can bereplaced by the equivalent fellow traveller property: if two normal forms v;w di�er up tohomotopy by a generator, then (letting v(t) be the pre�x of length t of v, or v(t) = v ist is greater than the length of v) we have that v(t)�1w(t) is homotopic to a path whoselength is bounded, by a constant independent of v;w; t. Another important notion is thatof an asynchronous automatic structure, where the fellow traveller property is replacedby the weaker asynchronous fellow traveller property: if two normal forms v;w di�er upto homotopy by a generator, then there are sequences 0 = s0 < s1 < � � � < sM and0 = t0 < t1 < � � � < tM with bounded di�erences si+1�si, ti+1� ti, such that v(si)�1w(ti)is homotopic to a path of bounded length. By contrast, an ordinary automatic structure issometimes called a synchronous automatic structure. The reader is referred to [ECHLPT]for formal de�nitions.In [M], asynchronous and synchronous automatic structures on the groupoidMCGD(S)are described. Associated to the edge path groupoid on a complex is the group of homotopyclasses of closed edge paths, the fundamental group. By a general result of [ECHLPT],given an automatic structure on a groupoid one may obtain an automatic structure onthe associated group. By another general result, given an automatic structure on a group(or groupoid) one may obtain a quadratic time algorithm for computing normal forms.Combining these results, we obtain a quadratic time algorithm for the word problem inMCGD(S) or MCG(S).Instead of appealing to these general results, we directly construct a quadratic timealgorithm for computing normal forms in the groupoid MCGD, and by restricting theinput to closed edge paths one obtains an algorithm for the groupMCG. Our normal formswill come from the asynchronous automatic structured described in [M]. The algorithm wedescribe for computing these normal forms will run in quadratic time; this will be provedby comparing the asynchronous automatic structure to another, synchronous automaticstructure. Our proof will use a special property of the normal forms forMCGD, the \su�xuniqueness property", discussed in section IV. Because of the su�x uniqueness property,our quadratic time algorithm is more e�cient than the one described in [ECHLPT].The automatic structure we describe is very large. As a function of the genus g, thenumber of states in the word acceptor grows at least as fast as gg; see �gure 19. As such,our algorithm does not require explicitly computing and storing the word acceptor andmultiplier automata. In a sense, our algorithm constructs local portions of the automataas they are needed for calculation.



A USER'S GUIDE TO THE MAPPING CLASS GROUP: ONCE PUNCTURED SURFACES 3Thus, despite the size of the automatic structures the computations are quite e�cient.With practice, the algorithm can be implemented quite e�ciently with pencil and paperby drawing lots of funny pictures called \chord diagrams"; we give profuse illustrations ofsuch calculations. The author is able to compute the normal forms for a once-puncturedsurface of genus 2, starting from an edge path of length n, in at most 25n2 minutes, givena su�cient quantity of paper, pencils, and co�ee. In actual practice, the computations aremuch faster (although errors, and the correction thereof using an eraser, may slow downcomputation time).Another issue arises from the fact that the complex X is so large, so one would not wantto write down a presentation forMCG using X. This raises the question of what form thealgorithm uses for input. The direct form of input is an edge path in X. However, thereare well-known \small" presentations for MCG(S) described in the literature whose sizegrows linearly with the genus. The Mathematica implementation of the algorithm allowsthe user to input a word in standard generators. This word is converted into an edge pathin X in linear time, and then the algorithm works on the edge path. We shall not describethis conversion process here. I. The complex XIn this section we construct a �nite complex X whose fundamental group is MCG.First we construct a contractible complex Y on whichMCG acts with �nite cell stabilizersand �nitely many orbits; the complex Y was �rst described by Harer [Har]. We are onlyinterested in the 2-skeleton Y (2). Then we resolve �nite cell stabilizers of Y (2) to obtain a2-complex ~X on whichMCG acts freely with �nitely many cell orbits. The quotient of ~Xby MCG yields X.Ideal arc systems and the complex Y .Let I be the closed unit interval. An ideal arc is the image h of a map(I; @I; int I) 7! (S; p; S � p)which is injective in int I, such that h does not bound a disc; this map is called a charac-teristic map of h. The image of int I is called the interior of h, denoted int(h). Two idealarcs h; h0 are isotopic if there exists � 2 Homeo0(S) such that �(h) = h0. In general, forany set of objects on which Homeo(S) acts, two objects are isotopic if they di�er by anelement of Homeo0(S).Given two ideal arcs h1; h2, it is easy to decide whether they are isotopic. In the �rstcase where the interior are disjoint, then h1; h2 are isotopic if and only if they bound adisc. In the second case where the interiors intersect, perturb h1; h2 so that the interiorshave a �nite number of transverse intersection points, and then successively isotop themto remove any complementary components which are discs, descreasing the number ofintersection points. If this process stops with a positive number of intersection points thenh1; h2 are not isotopic; otherwise we have reduced to the �rst case.An ideal arc system  is a collection of non-isotopic ideal arcs with disjoint interiors,such that each component of S �  is a disc. Figure 1 gives several examples of idealarc systems. Figure 1(a) is the standard method for cutting a surface of genus 2 into anoctagon. By adding arcs to this octagon we obtain �gure 1(b), which cuts the surface into
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(a)

(b) (c)Figure 1. Some ideal arc systemssix triangles. Figure 1(c) shows another such \ideal triangulation". Note that (b) and (c)are not isotopic, because (b) has a separating ideal arc while (c) has none.The group Homeo(S) acts on the set of ideal arc systems. Given an ideal arc system and � 2 Homeo0(S), if �() =  then � �xes each arc of  setwise (because distinct arcsare pairwise non-isotopic), and preserves the orientation (because �1(S) has no torsion).Thus, � preserves the ends of arcs in . We refer to this fact as Rigidity of Ends.A complementary component C of an ideal arc system  is called a polygon of . Thereis a characteristic map D 7! S for C, where D is a convex Euclidean polygon, so that eachvertex of D goes to p, each side of D gives a characteristic map of some ideal arc of ,and int(D) goes to C. The number of sides of C is de�ned to be the number of sides ofD. Polygons are referred to as triangles, quadrilaterals, pentagons etc. depending on thenumber of sides; in general an n-sided polygon is called an n-gon. Note that there are no1-gons or 2-gons.Examples: The polygons of  are all triangles if and only if jj = 6g � 3. At the otherextreme,  has a single polygon if and only if jj = 2g, in which case the polygon is a4g-gon. These facts are easily veri�ed using the Euler characteristic.Given a polygon, there is a certain well-de�ned number of ideal arcs that can be addedto triangulate the polygon: for a quadrilateral, add 1 arc; for a pentagon add 2 arcs; for ann-gon add n� 3 arcs (while there are many di�erent ways to add these arcs, the numberof arcs added is always n� 3; the number of distinct ways to add the arcs, up to isotopy,is given by the Catalan number 1m+1�2mm � where m = n� 2 [STT]). It follows that for anideal arc system , by adding over all polygons one obtains a certain well-de�ned numberof ideal arcs that can be added to triangulate ; this number is called the defect of . Sincea triangulation always has 6g � 3 arcs, the defect is equal to 6g � 3� jj.If one ideal arc system 0 is obtained by adding arcs to another ideal arc system , thenwe say that 0 is a re�nement of . For example, every  can be re�ned to become anideal triangulation.Now we construct Y . In general Y has one k-cell for each isotopy class of ideal arcsystems of defect k. For example, the 0-cells of Y are in 1-1 correspondence with isotopy



A USER'S GUIDE TO THE MAPPING CLASS GROUP: ONCE PUNCTURED SURFACES 5classes of ideal triangulations. To describe the attaching maps of cells, suppose the (k�1)-skeleton Y (k�1) has been constructed, and let  be an ideal arc system of defect k. Theisotopy classes of all possible re�nements of  form a subcomplex of Y (k�1). Now checkthat this subcomplex is a topological (k � 1)-sphere, and attach a k-cell to this spherecorresponding to . We will explicitly study the attaching maps for 1 and 2-cells below.The complex Y was �rst described in [Har], where Y is proved to be contractible usingStrebel di�erentials. See [Hat] for an elementary proof of contracitbility.Since the number of arcs in an ideal arc system is always at least 2g, it follows that thedefect is always at most 6g � 3 � 2g = 4g � 3, so the dimension of Y is 4g � 3. Harerproves [Har] that this is the minimum possible, by showing that the virtual cohomologicaldimension of MCG is 4g � 3.0-cells of Y : ideal triangulations.The 0-cells of Y are in 1-1 correspondence with isotopy classes of ideal triangulations ofS. Figures 1(b,c) show two non-isotopic ideal triangulations. In general there are in�nitelymany isotopy classes of ideal triangulations, because MCG is in�nite, and for each idealtriangulation � there are only �nitely many � 2 MCG such that �[�] = [�] (this followsfrom Rigidity of Ends). In fact, we will see that the stabilizer of [�] is a �nite cyclicsubgroup ofMCG whose order can take only �nitely many values depending on the genus.This begs the question: how many orbits of ideal triangulations are there underMCG?This question is particularly easy to answer on a once-punctured torus. We shall take thisup later.1-cells of Y : elementary moves.The 1-cells of Y are in 1-1 correspondence with isotopy classes of ideal arc systems of defect 1. The polygons of  consist of one quadrilateral Q and the rest triangles.An example is given in �gure 2, with Q shaded. A quadrilateral can be triangulated byinserting an ideal arc, and there are two ways to do this insertion, as shown schematicallyin �gure 3 (a schematic picture like this can be thought of as the domain of a characteristicmap for the quadrilateral, so all vertices will be identi�ed to the puncture, and there maybe certain pairwise side identi�cations as well). This gives two ideal triangulations, formingtwo 0-cells of Y , to which a 1-cell is attached corresponding to  (see �gure 3). Using the given in �gure 2, the two ideal triangulations re�ning  are shown in �gures 1(b,c),producing a particular 1-cell in Y .
Figure 2. An ideal arc system of defect 1. The quadrilateral, part ofwhich wraps around back, is shaded.Here is a way to think about an oriented 1-cell of Y . Start with an ideal triangulation �and an arc h of �. Notice that h cannot lie on two sides of a single triangle of �, for when
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Figure 3. The two triangulations of a quadrilateral, giving two 0-cellsat the ends of a 1-cell in Y .two sides of a triangle are identi�ed then there must be two or more punctures; see �gure4. Therefore, when h is removed from � the two adjacent triangles form a quadrilateral Qin a defect 1 ideal arc system . The arc h forms one diagonal of Q; let h0 be the oppositediagonal. Inserting h into  yields a new ideal triangulation �0. We shall indicate thisoperation by saying that � ! �0 is an elementary move, and that the elementary moveis performed on h, with opposite diagonal h0. To emphasize the role of h we also write� h�! �0, and in pictures such as �gure 5 we thicken h. Also, we say that the quadrilateralQ is the support of the elementary move � ! �0. To summarize, there is a natural 1-1correspondence between: oriented 1-cells of Y , isotopy classes of pairs (�; h), and pairs ofthe form ([�]; [�0]) where � ! �0 is an elementary move; the corresponding 1-cell in Y isdenoted [� ! �0].
Figure 4. In an ideal triangulation � on an oriented surface, if atriangle has two sides identi�ed then that surface must have at least twopunctures.Note that elementary moves are symmetric: if � ! �0 is an elementary move then so is�0 ! �. Note also that for each ideal triangulation �, there are 6g� 3 outgoing elementarymoves, one performed on each ideal arc of �; by reversing the directions we also see thatthere are 6g � 3 incoming elementary moves.Returning to our only example so far, from �gures 1(b,c) we obtain the elementary move� h1�! �1 shown in �gure 5(a), with intervening defect 1 ideal arc system 1. Figure 5(b)shows another elementary move � h2�! �2 starting from the same �, with intervening arcsystem 2. Note that 2 has a quadrilateral with one pair of opposite sides identi�ed. Also,note that � and �2 di�er by a mapping class, namely the Dehn twist around the core curveof the handle on the right side of the surface. Therefore, the 0-cells of Y corresponding to[�] and [�2] are in the same orbit under the action of MCG.2-cells of Y : commutator and pentagon relators.
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Figure 5. Some elementary movesThe 2-cells of Y are in 1-1 correspondence with ideal arc systems  of defect 2. Thiscan happen in two ways: the polygons of  can consist of two quadrilaterals and the resttriangles; or one pentagon and the rest triangles.If  has two quadrilaterals, each quadrilateral can be independently triangulated in oneof two ways, yielding four distinct triangulations which re�ne . The four corresponding0-cells in Y are connected up by four 1-cells as shown in �gure 6, forming a closed edgepath in Y of length four. Attached to this edge path is a 2-cell of Y corresponding to .If � is one of the four triangulations, and if h1; h2 are the two diagonals inserted into  toform �, then the two adjacent sides of the 2-cell are given by elementary moves � hn�! �n.There are also elementary moves �1 h2�! �0 and �2 h1�! �0, as shown in �gure 6. For thisreason, we can say that the elementary moves performed on h1 and on h2 commute witheach other, and thus we say that this attached 2-cell is a commutator relator .
δ

δ2 δ′
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h1 h2

h1

h2Figure 6. A commutator relatorNow suppose  has one pentagon. This pentagon can be triangulated in one of �veways as shown in �gure 7, forming a closed edge path in Y of length �ve, to which a 2-cellis attached. This 2-cell is called a pentagon relator . Note that if � is one of the �ve ideal



8 LEE MOSHERtriangulations, if h1, h2 are the arcs inserted into  to form �, and if � h1�! �1 and � h2�! �2are the two sides of the relator incident to �, then the next two sides are �1 h2�! �01 and�2 h1�! �02, and there is a �fth side �01 ! �02.
δ δ1

δ2

δ′2

δ′1

h1

h1

h2 h2Figure 7. A pentagon relatorOne computation which arises over and over is the following. Given an ideal triangu-lation � and ideal arcs h1 6= h2 2 �, consider the two elementary moves � h1�! �1 and� h2�! �2. Do these two elementary moves lie on a unique relator? If so, is it a commutatorrelator or a pentagon relator?These questions can be answered by examining the adjacencies of ends of h1; h2. Eachideal arc has two ends. Given an end of h1 and an end of h2, these ends are adjacent in� is they are incident to some corner of some polygon of �. It cannot happen that h1 hastwo ends adjacent to a single end of h2, for then we obtain a folded triangle as in �gure4. Thus, h1 and h2 can have zero, one, or two pairs of adjacent ends, and if two then thepairs are disjoint.If h1; h2 have no pairs of adjacent ends, then removal of h1; h2 yields an ideal arc systemwith two quadrilaterals, and we obtain a commutator relator. If h1; h2 have one pair ofadjacent ends, their removal produces an ideal arc system with a pentagon, and we get apentagon relator. If h1; h2 have two pairs of adjacent ends, then removal of h1; h2 createsa collection of ideal arcs with an annulus complementary component (see �gure 8 foran example). This violates the de�nition of ideal arc system, so there is no 2-cell in Ycorresponding to this collection of ideal arcs.The action of MCG on Y .In general, whenever there is a set of objects on which Homeo(S) acts, then MCGacts on the isotopy classes. Now Homeo(S) acts in the obvious way on the set of idealarc systems, so MCG acts on their isotopy classes. Also, the action of MCG preserves therelation of re�nement, henceMCG(S) acts on the complex Y by cellular homeomorphisms.We need some notation for this action. In general, given an ideal arc system  theisotopy class of  is denoted []. Thus, given � 2 MCG represented by � 2 Homeo(S),then �[] = [�()].
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Key:

h1 h2

Remove h1 and h2Figure 8. If each end of h1 is adjacent to an end of h2, removal of h1and h2 creates an annulus, and no relator is obtained.Combinatorial equivalence and chord diagrams.The main goal of this section is to present a calculus which allows us to understandcell stabilizers and cell orbits of the action of MCG on Y . This calculus will enable us tounderstand why cell stabilizers are �nite, why the number of cell orbits is �nite, and itwill guide us in \resolving" �nite order cell stabilizers, leading up to the de�nition of thecomplex X.Two ideal arc systems ; 0 are said to be combinatorially equivalent , or to have thesame combinatorial type, if they are in the same orbit under the action of Homeo(S), i.e.�() = 0 for some � 2 Homeo(S). Equivalently, their isotopy classes []; [0] are in thesame orbit under the action of MCG. The combinatorial equivalence class of  is denotedfg. We now associate to each  a �nitistic object called its combinatorial diagram, whichwill encode the combinatorial type of . Then we show how to represent the combinatorialdiagram pictorially with the chord diagram.Let  be an ideal arc system. Let E() be the set of ends of ideal arcs of . If h is anideal arc, then an end of h is just an end, in the usual sense, of the topological space h�p,so each ideal arc has two ends. An end of h can be represented by a half-arc of h, whichis the closure of a component of h � fp; xg for some x 2 int(h). Now we put some extrastructure on E().Recall that a circular ordering on a �nite set is just a permutation with one cycle. Thereis a natural way to use the orientation on S to put a circular ordering on E(). Choose adisc D containing p so that D \  is a union of radii of D. These radii form half-arcs of ,and they are in 1-1 correspondence with E(). The orientation on S determines a boundaryorientation on @D, which determines in turn the circular ordering on E(). Denote thiscircular ordering by E() Succ�! E(), the successor map. The inverse permutation is calledthe predecessor map, denoted E() Pred�! E(). Next recall that a transposition on a �niteset is a permutation where every cycle has length 2. The correspondence between oppositeends of the same arc determines a transposition on E() denoted E() Opp�! E(), theopposite end map. The combinatorial diagram of  is de�ned to be the ordered triple(E();Opp;Succ).Given ordered triples (E i; oi; �i), i = 1; 2, where E i is a �nite set and oi; �i are permuta-tions of E i, we say these triples are isomorphic if there is a bijection E1 ��! E2 such that� � �1 = �2 � � and � � o1 = o2 � �.The fact we need is that two ideal arc systems are combinatorially equivalent if and onlyif their combinatorial diagrams are isomorphic. For if 1; 2 are combinatorially equivalentthen the homeomorphism between them induces an isomorphism of their combinatorial di-



10 LEE MOSHERagrams. Conversely, if their combinatorial diagrams are isomorphic then one can constructthe desired homeomorphism up through the skeleta by induction: since the opposite endmaps correspond the homeomorphism can be extended over the 1-skeleta, and since thesuccessor maps correspond it can be extended over the polygons preserving orientation.We can immediately see why there are �nitely many combinatorial equivalence classesof ideal arc systems on S: the size of E() is bounded by 12g�6, and for a set E of boundedsize there are only �nitely many equivalence classes of triples (E ; o; �). Also, using Rigidityof Ends we can see why cell stabilizers are �nite, because the subgroup ofMCG stabilizing[] is isomorphic to the set of automorphisms of the combinatorial diagram of , whichis cyclic of order bounded by 12g � 6, because an automorphism must commute with thesuccessor map. The optimal order bound is somewhat smaller than 12g � 6, because anautomorphism also commutes with the opposite end map; on a surface of genus 2 theoptimal order bound is 3.The combinatorial diagram of  can be represented pictorially by the chord diagram.Draw a circle on a piece of paper, oriented counterclockwise, and draw 12g � 6 pointson the circle corresponding to E(), so that the counterclockwise ordering corresponds toSucc. Now draw chords connecting up the points in pairs, using the transposition Opp;in diagrams we use chords which are hyperbolic geodesics in the Poincar�e disc model, i.e.arcs of circles orthogonal to the boundary. Figure 9 shows three examples, two ideal trian-gulations and a defect 1 ideal arc system, taken from the �rst elementary move picturedin �gure 5. In order for the reader to get used to the chord diagrams, in these �gures wehave indexed the arc ends with integers, but we will not use any indexing in future chorddiagrams.In the second elementary move � ! �2 of �gure 5, one can check that � and �2 havethe same chord diagram, verifying the earlier statement that they are combinatoriallyequivalent.It is easy to distinguish combinatorial types by viewing the chord diagram. If thepoints representing ends are spaced regularly around the circle, and if the chords aredrawn with hyperbolic geodesics, then the chord diagram itself is a complete invariant ofthe combinatorial type, regarding two chord diagrams as being isomorphic if they di�erby a Euclidean similarity. It is also easy to recognize the automorphism group of a chorddiagram, by just looking for circular symmetries of the diagram. These tasks are easilyaccomplished even with slightly sloppy hand drawings of chord diagrams.Since the combinatorial diagram or the chord diagram completely determines the com-binatorial type, one can derive from either of them any combinatorial properties of idealarc systems. In general, for any set of objects on which Homeo(S) acts, a combinatorialproperty de�ned on those objects is a property invariant under the action of Homeo(S). Forexample, the polygon type of an ideal arc system  is a combinatorial property: this is thesequence (i3; i4; : : : ) where in is the number of n-gons in . To determine the polygon typefrom the combinatorial diagram (E();Opp;Succ), de�ne a permutation E() Next�! E() asNext = Succ �Opp). Then the n-cycles of Next are in 1�1 correspondence with the n-gonsof , for each n � 3. For example, in the defect 1 chord diagram of �gure 10, the per-mutation Next has cycle structure f(1; 5; 9; 13); (2; 7; 4); (3; 8; 6); (10; 15; 12); (11; 16; 14)g,showing one 4-gon and four 3-gons. Tracing out the boundary of the 4-gon starting withend 1, and then successively applying Opp and Succ, we obtain:1 Opp�! 4 Succ�! 5 Opp�! 8 Succ�! 9 Opp�! 12 Succ�! 13 Opp�! 16 Succ�! 1
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(c) Figure 9. Chord diagrams of some ideal arc systems
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(a) (b)Figure 10. A 4-gon in a defect 1 chord diagramas shown in �gure 10(a).An important concept which plays a central role later on is that of a prong of an idealarc system . Informally, a prong of  is a corner of a polygon of . Formally, a prongis an ordered pair (e; e0) in E() such that e0 = Succ(e). In a chord diagram, a prong is



12 LEE MOSHERrepresented as the circular arc between adjacent ends; we shall call this an end gap. Thus,when we represent a polygon in a chord diagram as in �gure 10, what is actually drawn arethe chords representing the sides of the polygon and the end gaps representing the prongsof the polygon. If we index each prong (e; e0) using the index of the second end e0 in thepair, then each cycle of Next lists the prong indices of the corresponding polygon. Figure10(b) shows prong indices, making clear the correspondence between the 4-gon and thecycle (1; 5; 9; 13).Here is an exercise: prove that given a set E of size 12g�6, if Succ is a cyclic permutationand Opp is a transposition, then the triple (E ;Opp;Succ) is isomorphic to the combinatorialtype of an ideal triangulation on a surface of genus g if and only if the permutationNext = Succ �Opp has a cycle structure consisting solely of 3-cycles. This idea is usedin appendix 2 of [P] to obtain an asymptotic formula, given in the next section, for thenumber of combinatorial types of ideal triangulations on a surface of genus g.Chord diagrams of ideal triangulations.In this section we shall make several observations about chord diagrams of ideal tri-angulations. These observations serve two purposes: they help in learning to recognizefeatures of chord diagrams; and they can be used to enumerate the chord diagrams on asurface of genus 2. This enumeration was �rst obtained by [Jorgensen, Martineen]. Weshall also report on enumerations for higher genus, and an asymptotic formula.Suppose � is an ideal triangulation. Let T be a triangle of �, and let (e1; e2; e3) bethe corresponding 3-cycle of Next. Every distinct ordered triple in E(�) is either positiveor negative. We say that (e1; e2; e3) is positive if there is a circular enumeration E(�) =ff1; : : : ; fKg, i.e. an enumeration with Succ(fk) = fk+1 for k 2 Z=K, so that if ei = fkithen k1 < k2 < k3.Figure 11 shows how the two types of triangles appear in a chord diagram: a positive3-cycle of Next yields an untwisted triangle, and a negative 3-cycle yields a twisted triangle.Note that T is untwisted if and only if its regular neighborhood is homeomorphic to a threeholed sphere, and T is twisted if and only if the regular neighborhood is homeomorphic toa one holed torus.
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A USER'S GUIDE TO THE MAPPING CLASS GROUP: ONCE PUNCTURED SURFACES 13Proof #1. Construct a single \base" example of an ideal triangulation with 2g twistedand 2g � 2 untwisted triangles, observe that the count of twisted and untwisted trianglesis unchanged when doing an elementary move, and then apply connectivity of the complxY . �This proof has the disadvantage that it is not intrinsic to �: one must �nd a path ofelementary moves from � to the base example. Here is an intrinsic proof:Proof #2. Let d be a disc neighborhood of p chosen so that �\d is a union of radii of d. LetŜ = S � int(d). We shall use � to put a piecewise Euclidean metric on Ŝ. This metric willhave concentrated negative curvature corresponding to the twisted triangles. By applyingthe Gauss-Bonnet theorem we obtain a count of the number of twisted triangles. To setup the metric requires some alterations on �.Let �1 be obtained from � by replacing each ideal arc h of � with two copies of h boundinga bigon, still intersecting d in radii. Now consider a triangle T of �1. If T is twisted, thenalter T near each prong by taking two half-arcs incident to that prong extending slightlybeyond d, and pinching their ends together, as shown in �gure A1; make sure that thehalf-arcs are left unchanged in d, still intersecting d in radii. The triangle T is dividedinto four regions: a pinched triangle, and three pinched prongs. Making this alteration foreach twisted triangle of �1, the resulting collection of ideal arcs is denoted �2. Now let �̂be obtained by intersecting �2 with Ŝ. This has the e�ect of truncating each untwistedtriangle, each bigon, and each pinched prong; pinched triangles are left intact.
pinch prongsFigure A1. Pinch the prongs of each twisted triangleConsider the chord diagram D of �. Let D̂ be obtained from D by doubling each chord,replacing it with two parallel chords, then straightening all chords to become Euclideansegments instead of hyperbolic lines (see �gure A2).

double straighten

D D̂Figure A2. To obtain D̂, double each chord of D then straighten



14 LEE MOSHERWe regard D̂ as lying in the Euclidean plane E2, and we construct a map f : Ŝ ! E2whose picture is given by D̂, as follows. The boundary of Ŝ goes to the boundary circleof D̂. Each truncated arc of �̂ goes to the corresponding chord of D̂. Each component ofŜ � �̂ is either a truncated untwisted triangle, truncated bigon, truncated pinched prong,or pinched triangle; for each of these regions the boundary is already mapped to a simpleclosed curve in E2, and there is an extension of f to an embedding of the region, as shownin �gure A3.Notice that for each pinch point x, the map f creates a \pleat" at x; see �gure A4.Another way to say this is that each twisted triangle is \twisted" by the map f , at eachpinch point of the triangle.
Figure A3. Embedding a truncated untwisted triangle, truncatedbigon, truncated pinched prong, and pinched triangle into D̂By pulling back the Euclidean metric from E2 to D̂, we obtain a piecewise Euclideanmetric on S. The boundary has total geodesic curvature 2�. Consider a pinch point x.We must compute the Euclidean cone angle �x. The pinched triangle incident to x has acertain interior angle �x, and as �gure A4 shows we have �x = 2� + 2�x. Therefore at xthere is an angle defect of 2� � �x = �2�x.
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αxFigure A4. At a pinch point x, if the pinched triangle has an interiorangle �x, then the cone angle at x is 2� + 2�x.A pinched triangle with vertices x; y; z therefore contributes an angle defect of �2(�x+�y + �z). But this equals �4�, since �x; �y; �z are the interior angles of a Euclideantriangle. Therefore, if K is the number of twisted triangles, then by the Gauss-Bonnettheorem we have 2� � 4�K = 2��(Ŝ) = 2�(1� 2g)so K = 2g. �



A USER'S GUIDE TO THE MAPPING CLASS GROUP: ONCE PUNCTURED SURFACES 15The twisted and untwisted triangles in an ideal triangulation arrange themselves intoseveral larger structures, whose visualization helps in recognizing a chord diagram.If two untwisted triangles share a side, then they cannot share any other side, and theirunion forms an \untwisted 4-gon"; the chord diagrams of ideal triangulations in �gures9(a,c) each have an untwisted 4-gon. Continuing inductively, if an untwisted n-gon shares aside with an untwisted triangle, then they cannot share another side, and their union formsan untwisted n+ 1-gon. Maximal untwisted polygons are called untwisted islands. Figure12(a) shows a genus 2 chord diagram whose two untwisted islands are both triangles. Asan exercise, check that this chord diagram is obtained from �gure 9(c) by an elementarymove on the arc with ends labelled 1 and 4 (hint: see �gure 24(a) ). Figure 12(b) shows agenus 3 chord diagram with one untwisted island, a hexagon.
(a) (b)Figure 12. Untwisted polygonsOn the other hand, two twisted triangles can share either one, two, or all three sides.If they share all three sides, then they close up to form a torus, with the chord diagramshown in �gure 13. Thus, on a higher genus surface a pair of twisted triangles can share atmost two sides. If two twisted triangles share two sides, then they form a 1-handle piece.The triangulations in �gures 9(a) and (c) each have two 1-handle pieces, �gure 12(a) hasone, and �gure 12(b) has three.

Figure 13. Two twisted triangles sharing three sides form a torus.If two twisted triangles share only one side, then they form a twisted 4-gon, see, forexample, �gure 14(a) which shows the same triangulation as 12(a). Continuing inductively,if n � 4 and a twisted n-gon shares a side with a twisted triangle, then they cannot shareanother side, and their union forms a twisted (n + 1)-gon. A maximal twisted polygon



16 LEE MOSHERis called a twisted island . Figure 14(b) shows a genus 2 chord diagram with a twistedhexagon; this triangulation comes from �gure 9(c) by doing two elementary moves oneafter another, �rst on the arc with ends 1; 4 and then on the arc with ends 10; 13.
(a) (b)Figure 14. Twisted polygonsThus, any ideal triangulation can be decomposed into untwisted islands, twisted islands,and 1-handle pieces. We may therefore enumerate chord diagrams by the \island" method,as follows. First choose a partition of the 2g � 2 untwisted triangles into islands. Thenchoose how the prongs of these islands interleave in the circular ordering. This choice de-termines the twisted islands and the number of 1-handle pieces. Now choose triangulationsof the twisted and untwisted islands, using the enumeration by Catalan numbers.Now we use the island method to enumerate chord diagrams for low genus surfaces. A\connectivity" proof is given later, using connectivity of Y .Suppose �rst that S has genus 1. Then there are no untwisted triangles and two twistedtriangles T1; T2. The sides of T1 and T2 must be glued in 1-1 correspondence, and the prongsmust interleave on the chord diagram. Thus, the chord diagram is forced to be the oneshown in �gure 13. This shows that all ideal triangulations of a once-punctured torus arecombinatorially equivalent, and the automorphism group of each one is cyclic of order 6.Now suppose S has genus 2. An ideal triangulation has two untwisted and four twistedtriangles. The untwisted triangles can form either a 4-gon island or two triangle islands.Suppose �rst that there is a 4-gon island, which contains a diagonal arc separating itinto two triangles. The four sides of this island must bound two 1-handle pieces, whichcan arrange themselves in one of three ways as shown in �gure 15. The 1-handle piecesmay be parallel to the diagonal arc as in T1; they may cross the diagonal arc but not crosseach other as in T2; or they may cross the diagonal arc and each other as in T3. Theorders of the automorphism groups are also shown in �gure 15. Note that the unorientedautomorphism groups are dihedral groups of twice the size.

T1: order 2 T2: order 2 T3: order 2Figure 15. Genus 2 chord diagrams with two 1-handle pieces



A USER'S GUIDE TO THE MAPPING CLASS GROUP: ONCE PUNCTURED SURFACES 17Now suppose there are two triangle islands. The prongs of these islands may interleavein one of two ways, as shown in �gure 16.
(a) (b)Figure 16. Untwisted triangle islands in genus 2In �gure 16(a), there must be one 1-handle piece and one twisted 4-gon island. Thereare two ways to insert a diagonal in the twisted 4-gon, yielding the two chord diagrams T4and T5 shown in �gure 17; these are the only chord diagrams in genus 2 with one 1-handlepiece. Their automorphism groups have order 1; their unoriented automorphism groupshave order 2.
T4: order 1 T5: order 1Figure 17. Two genus 2 chord diagrams with one 1-handle pieceIn �gure 16(b), there is a single twisted island, a hexagon. Up to rotation there are fourways to triangulate this hexagon, yielding the four chord diagrams in �gure 18, the onlychord diagrams in genus 2 with no 1-handle pieces. Both T6 and T7, which are orientationreversals of each other, have oriented and unoriented automorphism groups cyclic of order2. The diagram T8 has trivial automorphism group, and the unoriented automorphismgroup is dihedral of order two. The diagram T9 has automorphism group cyclic of order3, and unoriented automorphism group dihedral of order 6.To summarize, �gures 15,17 and 18 show the nine combinatorial types of ideal triangu-lations on a once-punctured surface of genus 2.The island method used to obtain this enumeration is rather ine�cient, although itis good for learning to recognize chord diagrams. Despite this ine�ciency, when I wasyoung and energetic I used the island method to enumerate the chord diagrams on aonce-punctured surface of genus 3. I then wrote a computer program implementing theconnectivity method (explained later), obtaining 1726 combinatorial types. This did notaccord exactly with the island method, so I went through and found some errors, correctingthe result of the island method, still not obtaining the same answer. After iterating thisprocess a few time, I obtained a count of 1726 chord diagrams, and quit.
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T6: order 2 T7: order 2 T8: order 1 T9: order 3Figure 18. Four genus 2 chord diagrams with no 1-handle piecesAn asymptotic formula for ng, the number of distinct chord diagrams in genus g, isgiven in appendix B of [P]: ng � (2g)!6g � 3 � eg��2gwhere x(g) � y(g) means that x(g)=y(g) � 1 = O(1=g).Figure 19 summarizes what I know about the numbers of combinatorial types of idealtriangulations, compared to the above asymptotic formula. The purpose of this table isto drive home the point that one would not want to enumerate chord diagrams, or anyobjects derived from them such as the states of the automatic structure, and store themall in one place, if it were not absolutely necessary for computation. On the other hand,methods for generating the objects as needed are very useful; this is how our algorithm forthe word problem works.Figure 19. A table of chord diagramsGenus ng (2g)!6g�3 � ge �2g1 1 32 9 633 1726 55514 ? 1,081,820Labelling ideal triangulations: the zero skeleton of X.In this section we introduce the machinery needed to de�ne the zero-skeleton of ~X andof X itself. The point is this: we already have an action ofMCG on the zero-skeleton of Y ,but that action has some non-trivial point stabilizers. In order to obtain the zero-skeletonof ~X we need an action of MCG with trivial point stabilizers. Thus, we must somehowbreak the symmetries of an ideal triangulation, by labelling it with extra data.A labelled ideal triangulation consists formally of an ordered pair (�; e) where � is anideal triangulation and e is an arc end of �. The mapping class group acts on isotopyclasses of labelled ideal triangulations, with trivial stabilizers. In later sections, we willoften suppress the labelling e, and speak of \a labelled ideal triangulation �". For now, westick with the formal notation (�; e).We now de�ne the zero skeleton of ~X to be the set of isotopy classes of labelled idealtriangulations on S. The zero skeleton of X is therefore the set of combinatorial types



A USER'S GUIDE TO THE MAPPING CLASS GROUP: ONCE PUNCTURED SURFACES 19of labelled ideal triangulations. The combinatorial type of a labelled ideal triangulation(�; e) is described by a labelled chord diagram, obtained from the chord diagram for � bydrawing a solid dot at the chord end corresponding to e. An example is shown in �gure20, where the labelled end is represented by a shaded half-arc.
Figure 20. A labelled ideal triangulation and the corresponding la-belled chord diagramNow we enumerate the 0-cells of X in low dimensions, using the fact that a chorddiagram, with 12g � 6 ends and automorphism group cyclic of order k, yields (12g � 6)=klabelled chord diagrams.If S has genus 1, the unique chord diagram has six chord ends and the automorphismgroup permutes them transitively, so there is a unique chord diagram of a labelled idealtriangulation. Therefore, X has one 0-cell.If S has genus 2, each chord diagram has 18 chord ends, so using the orders of theautomorphism groups given in �gures 15,17,18 the number of labelled chord diagrams is3 � 18 + 5 � 182 + 1 � 183 = 105so there are 105 0-cells in X.If S has genus 3, since 12g � 6 = 30 then an upper bound on the number of 0-cellsis 30 � 1726 = 51780, but this number will be strictly smaller after taking automorphismgroups into account. A computer calculation has yielded 50050 0-cells in X.The construction of ~X, X, and the mapping class groupoid.It is now possible to give a purely abstract de�nition of the mapping class groupoidMCGD, as was done in [M]. Recall that an abstract groupoid is a category with invertiblemorphisms. Let ~D be the set of isotopy classes of labelled ideal triangulations on S. ThenMCG acts freely on ~D, and the diagonal action on ~D � ~D is also free. The objects ofMCGD are the orbits of the action of MCG on ~D, i.e. the combinatorial types of labelledideal triangulations. The morphisms of MCGD are the orbits of the diagonal action ofMCG on ~D � ~D. If �, �0 are labelled ideal triangulations (suppressing the labellings),then the orbit of the pair ([�]; [�0]), denoted f�; �0g, has as its initial object f�g and as itsterminal object f�0g. The composition rule is as follows. Given morphisms m1 = f�1; �01gand m2 = f�2; �02g such that the terminal object f�01g of m1 equals the initial object f�2gof m2, then �01 and �2 are combinatorially equivalent. Therefore there exists � 2 MCGsuch that �[�01] = [�2]. Note that m2 = f�(�2);�(�02)g, abusing notation. Then m1 �m2 isde�ned to be f�1;�(�02)g.



20 LEE MOSHEROne easily checks that if ~D is the 0-skeleton of a simply connected complex ~X on whichMCG acts freely, then the abstract groupoid constructed above is naturally isomorphic tothe edge path groupoid of the quotient complex X = ~X=MCG. We now proceed to theconstruction of ~X.We have already constructed ~X(0) = ~D, the set of isotopy classes of labelled idealtriangulations. Now we construct ~X , together with a cellular map q: ~X ! Y which isuseful in proving simple connectivity of X. The construction is by \abstract nonsense".Each k-cell will come equipped with a \boundary certi�cate", which is a total ordering ofthe cells of all dimensions on its boundary, and the boundary certi�cate determines thek-cell. This convention will allow us to de�ne the action of MCG up through the skeletaof ~X by induction; we will similarly prove that the action has trivial cell stabilizers.Any unordered pair of 0-cells in ~X(0) to which an edge is attached will be called aboundary 0-cycle. Given any boundary 0-cycle, each of the two possible ordering will bethe boundary certi�cate of some 1-cell. With this convention, to specify the 1-cells of Xwe need only specify which vertex pairs are boundary 0-cycles.Similarly, any edge cycle  in ~X(1) to which a 2-cell is attached will be called a boundary1-cycle. Given any boundary 1-cycle , if you choose a vertex and an orientation, thenyou obtain a boundary certi�cate by starting with that vertex and reading o� the cellsencountered by going around in that order. If  has k vertices then there are 2k possiblechoices, each of which is the boundary certi�cate of some 2-cell, and these are the only2-cells attached to . Again, with this convention we need only specify what the boundary1-cycles are, in order to specify the 2-cells of X.Consider a vertex [�] of Y ; we begin by constructing the part of ~X lying over [�], alsoknown as q�1[�]. We already know that the 0-cells lying over [�] are the isotopy classes[�; e] of labellings of �.Every unordered pair of vertices in q�1[�] will be a boundary 0-cycle. Thus, for everyordered pair of ends e1; e2 of � there is a 1-cell with boundary certi�cate ([�; e1]; [�; e2]). Wedenote this 1-cell as [�; e1; e2]. The image of this cell downstairs in X is called a relabellinggenerator of X.Every edge cycle of length 2 or 3 in the 1-skeleton of q�1[�] will be a boundary 1-cycle.To determine a boundary 1-cycle  of length 2, choose a set of two labels fe1; e2g, so theedges of  are [�; e1; e2] and [�; e2; e1]. To determine a boundary 1-cycle  of length 3,choose a set of three labels fe1; e2; e3g, and choose an ordering for each of the sets fe1; e2g,fe2; e3g, fe3; e1g to obtain the edges of . The images downstairs in X of these 2-cells willbe called relabelling relators.Now consider an elementary move � ! �0, yielding a 1-cell [� ! �0] of Y . We alreadyknow that the 0-skeleton of q�1[� ! �0] is q�1[�] [ q�1[�0]. Each pair of a vertex in q�1[�]and a vertex in q�1[�0] is a boundary 0-cell. The images downstairs in X of the attached1-cells will be called elementary move generators.To determine the 2-cells in q�1[� ! �0], note that in the 1-skeleton of q�1[� ! �0], eachedge cycle contains an even number of edges mapping to [� ! �0] under q; between twosuch edges the cycle may wander around for a while in q�1[�] or q�1[�0]. The boundary1-cycles in q�1[� ! �0] are the ones which have exactly two edges mapping to [� ! �0],and which contain at most one edge each in q�1[�] and q�1[�0]. The images downstairs inX of the attached 2-cells will be called elementary move relabellings.This �nishes the description of q�1(Y (1)).



A USER'S GUIDE TO THE MAPPING CLASS GROUP: ONCE PUNCTURED SURFACES 21Finally, given a 2-cell c of Y , each edge cycle in ~X(1) projecting homeomorphically to @cis a boundary 1-cycle, and the attached 2-cell maps homeomorphically to c. Depending onthe nature of the 2-cell c, the images of these 2-cells in X will be called labelled commutatorrelators or labelled pentagon relators.This completes the description of X.The action of MCG on ~X(0) is already de�ned, and each 0-cell has trivial stabilizer. A1-cell is determined by its boundary certi�cate, which is an ordered pair of 0-cells, andclearly the set of such ordered pairs is invariant under the action of MCG, so the actionof MCG extends over ~X(1) with trivial 1-cell stabilizers. Again, a 2-cell is determinedby its boundary certi�cate, which is a sequence of 0-cells and 1-cells, and the set of suchsequences is invariant under the action ofMCG, so the action ofMCG extends over 2-cellswith trivial cell stabilizers.The quotient complex X = ~X=MCG is now de�ned. It is evident that the map q: ~X !Y has the path lifting property as well as the homotopy lifting property for paths, so ~X issimply connected. It follows that �1(X) �MCG. Also, for any cell of Y the inverse imagein ~X is a �nite cell complex, and since Y has �nitely many cell orbits it follows that X isa �nite complex. We can now de�ne the mapping class groupoidMCGD as the edge pathgroupoid of X. Given an edge path w in X, the corresponding homotopy class is denotedw 2 MCGD.We now have a �nite presentation forMCGD, with the edges of X as generators and the2-cells ofX as relators. There are two types of edges: relabelling generators and elementarymove generators. There are several types of relators: relabelling relators, elementary moverelabellings, and labelled commutator and pentagon relators.In the next two sections we whittle down the elementary move generators to a smallersubset called the \labelled elementary move generators", which together with the rela-belling generators will still generate MCGD (this is the generating set used in [M]). Inorder to understand labelled elementary move generators, we �rst initiate a study of chorddiagrams of elementary moves.Chord diagrams of elementary moves.Consider an elementary move � ! �0 performed on the ideal arc h of �, with oppositediagonal h0 in �0, and with support Q. Let D be the chord diagram of �; by abuse ofnotation we use h to stand for the chord representing the ideal arc h, and this chord willbe shaded in the diagrams. Now we show how, using D and h as input, we may computethe chord diagram D0 of �0.Look at the two triangles adjacent to h. There are several possibilities for these twotriangles: both untwisted; one untwisted and one twisted, also known as mixed ; or bothtwisted, with either one, two, or three side pair iden�cations. For each of these �ve cases,�gure 21 shows how the elementary move appears \locally" in a chord diagram, i.e. the�gure shows the support of the elementary move, with missing chord ends indicated by atwiddle "�". The �ve cases can also be enumerated according to the chord diagram of thequadrilateral Q. We now go through the cases one by one.First we dispose of the case where both triangles are twisted and there are three side pairidenti�cations. This occurs only on the punctured torus, and is given in �gure 21(e). Thequadrilateral Q has two side pair identi�cations. Any elementary move on the puncturedtorus has this chord diagram. Thus, in genus 1 there is only one orbit of edges of Y underthe action of MCG.
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(a)

(b)

(c)

(d)

(e)Figure 21. Chord diagrams of the support of an elementary move.Missing chord ends are indicated with a �.With both triangles untwisted, then Q is an untwisted 4-gon, and we have an untwisted-untwisted elementary move (�gure 21(a)). With both triangles twisted and one side pairidenti�cation, then Q is a twisted 4-gon, and we have a twisted-twisted elementary move(�gure 21(c)). These two cases are the easiest to visualize. An untwisted-untwisted ex-ample is shown in �gure 22(a); this is the chord diagram of the elementary move from�gure 5(a). A twisted-twisted example is given in �gure 22(b). In these chord diagramsthe intervening defect 1 chord diagram is shown; after this section we will not usuallyshow this. One general feature to note is that when one chord is removed and anotherinserted in a chord diagram, the chord endpoints should be repositioned so that they areevenly spaced; space will have to be contracted near the removed chord ends, and it willbe expanded near the inserted chord ends.With both triangles twisted and two side pair identi�cations, the triangles form a 1-handle piece and h is one of the two interior arcs of the 1-handle piece. The supportquadrilateral Q has one side identi�cation (�gure 21(d)). An example is given in �gure 23,which is the chord diagram of the elementary move from �gure 5(b). Notice that after theelementary move, a 1-handle piece forms again, and outside the 1-handle piece the chorddiagram is unchanged, so � and �0 have the same chord diagram. This means that there isa mapping class � 2 MCG such that �[�] = [�0]. This mapping class may always be takento be a Dehn twist about the core of the 1-handle, as noted earlier for �gure 5(b), and wecall this a Dehn twist elementary move (if the chord diagram has symmetries, as in �gure23, we can also post-multiply the Dehn twist � by any mapping class which stabilizes [�0]).The phenomenon of Dehn twist elementary moves is the tip of a big iceberg; in section Vwe make a general study of sequences of elementary moves representing Dehn twists, andthis is used to obtain an automatic structure and prove quadratic computation time of ouralgorithm for the word problem in MCG.In the mixed case, Q is neither a twisted nor untwisted 4-gon and we say that Q isa mixed 4-gon (�gure 21(b)). A mixed elementary move is usually the most di�cult tovisualize. Several examples of mixed elementary moves are shown in �gure 24 and 25.
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(a)

(b)

(c)Figure 22. An untwisted-untwisted and two twisted-twisted elemen-tary moves Figure 23. A Dehn twist elementary moveFigure 24 shows examples where h lies on the boundary of a 1-handle piece, and �gure 25shows examples where h lies on the boundary of a twisted island; the opposite diagonalmay be of one or the other type.Exercise: Figures 24(c) and 25(b) are interesting because they return to the same chorddiagram, hence � and �0 di�er by a mapping class. What are these mapping classes? To bemore precise, how do they �t into Thurston's classi�cation scheme of �nite order, reducible,or pseudo-Anosov?Exercise: Notice that among �gures 22{25, we have managed to produce paths of ele-mentary moves from T1 to T2, T3, T4, T7, T8 and T9. For example, follow the pathT1 22(a)�! T2 24(a)�! T3 22(b)�! T4 24(b)�! T8 22(c)�! T7 25(a)�! T9Construct enough chord diagrams of elementary moves to obtain the remaining chorddiagrams T5, T6. Getting T5 is slightly tricky, because there is only one other chorddiagram that T5 may be accessed from by a single elementary move.Exercise: How long is the shortest path from T1 to T7?Having described in some detail how elementary moves are represented with chorddiagrams, we remark that the computer representation of elementary moves using combi-natorial diagrams is easily implemented. There is a simple algorithm which takes as input
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(a)

(b)

(c)Figure 24. Mixed elementary moves where h bounds an untwistedisland and a 1-handle piece
(a)

(b)Figure 25. Mixed elementary moves where h bounds an untwistedisland and a twisted islandthe combinatorial diagram (E ;Opp;Succ) of �, together with the cycle of Opp representingh, and outputs the combinatorial diagram of �0 where � h�! �0.Once we know how to generate elementary moves on combinatorial diagrams, thereis a simple algorithm for enumerating combinatorial types of ideal triangulations. Thequotient of Y under the action of MCG can be regarded as a �nite, connected 1-complex,with a 0-cell for every combinatorial type of ideal triangulation, and with a 1-cell for everycombinatorial type of defect 1 arc system (more properly, the quotient complex should bethought of as an \orbi-complex" in the sense of Haeiger; for instance, if an edge in Yhas an orientation reversing stabilizing element then its image in the quotient should beregarded as a half-edge with a \mirrored endpoint"). It is then easy to write an algorithmfor constructing this 1-complex, say using a breadth �rst search: construct an initial chorddiagram; initialize a queue with one entry for each chord of the initial chord diagram;



A USER'S GUIDE TO THE MAPPING CLASS GROUP: ONCE PUNCTURED SURFACES 25now process the queue inductively, taking the �rst entry of the queue and performing theindicated elementary move; check if the new chord diagram has already been found, andif not add an entry to the end of the queue for each chord of the new chord diagram.The result of this algorithm for a surface of genus 2 is shown in �gure 26. This is whatwe call the \Connectivity Proof" for the enumeration of the nine chord diagrams in genus2. Each chord is labelled, with chords in a diagram having the same label when there is anautomorphism carrying one chord to the other. Elementary moves are also given labels;for instance, the elementary move between T2 and T3 labelled 1{5 means that chord 1is removed from T2 and chord 5 is inserted in T3 (or vice versa). There is also a singlemirrored 1-cell, which is drawn unmirrored as the edge labelled 7{7 going from T5 to itself;note that this edge corresponds to a defect 1 chord diagram with an order 4 symmetrygroup that rotates the quadrilateral by 1/4.
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T8 T9Figure 26. The chord diagrams of ideal triangulations and elementarymoves on a once-punctured surface of genus 2. The top part of thediagram overlaps with the bottom part in triangulations T3 and T4.The end map of an elementary move.For any elementary move � h�! �0 where h0 is the opposite diagonal of h, the idealarc systems � � h and �0 � h0 are isotopic, hence by the lemma Rigidity of ends we havea well-de�ned bijection E(� � h) ! E(�0 � h0) called the end map. This map may beimplemented in chord diagrams as follows. Suppose that D is the chord diagram for �, and



26 LEE MOSHERlet the chord corresponding to h also be denoted h. Index the chord ends of D except forh, starting at an arbitrary end with 1 and increasing in counter-clockwise order, skippingover the ends of h. Now when the chord h is erased and the opposite chord h0 is inserted,resulting in the chord diagram D0, we have an indexing of the chord ends of D except forh. This indexing gives the end map, a bijection between chord ends of D except for h andchord ends of D0 except for h0. Examples are shown in �gures 27 and 28. The end mapplays an important role in what follows.
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16Figure 27. Chord ends with the same index correspond under the endmapLabelling elementary moves. Consider a labelled ideal triangulation (�; e), so that e isan end of an arc g of �. Consider also an elementary move � ! �0 performed on an arc hof �. We adopt the following convention for determining a labelling e0 of �0. If g 6= h thenset e0 = e; whereas if g = h, let e0 be the predecessor of e in E(�). In either case, e0 lieson an arc of � which is also an arc of �0, hence the labelled ideal triangulation (�0; e0) isde�ned. The complex ~X has a 1-cell with boundary certi�cate ([�; e]; [�0; e0]). The image ofthis 1-cell downstairs in X is denoted f�; eg h�! f�0; e0g, and is called a labelled elementarymove; in this notation, h should be regarded as a chord in the chord diagram for f�; eg.In order to understand chord diagrams of labelled elementary moves, suppose thatD ! D0 is the chord diagram of the labelled elementary move � ! �0. Let h be theremoved chord of D, and let h0 be the inserted chord of D0. Suppose that e is the labelledchord end in D. If e is not an end of h, then the labelled chord end e0 of D0 is just theimage of e under the end map. On the other hand, if e is an end of h, then e0 is the imageunder the end map of the predecessor of e, obtained by rotating e one notch clockwise.Examples are given in �gure 27.Relabelling moves.We have already de�ned relabelling generators: given an ideal triangulation � and twodistinct arc ends e1; e2 of �, there is an edge [�; e1; e2] in X with boundary certi�cate[�; e1]; [�; e2]. The image of this edge downstairs in X is denoted f�; e1; e2g and is called arelabelling generator ; it points from the vertex f�; e1g to f�; e2g. Since the chord diagramD for � has 12g� 6 chord ends arrayed in circular order, then we can write e2 = Succr(e1)for a unique r 2 Z=12g�6. Then we say that e2 is obtained from e1 by rotating r notches,and we denote the relabelling generator asf�; e1g Rotate(r)������! f�; e2gFigure 29 gives an example of a relabelling generator.



A USER'S GUIDE TO THE MAPPING CLASS GROUP: ONCE PUNCTURED SURFACES 27
1

2

3

4

5

6

7
89

10

11

12

13

14

15
16 1

2

3

4

5

6

7
89

10

11

12

13

14

15
16

1
2

3

4

5

6

7
89

10

11

12

13

14

15
16

1

2

3

4

5

6

78
9

10

11

12

13

14

15
16

Figure 28. Some labelled elementary moves
Rotate(10)

10Figure 29. A relabelling generator (both notations will be used)Proposition. The groupoid MCGD is generated by labelled elementary moves and rela-belling generators. In fact, every groupoid element may be represented by a string of labelledelementary moves followed by a single relabelling generator.Proof. A few observations about relators make this obvious. First, by using relabellingrelators, any consecutive sequence of relabelling generators may be replaced by a singlerelabelling generator. Second, by using elementary move relabellings, any relabelling gen-erator followed by an elementary move generator may be replaced by an elementary movegenerator, followed by at most one relabelling generator. Third, also by using elemen-tary move relabellings, any elementary move generator g1, may be replaced by a labelledelementary move g2 followed by a relabelling generator. Given an arbitrary word, con-glomerate all initial relabelling generators into one and push it past the �rst elementarymove generator, then replace that by a labelled elementary move if necessary; now repeatthe procedure starting with the next block of relabelling generators. �II. Asynchronous normal formsIn this section we describe normal forms for elements ofMCGD. The normal forms willbe de�ned over the alphabet A0 consisting of all labelled elementary moves and relabelling



28 LEE MOSHERgenerators. We shall construct a �nite automaton M0 de�ned over A0, and the normalforms will be the language L0 accepted by this automaton. First a quick review of �niteautomata over groupoid generators.The automatonM0 will be a directed graph, whose vertices are called states and whosedirected edges are called arrows. Each arrow will be named with an element of A0. Therewill be a cellular map p:M0 ! X; each state s goes to a vertex ps = D, and each arrowgoing out of s is named by a generator going out of D which is identi�ed with the image ofthat arrow under p. One state of M0 is speci�ed as the start state, and it will map to thebase vertex of X. Some subset of states are speci�ed as the accept states. An accept pathis a directed path from the start state to an accept state, and by reading o� the namesof edges along that path we obtain a word in A0, called an accepted word . The languageL0 will be the set of all accepted words. Note that each accepted word represents an edgepath in X starting at the base vertex.The proof that L0 represents each element uniquely is given in section II.5 of [M], culmi-nating in the proposition Normal forms are regular (the language L0 is de�ned di�erentlyin [M], but from the proof of Normal forms are regular the two de�nitions clearly give thesame language). Section III describes an algorithm for computing the normal form repre-senting a given word in the generators A0; from this description it is straightforward toshow that L0 satis�es the asynchronous fellow traveller property, hence is an asynchronousautomatic structure for MCGD.Remark 1: The words in L0 will each have at most one relabelling generator, and it isalways the last letter. This is di�erent from the convention adopted in the original versionof [M], where the relabelling generator comes �rst. This change makes no di�erence inproving the asynchronous fellow traveller property, but it does simplify the description ofan algorithm for computing normal forms.Remark 2: From now on, we usually suppress the label in our notation for a labelledideal triangulation, writing � instead of the more formal (�; e).The states of M0.Recall that normal forms for an asynchronous automatic structure on a groupoid mustall start at some chosen base vertex. Once and for all, pick some labelled ideal triangulation�B as a base vertex of ~X, and the combinatorial type f�Bg will be the base vertex of X.This choice is quite arbitrary, but for the �gures to come we choose the base vertex givenin �gure 30. This pattern may be generalized to any genus g: take a chord diagram withg 1-handle pieces, none crossing any other, and then take the \fan triangulation" of theresulting untwisted 2g-gon, putting the labelled end just clockwise of the base of the fan.
Figure 30. Our choice for a base vertex, in genus 1,2,3,4 and 10A �nite deterministic automaton can be thought of as a machine with a �xed, �nite



A USER'S GUIDE TO THE MAPPING CLASS GROUP: ONCE PUNCTURED SURFACES 29number of states and a memory of a �xed �nite size. Usually the memory is incorporatedinto the state set, but thinking of the machine in this way allows us to focus on the question:what information does the machine need to remember? Answering this question tells ushow to de�ne the states.The machine M0 that we construct will read edge paths in X starting at the basevertex. To motivate our description of M0, we start with an informal description of theinformation that M0 has to remember as it reads along an edge path. Consider an edgepath in X starting at f�Bg: f�Bg e1�! f�1g e2�! � � � eI�! f�IgThis may be lifted uniquely to an edge path in ~X starting at �B:�B ! �1 ! � � � ! �IAsM0 reads the edge path inX, it will keep track of several pieces of information. It keepstrack of the combinatorial type of �i, a �nite amount of information. It also rememberssome information about how �B is related to �i. In some cases certain arcs of �k will beisotopic to arcs of �B, and the automaton will remember these arcs, again a �nite amountof information. After a while, one would expect that there are none of these arcs left. Butthe automaton will still keep track of a tiny bit of information: where the end of an arcof �B is situated with respect to �i, again only a �nite amount of information. This isformalized as follow.In order to de�ne the states of the automaton, pick once and for all an enumeration ofthe arcs of �B, fg1; : : : ; g�g where � = �(g) = 12g� 6, and pick an orientation of each gk,so we may speak of the tail end and head end of each gk. (Note: we shall not need to listand orient the arcs of any other ideal triangulation; this choice is made only for �B.)Consider an arbitrary ideal triangulation �. As described in the Tightness propositionof [M], we may pull �B and � tight with respect to one another, so that the followingconditions are satis�ed:(1) If some arc gk of �B is isotopic to an arc of �, then gk is the same as some arc of�. In this case we say that � is combed along gk.(2) If � is uncombed along gk then gk is transverse to �, and for each arc h of �, thereare no bigons of gk and h. A bigon is a segment � � gk and � � h, neither � nor� having p in its interior, such that �[ � is a simple closed curve bounding a disc.Furthermore, once � is pulled tight with respect to �B , then � is uniquely determined upto an isotopy preserving each arc of �B.Having pulled � tight with respect to �B, we may ask: Along which arcs of �B is �combed? Furthermore, if � is not combed along gk, then the tail end of gk must emergefrom some prong of � as shown in �gure 31. From which prong of � does Tail(gk) emerge?The automaton M0 will keep track of the answers to these questions, but only up tothe �rst uncombed arc in the list fg1; : : : ; g�g. That is, if gk is the �rst uncombed arc,then the automaton marks the initial ends of g1; : : : ; gk�1 in �, and it marks the prong of� from which Tail(gk) emerges. Now we formalize the concept of a \marking" of �.Let � be a labelled ideal triangulation. Let E(�) be the set of ends of �, and let P(�)be the set of prongs. A marking of � is an injective map �, whose domain is an initialsegment f1; : : : ; kg of f1; : : : ; � = 12g � 6g, and whose range is E(�) [ P(�). Additional
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e e′

gkFigure 31. Tail(gk) emerges from � = (e; e0)conditions will be imposed on a marking below, but �rst we motivate these conditions byconsidering the marking that �B induces on �.Every ideal triangulation � will have a base marking, which is induced by �B as follows.First of all, if � = �B, then the initial end of each gk is marked with a k, and no prong ismarked. Next, assuming that � 6= �B , then some arc of �B will be uncombed with respectto �; let gk be the �rst uncombed arc. Then � is combed along gi for 1 � i < k and theinitial end of gi is marked with an i in �. Furthermore, the prong from which gk emergeswill be marked with a k. This de�nes the base marking of an ideal triangulation.Note that the base marking of � is not a combinatorial invariant of �. Nonetheless, basemarkings enjoy certain combinatorial properties, which we impose as de�ning conditionson a general marking. For a general marking � of �, we require:(1) For each arc h of �, at most one end of h is marked by �.(2) At most one prong is marked by �.(3) If there is no marked prong, then every arc of � has a marked end.(4) If there is a marked prong, it must be the last item marked.(5) If there is a marked prong, the arc opposite the marked prong must not have amarked end.It may be that there is no marked end at all; in some sense this will be the generic case.To see why property (5) is satis�ed by the base marking, note in �gure 31 that the arcopposite � = (e; e0) cannot have a marked end, because otherwise that arc would thenbe some gi, and its interior would intersect the interior of gk, contradicting the fact thatgi; gk 2 �B have disjoint interiors.A marked ideal triangulation is a pair (�; �) where � is a labelled ideal triangulation,and � is a marking of �. Note that properties (1{4) are combinatorial properties, henceHomeo(S) acts on marked ideal triangulations, and we may speak about the combinatorialtype of a marked ideal triangulation. The combinatorial type of (�; �) is denoted f�; �g.The combinatorial type of a marked ideal triangulation (�; �) may be represented by amarked chord diagram. Let D be the chord diagram of �. If �(i) is a marked end of �,we write the numeral i adjacent to the corresponding chord end of D. If �(k) is a markedprong, we write a star � next to the corresponding end gap of D; it is unnecessary toactually write the k, because the value of k can be recovered as the least natural numberwhich is not an end marking. Figure 32 gives an example of a marked ideal triangulation
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5Figure 32. A marked ideal triangulation and its chord diagramand its chord diagram; the end marked 1 is also the labelled end in this example.The states of M0 may now be de�ned. There will be one state for each combinatorialtype of marked ideal triangulation, all of which are accept states. Furthermore there isone failure state Fv for each vertex v of X. The start state ofM is the combinatorial typeof the base marking on �B itself.We use the following convention for choosing the start state. We have already chosen alabelled end for �B . Mark that end with k = 1, and go around the ends in the clockwisedirection; as an end of a new arc is encountered, mark that end with the next value of k.The end marked k is Tail(gk). Figure 33 shows start states for genus 1, 2, and 3, withmarkings chosen by this convention.
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15Figure 33. The start states for genus 1, 2, and 3Arrows of M0.Before discussing arrows of M0, we need some observations and notation concerningstates. First observe how the mapping p:M0 ! X is de�ned on a state s: identifying swith a marked chord diagram, erasing the marking leaves a labelled chord diagram whichis identi�ed with the image vertex D = ps. As mentioned earlier, for any arrow s w�! s0where w 2 A0, the image of this arrow under p will be the edge in X identi�ed with w.The arrows can be denoted in shorthand, using the fact that each element of A0 is either arelabelling generator or a labelled elementary move generator. If w is a Rotate(k)������! relabellinggenerator then the arrow is denoted s Rotate(k)������! s0, and if w is a labelled elementary movegenerator performed on a chord h then the arrow is denoted s h�! s0. In the next severalparagraphs we will describe further shorthand for determining the chord h.Consider a marked ideal triangulation (�; �). If there is a marked prong, the trianglehaving that prong as a corner is called the marked triangle, and the marked prong is



32 LEE MOSHERindicated with a �. We usually orient the marked triangle so that the marked prong formsa downward pointing angle, bisected by the �y direction, as in �gure 34. The ends tothe Left and Right of the marked prong are denoted eL; eR as in �gure 34; formally themarked prong is equal to the ordered pair (eL; eR). The arcs with these ends are denotedhL; hR. The third side of the marked triangle, the \arc opposite the �", is denoted hOpp.In a marked chord diagram, we usually place the \�" at the bottom of the diagram, so thatthe chord ends eL; eR and the chords hL; hR; hOpp are as shown in �gure 34, dependingon whether the marked triangle is twisted or untwisted.
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hOppFigure 34. Items associated with the marked triangleGiven a marked ideal triangulation (�; �), we de�ne the combinatorial property of con-sistency:(1) If there is a marked end, then the end �(1) is the labelled end.(2) If there is no marked end, then the end eL is the labelled end.In a marked chord diagram, consistency means that if there is a marked chord end then thelabelling dot is located at the same chord end as the numeral 1; and if there is no markedchord end then the labelling dot is just to the left of the �. Thus, in a consistent markedchord diagram the marking determines the labelling; for this reason, we shall often leavethe labelling dot out of our chord diagrams, so any unlabelled but marked chord diagramis assumed by default to be consistent. As we shall see, as long as an accept word consistsof labelled elementary moves, it stays among the consistent states; as soon as the word hasa relabelling generator it moves to an inconsistent state; and if any further letters occur itmoves to the failure states.Note that the start state is consistent, by our convention for marking �B .Now we describe arrows of M0, �rst the arrows leading out of failure states. For eachgenerator � 2 A0 leading from a vertex v to a vertex w of X, there is an arrow Fv ��! Fw.Thus, the set of failure states forms a dead end set: all arrows leading out of this set leadback into it (from which it follows that the language L0 of accepted words is pre�x closed).Next we describe relabelling arrows. Consider a relabelling generator v Rotate(r)������! w andan accept state s lying over v. If s is inconsistent, there is a failure arrow s Rotate(r)������! Fw.If s is consistent, then rotate the labelling dot r notches counterclockwise, leaving themarking unsullied, to obtain an inconsistent state s0 lying over w, and de�ne an arrows Rotate(r)������! s0. See �gure 35 for an example.To describe labelled elementary move arrows, consider a consistent marked ideal triangu-lation (�; �), and a labelled elementary move � h�! �0. There will be an arrow f�; �g h�! s,
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Rotate(12)Figure 35. A relabelling arrowwhose tip s is some state lying over the vertex f�0g, either the failure state Ff�0g or theaccept state f�0; �0g for some marking �0 of �0. The rule for specifying s is given in threecases:(1) h has a marked end.(2) h has no marked end but one of eL or eR is an end of h.(3) None of the above.Note that these cases are combinatorial properties of the triple (�; �; h).Case (3) can be dispensed with immediately: the tip of the arrow is the failure states = Ff�0g.In each of cases (1) and (2), we must specify a marking �0 of �0, and the tip of the arrowwill be the state f�0; �0g. Despite the fact that case (3) has been dispensed with, in certainsubcases of case (3) we will also specify a marking �0; this will be useful in describing thealgorithm for computing normal forms.The rule for specifying �0 must be combinatorially invariant, that is, the chord diagramfor f�; �g, together with the chord for h, must determine the chord diagram for f�0; �0g.Also, assuming that � is the base marking of �, then �0 must be the base marking of �0.We shall keep these considerations in mind in de�ning the rule for �0.Case 1: h has a marked end. Suppose that an end of h is marked with j. Assumingfor the moment that � is the base marking of �, we may derive the base marking �0 of �0as follows. Since h has an end marked j, then h = gj . Also, � is combed along the arcsg1; : : : ; gj�1; since h is distinct from these arcs, then �0 is also combed along these arcs, so�0 places the marks 1; : : : ; j � 1 on the same arc ends that � placed them. Finally, gj isthe �rst arc along which �0 is uncombed, and �gure 36 shows the prong of �0 from whichgj emerges, which is therefore the marked prong of �0.These properties of �0 may be stated as a combinatorial property in the following man-ner.(1) The domain of �0 is 1 � i � j.(2) If 1 � i < j, then �(i) is an end of �0 as well as of �, and we de�ne �0(i) = �(i).(3) In E(�), let e0 = Pred(�(j)) and let e00 = Succ(�(j)). Then the prong (e0; e00) is anelement of P(�0), and we de�ne �0(j) = (e0; e00).We may now de�ne an arrow f�; �g h�! f�0; �0g in M0. This arrow is called a j-markedelementary move or a j-marked arrow , and is denoted in shorthand as f�; �g j�! f�0; �0g.Observe that the marked ideal triangulation (�0; �0) is still consistent. To see why, ifj > 1 then by consistency of (�; �), the labelled end of � is �(1); since this is also an arcend of �0 then it is the labelled end of �0 by de�nition of a labelled elementary move; but
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h=gj

*

δ δ′Figure 36. An elementary move � h�! �0 where h = gj has an endmarked jthis end is also �0(1) by de�nition of �0, proving consistency. And if j = 1 then the rule fora labelled elementary move says that the labelling is moved to e0, the predecessor of �(1),which is then the labelled end of �0; but this equals eL in �0, and since �0 has no markedends then consistency is proved.To implement a j-marked arrow on chord diagrams, suppose s is the marked chorddiagram for f�; �g, and the elementary move is performed on the chord h with an endmarked j. Now erase all end markings greater than j, erase the chord h, place a � in thegap vacated by the end marked j, then draw in the new chord to obtain the marked chorddiagram s0 for f�0; �0g. Some examples are given in �gure 37.Case 2: h has no marked end, but one of eL or eR is an end of h. We de�ne a parityto be an element of the set fL;Rg, and we often use the variable d to represent a parity.Let � = �(j) be the marked prong, so � = (eL; eR). Fix d 2 fL;Rg so that ed is an end ofh. Assuming for the moment that � is the base marking of �, then the base marking �0 of�0 may be derived as follows. For 1 � i < j then � is combed along gi and h 6= gi, therefore�0 is combed along gi, so �0 places the marks 1; : : : ; j � 1 on the same arc ends that �placed them. Figure 38 shows the two situations where eL and eR are ends of h: the prong� is the one from which gj emerges in �, and when the elementary move is performed then� coalesces with another prong of � to form a prong of �0, from which gj emerges in �0,hence this prong is �0(j), marked � in �0. This determines the marking �0, as shown in�gure 38.The rule for �0 may be stated in a combinatorially invariant way as follows.(1) The domain of �0 is equal to the domain of �, namely f1; : : : ; jg.(2) If 1 � i < j then �(i) is an end of �0 as well as of �, and we de�ne �0(i) = �(i).(3) If ed is an end of h for some parity d 2 fL;Rg, in E(�) let e0 = Pred(ed) andlet e00 = Succ(ed). Then the prong (e0; e00) is an element of P(�0) and we set�0(j) = (e0; e00).We now de�ne an arrow f�; �g h�! f�0; �0g. This arrow is called a d-marked elementarymove or just a d-arrow , and is denoted f�; �g d�! f�0; �0g. We also say that this is a parityarrow, and a j-marked arrow is a non-parity arrow.Observe again that the marked ideal triangulation (�0; �0) is consistent. If j > 1 thenby consistency of (�; �) the labelled end of � is �(1); and since this is not an end of h thenthis is also the labelled end of �0, and it is equal to �0(1), proving consistency. Whereas if
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Figure 37. Leaving from the same state as the arrow in �gure 35, thereare j-marked arrows for each j = 1; 2; 3; 4. After doing the elementarymove, putting the � in the gap vacated by j, and erasing end marksgreater than j, then the chord diagram is rotated so that the � appearsat the bottom.
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hFigure 38. An elementary move � h�! �0 where h has no marked end,but h has either eL or eR as an end



36 LEE MOSHERj = 1, then eL is the labelled end in � by consistency; then if d = R, then eL is still an endof �0 so it is the labelled end of �0, but it is also eL in �0 proving consistency; whereas ifd = L then the label is �rst moved to the predecessor e0 of eL, which is then the labelledend of �0, but this is also eL in �0, proving consistency.To implement a parity d elementary move on the chord diagram s for f�; �g, �rst locatethe chord end ed adjacent to the �, then erase that chord, coalescing � and another gapof s into a larger gap, leave the marking � in the larger gap, leave all end markings wherethey are, then insert the opposite chord to form the chord diagram s0 for f�0; �0g. Someexamples are shown in �gure 39.
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2*Figure 39. Some parity arrows. Parity is indicated by which side ofthe � the tail of the arrow is closest to. The �rst example uses, onceagain, the same initial state as �gure 35; there is only a Right parityarrow with this initial state, because only hR has no marked ends. Thesecond example has both Left and Right parity arrows.In each of cases 1 and 2, we have constructed an accept arrow ofM0. Collectively, thesearrows, the parity and non-parity arrows, will be called good elementary moves. Here area few random comments about good elementary moves.Comment 1: Observe that the start state is consistent, and a good elementary movealways leads from a consistent state to a consistent state. Therefore:Consistency lemma. Every path of good elementary moves in M0, beginning at the startstate, stays among consistent states. �This observation is what prompted us to change the normal forms from the early versionof [M], where the relabelling arrow was located at the beginning. When the relabellingarrow is located at the end, then the consistency lemma makes it easy to keep track of thelabelled end, and there are some simpli�cations in the algorithm for computing normalforms.



A USER'S GUIDE TO THE MAPPING CLASS GROUP: ONCE PUNCTURED SURFACES 37Comment 2: In �gures, we depict good elementary moves vertically, drawing D aboveD0. Bad elementary moves, de�ned below in case 3, are depicted as nonvertical arrows.Comment 3: If D ! D0 is a good elementary move, then the chord diagram D0 alwayshas a marked prong �, and the inserted chord in D0 is always the chord opposite the �.Comment 4: As shown by example in �gure 39, given a consistent state D ofM0, theremay be both Right and Left arrows leading from D, or just one, or neither, dependingon which of the chords hL; hR have marked ends. For example, the start state never hasparity arrows, since every chord has a marked end.Case 3: h has no marked end, and neither eL nor eR is an end of h. We have alreadyconstructed a failure arrow f�; �g h�! Ff�0g. Nonetheless, in one subcase of case 3 we shallspecify a marking �0 of �0, and we shall say that f�; �g h�! f�0; �0g is a bad elementarymove. This will not be an arrow in the automaton M0, but it will be a useful relationamong states of M0. In another subcase, we shall also see how inverse good elementarymoves arise. Bad and inverse good elementary moves will be useful in describing thealgorithm for computing normal forms.Recall the notation hOpp for the arc of � opposite the marked prong �. We considertwo subcases of case 3, distinguished by whether or not h = hOpp. Note that \h = hOpp"is a combinatorial property of the triple (�; �; h).Case 3.1: h 6= hOpp. Assuming � is the base marking of �, the base marking �0 for �0is determined as follows. Let � = �(j) be the marked prong of �. Then � is combed alongthe arcs g1; : : : ; gj�1. Not being in case 1, then h has no marked end, so �0 is also combedalong the arcs g1; : : : ; gj�1, and �0 places the marks 1; : : : ; j � 1 on the same arcs that �placed them. Not being in case 2, then h 6= hL; hR, and being in case 3.1 then h 6= hOpp,hence the prong �, from which gj emerges in �, is still a prong of �0 and gj still emergesfrom it, so �0 places the mark j on �.This rule may be stated in a combinatorially invariant manner as follows:(1) The domain of �0 is the same as �, namely f1; : : : ; jg.(2) �(i) = �0(i) for 1 � i � j.It is evident that (�0; �0) is consistent. We shall say that f�; �g ! f�0; �0g is a bad elemen-tary move. We emphasize: this does not de�ne an arrow in M0, merely a relation amongstates in M0.The chord diagram for a bad elementary move is easily implemented: starting with thechord diagram D for f�; �g, the removed chord h has no marked end, no end adjacent tothe �, and is not opposite the �; hence the end markings and the � may all be left in placeas the chord is removed and the opposite chord is inserted, yielding the chord diagramD0 for f�0; �0g. In �gures, bad elementary moves are depicted as nonvertical arrows, withD0 usually to the right of D, and with the removed chord of D darkened. An example isshown in �gure 40. In depicting bad elementary moves, there are no special conventionsfor specifying the chord on which the move is performed, so we adopt the convention ofdarkening that chord.Case 3.2: h = hOpp. In this case, assuming that � is the base marking of �, it isimpossible to give a combinatorially invariant description of the base marking �0 of �0.The reason is that the elementary move �0 ! �, in which hOpp is the inserted arc, givesrise to a good elementary move f�0; �0g ! f�; �g, and this could be either a parity markedelementary move of either parity d 2 fL;Rg, or a nonparity elementary move marked by
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*Figure 40. A bad elementary movesome value j = 1; : : : ; �; the combinatorial type f�0; �0g depends on the value of d or j,and on the placing of additional end markings in f�0; �0g. Whatever case applies, we referto f�; �g ! f�0; �0g as an inverse good elementary move.Normal forms. We have �nished the construction ofM0, and the language L0 acceptedby M0 is our language of normal forms. In [M] it is proved that L0 contains a uniquerepresentative for each element of MCGD whose initial vertex is the base vertex of X.Here is a quick summary of the proof.Suppose that � is an arbitrary unlabelled ideal triangulation on S. Our task is to de�nea path of elementary moves �B = �N ! � � � ! �0 = �, so that when the ideal triangulation�i is equipped with its base marking �i, then we obtain an accept edge in the automatonf�N ; �Ng ! � � � ! f�0; �0g. The path is de�ned in reverse order, as follows. Assumeby induction that �0; : : : ; �n have been de�ned. Recall the Tightness proposition of [M],which says that �n and �B may be pulled tight with respect to one another. Let gi be the�rst arc of �B along which �n is uncombed. Then gi must emerge from a certain prong of�n, as shown in �gure 31 (this is the marked prong \�", using the base marking). Now leth be the �rst arc of � crossed by gi (this is the arc hOpp, using the base marking). Then�n+1 is obtained by performing the elementary move �n h�! �n+1. The main work of theproof is to show (1) this sequence eventually stops at �B ; and (2) f�n+1; �n+1g ! f�n; �ngis an arrow in M0.The structure of the automaton M0. Before proceeding with the description of thealgorithm for computing normal forms, we discuss the automaton M0 and its languageL0. As mentioned earlier, the language L0 forms an asynchronous automatic structurefor MCGD, and we must understand certain of its properties in order to construct asynchronous automatic structure.We have seen that the set of failure states is a dead end set. The accept states arepartitioned into consistent and inconsistent states; each relabelling arrow from a consistentstate goes to an inconsistent state, and each arrow from an inconsistent state goes to afailure state. All arrows leading between consistent states are labelled elementary movearrows. This forces each word in L0 to consist of a sequence of zero or more labelledelementary moves, followed by zero or one relabelling move.The consistent accept states can be partitioned into subsets called levels, forming asequenceMB0 ;M�0 ; : : : ;M10 where � = 12g�6. First there is the base level MB0 , consistingof those consistent marked chord diagrams where every chord has a marked end and noprong is marked. The start state lies in MB0 . Going to deeper levels, each consistentaccept state not in MB0 has a prong marked by some k = 1; : : : ; �, and this state liesin Mk0. Recall that our convention in diagrams is to mark the prong with a �, and k is



A USER'S GUIDE TO THE MAPPING CLASS GROUP: ONCE PUNCTURED SURFACES 39characterized as the least integer � 1 which is not an end marking. Thus, the deepest levelM10 consists of states with no end markings.If 1 � k < �, and if s is a state in some level aboveMk0, then there is a k-arrow leadingfrom s into the level Mk0; just do an elementary move on the chord of s with end markedk. Notice that each elementary move arrow leading out of the start state (or any state inMB0 ) leads to an accept state, because in the chord diagram for the start state each chordhas a marked end. Given 1 � k � � and a state D in Mk0, and given d 2 fL;Rg, if thechord hd has no marked end then there is a d-elementary move arrow leading from D toanother state in Mk0. Thus, each arrow either stays in the same level or leads to a lowerlevel, the lowest level being M10.Note that there are many inaccessible states in M0. In particular, every state in MB0except the start state is inaccessible. However, note also that our choice of a base vertexin X and a start state in MB0 is somewhat arbitrary: we could choose any state in MB0as the start state, thereby choosing the image vertex in X as the base vertex. These willall lead to di�erent asynchronous automatic structures on MCGD.We may count states in each level of M0 as follows. Let mg be the number of verticesin X, i.e. the number of labelled chord diagrams. We have seen earlier that m2 = 105 andm3 = 50050. The number of states in M10 is mg, because there is a unique way to inserta marked prong in a labelled chord diagram to make a consistent marked chord diagram:insert the prong just counterclockwise of the labelled end. The number of states inM20 ismg(�� 2), because the end marking 1 must be on the labelled end, and the marked prongmay be chosen freely among all � prongs except that it may not be one of the two prongsopposite the marked chord. The number of states inM30 is mg(�� 2)(�� 4), because theend marking 1 is determined, the end marking 2 may be chosen freely among the ends ofthe remaining unmarked chords, and the prong marking may be chosen freely among theprongs not opposite the two marked chords. In general, the number of states in Mk0 ismg(�� 2)(�� 4) : : : (�� 2k+2). By far most of these states are inaccessible, especially inthe base level and the highest levels. On the other hand, it is possible to show that M10is a strongly connected diagraph, hence all of its states are accepssible. If one wanted toe�ciently construct all the accessible states, it would be best to use a breadth or depth�rst search algorithm beginning with the start state.From the structure of M0 just described, every word in L0 may be factored as follows.If w is an accepted word, then we may factor w into subwords as w = w� � � � � � w1 � r,where the subword wj , if it is not empty, begins with a j-arrow and is followed by parityarrows in Mj , and the subword r is either empty or is a single relabelling move. We callthis the factorization of w into uncombing blocks; the idea is that as a new uncombingblock is entered, a new ideal arc is being uncombed. Any non-empty uncombing block wjmay be written uniquely as a single j-elementary move, followed by maximal subwordsof constant parity; the non-parity move is absorbed into the following subword of contantparity, and we obtain the factorization of wj into parity blocks. This factorization is crucialto understanding synchronization.III. An algorithm for computing normal formsTo start the algorithm:Input. A path of labelled elementary moves and relabelling moves, starting at the base



40 LEE MOSHERvertex D0 of X: w := D0 w1�! D1 w2�! � � � wN�! DNThis path can be described with pencil and paper as a sequence of labelled chorddiagrams, with the initial diagram D0 chosen, say, by the convention given in �gure 30.An example is given in �gure 41.Throughout the description of the algorithm, we use the following notational conven-tions. Capital letters like D or V;W;U will be used to denote labelled but unmarked chorddiagrams, and the lower case letter s will be used to denote marked chord diagrams, andon a consistent state we will often omit the labelling. Given a marked chord diagramdenoted with subscripts or primes, such as s00, the corresponding unmarked chord diagramps00 will be denoted V 00 . We will also use lower case letters like w; v for paths of marked orunmarked chord diagrams.
3 7

D1 D2 D3 D4 D5 D6D0 Figure 41. Example input for the algorithmThe algorithm will work by successively computing, for t = 0; : : : ;N , the normal formvt representing the groupoid element w(t) where w(t) is the length t pre�x of w:w(t) := D0 w1�! D1 w2�! � � � wt�! DtOnce vt�1 is computed, then vt will be computed by homotoping the path vt�1wt througha sequence of relators in X. In section V we shall estimate the number of relators used,and we will prove that the total number of relators needed to calculate vN is bounded by(12g�6)N2; from the results of this section it will be clear that the task of deciding whichrelator to apply at any moment takes constant time.The algorithm is initialized by computing v0 and v1:Initialization, step 1. Let s0 be the start state of M0. Set v0 to be the empty path inM0 based at s0.This step can be implemented by marking the chord ends of the base vertex D0, say bythe convention chosen in �gure 33, which in genus 2 is reproduced in �gure 42.
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9Figure 42. The normal form v0 is the empty path based at the startstate s0.



A USER'S GUIDE TO THE MAPPING CLASS GROUP: ONCE PUNCTURED SURFACES 41Initialization, step 2. Given the start state s0, the generator w1 := (ps0 = D0) ! D1lifts to an arrow s0 w1�! s00, which is the normal form v1.To justify this step, note that any arrow s0 w1�! s00 is an accept arrow when s0 is thestart state. If w1 := D0 Rotate(r)������! D1 is a relabelling arrow this follows because s0 isconsistent, and we get a relabelling generator s0 Rotate(r)������! s00. If w1 := D0 h�! D1 is alabelled elementary move, this follows because every chord in s0 has a labelled end, so weget a j-marked arrow s0 j�! s00 where h has an end marked j.Using D0 ! D1 as given in �gure 41, we see that this yields a j-marked arrow withj = 8, as shown in �gure 43. In �gure 43 and later examples, we represent normal forms asvertical paths going downward; unmarked paths in X are represented as nonvertical pathsgoing rightward.
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Figure 43. v1 consists of a single arrow, the j-marked arrow withj = 8, coming out of the start stateMain loop. For each n = 1; : : : ;N , let vn�1 := sK ! � � � ! s0 be the normal formrepresenting w(n � 1). Using the subroutine Do one move, compute the normal form vnrepresenting w(n).The reason for backwards indexing of states in a normal form, such as vn�1 := sK !� � � ! s0, is that our algorithm will process normal forms from back to front.Subroutine: Do one move. Let sK ! � � � ! s0 be a normal form, and let V = ps0. LetV w�! V 0 be a generator in A0, and break into cases: for a relabelling generator, use thesubroutine Do a relabelling generator; otherwise use Do an elementary move generator.The result is to compute the normal form representing the same groupoid element as psK !� � � ! (ps0 = V ) w�! V 0.Subroutine: Do a relabelling generator. Starting with a normal form sK ! � � � ! s0and a relabelling generator ps0 = V Rotate(r)������! V 0, break into cases depending on whetheror not s1 ! s0 is a relabelling arrow.



42 LEE MOSHERCase 1. If s1 ! s0 is not a relabelling arrow, then the edge V Rotate(r)������! V 0 lifts to arelabelling arrow s0 Rotate(r)������! s0, and the required normal form is sK ! � � � ! s0 Rotate(r)������!s0. An example of case 1 is shown in �gure 44. We have already computed the normalform v1 for w(1) in �gure 43. The next generator from �gure 42 is a relabelling moveD1 Rotate(3)������! D2, and the last arrow of v1 is not a relabelling arrow, so case 1 applies. Theresulting normal form v2 is shown in �gure 44.
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3Figure 44. v2 is obtained from v1 by concatenating with a Rotate(3)������!relabelling arrow.Case 2. If s1 Rotate(a)������! s0 is a relabelling arrow, then we can apply a pure relabellingrelator to replace p(s1) Rotate(a)������! p(s0) = V Rotate(r)������! V 0 with p(s1) Rotate(n)������! V 0, wheren � r + a (mod �). If n 6� 0 (mod �) then this generator lifts to a relabelling arrows1 Rotate(n)������! s0, and the required normal form is sK ! � � � ! s1 Rotate(n)������! s0. If n � 0(mod �) then the required normal form is sK ! � � � ! s1.An example of case 2 is shown in �gure 45. Starting from v2 as in �gure 44, and usingthe next generatorD2 Rotate(7)������! D3 from �gure 42, then the last letter of v2 is a relabellingarrow, so case 2 applies and we get v3 as in �gure 45.A word of explanation about �gure 45. In paper and pencil computations, we shallsometimes redraw a certain state, connecting the two copies of that state via a � sign, asin �gure 45. These computations will also explicitly show the relators that are applied,such as the relator in �gure 45 which, despite the fourth side labelled �, is a three sidedrelabelling relator. In general, the computations carried out by the subroutine Do one
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Figure 45. v3 is obtained from v2 by applying a relabelling rela-tor, which replaces the �nal Rotate(3)������! arrow, followed by the generatorD2 Rotate(7)������! D3, with a Rotate(10)�������! arrow.move are represented by such diagrams, whose input is the left hand vertical side of thediagram followed by the bottom horizontal edge, and whose output is the right hand side.When I do computations by hand, I usually do as little extra copying as necessary by notcopying the merged portion of the two normal forms, but for clarity's sake the �gures herewill always copy the entire merged portion.This �nishes the subroutine Do one relabelling generator. That was easy!Subroutine: Do an elementary move generator. Starting with a normal form v :=sK ! � � � ! s0 and a labelled elementary move generator ps0 = V h�! V 0, do the followingsteps to compute the normal form v0 := s0K0 ! � � � ! s00 representing the same groupoidelement as psK ! � � � ! ps0 = V h�! V 0.Before giving a detailed explanation we give a brief overview, summarized schematicallyin �gure 46. The normal form will be computed in the backwards direction. If the �nalarrow s1 ! s0 is a relabelling generator we process that by applying an elementary move{relabelling relator, replacing ps1 Rotate(n)������! ps0 = V h�! V 0 with an elementary moveps1 ! V 00 followed by a relabelling move V 00 ! V 0. Then we analyze the move ps1 ! V 00into three cases: good, bad, or inverse good elementary move. In the good and inversegood cases we quickly complete the computation of v0. To handle the bad case, we computemarkings on V 00 and V 0 to produce a bad elementary move s1 ! s01 followed by a relabellingarrow s01 ! s00. Then we enter a loop. Typically the loop will take a sequence of goodelementary moves si ! � � � ! sj followed by a bad one sj ! s0j0 and, by applying either acommutator or pentagon relator, replace it with a bad elementary move si ! s0i0 followed



44 LEE MOSHERby a sequence of good ones s0i0 ! � � � ! s0j0 ; the di�erences i � j and i0 � j0 will alwaysbe either 1 or 2 (untill the �nal relator, when 3 can also occur). This has the e�ect of\raising" the bad elementary move sj ! s0j0 to a higher one si ! s0i0 , closer to the endsK = s0K0 . Eventually, one �nal relator will be used to produce not a bad elementary movebut instead an equation si = s0i0 . A schematic diagram of the computation is given in�gure 46.
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s′12 Figure 46 Starting from an input normal form v :=sK ! � � � ! s0 and an elementary move generator� := ps0 ! V 0, we typically produce an output nor-mal form v0 := s0K0 ! � � � ! s00 connected to v bya sequence of relators and bad elementary moves, sothe words v and v0� represent the same groupoid ele-ments. In these computations, good elementary movearrows and relabelling arrows will be drawn vertically,whereas bad elementary moves, like rungs of a deformedladder, will always be nonvertical, possibly with a non-zero vertical component. The deformation is caused bythe di�erent rate at which the endpoints of the rungsare raised on the two sides of the ladder.Step 1: Process a �nal relabelling arrow. In this step, suppose that s1 Rotate(r)������! s0 is arelabelling arrow. Apply an elementary move{relabelling relator, to replace the sequenceps1 Rotate(r)������! ps0 = V h�! V 0 with a sequence ps1 h0�! V 00 Rotate(n)������! V 0. To explainhow this is done, under the relabelling move s1 Rotate(r)������! s0 there is a 1-1 correspondencebetween chords of s0 and of s1, and also between chord ends. In particular, the chordh of s0 corresponds to a chord h0 of s1, yielding the elementary move ps1 h0�! V 00. Tosee how n is computed, let ei be the labelled chord end in si. Enumerate the chord endsof ps1 as �i = Succi(e1), so the labelled end of s1 is �0 and the labelled end of s0 is �r.Consider the ends �1; : : : ; �r, and let a be the number of them which are ends of the chordh. Enumerate the chord gaps as �i = (�i�1; �i), and among the gaps �1; : : : ; �r let bthe the number into which an end of the opposite diagonal to h will be inserted. Thenn = r � a+ b modulo �. It may happen that n = 0 modulo �, in which case the sequenceps1 Rotate(r)������! ps0 = V h�! V 0 is replaced just with ps1 h0�! V 0.Figure 47 gives several examples, showing how di�erent con�gurations of the ends ofh and its opposite diagonal can give rise to di�erent values of a and b. In �gure 48,we continue our main example, where v3 := s2 8�! s1 Rotate(10)�������! s0 is followed by theelementary move (ps0 = D3) ! D4. Applying step 1, we obtain an elementary moveps1 ! V 01 followed by a relabelling arrow V 01 ! (V 00 = D4).Having completed step 1, we now rename everything to obtain the following data: anaccepted path sK ! : : : s1, followed by a labelled elementary move (ps1 = V1) h�! V 01 ,
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Figure 48. Applying step 1 to start the computation of v4. Thenormal form v3, read o� from the right side of �gure 45, is reproducedhere as the left side.followed possibly by a relabelling move V 01 Rotate(r)������! V 00 .Step 2: Classify the elementary move (ps1 = V1) h�! V 01 . This move will be classi�edas either a good elementary move, an inverse good elementary move, or a bad elementarymove. Locate h in the chord diagram for s1. If h has a end marked j, or one of the endseL; eR, then the move is good. If h is the chord opposite the marked prong, then the moveis inverse good. Otherwise, the move is bad.Step 3: Process the elementary move (ps1 = V1) h�! V 01 , using whichever of the threesubroutines applies: Do a good elementary move, Do an inverse good elementary move,or Do a bad elementary move.



46 LEE MOSHERSubroutine: Do a good elementary move. Consider the state s1 and the chord h. Ifh has an end marked j, then compute the j-marked arrow s1 ! s01; and if h has no markedend but ed is an end of h for d 2 fL;Rg, compute the parity d arrow s1 ! s01. If a relabellingmove V 01 Rotate(m)������! V 00 is appended, compute the relabelling arrow s01 Rotate(m)������! s00. ThensK ! � � � ! s1 ! s01, with s01 Rotate(m)������! s00 appended if necessary, is the normal formrequired to �nish the subroutine Do one move.For example, in �gure 48 the elementary move ps1 ! V 01 is performed on the chord withend marked j = 5, so we can compute the marking on V 01 by doing a j-marked elementarymove on s1, as shown in �gure 49. The marking on V 00 is then obtained by computingthe Rotate(9)������! arrow on V 01 , also shown in �gure 49. This completes the computation ofv4 := s03 8�! s02 5�! s01 Rotate(9)������! s00.
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Figure 49. Finishing the computation of v4The subroutine Do an inverse good elementary move is next. Roughly speaking, allwe do is cancel the inverse good elementary move with the last good elementary move.However, there is one problem: the label might not return to its original position. Moreprecisely, consider a labelled elementary move � h�! �0 with inserted chord h0, and consider



A USER'S GUIDE TO THE MAPPING CLASS GROUP: ONCE PUNCTURED SURFACES 47the labelled elementary move on �0 performed on h0. If the label of � is not on an end of h,then the inverse move results in � with the label in the same position, so there is a relator� h�! �0 h�! �; in our earlier terminology this is called an elementary move{relabellingrelator, although there are no relabelling moves in this particular relator. On the otherhand, if the label of � is on an end of h then the inverse move �0 h0�! �00 results in a labelledideal triangulation �00 obtained from � by rotating the label one notch clockwise, as shownin �gure 50. To cancel the e�ect of this rotation, we must apply a Rotate(1)������! relabellingmove, producing an elementary move{relabelling relator � h�! �0 h0�! �00 Rotate(1)������! �.This relator can be applied to replace the sequence � h�! �0 h0�! �00 by the sequence� Rotate(�1)�������! �00.
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δ δ′ δ′′Figure 50. Cancelling inverse labelled elementary moves, when the�rst move is performed on the labelled arcApplying these ideas to an inverse good elementary move, we obtain:Subroutine: Do an inverse good elementary move, case 1. If the arrow s2 ! s1is a Right arrow or a j-marked arrow with j 6= 1, so the move is not performed on thelabelled chord, then apply an elementary move{relabelling relator to replace the sequencep(s2) ! p(s1) = V1 ! V 01 with the constant sequence at p(s2) = V 01 . Then if there is anappended relabelling move V 01 Rotate(r)������! V 00 , append the relabelling arrow s2 Rotate(r)������! s00 toobtain the required normal form sK ! � � � ! s2 Rotate(m)������! s00. Otherwise, if there is noappended relabelling move, then sK ! � � � ! s2 is the required normal form.Subroutine: Do an inverse good elementary move, case 2. If the arrow s2 ! s1is a Left arrow or a 1-marked arrow, so the move is performed on the labelled chord, applyan elementary move{relabelling relator to replace the sequence p(s2) ! p(s1) = V1 ! V 01with the relabelling move p(s2) Rotate(�1)�������! V 01 . Then if there is an appended relabellingmove V 01 Rotate(r)������! V 00 with r 6� 1 (mod �), apply another relabelling relator, replacingp(s2) Rotate(�1)�������! V 01 Rotate(r)������! V 00 with p(s2) Rotate(m)������! V 00 where m � r � 1 (mod �),and we obtain the required normal form sK ! � � � ! s2 Rotate(m)������! s00; whereas if r � 1(mod �) then the e�ect of the relabelling relator will be to cancel the two relabelling moves,resulting in the normal form sK ! � � � ! s2. If there is no appended relabelling move,then sK ! � � � ! s2 Rotate(�1)�������! s00 is the required normal form.An example of case 2 is shown in �gure 51. The example shows the last arrow of anormal form, a Left arrow, followed by a labelled elementary move. Applying step 2, the



48 LEE MOSHERelementary move is classi�ed as an inverse good, and then Do an inverse good elementarymove is applied.
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apply relatorFigure 51. Doing an inverse good elementary moveNow we come to the most laborious portion of the algorithm:Subroutine: Do a bad elementary move. Initialize by computing the state s01: in thechord diagram s1, since the chord h has no marked end, and is distinct from hL, hR, andhOpp, then we may compute the bad elementary move s1 h�! s01 as described earlier. Nowloop through the subroutine Raising a bad elementary move.Subroutine: Raising a bad elementary move. Given a normal form sK ! � � � ! s1,and a bad elementary move si ! s0j for some 1 � i < K, apply the case analysis below,with the following e�ect. There is a unique relator in X having as two of its sides thelabelled elementary moves Vi+1 ! Vi ! V 0j . Moreover, the vertices on this relator may bemarked in a unique way so that one of the following is true:(Another bad elementary move) For some (a; b) 2 f(1; 1); (1; 2); (2; 1)g, there is abad elementary move si+a ! s0j+b and a path in the automaton s0j+b ! � � � ! s0j .(Normal forms merging) For some (a; b) 2 f(2; 2); (1; 2); (2; 1); (1; 3); (3; 1)g thereis a path in the automaton si+a = s0j+b ! � � � ! s0j .The possible outcomes are illustrated schematically in �gure 52.Before describing the case analysis, it should be clear how the subroutine Do a badelementary move will proceed: as long as the bad elementary move is raised to anotherbad elementary move using relators of types Ia, IIa, or IIbi in �gure 52, we are left with ashorter and shorter initial segment of the original normal form sK ! : : : ! s1. Once thenormal forms merge using a relator of type IIbii, Ib, Ic, IIc, or IIbiii, we are done. Thenormal forms must eventually merge, because there is no bad elementary move leading outof the start state sK .Now we describe the case analysis for Do a bad elementary move. To simplify thenotation, we assume that i = j = 1. Suppose the move s1 ! s01 is performed on the chordh0 of s1, and suppose that under the move s2 ! s1 the inserted chord is h1. If h0 andh1 have no adjacent ends in s1 then a commutator relator applies, otherwise a pentagonrelator applies.
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Ia

Ib Ic

IIa IIbi

IIbii IIbiiiIIcFigure 52. Raising a bad elementary move. The �gures are labelledaccording to the case analysis below.Case I: h0 and h1 have no adjacent ends in s1. The commutator relator in X maybe described as V1 h0�! V 01 h1�! U h2�! V2 h3�! V1in one direction, and in the opposite direction asV1 h1�! V2 h0�! U h3�! V 01 h2�! V1as shown in �gure 53. We do not yet say in which direction these elementary moves arelabelled.
V1

V2

V′1

U

h0

h0

h1 h1h2

h2 h3h3

Figure 53. A commutator relatorNow compute as follows. Locate h0 and h3 in the marked chord diagram s2. Decidewhether: (a) h0 has neither a marked end nor an end adjacent to the marked prong of s2,nor is h0 opposite the marked prong of s2; (b) h0 has a marked end or an end adjacent tothe marked prong of s2; or (c) h0 is opposite the marked prong of s2.Note: if s2 ! s1 is a parity arrow then case (a) applies. For the end map induces upa 1-1 correspondence between marked ends of s2 and of s1, and since h0 is unmarked ins1 then it is unmarked in s2. Also, all prongs outside the support of a parity elementary



50 LEE MOSHERmove are unmarked in both the source and target of the elementary move, and since h0is not adjacent to a marked chord then the two triangles adjacent to h0 are outside thesupport of s2 ! s1, so the prongs opposite h0 are unmarked.Case Ia: Neither|nor. Compute the bad elementary move s2 h0�! s02, so ps02 = U . Nowlocate h3 in s02, and compute the arrow s02 h3�! s01. Two examples are given in �gure 54,one with parity arrows and another with non-parity arrows.In this case as in all later cases, the algorithm computes certain arrows, but to beformally correct we must justify that these arrows exist; the reader may want to skip thesejusti�cations at �rst.The arrow s02 h3�! s01 exists because h3 has the same relationship with the marking ins02 as in s2, i.e. it either has a marked end or has an end adjacent to the marked prong.Moreover the arrows s2 ! s1 and s02 ! s01 are of the same type: both have the same parity,or both are j-marked for the same j.
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Figure 54. Examples of case IaCase Ib: h0 has either a marked end or end adjacent to the marked prong of s2. Asnoted above, this happens only if the arrow s2 ! s1 is j-marked for some j, hence h3 hasan end marked j. Compute the arrow s2 = s03 h0�! s02 in the automaton, so ps02 = U . Nowlocate h3 in s02, and compute the arrow s02 h3�! s01. Two examples are given in �gure 55,one where s03 ! s02 is a parity arrow and one where it is non-parity.To justify why the arrows s02 h3�! s01 exists, the end map sets up a 1-1 correspondencebetween ends in s2 and in s1 which are marked by some i < j. Therefore, since h0 isunmarked in s1, then if h0 has a marked end in s2 that marking must be � j, and it mustbe > j since h3 is marked with j; it follows that after the arrow s03 h0�! s02 then h3 is stillmarked j in s02. Also, if h0 is adjacent to the marked prong of s2 that prong must bemarked > j, so h3 is still marked j in s02. Thus, s02 h3�! s01 is a j-marked arrow.Case Ic: h0 is opposite the marked prong of s2. Again, this happens only if the arrow
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Figure 55. Examples of case Ibs2 ! s1 is j-marked for some j, hence h3 has an end marked j. Since h0 is opposite themarked prong of s2, then h0 is the inserted chord under the arrow s3 ! s2, and ps3 = U .Now locate h3 in s3, and compute the arrow (s3 = s02) h3�! s01. Examples are given in�gure 56. Note that occurences of case Ib and Ic are \orientation reversals" of each other;c.f. �gures 55,56.The arrow (s3 = s02) h3�! s01 exists because h3, being marked by j in s2, is also markedby j in s3. Thus, the arrow s02 h3�! s01 is j-marked.Case II: h0 and h1 have adjacent ends in s1. The pentagon relator in X may bedescribed as V1 h0�! V 01 h1�!W h2�! U h3�! V2 h4�! V1and in the other directionV1 h1�! V2 h0�! U h4�!W h3�! V 01 h2�! V1as shown in �gure 57.Now compute. Locate h0 and h4 in the marked chord diagram s2. Decide whether: (a)h0 has no marked end nor end adjacent to the marked prong of s2, nor is h0 opposite the
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Figure 56. Examples of case Ic
V0 V′0

V1

U

W

h0

h0

h1 h1

h2

h2

h3

h3

h4

h4

a
b

a
b

ac

d e
f

a

b

c e
d

f
g

h i

j
k

b
c

d
e

g if
h

g
h i

Figure 57. A pentagon relator



A USER'S GUIDE TO THE MAPPING CLASS GROUP: ONCE PUNCTURED SURFACES 53marked prong of s2; (b) h0 is opposite the marked prong of s2; or (c) h0 has a marked endor an end adjacent to the marked prong of s2.Case IIa: Neither|nor. Compute the bad elementary move s2 h0�! s03, whose insertedchord is h3, so ps03 = U . Now locate the chord h4 in s03 and compute the arrow s03 h4�! s02, sops02 =W . Finally, locate the chord h3 in s02, and compute the arrow s02 h3�! s01. Examplesare shown in �gure 58.To see why the arrows s03 h4�! s02 and s02 h3�! s01 exist, �rst note that in �gure 57, themarking on s2 must include either a or b in V2: the marking must include one of a{f ,since s2 h4�! s1 is an arrow; but c and f are excluded because no mark can be on a prongadjacent to or opposite h0; also d and e are excluded because then the marking on s1 wouldinclude b in V1, violating the fact that s1 h0�! s01 is a bad elementary move. It follows thatthe marking on s03 includes a or b in U , showing that s03 h4�! s02 is an arrow, of the sametype as s2 ! s1. Also, it follows that the marking on s02 includes a in W , showing thatthere is an arrow s02 h3�! s01; this can be a parity or nonparity arrow, depending on whetherh3 has a marked end.
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54 LEE MOSHERCase IIb: h0 is opposite the marked prong of s2. Then the arrow s3 ! s2 has insertedchord h0, so ps3 = U , and s3 ! s2 is performed on h3. Locate the chord h4 in s3. Decidewhether: (i) h4 has no marked end, no end adjacent to the marked prong of s3, and h4is not opposite the marked prong of s3; (ii) h4 has a marked end or end adjacent to themarked prong of s3; (iii) h4 is opposite the marked prong of s3; one of these must happen.Case IIbi. Compute the bad elementary move s3 h4�! s02, so ps02 = W . Now locate thechord h3 in s02, and compute the arrow s02 h3�! s01. Examples are given in �gure 59. Notethat cases of IIa and IIbi are orientation reversals of each other; c.f. �gures 58,59.To see why the arrow s02 h3�! s01 exists, note that the marking on s3 must include one ofd; e; j; k in U : since s3 h3�! s2 is an arrow then one of the marks c{d; i{k must be included,but the marks c; i are forbidden because no prong adjacent to or opposite h4 is marked; itfollows that the marking on s02 must include one of b; c; h; i in W , so s02 h3�! s01 is an arrow.
*

*

*

*

*

Apply Relator

Apply Relator

*

*

*

*

1
2 3 4

5
6

7*

1 2
3

4

*

1
2
3

4

5

6

7*

1 2
3

4

*

1 2 3

4

*

5

5
1 2

3

4

*

1
2
3

4

5

6

7*

1 2
3

4

*

1 2 3

4

*

5

Figure 59. Examples of case IIbiCase IIbii: h4 has a marked end or end adjacent to the marked prong of s3. Computethe arrow s3 = s03 h4�! s02, so ps02 = W . Now locate the chord h3 in s02, and computethe arrow s02 h3�! s01. Examples are given in �gure 60. Note that the orientation reversal



A USER'S GUIDE TO THE MAPPING CLASS GROUP: ONCE PUNCTURED SURFACES 55of an example of case IIbii is another example of case IIbii; it is instructive to study theorientation reversals of the examples in �gure 60.To see why the arrow s02 h3�! s01 exists, note �rst that the marking on s3 includes oneof c{e or i{k in U , because s3 h3�! s2 is an arrow; we can rule out i because either h4 hasa marked end and no marked prong can be opposite an arc with a marked end (property5 in the de�nition of a marking), or the unique marked prong is adjacent to h4; it followsthat the marking on s02 includes one of a{c; h; i in W , so s02 h3�! s01 is an arrow.
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Figure 60. Examples of case IIbiiCase IIbiii: h4 is opposite the marked prong of s3. Then h4 is the chord inserted unders4 ! s3, so ps4 =W . Locate the chord h3 in s4, and compute the arrow (s4 = s02) h3�! s01.An example is given in �gure 61.To see why the arrow (s4 = s02) h3�! s01 exists, note that the marking on s3 must includeone of c{e or i{k in U , since s3 h3�! s2 is an arrow. However, c, e, and k may be eliminatedby the requirement that the unique marked prong is opposite h4. Also, imay be eliminated,for if i is included then b and g are not included, so the marking on s2 includes i but notb and e in V2, and by uniqueness of the marked prong a,c,d, and f are also not included,but this violates the requirement that s2 h4�! s1 is an arrow. Thus, the marking on s3



56 LEE MOSHERincludes one of d or j in U . It follows that the marking on s4 includes one of b or h in W ,so (s4 = s02) h3�! s01 is an arrow.
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Figure 61. Example of case IIbiiiCase IIc: h0 has a marked end or end adjacent to the marked prong of s2. Computethe arrow (s2 = s04) h0�! s03, whose inserted chord is h3; note that ps03 = U . Now locate thechord h4 in s03, and compute the arrow s03 h4�! s02, so ps02 = W . Finally, locate the chordh3 in s02 and compute the arrow s02 h3�! s01. An example is given in �gure 62. Note thatoccurences of cases IIbiii and IIc are orientation reversals of each other; c.f. �gures 61, 62.To see why the arrows s03 h4�! s02 and s02 h3�! s01 exist, �rst note that the marking on s1must include one of a or b in V1, because h1 is inserted under the arrow s2 ! s1; however,b is eliminated since s1 h0�! s01 is a bad elementary move, so a is included. It follows thatthe marking on s2 includes one of a, b, or c in V2; let the numerical value of this markingbe n. By hypothesis, the marking on s2 includes some end of h0 or prong adjacent to h0 inV2; let the numerical value of this marking be m. Thenm > n, for after the arrow s2 ! s1there is no marked end of h0, nor marked prong adjacent to h0, because s1 h0�! s01 is abad elementary move. If a or c is marked with n in s2 we obtain a contradiction, since theprong marking is greater than all end markings. Thus, b is marked with n in s2. It followsthat after the arrow (s2 = s04) h0�! s03, the marking on s03 includes b in U . It then followsthat there is an arrow s03 h4�! s02, and that the marking on s02 includes a in W . Finally, itfollows that there is an arrow s02 h3�! s01.This �nishes the subroutine Do a bad elementary move. A few comments:Comment 1: Strictly speaking, we have gone around a relator in two ways to obtainmarkings on ps01 = V 01 , and we should check that these two markings are identical. Itis obvious that the markings are identical outside of the support of the relator, and bychecking cases one may see that the markings are identical in the support of the relator;alternatively, use the results of [M].
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Apply RelatorFigure 62. Example of case IIcComment 2: When the arrows on the left side of the relator are all parity arrows, thenthe relator must be case Ia, IIa, IIbi, or IIbii. Moreover, the arrows on the right side mustalso be parity arrows. Moreover, in cases I, IIa, and IIbi all of the arrows in the relatorhave the same parity; in case IIbii, the arrows on the left side have the parities dd0 for somechoice of d 6= d0 2 fL;Rg, and the arrows on the right side have parities d0d. The diagramsfor each of these cases, �gures 54,58,59,60, each show an example where the arrows are allparity arrows. This observation can be used to make some computational shortcuts: onceit has been determined that the arrows on the left hand side of the relator are all parityarrows, and once the top chord diagram on the right hand side of the relator has beencomputed, then the parities of the arrows on the right hand side are determined, and fromthis information the arrows may be computed.This completes the description of the algorithm for computing normal forms.Finally, observe from the description of the algorithm that L0 is an asynchronous auto-matic structure, because the input and output normal forms under any run of the subrou-tine Do one move are asynchronous fellow travellers.Examples of doing a bad elementary move.Figures 63,64 show some examples of applying the subroutine Do a bad elementarymove. Figure 63 �nishes the computation of the normal form for the example word givenin �gure 41, using two more applications of Do a bad elementary move. The left sideof the �gure shows v4 as computed in �gure 49, and the bottom of the �gure shows thelast two generators D4 ! D5 ! D6 from �gure 41. Then v5 is computed from v4 usingan elementary move{relabelling relator, followed by a run of the subroutine Do a badelementary move, using relators of types IIa, IIc; then v6 is computed using relators oftypes IIa, IIbi. Some of the relators used in �gures 63 and 64 were described in �gures54{62, and the numerals written on these relators refer to the relevant �gure.Figure 64 shows another application of Do a bad elementary move. This is a more
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A USER'S GUIDE TO THE MAPPING CLASS GROUP: ONCE PUNCTURED SURFACES 59typical example than �gure 63: given the fact that an arbitrary element of L0 has at most� = 12g � 6 nonparity arrows, if the word is very long the relators do not interact veryoften with nonparity arrows.IV. Interlude: The suffix uniqueness property for an automatic structureIn this section, we describe some properties of L0, as a motivation for our proof in thenext section that the computation of normal forms in L0 runs in quadratic time.In [ECHLPT] it is proved that an automatic group has a quadratic time algorithm forthe word problem. We de�ne a property of automatic structures called su�x uniqueness,and using this property we give another description of a quadratic time algorithm for theword problem. Our algorithm is more e�cient than the one described in [ECHLPT], ascan be seen by comparing the proofs. For asynchronous automatic structures, the methodof [ECHLPT] yields an exponential time algorithm; the property of su�x uniquenessapplies equally well to asynchronous automatic structures, and in this case we obtain anexponential time algorithm as well.Let G be a groupoid with �nite generating set A, and let L be a synchronous or asyn-chronous automatic structure over G, with word acceptorM and fellow traveller constantK. Let BK be the set of elements in G represented by words of length � K in the gen-erating set A; elements of BK do not have to start at the base point of L. Let nL bethe set of su�xes of L of length between 1 and n. Assuming that M has no inaccessiblestates, then nL is the set of all nontrivial paths in M of length at most n ending at anaccept state. We say that L satis�es su�x uniqueness if it is pre�x closed, no two normalforms represent the same element of G, and there exists an integer n � 1, a �nite subsetS � nL �BK , and a function F :S ! kL, with the following property:If w;w0 2 L are K-fellow travellers, then setting g = w�1w0 2 BK , there exists aunique su�x s of w such that (s; g) 2 S, and F (s; g) is a su�x of w0. Moreover,writing w = ŵs and w0 = ŵ0F (s; g), then ŵ and ŵ0 are K-fellow travellers.For example, from the description of the subroutine Do one move it follows that theasynchronous automatic structure L0 for the groupoidMCGD satis�es su�x uniqueness,with fellow traveller constant K = 1 and maximal su�x length n = 3.From the su�x uniqueness property, we obtain an algorithm for the word problem asfollows. Given an arbitrary word w = w1 � � �wM , by induction compute the normal formvm representing w(m) = w1 � � �wm. To do this, suppose v = vm�1 is computed. We mustcompute the normal form v0 = vm representing wm�1wm. We compute v0 by induction,producing longer and longer su�xes of v0. Set a0 = v and a00 = v0. Since a0 and a00 areK-fellow travellers, then we may factor a0 uniquely as v = a1s0 so that (s0; wm) 2 S, andthen set s00 = F (s;wm), so s0 is a su�x of v0 and v0 = a01s00 for some a01. It follows that a1and a01 are K-fellow travellers, so we may continue by induction. Since ai is decreasing inlength, eventually we compute v0 = s0J : : : s01s00.Note that this algorithm is exactly the same as the algorithm described in the previoussection, for computing normal forms in L0 representing elements of MCGD.The computation time of this algorithm may be estimated as follows. Since S is �nite,then the number of steps J in the computation of v0 is bounded by a linear function of thelength of v. If the structure L is asynchronous, then Length(vm) is growing exponentially,and we have an exponential time algorithm for the computation of vM . If the structure L is



60 LEE MOSHERsynchronous, then Length(vm) is growing linearly, and we have a quadratic time algorithmfor computing vM .From this argument, the most we can conclude is that the algorithm described in xIIIruns in exponential time. However, we can perhaps do better using the following ideas.Let L, L0 be asynchronous automatic structures on a groupoid G with generating set A.We say that L0 is a factorization of L if, for each v 2 L and v0 2 L0 such that v = v0, thereexists a sequence 0 = n0 < n1 < � � � < nJ = Length(v) with steps of bounded length suchthat v(nj) = v0(j) for j = 0; : : : ; J . Suppose moreover that L and L0 both satisfy su�xuniqueness, and that L0 is an automatic structure. Then the above described algorithm forthe word problem, using the asynchronous structure L, runs in quadratic time, improvingthe a priori fact that the algorithm runs in exponential time. The reason is that lengths ofnormal forms in L0 grow linearly, and the factors have bounded length, therefore lengthsof normal forms in L grow linearly, hence the algorithm runs in quadratic time.In the next section we use this technique for showing that normal forms in L0 can becomputed in quadratic time, by �nding an automatic structure L1 for MCGD that is afactorization of L0. V. Dehn twists, synchronous normalforms, and quadratic computation timeThe key to understanding the synchronous normal forms is to see how Dehn twists arisein the asynchronous normal forms L0. This is described in the Dehn twist lemma of [M],which we review here. A word in L0 will be factored into subwords which represent eitherDehn twists or fractions of Dehn twists; this leads to a language L1 which is a factorizationof L0 as in the last section. The properties of this factorization are used in [M] to prove thatL1 is an automatic structure for MCGD. For our present purposes, we use the languageL1 to prove that the algorithm described above, for computing normal forms in L0, runsin quadratic time:Theorem: Quadratic computation time. Given a word v of relabelling moves andlabelled elementary moves, with Length(v) = K, the algorithm computes the normal formof v using at most (12g � 12)K2 relators.Comment 1: As we shall see, the number 12g � 12 is the maximum length of a factorin the Dehn twist factorization.Comment 2: At any stage of the algorithm, the time needed to apply the next relator isbounded by a constant, hence the algorithm computes the normal form of v in quadratictime.Comment 3: For genus 2 we need at most 12K2 relators. In any given run of thealgorithm, the author is able to apply the required relator using at most 2 minutes of time,leading to a computation time of at most 25K2 minutes (experience shows that this is avery conservative estimate).Dehn twist blocks.Consider an ideal triangulation � and a prong of � marked with a �. Then (�; �) isthe special case of a marked ideal triangulation, with no end markings; we call this aprong marked ideal triangulation or prmit. We use � to denote (�; �). Choose a parityd 2 fL;Rg; we use :d to denote the opposite parity. Consider the arc h:d of �, equippedwith a transverse orientation pointing into the marked triangle. The arc h:d forms a



A USER'S GUIDE TO THE MAPPING CLASS GROUP: ONCE PUNCTURED SURFACES 61simple closed curve in S, whose regular neighborhood N is an annulus, and the transverseorientation points towards one of the boundary components of N , a simple closed curvewe denote  = (�; d). Let � = � (�; d) be the Dehn twist of parity d around ; see �gure65. Our parity convention for Dehn twists is that a Right Dehn twist is a positive one, i.e.on an oriented annulus A = R� [0; 1]=(x; y) � (x + 1; y) forming a regular neighborhoodof , the Dehn twist is given by the linear map (x; y) 7! (x + y; y) which takes a verticalsegment to a segment of positive slope, i.e. a segment that slopes up and to the Right.
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RRRR Figure 65. The Dehn twist � (�; R)The following lemma is basically the �rst part of the Dehn twist lemma of [M]:Dehn twist lemma (part I). Let � � � d�! �2 d�! �1 d�! �0 be a (�nite or in�nite)sequence of d-elementary moves ending with � = �0. Let � = � (�; d) be the Dehntwist de�ned above. Then there exists a constant K = K(�; d), depending only on thecombinatorial type of �, such that � (�i) = �i+K for all i � 0.The proof is sketched below.The sequence �K d�! � � � d�! �0 is called a Dehn twist sequence of parity d. Thenumber K is called the Dehn twist length. Note that after taking combinatorial types,then f�Kg d�! � � � d�! f�0g is a closed path in M0, lying entirely in M10: the path isclosed because �0 and �K = � (�0) have the same combinatorial type, and it is in level1 because there are no end markings. We call this a Dehn twist block of parity d in M10;later, after putting in end markings, we shall de�ne Dehn twist blocks in higher levels.Some examples are given in �gures 66{69. Figure 66 shows a Left Dehn twist block on atorus, of length 1. All Left Dehn twist blocks in M10 on a torus are orientation preservingconjugate to this one, and all Right Dehn twist blocks are orientation reversing conjugate.Figure 67 shows a Right Dehn twist block of length 1, on a surface of genus 2, obtainedby putting a marked prong into the second elementary move of �gure 5. This exampleexhibits a characteristic property of Dehn twist sequences of length 1 when the genus is atleast 2: the Dehn twist length is 1 if and only if h:d is a boundary arc of a 1-handle piece,and the � is inside the 1-handle piece. Figure 68 shows an example of a Right Dehn twistblock of length 2.In �gure 69, note that a single elementary move returns to the original state, completinga simple closed loop w inM0 and thereby de�ning a mapping class �, but � is not a Dehn
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Figure 66. A Left Dehn twist block on a torus: �1 is obtained from�0 by a Left Dehn twist about the curve .
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Figure 67. A Right Dehn twist block of length 1 on a surface of genus2twist. The separating closed curve  is invariant under �; on the left component therestricted mapping class is the identity, and on the right component the restricted classhas some �nite order k whose value we leave as an exercise. The mapping class �k is aDehn twist � , and the non-simple closed loop wk in M0 is a Dehn twist block of length k.Now we give the formula for Dehn twist lengths K(�; d), and we sketch the proof ofthe Dehn twist lemma. The curve  cuts o� certain half-arcs of �, namely those half-arcsin the annulus bounded by  and h:d. These half-arcs determine a subset of E(�) denotedE� = E�(�; d). In �gure 65 these half-arcs are labelled with a �. In �gures 66 and 67,��E��� = 2. In �gure 68, ��E��� = 3. And in �gure 69, ��E��� = 8. Note that the arc hOpp alwayshas at least one end in E�. De�ne Ê� = Ê�(�; d) = E��E(hOpp). Let K(�; d) = ��Ê���.
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Figure 68. A Right Dehn twist block of length 2 on a surface of genus2. The shaded arcs of �2 should be included in �1 and �0 as well, butare omitted from the diagram for clarity.
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*Figure 69. What is the Dehn twist length? (Hint: see �gure 24c)Thus, K(�; d) = j E� j � 2 or j E� j � 1 depending on whether or not hOpp has one ortwo ends in E�. In �gures 66, 67, 68 only one end of hOpp is in E �, so K(�; d) = 1; 1; 2respectively. In �gure 69 both ends of hOpp are in E �, so K(�; d) = 6.The number K(�; d) may be computed from the chord diagram of � as follows. Recallthat the \marked triangle" is the triangle having the marked prong as a corner. Locatethe chord corresponding to h:d. The endpoints of this chord separate the remaining chordends into two subsets; the subset containing ed corresponds to E �. Now count the number



64 LEE MOSHERof elements in E �, subtract 1 if the marked triangle is twisted (because then only one endof hOpp is in E �), and subtract 2 if the marked triangle is untwisted (because both ends ofhOpp are in E �); the result is K(�; d); see �gure 70. In �gures 66-69, only �gure 69 has anuntwisted marked triangle, hence only in that case is 2 subtracted to compute K(�; d); inthe other cases 1 is subtracted. Other examples of computing K(�; d) are given in �gure71.
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K(∆,L) = 12 - 1 = 11 K(∆,R) = 14 - 2 = 12Figure 71. Examples of computing K(�; d)The key observation in proving the Dehn twist lemma is that for any prong markedideal triangulation � and any d 2 fL;Rg, the arc hOpp is obtained up to isotopy from hdby letting the Dehn twist � (�; d)�1 act on a half-arc representing ed, where the half-arc ischosen to intersect  exactly once. This is illustrated in �gure 72, which shows separatelythe cases where the marked triangle is twisted and untwisted. Note in the twisted casethat hd and hOpp each have a unique end in E �, and the twist about  takes hd to hOpp.But in the untwisted case where hd and hOpp have both ends in E �, the twist does nottake hd to hOpp; by allowing the twist to act only on the end ed of hd, we thereby obtainhOpp.This observation is applied as follows. Let �̂i be obtained from �i by removing hOppi .After removing hOppi , the marked prong is now located in a complementary 4-gon of �̂i.
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eRFigure 72. Up to isotopy, hOpp is obtained from hR by letting� (�; R)�1, the Left Dehn twist about , act on the half-arc representingeR.Note that �i may be recovered from �̂i by triangulating this 4-gon using an arc oppositethe marked prong. Consider the good elementary move �i+1 ! �i. Note that �̂i isobtained from �̂i+1 by inserting hOppi+1 and then removing hdi+1. Using the key observation,it follows that �̂i is obtained from �̂i+1 by letting ��1 act on the half-arc representing edi+1.Travelling along the sequence �̂K ; : : : ; �̂1; �̂0, then ��1 acts in turn on a representativehalf-arc of each end in Ê�K . Since these half-arcs represent all the points in �̂K \ , itfollows that ��1(�̂K) = �̂0, hence ��1(�K) = �0 so � (�0) = �K . In order to get thefull periodicity statement � (�i) = �i+K, note that h:di = h:di+1 so � (�i; d) = � (�i+1; d),and also K(�i; d) = ��Ê�i �� = ��Ê�i+1�� = K(�i+1; d). This �nishes the proof of the Dehn twistlemma.We can now determine the range of possible Dehn twist lengths. ObviouslyK(�; d) � 1.To determine when equality is acheived, note that j E�(�; d)j � 2 with the minimumacheived if and only if h:d is the boundary of a 1-handle piece and the � is inside the1-handle piece, in which case the marked triangle is inside the 1-handle piece and thereforetwisted; this is the only way the Dehn twist length can be 1, because if j E�(�; d)j = 3 thenthe marked triangle is still twisted so the Dehn twist length is 2. To �nd the maximumDehn twist length, recall that E(�) = 12g � 6. Now h:d cuts o� one subset of E(�) ofsize at least 2, and h:d itself has 2 ends, hence ��E�(�; d)�� � 12g � 6 � 2� 2 = 12g � 10.This size is acheived if and only if h:d is on the boundary of a 1-handle piece and the �is outside the 1-handle piece, in which case the marked triangle is untwisted and so theDehn twist length is 12g � 10 � 2 = 12g � 12. Also, when j E�(�; d)j = 12g � 11 then theDehn twist length is at most 12g�11�1 = 12g�12. Therefore we have an optimal upperbound of 12g� 12 for the Dehn twist length. An example of a maximal length Dehn twistsequence on a surface of genus 2 is given in �gure 72. It is an exercise to show that this isthe unique maximal length Right Dehn twist block in genus 2.An automaton for synchronous normal forms. First we de�ne a new generating setA1 forMCGD, over which the new automatonM1 is de�ned. The set A1 is obtained fromA0 by adding Dehn twist generators and fractions thereof.In the last section we de�ned Dehn twist blocks in M10. De�ne a Dehn twist generatorto be the path in X obtained by projecting a Dehn twist block from M10 to X. Every
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Figure 73. A Right Dehn twist block in genus 2, of maximal length12Dehn twist generator is a closed curve in X, so it de�nes a group element inMCG. De�nea fractional Dehn twist generator to be any subword of a Dehn twist generator; this maynot be a closed curve, and so may not de�ne a group element.De�ne a new alphabet A1 to be the set of all relabelling generators, Dehn twist gener-ators, and fractional Dehn twist generators. Note that every labelled elementary move iseither a full or fractional Dehn twist generator, so A0 � A1. There is a map from A1 toMCGD, taking each generator to its homotopy class.Consider a full or fractional Dehn twist generator w = w1 � � �wn. Let s0 w1�! s1 w2�!� � � wn�! sn be any path in M that lifts w and stays among the accept states. This path iscalled a full or fractional Dehn twist block if the subpath s1 ! � � � ! sn stays in a singlelevel of M; we allow s0 ! s1 to drop between levels.Chord diagrams of Dehn twist blocks in arbitrary levels are understood as follows.Suppose that s0 d�! s1 d�! � � � d�! sn is a full Dehn twist block in level 1, of parity d.Thus, none of the chord diagrams have labelled ends, and each si ! si+1 is a parity d arrow.Dehn twist blocks in higher levels are obtained by introducing end markings, as follows.Recall the set of chord ends E � = E �(s0; d): the two ends of h:d0 divide the remainingchord ends of s0 into two subsets, one of which contains ed, that subset being E �(s0; d). Ifend markings 1; : : : ; k�1 are introduced to form a new state s00, and if none of the labelledends are in E� [ Opp(E�), then we obtain a Dehn twist block s00 d�! s01 d�! � � � d�! s0nstaying entirely in level k; �gure 74 shows an example. Then if additional end markingsk; : : : ; l � 1 are inserted so that the end ed is marked with k, and if a di�erent markedprong is then chosen, we obtain a Dehn twist block s00 d�! s01 d�! � � � d�! s0n where the



A USER'S GUIDE TO THE MAPPING CLASS GROUP: ONCE PUNCTURED SURFACES 67�rst move drops from level l to level k and the rest of the block stays in level k. Figure 75shows an example, adding end markings to the example from �gure 74.
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*Figure 75. A Right Dehn twist block which drops from level 8 to level5Chord diagrams of fractional Dehn twist blocks are constructed similarly, except thatthe restrictions on end markings are somewhat weaker. Suppose s0 ! s1 ! � � � ! snis a fractional Dehn twist block in level 1, of parity d. Instead of worrying about all ofE �, only worry about those ends in E � which will eventually become ed for one of thestates s0; : : : ; sn�1, i.e. those ends which lie on a chord that will eventually be removedin performing one of the elementary moves in the block; let that set be denoted E #. Toget a fractional Dehn twist block that stays in level k, we may mark chord ends of s0 with1; : : : ; k � 1 as long as the marked ends are not in E # [ Opp(E #). To get a fractionalDehn twist block that drops from level l to level k, add more end markings k; : : : ; l � 1so that ed is marked with k, and then move the marked prong if desired. An example ofa fractional Dehn twist block in level 6 is given in �gure 76, adding an end marking tothe �rst two moves in �gure 74. This example cannot be extended to any longer full orfractional Dehn twist block, because in the �nal state of the block the end eR in the �nalstate is marked with a 5, so the move on hR drops down to level 5.
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68 LEE MOSHERNow we are ready to de�ne the automaton M1. Its state set is (almost) the same asthe state set ofM0. In addition to the old arrows ofM0, we add new arrows representingDehn twist blocks and fractional Dehn twist blocks, which jump over the correspondingpath in M0. In order to preserve uniqueness, we require that fractional Dehn twists canoccur only at the very beginning of a parity block, so the states of M1 must rememberwhether a full Dehn twist has just occured.To de�ne the states of M1: the failure states, and inconsistent accept states are thesame as for M0. For every consistent accept state s of M0, we de�ne three accept statesinM1, namely (s;O), (s; L), and (s;R), whose meanings are as follows. In state (s; d) theprevious letter was a full Dehn twist of parity d, and in state (s;O) the previous letter wasnot a full Dehn twist. If s0 is the start state of M0 then (s0; O) is the start state of M1.Now we de�ne arrows of M1. The arrows coming out of failure states and inconsistentstates all lead to failure states as before. For every relabelling arrow s ! s0 of M0,noting that s is a consistent state and s0 is inconsistent, we de�ne three relabelling arrows(s;O) ! s0, (s; L) ! s0, and (s;R) ! s0, all named with the same relabelling generator.Consider now a consistent accept state s0 ofM0. Consider also a full or fractional Dehntwist block s0 ! s1 ! : : : ! sn of parity d, ending at sn in level k, and let w be thefull or fractional Dehn twist generator to which this block projects. If w is full, constructarrows from the states (s0; O); (s0; R); (s0; L) to the state (sn; d), all named with w. Ifw is fractional and s0 is in level k, construct arrows from the states (s0; O); (s0;:d) to(sn; O), both named with w; the arrow from (s0; d) named with w leads to the appropriatefailure state. If w is fractional and s0 is not in level k, construct arrows from the states(s0; O); (s0; L); (sO ; R) to (sn; O), all named with w. All other arrows which have not beenspeci�cally constructed here should lead to the appropriate failure state.The e�ect of this construction is that a fractional Dehn twist block cannot follow a fullDehn twist block of the same parity, unless the fractional block drops down to a lowerlevel.The language L1 accepted by M1 is related to the language L0 in the following man-ner. Given any word w 2 L0, recall that w is factored into uncombing blocks, and eachuncombing block is in turn factored into parity blocks. Now look at a parity block. Usingthe Dehn twist lemma, that block can be factored in a unique manner as a fractional Dehntwist block, followed by some number of full Dehn twist blocks. Doing this factorizationfor each parity block in L0, one obtains a word w0 in the generators A1, such that w andw0 represent the same element of MCGD, and w0 2 L1. We say that w0 is the Dehn twistfactorization of w.Synchronization.In this section we review the results of [M] that are used to prove that L1 satis�es thefellow traveller property. We shall use these results to prove directly that our algorithmfor the word problem runs in quadratic time.Given a word w := w1 � � �wk, recall the notation for a pre�x subword w(t) := w1 � � �wt.We also use notation for an in�x subword w[i; j] := wi+1 � � �wj . Note that if a < b < cthen w[a; b]w[b; c] = w[a; c] and w(a)w[a; b] = w(b).Consider two normal forms v;w 2 L0, such that � = v�1w is an elementary movegenerator. In applying the subroutine Do one move to the word v�, the algorithm appliessome number of relators to obtain w, and we want to estimate that number. The mostinteresting case is when the algorithm classi�es the move � as a bad elementary move, in



A USER'S GUIDE TO THE MAPPING CLASS GROUP: ONCE PUNCTURED SURFACES 69which case the estimate will arise by studying how Dehn twist boundaries interact withthe operations of the algorithm. Understanding this interaction is also the key to provingthe synchronous fellow traveller property for L1.Let v0; w0 2 L1 be the Dehn twist factorizations of v;w, with Length(v0) = M andLength(w0) = N . Thus, we may write v = v[s0; s1] � � � � � v[sM�1; sM ] where v0m =v[sm�1; sm], and similarly w0n = w[tn�1; tn]. We think of the parameter values s0; : : : ; sMand t0; : : : ; tN as \Dehn twist boundaries". We regard v0m and w0n as individual lettersof A1, but they may also be regarded as words in A0 and as such we may speak of theirsubwords.To start, we study how Dehn twist boundaries interact under the situation where � isa good or inverse good elementary move, or more generally when one of v;w is a pre�xsubword of the other. Supposing v is a pre�x subword of w, then there exists n � N � 1such that tn � sM < tn+1, and we say that w0 extends v0 by N � n Dehn twist units,namely w[sM ; tn+1]; w0n+2; : : : ; w0N . All but the �rst of these units are letters of w0; the�rst unit is a su�x of w0n+1, possibly the whole word, but either way it forms a letter inthe alphabet A1. To compare Dehn twist boundaries in this situation:Good proposition. Suppose w0 extends v0 by K Dehn twist units. Then w0(N�t) extendsv0(M � t) by at most K Dehn twist units, for all t � 0.Proof. The boundaries of the Dehn twist factorizations of v and w are identical up untilthe last parity block in v; suppose that v0(A) and w0(A) end at the beginning of that parityblock. In that parity block, the initial fractional Dehn twist factors of v and w may havedi�erent lengths, but for the rest of the parity block the full Dehn twist factors have thesame length, hence if A < B � M then one of v0(B) or w0(B) extends the other by atmost one Dehn twist unit. It follows that if tn � sM < tn+1, then tn�1 � sM�1 < tn+1, sow0(N � 1) extends v0(M � 1) by at most K Dehn twist units. Now continue by induction.� Now suppose that � is a bad elementary move. The algorithmDo a bad elementary moveapplies a sequence of relators, producing a sequence of bad elementary moves connectingshorter and shorter initial subwords of v and w, until reaching identical initial subwords.More precisely, there exists P � 1 and sequences 0 � i0 < i1 < � � � < iP , 0 � j0 < j1 <� � � < jP with the following properties:(1) If 0 < p � P then v(ip) and w(jp) di�er by a bad elementary move; we say thatv(ip) and w(jp) are matching bem ends (bem is the acronym for \bad elementarymove").(2) If 1 < p � P then there exists (a; b) 2 f(1; 1); (1; 2); (2; 1)g such that ip�1+ a = ip,and jp�1 + b = jp.(3) There exists (a; b) 2 f(1; 1); (1; 2); (2; 1); (2; 2)g such that i0+a = i1 and j0+b = j1.Furthermore:(3a) If (a; b) = (2; 2) then v(i0) = w(j0).(3b) If (a; b) 2 f(1; 1); (1; 2); (2; 1)g then one of v(i0); w(j0) extends the other by asingle good elementary move.(4) In particular, ji0 � j0j � 1. We refer to the intervals [i0; i1] and [j0; j1] as theirregular regions.Remark: in [M] we also say, in case (3b), that v(i0) and w(j0) are matching bem ends(despite the fact that their di�erence is a good or inverse good elementary move).



70 LEE MOSHERThe relation between the Dehn twist factorizations of v and w is given in the following,which although not stated explicitly in [M] is proved implicitly:Bad proposition. Suppose � = v�1w is a bad elementary move. Recall the notations0; : : : ; sM and t0; : : : ; tN for the Dehn twist boundaries of v;w, and note that v(sM ) andw(tN ) are matching bem ends. Then there exists a constant A � 0 such that v(sM�a) andw(tN�a) are matching bem ends for 0 � a < A. Moreover, one of the following happens:(1) One of v(sM�A) and w(tN�A) extends the other by one Dehn twist unit.or (2) v(sM�A) and w(tN�A) di�er by 2 elementary moves (one bad and one good), andone of v(sM�A�1) and w(tN�A�1) extends the other by at most two Dehn twistunits.The point of this proposition is that as you move backwards along v and w, moving syn-chronously one Dehn twist block per step, then the corresponding Dehn twist boundarieswill be matching bem ends, hence di�ering by a single generator in A0. This continuesuntil you reach the irregular regions, at which time the di�erence can become as large astwo Dehn twist units.Sketch of proof. We have de�ned three progressively �ner factorizations of normal forms inL0: the uncombing block factorization, the parity block factorization, and the Dehn twistfactorization. Corresponding to each of these is a proposition in [M] which describes theinteraction of the factorization with bem ends: bemsrespect combing blocks, bemsrespectparity blocks, and the second part of the Dehn twist lemma. We invoke these in the proof.Now look at the �nal Dehn twist blocks v[sM�1; sM ] and w[tN�1; tN ], and go case bycase through the di�erent possibilities.If v[sM�1; sM ] is a full uncombing block, then by bemsrespect combing blocks it followsthat w[tN�1; tN ] is also a full combing block, and v(sM�1); w(tN�1) di�er by a singleelementary move, either good, bad, or inverse good. If it is good or inverse good, thenevidently one of v0M�1 or w0N�1 extends the other by one Dehn twist unit, proving item(1) of the Bad proposition. It it is bad, then the proof continues by induction.If v[sM�1; sM ] is a full Dehn twist block, then by the second part of the Dehn twistlemma it follows that w[tN�1; tN ] is also a full Dehn twist block, and v(sM�1); w(tN�1)di�er by a single bad elementary move. The proof now continues by induction.The remaining case is where v[sM�1; sM ], w[tN�1; tN ] are fractional Dehn twist blockswhich are not full uncombing blocks. In this case, either v(sM�1) and w(tN�1) di�er by abad elementary move, or both are in the irregular regions; this follows from bemsrespectparity blocks. When they di�er by a bad elementary move, continue by induction as before.When both sM�1 and tN�1 are in the irregular regions, then the proof of synchronizationin [M] analyzes carefully where the Dehn twist boundaries may occur. Roughly speaking,since the two sides of the relation in the irregular regions are quite short, they cannotthrow o� the synchronization by too much. The conclusions of the argument from [M] areas follows, proving item (2) of the Bad proposition: the irregular region is of type (2; 2) asin (3a) above; the relation which applies is always of type IIbii; the words v0(M � 1) andw0(N � 1) di�er by two elementary moves (one bad and one good); and one of v0(M � 2),w0(N�2) extends the other by at most two Dehn twist units. This argument is summarizedin �gure 18 of [M], the last �gure of section III.2. There are three cases to the argument,and in �gure 77 we present examples for each of the three cases, paralleling the schematic



A USER'S GUIDE TO THE MAPPING CLASS GROUP: ONCE PUNCTURED SURFACES 71pictures in �gure 18 of [M]. These cases are distinguished as follows. We assume thatall the arrows in the relator IIbii are parity arrows, with parities LR on the left side andRL on the right side. The arrows below the relator on the left and right have the sameparity, say L; these arrows are part of the �nal letters of v0M and w0N . The three cases aredistinguished by whether the arrow above the relator is no parity, Left parity, or Rightparity. If no parity, the example in �gure 77a is typical: v0(M � 2) extends w0(M � 2) byat most two Dehn twist units, each unit being a single elementary move; it could happenthat the no parity arrow pictured is an entire Dehn twist block, in which case the Dehntwist boundary tN�1 would be one arrow lower in �gure 77a, and v0(M � 2) would extendw0(M � 2) by a single Dehn twist unit. If Left parity, the example in �gure 77b is typical:v0(M � 2) extends w0(M � 2) by one Dehn twist unit, consisting of a single elementarymove. If Right parity, the example in �gure 77c is typical: v0(M � 2) extends w0(M � 2)by at most two Dehn twist units, one being a single elementary move and the second beinga fractional Dehn twist generator; the example in �gure 77c shows the second unit beinga single elementary move, but the letter w0(M � 2) = w[tN�2; tN�1] can be any full orfractional Dehn twist generator, in which case the second unit can be an arbitrarily longfractional Dehn twist generator. The general argument given in [M] shows that �gures77a{c are typical: the irregular regions a�ect the Dehn twist boundaries in one of thethree ways exempli�ed in these �gures.
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72 LEE MOSHERThe Good and Bad propositions may be used to prove the synchronous fellow trav-eller property for L1, as follows. Consider v0; w0 2 L1, with M = Length(v0) andN = Length(w0). Let di denote distance measured with the generating set Ai. Not-ing that each letter in A1 is a word of length at most 12g � 12 in the letters of A0, toprove the fellow traveller property it su�ces to assume that d0(v0; w0) = 1 and prove thatd1(v0(t); w0(t) � 4 for all t. The case where v0; w0 di�er by a relabelling generator is easy.Suppose v0; w0 di�er by an elementary move generator. Applying the Good and badpropositions we see that d1(v0(M�t); w0(N�t)) � 2 for all t. This shows that jM�N j � 2,so d1(v0(t); w0(t)) � 4 for all t.From this argument we obtain the following important fact which is needed in estimatingcomputation time:Lemma: Length grows additively. Given v;w 2 L0 such that d0(v;w) � 1, if v0; w0 2L1 are the Dehn twist factorizations, then ��Length(v0) � Length(w0)�� � 2. �Proof of theorem: Quadratic computation time. Consider v;w 2 L0 with d0(v;w) �1, and � = v�1w. Let the Dehn twist factorizations be v0; w0 2 L1.We claim that the number of relators used by the subroutine Do one move to computew from v� is at most (12g � 12) Length(v0). If the generator � = v�1w is a relabellinggenerator, then only 1 relator is used. If � is a good or inverse good elementary move,then at most 2 relators are used.Suppose that � is a bad elementary move, and apply the Bad proposition. For 1 �a < A, consider the relators that are applied by the algorithm to compute the (possiblyfractional) Dehn twist block w[tN�a; tN�a+1] from the Dehn twist block v[sM�a; sM�a+1].These relators are all of types Ia, IIa, or IIbi, each relator touching one of the goodelementary moves in v[sM�a; sM�a+1] and no two relators touching the same one, butthere are at most 12g � 12 elementary moves since this is a Dehn twist block or fractionthereof. Thus, at most 12g�12 relators are used. Also, the algorithm uses at most 12g�12relators to compute w[tN�A; tN�A+1] from v[sM�A; sM�A+1]: if these are full Dehn twistblocks then it follows as before; and if these are fractional Dehn twist blocks then exceptfor the top relator, each relator touches some elementary move in v[sM�A; sM�A+1] andno two relators touch the same one, but there are at most 12g� 13 elementary moves in afractional Dehn twist block, and adding one more for the top relator gives 12g � 12. Thisproves the claim.Taking this claim together with the lemma Length grows additively, we reach the conclu-sion that for any word v of lengthK in the generatorsA0, the number of relators used by thealgorithm to compute the normal form of v is at most (12g�12)[1+3+5+� � �+(2K�1)] =(12g � 12)K2.Remark: The constant 12g�12 can be improved slightly, by noticing that in constructingthe relators touching a Dehn twist block, if the block has full length 12g � 12 then theremust be at least one relator of type IIbi which touches two moves in the block, so thenumber of relators adjacent to a Dehn twist block is at most 12g � 13. Therefore thenumber of relators needed by the algorithm is at most (12g � 13)K2.Bibliography[ECHLPT] D. Epstein, J. Cannon, D. Holt, S. Levy, M. Paterson, W. Thurston, Word processing ingroups, Jones & Bartlett, 1992.



A USER'S GUIDE TO THE MAPPING CLASS GROUP: ONCE PUNCTURED SURFACES 73[Har] J. Harer, The virtual cohomological dimension of the mapping class group of an orientedsurface, Invent. Math. 84 (1986), 157{176.[Hat] A. Hatcher, On triangulations of surfaces, Topology Appl. 40 (1991), no. 2, 189{194.[M] L. Mosher, Mapping class groups are automatic, Preprint (1993).[STT] D. D. Sleator, R. E. Tarjan, W. P. Thurston, Rotation distance, triangulations, and hyperbolicgeometry, J. Amer. Math. Soc. 1 (1988), 647{681.Mathematical Sciences Research Institute, Berkeley CA 94720E-mail address: mosher@msri.org


