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Introduction
In 2004, the Mathematical Sciences Research Institute (MSRI) launched a workshop series, Critical Issues 
in Mathematics Education, to provide opportunities for mathematicians to work with experts from other 
communities on the improvement of mathematics teaching and learning. In designing and hosting these  
conferences, MSRI seeks to encourage such cooperation and to lend support for interdisciplinary progress  
on critical issues in mathematics education.

The main goals of these workshops are to:	

	 	 Bring together people from different disciplines and from practice to investigate and
		  work on fundamental problems of education.
	 	 Engage mathematicians productively in problems of education.
	 	 Contribute resources for tackling challenging problems in mathematics education.
	 	 Shape a research and development agenda.

This booklet documents the fifth workshop in the series, Teaching and Learning Algebra. The workshop 
brought together mathematicians, mathematics educators, classroom teachers, and education researchers  
who are concerned with improving the teaching and learning of algebra across the grades.

For over two decades, the teaching and learning of algebra has been a focus of mathematics education at the  
precollege level. This workshop examined issues in algebra education at two critical points in the continuum 
from elementary school to undergraduate studies: at the transitions from arithmetic to algebra and from high 
school to university. In addition, workshop participants discussed various ways to structure an algebra  
curriculum across the entire K-12 curriculum. The workshop design was guided by three framing questions:

1: What are some organizing principles around which one can create a coherent pre-college algebra program? 
There are several curricular approaches to developing coherence in high school algebra, each based on a frame-
work about the nature of algebra and the ways in which students will use algebra in their post-secondary work. 
We seek answers to this question that articulate the underlying frameworks used by curriculum developers, 
researchers, and teachers.

2: What is known about effective ways for students to make the transition from arithmetic to algebra? What does 
research say about this transition? What kinds of arithmetic experiences help preview and build the need for 
formal algebra? In what ways does high school and undergraduate mathematics depend on fundamental ideas 
developed in the transition from arithmetic to algebra? What are some effective pedagogical approaches  
that help students develop a robust understanding of algebra?

3: What algebraic understandings are essential for success in beginning collegiate mathematics? What kinds of 
problems should high school graduates be able to solve? What kinds of technical fluency will they find useful in 
college or in other post-secondary work? What algebraic habits of mind should students develop in  
high school? What are the implications of current and emerging technologies on these questions?

The workshop speakers were chosen for their ability to articulate widely-held perspectives on mathematics  
education, but this choice is not meant as an endorsement of those perspectives. The content of this booklet  
is not intended to represent the views of the organizing committee, the Mathematical Sciences Research  
Institute, or the sponsors of the workshop.



1Q
Organizing principles for algebra curricula

What are some organizing principles around which one can create a coherent  
pre-college algebra program? There are several curricular approaches to  
developing coherence in high school algebra, each based on a framework 
about the nature of algebra and the ways in which students will use algebra 
in their post-secondary work. We seek answers to this question that articulate 
the underlying frameworks used by curriculum developers, researchers, and 
teachers.

To address this question, speakers described the principles underlying four 
effective algebra curricula, plus one speaker proposed a rather different  
approach.
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 The Center for Mathematics Education administers the 
CME Project, an NSF-funded coherent four-year cur-
riculum, published by Pearson, that follows the traditional 
American course structure. Al Cuoco, the lead developer  
for the project, described its goals and approach.

The three central goals are for students to make connections 
among the various disciplines of mathematics; for them to 
learn to use general purpose tools rather than tricks that only 
work in isolated circumstances, like FOIL or keyword word 
problem solving techniques; and, most importantly, for stu-
dents to learn a style of work that is indigenous to mathemat-
ics but is applicable to a wide variety of situations beyond 
mathematics.

This ‘style of work’ is exemplified by  
considering this question: Is there a line 
that cuts this object in half? For some-

one with appropriate mathematical 
training, the answer comes quickly: 
Imagine moving a line smoothly 
from one side of the blob   to the 

other. At the beginning, the blob  will 
be entirely on the right side of the line, 
and at the end, it will be entirely on the 

left side. By continuity, then, at some point 
half the blob will lie on one side and half 

will lie on the other. This kind of argument  
comes up in many contexts both within and outside of 
mathematics, and one of the goals of the CME Project is for 
students to truly master these broadly useful methods.

To this end, the CME Project has undertaken its “habits of 
mind” approach.

Here are five algebraic habits of mind that it highlights:

1.	 Seeking regularity in repeated calculations. 
This allows students to move to greater abstraction 
through grounding in specific examples.

2.	 Chunking. In other words, students learn to look for 
ways to change variables to hide complexity.  
For example, the expression 9x2 –  6x + 1 can be 
seen as (3x)2 – 2 (3x)  + 1, and this can be seen as 
z2 – 2z + 1 where z = 3x. This latter expression is 
far easier to factor. 

Curriculum 1: The CME Project

This ‘style of work’ 
that is indigenous  
to mathematics  
is exemplified by  
this problem.

3.	 Reasoning about and picturing calculations 
and operations first. Before diving in, students 
learn to imagine how calculations will go  
without doing them. Sometimes, a complex 
calculation can be avoided entirely; sometimes 
it can be simplified; and if nothing else, this 
visualization helps students keep track of the 
big picture when they do calculate.

4.	 Purposefully transforming and interpreting 
expressions. Different forms of expressions 
are useful or informative in different ways. 
Learning to recognize this helps students see 
the meaning in the expressions.

5.	 Seeking and modeling structural similarities.

Here are some examples illustrating these habits of 
mind and showing how they can be taught to students.

1.  Seeking regularity in repeated calculations
	 Consider this problem from a precalculus class 

that Cuoco had just taken over:

      Graph 16  x2  –  96  x + 25y 2 – 100y – 156 = 0.

	 The kids in Cuoco's class factored it, getting

	 and they then produced this picture: 
	

Cuoco thought, “Boy! These kids really know 
how to do something.” Then he asked one kid 
after another, “Is the point (7.5, 3.75) on the 

 ( x  – 3)2   +  (   y  – 2)2 
� � = 1,

    
 25            16



7MSRI  •  Critical Issues in Mathematics Education  •  TRANSITIONS

ORGANIZING PRINCIPLES FOR ALGEBRA CURRICULA

CURRICULUM

graph?” Not only didn’t they know, they had no way  
to tell, because for them, this equation was a code that  
allowed them to produce the picture. They had lost track 
of the fundamental fact that a point is on a curve if it satis-
fies the curve’s equation. This led to the idea that “equa-
tions are point testers,” which is strongly emphasized in 
the CME Project.

	 Students’ failure to grasp this is part of why linear  
equations can be difficult for them. They think that a  
linear equation is just something from which you read off 
the slope and y-intercept. So the CME Project has taken 
a different approach to slope, which seems to work well. 
Slope isn’t defined as an invariant of a line; instead, it’s 
defined as a function of two points. The curriculum then 
makes the assumption that points A, B, and C are collin-
ear if and only if m (A,B) = m (B,C), where m is the slope. 
Later, the curriculum proves that using similar triangles in 
plane geometry, but in Algebra 1, the students accept it as 
an assumption. Finding the equation of a line between two 
points means finding a point-tester for that line.

	 So to find the line with the points A = (2, – 1) and B = (6,7), 
students start by simply trying some points.  
Is, for example, the point C = (3,4) on the line? 
Students can test that by calculating m (A, B) and m (B, C) 
and see if they are equal. In this case, the slope 
m (A, B) = (7 – (–1)) / (6 –2) = 8 / 4 = 2 and 
m (B,C) = (4 – 7 ) / (3 – 6) =  –  3 / – 3 = 1, so C isn’t 
on the line. Students do this calculation with several 
points, until they notice a rhythm to the calculations.  
They can then ask, what would you do to test to see if  
any point is on the line? They then repeat their calcula-
tions with an abstract point (x, y): (x, y) is on the line if 
(y –7) / (x – 6)  = 2. This gives them a general point-tester, 
i.e., an equation. Reading the slope off the y = mx+b 
form of the equation comes later.

	 This habit of seeking regularity in repeated calculations 
is useful in other situations, like finding equations  
that model word problems, finding equations for curves, 
finding functions that agree with tables, establishing  
algebraic identities, and establishing proofs by  
mathematical induction.

“The usual thumbnail history that you hear of algebra is 
that it was developed by Arabic or Islamic mathemati-
cians in the middle ages. But in fact, algebra as we know 
it today was a product of the Renaissance. A central 
figure in this was François Viète. He introduced a revolu-
tion in algebraic thinking by essentially inventing the 
formula. 

“Before Viète, problems were posed usually in oral 
form, and then some kind of a recipe or algorithm was 
demonstrated as an example of how to solve this sort of 
a problem. If you were told that the sum of two numbers 
was something and the difference of two numbers was 
something, then you would be given a recipe for finding 
the two numbers. But the idea of the numbers being 
quantities that you could work with and manipulate 
symbolically and get formulas for the solutions in terms 
of the symbols was lacking. This is what Viète brought 
to algebra.

“The tradition of oral algebra started at least in ancient 
Babylonian times. The earliest records are from 1800 
BC, and it probably started earlier. It continued until the 
Renaissance. That’s a period of over 3,000 years. 

“I take this as evidence that the idea of expressing 
relationships symbolically with variables is a difficult one. 
I think that we have to honor the difficulty of this idea 
with our students and give them a lot of opportunities to 
get used to the idea of variables. We have to let students 
know that these were really great inventions. The idea 
of writing x    +    2 or 2x is a really great idea. It’s not, ‘Oh, 
of course, everybody knows this.’ It’s powerful and you 
can do a lot with it. If you didn’t think of it on your own, 
that’s OK. 

“I think that every teacher should learn this history.  
I can’t think of a piece of mathematical history that’s 
more germane to the way we should teach than knowing 
about this sudden transition in algebra that happened at 
the end of he 16th century.

“That’s our first task: to help students to get used to 
the idea of using variables and to the symbolic notation 
that goes along with that.” 

      — Roger Howe, Yale University

Roger Howe
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Silent Board Game

Carol Cho has been teaching for 40 years, and 
this is an assignment that she’s found especially 
helpful to students. It’s called the “silent board 
game.” She puts up a board like this one. 

Students are not allowed to talk. If a student 
thinks they can fill in one of the blanks, they 
raise their hand and come up to the board and 
write it in. If it’s incorrect, Cho will go to the 
board and erase it. Then another student will 
come up and write another answer, and if it’s 
correct, she smiles. Each correct answer gets 
them 2 points extra credit. 

After a while, the students start really focusing: 
How come this student was right? How come 
mine was not right? Eventually, Cho stops the 
game and asks them what the rule is, and they 
might say, “The out is two letters after the in,” or 
“The out is the opposite of the in.” Often she’ll 
have to help them rephrase their formulation 
of the rule more precisely. Other boards involve 
an equation. Soon, they get pretty good at this. 
This game helps students learn how to go from a 
table to a rule. 

Silent Board Game

a. 	IN(1)	  OUT(1)

		 8	 17 

		 – 2 

			  9 

		 12	 25 

		 10	 21

 

 Rule:

c. 	IN(1)	 OUT(1)

		 4	 16 

		 – 1	 1 

			  9 

		 12 

		 – 6

 

  Rule:

b. 	IN(1)	 OUT(1)

		 100	 51 

		 4 

		 6	 4 

		 30	 16 

			  31

 

  Rule:

c. 	IN(1)	 OUT(1)

		 	

			   

	 

	 

	

 

Rule:

			      c.  IN(1)    OUT(1)

Silent Board Game

a. 	IN(1)	  OUT(1)

			  C 

		 L	 N 

			  F 

		 Q	  

		 W	 Y

 

Rule:

b. 	IN(1)	 OUT(1)

		 easy	  

			  light 

		 hot	 cold 

		 up	 down 

		 left	

 

Rule:

2.  Chunking
Most teachers find that kids can handle problems like  
factoring x2 + 14x + 48, which boils down to finding two 
numbers whose sum is 14 and whose product is 48. The 
problem comes with something like 49x2+ 35x + 6, a 
polynomial that isn’t monic. This is a particularly nice  
one because you can chunk it by setting z = 7x; then the 
expression becomes z2+ 5z + 6. The curriculum calls it the 
hand method: Put a hand over the 7x and it becomes monic. 

So what about an expression like 6x2+ 31x + 35? If it’s not 
so nice, make it nice! Multiply it by 6, and then divide the  
6 out at the end:

		  6 (6x2+  31x + 35)
		  = (6x)2+ 31(6x) +210
		  = z2+ 31z +210
		  = (z + 21) (z +10)
		  = (6x + 21) (6x +10)
		  = 3(2x + 7) 2 (3x + 5)
		  = 6 (2x + 7) (3x + 5)

Dividing out the 6 you “borrowed,” the factorization is 
(2x +7) (3 x+ 5). This saves a huge amount of time, and it’s 
another method that’s useful in many situations, like normal-
izing higher degree polynomials, deriving Cardano’s formula, 
solving trigonometric and exponential equations, completing  
the square, and analyzing affine transformations of graphs.

    3.  Picturing calculations
Cuoco would really like high school graduates to be able to  
do these problems in their heads:

	 1.  Simplify (x –1) (x4+x3+x2+ x+1)
	 2.  Simplify (a + b)2  –  (a  –  b)2 
	 3.  Evaluate  
	      3(x –1) (x –3)+5(x –1) (x –2)–7(x –2) (x –3) at 1, 2, and 3.

Doing so requires students to be able to picture a  
calculation so that they can realize they don’t need to do it  
all out, and this skill is useful in many situations.

    4. Transforming and interpreting expressions
Consider this problem:

  Heron’s formula for the area of a triangle with height h 
  and side-lengths a, b, and c is:	
4h (a,b,c)  = √��������

	 	  
(a+b+c) (a+b – c) (a+c – b) (b+c – a).
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Give geometric and algebraic explanations for 
your answers:

a.  Why is h (a,b,c) = h (b,c,a) = h (c,a,b)?
b.  When is h (a,b,c) = 0?
c.  Express h (3a,3b,3c) in terms of h (a,b,c).

Students need to recognize the usefulness of the 
given form of Heron’s formula in order to do this 
problem effectively, and they need to be able to  
interpret its meaning.

5.  Seeking and modeling structural similarities
Different types of mathematical objects sometimes 
have structural similarities which can be exploited 
to make a problem much simpler. This principle can 
be illustrated with this problem, which exploits the 
structural similarity between polynomials and com-
plex numbers and would come at the end of precal-
culus. Here are the 7th roots of unity:

Zeta and its integer powers are roots of x7 –1= 0. 
The non-real roots come in conjugate pairs. Since  
and 6 are conjugates and reciprocals, their sum A is 
a real number. Same with 2 and 5 (summing to B) 
and 3 and 4 (summing to C). 

Since they are real numbers, there should be a cubic 
equation with real coefficients for which these are 
roots. What are they?

To find it, we need to know A + B + C, AB + BC + CA 
and ABC. We’ll start with A+B+C:

A+B+C =  6+ 5+ 4+ 3+ 2+

But we know that 7–1= 0, and we know in general
that (x –1) (x6 + x5 + x4 + x3 + x2 + x + 1) = x7–1.

Substituting in  for x, we know that 7–1= 0, and
since  ≠1, it must be that 6+  5+ 4+ 3+ 2  +   +1 = 0, 

which means that A + B + C  = –1.

The important thing here is that by modeling these  
complex numbers with polynomials, the problem becomes 
much simpler. Similar methods can be used to calculate 
AB+BC+CA and ABC, using a computer algebra system 
to calculate the polynomials and then simplifying it using 
the fact that 7 –1= 0. You find that AB+BC+CA  =  –2 and 
ABC  = 1, so the cubic is x3  +  x2 –2 x–1= 0. This previews 
really important material to come.

This habit of seeking and modeling structural similarities  
in algebraic systems is useful in other situations. E.g.,

	 	 Matrices have structural similarities to
		  linear transformations of the plane 

	 	 Arithmetic with integers have structural
		  similarities to polynomials in i with an 
		  additional simplification rule

	  	 Complex numbers have structural 
		  similarities to real numbers with i appended

	 	 The matrix ⎛a  – b⎞ can represent a+bi
		  The matrix ⎝b  - a⎠

	 	 The matrix ⎛a  -b⎞ can represent (ax+b) / (cx+d)
		  The matrix ⎝c  -d⎠

An organization around algebraic habits of mind helps stu-
dents see some coherence in algebra, provides students with 
general-purpose mathematical approaches, helps align school 
algebra with algebra as a scientific discipline, and helps stu-
dents develop habits that are genuinely useful in the world.

There are equally useful habits indigenous to analysis and 
topology, for example, reasoning by continuity,  
looking at extreme cases, passing to the limit, extension 
by continuity, and using approximation. There’s no doubt 
that these habits are useful, particularly in scientific  
contexts. These ways of thinking form a solid basis for 
courses in geometry and “precalculus.”

For more information, go to edc.org/cmeproject. 
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Curriculum 2: The Interactive Mathematics Program

Because the Interactive Mathematics Program (IMP) 
integrates algebra with geometry and statistics, Diane  
Resek, a co-director of the program, found it difficult to 
pull out the aspects of it that related only to algebra.  
Nonetheless, she described its goals and principles.

Goals

1.	 Motivating students to engage with the 	
mathematics. Typically students aren’t engaged 
in math class — they’re looking at the floor or the 
ceiling, unexcited, chewing gum, spacing out. The 
statistics show that half of algebra students flunk. So 
IMP aimed to change that, creating excited, engaged 
learners.

2.	 Making students powerful problem solvers. 
The ability to solve problems is becoming ever- 
more important, as this quote from the “Everybody 
Counts” report from the National Research Council 
in 1989 illustrates:  
	 “From the accountant who explores the conse- 
	 quences of changes in tax law to the engineer  
	 who designs a new aircraft, the practitioner of  
	 mathematics in the computer age is more likely  
	 to solve equations by computer-generated graphs  
	 and calculations than by manual algebraic manip- 
	 ulations. Mathematics today involves far more  
	 than calculation; clarification of the problem,  
	 deduction of the consequences, formulation of  
	 alternatives, and development of appropriate  
	 tools are as much a part of the modern mathe- 
	 matician’s craft as are solving equations or  
	 providing answers.” 
This report came out just about the time that IMP  
was being developed, and the developers wanted 
students to do this kind of work in school.

3.	 Preparing students for the future. This includes 
enabling them to get into college, to do well in col-
lege, to make medical and financial decisions, and to 
prosper in jobs that don’t yet exist. Students finishing 
the program need to be able to do well on college 
entrance tests and to be ready to take college courses 
taught in a standard way. Furthermore, people are 
changing jobs very quickly, including blue collar 

and white collar workers alike. They have to learn 
new skills, to work with colleagues and to learn from 
books.

To accomplish these goals, IMP embraced five core  
principles:

Principles

1.	 Include key concepts and skills. 	
The authors started with a list of concepts and skills 
they wanted students to learn. To compile this, they 
consulted NCTM standards, practices in other coun-
tries, their own classroom experience, and the advice 
of colleagues in other fields. They also took to heart 
the calculus reform maxim that less is more. A few 
examples of things they included:

	 a.	 They emphasized proof and argumentation, 
		  starting in the first weeks. Students are, for  
		  example, given proofs with errors to analyze.

	 b.	 They included problems such as using the 
		  distributive law to rewrite algebraic  
		  expressions.

	 c.	 They asked students to explain things such  
		  as why division by zero is not well defined.

	 2.	 Start with big problems.
The curriculum is organized around big problems, 
rather than specific skills. There are five big problems 
each year for four years. Students work on each prob-
lem for one to two months. Inside that big problem, 
the skills were introduced in smaller problems, but 
with the focus remaining on the big problem. The 
primary reason for this was to help motivate the stu-
dents, but it also helps the students develop problem-
solving skills, since they have to refine and simplify 
the initial big problem to make it approachable.

Here’s one example of a big problem, for a unit on 
solving two equations in two unknowns. The chal-
lenge in structuring this section of the course is that 
a single problem of this type does not qualify as a 
big problem —students can solve it very quickly by 
guess-and-check. The curriculum designers needed  
a situation where students would have to do lots  
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of these. They chose linear programming in two 
variables.

In particular, they gave students a problem about a 
small bakery shop that makes plain and iced cookies 
and is trying to decide how many dozen of each kind 
to make for the next day. The shop owners are lim-
ited by ingredients, oven space, and prep time, and of 
course, they want to maximize their profit. Students 
dive in and work on it bare-handed initially, to get 
invested in the problem. Each group tries to come up 
with the highest profit.

Then the students look at inequalities, how you oper-
ate with and graph them. Finally, they are able to 
interpret the problem in terms of this graph: 

The x-axis represents dozens of plain cookies and 
the y-axis represents dozens of iced cookies, so each 
point gives a possible baking plan. If the point lies 
under one line, then there are enough ingredients to 
make that number of cookies; below another, there’s 
enough oven space; and below a third, there’s enough 
prep time. Therefore to satisfy all the requirements, it 
has to be in the shaded area.

Calculating profit requires a linear equation in x and y: 
if a is the profit on a dozen plain cookies and b is the 
profit on a dozen iced ones, then the total profit will 
be ax+by. So all the points that generate a profit 
equal to, for example, 100, lie on a straight line. The 
points generating a higher profit lie on a parallel line. 
Maximizing profit then boils down to figuring out 
which parallel line will be the last one that intersects 

the shaded zone. This gets them to solve two  
equations in two unknowns.

Then they come up with an algorithm for the whole 
process. Different groups come up with different 
algorithms, but pretty much, they’re variations on 
substitution.

    3. 	 Actively involve the students

Keeping the students actively involved helps moti-
vate students to engage with the mathematics. In the 
example above, the students actively engaged in com-
ing up with their own algorithm rather than having an 
algorithm supplied to them.

When field testing, the authors found particular points 
where students weren’t motivated. One such case was 
the Pythagorean theorem. We had them discover it 
for themselves, and the students were engaged with 
that, but then we wanted them to see a proof of it. 
The teachers went through a nice, clear proof, but 
we heard from teachers that the students were not 
engaged. This was one situation of several where we 
went back to the drawing board and put in something 
active.

This diagram shows the same area divided in two  
different ways, “Al’s rug” and “Betty’s rug.” The  
students show that the two little squares that are white 
in Al’s rug have the same area as the square  
in Betty’s rug. The teacher then helps them to prove 
that Betty’s rug is a square, which is a question that 
few students come to on their own. By that point, 
though, they’re invested enough that they’re willing 
to listen to the teacher.

Proof by Rugs

1 .  Are the areas of the two rugs the same?

2.   How do the two rugs demonstrate that the  
      Pythagorean Theorum holds in general?

a + b          

a + b 

Betty's Rug         

c
  b          

a + b 

Al's Rug         

  b          
c a + b          

profit
line

feasible
region

y

x
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Active engagement was especially important to get 
students to remember definitions. An example is 
regression. The program gives them this situation: 
The star player of a basketball game has gotten 
injured, and the playoffs begin April 18. Should 
the coach pull him out or leave him in, hoping that 
he’ll be healed by then?

The coach has to make the decision on the basis 
of past data, which the students are given. They 
are then told that two other students have guessed 
that two different linear functions approximate the 
data. One of these functions is based on the sum of 
the linear distances and the other is based on the 
sum of the perpendicular distances. The students 
are then asked:

	 Which student’s function seems to
	 you to fit the data better, and why?

 	 Do you have a function that you think
      	 fits the data better than either of 
	 these? If so, what?

 	 Develop a mathematical procedure by 
	 which you might judge when one  
	 function fits data better than another.

At the end, the students are told that the definition 
chosen by mathematicians is the linear one, but by 
then, they’re invested enough that they don’t think 
it’s arbitrary and makes no sense.

4. 	 Introduce abstractions concretely

IMP introduces new ideas through stages over 
time. Graphing, for example, takes a number of 
days, starting pictorially and gradually adding 
numbers. With regression, the students are given 
some data and try to find best line using a straight 
edge or a piece of fettuccine. Then they try plotting 
the data intuitively with graphing calculators to see 
what line fits best. In the fourth year, they construct 
a procedure, and then, finally, they use the built-in 
facility on a calculator.

Abstract ideas are also often introduced with 
physical objects. For example, for graphing in 
three dimensions, strings are run from the front 

 
Edgar Allen Poe  
teaches math

Berkeley High School uses the Interactive Mathematics 
Program. Matt Bremer, a teacher there, gave this example of 
a “big problem” in IMP. Almost everything in their program is 
a “word problem,” and they choose five to six units of units 
of study in a year, each focused on a single big problem. How, 
for example, can a cookie store maximize their profits? When 
should a stunt man let go of a Ferris wheel to fall into a cart? 
Here’s one example in somewhat greater depth.

The Pit and the Pendulum is an Edgar Allen Poe story that tells 
a terrifying story of a prisoner during the Spanish Inquisition. 
In one part of the story, the prisoner is tied up at the bottom 
of a rat-filled 30-foot-deep pit, and above him, a pendulum 
armed with a blade is swinging, lowering itself toward him on 
every swing. Food has been left for him, so he rubs the food 
on the ropes restraining him, and the rats eat through them in 
just over a minute. On the twelfth swing of the pendulum, the 
blade is just about to slice his heart, but the rats finish the job 
and he manages to escape.

Students read the story and then ask how realistic this sce-
nario is. Would a 30-foot pendulum swing a dozen times in 
just over a minute? To figure this out, students create their 
own pendulums of varying lengths and collect data on their 
periods. This then becomes a way for them to learn about 
regression models.

Here’s data some students collected:

Length in feet	    Period in seconds 	

  2	 18.4	

  5	 29.1	

  7	 34.3	

10	 41.1	

30	 ???

Students first tackle the question by looking directly at their 
data and trying to find patterns. They then use graphing 
calculators to find a curve that looks like this data, and then 
they tweak it to come up with something that fits the data 
reasonably well. They generally come up with a function that’s 
close to y = 13x where y is the period and x is the length of 
the pendulum.

Then, with the help of a janitor who climbs to the top of the 
gym, the students construct a 30-foot pendulum to test their 
answer. This generates a sense of completion.
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to the back of the classroom for the x axis, side 
to side for the y axis, and from the ceiling to the 
floor for the z axis.

Metaphors are also useful. For exponential growth, 
for example, students discuss Alice in Wonderland. 
When she drank, she shrunk, and when she ate she 
grew. For each ounce of the drink her height would 
be halved, and for each ounce of cake, her height 
would be doubled.

5    Use multiple representations

Seeing different perspectives leads to deeper under-
standing, accommodates different learning styles, and 
develops ideas that can be applied to new problems. 
For example, students discover that 20  = 1 through a 
variety of representations:

 Asking, “If Alice didn’t eat any cake, how big
	 would she be and what number would her 
	 height be multiplied by?” 
 Examining numerical patterns

 Graphically
 Deductively through the law of exponents

After this exploration, the curriculum presents the 
definition, hoping that at this point it won’t seem 
totally arbitrary. Finally, students are asked to write 
an explanation about exponents that are 0, negative or 
fractional. They then talk to an adult, explain it, and 
judge the person’s reaction.

All of this may seem unnecessarily elaborate, but it teaches 
the students that they can make sense of mathematics on 
their own, rather than it consisting of arbitrary rules. Some 
students figure that out without this kind of help, but not 
all. And it’s an equity issue: More people deserve to have 
this mathematical knowledge. Furthermore, people who 
could make valuable contributions to society are being 
excluded from math knowledge. Finally, evidence indicates 
that top students are not being harmed in this approach. 
Students from the top quartile in IMP did slightly better 
on standardized tests than those not in IMP. The difference 
wasn’t statistically significant, but at least the top students 
aren’t being harmed.

	
Elizabeth Phillips

 

 

Elizabeth Phillips presented this problem from the 
Connected Mathematics Project curriculum that shows 
how students can be helped to see that different  
algebraic expressions can be equivalent and can  
illuminate a problem in different ways.

The problem is this: A square pool is surrounded by  
one row of square border tiles. How many 1-foot square 
tiles, N, are needed for a border of a square
pool with side length s feet? Find more than one way
to represent this relationship. How can you convince 
your classmates that the expressions for the number of 
border tiles are equivalent?

Students come up with many different expressions, for 
example: 

		  N   =  4s + 4

N      =   4(2+2)  + 2s

N     =   8  + 4(s–1)

N      =   2(s+.5)  + 2(s + 1.5)

N      =   4(s  + 1)

N      =  4(s + 2)–4
N      =  s + s + s + s + 4

		  N      =  4 (s  + s  +  2)

      	 	       2

		
N 

   
=

  
 (s + 2)2– s2

The last expression often creates confusion because 
it looks quadratic. The expression comes from viewing 
the tiles as the difference between the square formed by 
the outer edge of the tiles and the inner edge of them. 
Students use the distributive property in the problem to 
show that this expression is also symbolically equivalent 
to the others.



TRANSITIONS  •  MSRI  •  Critical Issues in Mathematics Education14

ORGANIZING PRINCIPLES FOR ALGEBRA CURRICULA

CURRICULUM

Curriculum 3: College Preparatory Mathematics

CPM was created in 1999 by a non-profit organization, 
and much of the curriculum was written by teachers who 
then taught from the CPM books. It offers a curriculum for 
grades 6 though 12, all of which has been heavily tested in 
the classroom. One of the creators of the curriculum, Tom  
Sallee of the University of California, Davis described it.

The primary focus of CPM is to get more students to learn 
more mathematics in a way that causes them to retain their 
knowledge and to be able to transfer it into other academic 
subjects and out into the world.

The CPM developers have found that students’ most com-
mon difficulties are more about learning than about math. 
One has to teach more than math: One has to teach how 
to learn, and specifically how to learn math. A lot of kids, 
especially from families that are underrepresented, don’t 
learn good habits of thought at home. Organizing the cur-
riculum to address this required changes at all levels: in 
teacher behavior, student behavior, classroom organization, 
and assessment.

To this end, the curriculum doesn’t just have mathematical 
goals; it also has attitudinal goals. Students should come 
out of the program feeling confident they can figure out 
most problems on their own without being told how by the 
teacher, that they want to learn math, and that they want to 
understand what they learn.

Mathematically, each course is built around roughly six big 
ideas for the year. If students understand these big ideas 
deeply and integrate them, they’ll be fine—but they really 
do need to understand them deeply. One of the keys to this 
deep understanding is the ability to move among different 
representations—written, tabular, graphical, symbolic— 
of the same concept. Students also need problem solving 
techniques, which CPM views as tools for both math and 
metacognition in general.

Here are some examples of mathematical “big ideas”

 Multiple representations. There are many different 
ways of representing functions, including equa-
tions, graphs, tables, and contextual situations. 
Different representations are useful for different  

things. Students need to be able to make connec-
tions among these representations and to move 
between them fluidly.

 Writing equations from word problems.
 Solving equations and systems of equations.
 Manipulating symbols.
 Proportionality. This is such a big idea that CPM 

spreads it over two years.

Ideally, students will come out of CPM having learned 
how to think. To that end, these fundamental approaches 
to learning are integrated into the curriculum. The first 
principle is that math is not a spectator sport: Work and 
engagement matter. Students need to learn to tackle things 
they don’t already know how to do. Solving problems is the 
best way to learn new ideas, and to do that, students need 
to work with others and talk about math. This will help 
them to internalize these new ideas. CPM works to connect 
abstract concepts with concrete experiences. Kids tend to 
be able to think pretty clearly at a concrete level; the trick  
is to move them to the abstract level.

CPM recognizes that it takes a long time to learn a big  
idea, to internalize concepts, to learn algorithms, and to  
get mathematical habits of mind like generalizing or  
justifying your ideas.

To show how all this works in practice, consider how  
simultaneous equations are introduced. Before any rules  
are introduced for dealing with them, students are given 
this problem:

Some yodelers went on a gondola up a mountain 
for a party playing their xylophones. Two yodelers 
share one xylophone, so the number of yodelers 
on the gondola is twice the number of xylophones. 
The trip cost $40 for the whole club, and each 
person cost $2 and each xylophone cost $1. How 
many yodelers and how many xylophones are on 
the gondola? Represent this problem with a system 
of equations. Solve it and explain how the solu-
tion relates to the number of yodelers. Represent 
it with a graph. Identify how the solution to this 
problem appears on the graph.
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Problems to help create mindful  
manipulators

These problems are designed to help students begin  
to notice things about expressions, rather than simply 
manipulating them without consideration. Do the 
equations have a solution? Explain how you know 
without solving them.

             x + 3    1.    _____ = 1
           2x + 5

           2x + 3    2.    _____ = 1
          2x + 5

             x + 3    3.    _____ = 1
            2x + 6

                      
___________________________

Here are a few things one would hope students would 
notice about these. In the second one, the denominator 
is 2 bigger than the numerator, so it can’t possibly equal 
1! And in the third, the denominator is twice the numera-
tor, so their quotient can’t equal 1. It takes courage for a 
student to stop there and not solve it. Notice that they 
are perfectly allowed to solve the equation first — they 
just have to give an explanation that doesn’t rely on that.

___________________________ 

Without solving them, say whether the equations in 1-5 
have a positive solution, a negative solution, the solution 
zero, or no solution. Give a reason for your answer. 

1.  7 x = 5

2.  3 x + 5 =7

3.  3 x +7 =5

4.  5 – 3 x =7

5.  3 – 5 x =7

___________________________ 

In the following problems, the solution to the equation 
depends on the constant a. Assuming a is positive, what 
is the effect of increasing a on the value of the solu-
tion? Does the solution increase, decrease, or remain 
unchanged? Give a reason for your answer that can be 
understood without solving the equation.

1.  x – a = 0

2.  ax =1

3.  ax = a

4.  x /a =1

This is a challenging problem for students who haven’t yet 
learned these concepts. CPM expects the students to jump 
in the deep end, though of course, it also provides support 
for both students and teachers, such as discussion points 
teachers can use to help the students. For teachers who are 
uncomfortable, there’s further guidance. Teachers typically 
go immediately to the further guidance when they first 
begin CPM, but as they begin to understand that kids are 
smart, they give that up and give the students more time to 
solve it on their own.

Another example is how CPM teaches students to set up 
equations. CPM encourages them to guess and check, or 
guess and refine. This drives a lot of people crazy, think-
ing that the curriculum is trying to get students to guess 
the answer without understanding and without develop-
ing a general method. In fact, it is helping them to use 
their knowledge of special cases to generalize. Here’s an 
example: Suppose a rectangle is 3 cm longer than it is wide 
and has a perimeter of 60 cm. What are its dimensions?  
The students start by guessing, and they’re provided a blank 
version of this chart to fill out.

This student starts with 10 cm, calculates that the other side 
is 13 cm and that the perimeter then must be 46 cm, which 
is too low. So the student guesses higher: 15 cm. Then the 
other side is 18, and the perimeter is 66. That’s too high, so 
the student tries 14. The other side is 17, the perimeter is 
63, still high. So then the student does it with x: the other 
side is x+3, perimeter is 2x + 2(x+3), and it equals 60. This 
process helps students to use what they know how to do 
with numbers to lead to the abstraction with x.

Notice also that this, like many problems in CPM, does 
double duty—in this case, reviewing the definition of  
perimeter while practicing setting up equations.

Setting up equations

A rectangle is 3 cm longer than it is wide and has a 
perimeter of 54 cm. What are the dimensions? Write 
an equation that will allow you to solve this problem.

	Guess Side	 Other side	 Perimeter	 =60?

	 10	 13	 46	 low
	 15 	 18	 66	 high
	 14	 17	 60	 high
	 x	 x + 3	 2x + 2(x + 3)	 = 60
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Curriculum 4: UCSMP

The University of Chicago School Mathematics Project (UCSMP) was 
initiated in 1983 by professors in the departments of mathematics and 
education at the university. The secondary school curriculum developed 
by the project spends five years from algebra to calculus in order to make 
time for applications, statistics and discrete mathematics, plus a signifi-
cant amount of algebra before the first formal algebra course. The third 
edition of the materials has recently been released. Zalman Usiskin of the 
University of Chicago described some history and organizing principles 
underlying algebra in this curriculum.

1.	 The algorithmic approach: The content is sequenced by skills 
following prescribed rules (algorithms), and in such a way that 
when you come upon a new skill, you are either putting together 
previously-learned skills or given a new rule.

	 During the 1950s, this was the only organizing principle for 
algebra, and the rules were presented as arbitrary facts to be 
learned. UCSMP goes far beyond this, but nevertheless, it retains 
the backbone of teaching students to perform algorithms reliably.

2.	 The deductive approach: Deduce the rules as theorems from 
the ordered field properties of the real (and later, complex) 
numbers, and in so doing, change the view of mathematics from 
a bunch of arbitrary rules to a logical and organized system.

	 Curricula in the new math era introduced the deductive approach 
and revolutionized math education. Again, UCSMP goes beyond 
this but has incorporated it as one of its guiding principles.

3.	 Incorporating geometric transformations: Transformations 
enable the notions of congruence, similarity and symmetry to ap-
ply to many different kinds of figures, not just the polygons and 
circles to which geometry is limited. Consequently, they provide 
a powerful set of ideas for dealing with graphs of functions and 
relations. The graph translation theorem is one powerful tool; it 
states that in a set of ordered pairs (x,y) described by a sentence 
in x and y, replacing x by x–h and y by y–k yields the same graph
as applying the translation (x,y) →(x+h, y+k) to the original 
relation. That along with a corresponding graph scale-change 
theorem allow students to understand the graphs of trigonometric 
functions, the similarity of all parabolas, for example, and the 
relationship between different conic sections. So in UCSMP, the 
geometry course must come between the two years of algebra 
study.

4.	 Taking advantage of similarities of structure (isomorphism): 
The word “isomorphism” is too unwieldy to use overtly with the 

Elisabeth 
Phillips 

“My proposal is this: Presently, we have 
several K-12 algebraic curricula that em-
body one or more of the organizing prin-
ciples discussed at this conference. We 
should take time to seriously study these 
curricula. What works for what students? 
Under what conditions? If we don’t, then 
we will have lost important information 
about what works and doesn’t work for 
students and teachers and we will end 
up repeating the same old patterns with 
very few students passing through the 
algebra gate.” 

	 — Elizabeth Phillips, Michigan State     
     University, coauthor of the 
     Connected Mathematics Project
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students, but correspondences can be pointed out. 
Properties of the additive structures of the real 
numbers correspond to properties of the multipli-
cative structure of the positive real numbers, for 
example, 0a = 0 in the additive structure corre-
sponds to a0 =1 in the multiplicative structure. The 
isomorphism between composites of linear trans-
formations and products of matrices has many 
payoffs, for example, in deriving the formulas for 
sin(x + y)and cos(x+y) from matrices for rotations.

5.	 The modeling approach: The arithmetic opera-
tions are used to develop properties, formulas 
and applications for the corresponding algebraic 
expressions and functions. For example, by com-
bining the use of subtraction to make comparisons 
and the use of division to calculate rates, one ob-
tains the formula for slope. As another example, 
if a quantity grows with a constant growth factor 
b in every unit time interval, then it grows by a 
factor of bn is an interval of length n, and since it 
remains the same in 0 time, this helps to justify 
that b0 = 1.

	 This is a particularly important aspect of algebra 
if we want students to learn to use mathematics 
beyond arithmetic in their lives.

In the current edition of UCSMP, students are now using 
computer algebra systems. Usiskin argues that failing to do 
so is “morally wrong,” because technology can easily do 
many things that can only be considered “forced labor” on 
students. CASs are especially valuable for slower students, 
because it makes it easier for them to see the larger-scale 
patterns. Furthermore, it provides motivation for all 
students to learn to recognize equivalent forms of expres-
sions, since machines don’t always output expressions in a 
desirable form.

In sum, there are many ways to organize the algebra we 
teach in schools. The key in each organization is to develop 
the sequence in a justifiable and understandable way and 
not be just a collection of isolated topics. Algebra plays 
many roles in mathematics and a single approach will not 
work for all needs.

 
Hyman Bass

“A functional definition of an algorithm is that it is  
something you can program a computer to perform.  
Given this, why should we teach algorithms? Let  
machines do the work, and liberate our thinking for 
higher order tasks. This logic seems quite compelling,  
and it is, often passionately, espoused by many  
educators, including some mathematicians.

“The tacit premise of this argument is that the primary 
reason for learning an algorithm is to be able to pro-
duce that outcome it enables, for example the result of 
a whole number division problem. I propose that the 
teaching of (numerical) algorithms supports two further 
important learning goals. One is that learning an algo-
rithm — including why, not just how, it works — provides 
important insight into the nature of arithmetic operations 
and of our notational systems, notably place value. For 
example, the most direct way to understand the source 
of periodicity in decimal expansions of rational numbers 
is through examination of the long division algorithm.

“A second additional affordance of learning algorithms 
(including understanding of why they work) is to gain an 
appreciation of the very notion of algorithm. Ironically,  
algorithms are the enabling foundation of the very 
technology whose existence is offered as a reason not 
to teach algorithms. The prominence of the study of 
algorithms in computer science has bred important new 
branches of mathematics, such as complexity theory. 
Moreover, comparison of algorithms — for their efficiency, 
reliability, error-proneness, etc. — are interesting  
questions that are quite accessible and meaningful  
even in elementary mathematics.”

     — Hyman Bass, University of Michigan
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Demand:	 n(x) = 5000 – 65x

Income:	 I(x)  =  5000x – 65x2

Expenses:	 E(n)  =  4n + 25000

	 E(x)  =  45000 – 260x

Profit:	 P(x)  =  – 65x2 + 5260x – 45000

Maximizing any of these functions, as a student might be 
asked to do in an applied calculus course, requires being 
able to do some algebra.

For almost all people, technology can give them satisfac-
tory answers to questions that previously required lots of 
calculation. Most students would be happy, for example, 
getting an approximation for the optimum price by scan-
ning the graph. A computer algebra system can also solve 
the problem exactly, too. CASs are pretty easy to use once 
a student learns their syntax. Given that, Fey wonders if  
it’s really justified to force a student who didn’t pass the 
algebra placement test initially to take a remedial course.

Furthermore, Fey argued that analyzing a graph produced 
by a CAS offers different and much richer information 
from what you get by analyzing profit, income, etc, by just 
doing symbol manipulation. If you solve a function for the 
break-even points, you’ll get two numbers from symbol 
manipulation. But the graph shows the whole scope of the 
relationship. At the peak, you can move a fair amount left 
and right without really changing how much money you 
make. Any price within a modest range is about the same  
as any other price.

PROPOSAL

Developing School Algebra Through a Focus on Functions  
and Applications

James Fey has a vision for an algebra curriculum that 
focuses on functions and applications and relies extensively 
on computer algebra systems to de-emphasize instruction 
in symbol manipulation. This came out of his experience 
teaching algebra. Like others he noted that the common 
conception of algebra is that it’s a dance of symbols. The 
word problems were commonly so staged that they were 
almost comical: Say “There are two trains” and everyone 
laughs. And he noted the usual results: students had a frag-
ile mastery of limited technical skills; they learned special 
procedures for doing well-defined and inauthentic prob-
lems; and many developed a strong distaste for the subject.

Teaching calculus to students in the social sciences and 
management highlighted the consequences of this to him. 
The very notion of a variable was quite different in calculus 
from in algebra, since it represents a quantity that varies 
over time, rather than a fixed but unknown quantity. Equa-
tions in calculus show how quantities relate to one another, 
and expressions represent algorithms for calculating the 
value of a dependent variable from the values of  
an independent variable.

He’s come to think that algebra needs to be taught as a 
way of expressing relationships between variables. While 
its techniques are helpful for answering specific questions 
about variables (for example, finding the number that satis-
fies a particular condition), its greater power comes from its 
ability to express relationships between variables.

To give an example of this, consider this question: What 
average ticket price will maximize the operating profit 
of the Major League Lacrosse all-star game? Should the 
price be low, so that lots of people come and it seems like 
lacrosse is really growing? Or should it be higher, to get a 
lot of money out of a few people? What’s the break even 
price? Lots of variables are relevant to these questions: 
ticket price, tickets sold, income, expenses, profit... One 
could model the relationships with a bunch of functions,  
for example, if x is the ticket price:
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Fey once allowed a student to use a graphing calculator 
throughout a calculus course, to see if access to a tool like 
that could allow a student to participate effectively and 
successfully when her weakness in symbol manipulation 
would otherwise have been quite a barrier. She was able 
to succeed. This led him to conclude that computers might 
allow us to rethink the priorities of an algebra course and 
particularly how much learning to manipulate algebraic 
symbols needs to be in the foreground of an algebra course.

That experience has changed his view about what algebra  
is really about. He came to conclude that the most  
important goals of algebraic reasoning are understanding  
and predicting patterns of change in variables, where  
variables represent things that change, not fixed but 
unknown quantities. Letters, symbolic expressions, and 
equations are invaluable tools for representing what we 
know or want to figure out about the relationship between 
variables. Students must learn to represent what they’re 
thinking about in a symbolic way; technology can’t do that 
for them. Algebraic procedures for manipulating symbolic 
expressions into equivalent forms are useful for developing 
insight into relationships between variables. But even here, 
calculating tools offer power alternative methods to gain 
insight and solve problems.

He has come to believe that algebra courses that focus on 
developing personal skill in algebraic symbol manipula-
tion are a poor use of instructional time for all but a fairly 
small segment of the student population. In particular, such 
skill-oriented courses are an inappropriate requirement for 
getting a diploma, as does the growing requirement that 
students take a traditional Algebra II course. Traditional al-
gebra courses don’t even seem necessary for him for entry 
to college, even for majors that require a significant amount 
of quantitative reasoning.

Fey argues that the essential dispositions, understanding 
and skills that ought to be at the heart of an algebraic  
experience are these:

1.	 A disposition to look for key quantitative variables 
in problem situations and for relationships among vari-
ables that reflect cause-and-effect, change-over-time, 
or pure number patterns. We want them to notice 
variables and relationships in their experiences and 
observe interesting number patterns.

2.	 A repertoire of significant and common patterns 
to look for: direct and inverse variation, linearity,  
exponential change, quadratic patterns, etc.

3.	 The ability to represent relationships between 
variables in words, graphs, data tables and plots,  
and symbolic expressions.

4.	 The ability to draw inferences from represented 
relationships by estimation from tables and graphs,  
by exact reasoning using symbolic manipulations,  
and by insightful interpretation of symbolic forms.

5.	 The habit of checking that the mathematics 
accurately describes the real world.

These goals suggest a presentation of algebra that  
begins differently from how it has traditionally. Rather  
than presenting algebra as a generalization of arithme-
tic, draw attention to the many interesting situations in 
science, business, engineering and technology where 
quantities change. The symbolic notations of algebra can 
be introduced naturally to precisely describe these obser-
vations of patterns. Then students can learn, with a very 
modest amount of personal symbolic reasoning proficien-
cy, the array of computing tools to answer questions about 
them. Students who need to develop personal skills to do 
algebraic manipulations without technology can learn that 
when it appears essential, rather than doing so as part of a 
first step for all.

In some sense, this turns tradition on its head, by starting 
with conceptual understanding and problem-solving and 
ending with personal manipulation skills. This provides 



TRANSITIONS  •  MSRI  •  Critical Issues in Mathematics Education20

ORGANIZING PRINCIPLES FOR ALGEBRA CURRICULA

PROPOSAL

ORGANIZING PRINCIPLES FOR ALGEBRA CURRICULA

PROPOSAL

students with intuitions about variables, expressions and equations that 
are an effective concrete grounding for later development of manipula-
tive skills. First, they learn that these x’s and y’s and equations really 
mean something.

Fey acknowledges the following reasonable concerns about these 
ideas:

1.		 Is this algebra? Fey is recommending putting factoring and 
solving and other forms of manipulation in the background and 
putting functions in the foreground. That sounds like analysis 
rather than algebra.

2.		 Does the function-oriented development serve well the variety 
of topics in which algebraic manipulation is useful? Aren’t there 
some topics in mathematics that aren’t functions?

3.		 Don’t users of CAS need some personal skill to understand 
how to utilize the tool? Fey says that he has talked with several 
colleagues and asked them about what students can’t do with CAS 
that they need to be able to do. They’ve said that there’s a kind of 
flexibility and available to arrange things algebraically that a CAS 
just won’t give you. Fey says that he hasn’t heard the real killer 
example of that, but it’s reasonable to imagine.

4.		 Is “just in time” skill development feasible pedagogically? 
Some teachers say that students learn by doing it first, and that then 
it’ll make sense to them and they’ll see the structure later. That’s an 
empirical question, and Fey says that 25 years ago, he had no evi-
dence to support these proposals. But over that time, there’s been 
a lot of development of pretty effective curriculum materials and 
experiments that show that kids can learn this way. So he argues 
that now it’s not totally pie-in the-sky, but an idea that has a lot of 
promise.

Fey points out that young people approach finding information  
differently from older people. They’ll pull out their cellphone and call 
up a CAS to do a calculation for them. This technology environment  
for doing mathematics isn’t going to go away; it’s going to accelerate. 
So he argues that if we aim to provide the kind of mathematical  
understanding and skills that will be most useful and attractive to  
most students, this can make a strong claim for priority in school  
mathematics. 

William 
McCallum

“I would like to make a pitch for distinguish-
ing between algebra and functions. I think 
of a function as a black box taking input 
to output. All the things we think about in 
algebra — such as expressions, equations, 
graphs and so on — I think of as the machin-
ery inside the black box. 
Different machinery can produce the 
same function: x goes to 4x2 and p
goes to (2p)2, for example. Algebra can de-
scribe the machinery inside the black box.

“Functions are a useful vehicle for teaching 
algebra, but algebra is not about functions. 
You might use them as a way of teaching 
algebra though. Furthermore, although 
symbolic manipulation is an important part 
of the machinery, neither is algebra solely 
about symbolic manipulation.

“I propose: Algebra is about reasoning with 
numbers, operations and relationships 
using symbols. This includes working with 
expressions, equations, and functions.” 

	 — William McCallum  
     University of Arizona



Q2
The transition from arithmetic to algebra

What is known about effective ways for students to make  
the transition from arithmetic to algebra? What does research 
say about this transition? What kinds of arithmetic experiences 
help preview and build the need for formal algebra? In what 
ways does high school and undergraduate mathematics  
depend on fundamental ideas developed in the transition from 
arithmetic to algebra? What are some effective pedagogical 
approaches that help students develop a robust understanding 
of algebra?
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Here are some of the challenges students face:

1.  Reading and language comprehension 	
     issues.

Consider the problem: “A five-pound box of sugar 
costs $1.80 and contains 12 cups of sugar. Marella and 
Mark are making a batch of cookies. The recipe calls 
for 2 cups of sugar. Determine how much the sugar for 
the cookies cost.”

That looks really straightforward, but native English 
speakers are unlikely to notice that in one place the 
problem refers to a “batch,” and in another it refers to a 
“recipe.” For English language learners, that’s a decid-
edly non-trivial hurdle.

Another problem: “The upper Angel Falls, the highest 
waterfall on Earth, are 750 meters higher than Niagara 
Falls. If each of the falls were 7 meters lower, the up-
per Angel Falls would be 16 times as high as Niagara 
Falls. How high is each waterfall?”

This problem is a nightmare for a non-native speaker. 
There are upper falls, there are the words “higher” and 
“lower,” there are waterfalls, there are Niagara Falls.

A third problem: “The Java Joint wishes to mix organic 
Kenyan coffee beans that sell for $7.25 per pound with 
organic Venezuelan beans that sell for $8.50 per pound 
in order to form a 50 pound batch of Morning Blend 
that sells for $8.00 per pound. How many pounds of 
each type of bean should be used to make the blend?”

The linguistic challenges here are huge, before you 
even begin to understand the mathematical structure. 
Other problems in the same book refer to “savings 
bonds,” “fungicide,” “red pigment,” and “processing  
a 24-exposure roll of film.” Imagine doing that  
in Swahili.

All of these problems were taken from middle  
school texts. 

Alan Schoenfeld

“Why are word problems so damn hard?”

Prologue: Why middle school math is important . . .

Schoenfeld has spent the past several years in middle 
school classrooms, so he’s had a good deal of oppor-
tunity to see the challenges that word problems offer 
middle school kids. But it’s not just an academic prob-
lem, he says. Being bad at the mathematics involved 
in such stories can have real world consequences, as 
described in this story.

A friend of his complained that his pain medi-
cine was inadequate. His doctor asked how 
much morphine he was getting, and the friend 
said he was taking two pills every two hours. 
The doctor said, “We’ll double it to four pills 
every four hours.”

So, it’s not just middle school kids who have trouble 
with these kinds of issues. Getting the math wrong  
in cases like this can be painful, and possibly life  
threatening!

. . .and why it’s harder than it looks.

Typically, students are taught a simple model for how  
to solve word problems: Read the problem; make 
a model or diagram of the situation; write down 
equation(s); solve the equations; and check the answer. 
But the reality is that it’s not that simple, Schoenfeld 
argued. That model is akin to describing how you ride 
a bike this way: Put your foot on the pedal; swing your 
leg over; and start pedaling forward while you hold the 
handlebars. Those instructions make sense if you’ve 
been riding a bike for a long time  –  but for someone 
learning to do it for the first time, a lot of balance, mo-
tor coordination, and other skills that aren’t included in 
that account have to be acquired.

So in this talk, Schoenfeld aimed to unpack each of the 
steps described and add a few hidden steps, in order  
to suggest why solving word problems is as difficult  
as it is.
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2. 	 Mathematical disposition.

For many kids, math isn’t about sense-making.

Here’s an example that shows this starkly. A 
fairly typical student, working alone with his 
teacher, reads this task aloud: “A dragonfly, the 
world’s fastest insect, can fly a distance of 50 
feet in about 2 seconds. How long will it take  
for the dragonfly to fly 375 feet?”

Less than 1/5 second after reading the problem, 
the student says: “So, first I’ll divide 375 with 
50, and then — wait. Or, I will multiply . . .  50,  
no wait, now what? This is dividing ... 5 times 
what can get 8?”

The teacher tries to slow the student down:  
“So you’re thinking divide?”

The student says, “I’m not understanding.  
Do you look at 5 times the number first or is it 
the big number, this is 50 into it first?”

The teacher says, “What are the quantities we’re 
looking at here? And what are you trying to find 
out?”

The student flounders: “Trying to find out how 
many seconds the dragonfly can fly in 375 feet ... 
wait ... How many seconds will it take it to fly 
375 feet?”

The teacher encourages the student to draw a 
picture of the situation. The student draws a 
picture of a road, a town, a little dragonfly. The 
teacher focuses the student on the quantities, 
where they are in the picture, what they want  
to find out, and what they know. Then the  
teacher says, “So that looks great. What do you 
think we should do next?”

The student says, “I have an idea, maybe 50 
times 375 divided by 2? ... That won’t work.”

The teacher says, “What are we trying to  
find out?”

	 Ed Silver

Equality

Ed Silver of the University of Michigan pointed out that students’ 
misunderstandings of the notion of equality can be a major stum-
bling block on the road to algebra, and there’s been a fair amount 
of interesting research about this. Here are three different ways 
that kids can understand what the equals sign means: 

1.	 Kids often first encounter the equals sign in the context of 
problems like 8 + 7 = _ , and as a result, they can see the equals 
sign as being the signal to compile. That idea is reinforced by 
the fact that’s exactly what the equals sign does on a calculator. 
But this understanding already starts breaking down if you give 
problems like 8 + 7 = _  + 3, or 8 + 7 + _ =  9 + 6. 15 is a very common 
answer to the first question for sixth graders, not just second 
graders. If a student’s conception is rooted in this when they 
get to algebra, they’re going to have big problems.

2.	 Another use of the equality sign is as punctuation, as if it were 
a comma:

				        12 x 8 =96 / 3 = 32 + 8 = 40 / 4 =10
Compare: 

			        12 x 8 =  96 
			        96 / 3 = 32 
			        32 + 8 = 40 
			        40 / 4 = 10

This is a crime against mathematics! But it’s very common. 
In the U.S., we tend to permit abuse of the equals sign more 
than in some other places. Clearly, this is not a healthy use 
of equality.

3.	 Consider this problem:

On one balance beam, you have five A’s on the left and 
three B’s on the right. On another, you have one B on the 
left and an A plus two C’s on the right. How many C balls 
would be needed to balance on A ball? 

	      a.	    1 
	      b.	    2 
	      c.	    3 
	      d.	    4 
	      e.	    5

This is the notion of equality that’s really helpful in 
algebra, but it’s often least attended to in the  
developmental work in arithmetic.

This equality issue is obviously fundamental. A basic notion of 
algebra is that if a quantity can be expressed in more than one way, 
then these different expressions are, in general, equivalent, and 
students need to be facile with that to succeed.
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By now, the student knows: “How many seconds will it  
take the dragonfly to fly 375 feet.” The student then gets en-
meshed in a computation and sees it goes nowhere.

The teacher asks, “And we know what?”

Student: “It can fly 50 feet in 2 seconds.”

Teacher: “All right, what do you think? Well, if it could fly 50 
feet ...”

Then a light bulb goes off for the student. “In 4 seconds it 
would be 100 feet, in 6 it would be 200, 8 would be 300, so  
9 would be 350. There’s 25 missing, so 1/2 of it to get 375  
so 91/2 seconds to get 375 feet.”

Teacher: “That sounds pretty good...”

Although the student still didn’t have the details right, by the 
end, he was at least starting to reason constructively. This ex-
change shows that for many kids, math is not about sense-mak-
ing. It’s not about taking a situation, figuring out how it all fits 
together, deriving relationships, symbolizing them and acting 
on them. It’s about doing what you’re told to do in classrooms, 
combining numbers to get an answer. 

For example, take this problem, which Schoenfeld’s colleagues 
have given to hundreds of European kids:

“John wants to make wooden bookcases that are two feet wide. 
He has two five-foot long boards. How many two-foot long 
boards can he cut from them?” Seventy percent of kids say five.

There are many other examples of this. There’s a famous 
problem, “There are 26 sheep and 10 goats on a ship. How old 
is the captain?” 76 out of 90 students said 36. After all, (26 -10) 
gives 16 and a captain has to be older than that;  
(26 x 10) is too old, and they don’t know how to divide the 
numbers, so it must be 36.

3. 	 In making a model or diagram step, students have 	
	 to figure out what’s relevant and how to picture it. 

This is what the student drew in the dragonfly problem. It’s a  
scenic representation that  doesn’t include the mathematically 
relevant information. 

David Carraher, a senior scientist at TERC, Techni-
cal Education Research Centers, described his work 
identifying opportunities to lay the groundwork for 
algebra in grades 3 through 5. He described two 
problems that show how children can begin to grasp 
the concept of variables in third and fourth grades.

Early in third grade, students are given two closed 
boxes. They are told that one contains John’s can-
dies and the other contains Mary’s. Mary also has 
three more candies outside the box. The kids are 
told that both boxes contain the same number of 
candies, and they’re asked to show what they know 
about the candies John and Mary each have. 

This is initially treated as an empirical problem, 
so the kids often start by shaking the box to try 
to guess how many candies it holds. Next, they’ll 
usually choose a particular number of candies — for 
example, they’ll say that John has 6 and then so 
Mary must have nine. A further step is made by a 
child who draws the boxes and refuses to commit 
herself to a particular number, thereby leaving it as 
an indeterminate value.

In a discussion, kids will make predictions about the 
number of candies each person has. Typically, some 
child will say something like, “Mary may have a 
total of 9 and John may have a total of 10, because 
we don’t know how many they have.” The children 
quickly realize that this doesn’t work. Eventually, 
they recognize that only the conjectures in which 
Mary’s amount is three more than John’s are ac-
ceptable. 

They typically don’t use letters as variables, but 
they’ll use, for example, question marks. The 
teacher can say, “What if we call it N? Is that rea-
sonable?” Students are typically willing to buy into 
the idea that N can stand for the number of candies 
in the box. But sometimes they think N just means 
anything, with no constraints, and they’ll say, “How 
many candies does Mary have? N. John? N.” 
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Or, here’s another problem: “The local cab company 
charges $1.25 for the first mile traveled and then 
$0.35 for each additional mile. Natalie spent $7.20 
on a ride in a cab. How many miles did Natalie 
travel?”

If you look very closely, you’ll see that there’s a  
meter in the cab. That’s better than many kids  
could do!

Consider this drawing a student made from the 
waterfalls problem:

All of us, if we drew that picture, would put the tops 
of the waterfalls in a straight line, because we know 
that it’s the relative heights of the falls that matter. 
A student who starts with a picture like the above 
will have a much harder time mathematizing the 
problem.

4. 	 Reading the math from the problem statement.

With experience, people learn an enormous amount 
about what to expect from a word problem. In the 
waterfalls problem, for example, a mathematically 
sophisticated adult will very quickly expect to solve 
the problem using two simultaneous equations in 
two variables. As soon as you recognize that, you 
approach the problem completely differently from 
someone solving it naively.

 
In fourth grade, 18 
months later, Carraher 
gives students a dif-
ferent problem: “Mike 
has eight dollars in his 
hand and the rest of 
his money in his wallet. 
Robin has all together 
three times as much 
money as Mike has in 
his wallet. Represent 

the amount of money Robin and Mike each have.” This is a 
challenging word problem, and kids will dispute what this 
means. Does it mean that Robin has three times as much 
money as Mike? Kids will sometimes represent the situa-
tion with notation by drawing a wallet with an N on it, and 
say that N + 8 equals Mike’s money. Then they’ll draw three 
wallets for Robin. So the students are beginning to express 
algebraic reasoning, albeit without using algebraic notation.

Over a year and a half, these students show a clear shift in 
their thinking about variables. Forty children assigned a par-
ticular value to the candy boxes at the beginning. A year and 
a half later, fourteen still assigned a particular value in this 
analogous problem but there was a shift to using a symbolic 
representation either with letters or a combination of icons 
and letters. This suggests to Carraher that students can deal 

with state-
ments about 
functions and 
relations be-
tween quanti-
ties at an early 
age, and that 
this is a focal 
point for early 
mathematics. 

Further information on the early algebra studies by Carraher 
and his colleagues can be found here:

http://ase.tufts.edu/education/earlyalgebra/about.asp

Carraher, D.W., Schliemann, A.D. & Schwartz, J. (2008). 
Early algebra is not the same as algebra early. In J. Kaput. D. 
Carraher, & M. Blanton (Eds.), Algebra in the Early Grades.  
Mahwah, NJ, Erlbaum, pp. 235-272.

Schliemann A. D., Carraher D. W., Brizuela B. M. (2012). 
Algebra in elementary school. In L. Coulange & J.-P. Drouhard 
(Eds.) Enseignement de l’algèbre élémentaire: Bilan et per-
spectives. Special Issue of Recherches en Didactique 
des Mathématiques, pp. 109-124.
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A researcher asked people what they expected of a math prob-
lem that started with the words, “a river steamer.” One subject 
said, “It’s going to be one of those river things with upstream, 
downstream, and still water. You are going to compare times 
upstream and downstream — or if the time is constant, it will 
be distance.” If you know that, you’ve got 70 percent of the 
problem done already.

After hearing five words of a triangle problem, one subject 
said, “This may be something about ‘How far is he from the 
goal’ using the Pythagorean theorem.” 1

Knowing the tradition and the genre simplifies problems enor-
mously. But beginning students aren’t at that point yet.

5.	 People’s conceptual models of the situations to be 	
	 analyzed

In the dragonfly problem, what makes the problem difficult 
for the student at the end (that is, once he finally understands 
the situation) is that he comes to the problem with an additive 
model rather than a multiplicative one. Mathematically so-
phisticated people approaching the problem see that distance 
per second is a convenient and powerful unit. Many students 
see this as an additive situation, with a non-standard yardstick: 
every 2 seconds the dragonfly advances 50 feet. The student’s 
perspective makes sense, it’s just not the most useful model 
for the problem. A teacher needs to recognize the model the 
student is using and help the student move to a more powerful 
mathematical perspective.

6.	 Meta-level knowledge
Consider this problem: “Alan can mow the lawn in 40 
minutes. David can mow the lawn in 50 minutes. How long 
does it take them to mow the lawn together? (Assuming two 
mowers, no crashes, etc.)” The key thing in understanding this 
kind of problem is that there are only certain things you can 
combine. In this case, it’s how much of the lawn each of them 
can get done in a certain amount of time, because those can be 
added. None of the other quantities can be added in this way. 
It's not inherent in the equations; it’s inherent in one’s meta-
knowledge of the situation.

7.	 Deriving the right equations
There’s an art to picking the right variable, and it’s not easy 
to pick up. Consider this problem: “The length of a rectangle 

 
Hyman Bass

“In contrast with science, mathematical knowl-
edge tends much more to be cumulative. New 
mathematics builds on, but does not discard, 
what came before. The mathematical literature 
is extraordinarily stable and reliable. In science, 
in contrast, new observations or discoveries can 
invalidate previous models, which then lose their 
scientific significance. The contrast is sharpest in 
theoretical physics. I. M. Singer once compared 
the theoretical physics literature to a blackboard 
that must be periodically erased.

“Given this, what saves math from sinking 
under the weight of its millennia of accumu-
lated knowledge? It is a process that some 
(for example Bill Thurston) have described as 
compression. And algebra is the quintessen-
tial expression of this. For example, we create 
simple names and phrases that encapsulate, and 
cognitively rescale, very complex mathematical 
ideas. And we assimilate them fluently into the 
common language of mathematics. For example, 
two mathematicians may talk to one another 
fluently about a complex Lie group, but it might 
take two years of graduate instruction to explain 
to a non-expert what they are talking about. Yet 
the mathematicians talk about it as comfortably 
as would a child about a whole number.

“More concretely, consider the fact that the sum 
of two odd numbers is even. This statement, and 
its informal justification, are accessible to even 
young children. It typically rests on the notion 
of an odd number as one that can be ‘grouped 
by twos, with one left over,’ and, on this basis, 
a kind of generic proof can be offered. Once 
algebraic notation is available, the statement 
becomes, (2x + 1)  +  (2y + 1) is even for all integers 
x and y, and the very notation and basic rules of 
algebra render the proof almost mechanical.

“At the grand scale, compression is achieved by 
theories (group theory, number theory, Hilbert 
spaces, etc.) that synthesize and unify broad 
areas of mathematics.”

     — Hyman Bass, University of Michigan

� (Hinsley, Hayes and Simon, 1977, P. 97)
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Bob 
Moses

“In order to change the country 
on big-ticket issues, we have to 
change the institutions and prac-
tices that have grown up as part 
of our history. In my experience, 
changing these requires a coalition 
of the top and the bottom. It’s cru-
cially important for the people who 
are targeted by a damaging legacy 
to participate in the unraveling of 
it. The sharecroppers needed to 
know that they were party to the 
unraveling of their situation, and 
gaining their political access to the 
right to vote. It wasn’t something 
that was handed to them; they 
participated in earning it. The kids 
in the bottom quartile who are 
trapped in this system of education 
need to be part of that too.” 

     — Bob Moses, founder of the 
          Algebra Project

Portrait featured in Mariana 
Cook’s Justice: Faces of the 
Human Rights Revolution. 
To purchase Justice, go to:
http://bit.ly/JusticeBook 

Mariana Cook’s website: 
www.marianacook.com

is five inches longer than twice 
the width of the rectangle. The 
perimeter of the rectangle is 112 
inches. What are the dimen-
sions (length and width) of the 
rectangle?”

With experience, one recognizes 
that it’s best to choose the width 
to be the independent variable, 
because then you can write the 
length as L = 2W+5. But there’s 
no a priori reason to choose the 
width rather than the length, 
and if you choose L to be the 
independent variable, the prob-
lem becomes very much harder. 
Students will typically pick L 
because it’s the first variable that 
appears.

8.	 Solving the equations

Solving the equations seems like 
it’s finally something straightfor-
ward and procedural — but even 
that isn’t quite true. 

Choosing the strategy is non-
trivial. For example, when 
do we substitute, when do 
we eliminate? That’s a kind 
of sophistication developed 
through time.

9.	 Checking the answers

Does it make sense? Can there 
really be 1-foot-long shelves 
in a 2-foot bookcase? Finish-
ing up properly is every bit as 
much about sense-making as 
getting started, and students 
have to learn how to do that.

So the drawing at the bottom of the 
page gives a more realistic model of 
what problem-solving is like for our 
students. Every one of the boxes in the 
diagram requires complex pedagogi-
cal strategies and interventions, if you 
want there to be a good chance that 
students will get it! That’s why the  
job of middle-school teaching is so 
damn hard.
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Assertion 2: Students transitioning from  
arithmetic to algebra are learning to general-
ize their knowledge of the arithmetic of rational 
numbers. 

Key teaching questions for this:

“What is the next step in the pattern?”  
“What is the 1000th step in the pattern?”  
“What is the 1001st step in the pattern?”

2.	 Algebra as the study of binary operations. 

	 Students come to shift their attention from the
	 numbers they’re operating on to the operation  
	 itself.

Take the problem “Solve 2x + 5=13,” and contrast a 
solution through guessing and checking with an al-
gebraic solution. For the algebraic solution, students 
have to understand that you can add the same thing to 
both sides of an equation and the equation still holds. 
That’s moving to an understanding of the principles 
underlying the operations.

A hallmark of this level of work is that students begin 
to think about computations before performing them. 
Also, the “-tive laws” (commutative, associative, etc.) 
begin to have real meaning at this level. Students 
begin to see algebra as the study of “structures.”

Assertion 3: Students who are solving equa-
tions algebraically (and not arithmetically) 
are using the general properties of binary 
operations.

Key teaching questions at this level:
“How are these equations the same?” 
“What do you do next?” (before the student has 
actually done a computation)
“What do you want to do with the calculator?” 
(before the student has picked it up.)

Mark Saul

What is Algebra, Really?

Math teacher Mark Saul addressed the question of what 
algebra really is. He started by cautioning that he couldn’t 
really answer that question, but he could offer a description 
of what algebra is for him.

First, he said, algebra is not letters in place of numbers. The 
problem 5 + what? = 12, for example, isn’t algebra, though 
perhaps it’s pre-algebra. Graphing functions, which is usu-
ally taught in an “algebra” class, leads to analysis, not alge-
bra. There are many ways to represent functions, and some 
of these representations are algebraic, but there is more to 
algebra than just the representation of functions and more 
to the representation of functions than just algebra.

Assertion 1: The heart of algebra is NOT an 	
understanding of the function concept.

In looking at functions, and the role of algebraic variables 
in representing functions, students can come to understand 
something about algebra. This isn’t unusual. For example, 
geometry is not characterized by the use of an axiomatic 
system, but in studying geometry, students can come to an 
understanding of something about the use of an axiomatic 
system. Fractions are not characterized by the expression of 
the probability of an event, but in computing probabilities, 
students can come to understand something about fractions. 
Baseball is not characterized by the speed at which a player 
runs, but in playing baseball, one can increase one’s ability 
to run quickly.

Saul then presented three ways to think about algebra:

1. 	 Algebra as “the general arithmetic,” which 	
	 was Newton’s perspective on it.

	 Algebra gives a way of generalizing arithmetic 
	 patterns. For example,

25 = 55 and 24 = 64;
49 = 77 and 48 = 86;
etc., so 
a2 –1 =  (a +1) (a –1)
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3.	 As the study of the “arithmetic” of the field 	
	 of rational expressions. 

	 The mathematician I.M. Gelfand put it this way:  
	 “In arithmetic we can use letters to stand for  
	 numbers. In algebra, we use letters to stand for  
	 other letters.”  
	 For example,

a2 – b2  =   (a+  b)(a– b)
	 If you let a  = 2x and b  = 1, then you get

4x2 –  1   =   (2x + 1)  (2x –1)

	Or if you let a = cos x and b = sin x, you get 
	cos2 x – sin2 x = (cos x+sin x) (cos x – sin x)

On this level the form of algebraic expressions 
becomes important. Students can develop an in-
tuition about which of several equivalent forms 
is most useful for a given situation. Algebraic 
expressions become objects of study, and not 
just their value at a given point.

Key teaching questions at this level:
“What plays the role of A?”
“What plays the role of B?”

The second transition that students make while study-
ing algebra is to inductive reasoning: describing pat-
terns, making conjectures, testing hypotheses, pass-
ing from specific cases to general rules. Empirical 
scientists do that all the time. Deductive reasoning 
involves examining assumptions, making definitions, 
“proving theorems,” passing from general statements 
to specific cases.

	 Assertion 4: students making the transition
	 from arithmetic to algebra are typically  
	 focused on learning and applying inductive  
	 reasoning, rather than deductive reasoning.

What about the distributive law? Isn’t that an  
axiom, and hence involving deductive reasoning? 
Well, yes, but:

Assertion 5: For us the distributive law is an 
axiom, but for kids first learning this stuff, it’s  
a way of computing. 

Applying the distributive law in a computation is,  
for us, an example of deductive reasoning. But for 
most students, most of the time, it is deductive  
reasoning after they’ve recognized deductions in 
other contexts.

Thus “justification of computation” is not a very ef-
fective step in learning about deduction. But, if this is 
done within a very conscious framework of, say, the 
field axioms, it can be a good example of a deduc-
tive system, with, say advanced students. (This is an 
empirical statement, on the basis of experience.)

So, Saul asks, how do we support students learning 
about the special nature of mathematical truth, which 
isn’t empirical? What are their typical intuitions 
about deductive logic? What are the steps in the 
development of this concept that we can anticipate 
them passing through?

Assertion 6: Algebra traditionally in school math, 
including reform, is thought of in connection with 
inductive reasoning, and geometry with deductive.

Saul ended his remarks with a list of questions he 
doesn’t know how to answer. How true is assertion 
6? Are there places in algebra where we develop 
deductive reasoning? Are there places in geometry 
where we develop inductive reasoning?

How true “ought” assertion 6 to be? Is there a reason 
that algebra is conducive to inductive and geometry 
the opposite? Should we counteract that? How do we 
help students progress from inductive to deductive? 
And is “progress” the right word?
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money there is, with your fist closed, they should of 
course know that they don’t know. But they never doubt 
that it’s a fixed quantity. If you then show that money and 
ask, “Would you get the same number if you counted it 
in a different order?” You're almost making an assault on 
their prior logic.

Though children know that the number of objects doesn’t 
change depending on how you count them, encoding that 
as a + b = b + a is a different matter. Like any language, 
algebraic language is a convention. You learn it from na-
tive speakers. In your native language, you get about half 
of your adult vocabulary and almost all of your grammar 
by the age of five, all inferred from use in context, not 
explicit definitions and lessons. When kids learn just by 
definition, you’ll see them say, “Extinguish. That means 
put out.” Then when they use it in a sentence they’ll say, 
“Every night I extinguish the cat.” Language learned 
from natural communication in context is absorbed 
quickly and with less distortion. “The same may be true 
of algebraic language,” Goldenberg argued.

Linguistic strategies come up in math. For example, 
consider Michelle’s strategy for subtracting 8 from 24. 
Well, 24  –  4 is easy, she says. Now 20 minus another 4. 
Well, I know 10  –  4 is 6, and 20 is 10+10, so 20  –  4 is 16. 
So 24  –  8 is 16.

Breaking it up this way is algebraic. The knowledge that 
10    –    4  =  6 is arithmetic. But the idea that 24  –  4 is easy is 
fundamentally linguistic, Goldenberg argued. He illus-
trated what he meant by this by asking the full name of 
a woman in the audience: Lisa Berger. What, he asked, 
if you take Lisa away from Lisa Berger? She responded, 
Berger. What if you take Berger away? She responded, 
Lisa. This, he said, is linguistically similar to taking 
“eight” away from “twenty eight.”

This is linguistics, not math. Numbers didn’t get born 
with names. We named them in order to make 24    –  4 easy.

Schooling should take advantage of the cognitive and 
linguistic strengths children bring to mathematics.

E. Paul Goldenberg 

How the ideas and language of algebra K-5 set the stage  
for Algebra 8-12

E. Paul Goldenberg of Education Development Center 
(EDC) described how algebra can serve both as a language 
and as a computational tool and argued that while most 
elementary school children can’t use algebraic notation as  
a computational tool, they can use it as a language.”

To us, expressions like (n  –  d)(n+d) can be manipulated to 
derive things we don’t yet know or to prove things that we 
conjectured. But we can also use such notations, not manipu-
lated, as a language to describe a process or computation or 
pattern, or to express what we do know, for example, that in 
all specific cases we’ve tried (n  –  d)(n + d) = n2  –  d2.

Kids come with this unbelievable built-in apparatus. They 
are great abstracters. Take, for example, how they learn 
language. They abstract the meaning of a word like “dog” 
or “mommy” from chaotic data. First they may overuse the 
word dog for all kinds of animals, but then they refine it 
to apply only to certain kinds. Their drawings are similar 
abstractions, representing not what they see but what they 
know. Their phenomenal language-learning ability is why 
they can use some mathematical notation to express what 
they know before they can use it logically to derive what 
they don’t know. They have some ability to quantify and 
to apply logic and are always building theories about the 
world. That’s all stuff we can use in teaching them math.  
In learning math, they use the same tools.

Some algebraic ideas precede arithmetic. Part of under-
standing that eight things bunched together are “as many” 
as eight spread out seems built in and part may be develop-
mental, but not until that idea is secure can a statement like 
3+5=8 make sense. Children must believe that the number 
of objects stays the same when rearranged before it makes 
sense to say what “that number” is! Encoding this idea 
formally may come after arithmetic, but the algebraic idea, 
itself, comes first.

You certainly have to nourish kids to extend, apply and 
refine this built-in apparatus. They need experiments with 
breaking numbers up and rearranging parts for example, 
but they bring understanding that we shouldn’t ignore. 
If you pull change out of your pocket and ask how much 
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Deborah Schifter, Susan Jo Russell, and Virginia Bastable

Supporting the Transition from Arithmetic to Algebra

Deborah Schifter, Susan Jo Russell, and Virginia Bastable 
have worked together since 1993, substantially on early 
algebra. Since 2001, they’ve had a series of grants to focus 
on early algebra. They authored Developing Mathematical 
Ideas, a professional development program that includes 
two modules on early algebra. They also developed Investi-
gations in Number, Data and Space, a K-5 curriculum that 
includes early algebra components. Foundations of Algebra 
in the Elementary and Middle Grades is a project in which 
they are working with a group of teachers to see how the 
ideas of generalization and justification can develop in a 
classroom over the course of a year.2 All three projects were 
funded by the NSF.

From their collaborations with elementary and middle 
grades teachers who found opportunities to address gener-
alized arithmetic within their regular work on computation, 
Schifter, Russell, and Bastable identified four potentially 
important aspects of arithmetic experiences that underlie 
both arithmetic and algebra and, therefore, provide a bridge 
between the two. These are:

 Describing the behavior of the operations

 Generalizing and justifying

 Extending the number system

 Understanding notation

These aspects emerge naturally from work on computation 
already at the heart of elementary mathematics programs, 
and they can be highlighted and pursued by teachers who 
learn to recognize opportunities. Focusing on these aspects 
of arithmetic not only enables students to grow from arith-
metic towards algebra, but also strengthens their under-
standing of computation.

Several classroom examples, documented with the help  
of collaborating teachers, were presented at the MSRI  
conference to illustrate these aspects.

Example 1 illustrates the first two aspects: 1) describing 
the behavior of the operations, and 2) generalizing and jus-
tifying. It also previews the need for extending the number 
system.

The teacher, who worked with students struggling with 
grade-level mathematics, noticed they were making 
a common subtraction error: 35  –  18=23. There are 
many possible interventions one might choose, but 
this teacher chose to have her students step back to 
consider the commutative property of addition. She 
asked them to articulate why, for example, 17  +  9 must 
be the same as 9 + 17. After they demonstrated why 
these expressions are necessarily equivalent, she asked 
if subtraction works the same way. What happens with 
17   –   9 versus 9   –  17?

Few of the students had experience with negative 
numbers, and most thought that 9  –  17 = 0. One student 
came up with the following representation: she drew 
nine circles and then crossed them out, and drew 8 
extra x’s.

Her conclusion was that 9    –  17  = 0, but other students 
looked at her representation and called the extra x’s 
“invisible numbers.” One student declared 60  –  50 = 10 
and 50   –   60  =   “invisible 10.” Throughout these explo-
rations, the students—who had often felt unsuccessful 
and discouraged—were very engaged. The point of 
the exploration was not to introduce negative num-
bers; rather, the teacher wanted her students to think 
about the difference between addition and subtraction.

After these sessions, the teacher returned to the origi-
nal problem, 35  –  18. One student began to subtract 
in his old, incorrect way. Then he paused, said, “That 
won’t work,” and used another strategy to solve the 
problem correctly.

    � Subsequent to this conference, the presenters completed a book for teachers of elementary and middle grades   

based on the work of this project. It includes extensive classroom cases and further elaborates the ideas of 

this presentation:  Russell, Schifter, & Bastable 2011. Connecting Arithmetic to Algebra: Strategies for Building 

Algebraic Thinking in the Elementary Grades (Portsmouth, NH: Heinemann).
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This intervention, based on a hypothesis about the source 
of the students’ error, gave students access to ideas about 
the structure of arithmetic that will eventually help them 
in their transition to algebra. Their study of the behavior 
of subtraction led them to consider the meanings of the 
numbers in a subtraction expression, and how the rela-
tionship between those two numbers is not the same as 
the relationship between two addends.

Example 2 illustrates the first three aspects of arithmetic 
experiences that lead to algebra (describing the behavior 
of the operations, generalizing and justifying, and extend-
ing the number system). It also highlights the work of a 
student who often needs additional challenge in math.

A fifth-grade class was discussing equivalent  
subtraction expressions, e.g., 70   –  20 = 100   –  50. 
A student, Alex, came to the board and drew a  
number line to show what was going on.

Alex explained, “You can see that the distance is the 
same. If you change one number, you change the 
other the same way. As long as both numbers change 
the same, you can make lots of new expressions.” 
Other students played with his idea, sliding the 
50-unit interval up and down the number line. One 
student observed that once the top end of the interval 
gets to 50, they can’t move further to the left, be-
cause the bottom end of the interval is at 0.

Another student, Raul, said, “We could use the  
other numbers.” The teacher asked, “What other 
numbers?” Raul responded, “The negative numbers  
 

 
 
Ed Silver on Teaching

Ed Silver of the University of Michigan argued that it’s critical 
to consider teaching itself, not just curriculum. Good tasks 
and clever ideas are not sufficient.

Teachers will need help to use the materials well and to focus 
on the right stuff. This is particularly important with the tran-
sition to algebra, where the diversity in preparation, knowl-
edge and skill of the teaching force is quite large, and they’re 
being asked to do something that’s not easy.

The task as presented in the textbook is not always the same  
as the task as set up by the teacher, which may be different 
from the task as enacted by teacher and students, and it’s  
that, ultimately, that leads to student learning. For a variety  
of reasons, teachers may not present tasks the same way that 
the textbook does, from time issues to philosophy issues.

And teaching matters. The one thing the TIMSS videos found 
that distinguished high-performing countries from low-per-
forming countries was how often and in what way teachers  
used high-demand tasks. In high-performing countries,  
high-demand tasks are used often and well. 

But in the US, even if there are high-demand tasks in the  
textbooks, they tend to get watered down in the classroom.  
It happens frighteningly often. TIMSS could find almost no  
examples of high-demand tasks being used in high-demand 
ways in the US.

So the bottom line is that good tasks are important, but  
teachers also matter!

Some specific things that teachers need to know how to do:

1.	 Resist the persistent urge to tell and to direct at all  
times, and instead to provide time and space for  
student thinking.

2.	 Know when and how to ask questions and to provide  
information to support student thinking rather than to 
replace it.

3.	 Help students accept the challenge of solving worthwhile 
problems, since we know that effort matters.

4.	 Sustain students’ engagement at a high level.

5.	 Manage classroom interactions, such as orchestrating 
the treatment of multiple solution methods.

There is a growing body of evidence that teachers can be 
helped to do this better. They can learn how some of the 
things that they do with good intentions undermine student 
learning.
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on the other side of zero.” Alex suggested using,  
40 and –10, and showed the class how to write it:  
40   – – 10 =  50.

At this point, several students started talking at once, 
pointing at the number line on the board. A student 
said, “No way, you can’t do that. How can you have 
a negative 10 and end up with 50?” Alex explained, 
“It’s like adding 10, because if you look on the num-
ber line you would have to jump 50 to get from nega-
tive 10 to 40. It’s the same as we did with 100 and 50 
and 70 and 20.”

Although many students in the class still needed to think 
this through, the lesson was a first step toward making 
sense of subtracting negative numbers, using the number 
line to extend what they understood about subtracting 
positive numbers. Alex had a strong image for subtraction 
based on his work with the number line, and he was able 
to justify why the generalization extends to integers. His 
thinking gave the class an opportunity to consider new 
ideas about the operation of subtraction. At the same time, 
Alex was challenged to explain his conjectures and justify 
his generalization with a representation.

In Example 3, students engage with the first three 
aspects, as in Example 2, but also work to express 
their ideas using algebraic notation.

In a sixth-grade classroom, a student asked, “Is there 
a rule for predicting whether the sum is going to be 
negative or positive when you add a negative and a 
positive number?” Several students had ideas about 
this, including Nathan who said, “Let N be a negative 
number and P be a positive number. If N is bigger than 
P, then N + P equals something negative. If P is bigger 
than N, then N + P equals something positive.”

Nathan’s statement was recorded as: “Let N be a 
negative number and P be a positive number. If N > P, 
then N + P = N; if P > N, then N + P = P.”

Both the written and spoken statements were prob-
lematic, but the discussion was not over. Rather, in 

this classroom, such statements were treated as 
offerings to critique and edit. Nathan, himself, 
explained his statement could not be true be-
cause a negative number could never be bigger 
than a positive number.

Again, several students offered ideas until one 
student, Melinda, reminded the class of the 
idea of absolute value, which they had studied 
months earlier. By the end of the lesson, the 
students’ statement became, “The answer will 
have the same sign as whichever number has 
the larger absolute value.”

The next day, using the concept of absolute 
value, they worked on how to write the idea  
using symbols correctly.

These students were engaged in articulating a gener-
alization about adding integers, both orally and with 
symbols. They worked together to clarify the general 
rule and to communicate their ideas with precision.

After describing additional examples, the presenters 
concluded by considering the question, “What does 
it look like when students don’t have experience with 
these aspects of arithmetic before they study alge-
bra?” They offered examples from middle and high 
school showing students’ inability to apply key ideas 
of generalized arithmetic. For example, when sixth 
graders see an equation like 100  –  50 = 70  –  20, they 
can only justify that the equation is true by solving 
each expression separately; it simply doesn’t occur to 
them that there is a way to reason about the equality 
of the two expressions or to see their relationship as 
an instance of a generalization.

Engaging with these aspects of early algebra in  
the elementary grades has the potential to: 

1) strengthen students’ work on computation; 

2) preview and build the need for algebra; and 

3) support students who are struggling and students 
    who need more challenge.



TRANSITIONS  •  MSRI  •  Critical Issues in Mathematics Education34

ORGANIZING PRINCIPLES FOR ALGEBRA CURRICULA

PRESENTATIONS: THE TRANSITION FROM ARITHMETIC TO ALGEBRA

What professors need students to 
know about algebra		  	     

�
	

The standard error in statistics is given by σ/    n, where
σ is the standard deviation and n is the sample size. 
Professors want students to recognize quickly that the 
standard error halves when n is quadrupled.

     Many students don’t see this at all.

can’t draw them proportionally. As long as different things 
are drawn to be different lengths and the same things are 
drawn to be the same length, precision doesn’t matter. 
Beckmann has used this method quite a bit with prospec-
tive elementary teachers, and she’s found that they don’t 
usually bring that issue up.

Armed with this diagram, reasoning through it is fairly 
straightforward. The total number of books is 98, and the 
extra bits are 6, so if you take those off, you’re left with 
92. The remaining four pieces are equal in size, so a single 
one will be one-fourth of that, or 23. Note that this didn’t 
require setting up any equations; one only had to draw the 
picture and reason about it.

But you can also use this as a transition to reasoning with 
equations. The standard way of doing it as an algebra  
problem is this:

B+2B + (B+6) = 98 
4B+6 = 98
4B=92
B = 92/4 = 23

Each of these algebraic steps mimics the reasoning about 
the strip diagram above.

The critical issue with this kind of technique, though, is 
whether it can be applied to a broad enough set of problems 
that it becomes a genuine tool for thinking, rather than a 
special-purpose trick. Beckmann argues that strip diagrams 
do pass this hurdle, that they are an “extensible tool,” 
because they can be genuinely useful in helping students 
avoid common mistakes in arithmetic and then be carried 
through fairly complex problems in algebra. Essentially, 
they can be applied to any system of linear equations or any 
situation with additive and/or multiplicative relationships 
that are quantified between quantities.

Here’s an example from the 1999 TIMSS test for 8th grade. 
In Singapore (where strip diagrams are taught), 72% of 
students got this problem right; internationally, the average 
was 33%; and in the US, it was only 27%.

Sybilla Beckmann

Easing Kids from Arithmetic to Algebra with Strip Diagrams

Sybilla Beckmann of the University of Georgia presented  
a session on a method that she has found especially helpful 
in easing kids from arithmetic to algebra. The method is 
widely used in Singapore, and Beckmann calls it “strip 
diagrams.”

Here’s an example of a problem that can effectively be 
solved using strip diagrams: Graham has twice as many 
books as Bob. Chan has six more books than Bob, and 
all together, Graham, Bob and Chan have 98 books. How 
many books does Bob have?

This information can be represented in a diagram like this:

Note that these diagrams don’t have to be drawn propor-
tionally. Since you don’t know how many books Bob has, 
you don’t yet know how that number relates to 6, so you 
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They are also helpful with multiplicative comparisons, 
which students find really confusing. Consider the phrase, 
“There are three times as many students as professors.” 
Students will often write this down in the order the words 
come in and write 3s=p. A strip diagram helps them keep 
this straight. Or consider this problem:

There are 10% more sea stars than crabs at the aquar-
ium. If there are 84 sea stars and crabs all together, 
how many sea stars and crabs are there? 

Students find this very difficult without strip diagrams.

Strip diagrams help with ratios as well. Consider this:
Blue paint and yellow point are mixed in the ra-
tio 3 to 5 to make green paint. How much blue 
paint do you need to make 96 gallons?

This language, the ratio 3 to 5, they have trouble with, but 
strip diagrams make it more concrete.

Strip diagrams are wonderfully suited to fraction problems 
like this one: Joey spent 2/3 of his money on a computer 
game that cost $34. How much money did Joey have before 
he bought the game?

Two of these parts costs $34, so one of them cost half of 
that, or $17. All three, then, are 3317 = 51, so $51.

You can solve quite complex problems with these strip 
diagrams, which is why they were originally developed.

A club has 86 members, and there are 14 more girls 
than boys. How many boys and how many girls are 
members of the club? Show your work. 

This can be represented in a strip diagram this way: 

Armed with this diagram, the reasoning becomes pretty 
straightforward.

They’re also useful for much simpler problems. For 
example: 

After Amanda got 14 more buttons, she had 52  
buttons in all. How many buttons did Amanda have 
before she got more?

This is a second-grade word problem that’s often tricky 
for kids, because “got more” makes them think they 
should add. Strip diagrams help with this, making it clear 
that you should subtract 14 from 52 rather than add.

A useful feature of strip diagrams for young children 
is that they’re very simple. Often, if you just ask them 
to draw a problem, they’ll draw every single button, or 
worse: If it’s chickens, they’ll put in every wattle and 
feather, and get distracted from the key features of the 
problem. Strip diagrams help to rein this in.
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An economics professor put up the graph above and  
commented that it showed that CPI has grown at an  
average rate of 3.25% a year. Students — including ones  
with strong quantitative backgrounds — were mystified  
by this because they weren’t used to seeing graphs with  
a log function on one axis. Most would have understood 
had they been provided with the graph below.

What professors need students to know about algebra 

Consumer Price Index (CPI) Data

(1913-2007)

y = 0.0325t + 2.12146
5
4
3
2
1
0

0                  20                  40                 60                 80                 100

t, years since 1913

y,
 I

n
(C

P
I)

     How fast has the CPI grown over last century?

 An Economist’s Use of Algebra



The algebra needed for college

What algebraic understandings are essential for success in beginning  
collegiate mathematics? What kinds of problems should high school 
graduates be able to solve? What kinds of technical fluency will they find 
useful in college or in other post-secondary work? What algebraic habits  
of mind should students develop in high school? What are the implications 
of current and emerging technologies on these questions?

Q
3
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Daniel Chazan

A Master's Degree Program to Improve the Teaching of Middle 
School Mathematics
The Montgomery County Public Schools came to the 
math department at the University of Maryland and said 
that they had a problem: They were concerned about their 
middle school math teachers. They wanted to have 80% 
of their students take and pass algebra by the end of 8th 
grade by 2010. Lots of students are now taking algebra in 
6th and 7th grades, so they needed highly qualified teach-
ers to teach those classes. And they were worried that their 
teacher corps wasn’t up to the task.

This was particularly important because for some time now, 
more people have been leaving teaching than entering. 
When the baby boomers retire, that may get worse, and  
that may get quite dire within the next 5 to 10 years.

The trend is for more students to take more years of math in 
high school. This is good news overall, but it increases the 
need for good math teachers. Furthermore, students are be-
ing required to take more math courses, which changes the 
student body in more advanced classes and increases the 
demands on the teachers. And currently, there are concerns 
about the algebraic skills of future teachers who are gradu-
ating with major majors. Even at the end of college, their 
skills may be no stronger than when they were freshmen.

In most states there is no special middle school certifica-
tion, so middle school teachers either have a high school or 
elementary school certification. With the recently increased 
demands on middle school math teachers, those with an 

elementary certification may have an inadequate math 
background.

So the University of Maryland created a master’s degree 
program for current middle-school math teachers with an 
elementary certification. Those teachers themselves felt that 
their mathematical knowledge was not sufficient to the task 
in front of them — though they were already teaching and 
quite committed. The hope is that investing in these  
teachers will keep them teaching for many years, justifying 
the investment.

These are quotes from teachers explaining why they  
decided to the do the program:

“I think it was the kids, cause the kids were so... Like, 
they’d ask me questions, and I didn’t know, but I’d 
want to find out for them. And they were willing to 
work and find out and come tell me. They’d come and 
say, ‘Look at what I’ve found, Ms. ___.’ I would look 
at it, and it was a little nine-year-old explaining stuff 
to me...”

“I remember thinking, ‘You know what? I always 
wanted to go back and learn more math.’ I wanted to 
take calculus, I really want to know how all that stuff 
works. And I thought, well, this might be a good place 
to start. And then I happened to interview for this 
other job, and now I’m a middle school math teacher.”

“I’m really convinced at this point that if you don’t 
have a deep understanding of the mathematics your-
self, you’re not gonna teach it very well. I thought 
before, ‘Well, I have the textbooks. I can just follow 
that and the kids will be fine,’ but it’s really way more 
complicated than that. And that’s why I joined the 
Masters program in the part, because I wanted to learn 
more math — just content, but now I can see where 
if you don’t understand it all you can do is stand and 
deliver.”

The school district approached the university in the fall of 
2003, and the first cohort of fourteen teachers graduated 
in 2008. This is a drop in the bucket, because each large 
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district around us could easily provide another two cohorts 
tomorrow. The university doesn’t have enough people to 
staff that, however.

The M. Ed. program takes three years and requires 30 
credits. That consists of three math education courses, 
three math courses, three integrated math and math edu-
cation courses and one educational inquiry course. The 
first calendar year is the algebra cycle, the second is data 
analysis, and the third is geometry. The teachers carry out 
an action research project in their classroom as well.

When the university sought state funding for the program, 
the state wanted to see more connection with the field, in 
schools. So the university created opportunities for the 
teachers to visit one another, to be videotaped, and to be 
observed by district or university personnel.

There are also “strands” that were added over time. The 
first was a short experience over five semesters to get the 
teachers conducting their own inquiry and doing their own 
mathematical research. Later, they added other strands on 
culturally relevant pedagogy, English language learners, 
and special education. They’ve targeted the program to 
work on schools that are in improvement.

Some teachers are from the Philippines, West Africa and 
India, which has made it challenging to get them accepted 
into the graduate school when their transcripts are from 
other countries.

Jim Fey and a number of graduate students initiated one 
of the combined pedagogy and content courses, a course 
focusing on the algebra curriculum. 

The course objectives are to:

 gain enhanced understanding of the math of
	   school algebra

 gain insight into the critical learning 
	   challenges that algebra students face

 gain understanding of various pedagogical
	   models for teaching school algebra

 develop skill in applying knowledge about
	   mathematics teaching and learning to lesson 
	   planning and classroom practice.

They organized the course around perplexing algebra 
questions that they had asked themselves as teachers. 
They used these problems to talk about students’ concep-
tions and misconceptions and to look at different models 
and resources that are available.

The course that follows this course in the sequence is  
a typical math course that focused on algebra. The  
content is standard, but they try to present the material 
with a broader perspective and introduce a historical 
point of view.

The algebra inquiry strand task investigates the set of 
points that are equidistant from a line and a point not on 
that line. They first ask the teachers what the definition 
means, and the teachers then work on finding the set of 
points. They raise questions or conjectures, investigate 
them, and raise new ones based on their work. Many 
students wanted to prove that the set of points was a 
parabola. Some tried symbolic manipulations, but many 
tried using specific points. They discussed what consti-
tuted a proof, what different approaches could and could 
not offer, and whether proof established Truth.

Chazan offered some observations about the design of the 
program:

 Having the curriculum-related courses keeps
	   the program job-related for the teachers.

 The mathematics is seen as challenging,
	   but teachers feels a sense of accomplishment 
	   on completion.

 The inquiry experience adds an important
	   dimension to how they think about themselves 
	   with respect to mathematics.

 There is more mathematics instruction in this
	   program than in initial elementary certification 
	   and significantly more work on instruction, 
	   with people who are experienced teachers.
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Hung-Hsi Wu

The Precision and Rigor that is Essential for Teaching Algebra

Wu described this experience teaching professional  
development classes for teachers. 

“Look!” he said, “There’s this wonderful theorem; if f (x) 
is a quadratic and r1  and r2 are the roots of f (x) = 0, then for 
some constant c, f (x) = c (x – r1 ) (x – r2 ) for all numbers x!”

Teachers: Silence.

Wu then went overboard explaining why it’s wonderful.

Teacher: What is there to prove?

This has happened to him three times.

The problem, he realized, is that the teachers confuse this 
with its converse. After all, the converse, that r1 and r2 are 
the roots of f (x) = 0 if f (x) = c (x – r1 ) (x – r2) for all numbers 
x, is trivial.

His conclusion: Because school algebra courses are not 
taught with the requisite precision and rigor, and because 
universities do not focus on eradicating the common mis-
conceptions of preservice teachers, anecdotes of this type 
should be no surprise.

His belief, based on quite extensive experience of this nature, 
is that to produce teachers with the requisite content knowl-
edge for teaching algebra, we must concentrate on teaching 
them the fundamentals of mathematics, that is, the proper use 
of symbols, precise definitions, precise reasoning, and coher-
ent development of ideas. There is a particular urgency that 
teachers acquire this knowledge because they have to help 
students overcome common misconceptions in algebra.

The most basic task of learning algebra, in some sense, is 
learning how to use symbols fluently and correctly. This  
is a routine task if one goes about it the right way, but 
books do not always go about it the right way. The resulting  
confusion is immense.

For example, a basic etiquette in the use of symbols is to 
always say precisely what a symbol stands for. Consider: 
“st = ts for all real numbers s and t.” In this case, the 
symbols s and t stand for elements in an infinite set. 
Whenever a symbol stands for elements in a collection  
of more than one element, we informally refer to it as  
a variable. So s and t above are variables. The term 

“variable” isn’t important, but it’s important for teachers 
to know that they are using a symbol for that purpose.

Sometimes symbols come in a slightly different form. 
Consider, “If a, b, and c are fixed numbers, which number 
x would satisfy ax2 + bx + c = 0 ?” In this case, they stand for 
a fixed value throughout the discussion. We refer to these 
informally as constants. But again, the term is not important. 
What’s important is that you know whether the symbol you 
are using stands for a fixed number or an infinite collection 
of numbers.

The mathematicians in the audience may be astounded, Wu 
said, to learn that in school mathematics, “variable” has 
achieved the status of a mathematical concept crucial to 
the study of algebra. Here is a passage from a textbook that 
exemplifies this:

A variable is a quantity that changes or varies. You 
record your data for the variables in a table. Another 
way to display your data is in a coordinate graph. A 
coordinate graph is a way to show the relationship 
between two variables.

Sometimes the relationship between two variables can 
be described with a simple rule. Such rules are very 
helpful in making predictions for values that are not 
included in a table or graph of a set of data.

Another example:

Variable is a letter or other symbol that can be replaced 
by any number (or other object) from some set. A 
sentence in algebra is a grammatically correct set of 
numbers, variables, or operations that contains a verb. 
Any sentence using the verb = (is equal to) is called an 
equation.

A sentence with a variable is called an open sentence. 
The sentence m =s/5 is an open sentence with two 
variables. It is called “open” because its truth cannot be 
determined until the variables are replaced by values. 
A solution to an open sentence is a replacement for the 
variable that makes the statement true.

In math, we strive for simplicity whether in teaching or in 
professional communications. These two examples (among 
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many) subvert this simplicity by elevating an informal piece 
of terminology to a fundamental concept and then formally 
defining it in abstruse language. This makes it very difficult 
for students to learn. We have to teach teachers how to cir-
cumvent these difficulties in the school classroom.

Moreover, the second example encourages the improper use 
of symbols by formalizing the concept of an “open sen-
tence.” This appears to be quite common. In the education 
literature, one finds similar examples of asking students for 
interpretations of such “open expressions,” e.g.,6x – 5.  

Again, we have to make sure that teachers know well 
enough not to engage in such counterproductive practices.

Definitions are generally conspicuous by their absence in 
school mathematics, but because algebra is the gateway 
course to higher math, this absence is no longer excusable. 
Absence here means it is never used in reasoning though 
it may be given. For example, the graph of an equation. 
However, if a definition isn’t used, then it would serve no 
purpose. For example, there is almost never any proof that 
the solution of a 2 2 linear system is the point of intersec-
tion of the lines. Students learn by rote that such is the case.

What we must make our teachers and everyone else under-
stand is that without precise definitions, there would be no 
mathematics, and that the role of definitions is to furnish 
a key piece of the foundation for the proofs of theorems. 
Students come to universities with little respect for defini-
tions. The role of a definition in mathematics is generally 
not understood in the math education community. Both 
situations urgently need correction.

There are situations where school texts make it impossible
to know whether something is a definition or a theorem,  
e.g., (a1 ⁄ n)n =1 or a-n  =1 ⁄ an. 
Consequently, many of our teachers cannot distinguish  
between a theorem and a definition.

Other basic definitions that are usually missing or ill- 
defined: the graph of a linear inequality, slope of a line, 
half-plane, the equivalence of expressions, polynomial 
form, exponential functions ax, and constant rate. 
Constant rate is especially fundamental.

_________________________ 

The problem below is designed to illustrate that different 
forms of expressions can be useful in different ways.

The expression    	                 is the contribution 

to a student’s final score from three test scores. 

What is a different way of writing this?  
Which way should a student use in order to:

   •  calculate the total test contribution to their final  
       grade 
   •  calculate the effect of getting 10 more points  
       on test 2

Here are some possible responses:

	            i.    	         

 ii.   .2t1 + .2t2
  + .2t3  

iii.   t1 /5 + t2
  /5 + t3 /5

The first form is useful for thinking about the scores as 
the average of all three, with test scores contributing 
60% of the grade, so it’s most useful for calculating the 
total test contribution to their final grade. The second or 
third forms are better for calculating the effect of getting 
ten more points on the second test. 

 .6 ( t1+ t2
 + t3 )          3

.6 ( t1+ t2
 + t3 )          3

A person’s monthly income is $I, her monthly rent 
is $R, and her monthly food expense is $F. In 1- 4, 
say whether the expressions have the same value. If 
not, say which is larger, or that there is not enough 
information to decide. Briefly explain your reasoning 
in terms of income and expenses in each case.

1.   I – R – F and I  –  (R+F)

2.   12(R+F) and 12R +12F

3.   I – R – F+100 and I – R – (F+100)

4.   (R+F)/I and (I – R – F)/I

Problems to help create mindful  
manipulators
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Another essential ingredient that’s missing in the school curriculum is 
precise reasoning. Here the “precision” has to be appropriate to the grade 
level. Here are some examples of reasoning that’s typically missing: why  
the graph of a linear equation is a line; why every line is the graph of a  
linear equation; why the graph of a linear inequality is a half-plane; why  
a quadratic function has a maximum or a minimum and why the maximum 
or minimum of a quadratic function is what it is; why study the exponential 
and log function; what underlies so-called proportional reasoning, etc.

Finally, why do we want teachers to have a coherent conception for the 
development of mathematical ideas? Here’s an anecdote:

Q: If a student comes to you and asks why, if a  ≠1 and 

a0, at  =   as implies t =  s, what would you tell her?

A: loga a
t  =  loga a

s , so t =  s.

While the answer is 100% correct, mathematically, it is 90% certain that it  
is all wrong pedagogically. To answer this correctly, the teacher would need  
instant recall of the whole development that leads up to the definition of  
loga x and make an educated guess as to where the student’s difficulty may 
lie, and then address that difficulty first. This is impossible without an  
understanding of that development in the first place. For the case at hand, 
it is unlikely that the student would understand the explanation using log 
because the definition of rational exponents precedes the introduction of  
the logarithm by quite a bit.

We want teachers to know, for instance:

1.	 The quadratic formula is not just “some formula,” but the high 
point of a process that yields every desirable conclusion about  
quadratic functions or equations.

2.	 The subject of rational expressions is to polynomials as fractions 
are to whole numbers, and knowledge of fractions is a prerequisite 
for studying rational expressions.

3.	 The study of linear equations and straight lines depends on 
congruence and similarity.

4.	 The factor theorem (that f (r) = 0 implies (x – r) is a factor of f (x)) 
is intimately related to the long division of whole numbers.

5.	 The precise definition of constant rate simplifies all discussions 
of rate problems in school mathematics.

This kind of knowledge facilitates teaching.

What professors need  
students to know about 
algebra

Consider the problem:

Solve for x: (x  +  5) (x  –2)   =   8

When students see problems like this, 
the right hand side is usually 0, not 
8. Many students don’t understand 
that the 0 is crucial, and they solve a 
problem like this as though it equaled 
0. For them, this kind of problem 
calls for a procedure that you just do, 
without further thought. 

 A problem for preservice
teachers

You are simplifying 7 – 2(3 – 8x). 
Which of the expressions is a correct 
next step? 

For each expression, explain why you 
made the choice you did.

Here are some sample student answers:

•	 7 – 2( – 5x) isn’t correct. 
	 Always do the parentheses first!

•	 7 – 6+6x isn’t correct. 
	 Where did the 16 come from?

•	 No answer.  
	 Can’t use the distributive law  
	 because of the   – .

•	 7 – 6 +16x is correct. 
	 You have to double multiply first.

What mathematical skills do we need 
to give teachers in our undergraduate 
courses in order to deal with these 
answers?

	         Correct      Not Correct

5(3 – 8x)

7– 2( – 5x)

7 – 6  – 16x

7 – 6 +16x
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	 (non-integer) decimal, there’ll be a digit to the  
	 right of the decimal point. So you can’t ever get  
	 an integer. She deduces that  can’t be rational. 
	 What she said isn’t correct, but there’s some- 
	 thing in there that we could learn from.

	 2.	 An example from a teacher, reported in a Reader 
	 Reflection by Walt Levisee in The Mathematics 	
	 Teacher, March, 1997:

		  Nine-year-old David, experimenting with num- 
	 bers, conjectures that, if the period for the deci- 
	 mal expansion of 1/n is n – 1, then n is prime.

	 3.	 How can you help your students understand the  
	 “multiplication rule” for complex numbers? The  
	 usual way to do it is using the addition formulas  
	 for sine and cosine: 
 	  ⎜zw ⎜ = ⎜ z  ⎜ ⎜ w ⎜ and Arg(zw) = Arg(z)+Arg(w)

	 	
	

But what if the students don’t know any trig? 
Some teachers worked out a way to do this  
using only high school algebra.

	 4.	 Algebra comes up when you try to generate  
	 “nice” problems, for example: 

	 How big is angle Q? In this case, the cosine of 
	 angle Q turns out to be 1/2.

2

2

2

2 1.5

1.5- 1.5

.5

0.5- 0.5

- 0.5

- 1

- 1

1

11

Al Cuoco

The Uses of Higher Algebra for Teachers of School Algebra

Higher algebra comes up frequently in the high school  
curriculum, so it would be a very useful course for teachers  
to take in college.

Here are some examples of questions in high school algebra  
in which higher algebra comes up:

	  Is x2 – 3x the same as   x  ? 
	            x2  –  9	                         x  + 3

	 	When is xn –1 a factor of xm –1?

	Can a quadratic equation have more than two roots?
	At how many values do two polynomials have to 
	 agree before we can say they are equal?
	What does it even mean for two polynomials 
	 to be equal? As formal expressions, or as  
	 functions?
	Can a system of linear equations with integer 
	 coefficients have an irrational solution?
	Can a system of three linear equations in four 
	 unknowns have exactly three solutions?
	If a polynomials doesn’t factor over the 
	 integers, can it factor over the rationals?

Here are examples from other courses:

	Why is arithmetic with complex numbers like
	 arithmetic with polynomials?
	What does it mean for two functions to be equal?
	How can I find a polynomial that agrees with 
	 a table?
	Why do they use f-1 for inverse function?
	For polynomials, why does the h in the denominator
	

of   f (x + h) – f (x) always cancel out?
 

	  	 h
	Why can’t you trisect a 60-degree angle with 
	 a straightedge and compass?

Examples:
	 1. 	 Here’s a story from Deborah Schifter’s book A 	

	 Dialogue About Teaching: The class is using calcula-	
	 tors and estimation to get decimal approximations to  
	 . One student looks at how you do out long multi-
	 plication and realizes that none of these decimals  
	 would ever work, because if you square a finite  

U

7

S

5

8Q
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Suggestions for teaching abstract algebra to teachers:

Instill a sense that algebraic objects are open to experiment.  
A computer algebra system allows you to do numerical  
experiments.

	Start with rings, field and polynomials — not groups

	Solve equations in these systems

	Develop in detail the structural similarities and 
	 differences between integers and the rational polynomials

	Construct the complex numbers as a quotient of real 
	 polynomials	

	Construct more general splitting fields in the same way

	Tie Galois theory to:

•   The theory of equations
•   The roots of unity
•   The geometry for the regular n-gon
•   Cardano’s formula
•   The theory of straightedge and compass

 Stress some basics, like:

•   Extension by linearity
•   Change of basis

	Carefully develop vectoral methods in geometry, including:

•   The “extension program” from pairs of real numbers 
     to n-tuple of real numbers.
•   The use of matrices to represent linear transformation

	Connect various uses of determinants:
•   As area and volume
•   As a test for linear dependence
•   As an algebraic tool (resultants, Cramer, matrix  
    inverses...)

	Exploit matrix algebra as a formal “bookkeeping” tool
•   In adjacency and scheduling problems
•   As tools for solving recurrence equations

	Make connections among eigenvalues, geometry, and algebra

Some suggestions for number theory:

Let general results evolve from numerical experiments

	Compare arithmetic in the integers, the integers mod n, the 
	 integers with i, and rational polynomials

 
Glenn Stevens

Glenn Stevens is the director of PRO-
MYS (Program in Mathematics for Young 
Scientists), a six-week summer program at 
Boston University for motivated high school 
students. He described one unusual aspect 
of their approach: 

“Definitions and axioms tend to come at 
the end, rather than at the beginning. We 
have a lot of rich mathematical experiences, 
and then it’s up to the kids and teachers to 
assemble and understand what those expe-
riences mean. We give them a lot of help in 
doing that, but in the end, they must do it 
for themselves.

“We don’t think of axioms as foundational 
things. At the beginning of life, anything 
you experience and know to be true based 
on that experience is a perfectly legitimate 
axiom. But our goal is to understand the ex-
periences we’re having. To do that, we look 
into that bag of statements that we know 
are true and look for relationships among 
them: This one is implied by that one; this 
one gets used all the time. The former get 
pulled out and called theorems, and the lat-
ter get flagged as especially important. So 
the axioms are distilled from an infinite list 
into a few simple statements that serve as 
central nodes of a compactly organized net-
work. This distillation process helps us more 
fully understand the relationships between 
the different parts of our experience.

“Sometimes proofs are used for justifica-
tion, and sometimes they’re used for explo-
ration. This is a dichotomy that we stress 
very much during the program. After we’ve 
got our reduced inventory of seven or eight 
axioms for the integers, we go on to prove 
things like, there are no integers between 0 
and 1. That’s silly  —we already know there 
are no integers between 0 and 1—so why 
prove it? We’re testing our axiom system. 
We want to know that our axiom system is 
powerful enough to contain everything we 
know to be true.”
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	Examine Euclid’s algorithm in the integers, the integers with 
	 i appended, and rational polynomials

	Make localization and reduction general purpose tools

	Connect Pythagorean and Eisenstein triples to:
•   Norms from quadratic fields
•   Rational points on conics

	Develop the theory of repeating decimals

	Connect the Chinese remainder theorem to Lagrange interpolation

	Talk to Glenn Stevens, who knows more than anyone about how 
	 to get people engaged in elementary number theory

Some suggestions for other things:

Encourage reasoning about calculations and operations

	The theory of finite differences is useful in teaching

	Polynomial calculus is all algebra
•  The remainder when f (x) is divided by (x – a)2

•  The Taylor expansion about x=a is a polynomial identity
	The complex numbers can be used to derive the addition 
	 formulas for sine and cosine (rather than the other way around)

	Summatory polynomials are useful both in calculus and 
	 polynomials interpolation

	Function algebra gives an example of algebraic structure

	Statistics has deep connections to linear algebra

	Chebyshev polynomials bring coherence to trig addition formulas

In conclusion, algebra and algebraic reasoning around topics in the  
undergraduate mathematics curriculum can help prospective teachers enter  
the profession with a coherent view of secondary mathematics.

But this doesn’t come for free. Explicit connections to the daily work of  
high school teaching should be a part of every undergraduate course.

This doesn’t mean developing courses in high school mathematics from  
an “advanced” perspective. It means developing courses that develop the  
content and methods of undergraduate mathematics while taking seriously  
the profession-specific needs of high school teachers.

Cuoco has written an abstract book in collaboration with Joe Rotman  
that implements many of these suggestions, which can be found here:  
http://www.maa.org/ebooks/textbooks/LMA.html.

 
Deborah 
Hughes  
Hallett

Deborah Hughes Hallett has helped 
students at Harvard deal with the 
insufficiencies in their algebra back-
ground in order to succeed in college 
classes.

“Algebra turns out to be crucial for all 
sorts of parts of the college curricu-
lum,” she observed. “Lack of knowl-
edge of algebra keeps students from 
following the path they’d like to follow 
professionally. This can have a destruc-
tive effect on students’ ability to go 
into fields that are somewhat quantita-
tive, but much less so than physics or 
math, like medicine, nursing, health 
management, business or economics.

“I work with mid-career students at 
the school of government who are 
mostly quite allergic to math. Now 
they want a master’s degree and they 
need to do some economics, so they 
need math. Even people who have 
advanced degrees in economics are 
going to struggle if their basic algebra 
isn’t OK. These are people with other-
wise strong backgrounds, from strong 
schools, with good jobs.

“People’s big block isn’t their inability 
to do manipulations (though they 
usually can’t), but that the symbols 
don’t mean anything to them. They 
just look scary and blurry and weird, so 
they glaze over them. This is important 
because these people are cut off from 
the insights that algebra can provide.

“Going to college without being ‘sym-
bolically literate’ is like going to college 
illiterate: Whole arenas of information 
are blocked off.”
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 Some of the work is inside the teacher’s head, so
it is literally invisible.

 We lack frameworks for seeing teaching. We don’t 
even see some things that are right in front of us as  
a result.

 We don’t know the most useful scale to look. Some 
people like to talk about “teacher-directed” versus 
“student-centered” classrooms. But this is too gross a 
distinction to be useful. However, it is also not really 
useful to count how many times someone praises a  
student. The grain size in that case is too small.  
Teaching happens at different scales at different 
times.

 Disciplinary traditions and perspectives often focus 
closely on only part of the story. Sociologists and 
psychologists, for instance, bring their lenses and 
miss all kinds of things. Our interest in mathematics 
has similar limitations.

 Teaching isn’t valued or understood.

Teaching is a thoughtful human construction designed to 
improve learning. Learning happens without teaching all the 
time, but we’re interested in the improvement of students’ 
learning. So teaching practice is both attentive and delibera-
tive. Ball sometimes provocatively likes to say that lectures 
are the most extreme form of constructivism that she can 
think of, because, as the instructor talks, they leave it entirely 
to the students to construct the learning.

So what does it take to teach mathematics well? To begin, we 
need to understand that teaching is a form of mathematical 
work. For example, teachers:

 Use and analyze representations and examine 
equivalences among representations.

 Define terms and attend closely to language.

 Use and invent notation.

 Produce and analyze explanations.

Deborah Ball

Teaching Algebra, Not Just Learning It

Although this was billed as a workshop on the teaching  
and learning of algebra, Deborah Ball argued that it ended 
up being more about the learning of algebra rather than 
the teaching of algebra.

It is not easy to focus attention on teaching. Several 
different reasons help to explain why this is:

 As English speakers, we have a limited and 
misleading language for talking about teaching. By 
contrast, Japanese has developed a detailed profes-
sional language for teaching. We lack words for 
the different segments of a classroom discussion or 
different types of problems used in instruction. For 
example, one could have terms to describe problems 
that launch the study of a topic versus the problems 
designed to provide practice. We don’t even have 
a word for the fundamental transaction of teaching 
and learning. What goes on in classrooms is not just 
teaching, and not just learning. Ball tends to use 
the word “instruction” to approximate a word that 
comprises both, but that’s not an ideal solution, she 
says, because we use “instruction” in other ways 
too. The result of this lack of language is that we 
lack the ability to distinguish things for which we 
don’t have terms.

What professors need students to know 
about algebra 

Consider the expression: 

n(n+1)(2n+1) /6

College professors would like students to see at a glance 
that it’s cubic, and perhaps that the leading coefficient 
is 1/3. Many students have to expand completely—a 
long procedure—to see that it’s cubic. This is a serious 
disadvantage, because it makes life painful for them and 
presents plenty of opportunity to make mistakes.
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 Generate simpler and more complex versions 
of a problem.

 Ask mathematical questions. For example: 
Why does this work? Does this work in all 
cases? Do we have all the solutions? How are 
these two representations related?

 Think of special cases to challenge a student’s 
claim, or develop boundary cases.

These tasks are specific to the teaching of mathematics; 
they aren’t generic to teaching as a whole. A history 
teacher, for example, doesn’t have to do these things.

At the same, teaching is a very different form of  
mathematical work from doing mathematics, because 
teaching involves doing some things that are unnatural 
for the mathematically inclined. As much as teaching 
depends on mathematical instincts, habits of mind and 
practices, it also requires teachers to do things such as 
unpacking rather than packing mathematical ideas; lis-
tening to mathematically imprecise statements; refrain-
ing from automatically affirming correct statements; 
hearing what others say, not what you think they must 
mean; and sometimes even provoking errors.

Mathematicians tend to be oriented toward expressing 
mathematical ideas in as compressed a way as possi-
ble, but mathematics teachers need to manage the jour-
ney toward compression. They have to help students 
reach the end goal of competence with a compressed 
expression of mathematics, but at the same time they 
have to avoid “compression impatience.” The desire 
for compression can make you rush and wish that 
something that will happen 12 years from now were 
happening now. You can’t, for example, have the real 
number line in first grade. Teachers also must recog-
nize opportune moments for compression, times when 
students will embrace it.

All of this is just a small part of how teaching is  
intricate work. As a community, we need to understand 
it better.

What professors need students to know  
about algebra 

	 Consider the problem:	

	College professors want students to see  
quickly that this will happen when  v/c = 1.  
This expression comes up in relativity, and the 
implication of this fact is that lengths shrink to 
zero at the speed of light. But many students 
don’t see anything when they look at that 
expression. 

___________________________ 

Consider the problem:	   Simplify as much as possible

            (5n – 10) / (4 – n2) , assuming n  ≠ ±2

Often students imagine that this equals 0 and 
so they solve for n. Another difficulty is that 
when they factor, they end up with an n –2 
at the top and a 2– n at the bottom, and they 
don’t recognize that these two expressions can 
cancel each other.  

						                     
 ___________________________

	Consider the expression:	 σ/n. 

This is the formula for the standard error in 
statistics. Professors want students to recognize 
quickly that the standard error halves when n is 
quadrupled. Many students don’t see this at all.

 Lo �������  zero?
        1 –  ⎛ v/c⎞2

             ⎝     ⎠
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