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CHAPTER 8
Kleinian groups

Our discussion so far has centered on hyperbolic manifolds which are closed, or
at least complete with finite volume. The theory of complete hyperbolic manifolds
with infinite volume takes on a somewhat different character. Such manifolds occur
very naturally as covering spaces of closed manifolds. They also arise in the study
of hyperbolic structures on compact three-manifolds whose boundary has negative
Euler characteristic. We will study such manifolds by passing back and forth between
the manifold and the action of its fundamental group on the disk.

8.1. The limit set

Let I" be any discrete group of orientation-preserving isometries of H". If x € H"
is any point, the limit set Ly C S is defined to be the set of accumulation points
of the orbit ', of x. One readily sees that Lr is independent of the choice of x
by picturing the Poincaré disk model. If y € H™ is any other point and if {v;}
is a sequence of elements of T' such that {y;z} converges to a point on S”!, the
hyperbolic distance d(7;x,y;y) is constant so the Euclidean distance goes to 0; hence
lim vy = lim ~;x.

The group I' is called elementary if the limit set consists of 0,1 or 2 points.

PrRoPOSITION 8.1.1. T' is elementary if and only if I' has an abelian subgroup of
finite index. O

When T is not elementary, then Ly is also the limit set of any orbit on the sphere
at infinity. Another way to put it is this:

PROPOSITION 8.1.2. IfI' is not elementary, then every non-empty closed subset
of Se tnvariant by I' contains Lr.

PROOF. Let K C S, be any closed set invariant by I". Since I' is not elementary,
K contains more than one element. Consider the projective (Klein) model for H™,
and let H(K) denote the convex hull of K. H(K) may be regarded either as the
Euclidean convex hull, or equivalently, as the hyperbolic convex hull in the sense
that it is the intersection of all hyperbolic half-spaces whose “intersection” with S,
contains K. Clearly H(K)N Sy, = K.
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H(K)

e

Since K is invariant by I, H(K) is also invariant by I'. If x is any point in
H" N H(K), the limit set of the orbit I', must be contained in the closed set H(K).
Therefore L C K. O

A closed set K invariant by a group I' which contains no smaller closed invariant
set is called a minimal set. It is easy to show, by Zorn’s lemma, that a closed
invariant set always contains at least one minimal set. It is remarkable that in the
present situation, Lr is the unique minimal set for I'.

COROLLARY 8.1.3. If I' is a non-elementary group and 1 # I < T is a normal
subgroup, then Ly = L.

PROOF. An element of I' conjugates I to itself, hence it takes L+ to Lyv. IV must
be infinite, otherwise I would have a fixed point in H™ which would be invariant by
[' so I" would be finite. It follows from 8.1.2 that L D Ly. The opposite inclusion
is immediate. 0

EXAMPLES. If M? is a hyperbolic surface, we may regular (M) as a group of
isometries of a hyperbolic plane in H3. The limit set is a circle. A group with limit
set contained in a geometric circle is called a Fuchsian group.

The limit set for a closed hyperbolic manifold is the entire sphere S™ 1.

If M3 is a closed hyperbolic three-manifold which fibers over the circle, then
the fundamental group of the fiber is a normal subgroup, hence its limit set is the

entire sphere. For instance, the figure eight knot complement has fundamental group
(A,B: ABA"'BA = BAB 'AB).
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It fibers over S* with fiber F' a punctured torus. The fundamental group 7 (F')
is the commutator subgroup, generated by AB~! and A~'B. Thus, the limit set of
a finitely generated group may be all of S? even when the quotient space does not
have finite volume.

A more typical example of a free group action is a Schottky group, whose limit
set is a Cantor set. Examples of Schottky groups may be obtained by considering
H"™ minus 2k disjoint half-spaces, bounded by hyperplanes. If we choose isometric
identifications between pairs of the bounding hyperplanes, we obtain a complete
hyperbolic manifold with fundamental group the free group on k generators.

Sc;\ott "(Y S‘YOUP
o s
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It is easy to see that the limit set for the group of covering transformations is a
Cantor set.

8.2. The domain of discontinuity

The domain of discontinuity for a discrete group I is defined to be D = S 1 —Lr.
A discrete subgroup of PSL(2, C) whose domain of discontinuity is non-empty is called
a Kleinian group. (There are actually two ways in which the term Kleinian group is
generally used. Some people refer to any discrete subgroup of PSL(2, C) as a Kleinian
group, and then distinguish between a type I group, for which Ly = S2 | and a type II
group, where Dr # (). As a field of mathematics, it makes sense for Kleinian groups
to cover both cases, but as mathematical objects it seems useful to have a word to
distinguish between these cases Dr # () and Dr = ().)

We have seen that the action of I' on Lp is minimal—it mixes up Lr as much as
possible. In contrast, the action of I' on Dr is as discrete as possible.

DEFINITION 8.2.1. If I' is a group acting on a locally compact space X, the action
is properly discontinuous if for every compact set K C X, there are only finitely many
v € I' such that YK N K # 0.

Another way to put this is to say that for any compact set K, the map 'x K — X
given by the action is a proper map, where I' has the discrete topology. (Otherwise
there would be a compact set K’ such that the preimage of K’ is non-compact. Then
infinitely many elements of I" would carry K U K’ to itself.)

ProproOSITION 8.2.2. If I' acts properly discontinuously on the locally compact
Hausdorff space X, then the quotient space X is Hausdorff. If the action is free, the
quotient map X — X/I' is a covering projection.

PROOF. Let z1,25 € X be points on distinct orbits of I'. Let N; be a compact
neighborhood of z;. Finitely many translates of x5 intersect Nj, so we may assume
Nj is disjoint from the orbit of z5. Then U,yeF ~vN; gives an invariant neighborhood
of x1 disjoint from x,. Similarly, x5 has an invariant neighborhood N, disjoint from
Ny; this shows that X/T" is Hausdorff. If the action of I' is free, we may find,
again by a similar argument, a neighborhood of any point x which is disjoint from
all its translates. This neighborhood projects homeomorphically to X/I. Since T
acts transitively on the sheets of X over X/T', it is immediate that the projection
X — X/T is an even covering, hence a covering space. 0

ProrosITION 8.2.3. If " is a discrete group of isometries of H", the action of I’
on Dr (and in fact on H™ U D) is properly discontinuous.
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ProoFr. Consider the convex hull H(Lr). There is a retraction r of the ball
H™U S to H(Lr) defined as follows.

If + € H(Lr), r(z) = x. Otherwise, map x to the nearest point of H(Lr). If
x is an infinite point in Dr, the nearest point is interpreted to be the first point of
H(Lr) where a horosphere “centered” about x touches Lr. This point r(z) is always
uniquely defined

because H(Lr) is convex, and spheres or horospheres about a point in the ball are
strictly convex. Clearly r is a proper map of H" U Dr to H(Lr) — Lr. The action of
[ on H(Lr) — Lr is obviously properly discontinuous, since I' is a discrete group of
isometries of H(Lr) — Lr; the property of H" U Dr follows immediately. O

REMARK. This proof doesn’t work for certain elementary groups; we will ignore
such technicalities.

It is both easy and common to confuse the definition of properly discontinuous
with other similar properties. To give two examples, one might make these definitions:

DEFINITION 8.2.4. The action of I' is wandering if every point has a neighborhood
N such that only finitely many translates of N intersect N.

DEFINITION 8.2.5. The action of I' has discrete orbits if every orbit of I has an
empty limit set.

ProPOSITION 8.2.6. IfT" is a free, wandering action on a Hausdorff space X, the
projection X — X/T" is a covering projection.

PROOF. An exercise. [l

WARNING. Even when X is a manifold, X/I" may not be Hausdorff. For instance,
consider the map

L:RP—0—->R?2-0
L(z,y) = (2z, 5y).
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L: IR -O—.-r;IR -0
[!4’

L (x,y) = (2x“'.,‘;§3€)

(P
It is easy to see this is a wandering action. The quotient space is a surface with
fundamental group Z & Z. The surface is non-Hausdorff, however, since points such
as (1,0) and (0,1) do not have disjoint neighborhoods.

Such examples arise commonly and naturally; it is wise to be aware of this phe-
nomenon.

The property that I' has discrete orbits simply means that for every pair of points
x,y in the quotient space X/I', x has a neighborhood disjoint from y. This can occur,
for instance, in a [-parameter family of Kleinian groups I';, ¢ € [0,1]. There are
examples where I'; = Z, and the family defines the action of Z on [0,1] x H? with
discrete orbits which is not a wandering action. See § . It is remarkable that the
action of a Kleinian group on the set of all points with discrete orbits is properly
discontinuous.

8.3. Convex hyperbolic manifolds

The limit set of a group action is determined by a limiting process, so that it
is often hard to “know” the limit set directly. The condition that a given group
action is discrete involves infinitely many group elements, so it is difficult to verify
directly. Thus it is important to have a concrete object, satisfying concrete conditions,
corresponding to a discrete group action.
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We consider for the present only groups acting freely.

DEFINITION 8.3.1. A complete hyperbolic manifold M with boundary is convex
if every path in M is homotopic (rel endpoints) to a geodesic arc. (The degenerate
case of an arc which is a single point may occur.)

PROPOSITION 8.3.2. A complete hyperbolic manifold M is convex if and only if
the developing map D : M — H" is a homeomorphism to a convex subset of H™.

PROOF. If M is a convex subset S of H™, then it is clear that M is convex, since
any path in M lifts to a path in S, which is homotopic to a geodesic arc in S, hence
in M.

If M is convex, then D is 1 — 1, since any two points in M may be joined by a
path, which is homotopic in M and hence in M to a geodesic arc. D must take the

endpoints of a geodesic arc to distinct points. D(M) is clearly convex. O

We need also a local criterion for M to be convex. We can define M to be locally
convex if each point

conve x
he"gh bor
- - a

bousil

x € M has a neighborhood isometric to a convex subset of H". If z € OM, then z
will be on the boundary of this set. It is easy to convince oneself that local convexity
implies convexity: picture a bath and imagine straightening it out. Because of local
convexity, one never needs to push it out of M. To make this a rigorous argument,
given a path p of length [ there is an € such that any path of length < € intersecting
N (po) is homotopic to a geodesic arc. Subdivide p into subintervals of length between
€/4 and €/2. Straighten out adjacent pairs of intervals in turn, putting a new division
point in the middle of the resulting arc unless it has length < €/2. Any time an
interval becomes too small, change the subdivision. This process converges, giving a
homotopy of p to a geodesic arc, since any time there are angles not close to 7, the
homotopy significantly shortens the path.
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This give us a very concrete object corresponding to a Kleinian group: a complete
convex hyperbolic three-manifold M with non-empty boundary. Given a convex
manifold M, we can define H(M) to be the intersection of all convex submanifolds
M’ of M such that myM’ — m M is an isomorphism. H (M) is clearly the same as
HL. (M)/m(M). H(M) is a convex manifold, with the same dimension as M except
in degenerate cases.

PROPOSITION 8.3.3. If M is a compact convexr hyperbolic manifold, then any
small deformation of the hyperbolic structure on M can be enlarged slightly to give a
new convex hyperbolic manifold homeomorphic to M.

PROOF. A convex manifold is strictly convez if every geodesic arc in M has in-
terior in the interior of M. If M is not already strictly convex, it can be enlarged
slightly to make it strictly convex. (This follows from the fact that a neighborhood
of radius € about a hyperplane is strictly convex.)

Stricﬂy (envey

C Convey

Thus we may assume that M’ is a hyperbolic structure that is a slight deformation
of a strictly convex manifold M. We may assume that our deformation M’ is small
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enough that it can be enlarged to a hyperbolic manifold M” which contains a 2e-
neighborhood of M’. Every arc of length [ greater than € in M has the middle (I — ¢)
some uniform distance § from OM; we may take our deformation M’ of M small
enough that such intervals in M’ have the middle [ — € still in the interior of M’. This
implies that the union of the convex hulls of intersections of balls of radius 3e with
M’ is locally convex, hence convex. U

The convex hull of a uniformly small deformation of a uniformly convex manifold
is locally determined.

REMARK. When M is non-compact, the proof of 8.3.3 applies provided that M
has a uniformly convex neighborhood and we consider only uniformly small deforma-
tions. We will study deformations in more generality in §

PROPOSITION 8.3.4. Suppose M{" and M3 are strictly convex, compact hyperbolic
manifolds and suppose ¢ : M{* — M3 is a homotopy equivalence which is a diffeo-
morphism on OM;. Then there is a quasi-conformal homeomorphism f : B" — B"
of the Poincaré disk to itself conjugating my My to mMsy. f is a pseudo-isometry on
H™.

PROOF. Let ¢ be a lift of ¢ to a map from M, to M. We may assume that ¢ is
already a pseudo-isometry between the developing images of M; and M,. Each point
p on OM; and OM, has a unique normal ray Yp; if @ € 7y, has distance ¢ from oM,
let f(z) be the point on Vj(p) @ distance ¢ from dM,. The distance between points at
a distance of ¢ along two normal rays 7,, and v,, at nearby points is approximately
cosht + asinh ¢, where d is the distance and @ is the angle between the normals of p;
and p,. From this it is evident that f is a pseudo-isometry extending to ¢. ([l

Associated with a discrete group I' of isometries of H", there are at least four
distinct and interesting quotient spaces (which are manifolds when I' acts freely ).
Let us name them:

DEFINITION 8.3.5.
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Mr = H(Ly)/I' , the convex hull quotient.

Nr = H™ /T, the complete hyperbolic manifold without boundary.

Or = (H" U Dr)/T', the Kleinian manifold.

Pr = (H"U Dpr UWr)/I'. Here Wr C P" is the set of points in the projective
model dual to planes in H™ whose intersection with S, is contained in Dr.

We have inclusions H(Nr) = My C Npr C Or C Pr. It is easy to derive the fact that
[' acts properly discontinuously on H™ U Dr U Wt from the proper discontinuity on
H" U Dr. My, Nr and Or have the same homotopy type. Mr and Or are home-
omorphic except in degenerate cases, and Np = int(Or) Pr is not always connected
when Lt is not connected.

8.4. Geometrically finite groups

DEFINITION 8.4.1. T" is geometrically finite if N.(Mr) has finite volume.

The reason that N (Mr) is required to have finite volume, and not just Mr, is to
rule out the case that I' is an arbitary discrete group of isometries of H*t c H™ .
We shall soon prove that geometrically finite means geometrically finite (8.4.3).

THEOREM 8.4.2 (Ahlfors’ Theorem). If ' is geometrically finite, then Ly C Sy
has full measure or 0 measure. If Ly has full measure, the action of I' on S is
ergodic.

ProoOF. This statement is equivalent to the assertion that every bounded mea-
surable function f supported on Lr and invariant by [ is constant a.e. (with respect
to Lebesque measure on S,). Following Ahlfors, we consider the function hy on H™
determined by f as follows. If x € H™, the points on S, correspond to rays through
x; these rays have a natural “visual” measure V,. Define hs(z) to be the average
of f with respect to the visual measure V. This function h; is harmonic, i.e., the
gradient flow of hy preserves volume,

divgrad hy = 0.

For this reason, the measure —~ )V;C is called harmonic measure. To prove this,
oo

Vo (S

consider the contribution to hf( coming from an infinitesimal area A centered at
p € S"! (ie., a Green’s function). As x moves a distance d in the direction of
p, the visual measure of A goes up exponentially, in proportion to e™ 14 The
gradient of any multiple of the characteristic function of A is in the direction of p,
and also proportional in size to e 19 The flow lines of the gradient are orthogonal
trajectories to horospheres; this flow contracts linear dimensions along the horosphere

in proportion to e~¢, so it preserves volume.
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g

o L

The average hy of contributions from all the infinitesimal areas is therefore harmonic.
We may suppose that f takes only the values of 0 and 1. Since f is invariant by I,
so is hy, and hy goes over to a harmonic function, also hy, on Np. To complete the
proof, observe that hy < % in Ny — Mr, since each point x in H™ — H(Lr) lies in
a half-space whose intersection with infinity does not meet Lr, which means that f
is 0 on more than half the sphere, with respect to V,. The set {z € Np|hs(z) = 1}
must be empty, since it bounds the set {x € Np|hs(z) > 3} of finite volume which
flows into itself by the volume preserving flow generated by grad hy. (Observe that
grad hy has bounded length, so it generates a flow defined everywhere for all time.)
But if {p|f(p) = 1} has any points of density, then there are x € H"! near p with

hy(x) near 1. It follows that f is a.e. 0 or a.e. 1. O

_a

Let us now relate definition 8.4.1 to other possible notions of geometric finiteness.
The usual definition is in terms of a fundamental polyhedron for the action of T'.
For concreteness, let us consider only the case n = 3. For the present discussion, a
finite-sided polyhedron means a region P in H? bounded by finitely many planes. P
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is a fundamental polyhedron for I if its translates by I' cover H?, and the translates
of its interior are pairwise disjoint. P intersects S, in a polygon which unfortunately
may be somewhat bizarre, since tangencies between sides of P N S, may occur.

Sometimes these tangencies are forced by the existence of parabolic fixed points
for I'. Suppose that p € S is a parabolic fixed point for some element of I'; and let 7
be the subgroup of I' fixing p. Let B be a horoball centered at p and sufficiently small
that the projection of B/P to Nr is an embedding. (Compare §5.10.) If 7 D Z & Z,
for any point x € BN H(Lr), the convex hull of 7z contains a horoball B, so in
particular there is a horoball B’ C H(Lr) N B. Otherwise, Z is a maximal torsion-
free subgroup of m. Coordinates can be chosen so that p is the point at oo in the
upper half-space model, and Z acts as translations by real integers. There is some
minimal strip S C C containing Lr N C; S may interesect the imaginary axis in a
finite, half-infinite, or doubly infinite interval. In any case, H(Lr) is contained in the
region R of upper half-space above S, and the part of OR of height > 1 lies on OHr.

It may happen that there are wide substrips S’ C S in the complement of Ly. If S’
is sufficiently wide, then the plane above its center line intersects H(Lr) in B, so it
gives a half-open annulus in B/Z. If T is torsion-free, then maximal, sufficiently wide
strips in S — Lr give disjoint non-parallel half-open annuli in Mr; an easy argument
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shows they must be finite in number if I is finitely generated. (This also follows from
Ahlfors’s finiteness theorem.) Therefore, there is some horoball B’ centered at p so
that H(Lr) N B’ = RN B’. This holds even if I" has torsion.

With an understanding of this picture of the behaviour of Mr near a cusp, it is
not hard to relate various notions of geometric finiteness. For convenience suppose I'
is torsion-free. (This is not an essential restriction in view of Selberg’s theorem—see
§ .) When the context is clear, we abbreviate Mr = M, Ny = N, etc.

PROPOSITION 8.4.3. Let I' € PSL(2,C) be a discrete, torsion-free group. The
following conditions are equivalent:

(a) T is geometrically finite (see dfn. 8.4.1).
(b) Mieooy is compact.
(¢) T' admits a finite-sided fundamental polyhedron.

PROOF. (a) = (b).

Each point in M| ) has an embedded €/2 ball in N,/2(Mr), by definition. If (a)
holds, N, (Mr) has finite volume, so only finitely many of these balls can be disjoint
and Mrc ) i compact.

(b) = (c). First, find fundamental polyhedra near the non-equivalent parabolic
fixed points. To do this, observe that if p is a Z-cusp, then in the upper half-space
model, when p = oo, Ly N C lies in a strip S of finite width. Let R denote the region
above S. Let B’ be a horoball centered at oo such that RN B = H(Lr) N B’. Let
r: H®UDr — H(Lr) be the canonical retraction. If Q is any fundamental polyhedra
for the action of Z in some neighborhood of p in H(Lr) then r~1(Q) is a fundamental
polyhedron in some neighborhood of p in H? U Dr.
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A fundamental polyhedron near the cusps is easily extended to a global fundamental
polyhedron, since Op-(neighborhoods of the cusps) is compact.

(c) = (a). Suppose that I" has a finite-sided fundamental polyhedron P.

A point © € PN Sy is a regular point (€ Dr) if it is in the interior of P N Sy
or of some finite union of translates of P. Thus, the only way x can be a limit point
is for x to be a point of tangency of sides of infinitely many translates of P. Since
P can have only finitely many points of tangency of sides, infinitely many ~I" must
identify one of these points to x, so x is a fixed point for some element vI'. v must
be parabolic, otherwise the translates of P by powers of v would limit on the axis
of 7. If x is arranged to be oo in upper half-space, it is easy to see that LrC must
be contained in a strip of finite width. (Finitely many translates of P must form a
fundamental domain for {7™}, acting on some horoball centered at oo, since {7"} has
finite index in the group fixing co. Th faces of these translates of P which do not
pass through oo lie on hemispheres. Every point in C outside this finite collection of 822
hemispheres and their translates by {y"} lies in Dr.)

It follows that v(N(M)) = v(N(H (Lr)) N P) if finite, since the contribution near
any point of Lr N P is finite and the rest of N.(H (L)) N P is compact. O

184 Thurston — The Geometry and Topology of 3-Manifolds



8.5. THE GEOMETRY OF THE BOUNDARY OF THE CONVEX HULL
8.5. The geometry of the boundary of the convex hull

Consider a closed curve ¢ in Euclidean space, and its convex hull H(o). The
boundary of a convex body always has non-negative Gaussian curvature. On the
other hand, each point p in 0H (o) — o lies in the interior of some line segment or
triangle with vertices on . Thus, there is some line segment on 0H (o) through p,
so that 0H (o) has non-positive curvature at p. It follows that 0H (o) — ¢ has zero
curvature, i.e., it is “developable”. If you are not familiar with this idea, you can
see it by bending a curve out of a piece of stiff wire (like a coathanger). Now roll
the wire around on a big piece of paper, tracing out a curve where the wire touches.
Sometimes, the wire may touch at three or more points; this gives alternate ways
to roll, and you should carefully follow all of them. Cut out the region in the plane
bounded by this curve (piecing if necessary). By taping the paper together, you can
envelope the wire in a nice paper model of its convex hull. The physical process
of unrolling a developable surface onto the plane is the origin of the notion of the
developing map.

The same physical notion applies in hyperbolic three-space. If K is any closed
set on S, then H(K) is convex, yet each point on 0H(K) lies on a line segment
in 0H(K). Thus, 0H(K) can be developed to a hyperbolic plane. (In terms of
Riemannian geometry, 0H(K) has extrinsic curvature 0, so its intrinsic curvature
is the ambient sectional curvature, —1. Note however that OH(K) is not usually
differentiable). Thus 0H(K) has the natural structure of a complete hyperbolic
surface.

PROPOSITION 8.5.1. If T is a torsion-free Kleinian group, the OMr is a hyperbolic
surface. O

The boundary of Mr is of course not generally flat—it is bent in some pattern.
Let v C OMr consist of those points which are not in the interior of a flat region of
OMr. Through each point x in v, there is a unique geodesic g, on OMr. g, is also a
geodesic in the hyperbolic structure of OMr. 7 is a closed set. If M has finite area,
then 7 is compact, since a neighborhood of each cusp of My is flat. (See §8.4.)

DEFINITION 8.5.2. A lamination L on a manifold M" is a closed subset A C M
(the support of L) with a local product structure for A. More precisely, there is a
covering of a neighborhood of A in M with coordinate neighborhoods U; P4 Rk x RF
so that ¢;(A N U;) is of the form R"™* x B, B C R*. The coordinate changes ¢;;
must be of the form ¢;;(z,y) = (fij(x,y), g;;(y)) when y € B. A lamination is like a
foliation of a closed subset of M. Leaves of the lamination are defined just as for a
foliation.
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ExaMPLES. If J is a foliation of M and S C M is any set, the closure of the
union of leaves which meet S is a lamination.

Any submanifold of a manifold M is a lamination, with a single leaf. Clearly, the
bending locus v for M has the structure of a lamination: whenever two points of
are nearby, the directions of bending must be nearly parallel in order that the lines
of bending do not intersect. A lamination whose leaves are geodesics we will call a
geodesic lamination. 8.25

G-

K '\ bl ~u
— T \
By consideration of Euler characteristic, the lamination v cannot have all of OM

as its support, or in other words it cannot be a foliation. The complement OM — ~y
consists of regions bounded by closed geodesics and infinite geodesics. Each of these

regions can be doubled along its boundary to give a complete hyperbolic surface,
which of course has finite area. There

eodesic j
lamination )

8.26
is a lower bound for 7 for the area of such a region, hence an upper bound of

2|x(OM)] for the number of components of OM — 7. Every geodesic lamination -y on

a hyperbolic surface S can be extended to a foliation with isolated singularities on

the complement. There
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is an index formula for the Euler characteristic of S in terms of these singularities.
Here are some values for the index.

From the existence of an index formula, one concludes that the Euler characteristic
of S is half the Euler characteristic of the double of S — . By the Gauss-Bonnet
theorem,

Area(S — v) = Area(95)

or in other words, v has measure 0. To give an idea of the range of possibilities for
geodesic laminations, one can consider an arbitrary sequence {7;} of geodesic lamina-
tions: simple closed curves, for instance. Let us say that {7;} converges geometrically
to v if for each x € support 7, and for each ¢, for all great enough ¢ the support of ~;
intersects N(x) and the leaves of v; N N, (x) are within € of the direction of the leaf
of v through x. Note that the support of v may be smaller than the limiting support
of 7;, so the limit of a sequence may not be unique. See §8.10. An easy diagonal
argument shows that every sequence {7;} has a subsequence which converges geo-
metrically. From limits of sequences of simple closed geodesics, uncountably many
geodesic laminations are obtained.

Geodesic laminations on two homeomorphic hyperbolic surfaces may be compared
by passing to the circle at co. A directed geodesic is determined by a pair of points
(z1,20) € SL x SL — A where A is the diagonal {(x,z)}. A geodesic without
direction is a point on J = (SL x S — A/Z,), where Z, acts by interchanging
coordinates. Topologically, J is an open Moebius band. It is geometrically realized
in the Klein (projective) model for H? as the region outside H2. A geodesic g projects
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to a simple geodesic on the surface S if and only if the covering translates of its pairs
of end points never strictly separate each other.

Sis nol simp’f’ g s Slmple

Geometrically, J has an indefinite metric of type (1,1), invariant by covering
translates. (See §2.6.) The light-like geodesics, of zero length, are lines tangent to
Sl ; lines which meet H? when extended have imaginary arc length. A point g € J
projects to a simple geodesic in S if and only if no covering translate T,(g) has a
positive real distance from g.
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Let 8 C J consist of all elements g projecting to simple geodesics on S. Any
geodesic C H? which has a translate intersecting itself has a neighborhood with the
same property, hence § is closed.

If v is any geodesic lamination on S, Let 8, C J be the set of lifts of leaves of
v to H?. 8, is a closed invariant subset of 8. A closed invariant subset of C' C J
gives rise to a geodesic lamination if and only if all pairs of points of C are separated
by an imaginary (or 0) distance. If g € 8, then the closure of its orbit, m(S)g is
such a set, corresponding to the geodesic lamination g of S. Every homeomorphism
between surfaces when lifted to H? extends to SL (by 5.9.5). This determines an
extension to J. Geodesic laminations are transferred from one surface to another via
this correspondence.

8.6. Measuring laminations

Let L be a lamination, so that it has local homeomorphisms ¢; : LNU; ~ R"*x B;.
A transverse measure p for L means a measure p; defined on each local leaf space B;,
in such a way that the coordinate changes are measure preserving. Alternatively one
may think of i as a measure defined on every k-dimensional submanifold transverse
to L, supported on TN L and invariant under local projections along leaves of L. We
will always suppose that p is finite on compact transversals. The simplest example
of a transverse measure arises when L is a closed submanifold; in this case, one can
take 1 to count the number of intersections of a transversal with L.

We know that for a torsion-free Kleinian group I', M is a hyperbolic surface
bent along some geodesic lamination . In order to complete the picture of OMr,
we need a quantitative description of the bending. When two planes in H? meet
along a line, the angle they form is constant along that line. The flat pieces of OMr
meet each other along the geodesic lamination v; the angle of meeting of two planes
generalizes to a transverse “bending” measure, 3, for 7. The measure (3 applied
to an arc o on My transverse to 7 is the total angle of turning of the normal to
OMr along « (appropriately interpreted when 7 has isolated geodesics with sharp
bending). In order to prove that [ is well-defined, and that it determines the local
isometric embedding in H3, one can use local polyhedral approximations to dMr.
Local outer approximations to dMr can be obtained by extending the planes of local
flat regions. Observe that when three planes have pairwise intersections in H? but
no triple intersection, the dihedral angles satisfy the inequality

a+p <.
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(The difference v — (a+ () is the area of a triangle on the common perpendicular
plane.) From this it follows that as outer polyhedral approximations shrink toward
Mr, the angle sum corresponding to some path a on dMr is a monotone sequence,
converging to a value B(«). Also from the monotonicity, it is easy to see that for
short paths a4, [0 <t < 1], B(«) is a close approximation to the angle between the
tangent planes at ay and a;. This implies that the hyperbolic structure on 0Mr,
together with the geodesic lamination v and the transverse measure (3, completely
determines the hyperbolic structure of Nr in a neighborhood of dMr.

The bending measure (3 has for its support all of 4. This puts a restriction on the
structure of v: every isolated leaf L of v must be a closed geodesic on M. (Other-
wise, a transverse arc through any limit point of L would have infinite measure.) This
limits the possibilities for the intersection of a transverse arc with v to a Cantor set
and/or a finite set of points.

When ~ contains more than one closed geodesic, there is obviously a whole family
of possibilities for transverse measures. There are (probably atypical) examples of
families of distinct transverse measures which are not multiples of each other even for
certain geodesic laminations such that every leaf is dense. There are many other ex-
amples which possess unique transverse measures, up to constant multiples. Compare
Katok.

Here is a geometric interpretation for the bending measure § in the Klein model.
Let Py be the component of Pr containing Nr (recall definition 8.3.5). Each point in
By outside S, is dual to a plane which bounds a half-space whose intersection with
S is contained in Dr. &P, consists of points dual to planes which meet Lp in at
least one point. In particular, each plane meeting Mr in a line or flat of My is dual
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to a point on OPy. If 7 € dF, is dual to a plane 7 touching Lr at z, then one of
the line segments 7z is also on dF,. This line segments consists of points dual to
planes touching Lr at x and contained in a half-space bounded by 7. The reader
may check that Py is convex. The natural metric of type (2,1) in the exterior of Sx
is degenerate on dF,, since it vanishes on all line segments corresponding to a family
of planes tangent at S... Given a path o on My, there is a dual path @ consisting
of points dual to planes just skimming M along a. The length of & is the same as

Bla).

REMARK. The interested reader may verify that when N is a component of OMrp
such that every leaf of v M N is dense in v N N, then the action of mn on the
appropriate component of 9P — Lp is minimal (i.e., every orbit is dense). This
action is approximated by actions of m; N as covering transformations on surfaces
just inside dF,.

7. Quasi-Fuchsian groups

Recall that a Fuchsian group (of type I) is a Kleinian group I' whose limit set
Lr is a geometric circle. Examples are the fundamental groups of closed, hyperbolic
surfaces. In fact, if the Fuchsian group I is torsion-free and has no parabolic elements,
then I' is the group of covering transformations of a hyperbolic surface. Furthermore,
the Kleinian manifold Or = (H® U Dr)/T has a totally geodesic surface as a spine.

NOTE. The type of a Fuchsian group should not be confused with its type as a
Kleinian group. To say that I' is a Fuchsian group of type I means that Ly = S?!,
but it is a Kleinian group of type II since Dr # ().
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Suppose M = N?x [ is a convex hyperbolic manifold, where N? is a closed surface.
Let I'" be the group of covering transformations of M, and let I' be a Fuchsian group
coming from a hyperbolic structure on N. I' and I” are isomorphic as groups; we
want to show that their actions on the closed ball B? are topologically conjugate.

Let Mr and My be the convex hull quotients (M ~ N? and Mp ~ N? x I).
Thicken Mpr and My to strictly convex manifolds. The thickened manifolds are s.34
diffeomorphic, so by Proposition 8.3.4 there is a quasi-conformal homeomorphism of
B3 conjugating I' to I"". In particular, Ly is homeomorphic to a circle. I”, which has
convex hull manifold homeomorphic to N? x I and limit set ~ S!, is an example of
a quasi-Fuchsian group.

DEFINITION 8.7.1. The Kleinian group I is called a quasi-Fuchsian group if Lr
is topologically S*.

PROPOSITION 8.7.2 (Marden). For a torsion-free Kleinian group ', the following
conditions are equivalent.

(i) T is quasi-Fuchsian.

(ii) Dr has precisely two components.
(iii) T' s quasi-conformally conjugate to a Fuchsian group.

PRroor. Clearly (iii) = (i) = (ii). To show (ii) = (iii), consider
Or = (H* U Dr)/T.
Suppose that no element of I" interchanges the two components of Dr. Then Or is a

three-manifold with two boundary components (labelled, for example, N; and Ny),
and 8.35
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I'=m(Or) = m(Ny) = m(Ny). By a well-known theorem about three-manifolds
(see Hempel for a proof), this implies that Or is homeomorphic to Ny x I. By the
above discussion, this implies that I is quasi-conformally conjugate to a Fuchsian
group. A similar argument applies if Or has one boundary component; in that
case, Or is the orientable interval bundle over a non-orientable surface. The reverse
implication is clear. 0

EXAMPLE 8.7.3 (Mickey mouse). Consider a hyperbolic structure on a surface of
genus two. Let us construct a deformation of the corresponding Fuchsian group by
bending along a single closed geodesci v by an angle of /2. This

8.36

will give rise to a quasi-Fuchsian group if the geodesic is short enough. We may
visualize the limit set by imagining bending a hyperbolic plane along the lifts of ~,
one by one.
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We want to understand how the geometry changes as we deform quasi-Fuchsian
groups. Even though the topology doesn’t change, geometrically things can become
very complicated. For example, given any € > 0, there is a quasi-Fuchsian group I'
whose limit set L is e-dense in S?, and there are limits of quasi-Fuchsian groups
with LF == 52.

Our goal here is to try to get a grasp of the geometry of the convex hull quotient
M = My of a quasi-Fuchsian group I'. Mt is a convex hyperbolic manifold which is
homeomorphic to N2 x I, and the two boundary components are hyperbolic surfaces
bent along geodesic laminations.

We also need to analyze intermediate surfaces in M. For example, what kinds of
nice surfaces are embedded (or immersed) in Mp? Are there isometrically embedded
cross sections? Are there cross sections of bounded area near any point in Mp?

Here are some ways to map in surfaces.

(a) Take the abstract surface N2, and choose a “triangulation” of N with one
vertex. Choose an arbitrary map of N into M. Then straighten the map (see §6.1).
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This is a fairly good way to map in a surface, since the surface is hyperbolic away from
the vertex. There may be positive curvature concentrated at the vertex, however,
since the sum of the angles around the vertex may be quite small. This map can be
changed by moving the image of the vertex in M or by changing the triangulation
on N.

8.38

(b) Here is another method, which insures that the map is not too bad near the
vertex. First pick a closed loop in N, and then choose a vertex on the loop. Now
extend this to a triangulation of N with one vertex. To map in N, first map

in the loop to the unique geodesic in M in its free homotopy class (this uses a
homeomorphism of M to N x I). Now extend this as in (a) to a piecewise straight
map f: N — M. The sum of the angles around the vertex is at least 27, since there
is a straight line segment going through the vertex (so the vertex cannot be spiked).
It is possible to have the sum of the angles > 27, in which case there is negative
curvature concentrated near the vertex.

(c) Here is a way to map in a surface with constant negative curvature. Pick an
example, as in (b), of a triangulation of N coming from a closed geodesic, and map 8.39
N as in (b). Consider the isotopy obtained by moving the vertex around the loop
more and more. The loop stays the same, but the other line segments start spiraling
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becomes

around the loop, more and more, converging, in the limit, to a geodesic laminated
set. The surface N maps into M at each finite stage, and this carries over in the
limit to an isometric embedding of a hyperbolic surface. The triangles with an edge
on the fixed loop have disappeared in the limit. Compare 3.9.

One can picture what is going on by looking upstairs at the convex hull H(Lr).
The lift f : N — H(Lr) of the map from the original triangulation (before isotoping
the vertex) is defined as follows. First the geodesic (coming from the loop) and its
conjugates are mapped in (these are in the convex hull since their

before after

endpoints are in Lr). The line segments connect different conjugates of the ge-
odesic, and the triangles either connect three distinct conjugates or two conjugates
(when the original loop is an edge of the triangle). As we isotope the vertex around
the loop, the image vertices slide along the geodesic (and its conjugates), and in
the limit the triangles become asymptotic (and the triangles connecting only two
conjugates disappear).

The above method works because the complement of the geodesic lamination
(obtained by spinning the triangulation) consists solely of asymptotic triangles. Here
is a more general method of mapping in a surface N by using geodesic laminations.

DEFINITION 8.7.5. A geodesic lamination v on hyperbolic surface S is complete
if the complementary regions in S — « are all asymptotic triangles.

PROPOSITION 8.7.6. Any geodesic lamination v on a hyperbolic surface S can be
completed, i.e., v can be extended to a complete geodesic lamination v D v on S.

PROOF. Suppose v is not complete, and pick a complementary region A which is
not an asymptotic triangle. If A is simply connected, then it is a finite-sided asymp-
totic polygon, and it is easy to divide A into asymptotic triangles by adding simple
geodesics. If A is not simply connected, extend v to a larger geodesic lamination by
adding a simple geodesic « in A
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(being careful to add a simple geodesic). Either a separates A into two pieces
(each of which has less area) or o does not separate A (in which case, cutting along
a reduces the rank of the homology. Continuing inductively, after a finite number of
steps A separates into asymptotic triangles. 0

Completeness is exactly the property we need to map in surfaces by using geodesic
laminations.

PROPOSITION 8.7.7. Let S be an oriented hyperbolic surface, and I' a quasi-
Fuchsian group isomorphic to m.S. For every complete geodesic lamination v on
S, there is a unique hyperbolic surface S =~ S and an isometric map f : S — My
which is straight (totally geodesic) in the complement of y. (v here denotes the cor-
responding geodesic lamination on any hyperbolic surface homeomorphic to S.)

REMARK. By an isometric map f : M; — M, from one Riemannian manifold to
another, we mean that for every rectifiable path «; in M;, f o «y is rectifiable and
has the same length as a;. When f is differentiable, this means that df preserves
lengths of tangent vectors. We shall be dealing with maps which are not usually
differentiable, however. Our maps are likely not even to be local embeddings. A
cross-section of the image of a surface mapped in by method (c) has two polygonal
spiral branches, if the closed geodesic corresponds to a covering transformation which
is not a pure translation:
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(This picture is obtained by considering triangles in H® asymptotic to a loxo-
dromic axis, together with their translates.)

If the triangulation is spun in opposite directions on opposite sides of the geo-
desic, the polygonal spiral have opposite senses, so there are infinitely many self-
intersections.

PrROOF. The hyperbolic surface S’ is constructed out of pieces. The asymptotic
triangles in S — 7 are determined by triples of points on S. . We have a canonical
identification of S!. with Lr; the corresponding triple of points in L spans a triangle
in H?3, which will be a piece of §'. Similarly, corresponding to each leaf of 4 there is
a canonical line in H3. These triangles and lines fit together just as on S; from this
the picture of S’ should be clear. Here is a formal definition. Let P, be the set of
all “pieces” of 7, i.e., P, consists of all leaves of 7, together with all components of
S — 7. Let P, have the (non-Hausdorff) quotient topology. The universal cover S/
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is defined first, to consist of ordered pairs (x,p), where p € P, and z is an element
of the piece of H? corresponding to p. I' acts on this space S’ in an obvious way;
the quotient space is defined to be S’. It is not hard to find local coordinates for S’,
showing that it is a (Hausdorff) surface.

An appeal to geometric intuition demonstrates that S’ is a hyperbolic surface,
mapped isometrically to Mp, straight in the complement of 7. Uniqueness is evident
from consideration of the circle at co. 0J

REMARK. There are two approaches which a reader who prefers more formal
proofs may wish to check. The first approach is to verify 8.7.7 first for laminations
all of whose leaves are either isolated or simple limits of other leaves (as in (c)), and
then extend to all laminations by passing to limits, using compactness properties of
uncrumpled surfaces (§8.8). Alternatively, he can construct the hyperbolic structure
on S’ directly by describing the local developing map, as a limit of maps obtained by
considering only finitely many local flat pieces. Convergence is a consequence of the
finite total area of the flat pieces of 5.

8.8. Uncrumpled surfaces

There is a large qualitative difference between a crumpled sheet of paper and one
which is only wrinkled or crinkled. Crumpled paper has fold lines or bending lines
going any which way, often converging in bad points.
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DEFINITION 8.8.1. An uncrumpled surface in a hyperbolic three-manifold N is
a complete hyperbolic surface S of finite area, together with an isometric map f :
S — N such that every x € S is in the interior of some straight line segment which
is mapped by f to a straight line segment. Also, f must take every cusp of S to a
cusp of N.

The set of uncrumpled surfaces in N has a well-behaved topology, in which two
surfaces f1 : S1 — N and f5 : S5 — N are close if there is an approximate isometry
¢ : S; — S5 making f; uniformly close to f, o . Note that the surfaces have no
preferred coordinate systems.

Let v C S consist of those points in the uncrumpled surfaces which are in the
interior of unique line segments mapped to line segments.

PROPOSITION 8.8.2. v is a geodesic lamination. The map f is totally geodesic in
the complement of .

PrOOF. If z € S — ~, then there are two transverse line segments through =z
mapped to line segments. Consider any quadrilateral about x with vertices on these
segments; since f does not increase distances, the quadrilateral must be mapped to
a plane. Hence, a neighborhood of x is mapped to a plane.

r

—_—
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Consider now any point z € 7, and let a be the unique line segment through
x which is mapped straight. Let a be extended indefinitely on S. Suppose there
were some point y on « in the interior of some line segment 3 ¢ a which is mapped
straight. One may assume that the segment Ty of « is mapped straight. Then, by
considering long skinny triangles with two vertices on 3 and one vertex on «, it would
follow that a neighborhood of x is mapped to a plane—a contradiction.

Thus, the line segments in v can be extended indefinitely without crossings, so
must be a geodesic lamination. 0

P
\

. \

U =5 Nisan uncrumpled surface, then this geodesic lamination v C S
(which consists of points where U is not locally flat) is the wrinkling locus w(U).

The modular space M(S) of a surface S of negative Euler characteristic is the
space of hyperbolic surfaces with finite area which are homeomorphic to S. In other
words, M(.S) is the Teichmiiller space T(S) modulo the action of the group of home-
omorphisms of S.

PROPOSITION 8.8.3 (Mumford). For a surface S, the set A. C M(S) consisting
of surfaces with no geodesic shorter than € is compact.

PROOF. By the Gauss—Bonnet theorem, all surfaces in M(S) have the same area.
Every non-compact component of S ¢ is isometric to a standard model, so the result
follows as the two-dimensional version of a part of 5.12. (It is also not hard to give
a more direct specifically two-dimensional geometric argument.) 0

Denote by U(S, N) the space of uncrumpled surfaces in N homeomorphic to S
with m1(S) — m(N) injective. There is a continuous map U(S, N) — M(S) which
forgets the isometric map to N.

The behavior of an uncrumpled surface near a cusp is completely determined by
its behavior on some compact subset. To see this, first let us prove

PROPOSITION 8.8.4. There is some € such that for every hyperbolic surface S
and every geodesic lamination v on S, the intersection of v with every non-compact
component of S(o,q consists of lines tending toward that cusp.
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Lt B2

PROOF. Thus there are uniform horoball neighborhoods of the cusps of uncrum-
pled surfaces which are always mapped as cones to the cusp point. Uniform con-
vergence of a sequence of uncrumpled surfaces away from the cusp points implies
uniform convergence elsewhere. 0

PROPOSITION 8.8.5. Let K C N be a compact subset of a complete hyperbolic
manifold N. For any surface Sy, let W C U(So, N) be the subset of uncrumpled

surfaces S L N such that f(S) intersects K, and satisfying the condition
(np) m1(f) takes non-parabolic elements of w1 S to non-parabolic elements of T N.

Then W is compact.

ProOF. The first step is to bound the image of an uncrumpled surface, away
from its cusps.

Let € be small enough that for every complete hyperbolic three-manifold M,
components of M are separated by a distance of at least (say) 1. Since the area
of surfaces in U(Sy, V) is constant, there is some number d such that any two points
in an uncrumpled surface S can be connected (on S) by a path p such that pN .Sy o)
has length < d.

If neither point lies in a non-compact component of S, one can assume, further-
more, that p does not intersect these components. Let K’ C N be the set of points
which are connected to K by paths whose total length outside compact components
of N is bounded by d. Clearly K’ is compact and an uncrumpled surface of W
must have image in K’, except for horoball neighborhoods of its cusps.

Consider now any sequence S7, Sy, ... in W. Since each short closed geodesic in .5;
is mapped into K’, there is a lower bound €’ to the length of such a geodesic, so by 8.8.3
we can pass to a subsequence such that the underlying hyperbolic surfaces converge
in M(S). There are approximate isometries ¢; : S — S;. Then the compositions
fiog; - S — N are equicontinuous, hence there is a subsequence converging uniformly
on Sieooy- The limit is obviously an uncrumpled surface. [To make the picture
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clear, one can always pass to a further subsequence to make sure that the wrinkling
laminations ~; of S; converge geometrically.] U

COROLLARY 8.8.6. (a) Let S be any closed hyperbolic surface, and N any
closed hyperbolic manifold. There are only finitely many conjugacy classes
of subgroups G C m N isomorphic to m 5.
(b) Let S be any surface of finite area and N any geometrically finite hyperbolic
three-manifold. There are only finitely many conjugacy classes of subgroups
G C m N isomorphic to m .S by an isomorphism which preserves parabolicity
(in both directions).

PROOF. Statement (a) is contained in statement (b). The conjugacy class of
every subgroup G is represented by a homotopy class of maps of S into N, which is
homotopic to an uncrumpled surface (say, by method (c) of §8.7). Nearby uncrumpled
surfaces represent the same conjugacy class of subgroups. Thus we have an open
cover of the space W by surfaces with conjugate subgroups; by 8.8.5, this is a finite
subcover. O

REMARK. If non-parabolic elements of 1.5 are allowed to correspond to parabolic
elements of m; N, then this statement is no longer true.

In fact, if S SN s any surface mapped into a hyperbolic manifold N of finite
volume such that a non-peripheral simple closed curve 7 in .S is homotopic to a cusp
of N, one can modify f in a small neighborhood of v to wrap this annulus a number
of times around the cusp. This is likely to give infinitely many homotopy classes of
surfaces in V.

In place of 8.8.5, there is a compactness statement in the topology of geometric
convergence provided each component of S| . is required to intersect K. One would
allow S to converge to a surface where a simple closed geodesic is pinched to yield a
pair of cusps. From this, one deduces that there are finitely many classes of groups GG
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isomorphic to S up to the operations of conjugacy, and wrapping a surface carrying
G around cusps.

Haken proved a finiteness statement analogous to 8.8.6 for embedded incompress-
ible surfaces in atoroidal Haken manifolds.

8.9. The structure of geodesic laminations: train tracks

Since a geodesic lamination 7y on a hyperbolic surface S has measure zero, one
can picture v as consisting of many parallel strands in thin, branching corridors of .S
which have small total area.

Imagine squeezing the nearly parallel strands of v in each corridor to a single
strand. One obtains a train track 7 (with switches) which approximates v. Each leaf
of v may be imagined as the path of a train running around along 7.

Here is a construction which gives a precise and nice sequence of train track
approximations of . Consider a complementary region R in S —~. The double dR is
a hyperbolic surface of finite area, so (dR)2q has a simple structure: it consists of
neighborhoods of geodesics shorter than 2e¢ and of cusps. In each such neighborhood
there is a canonical foliation by curves of constant curvature: horocycles about a cusp
or equidistant curves about a short geodesic. Transfer this foliation to R, and then
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to S. This yields a foliation JF in the subset of S where leaves of v are not farther
than 2e apart. (A local vector field tangent to F is Lipschitz, so it is integrable; this
is why F exists. If 7 has no leaves tending toward a cusp, then we can make all the
leaves of F be arbitrarily short arcs by making e sufficiently small. If v has leaves
tending toward a cusp, then there can be only finitely many such leaves, since there
is an upper bound to the total number of cusps of the complementary regions. Erase
all parts of & in a cusp of a region tending toward a cusp of S; again, when € is
sufficiently small all leaves of F will be short arcs. The space obtained by collapsing
all arcs of F to a point is a surface S’ homeomorphic to S, and the image of ~y is a train
track 7. on S’. Observe that each switch of 7, comes from a boundary component
of some dR(g2q. In particular, there is a uniform bound to the number of switches.
From this it is easy to see that there are only finitely many possible types of 7., up
to homeomorphisms of S” (not necessarily homotopic to the identity).

In working with actual geodesic laminations, it is better to use more arbitrary
train track approximations, and simply sketch pictures; the train tracks are analogous
to decimal approximations of real numbers.

Here is a definition of a useful class of train tracks.

DEFINITIONS 8.9.1. A train track on a differentiable surface S is an embedded
graph 7 on S. The edges (branch lines) of 7 must be C!, and all edges at a given
vertex (switch) must be tangent. If S has “cusps”, 7 may have open edges tending
toward the cusps. Dead ends are not permitted. (Each vertex v must be in the
interior of a C* interval on 7 through v.) Furthermore, for each component R of
S — 7, the double dR of R along the interiors of edges of R must have negative
Euler characteristic. A lamination v on S is carried by 7 if there is a differentiable
map f : S — S homotopic to the identity taking v to 7 and non-singular on the
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tangent spaces of the leaves of . (In other words, the leaves of  are trains running
around on 7.) The lamination v is compatible with 7 if 7 can be enlarged to a train
track 7" which carries .

PROPOSITION 8.9.2. Let S be a hyperbolic surface, and let 6 > 0 be arbitrary.
There is some € > 0 such that for all geodesic laminations v of S, the train track
approzimation . can be realized on S in such a way that all branch lines 7. are C?
curves with curvature < 9.

PRrooOF. Note first that by making e sufficiently small, one can make the leaves of
the foliation F very short, uniformly for all v: otherwise there would be a sequence of
7’s converging to a geodesic lamination containing an open set. [One can also see this
directly from area considerations.] When all branches of 7. are reasonably long, one
can simply choose the tangent vectors to the switches to be tangent to any geodesic
of v where it crosses the corresponding leaf of F; the branches can be filled in by
curves of small curvature. When some of the branch lines are short, group each set
of switches connected by very short branch lines together. First map each of these
sets into S, then extend over the reasonably long branches. 0

COROLLARY 8.9.3. Every geodesic lamination which is carried by a close train
track approximation 7. to a geodesic lamination v has all leaves close to leaves of 7.

Proor. This follows from the elementary geometrical fact that a curve in hyper-
bolic space with uniformly small curvature is uniformly close to a unique geodesic.
(One way to see this is by considering the planes perpendicular to the curve—they
always advance at a uniform rate, so in particular the curve crosses each one only
once.)

O

PROPOSITION 8.9.4. A lamination X\ of a surface S is isotopic to a geodesic lam-
wnation if and only iof

(a) A is carried by some train track T, and
(b) no two leaves of A take the same (bi-infinite) path on .
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PROOF. Given an arbitrary train track 7, it is easy to construct some hyperbolic
structure for S on which 7 is realized by lines with small curvature. The leaves of
A then correspond to a set of geodesics on S, near 7. These geodesics do not cross,
since the leaves of A do not. Condition (b) means that distinct leaves of A determine
distinct geodesics. When leaves of A are close, they must follow the same path for
a long finite interval, which implies the corresponding geodesics are close. Thus, we
obtain a geodesic lamination v which is isotopic to A. (To have an isotopy, it suffices
to construct a homeomorphism homotopic to the identity. This homeomorphism is
constructed first in a neighborhood of 7, then on the rest of S.) O

REMARK. From this, one sees that as the hyperbolic structure on S varies, the
corresponding geodesic laminations are all isotopic. This issue was quietly skirted in
68.5.

When a lamination A has an invariant measure p, this gives a way to associate a
number 1(b) to each branch line b of any train track which dominates ~: p(b) is just
the transverse measure of the leaves of A collapsed to a point on b. At a switch, the
sum of the “entering” numbers equals the sum of the “exiting” numbers.

Conversely, any assignment of numbers satisfying the switch condition determines a
unique geodesic lamination with transverse measure: first widen each branch line b
of 7 to a corridor of constant width p(b), and give it a foliation G by equally spaced
lines.
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As in 8.9.4, this determines a lamination +; possibly there are many leaves of G
collapsed to a single leaf of v, if these leaves of G all have the same infinite path. G
has a transverse measure, defined by the distance between leaves; this goes over to a
transverse measure for .

8.10. Realizing laminations in three-manifolds

For a quasi-Fuchsian group I', it was relatively easy to “realize” a geodesic lam-
ination of the corresponding surface in My, by using the circle at infinity. However,
not every complete hyperbolic three-manifold whose fundamental group is isomorphic
to a surface group is quasi-Fuchsian, so we must make a more systematic study of
realizability of geodesic laminations.

DEeFINITION 8.10.1. Let f : S — N be a map of a hyperbolic surface to a
hyperbolic three-manifold which sends cusps to cusps. A geodesic lamination v on
S is realizable in the homotopy class of f if f is homotopic (by a cusp-preserving
homotopy) to a map sending each leaf of v to a geodesic.

PRrROPOSITION 8.10.2. If v is realizable in the homotopy class of f, the realization
is (essentially) unique: that is, the image of each leaf of v is uniquely determined.

ProOOF. Consider a lift & of a homotopy connecting two maps of S into N. If S
is closed, h moves every point a bounded distance, so it can’t move a geodesic to a
different geodesic. If S has cusps, the homotopy can be modified near the cusps of S
so h again is bounded. O

In Section 8.5, we touched on the notion of geometric convergence of geodesic
laminations. The geometric topology on geodesic laminations is the topology of geo-
metric convergence, that is, a neighborhood of + consists of laminations +" which
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have leaves near every point of v, and nearly parallel to the leaves of v. If 7; and
vo are disjoint simple closed curves, then v, U 7 is in every neighborhood of 7, as
well as in every neighborhood of 5. The space of geodesic laminations on S with the
geometric topology we shall denote GL. The geodesic laminations compatible with
train track approximations of v give a neighborhood basis for ~.

The measure topology on geodesic laminations with transverse measures (of full
support) is the topology induced from the weak topology on measures in the Mdbius
band J outside S in the Klein model. That is, a neighborhood of (v, ) consists
of (7, ') such that for a finite set fi,..., fr of continuous functions with compact

support in J,
‘/fid,u_/fid,u/

This can also be interpreted in terms of integrating finitely many continuous functions
on finitely many transverse arcs. Let ML(S) be the space of (v, ) on S with the
measure topology. Let PL(S) be ML(S) modulo the relation (v, u) ~ (7, ap) where
a > 0 is a real number.

< €.

ProproSITION 8.10.3. The natural map ML — GL is continuous.

PropPOSITION 8.10.4. The map w : U(S,N) — GL(S) which assigns to each
uncrumpled surface its wrinkling locus is continuous.

PRrROOF OF 8.10.3. For any point x in the support of a measure ;1 and any neigh-
borhood UU of x, the support of a measure close enough to p must intersect U. [J

PROOF OF 8.10.4. An interval which is bent cannot suddenly become straight.
Away from any cusps, there is a positive infimum to the “amount” of bending of an
interval of length € which intersects the wrinkling locus w(S) in its middle third, and
makes an angle of at least € with w(S). (The “amount” of bending can be measure,
say, by the different between the length of a and the distance between the image
endpoints.) All such arcs must still cross w(S’) for any nearby uncrumpled surface
S’ O

When S has cusps, we are also interested in measures supported on compact
geodesic laminations. We denote this space by MLy (S). If (7,u) is a train track
description for (v, u), where u(b) # 0 for any branch of T, then neighborhoods for
(v, 1) are described by {(v/, 1)}, where 7 C 7 and |u(b) — p/(b)| < e. (If bis a
branch of 7" not in 7, then p(b) = 0 by definition.)

In fact, one can always choose a hyperbolic structure on S so that 7 is a good
approzimation to . If S is closed, it is always possible to squeeze branches of 7
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together along non-trivial arcs in the complementary regions to obtain a new train
track which cannot be enlarged.

This implies that a neighborhood of (v, ) is parametrized by a finite number of
real parameters. Thus, ML(S) is a manifold. Similarly, when S has cusps, ML(S)
is a manifold with boundary ML (S).

PROPOSITION 8.10.5. GL(S) is compact, and PL(S) is a compact manifold with
boundary PLy(S) if S is not compact.

PROOF. There is a finite set of train tracks 7,..., 7, carrying every possible
geodesic lamination. (There is an upper bound to the length of a compact branch
of 7., when S and € are fixed.) The set of projective classes of measures on any
particular 7 is obviously compact, so this implies PL(S) is compact. That PL(S) is
a manifold follows from the preceding remarks. Later we shall see that in fact it is
the simplest of possible manifolds.

In 8.5, we indicated one proof of the compactness of GL(S). Another proof goes
as follows. First, note that

PROPOSITION 8.10.6. Every geodesic lamination v admits some transverse mea-
sure p (possibly with smaller support).

PrRoOOF. Choose a finite set of transversals «q, ..., a; which meet every leaf of
7. Suppose there is a sequence {/;} of intervals on leaves of v such that the total
number NN; of intersection of /; with the a;’s goes to infinity. Let p; be the measure
on |Ja; which is 1/N; times the counting measure on /; N a;. The sequence {y;} has
a subsequence converging (in the weak topology) to a measure p. It is easy to see
that p is invariant under local projections along leaves of 7, so that it determines a
transverse measure.
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If there is no such sequence {/;} then every leaf is proper, so the counting measure
for any leaf will do. 0

We continue with the proof of 8.10.5. Because of the preceding result, the image
J of PL(S) in GL(S) intersects the closure of every point of GL(S). Any collection
of open sets which covers GL(S) has a finite subcollection which covers the compact
set J; therefore, it covers all of GL(.5). O

Armed with topology, we return to the question of realizing geodesic laminations.
Let Ry C GL(S) consist of the laminations realizable in the homotopy class of f.

First, if v consists of finitely many simple closed geodesics, then ~ is realizable
provided 7 (f) maps each of these simple closed curves to non-trivial, non-parabolic
elements.

If we add finitely many geodesics whose ends spiral around these closed geodesics
or converge toward cusps the resulting lamination is also realizable except in the
degenerate case that f restricted to an appropriate non-trivial pair of pants on S
factors through a map to S*.

To see this, consider for instance the case of a geodesic g on S whose ends spiral
around closed geodesics ¢; and ¢o. Lifting f to H?, we see that the two ends of f (9)
are asymptotic to geodesics f(g1) and f(§2). Then f is homotopic to a map taking
g to a geodesic unless f (1) and f (g2) converge to the same point on S, which can

only happen if f(gl) = f(go) (by 5.3.2). In this case, f is homotopic to a map taking
a neighborhood of g U g; U gs to f(g1) = f(g2)-
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The situation is similar when the ends of g tend toward cusps.

These realizations of laminations with finitely many leaves take on significance in
view of the next result:

ProprosiTION 8.10.7. (a) Measures supported on finitely many compact or
proper geodesics are dense 1n ML.
(b) Geodesic laminations with finitely many leaves are dense in GL.
(¢) Each end of a non-compact leaf of a geodesic lamination with only finitely
many leaves spirals around some closed geodesic, or tends toward a cusp.

PRrROOF. If 7 is any train track and p is any measure which is positive on each
branch, pu can be approximated by measures y’ which are rational on each branch,
since p is subject only to linear equations with integer coefficients. p’ gives rise to
geodesic laminations with only finitely many leaves, all compact or proper. This
proves (a).

If ~ is an arbitrary geodesic lamination, let 7 be a close train track approximation
of v and proceed as follows. Let 7/ C 7 consist of all branches b of 7 such that there
exists either a cyclic (repeating) train route or a proper train route through b.
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(The reader experienced with toy trains is aware of the subtlety of this question.)
There is a measure supported on 7/, obtained by choosing a finite set of cyclic and
proper paths covering 7/ and assigning to a branch b the total number of times these
paths traverse. Thus there is a lamination A consisting of finitely many compact or
proper leaves supported in a narrow corridor about 7/. Now let b be any branch of
7 — 7', A train starting on b can continue indefinitely, so it must eventually come
to 7/, in each direction. Add a leaf to X\ representing a shortest path from b to 7/
in each direction; if the two ends meet, make them run along side by side (to avoid
crossings). When the ends approach 7, make them “merge”—either spiral around a
closed leaf, or follow along close to a proper leaf. Continue inductively in this way,
adding leaves one by one until you obtain a lamination A\ dominated by 7 and filling
out all the branches. This proves (b).
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If v is any geodesic lamination with finitely many (or even countably many)
leaves, then the only possible minimal sets are closed leaves; thus each end e of a
non-compact must either be a proper end or come arbitrarily near some compact leaf
[. By tracing the leaves near [ once around [, it is easy to see that this means e spirals
around /. 0J

A A
A ) N
e & // \\ \‘
- / X X
Lo 1\
s N2 \
‘ f"’ ‘l
Nt |t ‘\ ,l
|

Thus, if f is non-degenerate, R is dense. Furthermore,

THEOREM 8.10.8. If my f is injective, and f satisfies (np) (that is, if w1 f preserves
non-parabolicity), then Ry is an open dense subset of GL(S).

ProoOF. If v is any complete geodesic lamination which is realizable, then a train
track approximation 7 can be constructed for the image of v in N3, in such a way that
all branch lines have curvature close to 0. Then all laminations carried by 7 are also
realizable; they form a neighborhood of 7. Next we will show that any enlargement
~v" D 7 of a realizable geodesic lamination + is also realizable. First note that if 4/ is
obtained by adding a single leaf [ to -, then 4 is also realizable. This is proved in
the same way as in the case of a lamination with finitely many leaves: note that each
end of [ is asymptotic to a leaf of 7. (You can see this by considering S —~.) If f is
homotoped so that f(y) consists of geodesics, then both ends of f(I) are asymptotic
to geodesics in f(v). If the two endpoints were not distinct on S.., this would imply
the existence of some non-trivial identification of v by f so that m;f could not be
injective.
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By adding finitely many leaves to any geodesic lamination ' we can complete it.
This implies that 4/ is contained in the wrinkling locus of some uncrumpled surface.
By 8.8.5 and 8.10.1, the set of uncrumpled surfaces whose wrinkling locus contains
v is compact. Since the wrinkling locus depends continuously on an uncrumpled
surface, the set of 7/ € Ry which contains 7 is compact. But any 7/ D v can be
approximated by laminations such that 7' — ~ consists of a finite number of leaves.
This actually follows from 8.10.7, applied to d(S — ). Therefore, every enlargement
7' D yisin Ry.

Since the set of uncrumpled surfaces whose wrinkling locus contains v is compact,

there is a finite set of train tracks 7q,..., 7, such that for any such surface, w(S) is
closely approximated by one of 7y,...,7,. The set of all laminations carried by at
least one of the 7; is a neighborhood of v contained in R;. 0J

COROLLARY 8.10.9. Let I" be a geometrically finite group, and let f : S — Nr be
a map as in 8.10.8. Then either Ry = GL(S) ( that is, all geodesic laminations are
realizable in the homotopy class of f), or I has a subgroup 1" of finite index such that
Nt is a three-manifold with finite volume which fibers over the circle.

CONJECTURE 8.10.10. If f : S — N is any map from a hyperbolic surface to a
complete hyperbolic three-manifold taking cusps to cusps, then the image 1 (f)(m1(.5))
is quasi-Fuchsian if and only if Ry = GL(S).

PrRoOOF OF 8.10.9. Under the hypotheses, the set of uncrumpled surfaces homo-
topic to f(.5) is compact. If each such surface has an essentially unique homotopy to
f(9), so that the wrinkling locus on S is well-defined, then the set of wrinkling loci
of uncrumpled surfaces homotopic to f is compact, so by 8.10.8 it is all of GL(S).

Otherwise, there is some non-trivial h; : S — M such that hy = hg o ¢, where
¢ : S — S is a homotopically non-trivial diffeomorphism. It may happen that ¢ has
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finite order up to isotopy, as when S is a finite regular covering of another surface in
M. The set of all isotopy classes of diffeomorphisms ¢ which arise in this way form
a group. If the group is finite, then as in the previous case, Rp = GL(S). Otherwise,
there is a torsion-free subgroup of finite index (see ), so there is an element ¢ of
infinite order. The maps f and ¢ o f are conjugate in I', by some element 5 € T
The group generated by  and f(mS) is the fundamental group of a three-manifold
which fibers over S*. O

We shall see some justification for the conjecture in the remaining sections of
chapter 8 and in chapter 9: we will prove it under certain circumstances.

8.11. The structure of cusps

Consider a hyperbolic manifold N which admits a map f : S — N, taking cusps
to cusps such that m(f) is an isomorphism, where S is a hyperbolic surface. Let
B C N be the union of the components of N corresponding to cusps of S. f is
a relative homotopy equivalence from (S, S(o.)) to (N, B), so there is a homotopy
inverse g : (N, B) — (5,50,). If X € S(cw) is a regular value for g, then g~*(z)
is a one-manifold having intersection number one with f(.S), so it has at least one
component homeomorphic to R, going out toward infinity in N — B on opposite sides
of f(S). Therefore there is a proper function h : (N — B) — R with h restricted to
g~ '(x) asurjective map. One can modify & so that A~1(0) is an incompressible surface.
Since g restricted to h™1(0) is a degree one map to S, it must map the fundamental
group surjectively as well as injectively, so h71(0) is homeomorphic to S. h~1(0)
divides N — B into two components N, and N_ with mN = 7N, = m{N_ = m 5.
We can assume that h~'(0) does not intersect Ny except in B (say, by shrinking
€).

Suppose that N has parabolic elements that are not parabolic on S. The structure
of the extra cusps of N is described by the following:

PROPOSITION 8.11.1. There are geodesic laminations v, and y_ on S with all
leaves compact (i.e., they are finite collections of disjoint simple closed curves) such
that the extra cusps in N, correspond one-to-one with leaves of v.(e = +,—). In
particular, for any element o € w1(S), m1(f)(«) is parabolic if and only if v is freely
homotopic to a cusp of S or to a simple closed curve in vy or vy_.

PrROOF. We need consider only one half, say N,. For each extra cusp of N,,
there is a half-open cylinder mapped into N, , with one end on 27!(0) and the other
end tending toward the cusp. Furthermore, we can assume that the union of these
cylinders is embedded outside a compact set, since we understand the picture in a
neighborhood of the cusps. Homotope the ends of the cylinders which lie on A~1(0)
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so they are geodesics in some hyperbolic structure on A71(0). One can assume the
cylinders are immersed (since maps of surfaces into three-manifolds are appoximable
by immersions) and that they are transverse to themselves and to one another. If
there are any self-intersections of the cylinders on A~1(0), there must be a double line
which begins and ends on A~'(0). Consider the picture in N: there are two translates
of universal covers of cylinders which meet in a double line, so that in particular
their bounding lines meet twice on h~'(0). This contradicts the fact that they are
geodesics in some hyperbolic structure. 0

N N

It actually follows that the collection of cylinders joining simple closed curves to
the cusps can be embedded: we can modify g so that it takes each of the extra cusps
to a neighborhood of the appropriate simple closed curve a C 7., and then do surgery
to make g~!() incompressible.
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To study N, we can replace S by various surfaces obtained by cutting S along curves
in 74 or y_. Let P be the union of open horoball neighborhoods of all the cusps of
N. Let {S;} be the set of all components of S cut by 7, together with those of S
cut by v_. The union of the S; can be embedded in N — P, with boundary on 0P,
within the convex hull M of N, so that they cut off a compact piece Ny C N — P
homotopy equivalent to N, and non-compact ends F; of N — P, with 0F; C P U S,;.

Let N now be an arbitrary hyperbolic manifold, and let P be the union of open
horoball neighborhoods of its cusps. The picture of the structure of the cusps readily
generalizes provided N — P is homotopy equivalent to a compact submanifold No,
obtained by cutting N — P along finitely many incompressible surfaces {S;} with
boundary 9P.

Applying 8.11.1 to covering spaces of N corresponding to the S; (or applying its
proof directly), one can modify the S; until no non-peripheral element of one of the
S; is homotopic, outside Np, to a cusp. When this is done, the ends {E;} of N — P
are in one-to-one correspondence with the .S;.

According to a theorem of Peter Scott, every three-manifold with finitely gen-
erated fundamental group is homotopy equivalent to a compact submanifold. In
general, such a submanifold will not have incompressible boundary, so it is not as
well behaved. We will leave this case for future consideration.

DEFINITION 8.11.2. Let N be a complete hyperbolic manifold, P the union of
open horoball neighborhoods of its cusps, and M the convex hull of N. Suppose
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E is an end of N — P, with OF — OP an incompressible surface S C M homotopy
equivalent to E. Then E is a geometrically tame end if either

(a) EN M is compact, or
b) the set of uncrumpled surfaces S’ homotopic to S and with S/ contained
[e,00)
in E is not compact.

If N has a compact submanifold Ny of N — P homotopy equivalent to N such
that N — P — Ny is a disjoint union of geometrically tame ends, then N and 7N are
geometrically tame. (These definitions will be extended in § ). We shall justify this
definition by showing geometric tameness implies that N is analytically, topologically
and geometrically well-behaved.

8.12. Harmonic functions and ergodicity

Let N be a complete Riemannian manifold, and A a positive function on N. Let
¢ be the flow generated by —(grad k). The integral of the velocity of ¢; is bounded
along any flow line:

o7 (x)
/ | grad bl ds = h(z) — hér(x))
< h(z) (forT >0).

If A is a subset of a flow line {¢:(x)}+>0 of finite length [(A), then by the Schwarz
inequality

1 I(A)? I(A)?
8.12.1. T(A :/—d > >
D= |, Tewadh] © 2 T Teradll ds > (o)

where T'(A) is the total time the flow line spends in A. Note in particular that this
implies ¢;(z) is defined for all positive time ¢ (although ¢; may not be surjective).
The flow lines of ¢; are moving very slowly for most of their length. If A is harmonic,
then the flow ¢; preserves volume: this means that if it is not altogether stagnant, it
must flow along a channel that grows very wide. A river, with elevation h, is a good
image. It is scaled so grad h is small.

Suppose that N is a hyperbolic manifold, and S L, N is an uncrumpled surface
in N, so that it has area —27x(S5). Let a be a fixed constant, suppose also that S
has no loops of length < a which are null-homotopic in N.

ProOPOSITION 8.12.1. There is a constant C' depending only on a such that the
volume of N1(f(S)) is not greater than —C' - x(S). (N1 denotes the neighborhood of
radius 1.)
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PRrROOF. For each point x € 5, let ¢, be the “characteristic function” of an im-
mersed hyperbolic ball of radius 1 + a/2 centered at f(z). In other words, c,(y) is
the number of distinct homotopy classes of paths from z to y of length < 1+ a/2.
Let g be defined by integrating c, over S; in other words, for y € N, 8.75

o) = [ ) da
If v(B,) is the volume of a ball of radius r in H?, then
/ gdV = —2mx(S) U(Bl+a/2)-
N

For each point y € Ny(f(5)), there is a point x with d(fz,y) < 1, so that there is a
contribution to ¢(y) for every point z on S with d(z,y) < a/2, and for each homotopy
class of paths on S between z and x of length < a/2. Thus ¢(y) is at least as great
as the area A(B,/») of a ball in H? of radius a/2, so that

(NL(F(5))) < /N gdV < —C - x(S).

1
A(Ba/2)
[l

As a — 0, the best constant C' goes to oo, since one can construct uncrumpled
surfaces with long thin waists, whose neighborhoods have very large volume.

8.76

THEOREM 8.12.3. If N is geometrically tame, then for every non-constant positive
harmonic function h on its convex hull M,

inf A = inf h.
M oM
This inequality still holds if h is only a positive superharmonic function, i.e., if Ah =

divgrad h < 0.
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COROLLARY 8.12.4. If I' = my N, where N 1is geometrically tame, then Ly has
measure 0 or 1. In the latter case, I' acts ergodically on S2.

PrROOF OF COROLLARY FROM THEOREM. This is similar to 8.4.2. Consider any
invariant measurable set A C Lr, and let h be the harmonic extension of the char-
acteristic function of A. Since A is invariant, h defines a harmonic function, also h,
on N. If Ly = S?, then by 8.12.3 h is constant, so A has measure 0 to 1. If Ly # S?
then the infimum of (1 — A) is the infimum on OM, so it is > % This implies A has
measure 0. This completes the proof of 8.12.4. O

Theorem 8.12.3 also implies that when Ly = S?, the geodesic flow for N is ergodic.
We shall give this proof in § | since the ergodicity of the geodesic flow is useful for
the proof of Mostow’s theorem and generalizations.

PROOF OF 8.12.3. The idea is that all the uncrumpled surfaces in M are nar-
rows, which allow a high flow rate only at high velocities. In view of 8.12.1, most of 8.77
the water is forced off M—in other words, OM is low.

Let P be the union of horoball neighborhoods of the cusps of N, and {S;} incom-
pressible surfaces cutting N — P into a compact piece Ny and ends { E;}. Observe that
each component of P has two boundary components of US;. In each end E; which
does not have a compact intersection with M, there is a sequence of uncrumpled
maps f;; : S; — E; U P moving out of all compact sets in F; U P, by 8.8.5. Combine
these maps into one sequence of maps f; : US; — M. Note that f; maps Y _[S;] to
a cycle which bounds a (unique) chain C; of finite volume, and that the supports of
the C;’s eventually exhaust M.

If there are no cusps, then there is a subsequence of the f; whose images are
disjoint, separated by distances of at least 2. If there are cusps, modify the cycles
fi(5_1S:]) by cutting them along horospherical cylinders in the cusps, and replacing
the cusps of surfaces by cycles on these horospherical cylinders.
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8. KLEINIAN GROUPS

8.78
If the horospherical cylinders are sufficiently close to oo, the resulting cycle Z;

will have area close to that of f; > [S;], less than, say, 27 ) [x(S;)| + 1. Z; bounds a

chain C; with compact support. We may assume that the support of Z;,; does not

intersect Ny (support C;). From 8.3.2, it follows that there is a constant K such that

for all j,

v(Ny(support Z;)) < K.

If x € M is any regular point for h, then a small enough ball B about z is disjoint
from ¢1(B). To prove the theorem, it suffices to show that almost every flow line
through B eventually leaves M. Note that all the images {¢;(B)}icny are disjoint.
Since ¢; does not decrease volume, almost all flow lines through B eventually leave
the supports of all the C;. If such a flow line does not cross dM, it must cross
Z;, hence it intersects Ny (support Z;) with length at least two. By 8.12.1, the total
length of time such a flow line spends in

J
U N (support Z;)
j=1
grows as J2. Since the volume of

J
U N (support Z;)

j=1

grows only as K - J, no set of positive measure of flow lines through B will fit—most
have to run off the edge of M. O
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8.12. HARMONIC FUNCTIONS AND ERGODICITY

REMARK. The fact that the area of Z; is constant is stronger than necessary to
obtain the conclusion of 8.3.3. It would suffice for the sum of reciprocals of the areas
to form a divergent series. Thus, R? has no non-constant positive superharmonic
function, although R? has.
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