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CHAPTER 5

Flexibility and rigidity of geometric structures

In this chapter we will consider deformations of hyperbolic structures and of

geometric structures in general. By a geometric structure on M , we mean, as usual,

a local modelling of M on a space X acted on by a Lie group G. Suppose M is

compact, possibly with boundary. In the case where the boundary is non-empty

we do not make special restrictions on the boundary behavior. If M is modelled

on (X, G) then the developing map M̃
D−→ X defines the holonomy representation

H : π1M −→ G. In general, H does not determine the structure on M . For example,

the two immersions of an annulus shown below define Euclidean structures on the

annulus which both have trivial holonomy but are not equivalent in any reasonable

sense.             ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

However, the holonomy is a complete invariant for (G, X)-structures on M near

a given structure M0, up to an appropriate equivalence relation: two structures M1

and M2 near M0 are equivalent deformations of M0 if there are submanifolds M ′
1 and 5.2

M ′
2, containing all but small neighborhoods of the boundary of M1 and M2, with a

(G, X) homeomorphism between them which is near the identity.

Let M0 denote a fixed structure on M , with holonomy H0.

Proposition 5.1. Geometric structures on M near M0 are determined up to

equivalency by holonomy representations of π1M in G which are near H0, up to

conjugacy by small elements of G.
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5. FLEXIBILITY AND RIGIDITY OF GEOMETRIC STRUCTURES

Proof. Any manifold M can be represented as the image of a disk D with
reasonably nice overlapping near ∂D. Any structure on M is obtained from the
structure induced on D, by gluing via the holonomy of certain elements of π1(M).

Any representation of π1M near H0 gives a new structure, by perturbing the
identifications on D. The new identifications are still finite-to-one giving a new
manifold homeomorphic to M0.

            ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

5.3

If two structures near M0 have holonomy conjugate by a small element of G, one
can make a small change of coordinates so that the holonomy is identical. The two
structures then yield nearby immersions of D into X, with the same identifications;
restricting to slightly smaller disks gives the desired (G, X)-homeomorphism. �

5.2

As a first approximation to the understanding of small deformations we can de-
scribe π1M in terms of a set of generators G = {g1, . . . , gn} and a set of relators
R = {r1, . . . , rl}. [Each ri is a word in the gi’s which equals 1 in π1M .] Any represen-
tation ρ : π1M → G assigns each generator gi an element in G, ρ (gi). This embeds
the space of representations R in GG. Since any representation of π1M must respect
the relations in π1M , the image under ρ of a relator rj must be the identity in G.
If p : GG → GR sends a set of elements in G to the |R| relators written with these
elements, then D is just p−1(1, . . . , 1). If p is generic near H0, (i.e., if the derivative
dp is surjective), the implicit function theorem implies that R is just a manifold of
dimension (|G| − |R|) · (dim G). One might reasonably expect this to be the case,
provided the generators and relations are chosen in an efficient way. If the action of G
on itself by conjugation is effective (as for the group of isometries of hyperbolic space)
then generally one would also expect that the action of G on GG by conjugation, near
H0, has orbits of the same dimension as G. If so, then the space of deformations of 5.4

M0 would be a manifold of dimension

dim G · (|G| − |R| − 1).
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5.2

Example. Let’s apply the above analysis to the case of hyperbolic structures on
closed, oriented two-manifolds of genus at least two. G in this case can be taken
to be PSL(2, R) acting on the upper half-plane by linear fractional transformations.
π1(Mg) can be presented with 2g generators a1, b1, . . . ag, bg (see below) together with
the single relator

∏
i=1[ai, bi].

            ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

Since PSL(2, R) is a real three-dimensional Lie group the expected dimension of the
deformation space is 3(2g − 1− 1) = 6g − 6. This can be made rigorous by showing
directly that the derivative of the map p : GG → GR is surjective, but since we will
have need for more global information about the deformation space, we won’t make
the computation here.

5.5

Example. The initial calculation for hyperbolic structures on an oriented three-
manifold is less satisfactory. The group of isometries on H3 preserves planes which,
in the upper half-space model, are hemispheres perpendicular to C ∪ ∞ (denoted

Ĉ). Thus the group G can be identified with the group of circle preserving maps

of Ĉ. This is the group of all linear fractional transformations with complex coef-
ficients PSL(2, C). (All transformations are assumed to be orientation preserving).
PSL(2, C), is a complex Lie group with real dimensions 6. M3 can be built from one
zero-cell, a number of one- and two-cells, and (if M is closed), one 3-cell.

If M is closed, then χ(M) = 0, so the number k of one-cells equals the number of
two-cells. This gives us a presentation of π1M with k generators and k relators. The
expected (real) dimension of the deformation space is 6(k − k − 1) = −6.

If ∂M 6= ∅, with all boundary components of positive genus, this estimate of the
dimension gives

5.2.1. 6 · (−χ(M)) = 3(−χ(∂M)).

This calculation would tend to indicate that the existence of any hyperbolic struc-
ture on a closed three-manifold would be unusual. However, subgroups of PSL(2, C)
have many special algebraic properties, so that certain relations can follow from other
relations in ways which do not follow in a general group. 5.6

The crude estimate 5.2.1 actually gives some substantive information when
χ(M) < 0.
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Proposition 5.2.2. If M3 possesses a hyperbolic structure M0, then the space of
small deformations of M0 has dimension at least 6 · (−χ(M)).

Proof. PSL(2, C)G is a complex algebraic variety, and the map

p : PSL(2, C)G → PSL(2, C)R

is a polynomial map (defined by matrix multiplication). Hence the dimension of the
subvariety p = (1, . . . , 1) is at least as great as the number of variables minus the
number of defining equations. �

We will later give an improved version of 5.2.2 whenever M has boundary com-
ponents which are tori.

5.3

In this section we will derive some information about the global structure of the
space of hyperbolic structures on a closed, oriented surface M . This space is called
the Teichmüller space of M and is defined to be the set of hyperbolic structures on M
where two are equivalent if there is an isometry homotopic to the identity between
them. In order to understand hyperbolic structures on a surface we will cut the
surface up into simple pieces, analyze structures on these pieces, and study the ways
they can be put together. Before doing this we need some information about closed
geodesics in M .

Proposition 5.3.1. On any closed hyperbolic n-manifold M there is a unique,
closed geodesic in any non-trivial free homotopy class.

Proof. For any α ∈ π1M consider the covering transformation Tα on the uni-
versal cover Hn of M . It is an isometry of Hn. Therefore it either fixes some interior
point of Hn (elliptic), fixes a point at infinity (parabolic) or acts as a translation
on some unique geodesic (hyperbolic). That all isometries of H2 are of one of these
types was proved in Proposition 4.9.3; the proof for Hn is similar.

Note. A distinction is often made between “loxodromic” and “hyperbolic” trans-
formations in dimension 3. In this usage a loxodromic transformation means an isom-
etry which is a pure translation along a geodesic followed by a non-trivial twist, while
a hyperbolic transformation means a pure translation. This is usually not a useful
distinction from the point of view of geometry and topology, so we will use the term
“hyperbolic” to cover either case.
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5.3

Since Tα is a covering translation it can’t have an interior fixed point so it can’t
be elliptic. For any parabolic transformation there are points moved arbitrarily small
distances. This would imply that there are non-trivial simple closed curves of arbi-
trarily small length in M . Since M is closed this is impossible. Therefore Tα trans-
lates a unique geodesic, which projects to a closed geodesic in M . Two geodesics
corresponding to the translations Tα and T ′

α project to the same geodesic in M if 5.8

and only if there is a covering translation taking one to the other. In other words,
α′ = gαg−1 for some g ∈ π1M , or equivalently, α is free homotopic to α. �

Proposition 5.3.2. Two distinct geodesics in the universal cover Hn of M which
are invariant by two covering translations have distinct endpoints at ∞.

Proof. If two such geodesics had the same endpoint, they would be arbitrarily
close near the common endpoint. This would imply the distance between the two
closed geodesics is uniformly ≤ ε for all ε, a contradiction. �

Proposition 5.3.3. In a hyperbolic two-manifold M2 a collection of homotopi-
cally distinct and disjoint nontrivial simple closed curves is represented by disjoint,
simple closed geodesics.

Proof. Suppose the geodesics corresponding to two disjoint curves intersect.
Then there are lifts of the geodesics in the universal cover H2 which intersect. Since
the endpoints are distinct, the pairs of endpoints for the two geodesics must link
each other on the circle at infinity. Consider any homotopy of the closed geodesics
in M2. It lifts to a homotopy of the geodesics in H2. However, no homotopy of the
geodesics moving points only a finite hyperbolic distance can move their endpoints;
thus the images of the geodesics under such a homotopy will still intersect, and this
intersection projects to one in M2. 5.9

The proof that the closed geodesic corresponding to a simple closed curve is
simple is similar. The argument above is applied to two different lifts of the same
geodesic. �

Now we are in a position to describe the Teichmüller space for a closed surface.
The coordinates given below are due to Nielsen and Fenchel.

Pick 3g − 3 disjoint, non-parallel simple closed curves on M2. (This is the max-
imum number of such curves on a surface of genus g.) Take the corresponding
geodesics and cut along them. This divides M2 into 2g − 2 surfaces homeomorphic
to S2—three disks (called “pairs of pants” from now on) with geodesic boundary.

5.9a
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5.10

On each pair of pants P there is a unique arc connecting each pair of boundary
components, perpendicular to both. To see this, note that there is a unique homotopy
class for each connecting arc. Now double P along the boundary geodesics to form
a surface of genus two. The union of the two copies of the arcs connecting a pair
of boundary components in P defines a simple closed curve in the closed surface.
There is a unique geodesic in its free homotopy class and it is invariant under the
reflection which interchanges the two copies of P . Hence it must be perpendicular to
the geodesics which were in the boundary of P .

This information leads to an easy computation of the Teichmüller space of P .

Proposition 5.3.4. T(P ) is homeomorphic to R3 with coordinates

(log l1, log l2, log l3),

where li = length of the i-th boundary component.

Proof. The perpendicular arcs between boundary components divide P into two
right-angled hexagons. The hyperbolic structure of an all-right hexagon is determined
by the lengths of three alternating sides. (See page 2.19.) The lengths of the con-
necting arcs therefore determine both hexagons so the two hexagons are isometric.
Reflection in these arcs is an isometry of the hexagons and shows that the boundary
curves are divided in half. The lengths li/2 determine the hexagons; hence they also
determine P . Any positive real values for the li are possible so we are done. � 5.11
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5.3

In order to determine the hyperbolic structure of the closed two-manifold from
that of the pairs of pants, some measurement of the twist with which the boundary
geodesics are attached is necessary. Find 3g − 3 more curves in the closed manifold
which, together with the first set of curves, divides the surface into hexagons.

In the pairs of pants the geodesics corresponding to these curves are arcs connect-
ing the boundary components. However, they may wrap around the components. In
P it is possible to isotope these arcs to the perpendicular connecting arcs discussed
above. Let 2di denote the total number of degrees which this isotopy moves the feet
of arcs which lie on the i-th boundary component of p.
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5.12            ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

Of course there is another copy of this curve in another pair of pants which has
a twisting coefficient d′i. When the two copies of the geodesic are glued together
they cannot be twisted independently by an isotopy of the closed surface. Therefore
(di − d′i) = τi is an isotopy invariant.

Remark. If a hyperbolic surface is cut along a closed geodesic and glued back
together with a twist of 2πn degrees (n an integer), then the resulting surface is
isometric to the original one. However, the isometry is not isotopic to the identity so
the two surfaces represent distinct points in Teichmüller space. Another way to say
this is that they are isometric as surfaces but not as marked surfaces. It follows that
τi is a well-defined real number, not just defined up to integral multiples of 2π.

Theorem 5.3.5. The Teichmüller space T(M) of a closed surface of genus g is
homeomorphic to R6g−6. There are explicit coordinates for T(M), namely

(log l1, τ1, log l2, τ2, . . . , log l3g−3, τ3g−3),

where li is the length and τi the twist coefficient for a system of 3g − 3 simple closed 5.13

geodesics.
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In order to see that it takes precisely 3g− 3 simple closed curves to cut a surface
of genus g into pairs of pants Pi notice that χ(Pi) = −1. Therefore the number of
Pi’s is equal to −χ(Mg) = 2g − 2. Each Pi has three curves, but each curve appears
in two Pi’s. Therefore the number of curves is 3

2
(2g − 2) = 3g − 3. We can rephrase

Theorem 5.3.5 as
T(M) ≈ R−3χ(M).

It is in this form that the theorem extends to a surface with boundary.
The Fricke space F(M) of a surface M with boundary is defined to be the space

of hyperbolic structures on M such that the boundary curves are geodesics, modulo
isometries isotopic to the identity. A surface with boundary can also be cut into pairs
of pants with geodesic boundary. In this case the curves that were boundary curves
in M have no twist parameter. On the other hand these curves appear in only one
pair of pants. The following theorem is then immediate from the gluing procedures
above.

Theorem 5.3.6. F(M) is homeomorphic to R−3χ(M).
5.14

The definition of Teichmüller space can be extended to general surfaces as the
space of all metrics of constant curvature up to isotopy and change of scale. In the
case of the torus T 2, this space is the set of all Euclidean structures (i.e., metrics
with constant curvature zero) on T 2 with area one. There is still a closed geodesic
in each free homotopy class although it is not unique. Take some simple, closed
geodesic on T 2 and cut along it. The Euclidean structure on the resulting annulus is
completely determined by the length of its boundary geodesic. Again there is a real
twist parameter that determines how the annulus is glued to get T 2. Therefore there
are two real parameters which determine the flat structures on T 2, the length l of a
simple, closed geodesic in a fixed free homotopy class and a twist parameter τ along
that geodesic.

Theorem 5.3.7. The Teichmüller space of the torus is homeomorphic to R2 with
coordinates (log l, τ), where l, τ are as above.

5.4. Special algebraic properties of groups of isometries of H3.

On large open subsets of PSL(2, C)G, the space of representations of a generating
set G into PSL(2, C), certain relations imply other relations. This fact was anticipated
in the previous section from the computation of the expected dimension of small
deformations of hyperbolic structures on closed three manifolds. The phenomenon
that dp is not surjective (see 5.3) suggests that, to determine the structure of π1M

3
5.15

as a discrete subgroup of PSL(2, C), not all the relations in π1M
3 as an abstract

group are needed. Below are some examples.
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gJørgensen

Proposition 5.4.1 (Jørgensen). Let a, b be two isometries of H3 with no common
fixed point at infinity. If w(a, b) is any word such that w(a, b) = 1 then w(a−1, b−1) =
1. If a and b are conjugate (i.e., if Trace(a) = ±Trace(b) in PSL(2, C) ) then also
w(b, a) = 1.

Proof. If a and b are hyperbolic or elliptic, let l be the unique common perpen-
dicular for the invariant geodesics la, lb of a and b. (If the geodesics intersect in a
point x, l is taken to be the geodesic through x perpendicular to the plane spanned
by la and lb). If one of a and b is parabolic, (say b is) l should be perpendicular to
la and pass through b’s fixed point at ∞. If both are parabolic, l should connect the
two fixed points at infinity. In all cases rotation by 180◦ in l takes a to a−1 and b and
b−1, hence the first assertion.

If a and b are conjugate hyperbolic elements of PSL(2, C) with invariant geodesics
la and lb, take the two lines m and n which are perpendicular to l and to each other
and which intersect l at the midpoint between gb and la. Also, if gb is at an angle of
θ to lb along l then m should be at an angle of θ/2 and n at an angle of θ + π/2. 5.16
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Rotations of 180◦ through m or n take la to lb and vice versa. Since a and b
are conjugate they act the same with respect to their respective fixed geodesics. It
follows that the rotations about m and n conjugate a to b (and b to a) or a to b−1

(and b to a−1).

If one of a and b is parabolic then they both are, since they are conjugate. In this
case take m and n to be perpendicular to l and to each other and to pass through
the unique point x on l such that d(x, ax) = d(x, bx). Again rotation by 180◦ in m
and n takes a to b or a to b−1. �

Remarks. 1. This theorem fails when a and b are allowed to have a common
fixed point. For example, consider

a =

[
1 1
0 1

]
, b =

[
λ 0
0 λ−1

]
,
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where λ ∈ C∗. Then

(b−kabk)l = b−kalbk =

[
1 lλ2k

0 1

]
.

5.17

If λ is chosen so that λ2 is a root of a polynomial over Z, say 1 + 2λ2 = 0, then a
relation is obtained: in this case

w(a, b) = (a)(bab−1)2 = I.

However, w(a−1, b−1) = I only if λ−2 is a root of the same polynomial. This is not
the case in the current example.

2. The geometric condition that a and b have a common fixed point at infinity
implies the algebraic condition that a and b generate a solvable group. (In fact, the
commutator subgroup is abelian.)

Geometric Corollary 5.4.2. Any complete hyperbolic manifold M3 whose
fundamental group is generated by two elements a and b admits an involution s (an
isometry of order 2 ) which takes a to a−1 and b to b−1. If the generators are conjugate,
there is a Z2 ⊕ Z2 action on M generated by s together with an involution t which
interchanges a and b unless a and b have a common fixed point at infinity.

Proof. Apply the rotation of 180◦ about l to the universal cover H3. This
conjugates the group to itself so it induces an isometry on the quotient space M3.
The same is true for rotation around m and n in the case when a and b are conjugate.
It can happen that a and b have a common fixed point x at infinity, but since the 5.18

group is discrete they must both be parabolic. A 180◦ rotation about any line through
x sends a to a−1 and b to b−1. There is not generally a symmetry group of order four
in this case. �

As an example, the complete hyperbolic structure on the complement of the figure-
eight knot has symmetry implied by this corollary. (In fact the group of symmetries
extends to S3 itself, since for homological reasons such a symmetry preserves the
meridian direction.)
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Here is another illustration of how certain relations in subgroups of PSL(2, C) can
imply others:

Proposition 5.4.3. Suppose a and b are not elliptic. If an = bm for some
n, m 6= 0, then a and b commute.

Proof. If an = bm is hyperbolic, then so are a and b. In fact they fix the same
geodesic, acting as translations (perhaps with twists) so they commute. If an = bm

5.19

is parabolic then so are a and b. They must fix the same point at infinity so they act
as Euclidean transformations of any horosphere based there. It follows that a and b
commute. �

Proposition 5.4.3. If a is hyperbolic and ak is conjugate to al then k = ±l.

Proof. Since translation distance along the fixed line is a conjugacy invariant
and ρ (ak) = ±kρ (a) (where ρ ( ) denotes translation distance), the proposition is
easy to see. �

Finally, along the same vein, it is sometimes possible to derive some nontriv-
ial topological information about a hyperbolic three-manifold from its fundamental
group.

Proposition 5.4.4. If M3 is a complete, hyperbolic three-manifold, a, b ∈ π1M
3

and [a, b] = 1, then either

(i) a and b belong to an infinite cyclic subgroup generated by x and xl = a,
xk = b, or

(ii) M has an end, E, homeomorphic to T 2 × [0,∞) such that the group gen-
erated by a and b is conjugate in π1M

3 to a subgroup of finite index in
π1E.

Proof. If a and b are hyperbolic then they translate the same geodesic. Since
π1M

3 acts as a discrete group on H3, a and b must act discretely on the fixed geodesic. 5.20
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Thus, (i) holds.

If a and b are not both hyperbolic, they must both be parabolic, since they
commute. Therefore they can be thought of as Euclidean transformations on a set of
horospheres. If the translation vectors are not linearly independent, a and b generate a
group of translations of R and (i) is again true. If the vectors are linearly independent,
a and b generate a lattice group La,b on R2. Moreover as one approaches the fixed
point at infinity, the hyperbolic distance a point x is moved by a and b goes to zero.

            ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

Recall that the subgroup Gε(X) of π1M
3 generated by transformations that moves

a point x less than ε is abelian. (See pages 4.34-4.35). Therefore all the elements of
Gε(X) commute with a and b and fix the same point p at infinity. By discreteness
Gε(X) acts as a lattice group on the horosphere through x and contains La,b as a
subgroup of finite index. 5.21

Consider a fundamental domain of Gε(X) acting on the set of horocycles at p
which are “contained” in the horocycle Hx through x. It is homeomorphic to the
product of a fundamental domain of the lattice group acting on Hx with [0,∞) and
is moved away from itself by all elements in π1M

3 not in Gε(X). Therefore it is
projected down into M3 as an end homeomorphic to T 2× [0, 1]. This is case (ii). �

5.22

5.5. The dimension of the deformation space of a hyperbolic
three-manifold.

Consider a hyperbolic structure M0 on T 2 × I. Let α and β be generators for
Z ⊕ Z = π1(T

2 × I); they satisfy the relation [α, β] = 1, or equivalently αβ = βα.
The representation space for Z⊕ Z is defined by the equation

H(α) H(β) = H(β) H(α),

where H(α), H(β) ∈ PSL(2, C). But we have the identity

Tr(H(α) H(β)) = Tr(H(β) H(α)),
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as well as det (H(α) H(β)) = det (H(β) H(α)) = 1, so this matrix equation is equiva-
lent to two ordinary equations, at least in a neighborhood of a particular non-trivial
solution. Consequently, the solution space has a complex dimension four, and the de-
formation space of M0 has complex dimension two. This can easily be seen directly:
H(α) has one complex degree of freedom to conjugacy, and given H(α) 6= id, there is
a one complex-parameter family of transformations H(β) commuting with it. This
example shows that 5.2.2 is not sharp. More generally, we will improve 5.2.2 for any
compact oriented hyperbolic three-manifold M0 whose boundary contains toruses,
under a mild nondegeneracy condition on the holonomy of M0:

Theorem 5.6. Let M0 be a compact oriented hyperbolic three-manifold whose
holonomy satisfies

(a) the holonomy around any component of ∂M homeomorphic with T 2 is not
trivial, and

(b) the holonomy has no fixed point on the sphere at ∞.

Under these hypotheses, the space of small deformations of M0 has dimension at least
as great as the total dimension of the Teichmüller space of ∂M , that is,

dimC(Def(M)) ≥
∑

i

 +3
∣∣χ((∂M)i)

∣∣ if χ((∂M)i) < 0,
1 if χ((∂M)i) = 0,
0 if χ((∂M)i) > 0.

Remark. Condition (b) is equivalent to the statement that the holonomy repre-
sentation in PSL(2, C) is irreducible. It is also equivalent to the condition that the
holonomy group (the image of the holonomy) be solvable.

Examples. If N is any surface with nonempty boundary then, by the immersion
theorem [Hirsch] there is an immersion φ of N × S1 in N × I so that φ sends π1(N)
to π1(N × I) = π1(N) by the identity map. Any hyperbolic structure on N × I
has a −6χ(N) complex parameter family of deformations. This induces a (−6χ(N))-
parameter family of deformations of hyperbolic structures on N × S1, showing that
the inequality of 5.6 is not sharp in general.

Another example is supplied by the complement Mk of k unknotted unlinked solid
tori in S3. Since π1(Mk) is a free group on k generators, every hyperbolic structure
on Mk has at least 3k − 3 degrees of freedom, while 5.6 guarantees only k degrees of
freedom. Other examples are obtained on more interesting manifolds by considering
hyperbolic structures whose holonomy factors through a free group.

Proof of 5.6. We will actually prove that for any compact oriented manifold
M , the complex dimension of the representation space of π1M , near a representation
satisfying (a) and (b), is at least 3 greater than the number given in 5.6; this suffices,
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by 5.1. For this stronger assertion, we need only consider manifolds which have no
boundary component homeomorphic to a sphere, since any three-manifold M has the
same fundamental group as the manifold M̂ obtained by gluing a copy of D3 to each
spherical boundary component of M .

Remark. Actually, it can be shown that when ∂M 6= 0, a representation

ρ : π1M → PSL(2, C)

is the holonomy of some hyperbolic structure for M if and only if it lifts to a repre-
sentation in SL(2, C). (The obstruction to lifting is the second Stiefel–Whitney class
ω2 of the associated H3-bundle over M .) It follows that if H0 is the holonomy of a

hyperbolic structure on M , it is also the holonomy of a hyperbolic structure on M̂ ,
provided ∂M̂ 6= ∅. Since we are mainly concerned with structures which have more
geometric significance, we will not discuss this further.

Let H0 denote any representation of π1M satisfying (a) and (b) of 5.6. Let
T1, . . . , Tk be the components of ∂M which are toruses.

Lemma 5.6.1. For each i, 1 ≤ i ≤ k, there is an element αi ∈ π1(M) such that
the group generated by H0(αi) and H0(π1(Ti)) has no fixed point at ∞. One can
choose αi so H0(αi) is not parabolic.

Proof of 5.6.1. If H0(π1Ti) is parabolic, it has a unique fixed point x at ∞
and the existence of an α′i not fixing x is immediate from condition (b). If H0(π1Ti)
has two fixed points x1 and x2, there is H0(β1) not fixing x1 and H0(β2) not fixing
x2. If H0(β1) and H0(β2) each have common fixed points with H0(π1Ti), α′1 = β1β2

does not.

If H0(α
′
i) is parabolic, consider the commutators γn = [α′i

n, β] where β ∈ π1Ti is
some element such that H0(β) 6= 1. If H0[α

′
i
n, β] has a common fixed point x with

H0(β) then also α′i
nβα′i

−n fixes x so β fixes α′i
−nx; this happens for at most three

values of n. We can, after conjugation, take H0(α
′
i) =

[
1
0

1
1

]
. Write

H0(βα′i
−1β−1 =

[
a b
c d

]
,

where a + d = 2 and c 6= 0 since
[

1
0

]
is not an eigenvector of β. We compute

Tr(γn) = 2 + n2c; it follows that γn can be parabolic (⇔ Tr(γn) = ±2) for at most 3
values of n. This concludes the proof of Lemma 5.6.1. �

Let {αi, 1 ≤ i ≤ k} be a collection of simple disjoint curves based on Ti and 5.26

representing the homotopy classes of the same names. Let N ⊂ M be the manifold
obtained by hollowing out nice neighborhoods of the αi. Each boundary component
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of N is a surface of genus ≥ 2, and M is obtained by attaching k two-handles along
non-separating curves on genus two surfaces S1, . . . , Sk ⊂ ∂N .

            ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

Let αi also be represented by a curve of the same name on Si, and let βi be a
curve on Si describing the attaching map for the i-th two-handle. Generators γi, δi

can be chosen for π1Ti so that αi, βi, γi, and δi generate π1Bi and [αi, βi] · [γi, δi] = 1.
π1M is obtained from π1M by adding the relations βi = 1.

Lemma 5.6.2. A representation ρ of π1N near H0 gives a representation of π1M
if and only if the equations 5.27

Tr (ρ (βi)) = 2

and Tr (ρ [αi, βi]) = 2

are satisfied.

Proof of 5.6.2. Certainly if ρ gives a representation of π1M , then ρ(βi) and
ρ[αi, βi] are the identity, so they have trace 2.

To prove the converse, consider the equation

Tr [A, B] = 2

in SL(2, C) . If A is diagonalizable, conjugate so that

A =

[
λ 0
0 λ−1

]
.

Write

BA−1B−1 =

[
a b
c d

]
.

We have the equations

a + d = λ + λ−1
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Tr [A, B] = λa + λ−1d = 2

which imply that

a = λ−1, d = λ.

Since ad− bc = 1 we have bc = 0. This means B has at least one common eigenvector[
1
0

]
or

[
0
1

]
with A; if [A, B] 6= 1, this common eigenvector is the unique eigenvector 5.28

of [A, B] (up to scalars). As in the proof of 5.6.1, a similar statement holds if A is
parabolic. (Observe that [A, B] = [−A, B], so the sign of Tr A is not important).

It follows that if Tr ρ[αi, βi] = 2, then since [γi, δi] = [αi, βi], either ρ (αi), ρ (βi),
ρ (γi) and ρ (δi) all have a common fixed point on the sphere at infinity, or ρ[αi, βi] = 1.

By construction H0, π1Si has no fixed point at infinity, so for ρ near H0ρ π1Si

cannot have a fixed point either; hence ρ[αi, βi] = 1.

The equation Tr ρ (βi) = 2 implies ρ (βi) is parabolic; but it commutes with ρ (βi),
which is hyperbolic for ρ near H0. Hence ρ (βi) = 1. This concludes the proof of
Lemma 5.6.2. �

To conclude the proof of 5.6, we consider a handle structure for N with one zero-
handle, m one-handles, p two-handles and no three-handles (provided ∂M 6= ∅). This
gives a presentation for π1N with m generators and p relations, where

1−m + p = χ(N) = χ(M)− k.

The representation space R ⊂ PSL(2, C)m for π1M , in a neighborhood of H0, is
defined by the p matrix equations

ri = 1, (1 ≤ i ≤ p),

where the ri are products representing the relators, together with 2k equations 5.29

Tr ρ(βi) = 2

Tr ρ([αi, βi]) = 2 [1 ≤ i ≤ k]

The number of equations minus the number of unknowns (where a matrix variable is
counted as three complex variables) is

3m− 3p− 2k = −3χ(M) + k + 3.

�

Remark. If M is a closed hyperbolic manifold, this proof gives the estimate of
0 for dimC def(M): simply remove a non-trivial solid torus from M , apply 5.6, and
fill in the solid torus by an equation Tr(γ) = 2.
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5.7

There is a remarkable, precise description for the global deformation space of
hyperbolic structures on closed manifolds in dimensions bigger than two:

Theorem 5.7.1 (Mostow’s Theorem [algebraic version]). Suppose Γ1 and Γ2 are
two discrete subgroups of the group of isometries of Hn, n ≥ 3 such that Hn/Γi has
finite volume and suppose φ : Γ1 → Γ2 is a group isomorphism. Then Γ1 and Γ2 are
conjugate subgroups.

This theorem can be restated in terms of hyperbolic manifolds since a hyperbolic
manifold has universal cover Hn with fundamental group acting as a discrete group
of isometries. 5.30

Theorem 5.7.2 (Mostow’s Theorem [geometric version]). If Mn
1 and Mn

2 are com-
plete hyperbolic manifolds with finite total volume, any isomorphism of fundamental
groups φ : π1M1 → π1M2 is realized by a unique isometry.

Remark. Multiplication by an element in either fundamental group induces the
identity map on the manifolds themselves so that φ needs only to be defined up to
composition with inner automorphisms to determine the isometry from M1 to M2.

Since the universal cover of a hyperbolic manifold is Hn, it is a K(π, 1). Two such
manifolds are homotopy equivalent if and only if there is an isomorphism between
their fundamental groups.

Corollary 5.7.3. If M1 and M2 are hyperbolic manifolds which are complete
with finite volume, then they are homeomorphic if and only if they are homotopy
equivalent. (The case of dimension two is well known.)

For any manifold M , there is a homomorphism Diff M → Out(π1M), where
Out(π1M) = Aut(π1M)/ Inn(π1M) is the group of outer automorphisms. Mostow’s
Theorem implies this homomorphism splits, if M is a hyperbolic manifold of dimen-
sion n ≥ 3. It is unknown whether the homomorphism splits when M is a surface.
When n = 2 the kernel Diff0(M) is contractible, provided χ(M) ≤ 0. If M is a Haken 5.31

three-manifold which is not a Seifert fiber space, Hatcher has shown that Diff0 M is
contractible.

Corollary 5.7.4. If Mn is hyperbolic (complete, with finite total volume) and
n ≥ 3, then Out(π1M) is a finite group, isomorphic to the group of isometries of Mn.

Proof. By Mostow’s Theorem any automorphism of π1M induces a unique isom-
etry of M . Since any inner automorphism induces the identity on M , it follows that
the group of isometries is isomorphic to Out(π1M). That Out(π1M) is finite is im-
mediate from the fact that the group of isometries, Isom(Mn), is finite.
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To see that Isom(Mn) is finite, choose a base point and frame at that point and
suppose first that M is compact. Any isometry is completely determined by the
image of this frame (essentially by “analytic continuation”). If there were an infinite
sequence of isometries there would exist two image frames close to each other. Since
M is compact, the isometries, φ1, φ2, corresponding to these frames would be close
on all of M . Therefore φ, is homotopic to φ2. Since the isometry φ−1

2 φ1 induces the
trivial outer automorphism on π1M , it is the identity; i.e., φ2 = φ1.

If M is not compact, consider the submanifold Mε ⊂ M which consists of points
which are contained in an embedded hyperbolic disk of radius ε. Since M has finite
total volume, Mε is compact. Moreover, it is taken to itself under any isometry. The 5.32

argument above applied to Mε implies that the group of isometries of M is finite even
in the non-compact case. �

Remark. This result contrasts with the case n = 2 where Out(π1M
2) is infinite

and quite interesting.

The proof of Mostow’s Theorem in the case that Hn/Γ is not compact was com-
pleted by Prasad. Otherwise, 5.7.1 and 5.7.2 (as well as generalizations to other
homogeneous spaces) are proved in Mostow. We shall discuss Mostow’s proof of this
theorem in 5.10, giving details as far as they can be made geometric. Later, we will
give another proof due to Gromov, valid at least for n = 3.

5.8. Generalized Dehn surgery and hyperbolic structures.

Let M be a non-compact, hyperbolic three-manifold, and suppose that M has a
finite number of ends E1, . . . , Ek, each homeomorphic to T 2 × [0,∞) and isometric
to the quotient space of the region in H3 (in the upper half-space model) above
an interior Euclidean plane by a group generated by two parabolic transformations
which fix the point at infinity. Topologically M is the interior of a compact manifold
M̄ whose boundary is a union of T1, . . . , Tk tori.

Recall the operation of generalized Dehn surgery on M (§4.5); it is parametrized 5.33

by an ordered pair of real numbers (ai, bi) for each end which describes how to glue
a solid torus to each boundary component. If nothing is glued in, this is denoted by
∞ so that the parameters can be thought of as belonging to S2 (i.e., the one point
compactification of R2 ≈ H1(T

2, R)). The resulting space is denoted by Md1,...,dk

where di = (ai, bi) or ∞.
In this section we see that the new spaces often admit hyperbolic structures. Since

Md1,...,dk
is a closed manifold when di = (ai, bi) are primitive elements of H1(T

2, Z),
this produces many closed hyperbolic manifolds. First it is necessary to see that
small deformations of the complete structure on M induce a hyperbolic structure on
some space Md1,...,dk

.
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Lemma 5.8.1. Any small deformation of a “standard” hyperbolic structure on
T 2 × [0, 1] extends to some (D2 × S1)d. d = (a, b) is determined up to sign by the
traces of the matrices representing generators α, β of π1T

2.

Proof. A “standard” structure on T 2 × [0, 1] means a structure as described on
an end of M truncated by a Euclidean plane. The universal cover of T 2× [0, 1] is the
region between two horizontal Euclidean planes (or horospheres), modulo a group
of translations. If the structure is deformed slightly the holonomy determines the
new structure and the images of α and β under the holonomy map H are slightly 5.34

perturbed.

If H(α) is still parabolic then so is H(β) and the structure is equivalent to the
standard one. Otherwise H(α) and H(β) have a common axis l in H3. Moreover
since H(α) and H(β) are close to the original parabolic elements, the endpoints of l
are near the common fixed point of the parabolic elements. If T 2 × [0, 1] is thought
to be embedded in the end, T 2× [0,∞), this means that the line lies far out towards
∞ and does not intersect T 2 × [0, 1]. Thus the developing image of T 2 × [0, 1] in H3

for new structure misses l and can be lifted to the universal cover

H̃3 − l

of H3 − l.

This is the geometric situation necessary for generalized Dehn surgery. The ex-
tension to (D2 × S1)d is just the completion of

H̃3 − l/{H̃(α), H̃(β)}

where H̃ is the lift of H to the cover

H̃3 − l.

Recall that the completion depends only on the behavior of H̃(α) and H̃(β) along l.
In particular, if H̃( ) denotes the complex number determined by the pair (translation
distance along l, rotation about l), then the Dehn surgery coefficients d = (a, b) are
determined by the formula:

a H̃(α) + b H̃(β) = ±2πi.

The translation distance and amount of rotation of an isometry along its fixed
line is determined by the trace of its matrix in PSL(2, C). This is easy to see since
trace is a conjugacy invariant and the fact is clearly true for a diagonal matrix. In 5.35

particular the complex number corresponding to the holonomy of a matrix acting on
H3 is log λ where λ + λ−1 is its trace. �

The main result concerning deformations of M is
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Theorem 5.8.2. If M = M∞,...,∞ admits a hyperbolic structure then there is a
neighborhood U of (∞, . . . ,∞) in S2 × S2 × · · · × S2 such that for all (d1, . . . , dk) ∈
U,Md1,...,dk

admits a hyperbolic structure.

Proof. Consider the compact submanifold M0 ⊂ M gotten by truncating each
end. M0 has boundary a union of k tori and is homeomorphic to the manifold M̄
such that M = interior M̄ . By theorem 5.6, M0 has a k complex parameter family
of non-trivial deformations, one for each torus. From the lemma above, each small
deformation gives a hyperbolic structure on some Md1,...,dk

. It remains to show that
the di vary over a neighborhood of (∞, . . . ,∞).

Consider the function

Tr : Def(M) → (Tr(H(α1)), . . . , Tr(H(αk)))

which sends a point in the deformation space to the k-tuple of traces of the ho-
lonomy of α1, α2, . . . , αk, where αi, βi generate the fundamental group of the i-th
torus. Tr is a holomorphic (in fact, algebraic) function on the algebraic variety 5.36

Def(M). Tr(M∞,...,∞) = (±2, . . . ,±2) for some fixed choice of signs. Note that
Tr(H(αi)) = ±2 if and only if H(αi) is parabolic and H(αi) is parabolic if and only
if the i-th surgery coefficient di equals ∞. By Mostow’s Theorem the hyperbolic
structure on M∞,...,∞ is unique. Therefore di = ∞ for i = l, . . . , k only in the original
case and Tr−1(±2, . . . ,±2) consists of exactly one point. Since dim(Def(M)) ≥ k it
follows from [ ] that the image under Tr of a small open neighborhood of M∞,...,∞ is
an open neighborhood of (±2, . . . ,±2).

Since the surgery coefficients of the i-th torus depend on the trace of both H(αi)
and H(βi), it is necessary to estimate H(βi) in terms of H(αi) in order to see how
the surgery coefficients vary. Restrict attention to one torus T and conjugate the
original developing image of M∞,...,∞ so that the parabolic fixed point of the holonomy,
H0, (π1T ), is the point at infinity. By further conjugation it is possible to put the
holonomy matrices of the generators α, β of π1T in the following form:

H0(α) =

[
1 1
0 1

]
H0(β) =

[
1 c
0 1

]
.

Note that since H0(α), H0(β) act on the horospheres about∞ as a two-dimension-
al lattice of Euclidean translations, c and l are linearly independent over R. Since 5.37

H0(α), H0(β) have
[

1
0

]
as an eigenvector, the perturbed holonomy matrices

H(α), H(β)
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will have common eigenvectors near
[

1
0

]
, say

[
1
ε1

]
and

[
1
ε2

]
. Let the eigenvalues of

H(α) and H(β) be (λ, λ−1) and (µ, µ−1) respectively. Since H(α) is near H0(α),

H(α)

[
0

1

]
≈

[
1

1

]
.

However

H(α)

[
0

1

]
=

1

ε1 − ε2

H(α)

([
1

ε1

]
−

[
1

ε2

])
=

1

ε1 − ε2

([
λ

λε1

]
−

[
λ−1

λ−1ε2

])
.

Therefore
λ− λ−1

ε1 − ε2

≈ 1.

Similarly,
µ− µ−1

ε1 − ε2

≈ c.

For λ, µ near l,
log(λ)

log(µ)
≈ λ− 1

µ− 1
≈ λ− λ−1

µ− µ−1
≈ 1

c
.

Since H̃(α) = log λ and H̃(β) = log µ this is the desired relationship between H̃(α)
and H̃(β).

The surgery coefficients (a, b) are determined by the formula 5.38

aH̃(α) + bH̃(β) = ±2πi.

From the above estimates this implies that

(a + bc) ≈ ±2πi

log λ
.

(Note that the choice of sign corresponds to a choice of λ or λ−1.) Since 1 and c are
linearly independent over R, the values of (a, b) vary over an open neighborhood of
∞ as λ varies over a neighborhood of 1. Since Tr(H(α)) = λ + λ−1 varies over a
neighborhood of 2 (up to sign) in the image of Tr : Def(M) → Ck, we have shown
that the surgery coefficients for the Md1,...,dk

possessing hyperbolic structures vary
over an open neighborhood of ∞ in each component. �

Example. The complement of the Borromean rings has a complete hyperbolic
structure. However, if the trivial surgery with coefficients (1, 0) is performed on
one component, the others are unlinked. (In other words, M(1,0),∞,∞ is S3 minus two
unlinked circles.) The manifold M(1,0),x,y (where M is S3 minus the Borromean rings)
is then a connected sum of lens spaces if x, y are primitive elements of H1(T

2
i , Z) so

it cannot have a hyperbolic structure. Thus it may often happen that an infinite
number of non-hyperbolic manifolds can be obtained by surgery from a hyperbolic
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one. However, the theorem does imply that if a finite number of integral pairs of
coefficients is excluded from each boundary component, then all remaining three-
manifolds obtained by Dehn surgery on M are also hyperbolic.

5.39

5.9. A Proof of Mostow’s Theorem.

This section is devoted to a proof of Mostow’s Theorem for closed hyperbolic
n-manifolds, n ≥ 3. The proof will be sketchy where it seems to require analysis.
With a knowledge of the structure of the ends in the noncompact, complete case, this
proof extends to the case of a manifold of finite total volume; we omit details. The
outline of this proof is Mostow’s.

Given two closed hyperbolic manifolds M1 and M2, together with an isomorphism
of their fundamental groups, there is a homotopy equivalence inducing the isomor-
phism since M1 and M2 are K(π, 1)’s. In other words, there are maps f1 : M1 → M2

and f2 : M2 → M1 such that f1 ◦ f2 and f2 ◦ f1 are homotopic to the identity. Denote
lifts of f1, f2 to the universal cover Hn by f̃1, f̃2 and assume f̃1 ◦ f̃2 and f̃2 ◦ f̃1 are
equivariantly homotopic to the identity.

The first step in the proof is to construct a correspondence between the spheres
at infinity of Hn which extends f̃1 and f̃2.

Definition. A map g : X → Y between metric spaces is a pseudo-isometry if
there are constants c1, c2 such that c−1

1 d(x1, x2) − c2 ≤ d(gx1, gx2) ≤ c1d(x1, x2) for
all x1, x2 ∈ X.

Lemma 5.9.1. f̃1, f̃2 can be chosen to be pseudo-isometries.

Proof. Make f1 and f2 simplicial. Then since M1 and M2 are compact, f1 and 5.40

f2 are Lipschitz and lift to f̃1 and f̃2 which are Lipschitz with the same coefficient.
It follows immediately that there is a constant c1 so that d(f̃ix1, f̃ix2) ≤ c1d(x1, x2)
for i = 1, 2 and all x1, x2 ∈ Hn.

If xi = f̃1yi, then this inequality implies that

d(f̃2 ◦ f̃1(y1), f̃2 ◦ f̃1(y2)) ≤ c1d(f̃1y1, f̃1y2).

However, since M1 is compact, f̃2 ◦ f̃1 is homotopic to the identity by a homotopy
that moves every point a distance less than some constant b. It follows that

d(y1, y2)− 2b ≤ d(f̃2 ◦ f̃1y1, f̃2 ◦ f̃1y2),

from which the lower bound c−1
1 d(y1, y2)− c2 ≤ d(f̃1y1, f̃1y2) follows. �

Using this lemma it is possible to associate a unique geodesic with the image of
a geodesic.
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Proposition 5.9.2. For any geodesic g ⊂ Hn there is a unique geodesic h such
that f1(g) stays in a bounded neighborhood of h.

Proof. If j is any geodesic in Hn, let Ns(j) be the neighborhood of radius s
about j. We will see first that if s is large enough there is an upper bound to
the length of any bounded component of g −

(
f̃−1

1 (Ns(j))
)
, for any j. In fact, the

perpendicular projection from Hn − Ns(j) to j decreases every distance by at least
a factor of 1/cosh s, so any long path in Hn − Ns(j) with endpoints on ∂Ns(j) can
be replaced by a much shorter path consisting of two segments perpendicular to j,
together with a segment of j. 5.41
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When this fact is applied to a line j joining distant points p1 and p2 on f̃1(g), it
follows that the segment of g between p1 and p2 must intersect each plane perpendic-
ular to j a bounded distance from j. It follows immediately that there is a limit line
h to such lines j as p1 and p2 go to +∞ and −∞ on f̃1(g), and that f̃1(g) remains a
bounded distance from h. Since no two lines in Hn remain a bounded distance apart,
h is unique. �
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5.42

Corollary 5.9.3. f̃1 : Hn → Hn induces a one-to-one correspondence between
the spheres at infinity.
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Proof. There is a one-to-one correspondence between points on the sphere at
infinity and equivalence classes of directed geodesics, two geodesics being equivalent if
they are parallel, or asymptotic in positive time. The correspondence of 5.9.2 between
geodesics in M̃1 and geodesics in M̃2 obviously preserves this relation of parallelism,
so it induces a map on the sphere at infinity. This map is one-to-one since any two
distinct points in the sphere at infinity are joined by a geodesic, hence must be taken
to the two ends of a geodesic. �
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5.43

The next step in the proof of Mostow’s Theorem is to show that the extension
of f̃1 to the sphere at infinity Sn−1

∞ is continuous. One way to prove this is by citing
Brouwer’s Theorem that every function is continuous. Since this way of thinking is
not universally accepted (though it is valid in the current situation), we will give
another proof, which will also show that f is quasi-conformal at Sn−1

∞ . A basis
for the neighborhoods of a point x ∈ Sn−1

∞ is the set of disks with center x. The
boundaries of the disks are (n − 2)-spheres which correspond to hyperplanes in H2

(i.e., to (n− 1)-spheres perpendicular to Sn−1
∞ whose intersections with Sn−1

∞ are the
(n− 2)-spheres).

For any geodesic g in M̃1, let φ(g) be the geodesic in M̃2 which remains a bounded

distance from f̃1(g).
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Lemma 5.9.4. There is a constant c such that, for any hyperplane P in Hn and
any geodesic g perpendicular to P , the projection of f̃1(P ) onto φ(g) has diameter
≤ c.

Proof. Let x be the point of intersection of P and g and let l be a geodesic ray
based at x. Then there is a unique geodesic l1 which is parallel to l in one direction
and to a fixed end of g in the other. Let A denote the shortest arc between x and l1.
It has length d, where d is a fixed contrast (= arc cosh

√
2). 5.44
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The idea of the proof is to consider the image of this picture under f̃l. Let
φ(l), φ(l1), φ(g) denote the geodesics that remain a bounded distance from l, l1 and g
respectively. Since φ preserves parallelism φ(l) and φ(l1) are parallel. Let l⊥ denote
the geodesic from the endpoint on Sn−1

∞ of φ(l) which is perpendicular to φ(g). Also

let x0 be the point on φ(g) nearest to f̃l(x).

Since f̃l(x) is a pseudo-isometry the length of f̃l(A) is at most c1d where c1 is a
fixed constant. Since φ(l1) and φ(g) are less than distance s (for a fixed constant s)

from f̃l(l1) and f̃l(g) respectively, it follows that x0 is distance less than C1d+2s = d̄
from φ(l1). This implies that the foot of l⊥ (i.e., l⊥ ∩ φ(g)) lies distance less than
d̄ to one side of x0. By considering the geodesic l2 which is parallel to l and to the
other end of g, it follows that f lies a distance less than d̄ from x0. 5.45

Now consider any point y ∈ P . Let m be any line through y. The endpoints
of φ(m) project to points on φ(g) within a distance d̄ of x0; since f̃l(y) is within a
distance s of φ(m), it follows that y projects to a point not farther than d̄ + s from
x0. �
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Corollary 5.9.5. The extension of f̃l to Sn−1
∞ is continuous.

Proof. For any point y ∈ Sn−1
∞ , consider a directed geodesic g bending toward y,

and define f̃l(y) to be the endpoint of φ(g). The half-spaces bounded by hyperplanes

perpendicular to φ(g) form a neighborhood basis for f̃l(y). For any such half-space

H, there is a point x ∈ g such that the projection of f̃l(x) to φ(g) is a distance
> C from ∂H. Then the neighborhood of y bounded by the hyperplane through x
perpendicular to g is mapped within H. �

Below it will be necessary to use the concept of quasi-conformality. If f is a 5.46

homeomorphism of a metric space X to itself, f is K-quasi-conformal if and only if
for all z ∈ X

lim
r→0

supx,y∈Sr(z) d (f(x), f(y))

infx,y∈Sr(z) d (f(x), f(y))
≤ K

where Sr(Z) is the sphere of radius r around Z, and x and y are diametrically
opposite. K measures the deviation of f from conformality, is equal to 1 if f is
conformal, and is unchanged under composition with a conformal map. f is called
quasi-conformal if it is K-quasi-conformal for some K.

Corollary 5.9.6. f̃l is quasi-conformal at Sn−1
∞ .

Proof. Use the upper half-space model for Hn since it is conformally equivalent
to the ball model and suppose x and f̃lx are the origin since translation to the origin
is also conformal. Then consider any hyperplane P perpendicular to the geodesic g
from 0 to the point at infinity. By Lemma 5.9.4 there is a bound, depending only
on f̃l, to the diameter of the projection of f̃l(P ) onto φ(g) = g. Therefore, there

are hyperplanes P1, P2 perpendicular to g contained in and containing f̃l(P ) and the
distance (along g) between P1 and P2 is uniformly bounded for all planes P .
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But this distance equals log r, r > 1, where r is the ratio of the radii of the n− 2
spheres

Sn−2
p1

, Sn−2
p2

in Sn−1
∞ corresponding to P1 and P2. The image of the n−2 sphere Sn−2

P corresponding 5.47

to P lies between Sn−2
p2

and Sn−2
p1

so that r is an upper bound for the ratio of maximum
to minimum distances on

f̃l(S
n−2
p ).

Since log r is uniformly bounded above, so is r and f̃l is quasi-conformal. �

Corollary 5.9.6 was first proved by Gehring for dimension n = 3, and generalized
to higher dimensions by Mostow.
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At this point, it is necessary to invoke a theorem from analysis (see Bers).

Theorem 5.9.7. A quasi-conformal map of an n − 1-manifold, n > 2, has a
derivative almost everywhere (= a.e.).

Remark. It is at this stage that the proof of Mostow’s Theorem fails for n = 2. 5.48

The proof works to show that f̃l extends quasi-conformally to the sphere at infinity,
S1
∞, but for a one-manifold this does not imply much.

Consider f̃l : Sn−1
∞ → Sn−1

∞ ; by theorem 5.9.7 df̃l exists a.e. At any point x where

the derivative exists, the linear map df̃l(x) takes a sphere around the origin to an
ellipsoid. Let λ1, . . . , λn−1 be the lengths of the axes of the ellipsoid. If we normalize
so that λ1 ·λ2 · · ·λn−1 = 1, then the λi are conformal invariants. In particular denote
the maximum ratio of the λi’s at x by e(x), the eccentricity of f̃l at x. Note that if

f̃l is K-quasi-conformal, the supremum of e(x), x ∈ Sn−1
∞ , is K. Since π1M1 acts on

Sn−1
∞ conformally and e is invariant under conformal maps, e is a measurable, π1M1

invariant function on Sn−1
∞ . However, such functions are very simple because of the

following theorem:

Theorem 5.9.8. For a closed, hyperbolic n-manifold M , π1M acts ergodically on
Sn−1
∞ , i.e., every measurable, invariant set has zero measure or full measure.
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Corollary 5.9.9. e is constant a.e.

Proof. Any level set of e is a measurable, invariant set so precisely one has full
measure. �

In fact more is true: 5.49

Theorem 5.9.10. π1(M) acts ergodically on Sn−1
∞ × Sn−1

∞ .

Remark. This theorem is equivalent to the fact that the geodesic flow of M is
ergodic since pairs of distinct points on Sn−1

∞ are in a one-to-one correspondence to
geodesics in Hn (whose endpoints are those points).

From Corollary 5.9.9 e is equal a.e. to a constant K, and if the derivative of f̃l is
not conformal, K 6= 1.

Consider the case n = 3. The direction of maximum “stretch” of df defines a
measurable line field l on S2

∞. Then for any two points x, y ∈ S2
∞ it is possible to

parallel translate the line l(x) along the geodesic between x and y to y and compute
the angle between the translation of l(x) and l(y). This defines a measurable π1M -
invariant function on S2

∞ × S2
∞. By theorem 5.9.10 it must be constant a.e. In other

words l is determined by its “value” at one point. It is not hard to see that this is
impossible.

For example, the line field determined by a line at x agrees with the line field
below a.e. However, any line field determined by its “value” at y will have the same
form and will be incompatible. 5.50

The precise argument is easy, but slightly more subtle, since l is defined only a.e.

The case n > 3 is similar.

Now one must again invoke the theorem, from analysis, that a quasi-conformal
map whose derivative is conformal a.e. is conformal in the usual sense; it is a sphere-
preserving map of Sn−1

∞ , so it extends to an isometry I of Hn. The isometry I
conjugates the action of π1M1 to the action of π1M2, completing the proof of Mostow’s
Theorem. �

5.10. A decomposition of complete hyperbolic manifolds.
5.51

Let M be any complete hyperbolic manifold (possibly with infinite volume). For
ε > 0, we will study the decomposition M = M(0,ε] ∪M[ε,∞)′ where M(0,ε] consists of
those points in M through which there is a non-trivial closed loop of length ≤ ε, and
M[ε,∞) consists of those points through which every non-trivial loop has length ≥ ε.

In order to understand the geometry of M(0,ε], we pass to the universal cover

M̃ = Hn. For any discrete group Γ of isometries of Hn and any x ∈ Hn let Γε(x) be
the subgroup generated by all elements of Γ which move x a distance ≤ ε, and let
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Γ′ε(x) ⊂ Γε(x) be the subgroup consisting of elements whose derivative is also ε-close
to the identity.

Lemma 5.10.1 (The Margulis Lemma). For every dimension n there is an ε > 0
such that for every discrete group Γ of isometries of Hn and for every x ∈ Hn, Γ′ε(x)
is abelian and Γε(x) has an abelian subgroup of finite index.

Remark. This proposition is much more general than stated; if “abelian” is
replaced by “nilpotent,” it applies in general to discrete groups of isometries of Rie-
mannian manifolds with bounded curvature. The proof of the general statement is
essentially the same.

Proof. In any Lie group G, since the commutator map [ , ] : G×G → G has
derivative 0 at (1, 1), it follows that the size of the commutator of two small elements 5.52

is bounded above by some constant times the product of their sizes. Hence, if Γ′ε is
any discrete subgroup of G generated by small elements, it follows immediately that
the lower central series Γ′ε ⊃ [Γ′ε, Γ

′
ε] ⊃ [Γ′ε, [Γ

′
ε, Γ

′
ε]], . . . is finite (since there is a lower

bound to the size of elements of Γ′ε). In other words, Γ′ε is nilpotent. When G is
the group of isometries of hyperbolic space, it is not hard to see (by considering, for
instance, the geometric classification of isometries) that this implies Γ′ε is actually
abelian.

To guarantee that Γε(x) has an abelian subgroup of finite index, the idea is first to
find an ε1 such that Γ′ε1(x) is always abelian, and then choose ε many times smaller
than ε1, so the product of generators of Γε(x) will lie in Γ′ε1(x). Here is a precise
recipe:

Let N be large enough that any collection of elements of O(n) with cardinality
≥ N contains at least one pair separated by a distance not more than ε1/3.

Choose ε2 ≤ ε1/3 so that for any pair of isometries φ1 and φ2 of Hn which translate
a point x a distance ≤ ε2, the derivative at x of φ1 ◦φ2 (parallel translated back to x)
is estimated within ε1/6 by the product of the derivatives at x of φ1 and φ2 (parallel
translated back to x).

Now let ε = ε2/2N , so that a product of 2N isometries, each translating x a
distance ≤ ε, translates x a distance ≤ ε2. Let g1, . . . , gk be the set of elements of Γ 5.53

which move x a distance ≤ ε; they generate Γε(x). Consider the cosets γ Γ′ε1(x), where
γ ∈ Γε(x); the claim is that they are all represented by γ’s which are words of length
< N in the generators g1, . . . , gk. In fact, if γ = gi1 · . . . ·gil is any word of length ≥ N
in the gi’s, it can be written γ = α · ε′ · β, (α, ε′, β 6= 1) where ε′ · β has length ≤ N ,
and the derivative of ε′ is within ε1/3 of 1. It follows that (αβ)−1 · (αε′β) = β−1ε′β is
in Γ′ε1(x); hence the coset γΓ′ε1(x) = (αβ)Γ′ε1(x). By induction, the claim is verified.
Thus, the abelian group Γ′ε1(x) has finite index in the group generated by Γε(x) and
Γ′ε1(x), so Γ′ε1(x) ∩ Γε(x) with finite index. �
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Examples. When n = 3, the only possibilities for discrete abelian groups are Z
(acting hyperbolically or parabolically), Z × Z (acting parabolically, conjugate to a
group of Euclidean translations of the upper half-space model), Z × Zn (acting as
a group of translations and rotations of some axis), and Z2 × Z2 (acting by 180◦

rotations about three orthogonal axes). The last example of course cannot occur as
Γ′ε(x). Similarly, when ε is small compared to 1/n, Z× Zn cannot occur as Γ′ε(x).

Any discrete group Γ of isometries of Euclidean space En−1 acts as a group of
isometries of Hn, via the upper half-space model. 5.54
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For any x sufficiently high (in the upper half space model), Γε(x) = Γ. Thus, 5.10.1
contains as a special case one of the Bieberbach theorems, that Γ contains an abelian
subgroup of finite index. Conversely, when Γε(x)∩Γ′ε1(x) is parabolic, Γε(x) must be
a Bieberbach group. To see this, note that if Γε(x) contained any hyperbolic element
γ, no power of γ could lie in Γ′ε1(x), a contradiction. Hence, Γε(x) must consist of
parabolic and elliptic elements with a common fixed point p at ∞, so it acts as a
group of isometries on any horosphere centered at p.

If Γε(x) ∩ Γ′ε1(x) is not parabolic, it must act as a group of translations and
rotations of some axis a. Since it is discrete, it contains Z with finite index (provided
Γε(x) is infinite). It easily follows that Γε(x) is either the product of some finite
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Figure 1. The infinite dihedral group acting on H3.

subgroup F of O(n− 1) (acting as rotations about a) with Z, or it is the semidirect 5.55

product of such an F with the infinite dihedral group, Z/2 ∗ Z/2.
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For any set S ⊂ Hn, let Br(S) = {x ∈ Hn| d (x, S) ≤ r}.

Corollary 5.10.2. There is an ε > 0 such that for any complete oriented hy-
perbolic three-manifold M , each component of M(0,ε] is either

(1) a horoball modulo Z or Z⊕ Z, or
(2) Br(g) modulo Z, where g is a geodesic.

The degenerate case r = 0 may occur.

Proof. Suppose x ∈ M(0,ε]. Let x̃ ∈ H3 be any point which projects to x. There
is some covering translation γ which moves x a distance ≤ ε. If γ is hyperbolic, let
a be its axis. All rotations around a, translations along a, and uniform contractions
of hyperbolic space along orthogonals to a commute with γ. It follows that M̃(0,ε] 5.56

contains Br(a), where r = d (a, x), since γ moves any point in Br(a) a distance
≤ ε. Similarly, if γ is parabolic with fixed point p at ∞, M̃(0,ε] contains a horoball
about p passing through x. Hence M(0,ε] is a union of horoballs and solid cylinders
Br(a). Whenever two of these are not disjoint, they correspond to two covering
transformations γ1 and γ2 which move some point x a distance ≤ ε; γ1 and γ2 must
commute (using 5.10.1), so the corresponding horoballs or solid cylinders must be
concentric, and 5.10.2 follows. �
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5.11. Complete hyperbolic manifolds with bounded volume.

It is easy now to describe the structure of a complete hyperbolic manifold with
finite volume; for simplicity we stick to the case n = 3.

Proposition 5.11.1. A complete oriented hyperbolic three-manifold with finite
volume is the union of a compact submanifold (bounded by tori) and a finite collection
of horoballs modulo Z⊕ Z actions.

Proof. M[ε,∞) must be compact, for otherwise there would be an infinite se-
quence of points in M[ε,∞) pairwise separated by at least ε. This would give a sequence
of hyperbolic ε/2 balls disjointly embedded in M[ε,∞), which has finite volume. M(0,ε]

must have finitely many components (since its boundary is compact). The proposi-
tion is obtained by lumping all compact components of M(0,ε] with M[ε,∞). �

5.57

With somewhat more effort, we obtain Jørgensen’s theorem, which beautifully
describes the structure of the set of all complete hyperbolic three-manifolds with
volume bounded by a constant C:

Theorem 5.11.2 (Jørgensen’s theorem [first version]). Let C > 0 be any con-
stant. Among all complete hyperbolic three-manifolds with volume ≤ C, there are
only finitely many homeomorphism types of M[ε,∞). In other words, there is a link Lc

in S3 such that every complete hyperbolic manifold with volume ≤ C is obtained by
Dehn surgery along LC. (The limiting case of deleting components of LC to obtain a
non-compact manifold is permitted.)

Proof. Let V be any maximal subset of M[ε,∞) having the property that no two
elements of V have distance ≤ ε/2. The balls of radius ε/4 about elements of V
are embedded; since their total volume is ≤ C, this gives an upper bound to the
cardinality of V . The maximality of V is equivalent to the property that the balls of
radius ε/2 about V cover.
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The combinatorial pattern of intersections of this set of ε/2-balls determines M[ε,∞)

up to diffeomorphism. There are only finitely many possibilities. (Alternatively a
triangulation of M[ε,∞) with vertex set V can be constructed as follows. First, form
a cell division of M[ε,∞) whose cells are indexed by V , associating to each v ∈ V the
subset of M[ε,∞) consisting of x ∈ M[ε,∞) such that d(x, v) < d(x, v′) for all v′ ∈ V .
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If V is in general position, faces of the cells meet at most four at a time. (The
dual cell division is a triangulation.)

Any two hyperbolic manifolds M and N such that M[ε,∞) = N[ε,∞) can be obtained
from one another by Dehn surgery. All manifolds with volume ≤ C can therefore be
obtained from a fixed finite set of manifolds by Dehn surgery on a fixed link in each
manifold. Each member of this set can be obtained by Dehn surgery on some link in
S3, so all manifolds with volume ≤ C can be obtained from S3 by Dehn surgery on
the disjoint union of all the relevant links. � 5.59

The full version of Jørgensen’s Theorem involves the geometry as well as the
topology of hyperbolic manifolds. The geometry of the manifold M[ε,∞) completely
determines the geometry and topology of M itself, so an interesting statement com-
paring the geometry of M[ε,∞)’s must involve the approximate geometric structure.
Thus, if M and N are complete hyperbolic manifolds of finite volume, Jørgensen
defines M to be geometrically near N if for some small ε, there is a diffeomorphism
which is approximately an isometry from the hyperbolic manifold M[ε,∞) to N[ε,∞).
It would suffice to keep ε fixed in this definition, except for the exceptional cases
when M and N have closed geodesics with lengths near ε. This notion of geometric
nearness gives a topology to the set H of isometry classes of complete hyperbolic
manifolds of finite volume. Note that neither coordinate systems nor systems of gen-
erators for the fundamental groups have been chosen for these hyperbolic manifolds;
the homotopy class of an approximate isometry is arbitrary, in contrast with the def-
inition for Teichmüller space. Mostow’s Theorem implies that every closed manifold
M in H is an isolated point, since M[ε,∞) = M when ε is small enough. On the other
hand, a manifold in H with one end or cusp is a limit point, by the hyperbolic Dehn
surgery theorem 5.9. A manifold with two ends is a limit point of limit points and a
manifold with k ends is a k-fold limit point. 5.60

Mostow’s Theorem implies more generally that the number of cusps of a geometric
limit M of a sequence {Mi} of manifolds distinct from M must strictly exceed the
lim sup of the number of cusps of Mi. In fact, if ε is small enough, M(0,ε] consists only
of cusps. The cusps of Mi are contained in Mi(0,ε]

; if all its components are cusps,
and if Mi[ε,∞)

is diffeomorphic with M[ε,∞) then Mi is diffeomorphic with M so Mi is
isometric with M .

The volume of a hyperbolic manifold gives a function v : H → R+. If two
manifolds M and N are geometrically near, then the volumes of M[ε,∞) and N[ε,∞)

are approximately equal. The volume of a hyperbolic solid torus r0 centered around
a geodesic of length l may be computed as

volume (solid torus) =

∫ r0

0

∫ 2π

0

∫ l

0

sinh r cosh r dt dθ dr = πl sinh2 r0
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while the area of its boundary is

area (torus) = 2πl sinh r0 cosh r0.

Thus we obtain the inequality

area ( ∂ solid torus)

volume (solid torus)
=

1

2

sinh r0

cosh r0

<
1

2
.

The limiting case as r0 → ∞ can be computed similarly; the ratio is 1/2. Applying 5.61

this to M , we have

5.11.2. volume (M) ≤ volume (M[ε,∞)) + 1
2

area (∂M[ε,∞)).

It follows easily that v is a continuous function on H. Changed this label to

5.11.2a.

5.12. Jørgensen’s Theorem.

Theorem 5.12.1. The function v : H → R+ is proper. In other words, every
sequence in H with bounded volume has a convergent subsequence. For every C,
there is a finite set M1, . . . ,Mk of complete hyperbolic manifolds with volume ≤ C
such that all other complete hyperbolic manifolds with volume ≤ C are obtained from
this set by the process of hyperbolic Dehn surgery (as in 5.9).

Proof. Consider a maximal subset of V of M[ε,∞) having the property that no
two elements of V have distance ≤ ε/2 (as in 5.11.1). Choose a set of isometries of
the ε/2 balls centered at elements of V with a standard ε/2-ball in hyperbolic space.
The set of possible gluing maps ranges over a compact subset of Isom(H3), so any
sequence of gluing maps (where the underlying sequence of manifolds has volume
≤ C) has a convergent subsequence. It is clear that in the limit, the gluing maps
still give a hyperbolic structure on M[ε,∞), approximately isometric to the limiting
M[ε,∞)’s. We must verify that M[ε,∞) extends to a complete hyperbolic manifold. To
see this, note that whenever a complete hyperbolic manifold N has a geodesic which
is very short compared to ε, the radius of the corresponding solid torus in N(0,ε]

becomes large. (Otherwise there would be a short non-trivial curve on ∂N(0,ε]—but 5.62

such a curve has length ≥ ε). Thus, when a sequence {Mi[ε,∞)
} converges, there are

approximate isometries between arbitrarily large balls Br(Mi[ε,∞)
) for large i, so in

the limit one obtains a complete hyperbolic manifold. This proves that v is a proper
function. The rest of §5.12 is merely a restatement of this fact. �

Remark. Our discussion in §5.10, 5.11 and 5.12 has made no attempt to be
numerically efficient. For instance, the proof that there is an ε such that Γε(x) has
an abelian subgroup of finite index gives the impression that ε is microscopic. In
fact, ε can be rather large; see Jørgensen, for a more efficient approach. It would
be extremely interesting to have a good estimate for the number of distinct M[ε,∞)’s
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Figure eight knot
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Whitehead Link

where M has volume ≤ C, and it would be quite exciting to find a practical way of
computing them. The development in 5.10, 5.11, and 5.12 is completely inefficient in
this regard. Jørgensen’s approach is much more explicit and efficient.

Example. The sequence of knot complements below are all obtained by Dehn
surgery on the Whitehead link, so 5.8.2 implies that all but a finite number possess
complete hyperbolic structures. (A computation similar to that of Theorem 4.7 shows
that in fact they all possess hyperbolic structures.) This sequence converges, in H,
to the Whitehead link complement: 5.63

Note. Gromov proved that in dimensions n 6= 3, there is only a finite number of
complete hyperbolic manifolds with volume less than a given constant. He proved this
more generally for negatively curved Riemannian manifolds with curvature varying
between two negative constants. His basic method of analysis was to study the
injectivity radius

inj(x) = 1
2
inf{lengths of non-trivial closed loops through x}

= sup {r | the exponential map is injective on the ball of radius r in T (x)}.
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Basically, in dimensions n 6= 3, little can happen in the region Mn
ε of Mn where

inj(x) is small. This was the motivation for the approach taken in 5.10, 5.11 and 5.12.
Gromov also gave a weaker version of hyperbolic Dehn surgery, 5.8.2: he showed that
many of the manifolds obtained by Dehn surgery can be given metrics of negative
curvature close to −1.
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