William P. Thurston

The Geometry and Topology of Three-Manifolds

Electronic version 1.1 - March 2002
http://www.msri.org/publications/books/gt3m/

This is an electronic edition of the 1980 notes distributed by Princeton University. The text was typed in $T_{E X}$ by Sheila Newbery, who also scanned the figures. Typos have been corrected (and probably others introduced), but otherwise no attempt has been made to update the contents. Genevieve Walsh compiled the index.
Numbers on the right margin correspond to the original edition's page numbers.
Thurston's Three-Dimensional Geometry and Topology, Vol. 1 (Princeton University Press, 1997) is a considerable expansion of the first few chapters of these notes. Later chapters have not yet appeared in book form.
Please send corrections to Silvio Levy at levy@msri.org.

Index

(G, X)-manifold, 27
$M_{\Gamma}, 179$
$N_{\Gamma}, 180$
$O_{\Gamma}, 180$
$P_{\Gamma}, 180$
$\operatorname{PSL}(2, \mathbb{C}), 92-96$
GL (S), 209, 215
\mathcal{G}-manifold, 27
$\mathcal{M L}(S)$, 209, 210, 251
$\mathcal{M L L}_{0}(S), 209,251$
$\mathcal{P L}(S), 209$
$\mathcal{P} \mathcal{L}_{0}(S), 210,263$
\mathcal{H}-foliation, see also foliation
\mathcal{G}-orbifold, 301
$\mathcal{N}(O), 347$
$\mathcal{T}_{\gamma}, 243$
$\mathcal{N}(O), 351$
accidental parabolics, 257
action
discrete orbits, 175
properly discontinuous, 174
wandering, 175
Ahlfors' Theorem, 180
algebraic hyperbolic manifolds, 168
algebraic limit, 225
algebraic numbers, 143
Andreev's Theorem, 330
Bass, H, 143
bending measure, 189-191
Bers, 111
billiard table, 298
Borromean rings, 33-34, 105, 300, 322
commensurable with Whitehead link, 141
boundary mirror, 301
branched cover over a link, 2
circle packing, 330
nerve of, 330
commensurability classes, 144
infinite number of, 150
commensurable
and cusp structure, 142
discrete subgroups of $\operatorname{PSL}(2, \mathbb{C}), 140$
manifolds, 140
with complete manifolds, 141
complete
(G, X)-manifold, 35
\mathcal{H}-foliation, 64
completeness criteria, 36, 38, 41, 42
completion
of a hyperbolic 3-manifold, 54-56
of a hyperbolic surface, 41-42
cone manifolds, 55-56
convergence
algebraic, 225
geometric, 225
strong, 226
convex, 177
locally, 177
implies convex, 177
strictly, 178
and homotopy equivalence, 179
convex hull, 171
boundary, 185
corner reflectors, 309
Coxeter diagram, 326
cusp
extra, 216
deformations
of a 3 -manifold, 85
dimension of, 88,97
extend to Dehn filling, 103
of compact convex hyperbolic manifolds, 178
Dehn surgery, 2, see also figure-eight knot invariants, 57
developing map, 35, 54, 185
of a (G, X)-orbifold, 309
of a convex manifold, 177
of an affine torus, 37
discrete, 64
domain of discontinuity, 174
retraction onto convex hull, 174
edge equations, 49-51
elementary group, 171
elliptic
why distressing, 10
essentially complete, 244
Euclidean triangles, 47
Euler number
for a fibration, 323
extension of a vector field, 288
Curl and Div, 292
direction derivative of, 290
fibration
over an orbifold, 319, 323
figure-eight knot, 4-7, 29-31, 120
commensurable with $\operatorname{PSL}\left(2, \mathcal{O}_{3}\right), 149$
complete hyperbolic structure, 54
Dehn surgery on, 58-61, 70
yields hyperbolic manifold, 61
fundamental group, 172
gluing diagram, 4
incompressible surfaces in, 72-83
limit set, 172
parametrization space of complement, 52
volume of complement, 164
foliation
developing map for, 63
hyperbolic, 62,64

Fricke space, 92
Fuchsian group, 172, 192
fundamental group
acts ergodically on $S_{\infty}^{n-1}, 111$
Gauss-Bonnet
for orbifolds, 312
Gehring, 111
geodesic flow
conditions for ergodicity, 277
geodesic lamination, 186, 200, see also geometric and measure topology, see also lamination
complete, 196
ending, 238
essentially complete, 243, 246
measure on, 207
near a cusp, 201
realizable, 208, 211, 214, 240
criterion for, 261
train track approximation of, 204, 206, 210, 213
with compact support, 239
geodesics
on hyperboloid, 18
geometric limit, 225
geometric structure, 85
geometric topology, 225
and compactness, 228
on geodesic laminations, 208
geometrically finite, 180, 183
and cusps, 182
hyperbolic 3 -manifold, 203
geometrically near, 118
geometrically tame, 219, 221, 229
almost, 230, 240
and algebraic convergence, 259
and geodesic flow, 278
implies topologically tame, 240
Gieseking, 29
Gromov, 102
Gromov's
invariant, 123, 140
for manifolds with boundary, 134
norm, 123, 127
Theorem

INDEX

relative version, 136
strict version, 130
Haken
3-orbifold, 324, 325
manifold, 71
Haken, W., 72
Hatcher, 101
Heegaard decomposition, 3
Hilbert, 10
holonomy, 35, 53, 85, 97-100
defines structure, 85
horoball, 39
horocycles, 40
horospheres, 38
hyperbolic
isometries, 67
line, $10,13,14$
metric, $11,13,17,39-40$
plane, 10
structures on a manifold, 87
hyperbolic Dehn surgery theorem, 104
hyperbolic structure
with nodes, 346
hyperboloid, 17
hyperplane, 13
and dual point, 16, 19
ideal tetrahedra, 45-48
parametrization of, 48
volume of, 160
ideal triangles, 40
identifying faces of polyhedra, 3
incompressible
suborbifold, 324
surface, 71
and algebraic representations, 143
inner product, 18, 21
intersection number, 267, 270
irreducible
3-manifold, 2
orbifold, 324
Jørgensen's Theorem, 119-120
first version, 116
Jørgensen, T., 61, 74, 228

Kleinian group, 174
manifold of, 178
Kleinian structure, 350
knotted Y, 31
lamination, 185, see also geodesic lamination when isotopic to geodesic lamination, 206 on boundary of convex hull, 186-187
law of cosines
hyperbolic, 22
law of sines
hyperbolic, 25
Lickorish, 2
limit set, 171
of a closed hyperbolic manifold, 172
link of a vertex, 42
of an ideal tetrahedron, 45-46
links
$C_{k}, 144$
$D_{2 k}, 150$
$F_{n}, 154$
having isomorphic complements, 149
Lobachevsky, 157
manifold
affine, 27-28
differentiable, 27
elliptic, 28-29
hyperbolic, 29
Margulis lemma, 113
measure topology
on geodesic laminations, 209
measured lamination space, 210, 251
metric of constant curvature
and patterns of circles, 338
Micky Mouse, 194
minimal set, 172
modular space, 201
Mostow's Theorem, 101-102, 106-112, 129130
Mumford, 201
nodes, 346
orbifold, 300
bad, 304, 324
classification of 2-dimensional, 312
covering, 303, 305, 311, 313
Euler number, 311
fundamental group, 307
good, 304, 310, 312
hyperbolic structure, 314-318
with boundary, 308
pair of pants, 90
Papakyriakopoulos, 2
parallel, 14
pared manifolds, 259
pleated surface, see also uncrumpled surface
Poincaré dodecahedral space, 320
Prasad, 102
projective lamination space, 209, 210, 263
properly discontinuous action, 174
pseudo-isometry, 106
pseudogroup, 27
Pythagorean theorem
hyperbolic, 25
quasi-conformal map, 110
quasi-Fuchsian group, 192, 215
mapping surfaces into, 194
quasi-isometric vector field, 290
quasi-isometry, 285
rational depth, 252
reflection group, 323
Riley, R., 29, 74, 168
Schottky group, 173
Seifert fibration, 64
singular locus, 302, 308
smear, 127
sphere at infinity, 11
suborbifold, 308
sufficiently large, 71
Sullivan, 277
symmetry
of 2-generator 3-manifold, 94
tangent space
of an orbifold, 318
Teichmüller space, 88, 89-92
for hyperbolic orbifold, 318
of the boundary of a 3-manifold, 97
thick-thin decomposition, 112
characterization of $M_{(0, \epsilon]}, 115$
for an orbifold, 346
three-punctured sphere, 36
tractrix, 10
train track, 205
dual, 267, 271
transverse measure, 189
ultraparallel, 14
uncrumpled surface [pleated], 200, 219, 249, see also wrinkling locus
realizing essentially complete lamination, 249251
unit tangent bundle
of orbifold, 319-323
visual average, 285
volume
and Gromov's invariant, 126-128
goes down after Dehn filling, 138
is a continuous function, 119
is well-ordered, 139
of a straight k-simplex, 124
Waldhausen, 142
Whitehead link, 32-33, 120
commensurable with Borromean rings, 141
volume of complement, 165
wrinkling locus, 201, 209

