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CHAPTER 13

Orbifolds

As we have had occasion to see, it is often more effective to study the quotient
manifold of a group acting freely and properly discontinuously on a space rather
than to limit one’s image to the group action alone. It is time now to enlarge our
vocabulary, so that we can work with the quotient spaces of groups acting properly
discontinuously but not necessarily freely. In the first place, such quotient spaces
will yield a technical device useful for showing the existence of hyperbolic structures
on many three-manifolds. In the second place, they are often simpler than three-
manifolds tend to be, and hence they often give easy, graphic examples of phenomena
involving three-manifolds. Finally, they are beautiful and interesting in their own
right.

13.1. Some examples of quotient spaces.

We begin our discussion with a few examples of quotient spaces of groups acting
properly discontinuously on manifolds in order to get a taste of their geometric flavor.

EXAMPLE 13.1.1 (A single mirror). Consider the action of Zy on R? by reflection
in the y — z plane. The quotient space is the half-space x > 0. Physically, one may
imagine a mirror placed on the y — z wall of the half-space > 0. The scene as
viewed by a person in this half-space is like all of R?, with scenery invariant by the
Zo symmetry.
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13. ORBIFOLDS

ExAMPLE 13.1.2 (A barber shop). Consider the group G generated by reflections
in the planes x = 0 and = 1 in R3. G is the infinite dihedral group Do = Zo * Zs.
The quotient space is the slab 0 < x < 1. Physically, this is related to two mirrors
on parallel walls, as commonly seen in a barber shop.

ExXAMPLE 13.1.3 (A billiard table). Let G be the group of isometries of the
Euclidean plane generated by reflection in the four sides of a rectangle R. G is
isomorphic to Dy, X D4, and the quotient space is R. A physical model is a billiard
table. A collection of balls on a billiard table gives rise to an infinite collection of balls
on R?, invariant by G. (Each side of the billiard table should be one ball diameter
larger than the corresponding side of R so that the centers of the balls can take any
position in R. A ball may intersect its images in R2.)

’

ol s

Ignoring spin, in order to make ball x hit ball y it suffices to aim it at any of the
images of y by G. (Unless some ball is in the way.)

EXAMPLE 13.1.4 (A rectangular pillow). Let H be the subgroup of index 2 which
preserves orientation in the group G of the preceding example. A fundamental do-
main for H consists of two adjacent rectangles. The quotient space is obtained by
identifying the edges of the two rectangles by reflection in the common edge.

_— g
4 A

Topologically, this quotient space is a sphere, with four distinguished points or singu-

lar points, which come from points in R? with non-trivial isotropy (Zz). The sphere
inherits a Riemannian metric of 0 curvature in the complement of these 4 points, and

|
e\ L |
p i = Lot
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13.1. SOME EXAMPLES OF QUOTIENT SPACES.

it has curvature K,, = 7 concentrated at each of the four points p;. In other words,
a neighborhood of each point p; is a cone, with cone angle 7 = 27 — K,,,.

P
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EXERCISE. On any tetrahedron in R? all of whose four sides are congruent, every
geodesic is simple. This may be tested with a cardboard model and string or with
strips of paper. Explain.

1
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e
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ExAMPLE 13.1.5 (An orientation-preserving crystallographic group). Here is one
more three-dimensional example to illustrate the geometry of quotient spaces. Con-
sider the 3 families of lines in R? of the form (¢, n, m+%), (m—i—%, t,n) and (n, m—l—%, t)
where n and m are integers and ¢ is a real parameter. They intersect a cube in the
unit lattice as depicted.

Let G be the group generated by 180° rotations about these lines. It is not hard
to see that a fundamental domain is a unit cube. We may construct the quotient
space by making all identifications coming from non-trivial elements of G acting on
the faces of the cube. This means that each face must be folded shut, like a book.
In doing this, we will keep track of the images of the axes, which form the singular
locus.
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13. ORBIFOLDS

As you can see by studying the picture, the quotient space is S® with singular locus
consisting of three circles in the form of Borromean rings. S? inherits a Euclidean
structure (or metric of zero curvature) in the complement of these rings, with a
cone-type singularity with cone angle m along the rings.

In these examples, it was not hard to construct the quotient space from the group
action. In order to go in the opposite direction, we need to know not only the quotient
space, but also the singular locus and appropriate data concerning the local behavior
of the group action above the singular locus.

13.2. Basic definitions.

An orbifold” O is a space locally modelled on R™ modulo finite group actions. Here
is the formal definition: O consists of a Hausdorff space X, with some additional
structure. Xo is to have a covering by a collection of open sets {U;} closed under
finite intersections. To each U; is associated a finite group I';, an action of I'; on an
open subset UZ of R™ and a homeomorphism ¢; : U; ~ UZ /Ti. Whenever U; C Uj,

*This terminology should not be blamed on me. It was obtained by a democratic process in my
course of 1976-77. An orbifold is something with many folds; unfortunately, the word “manifold”
already has a different definition. I tried “foldamani,” which was quickly displaced by the suggestion
of “manifolded.” After two months of patiently saying “no, not a manifold, a manifoldead,” we held
a vote, and “orbifold” won.
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13.2. BASIC DEFINITIONS.

there is to be an injective homomorphism
Jij: Ti =Ty
and an embedding
Dij U; — Uj
equivariant with respect to f;; (i.e., for v € I';, ¢;;(vz) = fi;(7)i;(z)) such that the
diagram below commutes.|

U; U;
b, $9= @ij /T 7,1
fii
Pi Uj/rj
Py

U, - U;

We regard ¢;; as being defined only up to composition with elements of I';, and
fi; as being defined up to conjugation by elements of I';. It is not generally true that
it = Pjk © Yij when U; C U; C Uy, but there should exist an element v € I'y, such
that ¥@i, = Qjk 0 Gij and v - fi(g) - v~ = fix o fij(9)-

Of course, the covering {U;} is not an intrinsic part of the structure of an orb-
ifold: two coverings give rise to the same orbifold structure if they can be combined
consistently to give a larger cover still satisfying the definitions.

A G-orbifold, where G is a pseudogroup, means that all maps and group actions
respect G. (See chapter 3).

ExamMmpPLE 13.2.1. ~A closed manifold is an orbifold, where each group I'; is the
trivial group, so that U = U.

EXAMPLE 13.2.2. A manifold M with boundary can be given an orbifold structure
mM in which its boundary becomes a “mirror.” Any point on the boundary has a
neighborhood modelled on R"/Z,, where Z5 acts by reflection in a hyperplane.

"The commutative diagrams in Chapter 13 were made using Paul Taylor’s diagrams.sty package
(available at ftp://ftp.dcs.qmw.ac.uk/pub/tex/contrib/pt/diagrams/). —SL
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13. ORBIFOLDS

ProposITION 13.2.1. If M is a manifold and I' is a group acting properly dis-
continuously on M, then M /T has the structure of an orbifold.

PROOF. For any point © € M/T', choose & € M projecting to x. Let I, be the
isotropy group of Z (I, depends of course on the particular choice z.) There is a
neighborhood U, of # invariant by I, and disjoint from its translates by elements
of I' not in I,. The projection of U, = U, /I, is a homeomorphism. To obtain a
suitable cover of M/I', augment some cover {U,} by adjoining finite intersections.
Whenever U,, N...NU,, # (), this means some set of translates ’ylﬁxl N...N ’YkUkk
has a corresponding non-empty intersection. This intersection may be taken to be

P
A

U, N---NU,,,

with associated group v1I, ;" N« Nyly, v, ' acting on it. OJ

The orbifold mM arises in this way, for instance: it is obtained as the quotient
space of the Zy action on the double dM of M which interchanges the two halves.

Henceforth, we shall use the terminology M /T to mean M/T as an orbifold.

Note that each point = in an orbifold O is associated with a group I';, well-
defined up to isomorphism: in a local coordinate system U = U /I, T'; is the isotropy
group of any point in U corresponding to z. (Alternatively I', may be defined as
the smallest group corresponding to some coordinate system containing x.) The set
Yo = {z|l'; # {1}} is the singular locus of O. We shall say that O is a manifold when
Yo = 0. Warning. It happens much more commonly that the underlying space Xo
is a topological manifold, especially in dimensions 2 and 3. Do not confuse properties
of O with properties of Xop.
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13.2. BASIC DEFINITIONS.

The singular locus is a closed set, since its intersection with any coordinate patch
is closed. Also, it is nowhere dense. This is a consequence of the fact that a non-
trivial homeomorphism of a manifold which fixes an open set cannot have finite order.
(See Newman, 1931. In the differentiable case, this is an easy exercise.)

When M in the proposition is simply connected, then M plays the role of universal
covering space and I' plays the role of the fundamental group of the orbifold M/T",
(even though the underlying space of M /I" may well be simply connected, as in the
examples of §13.1). To justify this, we first define the notion of a covering orbifold.

DEFINITION 13.2.2. A covering orbifold of an orbifold O is an orbifold O, with a
projection p : X — X between the underlying spaces, such that each point x € Xp
has a neighborhood U = U/T' (where U is an open subset of R") for which each
component v; of p~*(U) is isomorphic to U /T';, where I'; C T' is some subgroup. The
isomorphism must respect the projections.

Note that the underlying space X5 is not generally a covering space of Xo.

As a basic example, when I' is a group acting properly discontinuously on a
manifold M, then M is a covering orbifold of M/T'. In fact, for any subgroup IV C T,
M /T" is a covering orbifold of M /T". Thus, the rectangular pillow (13.1.4) is a two-fold
covering space of the billiard table (13.1.3).

Here is another explicit example to illustrate the notion of covering orbifold. Let
S be the infinite strip 0 < 2 < 1 in R?; consider the orbifold m.S. Some covering
spaces of S are depicted below.

a triple
cover

a quadruple cover an-octuple cover
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13. ORBIFOLDS

DEFINITION 13.2.3. An orbifold is good if it has some covering orbifold which is
a manifold. Otherwise it is bad.

The teardrop is an example of a bad orbifold. The underlying space for a teardrop
is S%. Yo consists of a single point, whose neighborhood is modelled on R?/Z,,, where
Z,, acts by rotations.

By comparing possible coverings of the upper half with possible coverings of the lower
half, you may easily see that the teardrop has no non-trivial connected coverings.

Similarly, you may verify that an orbifold O with underlying space Xo = S?
having only two singular points associated with groups Z, and Z, is bad, unless
n = m. The orbifolds with three or more singular points on S?, as we shall see, are
always good. For instance, the orbifold below is S? modulo the orientation-preserving
symmetries of a dodecahedron.
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13.2. BASIC DEFINITIONS.

PROPOSITION 13.2.4. An orbifold O has a universal cover O. In other words, if
x € Xo — 2o is a base point for O,

0%o
is a connected covering orbifold with base point * which projects to x, such that for
any other covering orbifold

oo

with base point ¥, p/(¥') = x, there is a lifting q : O — O of p to a covering map of
0.

(o)

The universal covering orbifold O, in some contexts, is often called the universal
branched cover. There is a simple way to prove 13.2.4 in the case ¥ has codimension
2 or more. In that case, any covering space of O is determined by the induced covering
space of Xp — Yo as its metric completion. Whether a covering Y space of Xp — Xp
comes from a covering space of O is a local question, which is expressed algebraically
by saying that m1(Y") maps to a group containing a certain obvious normal subgroup
of m (X — o).

When O is a good orbifold, then it is covered by a simply connected manifold,
M. Tt can be shown directly that M is the universal covering orbifold by proving
that every covering orbifold is isomorphic to M /T’, for some I C T', where T is the
group of deck transformations of M over O.

PROOF OF 13.2.4. One proof of the existence of a universal cover for a space X
goes as follows.
Consider pointed, connected covering spaces

X, x.

For any pair of such covering spaces, the component of the base point in the fiber
product of the two is a covering space of both.
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13. ORBIFOLDS

X3
X X,
X
(Recall that the fiber product of two maps f; : X; — X is the space X; xx Xy =
{(z1,22) € Xy X Xy @ fi(21) = fa(z2)}.)
If X is locally simply connected, or more generally, if it has the property that
every x € X has a neighborhood U such that every covering of X induces a trivial
covering of U (that is, each component of p~!(U) is homeomorphic to U), then one

can take the inverse limit over some set of pointed, connected covering spaces of X
which represents all isomorphism classes to obtain a universal cover for X.

We can follow this same outline with orbifolds, but we need to refine the notion
of fiber product. The difficulty is best illustrated by example. Two covering maps

Slzdlgmi and m; — my

are sketched below, along with the fiber product of the underlying maps of spaces.

| \'.ﬂ\ d o ?11,) '?.\

(This picture is sketched in R = R? x, R2.) The fiber product of spaces is a circle
but with a double point. In the definition of fiber product of orbifolds, we must
eliminate such double points, which always lie above Y.

To do this, we work in local coordinates. Let U =~ U/I" be a coordinate system.
We may suppose that U is small enough so in every covering of O, p~(U) consists
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13.2. BASIC DEFINITIONS.

of components of the form U/I", T" C T. Let
0; &

be covering orbifolds (i = 1,2), and consider components of p;*(U), which for
notational convenience we identify with U/I'y and U/Ty. Formally, we can write
U/Ty = {I'wy|y € U}. [It would be more consistent to use the notation I'y\U
instead of U /T'1]. For each pair of elements v; and 75 € ', we obtain a map

ffylﬂQ : U — (j/Fl X [j/l—‘g,
by the formula

Sy = (T1my, Favay).
In fact, f,, ,, factors through

O/Vflrl% N3 Taye.

Of course, f,, , depends only on the cosets I'yy; and I'yy,. Furthermore, for any
v € I', the maps f,, 5, and f,,~,, differ only by a group element acting on U: in
particular, their images are identical so only the product 7y, * really matters. Thus,
the “real” invariant of f,, ,, is the double coset

Fl’Yl’yQ_lFQ € Fl\F/FQ

(Similarly, in the fiber product of coverings X; and X, of a space X, the components
are parametrized by the double cosets m X;\m X /71 X5.) The fiber product of U/I‘l
and U /Ty over U /T, is defined now to be the disjoint union, over elements 7 repre-
senting double cosets I'y\I'/T"y of the orbifolds U /T1 N~ 1Tyy. We have shown above
how this canonically covers U/T, and U/Ty, via the map f, .. This definition agrees
with the usual definition of fiber product in the complement of 5. These locally
defined patches easily fit together to give a fiber product orbifold O; xp O3. As in
the case of spaces, a universal covering orbifold O is obtained by taking the inverse
limit over some suitable set representing all isomorphism classes of orbifolds. 0

The universal cover O of an orbifold O is automatically a regular cover: for any
preimage of Z of the base point * there is a deck transformation taking * to Z.

DEFINITION 13.2.5. The fundamental group m(O) of an orbifold O is the group
of deck transformations of the universal cover O.

The fundamental groups of orbifolds can be computed in much the same ways as
fundamental groups of manifolds. Later we shall interpret m1(O) in terms of loops
on O.

Here are two more definitions which are completely parallel to definitions for
manifolds.
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13. ORBIFOLDS

DEFINITION 13.2.6. An orbifold with boundary means a space locally modelled
on R"™ modulo finite groups and R’} modulo finite groups.

When X, is a topological manifold, be careful not to confuse dXo with 0O or
Xs0.

DEFINITION 13.2.7. A suborbifold Oy of an orbifold Oy means a subspace Xp, C
Xo, locally modelled on R? C R™ modulo finite groups.

Thus, a triangle orbifold has seven distinct “closed” one-dimensional suborbifolds,
up to isotopy: one S' and six mI’s.

Note that each of the seven is the boundary of a suborbifold with boundary (defined
in the obvious way) with universal cover D2 13.15

13.3. Two-dimensional orbifolds.

To avoid technicalities, we shall work with differentiable orbifolds from now on.

The nature of the singular locus of a differentiable orbifold may be understood
as follows. Let U = U /T be any local coordinate system. There is a Riemannian
metric on U invariant by I': such a metric may be obtained from any metric on U by
averaging under I'. For any point & € U consider the exponential map, which gives
a diffeomorphism from the € ball in the tangent space at & to a small neighborhood
of . Since the exponential map commutes with the action of the isotropy group of
Z, it gives rise to an isomorphism between a neighborhood of the image of Z in O,
and a neighborhood of the origin in the orbifold R™/T", where T is a finite subgroup
of the orthgonal group O,.

PROPOSITION 13.3.1. The singular locus of a two-dimensional orbifold has these
types of local models:

(i) The mirror: R?/Zy, where Zy acts by reflection in the y-axis.
(ii) Elliptic points of order n: R?/Z,,, with Z, acting by rotations.
(iii) Corner reflectors of order n: R?/D,,, with D, is the dihedral group of order
2n, with presentation

(a,b:a® =b*> = (ab)" = 1).

The generators a and b correspond to reflections in lines meeting at angle 7/n. 13.16
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13.3. TWO-DIMENSIONAL ORBIFOLDS.

-~

e

PROOF. These are the only three types of finite subgroups of O,. O

It follows that the underlying space of a two-dimensional orbifold is always a topo-
logical surface, possibly with boundary. It is easy to enumerate all two-dimensional
orbifolds, by enumerating surfaces, together with combinatorial information which
determines the orbifold structure. From a topological point of view, however, it is
not completely trivial to determine which of these orbifolds are good and which are
bad.

We shall classify two-dimensional orbifolds from a geometric point of view. When
G is a group of real analytic diffeomorphisms of a real analytic manifold X, then
the elementary properties of (G, X)-orbifolds are similar to the case of manifolds (see
§3.5). In particular a developing map

D:0— X

can be defined for a (G, X)-orbifold O. Since we do not yet have a notion of paths
in O, this requires a little explanation. Let {U;} be a covering of O by a collection of
open sets, closed under intersections, modelled on U; / T;, with U; C X, such that the
inclusion maps U; C U; come from isometries ¢;; : U, — U Choose a “base” chart
Uy. When Uy D U;, C Uy, D --- C Uy, is a chain of open sets (a simplicial path in
the one-skeleton of the nerve of {U;}), then for each choice of isometries of the form

~ Y0Pig,0 ~ VoPiq.ig

Uy — U, —>U<—---—>Um

one obtains an isometry of Um in X, obtained by composing the transition functions
(which are globally defined on X ). A covering space O of O is defined by the cov-
ering {(¢, p(U;))} € G x X, where ¢ is any isometry of U; obtained by the above
construction.

These are glued together by the obvious “inclusion” maps, (¢, oU;) — (¢, 9U;)
whenever 1! o ¢ is of the form ~; o @;; for some v; € T;.
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13. ORBIFOLDS

The reader desiring a picture may construct a “foliation” of the space {(x,y, g) |
x € X,y € Xo, gis the germ of a G-map between neighborhoods of x and y}. Any
leaf of this foliation gives a developing map.

PRrROPOSITION 13.3.2. When G is an analytic group of diffeomorphisms of a man-
ifold X, then every (G, X)-orbiifold is good. A developing map

D:0—X
and a holonomy homomorphism
H:m(0)—-G
are defined.

If G is a group of isometries acting transitively on X, then if O is closed or
metrically complete, it is complete (i.e., D is a covering map). In particular, if X is
simply connected, then O = X and 7;(O) is a discrete subgroup of G.

PROOF. See §3.5. O

Here is an example. Ay 34 has a Euclidean structure, as a 30°, 60°, 90° triangle. The
developing map looks like this:
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13.3. TWO-DIMENSIONAL ORBIFOLDS.

Here is a definition that will aid us in the geometric classification of two-dimen-
sional orbifolds.

DEFINITION 13.3.3. When an orbifold O has a cell-division of X such that each
open cell is in the same stratum of the singular locus (i.e., the group associated to
the interior points of a cell is constant), then the Fuler number x(O) is defined by

the formula
1

_ _ 1\dim(c;)
X(0) = 21"

Cq

where ¢; ranges over cells and |I'(¢;)| is the order of the group I'(¢;) associated to
each cell. The Euler number is not always an integer.

The definition is concocted for the following reason. Define the number of sheets
of a cover to be the number of preimages of a non-singular point.

PROPOSITION 13.3.4. If O — O is a covering map with k sheets, then

X(0) = kx(0).

PROOF. It is easily verified that the number of sheets of a cover can be computed
by the ratio

# sheets = Z (T2 /1T3]),

Zop(Z)=x
where x is any point. The formula [??7] for the Euler number of a cover follows
immediately. 0

As an example, a triangle orbifold Ay, n, ., has Euler number £ (3 (1/n;) — 1):
here +1 comes from the 2-cell, three —1’s from the edges, and 1/(2n;) from each
vertex.

Thus, Ay 35 has Euler number +1/60. Its universal cover is S?, with deck trans-
formations the group of symmetries of the dodecahedron. This group has order
120 = 2/(1/60). On the other hand, x(Az236) = 0 and x(Aq237) = —1/84. These
orbifolds cannot be covered by S2.

The general formula for the Euler number of an orbifold O with k corner reflectors

of orders nq,...,n; and [ elliptic points of orders myq,...,my is

13.3.4. X(0) = x(Xo) = 1> (1= 1/n;) =Y (1 —1/my).

Note in particular that x(O) < x(Xo), with equality if and only if O is the surface
xo or if O = myo.

Thurston — The Geometry and Topology of 3-Manifolds 311

13.19

13.20



13. ORBIFOLDS

If O is equipped with a metric coming from invariant Riemannian metrics on the
local models U, then one may easily derive the Gauss-Bonnet theorem,

13.3.5. / K dA =2mx(0).
o

One way to prove this is by excising small neighborhoods of the singular locus, and
applying the usual Gauss-Bonnet theorem for manifolds with boundary. For O to
have an elliptic, parabolic or hyperbolic structure, x(O) must be respectively positive,
zero or negative. If O is elliptic or hyperbolic, then area (O) = 27|x(O)].

THEOREM 13.3.6. A closed two-dimensional orbifold has an elliptic, parabolic or
hyperbolic structure if and only if it is good. An orbifold O has a hyperbolic structure
if and only if x(O) < 0, and a parabolic structure if and only if x(O) = 0. An orbifold 13.21
is elliptic or bad if and only if x(O) > 0.

All bad, elliptic and parabolic orbifolds are tabulated below, where

(N1, g m, .y y)
denotes an orbifold with elliptic points of orders ny,...,ny (in ascending order) and
corner reflectors of orders my,...,my (in ascending order). Orbifolds not listed are

hyperbolic.

e Bad orbifolds:

— Xo = 5% (n), (n1,ny) with ny < ns.

— Xo = D?* (;n), (;n1,n2) with n; < ny.
e Elliptic orbifolds:

— Xo=25% (), (n,n), (2,2,n), (2,3,3), (2,3,4), (2,3,5).

- Xo =D* (3), (5n,n), (52,2,n), (52,3,3), (;2,3,4), (52,3,5), (n;)
(2:m), (3:2).

— Xo=P2% (), (n).

e Parabolic orbifolds

— Xo = 5% (2,3,6), (2,4,4), (3,3,3), (2,2,2,2).

- Xo = D2- (:2,3,6), (52,4,4), (53,3,3), (;2,2,2,2), (2;2,2), (3;3),
(4:2), (252;).

- XO = ]PQZ (2,2)

- XO = T2I ( )

— Xo = Klein bottle: ()
— Xo = annulus: (;)

— Xo = Maébius band: ()
13.21.a
The universal covering space of D%;4,474) and 5(2474’4) : Wl(D%;4,4,4)) is generated by

reflections in the faces of one of the triangles. The full group of symmetries of this
tiling of H? is 71 (D75 44))-
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13.3. TWO-DIMENSIONAL ORBIFOLDS.

This picture was drawn with a computer by Peter Oppenheimer.

—o_ " W ———e
e

e~

PROOF. It is routine to list all orbifolds with non-negative Euler number, as in
the table. We have already indicated an easy, direct argument to show the orbifolds
listed as bad are bad; here is another. First, by passing to covers, we only need
consider the case that the underlying space is S?, and that if there are two elliptic
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points their orders are relatively prime. These orbifolds have Riemannian metrics of
curvature bounded above zero,

which implies (by elementary Riemannian geometry) that any surface covering them
must be compact. But the Euler number is either 1+ 1/n or 1/n; + 1/ng, which is
a rational number with numerator > 2.

Since no connected surface has an Euler number greater than 2, these orbifolds
must be bad.

QUESTION. What is the best pinching constant for Riemannian metrics on these
orbifolds?

All the orbifolds listed as elliptic and parabolic may be readily identified as the
quotient of S? or E? modulo a discrete group. The 17 parabolic orbifolds correspond
to the 17 “wallpaper groups.” The reader should unfold these orbifolds for himself,
to appreciate their beauty. Another pleasant exercise is to identify the orbifolds
associated with some of Escher’s prints.

Hyperbolic structures can be found, and classified, for orbifolds with negative Eu-
ler characteristics by decomposing them into primitive pieces, in a manner analogous
to our analysis of Teichmiiller space for a surface (§5.3). Given an orbifold O with
x(0O) < 0, we may repeatedly cut it along simple closed curves and then “mirror”
these curves (to remain in the class of closed orbifolds) until we are left with pieces
of the form below. (If the underlying surface is unoriented, then make the first cut
so the result is oriented.)
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Zn, Ln, Z"?—
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' 13.24
The orbifolds mP, A(,.y and D(,, »,.) (except the degenerate case Apso.y) and
( i) ( 1, 27) ( ) 7)
S(injnwg) have hyperbolic structures paremetrized by the lengths of their boundary

components. The proof is precisely analogous to the classification of shapes of pants

in §5.3; one decomposes these orbifolds into two congruent “generalized triangles”
(see §2.6).
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The orbifold D(Qm1 ) also can be decomposed into “generalized triangles,”

Dy D"W
Dn_;
D,,\} ’
Dy, '
Dmﬁ

for instance in the pattern above. One immediately sees that the orbifold has hy-
perbolic structures (provided y < 0) parametrized by the lengths of the cuts; that

is, (R,)"=3. Special care must be taken when, say, m; = my = 2. Then one of 1325
the cuts must be omitted, and an edge length becomes a parameter. In general any
disjoint set of edges with ends on order 2 corner reflectors can be taken as positive

real parameters, with extra parameters coming from cuts not meeting these edges:

My

The annulus with more than one corner reflector on one boundary component
should be dissected, as below, into D,y, . n,) and an annulus with two order two

corner reflectors. D?

(s ma,my) 18 analogous.
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Hyperbolic structures on an annulus with two order two corner reflectors on one
boundary component are parametrized by the length of the other boundary compo-

nent, and the length of one of the edges:

// Ql

(The two all right pentagons agree on a and b, so they are congruent; thus they are
determined by their edges of length l;/2 and [5/2). Similarly, D(Qn;2,2) is determined
by one edge length, provided n > 2. D(Zz;m) is not hyperbolic. However, it has a
degenerate hyperbolic structure as an infinitely thin rectangle, modulo a rotation of
order 2—or, an interval.

N\
A

This is consistent with the way in which it arises in considering hyperbolic structures,
in the dissection of D(QQ,m1 ) One can cut such an orbifold along the perpendicular
arc from the elliptic point to an edge, to obtain D(2;2,2,m1,...,ml)' In the case of an

annulus with only one corner reflector, 13.27

() " o

D(n;m)

Thurston — The Geometry and Topology of 3-Manifolds 317



13. ORBIFOLDS

note first that it is symmetric, since it can be dissected into an isosceles “triangle.”
Now, from a second dissection, we see hyperbolic structures are paremetrized by the
length of the boundary component without the reflector.

By the same argument, D(me) has a unique hyperbolic structure.
All these pieces can easily be reassembled to give a hyperbolic structure on O. [J

From the proof of 13.3.6 we derive

COROLLARY 13.3.7. The Teichmiiller space T(O) of an orbifold O with x(O) < 0
is homeomorphic to Euclidean space of dimension —3x(Xo) + 2k + [, where k is the
number of elliptic points and | is the number of corner reflectors.

PROOF. O can be dissected into primitive pieces, as above, by cutting along dis-
joint closed geodesics and arcs perpendicular to 0.Xo: i.e., one-dimensional hyperbolic
suborbifolds. The lengths of the arcs, and lengths and twist parameters for simple
closed curves form a set of parameters showing that T(O) is homeomorphic to Eu-
clidean space of some dimension. The formula for the dimension is verified directly
for the primitive pieces, and so for disjoint unions of primitive pieces. When two
circles are glued together, neither the formula nor the dimension of the Teichmiiller
space changes—two length parameters are replaced by one length parameter and one
first parameter. When two arcs are glued together, one length parameter is lost, and
the formula for the dimension decreases by one. O

13.4. Fibrations.

There is a very natural way to define the tangent space T'(O) of an orbifold O.
When the universal cover O is a manifold, then the covering transformations act on
T(O) by their derivatives. T(0) is then T(0)/m1(0). In the general case, O is made
up of pieces covered by manifolds, and the tangent space of O is pieced together from
the tangent space of the pieces. Similarly, any natural fibration over manifolds gives
rise to something over an orbifold.

DEFINITION 13.4.1. A fibration, E, with generic fiber F', over an orbifold O is an
orbifold with a projection

p:XE—>XO
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between the underlying spaces, such that each point x € O has a neighborhood
U = U/T (with U c R") such that for some action of I' on F, p~'(U) = U x F/T
(where I' acts by the diagonal action). The product structure should of course be
consistent with p: the diagram below must commute.

UxF — p_l(U )
U U

With this definition, natural fibrations over manifolds give rise to natural fibra-
tions over orbifolds.

The tangent sphere bundle T'S(M) is the fibration over M with fiber the sphere

of rays through O in T'(M). When M is Riemannian, this is identified with the unit
tangent bundle 7' (M).

PROPOSITION 13.4.2. Let O be a two-orbifold. If O is elliptic, then T1(O) is an
elliptic three-orbifold. If O is Euclidean, then T1(O) is Euclidean. If O is bad, then
TS(O) admits an elliptic structure.

PROOF. The unit tangent bundle 7} (S?) can be identified with the grup SO; by
picking a “base” tangent vector V and parametrizing an element g € SO3 by the
image vector Dg(Vp). SO3 is homeomorphic to P, and its universal covering group
os S3. This correspondence can be seen by regarding S® as the multiplicative group
of unit quaternions, which acts as isometries on the subspace of purely imaginary
quaternions (spanned by 4, j and k) by conjugation. The only elements acting trivially
are +1. The action of SOz on T;(S5?) = SOj3 corresponds to left translation so that
for an orientable O = S2/T', T1(0) = Ty(5?/T) = I'\SOs = I'\S? is clearly elliptic.
Here T is the preimage of I' in $3. (Whatever I' stands for, [ is generally called “the
binary I'”—e.g., the binary dodecahedral group, etc.)

When O is not oriented, then we use the model T}(S?) = O3/Z,, where Zs is
generated by the reflection r through the geodesic determined by V. Again, the
action of O3 on T1(S?) comes from left multiplication on O3/Z,. An element gr, with
g € SOs, thus takes ¢'Vp to grg'rVp. But rg'r = sg’s, where s € SOj3 is 180° rotation
of the geodesic through Vp, so the corresponding transformations of S3,

P S =y
vr\‘I g
1.3 b

> - . L b
S

g — (g5) 7 (3), are compositions of left and right multiplication, hence isometries.
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For the case of a Euclidean orbifold O, note that Ty E? has a natural product

structure as E? x S'. From this, a natural Euclidean structure is obtained on T} E?,
hence on T31(0).

The bad orbifolds are covered by orbifolds S(Zn) or S(thm). Then T'S(H), where
H is either hemisphere, is a solid torus, so the entire unit tangent space is a lens
space—hence it is elliptic. T'S (D(zm)), or TSD(Q;MM), is obtained as the quotient by
a Zo action on these lens spaces. O

As an example, T1(5?273’5)) is the Poincaré dodecahedral space. This follows im-

mediately from one definition of the Poincaré dodecahedral space as S® modulo the
binary dodecahedral group. In general, observe that 7'S(0?) is always a manifold if
O? is oriented; otherwise it has elliptic axes of order 2, lying above mirrors and con-
sisting of vectors tangent to the mirrors. In more classical terminology, the Poincaré
dodecahedral space is a Seifert fiber space over S? with three singular fibers, of type
(2,1), (3,1) and (5,1).

When O has the combinatorial type of a polygon, it turns out that Xrg(o) is S?,
with singular locus a certain knot or two-component link. There is an a priori reason
to suspect that Xpg(0) be S?, since m,0 is generated by reflections. These reflections

have fixed points when they act on T'S(O), so m(Xrg(0)) is the surjective image of
mTS(O). The image is trivial, since a reflection folds the fibers above its axis in half.
Every easily producible simply connected closed three-manifold seems to be S3. We

can draw the picture of T'S(O) by piecing.

Over the non-singular part of O, we have a solid torus. Over an edge, we have mI x I,
with fibers folded into m[; nearby figures go once around these mI’s. Above a corner
reflector of order n, the fiber is folded into m/. The fibers above the nearby edges
weave up and down n times, and nearby circles wind around 2n times.

320 Thurston — The Geometry and Topology of 3-Manifolds

13.31



13.4. FIBRATIONS.

Z

+3
o
"

|

13.32
When the pieces are assembled, we obtain this knot or link:

l{: Na L{.:ni 57-”3

5=Ny
J T3(0)
b 3
o S
k-2 dtuists

/

=0 2= ni

[

’3>Y)k =h;.\

My

When O is a Riemannian orbifold, this gives T} (O) a canonical flow, the geodesic
flow. For the Euclidean orbifolds with Xy a polygon, this flow is physically realized
(up to friction and spin) by the motion of a billiard ball. The flow is tangent to the
singular locus. Thus, the phase space for the familiar rectangular billiard table is S3:

o
—gp—
PRl el
/ o Q
g o
-~ ' L
There are two invariant annuli, with boundary the singular locus, corresponding to
trajectories orthogonal to a side. The other trajectories group into invariant tori.
Note the two-fold symmetry in the tangent space of a billiard table, which in the

picture is 180° rotation about the axis perpendicular to the paper. The quotient
orbifold is the same as example 13.1.5. 13.33
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; B S ~ _‘\\
%\ \' —:‘_ @

You can obtain many other examples via symmetries and covering spaces. For
instance, the Borromean rings above have a three-fold axis of symmetry, with quotient

orbifold:
X L/,,J @

We can pass to a two-fold cover, unwrapping around the Zjs elliptic axis, to obtain
the figure-eight knot as a Zjs elliptic axis.

This is a Euclidean orbifold, whose fundamental group is generated by order 3 rota-
tions in main diagonals of two adjacent cubes (regarded as fundamental domains for
example 13.1.5).

When O is elliptic, then all geodesics are closed, and the geodesic flow comes from
a circle action. It follows that 77 (O) is a fibration in a second way, by projecting to
the quotient space by the geodesic flow! For instance, the singular locus of Tl(D(227375))
is a torus knot of type (3,5):
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i

_E(S?a, %5) /

Therefore, it also fibers over 5(22’375). In general, an oriented three-orbifold which
fibers over a two-orbifold, with general fiber a circle, is determined by three kinds of
information:

(a) The base orbifold.

(b) For each elliptic point or corner reflector of order n, an integer 0 < k < n
which specifies the local structure. Above an elliptic point, the Z, action
on U x S! is generated by a 1/n rotation of the disk U and a k/n rotation
of the fiber S*. Above a corner reflector, the D, action on U x S! (with
S1 taken as the unit circle in R?) is generated by reflections of U in lines
making an angle of 7/n and reflections of S' in lines making an angle of
km/n.

(c) A rational-valued Euler number for the fibration. This is defined as the ob-
struction to a rational section—i.e., a multiple-valued section, with rational
weights for the sheets summing to one. (This is necessary, since there is not
usually even a local section near an elliptic point or corner reflector).

The Euler number for 7'S(0O) equals x(O). It can be shown that a fibration of non-
zero Euler number over an elliptic or bad orbifold is elliptic, and a fibration of zero
Euler number over a Euclidean orbifold is Euclidean.

13.5. Tetrahedral orbifolds.

The next project is to classify orbifolds whose underlying space is a three-manifold
with boundary, and whose singular locus is the boundary. In particular, the case
when Xo is the three-disk is interesting—the fundamental group of such an orbifold
(if it is good) is called a reflection group. It turns out that the case when O has
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the combinatorial type of a tetrahedron is quite different from the general case.
Geometrically, the case of a tetrahedron is subtle, although there is a simple way
to classify such orbifolds with the aid of linear algebra.

The explanation for this distinction seems to come from the fact that orbifolds of
the type of a simplex are non-Haken. First, we define this terminology.

A closed three-orbifold is irreducible if it has no bad two-suborbifolds and if every
two-suborbifold with an elliptic structure bounds a three-suborbifold with an elliptic
structure. Here, an elliptic orbifold with boundary is meant to have totally geodesic
boundary—in other words, it must be D3/T; for some I' C O3. (For a non-oriented
three-manifold,this definition entails being irreducible and P?-irreducible, in the usual
terminology.) Observe that any three-dimensional orbifold with a bad suborbifold
must itself be bad—it is conjectured that this is a necessary and sufficient condition
for badness. 13.36

30_1—'@? ELTD-

Frequently in three dimensions it is easy to see that certain orbifolds are good
but hard to prove much more about them. For instance, the orbifolds with singular
locus a knot or link in S? are always good: they always have finite abelian covers by
manifolds.

Each elliptic two-orbifold is the boundary of exactly one elliptic three-orbifold,
which may be visualized as the cone on it.

g
m PP
An incompressible suborbifold of a three-orbifold O, when Xy is oriented, is a
two-suborbifold O" C O with x(O’) < 0 such that every one-suborbifold O” C O’
which bounds an elliptic suborbifold of O — O’ bounds an elliptic suborbifold of O’.
O is Haken if it is irreducible and contains an incompressible suborbifold.

PROPOSITION 13.5.1. Suppose Xo = D3, o = 0D3. Then O is irreducible if
and only if:
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(a) The one-dimensional singular locus 3}, cannot be disconnected by the removal 13.37

of zero, one, or two edges, and
b) if the removal of v, 2 and v3 disconnects XL, then either they are incident
( gl g 0

to a commen vertex or the orders ni,ny and ns satisfy

1/711 + 1/712 + 1/713 < 1.

PROOF. For any bad or elliptic suborbifold O" C O, Xo must be a disk meeting
5 in 1,2 or 3 points. X separates Xo into two three-disks; one of these gives an
elliptic three-orbifold with boundary O’ if and only if it contains no one-dimensional
parts of X other than the edges meeting 0 Xo/. For any set E of edges disconnecting
%} there is a simple closed curve on dXo meeting only edges in F, meeting such an
edge at most once, and separating 3}, — E. Such a curve is the boundary of a disk in
X0, which determines a suborbifold. Any closed elliptic orbifold S™/T" of dimension
n > 2 can be suspended to give an elliptic orbifold S™*!/T" of dimension n + 1, via
the canonical inclusion O, 1 C O, 1. O

PROPOSITION 13.5.2. An orbifold O with Xo = D? and Yo = 0D? is Haken if
and only if it is irreducible, it is not the suspension of an elliptic two-orbifold and it
does not have the type of a tetrahedron.

PRrOOF. First, suppose that O satisfies the conditions. Let F' be any face of O,
that is a component of ¥y minus its one dimensional part. The closure F is a disk
or sphere, for otherwise O would not be irreducible. If F' is the entire sphere, then
O is the suspension of D(z; ) Otherwise, consider a curve vy going around just outside

F, and meeting only edges of ¥4, incident to F.

neS
é’eth\m“"g e
£ cqwpfesnd
- N

¥y
o-(\O‘ oé

If v meets no edges, then X}, = OF (since O is irreducible) and O is the suspension

of D?,n n)- The next case is that v meets two edges of order n; then they must really

be the same edge, and O is the suspension of an elliptic orbifold D(Qmmm). If ~
meets three edges, then v determines a “triangle” suborbifold D? ) of O. O

(sn1,m2,n3
cannot be elliptic, for then the three edges would meet at a point and O would have

the type of a tetrahedron. Since DQ,n1 namg) DS 1O non-trivial one-suborbifolds, it
is automatically incompressible, so O is Haken. If v meets four or more edges, then
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the two-suborbifold it determines is either incompressible or compressible. But if it
is compressible, then an automatically incompressible triangle suborbifold of O can

be constructed.
,i. ;
WL

If o determines a “compression,” then 0 determines a triangle orbifold.

The converse assertion, that suspensions of elliptic orbifolds and tetrahedral orb-
ifolds are not Haken, is fairly simple to demonstrate. In general, for a curve v on
0Xo to determine an incompressible suborbifold, it can never enter the same face
twice, and it can enter two faces which touch only along their common edge. Such a
curve is evidently impossible in the cases being considered. 0

There is a system of notation, called the Coxeter diagram, which is efficient for
describing n-orbifolds of the type of a simplex. The Coxeter diagram is a graph,
whose vertices are in correspondence with the (n — 1)-faces of the simplex. Each pair
of (n—1)-faces meet on an (n—2)-face which is a corner reflector of some order k. The
corresponding vertices of the Coxeter graph are joined by k—2 edges, or alternatively,
a single edge labelled with the integer k—2. The notation is efficient because the most
commonly occurring corner reflector has order 2, and it is not mentioned. Sometimes
this notation is extended to describe more complicated orbifolds with X, = D™ and
Yo C 0D™, by using dotted lines to denote the faces which are not incident. However,
for a complicated polyhedron—even the dodecahedron—this becomes quite unwieldy.

The condition for a graph with n + 1 vertices to determine an orbifold (of the
type of an n-simplex) is that each complete subgraph on n vertices is the Coxeter
diagram for an elliptic (n — 1)-orbifold.

Here are the Coxeter diagrams for the elliptic triangle orbifolds:
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THEOREM 13.5.3. Every n-orbifold of the type of a simplex has either an elliptic,
FEuclidean or hyperbolic structure. The types in the three-dimensional case are listed

below:

F .0, M, [nzo,m20]

4+ . ——r W + -_-<
b e —_— * :[j

T « [T o —
SO -

S G < l - .’_g
e T

M= 0

D <> —
e~ M
F RS - L

-

This statement may be slightly generalized to include non-compact orbifolds of
the combinatorial type of a simplex with some vertices deleted.
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THEOREM 13.5.4. Every n-orbifold which has the combinatorial type of a simplex
with some deleted vertices, such that the “link” of each deleted vertex is a Fuclidean
orbifold, and whose Cozeter diagram is connected, admits a complete hyperbolic struc-
ture of finite volume. The three-dimensional examples are listed below:

—
—

|

g8

=

s @
o

!

a8

PrROOF OF 13.5.3 AND 13.5.4. The method is to describe a simplex in terms of
the quadratic form models. Thus, an n-simplex ¢” on S™ has n + 1 hyperfaces. Each
face is contained in the intersection of a codimension one subspace of E"*! with S™.

Let Vp,...,V, be unit vectors orthogonal to these subspaces in the direction away
from ¢™. Clearly, the V; are linearly indpendent. Note that V; - V; = 1, and when
i # 7, V-V, = —cosaj, where a;; is the angle between face ¢ and face j. Similarly,

each face of an n-simplex in H™ contained in the intersection of a subspace of E™!
with the sphere of imaginary radius X7 +---+ X2 — X2 | = —1 (with respect to the
standard inner product X -Y =>"" | X;-Y; — X,,41 - Y41 on E™). Outward vectors
Vo, ..., V, orthogonal to these subspaces have real length, so they can be normalized
to have length 1. Again, the V; are linearly independent and V; - V; = — cos a;; when
1 # j. For an m-simplex ¢" in Euclidean n-space, let Vp,...,V,, be outward unit
vectors in directions orthogonal to the faces on ¢”. Once again, V; - V; = — cos ;.
Given a collection {e;;} of angles, we now try to construct a simplex. For the
matrix M of presumed inner products, with I’'s down the diagonal and — cos a;;’s off
the diagonal. If the quadratic form represented by M is positive definite or of type
(n,1), then we can find an equivalence to E""! or E™!  which sends the basis vectors
to vectors Vp,...,V, having the specified inner product matrix. The intersection
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of the half-spaces X - V; < O is a cone, which must be non-empty since the {V;}
are linearly independent. In the positive definite case the cone intersects S™ in a
simplex, whose dihedral angles (3;; satisfy cos 3;; = cos c;, hence 3;; = a;;. In the
hyperbolic case, the cone determines a simplex in RP", but the simplex may not be
contained in H™ C RP". To determine the positions of the vertices, observe that
each vertex v; determines a one-dimensional subspace, whose orthogonal subspace is
spanned by Vo, ..., V;, ..., Vu. The vertex v; is on H", on the sphere at infinity, or
outside infinity according to whether the quadratic form restricted to this subspace
is positive definite, degenerate, or of type (n — 1,1). Thus, the angles {«a;;} are the
angles of an ordinary hyperbolic simplex if and only if M has type (n,1), and for
each i the submatrix obtained by deleting the ith row and the corresponding column
is positive definite. They are the angles of an ideal hyperbolic simplex (with vertices
in H" or S1) if and only if all such submatrices are either positive definite, or have
rank n — 1.

By similar considerations, the angles {c;} are the angles of a Euclidean n-simplex
if and only if M is positive semidefinite of rank n.

When the angles {o;;} are derived from the Coxeter diagram of an orbifold,
then each submatrix of M obtained by deleting the i-th row and the i-th column
corresponds to an elliptic orbifold of dimension n — 1, hence it is positive definite.
The full matrix must be either positive definite, of type (n, 1) or positive semidefinite
with rank n. It is routine to list the examples in any dimension. The sign of the
determinant of M is a practical invariant of the type. We have thus proven theorem
13.5.

In the Euclidean case, it is not hard to see that the subspace of vectors of zero
length with respect to M is spanned by (ay, . . ., a,), where a; is the (n—1)-dimensional
area of the i-th face of o.

To establish 13.5.4, first consider any submatrix M; of rank n—1 which is obtained
by deleting the i-th row and i-th column (so, the link of the i-th vertex is Euclidean).
Change basis so that M; becomes

-1 0
1
_O O_
using (ag, ..., a4, ...,a,) as the last basis vector. When the basis vector V; is put

back, the quadratic form determined by M becomes
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- =
1 0
0 1
Q] =C

AN =C
where —C'= =) inji @i COS @vjj 1s negative since the Coxeter diagram was supposed
to be connected. It follows that M has type (n, 1), which implies that the orbifold is
hyperbolic. 0

13.6. Andreev’s theorem and generalizations.

There is a remarkably clean statement, due to Andreev, describing hyperbolic
reflection groups whose fundamental domains are not tetrahedra.

THEOREM 13.6.1 (Andreev, 1967). (a) Let O be a Haken orbifold with
Xo=D3 ¥,=0D3

Then O has a hyperbolic structure if and only if O has no incompressible
Fuclidean suborbifolds.

(b) If O is a Haken orbifold with Xo = D?—(finitely many points) and Yo =
0Xo, and if a neighborhood of each deleted point is the product of a Eu-
clidean orbifold with an open interval, (but O itself is not such a product)
then O has a complete hyperbolic structure with finite volume if and only
if each incompressible Euclidean suborbifold can be isotoped into one of the
product neighborhoods.

The proof of 13.6.1 will be given in §77.

COROLLARY 13.6.2. Let v be any graph in R?, such that each edge has distinct
ends and no two vertices are joined by more than one edge. Then there is a packing of
circles in R? whose nerve is isotopic to v. If v is the one-skeleton of a triangulation
of S, then this circle packing is unique up to Moebius transformation.

A packing of circles means a collection of circles with disjoint interiors. The nerve
of a packing is then a graph, whose vertices correspond to circles, and whose edges
correspond to pairs of circles which intersect. This graph has a canonical embedding
in the plane, by mapping the vertices to the centers of the circles and the edges to
straight line segments which will pass through points of tangency of circles.
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13.45

PROOF OF 13.6.2. We transfer the problem to S? by stereographic projection.
Add an extra vertex in each non-triangular region of S? — v, and edges connecting

it to neighboring vertices, so that v becomes the one-skeleton of a triangulation T" of
S2.
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Let P be the polyhedron obtained by cutting off neighborhoods of the vertices of T,
down to the middle of each edge of T'.
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- - - _— ————— ~

T

Let O be the orbifold with underlying space
Xo = D3-vertices of P, and Zlo = edges of P,

each modelled on R3/D,. For any incompressible Euclidean suborbifold O’, 90X,
must be a curve which circumnavigates a vertex. Thus, O satisfies the hypotheses of
13.6.1(b), and O has a hyperbolic structure. This means that P is realized as an ideal
polyhedron in H?, with all dihedral angles equal to 90°. The planes of the new faces
of P (faces of P but not T) intersect S in circles. Two of the circles are tangent
whenever the two faces meet at an ideal vertex of P. This is the packing required
by 13.6.2. The uniqueness statement is a consequence of Mostow’s theorem, since
the polyhedron P may be reconstructed from the packing of circles on S2.. To make
the reconstruction, observe that any three pairwise tangent circles have a unique
common orthogonal circle. The set of planes determined by the packing of circles
on S2 , together with extra circles orthogonal to the triples of tangent circles coming
from vertices of the triangular regions of S? — cut out a polyhedron of finite volume
combinatorially equivalent to P, which gives a hyperbolic structure for O. U
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13.6. ANDREEV’S THEOREM AND GENERALIZATIONS.

REMARK. Andreev also gave a proof of uniqueness of a hyperbolic polyhedron
with assigned concave angles, so the reference to Mostow’s theorem is not essential.

COROLLARY 13.6.3. Let T be any triangulation of S*. Then there is a convex
polyhedron in R3, combinatorially equivalent to T whose one-skeleton is circumscribed
about the unit sphere (i.e., each edge of T is tangent to the unit sphere). Furthermore,
this polyhedron is unique up to a projective transformation of R® C P3 which preserves
the unit sphere.

ProoOF oOF 13.6.3. Construct the ideal polyhedron P, as in the proof of 13.6.2.
Embed H? in P, as the projective model. The old faces of P (coming from faces of
T) form a polyhedron in P2, combinatorially equivalent to T'. Adjust by a projective
transformation if necessary so that this polyhedron is in R3. (To do this, transform
P so that the origin is in its interior.) U

REMARKS. Note that the dual cell-division 7™ to T is also a convex polyhedron
in R3, with one-skeleton of T circumscribed about the unit sphere. The intersection
TNT*=P.

These three polyhedra may be projected to R? C P3, by stereogrpahic projection,
from the north pole of S* C P2. Stereographic projection is conformal on the tangent
space of S?, so the edges of T* project to tangents to these circles. It follows that the
vertices of T project to the centers of the circles. Thus, the image of the one-skeleton
of T is the geometric embedding in R? of the nerve ~ of the circle packing.

The existence of other geometric patterns of circles in R? may also be deduced
from Andreev’s theorem. For instance, it gives necessary and sufficient condition for
the existence of a family of circles meeting only orthogonally in a certain pattern, or
meeting at 60° angles.

One might also ask about the existence of packing circles on surfaces of constant
curvature other than S2. The answers are corollaries of the following theorems:

Thurston — The Geometry and Topology of 3-Manifolds 333

13.48



13. ORBIFOLDS

THEOREM 13.6.4. Let O be an orbifold such that Xo =~ T* x [0,00), (with some
vertices on T? x O having Euclidean links possibly deleted) and Yo = 0Xo. Then O
admits a complete hyperbolic structure of finite volume if and only if it is irreducible,

and every incompressible complete, proper Euclidean suborbifold is homotopic to one
of the ends.

(Note that mS* x [0, o) is a complete Euclidean orbifold, so the hypothesis implies
that every non-trivial simple closed curve on 90X, intersects X}.)

THEOREM 13.6.5. Let M? be a closed surface, with x(M?*) < 0. An orbifold
O such that Xo = M? x [0,1] (with some vertices on M?* x 0 having Fuclidean
links possibly deleted), Yo = 0Xo and X, C M?* x O. Then O has a hyperbolic
structure if and only if it is irreducible, and every incompressible Fuclidean suborbifold
1s homotopic to one of the ends.

By considering m O, O as in 13.6.4, as a Kleinian group in upper half space with
T? x 00 at 0o, 13.6.4 may be translated into a statement about the existence of doubly
periodic families of circles in the plane, or 13.48.a
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13.49
families of circles on flat toruses. Similarly, 13.6.5 is equivalent to a statement about
families of circles in hyperbolic structures for M?; in fact, since M? x 1 has no one-
dimensional singularities, it must be totally geodesic in any hyperbolic structure, so
m1M? acts as a Fuchsian group. The face planes of M? x O give rise to a family of
circles in the northern hemisphere of S2 . invariant by this Fuchsian group, so each
face corresponds to a circle in the hyperbolic structure for M2

Theorems 13.6.1, 13.6.4 and 13.6.5 will be proved in the next section, by studying
patterns of circles on surfaces.

In example 13.1.5 we saw that the Borromean rings are the singular locus for
a Euclidean orbifold, in which they are elliptic axes of order 2. With the aid of
Andreev’s theorem, we may find all hyperbolic orbifolds which have the Borromean
rings as singular locus. The rings can be arranged so they are invariant by reflection
in three orthogonal great spheres in S3. (Compare p. 13.4.)

Thus, an orbifold O having the rings as elliptic axes of orders k, [ and m is an
eight-fold covering space of another orbifold, which has the combinatorial type of a
cube.

13.50
By Andreev’s theorem, such an orbifold has a hyperbolic structure if and only if &,

[ and m are all greater than 2. If k is 2, for example, then there is a sphere in

S3 separating the elliptic axes of orders [ and m and intersecting the elliptic axis

of order 2 in four points. This forms an incompressible Euclidean suborbifold of O,
which breaks O into
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13.7. CONSTRUCTING PATTERNS OF CIRCLES.

two halves, each fibering over two-orbifolds with boundary, but in incompatible ways

(unless [ or m is 2).
Z@a 5@-21

Base spaces of the fibrations

When k£ =1 = m = 4, the fundamental domain, as in example 13.1.5, for m O
acting on H3 is a regular right-angled dodecahedron.

Any of the numbers k, [ or m can be permitted to take the value oo in this
discussion, to denote a parabolic cusp. When [ = m = oo, for instance, then O has
a k-fold cover which is the complement of the untwisted 2k-link chain Dy of 6.8.7.

13.7. Constructing patterns of circles.

We will formulate a precise statement about patterns of circles on surfaces of
non-positive Euler characteristic which gives theorems 13.6.4 and 13.6.5 as immediate
consequences.

THEOREM 13.7.1. Let S be a closed surface with x(S) < 0. Let T be a cell-division
of S into cells which are images of immersions of triangles and quadrangles which
lift to embeddings in S. Let © : & — [0, 7/2] (where € denotes the set of edges of T)
be any function satisfying the conditions below:

(i) ©(e) = /2 if e is an edge of a quadrilateral of T.
(i) If e1,eq,e3[e; € &) form a null-homotopic closed loop, and if 3>, ©(e;) >
m, then these three edges form the boundary of a triangle of T.
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(iii) If ey, 9, e3, €4 form a null-homotopic closed loop and if Z?Zl O(e;) =2 (&
O(e;) = m/2), then the e; form the boundary of a quadrilateral or of the
union of two adjacent triangles.

Then there is a metric of constant curvature on S, uniquely determined up to a
scalar multiple, a uniquely determined geometric cell-division of S isotopic to T so
that the edges are geodesics, and a unique family of circles, one circle C, for each
verter v of T, so that C,, and C,, intersect at a positive angle if and only if vi and
vy lie on a common edge. The angles in which C,, and C,, meet are determined by
the common edges: there is an intersection point of C,, and C,, in a two-cell o if and
only if vi and vy are vertices of o. If o is a quadrangle and vy and vy are diagonally
opposite, then C,, is tangent to C,,; otherwise, they meet at an angle of ©(e), where
e is the edge joining them in o.

PRrOOF. First, observe that quadrangles can be eliminated by subdivision into
two triangles by a new edge e with ©(e) = 0.

A
18 T
o N
™
3

There is an extraneous tangency of circles here—in fact, all extraneous tangencies
come from this situation. Henceforth, we assume 7 has no quadrangles. The idea
is to solve for the radii of the circles C,,. Given an arbitrary set of radii, we shall
construct a Riemannian metric on S with cone type singularities at the vertices of
7, which has a family of circles of the given radii meeting at the given angles. We
adjust the radii until S lies flat at each vertex. Thus, the proof is closely analogous
to the idea that one can make a conformal change of any given Riemannian metric
on a surface until it has constant curvature. Observe that a conformal map is one
which takes infinitesimal circles to infinitesimal circles; the conformal factor is the
ratio of the radii of the target and source circles.

LEMMA 13.7.2. For any three non-obtuse angles 01,05 and 63 € [0,7/2] and any
three positive numbers Ry, Ry, and Rs, there is a configuration of 3 circles in both hy-
perbolic and Euclidean geometry, unique up to isometry, having radii R; and meeting
in angles 0;.

338 Thurston — The Geometry and Topology of 3-Manifolds

13.52
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at

ProOOF OF LEMMA. The length [, of a side of the hypothetical triangle of centers
of the circles is determined as the side opposite the obtuse angle m — 6, in a triangle
whose other sides are R; and R;. Thus, sup(R;, R;) < I < R, + R;. The three
numbers [,ly and [3 obtained in this way clearly satisfy the triangle inequalities
lp < l; +1;. Hence, one can construct the appropriate triangle, which gives the
desired circles. U

Proof of 13.7.1, continued. Let 'V denote the set of vertices of 7. For every element
R € RY (i.e., if we choose a radius for the circle about each vertex), there is a singular
Riemannian metric, which is pieced together from the triangles of centers of circles
with given radii and angles of intersetcion as in 13.7.2. The triangles are taken in
H? or E? depending on whether x(S) < 0 or x(S) = 0. The edge lengths of cells of
7 match whenever they are glued together, so we obtain a metric, with singularities
only at the vertices, and constant curvature 0 or —1 everywhere else.

The notion of curvature can easily be extended to Riemannian surfaces with
certain sorts of singularities. The curvature form Kda becomes a measure s on such
a surface. Tailors are of necessity familiar with curvature as a measure. Thus, a seam
has curvature (ki — ks) - p, where p is one-dimensional Lebesgue measure and k; and
ko are the geodesic curvatures of the two halves.
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\

A

(The effect of gathering is more subtle—it is obtained by putting two lines infinitely
close together, one with positive curvature and one with balancing negative curvature.
Another instance of this is the boundary of a lens.)

More to the point for us is the curvature concentrated at the apex of a cone: it
is 2 — «, where « is the cone angle (computed by splitting the cone to the apex
and laying it flat). It is easy to see that this is the unique value consistent with the
Gauss-Bonnet theorem.

Formally, we have a map

F:RY - R".
Given an element R € RK, we construct the singular Riemannian metric on S, as
above; F'(R) describes the discrete part of the curvature measure kg on S, in other
words, F(R)(v) = kg(v). Our problem is to show that O is in the image of F', for
then we will have a non-singular metric with the desired pattern of circles built in.

When x(S) = 0, then the shapes of the Euclidean triangles do not change when
we multiply R by a constant, so F'(R) also does not change. Thus we may as well
normalize so that Y., ., R(v) = 1. Let A C RY be this locus—A is the interior of
the standard |V| — 1 simplex. Observe, by the Guass-Bonnet theorem, that

> kr(v) =0.
veV
Let Z C RY be the locus defined by this equation.

If x(S) < 0, then changing R by a constant does make a difference in . In this
case, let A C RX denote the set of R such that the associated metric on S has total
area 27 |x(S)|. By the Gauss-Bonnet theorem, A = F~1(Z) (with Z as above). As
one can easily believe, A intersects each ray through O in a unique point, so A is a
simplex in this case also. This fact is easily deduced from the following lemma, which
will also prove the uniqueness part of 13.7.1:

LEMMA 13.7.3. Let Cy,Cy and C5 be circles of radii Ry, Ry and Rs in hyperbolic
or Fuclidean geometry, meeting pairwise in non-obtuse angles. If Cy and C5 are held
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constant but Cy is varied in such a way that the angles of intersection are constant

but Ry decreases, then the center of Cy moves toward the interior of the triangle of
centers.

[ Ca
\
\

: C X

13.56
Thus we have

day Oy das
— <0 —= >0 — >0
o0R, " OR, T OR, ’

where the a; are the angles of the triangle of centers.

Proor or 13.7.3. Consider first the Euclidean case. Let [;, s and [3 denote the

lengths of the sides of the triangle of centers. The partial derivatives 0ly/OR; and
Ol3/OR; can be computed geometrically.

If v; denotes the center of Cp, then dv;/OR; is determined as the vector whose
orthogonal projections sides 2 and 3 are dly/OR; and 0l3/0R;. Thus,

81)1
R, —%
' OR,

is the vector from v; to the intersection of the lines joining the pairs of intersection

points of two circles.
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13.57
When all angles of intersection of circles are acute, no circle meets the opposite
side of the triangle of centers:

max Ry 3 [ maxky

G \of

(o)
s By

C5 meets 17705 =— (7 and Cy don’t meet.

It follows that dv;/OR; points to the interior of Awvjvyvs.
The hyperbolic proof is similar, except that some of it takes place in the tangent
space to H? at v;. O

Continuation of proof of 13.7.1. From lemma 13.7.3 it follows that when all three
radii are increased, the new triangle of centers can be arranged to contain the old
one. Thus, the area of S is monotone, for each ray in RK. The area near 0 is near
0, and near oo is near m X (# triangles + 2# quadrangles); thus the ray intersects
A = F~Y(Z) in a unique point.

It is now easy to prove that F'is an embedding of A in Z. In fact, consider any two
distinct points R and R’ € A. Let V= C V be the set of v where R'(v) < R(v). Clearly
V= is a proper subset. Let 7y- be the subcomplex of 7 spanned by V~. (7y- consists
of all cells whose vertices are contained in V7). Let Sy- be a small neighborhood of
Ty-. We compare the geodesic curvature of Sy~ in the two metrics. To do this, we
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may arrange 0Sy- to be orthogonal to each edge it meets. Each arc of intersection
of 0Sy- with a triangle having one vertex in V~ contributes approximately «; to the
total curvature, while each arc of intersection with a triangle having two vertices in
V= contributes approximately 5; + v; — 7.

In view of 13.7.3, an angle such as «; increases in the R’ metric. The change in
(1 and ~y; is unpredictable. However, their sum must increase: first, let R; and Rs
decrease; m — 01 — (1 + (B2), which is the area of the triangle in the hyperbolic case,
decreases or remains constant but d; also decreases so (3; + 7, must increase. Then
let R3 increase; by 13.7.3, 31 and 7, both increase. Hence, the geodesic curvature of
0Sy- increases.

From the Gauss-Bonnet formula,

Z k(v) = /as dyds — /s K dA+ 2mx(Sv)
% %

veEV—

it follows that the total curvature at vertices in V~ must decrease in the R’ metric.
(Note that the area of Sy- decreases, so if k& = —1, the second term on the right
decreases.) In particular, F(R) # F'(R'), which shows that F' is an embedding of A.

The proof that O is in the image of F' is based on the same principle as the
proof of uniqueness. We can extract information about the limiting behavior of F' as
R approaches OA by studying the total curvature of the subsurface Syo, where V¢
consists of the vertices v such that R(v) is tending toward O. When a triangle of 7
has two vertices in V° and the third not in V©, then the sum of the two angles at
vertices in V© tends toward .
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13.59

The proof that O is in the image of F 1is based on the same principle as
the proof of umiqueness. We can extract information about the limiting behaviour
of F as R approaches QA by studying the total curvature of the subsurface
S_UO s wWhere 70 consists of the vertices v such that R(v) is tending toward
O . When s triangle of T has two vertices in VO and the third not in ¥° :

then the sum of the two angles at vertices in -2/0 tends toward m .

e — - =z
When a trilangle of T has only one vertex in 7'/ s then the angle }t that vertex

tends toward the value 7 - 8(e) , where e is the opposite edge), Thus, the

T

total curvature of BS‘U'O tends toward the value )_‘ (r - o(e)) , where

\ eeL(-ruo)

." "
L(-rvo) is the "link of Tgo
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When a triangle of 7 has only one vertex in V©, then the angle at that vertex tends
toward the value 7 — O(e), where e is the opposite edge. Thus, the total curvature
of 0Syo tends toward the value

Z (7T — @(e)),

EEL(TV())

where L(7yo) is the “link of 7yo.”
The Gauss-Bonnet formula gives

Lim Z k(v) = — Z (m —0O(e)) + 2mx(Syo) < 0.

veVO e€L(t,0)

(Note that area (Syo) — 0.) To see that the right hand side is always negative, it
suffices to consider the case that Tyo is connected. Unless myo has Fuler characteristic
one, both terms are non-positive, and the sum is negative. If L(7yo) has length 5 or
more, then
Z T —0O(e) > e,
e€L(ry,0)

so the sum is negative. The cases when L(7yo) has length 3 or 4 are dealt with in
hypotheses (ii) and (iii) of theorem 13.7.1.

When V' is any proper subset of VO and R € A is an arbitrary point, we also
have an inequality

> kr) > = Y (7m—0(e)) + 2mx(Sv).

veV e€L(Tyr)

This may be deduced quickly by comparing the R metric with a metric R in which
R'(V') is near 0. In other words, the image F'(A) is contained in the interior of the
polyhedron P C Z defined by the above inequalities. Since F'(A) is an open set
whose boundary is 0P, F(A) = interior (P). Since O € int(P), this completes the
proof of 13.7.1, and also that of 13.6.4, and 13.6.5. 0

REMARKS. This proof was based on a practical algorithm for actually construct-
ing patterns of circles. The idea of the algorithm is to adjust, iteratively, the radii of
the circles. A change of any single radius affects most strongly the curvature at that
vertex, so this proces converges reasonably well.

The patterns of circles on surfaces of constant curvature, with singularities at
the centers of the circles, have a three-dimensional interpretation. Because of the
inclusions isom(H?) C isom(H?) and isom(E?) C isom(H?), there is associated with
such a surface S a hyperbolic three-manifold Mg, homeomorphic to S x R, with cone
type singularities along (the singularities of S) x R. Each circle on S determines a
totally geodesic submanifold (a “plane”) in Mg. These, together with the totally
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geodesic surface isotopic to S when S is hyperbolic, cut out a submanifold of Mg
with finite volume—it is an orbifold as in 13.6.4 or 13.6.5 but with singularities along
arcs or half-lines running from the top to the bottom.

COROLLARY 13.7.4. Theorems 13.6.4 and 13.6.5 hold when S is a Fuclidean or
hyperbolic orbifold, instead of a surface. (The orbifold O is to have only singularities
as in 13.6.4 or 13.6.5, plus (singularities of S) x I or (singularities of S) x [0,00).)

PROOF. Solve for pattern of circles on S in a metric of constant curvature on S—
the underyling surface of S will have a Riemannian metric with cone type singularities
of curvature 27(1/n — 1) at elliptic points of S, and angles at corner reflectors of S.

An alternative proof is to find a surface S which is a finite covering space of the
orbifold S, and find a hyperbolic structure for the corresponding covering space O
of O. The existence of a hyperbolic structure for O follows from the uniqueness of

the hyperbolic structure on O thence the invariance by deck transformations of O
over O. ]

13.8. A geometric compactification for the Teichmiiller spaces of
polygonal orbifolds

We will construct hyperbolic structures for a much greater variety of orbifolds by
studying the quasi-isometric deformation spaces of orbifolds with boundary whose
underlying space is the three-disk. In order to do this, we need a description of the
limiting behavior of conformal structure on its boundary. We shall focus on the case
when the boundary is a disjoint union of polygonal orbifolds. For this, the greatest
clarity is attained by finding the right compactifications for these Teichmiiller spaces.

When M is an orbifold, M| . is defined to consist of points x in M such that
the ball of radius €/2 about z has a finite fundamental group. Equivalently, no loop
through x of length < € has infinite order in m (M). M is defined similarly. It does
not, in general, contain a neighborhood of the singular locus. With this definition, it
follows (as in §5) that each component of Mg is covered by a horoball or a uniform
neighborhood of an axis, and its fundamental group contains Z or Z & Z with finite
index.

In 85 we defined the geometric topology on sequences of hyperbolic three-mani-
folds of finite volume. For our present purpose, we want to modify this definition
slightly. First, define a hyperbolic structure with nodes on a two-dimensional orbifold
O to be a complete hyperbolic structure with finite volume on the complement of
some one-dimensional suborbifold, whose components are the nodes. This includes
the case when there are no nodes. A topology is defined on the set of hyperbolic
structures with nodes, up to diffeomorphisms isotopic to the identity on a given
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surface, by saying that M; and M, have distance < ¢ if there is a diffeomorphism
of O [isotopic to the identity] whose restriction to Mij¢ o) is a (e°)-quasi-isometry to
My o0y Here, € is some fixed, small number.

REMARK. The related topology on hyperbolic structures with nodes up to dif-
feomorphism on a given surface is always compact. (Compare Jorgensen’s theorem,
5.12, and Mumford’s theorem, 8.8.3.) This gives a beautiful compactification for
the modular space T(M)/ Diff (M), which has been studied by Bers, Earle and Mar-
den and Abikoff. What we shall do works because a polygonal orbifold has a finite
modular group.

For any two-dimensional orbifold O with x(O) < 0, let N(O) be the space of all
hyperbolic structures with nodes (up to isotopy) on O.

THEOREM 13.8.1. When P is an n-gonal orbifold, N(P) is homeomorphic to the
(closed) disk, D™3, with interior T(P). It has a natural cell-structure with open cells
parametrized by the set of nodes (up to isotopy).

Here are the three simplest examples.

If P is a quadrilateral, then T(P) is R. There are two possible nodes. N(P) looks
like this:

— = I I )

NP

If there are two adjacent order 2 corner reflectors, the qualitative picture must be
modified appropriately. For instance,

N .
¥ l[( 4 —‘A
> oo o Y
2 * *
D? p - B

NP

When P is a pentagon, T(P) is R%. There are five possible nodes, and the cell-
structure is diagrammed below:
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ne)

When there is only one node, the pentagon is pinched into a quadrilateral and a
triangle, so there is still one degree of freedom.
When P is a hexagon, there are 9 possible nodes.

=

Each single node pinches the hexagon into a pentagon and a triangle, or into two
quadrilaterals, so its associated 2-cell is a pentagon or a square. The cell division of
dD? is diagrammed below:

(The zero and one-dimensional cells are parametrized by the union of the nodes of 13.65
the incident 2-cells.)

PROOF OF 13.8.1. It is easy to see that N(P) is compact by familiar arguments,
as in 5.12 and 8.8.3, for instance. In fact, choose e sufficiently small so that P
is always a disjoint union of regular neighborhoods of short arcs. Given a sequence
{P,;}, we can pass to a subsequence so that the core one-orbifolds of the components
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of Py, are constant. Extend this system of arcs to a maximal system of disjoint
geodesic arcs {aq,...,ar}. The lengths of all such arcs remain bounded in {P;}
(this follows from area considerations), so there is a subsequence so that all lengths
converge—possibly to zero. But any set of {l(a;)|l(a;) > 0} defines a hyperbolic
structure with nodes, so our sequence converges in N(P).

Furthermore, we have described a covering of N(P) by neighborhoods diffeomor-
phic to quadrants, so it has the structure of a manifold with corners. Change of
coordinates is obviously differentiable. Each stratum consists of hyperbolic struc-
tures with a prescribed set of nodes, so it is diffeomorphic to Euclidean space (this
also follows directly from the nature of our local coordinate systems.)

Theorem 13.8.1 follows from this information. Here is a little overproof. An
explicit homeomorphism to a disk can be constructed by observing that PL(P)* has
a natural triangulation, which is dual to the cell structure of ON(P). This arises
from the fact that any simple geodesic on P must be orthogonal to the mirrors, so
a geodesic lamination on P is finite. The simplices in PL(P) are measures on a
maximal family of geodesic one-orbifolds.

A projective structure for PL(P)—that is, a piecewise projective’ homeomor-
phism to a sphere—can be obtained as follows (compare Corollary 9.7.4). The set
of geodesic laminations on P is in one-to-one correspondence with the set of cell
divisions of P which have no added vertices. Geometrically, in fact, a geometric
lamination extends in the projective (Klein) model to give a subdivision of the dual

polygon.

Take the model P now to be a regular polygon in R? C R?. Let V be the vertex
set. For any function f : V — R, let C; be the convex hull of the set of points

For definition, and other information, see p. 8.58
$See remark 9.5.9.
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obtained by moving each vertex v of P to a height f(v) (positive or negative along
the perpendicular to R? through v). The “top” of C} gives a subdivision of P.
The nature of this subdivision is unchanged if a function which extends to an affine
function from R? to R is added to f. Thus, we have a map RY /R — GL(P). To lift
the map to measured laminations, take the directional derivative at O of the bending
measure for the top of the convex hull, in the direction f. The global description of
this map is that a function f is associated to the measure which assigns to each edge
e of the bending locus the change in slope of the intersection of the faces adjacent to
e with a plane perpendicular to e.

It is geometrically clear that we thus obtain a piecewise linear homeomorphism,
e: ML(P)~ RV —0.

The set of measures which assigns a maximal value of 1 to an edge gives a realization
of PL(P) as a convex polyhedral sphere @ in RY™3. The dual polyhedron Q*—
which is, by definition, the set of vectors X € RY 3 such that Supyeq X - Y = 1-—1is
the boundary of a convex disk, combinatorially equal to N(P). This seems explicit
enough for now. O

13.9. A geometric compactification for the deformation spaces of certain
Kleinian groups.

Let O be an orbifold with underlying space Xo = D3, Yo C 9D3, and 0%p a
union of polygons.

We will use the terminology Kleinian structure on O to mean a diffeomorphism
of O to a Kleinian manifold B® — Ly /T", where T' is a Kleinian group.

In order to describe the ways in which Kleinian structures on O can degenerate,
we will also define the notion of a Kleinian structure with nodes on O. The nodes
are meant to represent the limiting behavior as some one-dimensional suborbifold
S becomes shorter and shorter, finally becoming parabolic. We shall see that this
happens only when S is isotopic in one or more ways to 0O; the geometry depends on
the set of suborbifolds on 0O isotopic to S which are being pinched in the conformal
geometry of 00O. To take care of the various possibilities, nodes are to be of one of
these three types:

(a) An incompressible one-suborbifold of 0O.

(b) An incompressible two-dimensional suborbifold of O, with Euler character-
istic zero and non-empty boundary. In general, it would be one of these
five:
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but for the orbifolds we are considering only the last two can occur.

(c) An orbifold 7" modelled on Py, x R, k > 2 where Py is a polygon with 2k
sides. The sides of Py are to alternate being on JO and in the interior of
O. (Cases a and b could be subsumed under this case by thickening them
and regarding them as the cases k =1 and k = 2.)

A Kleinian structure with nodes is now defined to be a Kleinian structure in
the complement of a union of nodes of the above types, neighborhoods of the nodes
in being horoball neighborhoods of cusps in the Kleinian structures. Of course, if
O minus the nodes is not connected, each component is the quotient of a separate
Kleinian group (so our definition was not general enough for this case).

Let N(O) denote the set of all Kleinian structure with nodes on O, up to homeo-
morphisms isotopic to the identity. As for surfaces, we define a topology on N(O), by
saying that two structures K; and K5 have distance < € if there is a homeomorphism

between them which is an e® — quasi-isometry on K[ ) intersected with the convex
hull of Kj.

THEOREM 13.9.1. Let O be as above with O irreducible and 0O incompressible. If
O has one non-elementary Kleinian structure, then N(O) is compact. The conformal
structure on 00 1is continuous, and it gives a homeomorphism to a disk,

N(O) ~ N(9O).

Note: The necessary and sufficiently conditions for existence of a Kleinian struc-
ture will be given in [?77] or they can be deduced from Andreev’s theorem 13.6.1.
We will use 13.6.1 to prove existence.

Proor. We will study the convex hulls of the Kleinian structures with nodes on
O. (When the Kleinian structure is disconnected, this is the union of convex hulls of
the pieces.)

LEMMA 13.9.2. There is a uniform upper bound for the volume of the convex hull,
H, of a Kleinian structure with nodes on O.

PROOF OF 13.9.2. The bending lamination for 0O has a bounded number of
components. Therefore, H is (geometrically) a polyhedron with a bounded number
of faces, each with a bounded number of sides. Hence the area of the boundary of
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the polyhedron is bounded. Its volume is also bounded, in view of the isoperimetric
inequality,

volume (5) < 1/2 area(95)
for a set S C H?. (cf. §5.11). O

Theorem 13.9.1 can now be derived by an adaptation of the proof of Jgrgensen’s
theorem (5.12) to the present situation. It can also be proved by a direct analysis
of the shape of H. We will carry through this latter course to make this proof more
concrete and self-contained.

The first observation is that H can degenerate only when some edges of H become
very long. When a face of H has vertices at infinity, “length” is measured here as
the distance between canonical neighborhoods of the vertices. In fact, if the edges
of H remain bounded in length, the faces remain bounded in shape by (§13.8, for
instance; the components of OH can be treated as single faces for this analysis). If we
view Xy as a convex polyhedron in H? then as long as a sequence {H;} has all faces
remaining bounded in shape, there is a subsequence such that the polyhedra { Xy, }
converge, in the sense that the maps of each face into H? converge. One possibility is
that the limiting map of Xy has a two-dimensional image: this happens in the case
of a sequence of quasi-Fuchsian groups converging to a Fuchsian group, and we do
not regard the limit as degenerate. The significant point is that two silvered faces of
H (faces of H not on 0H) which are not incident (along an edge or at a cusp) cannot
come close together unless their diameter goes to infinity, because any points of close
approach are deep inside Hg.

We can obtain a good picture of the degeneration which occurs as an edge becomes
very long by the following analysis. We will consider only edges which are not in the
interior of OH. Since the area of each face of H is bounded, any edge e of H which is
very long must be close and nearly parallel, for most of its length all but a bounded
part, of its length, on both sides, to other edges of its adjacent faces.

Similarly, these nearly parallel edges must be close and nearly parallel to still
more edges on the far side from e. How long does this continue? Remember that H
has an angle at each edge. In fact, if we ignore edges in the interior of 0H, no angle
exceeds 90°. Special note should be made here of the angles between 0 H and mirrors

352 Thurston — The Geometry and Topology of 3-Manifolds

13.70

13.71



13.9. GEOMETRIC COMPACTIFICATION

of H: the condition for convexity of H is that 0H, together with its reflected image,
is convex, so these angles also are < 90°. (If they are strictly less, then that edge
of OH is part of the bending locus, and consequently it must have ends on order 2
corner reflectors.) Since H is geometrically a convex polyhedron, the only way that
it can be bent so much along such closely spaced lines is that it be very thin. In
other words, along most of the length of e, the planes perpendicular to e C Xy C H?
intersect X H in a small polygon, which represents a suborbifold. It has 2,3 or 4
intersections with edges of X H not interior to 0H.
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By area-angle considerations, this small suborbifold must have non-negative Euler
characteristic. We investigate the cases separately.

() x=0, 9=10
3
(i) A This is automatically incompressible, and since it is closed,
3 3

it must be homotopic to a cusp. But this is supposed to be avoided by
keeping our investigations away from the vertices of faces of P.
2 2

(ii) Either it is incompressible, and avoided as in (i), or com-
2 2

pressible, so it is homotopic to some edge of H.
But since it is small, it must be very close to that edge. This contradicts
the way it was chosen—or, in any case, it can account for only a small part
of the length of e.

(b) x =0, 90#0:
0

(i) m m (i) m m
2 2

m 0
where m denotes a mirror.

These can occur either as small 0-incompressible suborbifolds (repre-
senting incipient two-dimensional nodes) or as small 0-compressible orb-
ifolds, representing the boundary of a neighborhood of an incipient one-
dimensional node.

Y o m

iﬂ s Fveas}u@

(¢) x > 0. This can occur, since O is irreducible and 0O incompressible.

We now can see that H is decomposed into reasonably wide convex pieces, joined
together along long thin spikes whose cross-sections are two-dimensional orbifolds
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with boundary. There also may be some long thin spikes representing neighborhoods
of short one-suborbifolds (arcs) of 00.

Hyq contains all the long spikes. It may also intersect certain regions between
spikes, where two silvered faces of H come close together. If so, then H contains
the entire region, bounded by spikes (since each edge of the two nearby faces comes
to a spike within a bounded distance, as we have seen).

The fundamental group of that part of H must be elementary: in other words, all
faces represent reflections in planes perpendicular to or containing a single axis.

It should by now be clear that N(O) is compact. By [?77], Kleinian structures with
nodes of a certain type on O are parametrized, if they exist, by conformal structures
with nodes of the appropriate type on 0O. Given a Kleinian structure with nodes,
K, and a nearby element K’ in N(O), theer is a map with very small dilation from
all but a small neighborhood of the nodes in 0K to 0K, covering all but a long thin
neck; this implies that 0K’ is near 0K in N(9O). Therefore, the map from N(O) to
N(00) is continuous. Since N(O) is compact, the image is all of N(0O). Since the
map is one-to-one, it is a homeomorphism. [

To be continued. . ..
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