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CHAPTER 9

Algebraic convergence

9.1. Limits of discrete groups

It is important for us to develop an understanding of the geometry of deforma-
tions of a given discrete group. A qualitative understanding can be attained most
concretely by considering limits of sequences of groups. The situation is complicated
by the fact that there is more than one reasonable sense in which a group can be the
limit of a sequence of discrete groups.

DEFINITION 9.1.1. A sequence {I';} of closed subgroups of a Lie group G converges
geometrically to a group I' if

(i) each v € T" is the limit of a sequence {v;}, with 7; € I';, and
(ii) the limit of every convergent sequence {7;, }, with v;; € I';;, is in I,

Note that the geometric limit I' is automatically closed. The definition means that
[';’s look more and more like I'; at least through a microscope with limited resolution.
We shall be mainly interested in the case that the I';’s and I' are discrete. The
geometric topology on closed subgroups of GG is the topology of geometric convergence.

The notion of geometric convergence of a sequence of discrete groups is closely
related to geometric convergence of a sequence of complete hyperbolic manifolds of
bounded volume, as discussed in 5.11. A hyperbolic three-manifold M determines a
subgroup of PSL(2, C) well-defined up to conjugacy. A specific representative of this
conjugacy class of discrete groups corresponds to a choice of a base frame: a base
point p in M together with an orthogonal frame for the tangent space of M at p. This
gives a specific way to identify M with H?3. Let O(He,o0)) consist of all base frames
contained in M ..y, where M ranges over J{ (the space of hyperbolic three-manifolds
with finite volume). O(H[ )) has a topology defined by geometric convergence of
groups. The topology on H is the quotient topology by the equivalence relation of
conjugacy of subgroups of PSL(2,C). This quotient topology is not well-behaved for
groups which are not geometrically finite.

DEFINITION 9.1.2. Let I be an abstract group, and p; : ' — G be a sequence
of representations of I" into G. The sequence {p;} converges algebraically if for every
v €T, {pi(7)} converges. The limit p: I' — G is called the algebraic limit of {p;}.
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9. ALGEBRAIC CONVERGENCE

DEFINITION 9.1.3. Let I" be a countable group, {p;} a sequence of representations
of I' in G with p;(I") discrete. {p;} converges strongly to a representation p if p is the
algebraic limit of {p;} and pI is the geometric limit of {p;I'}.

EXAMPLE 9.1.4 (Basic example). There is often a tremendous difference between
algebraic limits and geometric limits, growing from the following phenomenon in a
sequence of cyclic groups.

Pick a point z in H3, a “horizontal” geodesic ray [ starting at x, and a “vertical”
plane through x containing the geodesic ray. Define a sequence of representations 9.3
pi : Z — PSL(2,C) as follows. Let z; be

-~
,

R 7

[7/4%\;1\ X,

the point on [ at distance i from x, and let [; be the “vertical” geodesic through x;:
perpendicular to [ and in the chosen plane. Now define p; on the generator 1 by
letting p;(1) be a screw motion around /; with fine pitched thread so that p;(1) takes
x to a point at approximately a horizontal distance of 1 from z and some high power
pi(n;) takes = to a point in the vertical plane a distance of 1 from z. The sequence
{p:i} converges algebraically to a parabolic representation p : Z — PSL(2,C), while
{piZ} converges geometrically to a parabolic subgroup of rank 2, generated by p(Z)

plus an additional generator which moves z a distance of 1 in the vertical plane.
9.4

This example can be described in matrix form as follows. We make use of one-
complex parameter subgroups of PSL(2, C) of the form

expw asinhw
0 exp—w |’

with w € C. Define p,, by

expw, mnsinhw,
exp — wy,

pu(l) = { 0

o7
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oo - [

This example can be easily modified without changing the algebraic limit so that
{pi(Z)} has no geometric limit, or so that its geometric limit is a one-complex-
parameter parabolic subgroup, or so that the geometric limit is isomorphic to Z x R.

while {p,(n)} converges to

This example can also be combined with more general groups: here is a simple
case. Let I' be a Fuchsian group, with M a punctured torus. Thus I is a free group
on generators a and b, such that [a,b] is parabolic. Let p : I' — PSL(2,C) be the
identity representation. It is easy to see that Tr p'[a, b] ranges over a neighborhood
of 2 as p’ ranges over a neighborhood of p. Any nearby representation determines a
nearby hyperbolic structure for M| ., which can be thickened to be locally convex
except near M. Consider representations p, with an eigenvalue for

pula,b] ~ 1+ C/n® + mi/n.

pnla, b] translates along its axis a distance of approximately 2 Re(C)/n?, while rotat-
ing an angle of approximately

2r 2Im(C)

—

n n
Thus the n-th power translates by a distance of approximately 2 Re(C') /n, and rotates
approximately

2Im(C)

n

2r +

The axis moves out toward infinity as n — oo. For C' sufficiently large, the image of
pn will be a geometrically finite group (a Schottky group); a compact convex manifold
with 71 = p,(I") can be constructed by piecing together a neighborhood of M o) with
(the convex hull of a helix)/Z. The algebraic limit of {p,} is p, while the geometric
limit is the group generated by p(I') = I together with an extra parabolic generator
commuting with [a, b].
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9. ALGEBRAIC CONVERGENCE

((/F Schottky J::?\ @ % @

Geomefﬁ'c /J'm/‘f

Troels Jgrgensen was the first to analyze and understand this phenomenon. He
showed that it is possible to iterate this construction and produce examples as above
where the algebraic limit is the fundamental group of a punctured torus, but the
geometric limit is not even finitely generated. See § .

Here are some basic properties of convergence of sequences of discrete groups.

PROPOSITION 9.1.5. If {p;} converges algebraically to p and {p;I'} converges ge-
ometrically to T, then T D pI.

ProoF. Obvious. 0

PROPOSITION 9.1.6. For any Lie group G, the space of closed subgroups of G
(with the geometric topology) is compact.

PrOOF. Let {I';} be any sequence of closed subgroups. First consider the case
that there is a lower bound to the “size” d(e,~y) of elements of v € I';. Then there is
an upper bound to the number of elements of I'; in the ball of radius v about e, for
every 7. The Tychonoff product theorem easily implies the existence of a subsequence
converging geometrically to a discrete group.

Now let S be a maximal subspace of T,(G), the tangent space of G at the identity
element e, with the property that for any € > 0 there is a I'; whose e-small elements
fill out all directions in S, within an angle of €. It is easy to see that S is closed under
Lie brackets. Furthermore, a subsequence {I';;} whose small elements fill out S has
the property that all small elements are in directions near S. It follows, just as in
the previous case, that there is a subsequence converging to a closed subgroup whose
tangent space at e is S.

COROLLARY 9.1.7. The set of complete hyperbolic manifolds N together with base
frames in Nic ) is compact in the geometric topology.
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U

COROLLARY 9.1.8. Let I be any countable group and {p;} a sequence of discrete
representations of I' in PSL(2,C) converging algebraically to a representation p. If
pl' does not have an abelian subgroup of finite index then {p;} has a subsequence
converging geometrically to a discrete group I'" D ol'. In particular, pI' is discrete.

ProOOF. By 9.1.7, there is a subsequence converging geometrically to some closed
group I”. By 5.10.1, the identity component of I'" must be abelian; since pI' C I",
the identity component is trivial. O

Note that if the p; are all faithful, then their algebraic limit is also faithful, since
there is a lower bound to d(p;yz, x). These basic facts were first proved in 7777

Here is a simple example negating the converse of 9.1.8. Consider any discrete
group I' C PSL(2, C) which admits an automorphism ¢ of infinite order: for instance,
" might be a fundamental group of a surface. The sequence of representations ¢' has
no algebraically convergent subsequence, yet {¢'I'} converges geometrically to T

There are some simple statements about the behavior of limit sets when passing
to a limit. First, if ' is the geometric limit of a sequence {I';}, then each point
x € Lr is the limit of a sequence x; € Lr,. In fact, fixed points = (eigenvectors) of
non-trivial elements of v € I' are dense in Lr; for high ¢, I'; must have an element
near v, with a fixed point near x. A similar statement follows for the algebraic limit
p of a sequence of representations p;. Thus, the limit set cannot suddenly increase
in the limit. It may suddenly decrease, however. For instance, let I' C PSL(2,C) be
any finitely generated group. I' is residually finite (see § ), or in other words, it has
a sequence {I';} of subgroups of finite index converging geometrically to the trivial
group (e). Ly, = Lr is constant, but L is empty. It is plausible that every finitely
generated discrete group I' € PSL(2, C) be a geometric limit of groups with compact
quotient.

We have already seen (in 9.1.4) examples where the limit set suddenly decreases
in an algebraic limit.

Let I be the fundamental group of a surface S with finite area and {p;} a sequence
of faithful quasi-Fuchsian representations of T', preserving parabolicity. Suppose {p;}
converges algebraically to a representation p as a group without any additional par-
abolic elements. Let N denote N,r), N; denote N, r), etc.

THEOREM 9.2. N is geometrically tame, and {p;} converges strongly to p.

PRroOF. If the set of uncrumpled maps of S into N homotopic to the standard
map is compact, then using a finite cover of GL(S) carried by nearly straight train
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tracks, one sees that for any discrete representation p’ near p, every geodesic lami-
nation 7 of S is realizable in N’ near its realizations in N. (Logically, one can think
of uncrumpled surfaces as equivariant uncrumpled maps of M? into H?3, with the
compact-open topology, so that “nearness” makes sense.) Choose any subsequence
of the p;’s so that the bending loci for the two boundary components of M, converge
in GL(5). Then the two boundary components must converge to locally convex dis-
joint embeddings of S in N (unless the limit is Fuchsian). These two surfaces are
homotopic, hence they bound a convex submanifold M of N, so p(I') is geometrically
finite.

Since M. o) is compact, strong convergence of {p;} follows form 8.3.3: no un-
expected identifications of N can be created by a small perturbation of p which
preserves parabolicity.

If the set of uncrumpled maps of S homotopic to the standard map is not compact,
then it follows immediately from the definition that N has at least one geometrically
infinite tame end. We must show that both ends are geometrically tame. The possible
phenomenon to be wary of is that the bending loci 8} and 3; of the two boundary
components of M; might converge, for instance, to a single point A in GL(.S). (This
would be conceivable if the “simplest” homotopy of one of the two boundary compo-
nents to a reference surface which persisted in the limit first carried it to the vicinity
of the other boundary component.) To help in understanding the picture, we will
first find a restriction for the way in which a hyperbolic manifold with a geometrically
tame end can be a covering space.

DEFINITION 9.2.1. Let N be a hyperbolic manifold, P a union of horoball neigh-
borhoods of its cusps, ' an end of N — P. E’ is almost geometrically tame if some
finite-sheeted cover of E’ is (up to a compact set) a geometrically tame end. (Later
we shall prove that if E is almost geometrically tame it is geometrically tame.)

THEOREM 9.2.2. Let N be a hyperbolic manifold, and N a covering space of N
such that N — P has a geometrically infinite tame end E bounded by a surface Sle,00) -
Then either N has finite volume and some finite cover of N fibers over S with fiber
S, or the image of E in N — P, up to a compact set, is an almost geometrically tame

end of N.

PRrooOF. Consider first the case that all points of £ identified with S| ) in the
projection to N lie in a compact subset of . Then the local degree of the projection
of F to N is finite in a neighborhood of the image of S. Since the local degree is
constant except at the image of .S, it is everywhere finite.

Let G C m N be the set of covering transformations of H? over N consisting of
elements ¢ such that gE N E is all of E except for a bounded neighborhood of S. G
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9.1. LIMITS OF DISCRETE GROUPS

is obviously a group, and it contains 7.5 with finite index. Thus the image of E, up
to compact sets, is an almost geometrically tame end of N.

The other case is that S| ) is identified with a non-compact subset of E by
projection to N. Consider the set I of all uncrumpled surfaces in £ whose images
intersect the image of S| ). Any short closed geodesic on an uncrumpled surface
of E is homotopic to a short geodesic of £ (not a cusp), since £ contains no cusps
other than the cusps of S. Therefore, by the proof of 8.8.5, the set of images of [ in
N is precompact (has a compact closure). If I itself is not compact, then N has a
finite cover which fibers over S*, by the proof of 8.10.9. If I is compact, then (since
uncrumpled surfaces cut £ into compact pieces), infinitely many components of the
set of points identified with S ) are compact and disjoint from S.
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e e T

Surll;cés ('a/enffg?c/ w//h,j: gl - g){

These components consist of immersions of k-sheeted covering spaces of .S injective
on 7, which must be homologous to £k [S]. Pick two disjoint immersions with the
same sign, homologous say to —k [S] and —[ [S]. Appropriate multiples of these cycles
are homologous by a compactly supported three-chain which maps to a three-cycle
in N — P, hence N has finite volume. Theorem 9.2.2 now follows from 8.10.9. U

We continue the proof of Theorem 9.2. We may, without loss of generality, pass to
a subsequence of representations p; such that the sequences of bending loci {3;"} and
{3} converge, in PLy(S), to laminations T and 5. If §T, say, is realizable for the
limit representation p, then any uncrumpled surface whose wrinkling locus contains
G is embedded and locally convex—hence it gives a geometrically finite end of N.
The only missing case for which we must prove geometric tameness is that neither
BT nor 5~ is realizable. Let A§ € PLy(S) (where e = 4+, —) be a sequence of geodesic
laminations with finitely many leaves and with transverse measures approximating
B¢ closely enough that the realization of \{ in [V; is near the realization of 3f. Also
suppose that lim A{ = 8¢ in PLy(S). The laminations A are all realized in N. They
must tend toward co in IV, since their limit is not realized. We will show that they
tend toward oo in the e-direction. Imagine the contrary—for definiteness, suppose
that the realizations of {\]} in N go to oo in the — direction. The realization of each
Al in Nj must be near the realization in N, for high enough j. Connect A]" to Af
by a short path A; j; in PLy(S). A family of uncrumpled surfaces S ;, realizing the
Aijt 1s not continuous, but has the property that for ¢ near ¢y, S; ;; and S; j4, have
points away from their cusps which are close in N. Therefore, for every uncrumpled

surface U between S; ;o and S; ;1 (in a homological sense), there is some ¢ such that
Sij+NUN (N — P) is non-void.
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o - e .
N )

> L. -

I =

o

e . U e e e
)1 — :

g Si).i){] u)

Let v be any lamination realized in N, and U; be a sequence of uncrumpled
surfaces realizing v in N, and converging to a surface in N. There is a sequence
Si(j).jt) of uncrumpled surfaces in N; intersecting U; whose wrinkling loci tend
toward .

Without loss of generality we may pass to a geometrically convergent subsequence,
with geometric limit Q). @ is covered by N. It cannot have finite volume (from the
analysis in Chapter 5, for instance), so by 8.14.2, it has an almost geometrically tame
end F which is the image of the — end F_ of N. Each element a of m F has a
finite power o* € m E_. Then a sequence {a;} approximating « in m(N;) has the
property that the a¥ have bounded length in the generators of 1.5, this implies that
the a; have bounded length, so « is in fact in mE_, and £ = E (up to compact
sets). Using this, we may pass to a subsequence of Sy ;.’s which converge to an
uncrumpled surface R in E. R is incompressible, so it is in the standard homotopy
class. It realizes 37, which is absurd.

e e et e e 1 0 08 e

‘0:))0

We may conclude that N has two geometrically tame ends, each of which is
mapped homeomorphically to the geometric limit ). (This holds whether or not
they are geometrically infinite.) This implies the local degree of N — (@ is finite one
or two (in case the two ends are identified in @)). But any covering transformation «
of N over @ has a power (its square) in 7m; N, which implies, as before, that o € m N,
so that N = ). This concludes the proof of 9.2. 0

9.3. The ending of an end

In the interest of avoiding circumlocution, as well as developing our image of a
geometrically tame end, we will analyze the possibilities for non-realizable laminations
in a geometrically tame end.

We will need an estimate for the area of a cylinder in a hyperbolic three-manifold.
Given any map f : S* x [0,1] — N, where N is a convex hyperbolic manifold, we
may straighten each line 6 x [0, 1] to a geodesic, obtaining a ruled cylinder with the
same boundary.
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9. ALGEBRAIC CONVERGENCE

THEOREM 9.3.1. The area of a ruled cylinder (as above) is less than the length
of its boundary.

PROOF. The cylinder can be CY-approximated by a union of small quadrilaterals
each subdivided into two triangles. The area of a triangle is less than the minimum
of the lengths of its sides (see p. 6.5). O

9.16
If the two boundary components of the cylinder C' are far apart, then most of the

area is concentrated near its boundary. Let v, and 7, denote the two components of

oC.

THEOREM 9.3.2. Area (C'—N,71) < e "l(m1) + l(7y2) where v > 0 and | denotes
length.

This is derived by integrating the area of a triangle in polar coordinates from any

vertex: T(6)
A= // sinh ¢ dt df = /(coshT(@) —1)df
0

) cinh(T(01R) 0
oyt ——7— 3In
‘é;w
The area outside a neighborhood of radius r of its far edge « is

/cosh (T'(0) —r)—1dO < e_r/sinh T(0)do < e "l(a).

h Th) 8

This easily implies 9.3.2
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9.3. THE ENDING OF AN END

Let E be a geometrically tame end, cut off by a surface S} ) in NV — P, as usual.
A curve a in F homotopic to a simple closed curve o’ on S gives rise to a ruled
cylinder C,, : S* x [0,1] — N.

Now consider two curves « and 8 homotopic to simple closed curves o/ and [’
on S. One would expect that if o’ and " are forced to intersect, then either o must
intersect Cjg or 8 must intersect Cy,, as in 8.11.1

We will make this more precise by attaching an invariant to each intersection. Let
us assume, for simplicity, that o/ and 3" are geodesics with respect to some hyperbolic
structure on S. Choose one of the intersection points, pg, of o/ and 3" as a base point
for N. For each other intersection point p;, let o;; and 3; be paths on o and 3’ from
po to pi. Then a; x5! is a closed loop, which is non-trivial in 7 (S) when 4 # 0 since
two geodesics in S have at most one intersection.

There is some ambiguity, since there is more than one path from oy to «; on
/

o5 in fact, a; is well-defined up to a power of o’. Let (g) denote the cyclic group
generated by an element g. Then o, - 3; " gives a well-defined element of the double
coset space (a/)\71(S)/(5). [The double coset HigHy € H\G/H; of an element
g € G is the set of all elements hyghs, where h; € H;.| The double cosets associated
to two different intersections p; and p; are distinct: if (o/)a;3; 1 (3') = (a)a;B71(6"),

-1 _rk

then there is some loop o« ;573" 3; made up of a path on o’ and a path on
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(' which is homotopically trivial—a contradiction. In the same way, a double coset
D, , is attached to each intersection of the cylinders C, and Cp. Formally, these
intersection points should be parametrized by the domain: thus, an intersection point
means a pair (z,y) € (S* x I) x (S’ x I) such that Cpz = Cyy.

Let i(7y,d) denote the number of intersections of any two simple geodesics v and
d on S. Let D(v,d) be the set of double cosets attached to intersection points of
and 0 (including po). Thus i(v,d) = |D(v,0)|. D(«,Cs) and D(C,, 3) are defined

similarly.
PROPOSITION 9.3.3. |a N Cy| + |Cy N B > i(a/, 3). In fact
D(a,Cs3)U D(C,,3) D D(d/, 3.

PROOF. First consider cylinders Cy, and C}; which are contained in £, and which
are nicely collared near S. Make C7, and C} transverse to each other, so that the
double locus L C (S' x I) x (S x I) is a one-manifold, with boundary mapped
to aU B Ua' U The invariant Dy, is locally constant on L, so each invariant
occurring for o/ N G’ occurs for the entire length of interval in L, which must end on
a or 3. In fact, each element of D(«/, 3’) occurs as an invariant of an odd number of
points a U .

Now consider a homotopy h; of C to Cp, fixing U 3'. The homotopy can be
perturbed slightly to make it transverse to «, although this may necessitate a slight
movement of Uz to a cylinder C5. Any invariant which occurs an odd number of
times for a N C; occurs also an odd number of times for o N Cj. This implies that
the invariant must also occur for a N Cp. O]

REMARK. By choosing orientations, we could of course associate signs to intersec-
tion points, thereby obtaining an algebraic invariant D(o/, 3') € Z{N71S/(%) " Then
9.3.3 would become an equation,

D, ") = D(a, Cg) + D(Cl, ).

Since m(S) is a discrete group, there is a restriction on how closely intersection
points can be clustered, hence a restriction on |D(a, ¢)| in terms of the length of «
times the area of Cp.

PROPOSITION 9.3.4. There is a constant K such that for every curve a in E with
distance R from S homotopic to a simple closed curve o' on S and every curve 3 in
E not intersecting C, and homotopic to a simple curve 3’ on S,

i(o/, B) < K[l(a) + (I(a) + 1) (1(B) + e F+1(3))].
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ProoF. Consider intersection points (z,y) € S'x (S'xI) of @ and Cs. Whenever
two of them, (z,y) and (2’,y), are close in the product of the metrics induced from
N, there is a short loop in N which is non-trivial if D, ) # D (g 4.

Case (i). ais a short loop. Then there can be no short non-trivial loop on Cs near
an intersection point with «. The disks of radius € on C3 about intersection points
with a have area greater than some constant, except in special cases when they
are near 0Cy. If necessary, extend the edges of Cjp slightly, without substantially
changing the area. The disks of radius € must be disjoint, so this case follows from
9.3.2 and 9.3.3.

Case (ii). « is not short. Let E C Cj consist of points through which there
is a short loop homotopic to f. If (z,y) and (2/,y') are intersection points with
D,, # D, , and with y,y’ in E, then z and 2z’ cannot be close together—otherwise
two distinct conjugates of § would be represented by short loops through the same
point. The number of such intersections is thus estimated by some constant times
l(a).

Three intersections of « with Cs — E cannot occur close together. S' x (Cs — E)
contains the balls of radius e, with multiplicity at most 2, and each ball has a definite
volume. This yields 9.3.4. O

Let us generalize 9.3.4 to a statement about measured geodesic laminations. Such
a lamination (7, ) on a hyperbolic surface S has a well-defined “average length”
ls(7, ). This can be defined as the total mass of the measure which is locally the
product of the transverse measure p with one-dimensional Lebesgue measure on the
leaves of . Similarly, a realization of + in a homotopy class f : S — N has a
length {;(y, ). The length lg(7y, ) is a continuous function on MKL(S), and l;(7)
is a continuous function where defined. If 7 is realized a distance of R from an
uncrumpled surface S, then (v, ) < (1/cosh R)lg(y,p). This implies that if f
preserves non-parabolicity, [y extends continuously over all of ML, so that its zero
set is the set of non-realizable laminations.

The intersection number i ((71, f11), (72, p2)) of two measured geodesic laminations
is defined similarly, as the total mass of the measure u; X ps which is locally the
product of py and ps. (This measure py X pg is interpreted to be zero on any common
leaves of v, and 75.)
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."‘h S
e ’ L-.\F
U A A | S —
[ g "w“'s ot n,.,..-,,.-.v-,.m.&[mtwiw' L
{ -

Given a geodesic lamination v realized in F, let d., be the miniaml distance of an
uncrumpled surface through ~ from S ).

THEOREM 9.3.5. There is a constant K such that for any two measured geodesic
laminations (71, p1) and (72, p2) € MLo(S) realized in E,

Z'((’Yla,ul)a (’Yz,/iz)) < K- 6’2Rls(%,u1) s (72, p12)
where R = inf(d,,,d,,).

PRrOOF. First consider the case that v; and v, are simple closed geodesics which
are not short. Apply the proof of 9.3.4 first to intersections of v; with C,,, then to
intersections of C,, with 7. Note that g(7;) is estimated from below by efl(v;), so
the terms involving I(~;) can be replaced by C'e~l(+;). Since v, and 7, are not short,
one obtains

i(y1,72) < K - e 2 lg(m) ls(),

for some constant K. Since both sides of the inequality are homogeneous of degree
one in ; and 9, it extends by continuity to all of MLy (.S). O

Consider any sequence {(v;,i;)} of measured geodesic laminations in MLy(S)
whose realizations go to co in E. If (Aq, 1) and (g, po) are any two limit points
of this sequence, 9.3.5 implies that (A, A\2) = 0: in other words, the leaves do not
cross. The union A; U Ay is still a lamination.

DEFINITION 9.3.6. The ending lamination €(E) € GL(S) is the union of all limit
points \;, as above.

Clearly, €¢(F) is compactly supported and it admits a measure with full support.
The set A(E) C PLy(S) of all such measures on ¢(F) is closed under convex combi-
nations, hence its intersection with a local coordinate system (see p. 8.59) is convex.
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In fact, a maximal train track carrying ¢(FE) defines a single coordinate system con-
taining A(FE).

The idea that the realization of a lamination depends continuously on the lami-
nation can be generalized to the ending lamination €(F), which can be regarded as
being realized at oo.

PROPOSITION 9.3.7. For every compact subset K of E, there is a neighborhood
U of A(E) in PLy(S) such that every lamination in U — A(E) is realized in E — K.

PROOF. It is convenient to pass to the covering of N corresponding to m.S. Let
S’ be an uncrumpled surface such that K is “below” S’ (in a homological sense). Let
{Vi} be a neighborhood basis for A(F) such that V; — A(FE) is path-connected, and
let \; € V; — A(F) be a sequence whose realizations go to oo in E. If there is any
point m; € V; — A(E) which is a non-realizable lamination or whose realization is not
“above” S’, connect A\; to m; by a path in V;. There must be some element of this
path whose realization intersects ngoo) (since the realizations cannot go to oo while
in E.) Even if certain non-peripheral elements of S are parabolic, excess pinching
of non-peripheral curves on uncrumpled surfaces intersecting S’ can be avoided if S’
is far from S, since there are no extra cusps in E. Therefore, only finitely many
such m;’s can occur, or else there would be a limiting uncrumpled surface through S
realizing the unrealizable. 0

PROPOSITION 9.3.8. Every leaf of €(F) is dense in €(E), and every non-trivial
simple curve in the complement of €(E) is peripheral.

PROOF. The second statement follows easily from 8.10.8, suitably modified if
there are extra cusps. The first statement then follows from the next result:

PROPOSITION 9.3.9. Ifv is a geodesic lamination of compact support which admits
a nowhere zero transverse measure, then either every leaf of v is dense, or there is a
non-peripheral non-trivial simple closed curve in S — .

PROOF. Suppose 6 C v is the closure of any leaf. Then ¢ is also an open subset
of : all leaves of v near § are trapped forever in a neighborhood of §. This is seen
by considering the surface S — §.
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An arc transverse to these leaves would have positive measure, which would imply
that a transverse arc intersecting these leaves infinitely often would have infinite
measure. (In general, a closed union of leaves § C =y in a general geodesic lamination
has only a finite set of leaves of v intersecting a small neighborhood.)

If § # ~, then ¢ has two components, which are separated by some homotopically
non-trivial curve in S — 7. U

O

COROLLARY 9.3.10. For any homotopy class of injective maps f : S — N from
a hyperbolic surface of finite area to a complete hyperbolic manifold, if f preserves
parabolicity and non-parabolicity, there are n = 0, 1 or 2 non-realizable laminations
€ [1 < i < n] such that a general lamination v on S is non-realizable if and only if
the union of its non-isolated leaves is an ¢;.

9.4. Taming the topology of an end

We will develop further our image of a geometrically tame end, once again to
avoid circumlocution.

THEOREM 9.4.1. A geometrically tame end E C N — P 1is topologically tame. In
other words, E is homeomorphic to the product Sy x [0, 00).

Theorem 9.4.1 will be proved in §§9.4 and 9.5.

COROLLARY 9.4.2. Almost geometrically tame ends are geometrically tame.

PROOF THAT 9.4.1 implies 9.4.2. Let E’ be an almost geometrically tame end,
finitely covered (up to compact sets) by a geometrically tame end E = Sj o) x [0, €),

with projection p : E — E'. Let f : E' — [0,¢) be a proper map. The first step is
to find an incompressible surface S’ C E’ which cuts it off (except for compact sets).
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Choose ty high enough that p : E — E’ is defined on Sy ) X [tg,00), and choose
t1 > to so that p(S[E,OO) X [t1, oo)) does not intersect p(Sie,c) X to).

Let r € [0,00) be any regular value for f greater than the supremum of f op on
Sle,c) X [0,t1). Perform surgery (that is, cut along circles and add pairs of disks) to
f7Y(r), to obtain a not necessarily connected surface S’ in the same homology class
which is incompressible in

E' —p(S[eyoo) X [O,to)).

The fundamental group of S’ is still generated by loops on the level set f = r. S’
is covered by a surface S’ in E. S’ must be incompressible in E— otherwise there
would be a non-trivial disk D mapped into S} ooy X [t1, 00) with boundary on S: poD
would be contained in

El — p(S[QOO) X [O, to])

so S" would not be incompressible (by the loop theorem). One deduces that S’ s
homotopic to Si ) and S’ is incompressible in N — P.

If E is geometrically finite, there is essentially nothing to prove—FE corresponds
to a component of M, which gives a convex embedded surface in E'. If E is ge-
ometrically infinite, then pass to a finite sheeted cover E” of E which is a regular
cover of E'. The ending lamination ¢(E") is invariant under all diffeomorphisms (up
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to compact sets) of E”. Therefore it projects to a non-realizable geodesic lamination

e(E') on S'. O

PROOF OF 9.4.1. We have made use of one-parameter families of uncrumpled
surfaces in the last two sections. Unfortunately, these surfaces do not vary contin-
uously. To prove 9.4.1, we will show, in §9.5, how to interpolate with more general
surfaces, to obtain a (continuous) proper map F: Sy ) x [0,00) — E. The theorem
will follow fairly easily once F' is constructed:

PROPOSITION 9.4.3. Suppose there is a proper map F : S ) x [0,00) — E
with F(Sjec0) % 0) standard and with F(0Sjcx) X [0,00)) C O(N — P). Then E is
homeomorphic to Sy ) % [0,00).

PROOF OF 9.4.3. This is similar to 9.4.2. Let f : E — [0,00) be a proper map.
For any compact set K C E, we can find a t; > 0 so that F(Sj ) X [t1,00)) is
disjoint from K. Let r be a regular value for f greater than the supremum of f o F
on Siee) X [0,81]. Let 8" = fHr) and S” = (fo F)"}r). F:S”" — S is a map
of degree one, so it is surjective on m; (or else it would factor through a non-trivial
covering space on S’, hence have higher degree). Perform surgery on S’ to make it
incompressible in the complement of K, without changing the homology class. Now
S" must be incompressible in E; otherwise there would be some element « of w5’
which is null-homotopic in E. But « comes from an element 5 on S” which is null-
homotopic in Sy ) X [t1,00), so its image o is null-homotopic in the complement
of K. It follows that S" is homotopic to S| ), and that the compact region of E
cut off by S" is homeomorphic to Sjc .y x I. By constructing a sequence of such
disjoint surfaces going outside of every compact set, we obtain a homeomorphism
with S[e,oo) X [0, OO) L]

O

9.5. Interpolating negatively curved surfaces

Now we turn to the task of constructing a continuous family of surfaces moving out
to a geometrically infinite tame end. The existence of this family, besides completing
the proof of 9.4.1, will show that a geometrically tame end has uniform geometry,
and it will lead us to a better understanding of MLy(.S).

We will work with surfaces which are totally geodesic near their cusps, on esthetic
grounds. Our basic parameter will be a family of compactly supported geodesic
laminations in ML(S). The first step is to understand when a family of uncrumpled
surfaces realizing these laminations is continuous and when discontinuous.
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DEFINITION 9.5.1. For a lamination v € MLy(S), let T, be the limit set in GL(.5)
of a neighborhood system for v in ML (S). ( T, is the “qualitative tangent space”
of MLy(S) at v ).

Let ML(S) denote the closure of the image of ML (.S) in GL(.S). Clearly ML (.S)
consists of laminations with compact support, but not every lamination with compact
support is in ML (.S):

not in 7 0

Every element of ML, is in T, for some v € ML,. Let us say that an element
v € MLy is essentially complete if  is a maximal element of MLg. If v € ML, then
7 is essentially complete if and only if T, = 7. A lamination 7 is maximal among all
compactly supported laminations if and only if each region of S — v is an asymptotic 9.30
triangle or a neighborhood of a cusp of S with one cusp on its boundary—a punctured

monogon.
QS\IW\(:\TD"I’C o Funcfuv‘t'a
fr!ow(’l\ﬁ = wonogon

(These are the only possible regions with area 7 which are simply connected or whose
fundamental group is peripheral.) Clearly, if S —~ consists of such regions, then = is
essentially complete. There is one special case when essentially complete laminations
are not of this form; we shall analyze this case first.

PROPOSITION 9.5.2. Let T — p denote the punctured torus. An element
v € MLo(T' — p)
is essentially complete if and only if (T — p) — 7 is a punctured bigon.

If v € MLo(T — p), then either v has a single leaf (which is closed), or every leaf
of v is mon-compact and dense, in which case v is essentially complete. If v has a
single closed leaf, then T, consists of v and two other laminations:
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i Gpuncture,d bl’gon

PROOF. Let g € MLy(T — p) be a compactly supported measured lamination.
First, note that the complement of a simple closed geodesic on T' — p is a punctured
annulus,

which admits no simple closed geodesics and consequently no geodesic laminations
in its interior. Hence if v contains a closed leaf, then v consists only of this leaf, and
otherwise (by 9.3.9) every leaf is dense.

Now let a be any simple closed geodesic on T'— p, and consider v cut apart by
a. No end of a leaf of v can remain forever in a punctured annulus, or else its limit
set would be a geodesic lamination. Thus « cuts leaves of v into arcs, and these arcs
have only three possible homotopy classes:

If the measure of the set of arcs of type (a) is m,, etc., then (since the two boundary
components match up) we have 2m, + m, = 2m, —|— myp. But cases (a) and (c)
are incompatible with each other, so it must be that m, = m. = 0. Note that
is orientable: it admits a continuous tangent vector field. By inspection we see a
complementary region which is a punctured bigon.

Since the area of a punctured bigon is 27, which is the same as the area of T — p,
this is the only complementary region.
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It is now clear that a compactly supported measured lamination on 7" — p with
every leaf dense is essentially complete—there is nowhere to add new leaves under a
small perturbation. If v has a single closed leaf, then consider the families of measures
on train tracks:

set

i3 T.

These train tracks cannot be enlarged to train tracks carrying measures. This can
be deduced from the preceding argument, or seen as follows. At most one new branch
could be added (by area considerations), and it would have to cut the punctured bigon
into a punctured monogon and a triangle.

Can nevey
&—— Treversc

Cav only reverse
— ONCE

The train track is then orientable in the complement of the new branch, so a train
can traverse this branch at most once. This is incompatible with the existence of a
positive measure. Therefore MLy(T — p) is two-dimensional, so 71 and 7 carry a
neighborhood of .

N\
N Mmeasures ™

; RN NN
AN RN

It follows that 7, is as shown. O

PROPOSITION 9.5.3. PLy(T — p) is a circle.
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PROOF. The only closed one-manifold is S*. That PLy(T — p) is one-dimensional
follows from the proof of 9.5.2. Perhaps it is instructive in any case to give a covering
of PLy(T — p) by train track neighborhoods: 9.34

or, to get open overlaps,

[l

PROPOSITION 9.5.4. On any hyperbolic surface S which is not a punctured torus,
an element v € MLy(S) is essentially complete if and only if S — v is a union of
triangles and punctured monogons.

PROOF. Let 7 be an arbitrary lamination in ML (S), and let 7 be any train track
approximation close enough that the regions of S — 7 correspond to those of S — 7.

If some of these regions are not punctured monogons or triangles, we will add extra 9.35
branches in a way compatible with a measure.

First consider the case that each region of S — v is either simply connected or a
simple neighborhood of a cusp of S with fundamental group Z. Then 7 is connected.
Because of the existence of an invariant measure, a train can get from any part of
7 to any other. (The set of points accessible by a given oriented train is a “sink,”

246 Thurston — The Geometry and Topology of 3-Manifolds



9.5. INTERPOLATING NEGATIVELY CURVED SURFACES

which can only be a connected component.) If 7 is not orientable, then every oriented
train can get to any position with any orientation. (Otherwise, the oriented double
“cover” of 7 would have a non-trivial sink.)

orien"’cJ c(a.ui)}c

"’(,o\lef\\ O‘F T
hae @ sink.

In this case, add an arbitrary branch b to 7, cutting a non-atomic region (of area
> 7). Clearly there is some cyclic train path through b, so 7 U b admits a positive
measure.

If 7 is oriented, then each region of S — 7 has an even number of cusps on its
boundary. The area of S must be 47 or greater (since the only complete oriented
surfaces of finite area having y = —1 are the thrice punctured sphere, for which MLg 9.36
is empty, and the punctured torus). If there is a polygon with more than four sides, it
can be subdivided using a branch which preserves orientation, hence admits a cyclic
train path. The case of a punctured polygon with more than two sides is similar.

Otherwise, S —~ has at least two components. Add one branch b; which reverses pos-
itively oriented trains, in one region, and another branch by which reverses negatively
oriented trains in another.

There is a cyclic train path through b; and b, in 7 U by U by, hence an invariant
measure.
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Now consider the case when S — 7 has more complexly connected regions. If 937

a boundary component of such a region R has one or more vertices, then a train
pointing away from R can return to at least one vertex pinting toward R. If R is
not an annulus, hook a new branch around a non-trivial homotopy class of arcs in R
with ends on such a pair of vertices.

If R is an annulus and each boundary component has at least one vertex, then add
one or two branches running across R which admit a cyclic train path.

If R is not topologically a thrice punctured disk or annulus, we can add an interior
closed curve to R.

Any boundary component of R which is a geodesic « has another region R’ (which
may equal R) on the other side. In this case, we can add one or more branches in
R and R’ tangent to « in opposite directions on opposite sides, and hooking in ways
similar to those previously mentioned.

From the existence of these extensions of the original train track, it follows that
an element v € ML is essentially complete if and only if S — 7 consists of triangles
and punctured monogons. Furthermore, every v € ML, can be approximated by
essentially complete elements 7/ € ML,. In fact, an open dense set has the property
that the e-train track approximation 7. has only triangles and punctured monogons
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as complementary regions, so generically every 7. has this property. The characteri-
zation of essential completeness then holds for ML, as well. O

Here is some useful geometric information about uncrumpled surfaces.

PROPOSITION 9.5.5. (i) The sum of the dihedral angles along all edges of
the wrinkling locus w(S) tending toward a cusp of an uncrumpled surface S
is 0. (The sum is taken in the group S* = Rmod 27.)

(ii) The sum of the dihedral angles along all edges of w(S) tending toward any
side of a closed geodesic v of w(S) is o, where a is the angle of rotation
of parallel translation around 7. (The sign depends on the sense of the
spiralling of nearby geodesics toward -y.)

Proor. Consider the upper half-space model, with either the cusp or the end
of 4 toward which the geodesics in w(S) are spiralling at co. Above some level (in
case (a)) or inside some cone (in case (b)), S consists of vertical planes bent along
vertical lines. The proposition merely says that the total angle of bending in some
fundamental domain is the sum of the parts.

O

COROLLARY 9.5.6. An uncrumpled surface realizing an essentially complete lam-
ination in MLqg in a given homotopy class is unique. Such an uncrumpled surface is
totally geodesic near its cusps.

ProoF. If the surface S is not a punctured torus, then it has a unique comple-
tion obtained by adding a single geodesic tending toward each cusp. By 9.5.5, an
uncrumpled surface cannot be bent along any of these added geodesics, so we obtain
9.5.6.
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If S is the punctured torus 7' — p, then we consider first the case of a lamination
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two closed geodesics going from the vertices of the punctured bigon to the puncture.

If the dihedral angles along the infinite geodesics are #;, 65 and 63, as shown, then

by

where « is some angle. (The signs are the same for the last two equations because

essevitiall
Cowmn P]e"@

9.5.5 we have

91+92:O,

o\ )

— /,.—«

Qomr)}ere 63

91+93:CY, 92+(93:Oé,

any hyperbolic transformation anti-commutes with a 180° rotation around any per-
pendicular line.)

anti-com m:fh’s
150° rotatinn

Thus 6, = 6, = 0, so an uncrumpled surface is totally geodesic in the punctured bigon.
Since simple closed curves are dense in ML, every element g € ML, realizable in
a given homotopy class has a realization by an uncrumpled surface which is totally
geodesic on a punctured bigon. If v is essentially complete, this means its realizing
surface is unique.

,}//

250

PROPOSITION 9.5.7. If v is an essentially complete geodesic lamination, realized
by an uncrumpled surface U, then any uncrumpled surface U’ realizing a lamination

near 7y is near U.

O
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PROOF. You can see this from train track approximations. This also follows from
the uniqueness of the realization of v on an uncrumpled surface, since uncrumpled
surfaces realizing laminations converging to v must converge to a surface realizing
. 0

Consider now a typical path 7 € MLy. The path v, is likely to consist mostly of
essentially complete laminations, so that a family of uncrumpled surfaces U; realizing
v would be usually (with respect to t) continuous. At a countable set of values of
t, v is likely to be essentially incomplete, perhaps having a single complementary
quadrilateral. Then the left and right hand limits U;_ and U, would probably exist, 9.42
and give uncrumpled surfaces realizing the two essential completions of ;. In fact,
we will show that any path -, can be perturbed slightly to give a “generic” path in
which the only essentially incomplete laminations are ones with precisely two distinct
completions. In order to speak of generic paths, we need more than the topological
structure of MALjg.

PROPOSITION 9.5.8. ML and MLy have canonical PL (piecewise linear) struc-
tures.

Proor. We must check that changes of the natural coordinates coming from
maximal train tracks (pp. 8.59-8.60) are piecewise linear. We will give the proof for
MLy; the proof for ML is obtained by appropriate modifications.

Let v be any measured geodesic lamination in MLy(S). Let 73 and 75 be maximal
compactly supported train tracks carrying v, defining coordinate systems ¢, and ¢
from neighborhoods of v to convex subsets of R" (consisting of measures on 7, and
Ty ). A close enough train track approximation o of v is carried by 7, and 7.

s By

s 4“ \\\"; -

L \\\t*‘. .\-'
TN v(‘l\\qw.““,“‘v-‘,“qﬂﬁ‘: w

';numun
-.ll..u d'm‘ '.,
: ..m“

9.43
The set of measures on o go linearly to measures on 7 and 7. If ¢ is a maximal
compact train track supporting a measure, we are done—the change of coordinates
$2 o ¢y' is linear near 7. (In particular, note that if v is essentially complete,
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change of coordinates is always linear at v ). Otherwise, we can find a finite set of
enlargements of o, 01, ..., 0%, so that every element of a neighborhood of ~ is closely
approximated by one of the ;. Since every element of a neighborhood of ~ is carried
by 71 and 7, it follows that (if the approximations are good enough) each of the o; is
carried by 7 and 7. Each o; defines a convex polyhedron which is mapped linearly
by ¢, and ¢, 50 ¢3 0 ¢ " must be PL in a neighborhood of 7. 0

REMARK 9.5.9. It is immediate that change of coordinates involves only rational
coefficients. In fact, with more care ML and ML, can be given a piecewise integral
linear structure. To do this, we can make use of the set D of integer-valued measures
supported on finite collections of simple closed curves (in the case of MLy ); D is
analogous to the integral lattice in R". GL, Z consists of linear transformations of R"
which preserve the integral lattice. The set V, of measures supported on a given train
track 7 is the subset of some linear subspace V' C R™ which satisfies a finite number
of linear inequalities p(b;) > 0. Thus V; is the convex hull of a finite number of lines,
each passing through an integral point. The integral points in U are closed under
integral linear combinations (when such a combination is in U), so they determine an
integral linear structure which is preserved whenever U is mapped linearly to another
coordinate system.

Note in particular that the natural transformations of ML are volume-preserving.

The structure on PL and PLj is a piecewise integral projective structure. We will
use the abbreviations PIL and PIP for piecewise integral linear and piecewise integral
projective.

DEFINITION 9.5.10. The rational depth of an element v € ML, is the dimension
of the space of rational linear functions vanishing on v, with respect to any natural
local coordinate system. From 9.5.8 and 9.5.9, it is clear that the rational depth is
independent of coordinates.

PROPOSITION 9.5.11. If v has rational depth 0, then v is essentially complete.

ProoF. For any v € ML, which is not essentially complete we must construct a
rational linear function vanishing on . Let 7 be some train track approximation of
~ which can be enlarged and still admit a positive measure. It is clear that the set
of measures on 7 spans a proper rational subspace in any natural coordinate system
coming from a train track which carries 7. (Note that measures on 7 consist of
positive linear combinations of integral measures, and that every lamination carried
by 7 is approximable by one not carried by 7.) 0

ProPOSITION 9.5.12. If v € ML has rational depth 1, then either ~y is essentially
complete or v has precisely two essential completions. In this case either
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A. v has no closed leaves, and all complementary regions have area m or 2m.
There is only one region with area 21 unless y is oriented and area(S) = 4w
in which case there are two. Such a region is either a quadrilateral or a
punctured bigon.

or
B. v has precisely one closed leaf v9. Fach region touching vy has area 2.
Either
1. S is a punctured torus

4
or

2. o touches two regions, each a one-pointed crown or a devils cap.

/

QAYM \\
(Tuqvx C‘YUPTLC\
Sp%e\f@ )

PROOF. Suppose 7 has rational depth 1 and is not essentially complete. Let 7 be a
close train track approximation of v. There is some finite set 7, ..., 7 of essentially
complete enlargements of 7 which closely approximate every 7’ in a neighborhood
of 7. Let o carry all the 7;’s and let V, be its coordinate system. The set of
corresponding to measures carried by a given proper subtrack of a 7; is a proper
rational subspace of V. Since v is in a unique proper rational subspace, V;, the set
of measures V,, carried on any 7; must consist of one side of V. (If V. intersected

Thurston — The Geometry and Topology of 3-Manifolds 253



9. ALGEBRAIC CONVERGENCE

both sides, by convexity v would come from a measure positive on all branches of
7;). Since this works for any degree of approximation of nearby laminations, v has
precisely two essential completions. A review of the proof of 9.5.4 gives the list of
possibilities for v € ML, with precisely two essential completions. The ambiguity in
the essential completions comes from the manner of dividing a quadrilateral or other
region, and the direction of spiralling around a geodesic.

O

REMARK. There are good examples of v € ML, which have large rational depth
but are essentially complete. The construction will occur naturally in another context.

We return to the construction of continuous families of surfaces in a hyperbolic
three-manifold. To each essentially incomplete v € ML, of rational depth 1, we
associate a one-parameter family of surfaces U, with Uy and U; being the two un-
crumpled surfaces realizing . Uy is constant where U, and U; agree, including the
union of all triangles and punctured monogons in the complement of . The two
images of any quadrilateral in S — v form an ideal tetrahedron. Draw the common
perpendicular p to the two edges not in Uy N Uy, triangulate the quadrilateral with 4
triangles by adding a vertex in the middle, and let this vertex run linearly along p,
from Uy to U;. This extends to a homotopy of S straight on the triangles.

254 Thurston — The Geometry and Topology of 3-Manifolds

9.47



9.5. INTERPOLATING NEGATIVELY CURVED SURFACES

erating curve parabolic. The union of the two essential completions in this punctured
bigon gives a triangulation except in a neighborhood of the puncture, with two new 9.48
vertices at intersection points of added leaves.

Draw the common perpendiculars to edges of the realizations corresponding to
these intersection points, and homotope Uy to U; by moving the added vertices lin-
early along the common perpendiculars.

When « has a closed leaf 7, the two essential completions of v have added leaves
spiralling around 7y in opposite directions. U, can be homotoped to U; through
surfaces with added vertices on 7.
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Note that all the surfaces U, constructed above have the property that any point
on Uy is in the convex hull of a small circle about it on U,. In particular, it has
curvature < —1; curvature —1 everywhere except singular vertices, where negative
curvature is concentrated.

THEOREM 9.5.13. Given any complete hyperbolic three-manifold N with geomet-
rically tame end E cut off by a hyperbolic surface Sic ), there is a proper homotopy
F : Sy x [0,00) = N of S to oo in E.

PROOF. Let V, be the natural coordinate system for a neighborhood of ¢(E) in
MLy(S), and choose a sequence v; € V. limiting on €(E). Perturb the ~; slightly so
that the path +; [0 <t < oo] which is linear on each segment ¢ € [i, i + 1] consists of
elements of rational depth 0 or 1. Let U; be the unique uncrumpled surface realizing
~v; when 7, is essentially complete. When ¢ is not essentially complete, the left and
right hand limits U, and U;_ exist. It should now be clear that F' exists, since one can
cover the closed set {U,+} by a locally finite cover consisting of surfaces homotopic
by small homotopies, and fill in larger gaps between U;, and U;_ by the homotopies
constructed above. Since all interpolated surfaces have curvature < —1, and they
all realize a ~;, they must move out to co. An explicit homotopy can actually be
defined, using a new parameter r which is obtained by “blowing up” all parameter
values of ¢ with rational depth 1 into small intervals. Explicitly, these parameter
values can be enumerated in some order {¢;}, and an interval of length 277 inserted
in the r-parameter in place of ¢;. Thus, a parameter value ¢ corresponds to the point

or interval
r(t) = {t+ o2t > 2—9‘].
{ilt;<t} {lt;<t}

Now insert homotopies as constructed above in each blown up interval. It is not
so obvious that the family of surfaces is still continuous when an infinite family
of homotopies is inserted. Usually, however, these homotopies move a very small
distance—for instance, v, may have a quadrilateral in S —~;, but for all but a locally
small number of ¢’s, this quadrilateral looks like two asymptotic triangles to the naked
eye, and the homotopy is imperceptible.

vw

/ Quadnloj(er"at
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Formally, the proof of continuity is a straightforward generalization of the proof
of 9.5.7. The remark which is needed is that if S is a surface of curvature < —1 with
a (pathwise) isometric map to a hyperbolic surface homotopic to a homeomorphism,
then S is actually hyperbolic and the map is isometric—indeed, the area of S is not
greater than the area of the hyperbolic surface. O

REMARKS. 1. There is actually a canonical line of hyperbolic structures on S
joining those of U;; and U;_, but it is not so obvious how to map them into E nicely.

2. An alternative approach to the construction of F' is to make use of a sequence
of triangulations of S. Any two triangulations with the same number of vertices can
be joined by a sequence of elementary moves, as shown.

Although such an approach involves more familiar methods, the author brutally
chose to develop extra structure.

3. There should be a good analytic method of constructing F' by using harmonic
mappings of hyperbolic surfaces. Realizations of geodesic laminations of a surface are
analogous to harmonic mappings coming from points at oo in Teichmiiller space. The
harmonic mappings corresponding to a family of hyperbolic structures on S moving
along a Teichmiiller geodesic to €(E) ought to move nicely out to co in E. A rigorous
proof might involve good estimates of the energy of a map, analogous to §9.3.

oy
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9.6. Strong convergence from algebraic convergence

We will take another step in our study of algebraic limits. Consider the space of
discrete faithful representations p of a fixed torsion free group I' in PSLy(C). The
set II, C I' of parabolics—i.e., elements v € I' such that p(v) is parabolic—is an
important part of the picture; we shall assume that II, = II is constant. When a
sequence p; converges algebraically to a representation p where II = 1I,, is constant
by II, D Il is strictly bigger, then elements v € 1I,—1I are called accidental parabolics.
The incidence of accidental parabolics can create many interesting phenomena, which
we will study later.
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One complication is that the quotient manifolds N,,r need not be homeomorphic;
and even when they are, the homotopy equivalence given by the isomorphism of fun-
damental groups need not be homotopic to a homeomorphism. For instance, consider
three-manifolds obtained by gluing several surfaces with boundary, of varying genus,
in a neighborhood of their boundary. If every component has negative Euler charac-
teristic, the result can easily be given a complete hyperbolic structure. The homotopy
type depends only on the identifications of the boundary components of the original
surfaces, but the homeomorphism type depends on the order of arrangement around
each image boundary curve.

As another example, consider a thickened surface of genus 2 union a torus as
shown.

It is also easy to give this a complete hyperbolic structure. The fundamental
group has a presentation

<a17b17a27b270: [ahbl] - [a27b2]7 [[al)bl] - C:j| - ]->

This group has an automorphism

ai — aq, by — by, c— ¢, as — cagc t, by — cbyc™?

which wraps the surface of genus two around the torus. No non-trivial power of this
automorphism is homotopic to a homeomorphism. From an algebraic standpoint
there are infinitely many distinct candidates for the peripheral subgroups.

One more potential complication is that even when a given homotopy equivalence
is homotopic to a homeomorphism, and even when the parabolic elements correspond,
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there might not be a homeomorphism which preserves cusps. This is easy to picture
for a closed surface group I': when II is the set of conjugates of powers of a collection
of simple closed curves on the surface, there is not enough information in II to say
which curves must correspond to cusps on which side of S. Another example is
when I' is a free group, and II corresponds to a collection of simple closed curves on
the boundary of a handlebody with fundamental group I'. The homotopy class of a
simple closed curve is a very weak invariant here.

Rather than entangle ourselves in cusps and handlebodies, we shall confine our-
selves to the case of real interest, when the quotient spaces admit cusp-preserving
homeomorphisms.

We shall consider, then, geometrically tame hyperbolic manifolds which have a
common model, (Ny, Fy). Ny should be a compact manifold with boundary, and P
(to be interpreted as the “parabolic locus”) should be a disjoint union of regular
neighborhoods of tori and annuli on dN,, with fundamental groups injecting into
m Ny. Each component of 0Ny — P, should be incompressible.

THEOREM 9.6.1. Let (N, Py) be as above. Suppose that p; : m N — PSL(2,C)
is a sequence of discrete, faithful representations whose quotient manifolds N; are
geometrically tame and admit homeomorphisms (in the correct homotopy class) to
Ny taking horoball neighborhoods of cusps to Py. If {p;} converges algebraically to
a representation p, then the limit manifold N is geometrically tame, and admits a
homeomorphism (in the correct homotopy class) to Ny which takes horoball neighbor-
hoods of cusps to F,.

We shall prove this first with an additional hypothesis:
9.6.1a. Suppose also that no non-trivial non-peripheral simple curve of a com-
ponent of ONy — Py is homotopic (in Ny) to Fy.

REMARKS. The proof of 9.6.1 (without the added hypothesis) will be given in
§9.8.

The main case is really when all N; are geometrically finite. One of the main
corollaries, from 8.12.4, is that p(m Ny) satisfies the property of Ahlfors: its limit set
has measure 0 or measure 1.

PROOF OF 9.6.1a. It will suffice to prove that every sequence {p;} converging
algebraically to p has a subsequence converging strongly to p. Thus, we will pass to
subsequences whenever it is convenient.

Let Si,..., Sk be the components of Ny — Fy, each equipped with a complete
hyperbolic metric of finite area. (In other words, their boundary components are
made into punctures.) For each i, let P; denote a union of horoball neighborhoods
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of cusps of NN;, and let E;,...,E;; denote the ends of IV; — P; corresponding to
Sl, RN Sk

Some of the F;; may be geometrically finite, others geometrically infinite. We
can pass (for peace of mind) to a subsequence so that for each i, the E;; are all
geometrically finite or all geometrically infinite. We pass to a further subsequence so
the sequences of bending or ending laminations {{;;}; or {€;;}; converge in GLg,.
Let x; be the limit.

If x; is realizable in IV, then all nearby laminations have realizations for all repre-
sentations near p, and the F; ; must have been geometrically finite. An uncrumpled
surface U realizing x; is in the convex hull M of N and approximable by boundary
components of the convex hulls M; Since the limit set cannot suddenly increase in
the algebraic limit (p. 9.8), U must be a boundary component.

If x; is not realizable in N, then it must be the ending lamination for some
geometrically infinite tame end F of the covering space of N corresponding to 5},
since we have hypothesized away the possibility that it represents a cusp. In view of
9.2.2 and 9.4.2, the image E; of £ in N — P is a geometrically tame end of N — P,
and m F = 71.S; has finite index in m F;.

In either case, we obtain embeddings in N — P of oriented surfaces S’ finitely
covered by Sjico). We may assume (after an isotopy) that these embeddings are
disjoint, and each surface cuts off (at least) one piece of N — P which is homeomorphic
to the product S x [0, 00). Since (NN, P) is homotopy equivalent to (No, [p), the image
of the cycle Z[Sj[e,oo)v 85’]-[6700)] in (N, P) bounds a chain C' with compact support.
Except in a special case to be treated later, the S} are pairwise non-homotopic and
the fundamental group of each S; maps isomorphically to a unique side in N — P.
C has degree 0 “outside” each S} and degree some constant [ elsewhere. Let N’ be
the region of N — P where C' has degree [. We see that N is geometrically tame, and
homotopy equivalent to N’.

The Euler characteristic is a homotopy invariant, so x(NV) = x(N') = x(No).
This imples y(ON') = x(0Np) (by the formula x(OM?) = 2x(M?)) so in fact the
finite sheeted covering Sjic o) — 5} has only one sheet—it is a homeomorphism.

Let @ be the geometric limit of any subsequence of the IV;. N is a covering space
of (). Every boundary component of the convex hull M of N is the geometric limit
of boundary components of the M;; consequently, M covers the convex hull of Q.
This covering can have only finitely many sheets, since M — P is made of a compact
part together with geometrically infinite tame ends. Any element a € 71 Q) has some
finite power o* € m N [k > 1]. In any torsion-free subgroup of PSL(2,C), an element
has at most one k-th root (by consideration of axes). If we write a as the limit of
elements p;(g;), g; € m Ny, by this remark, g; must be eventually constant so « is
actually in the algebraic limit m N. Q = N, and p; converges strongly to p.
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A cusp-preserving homeomorphism from N to some N;, hence to Ny, can be
constructed by using an approximate isometry of N’ with a submanifold of N; — P;,
for high enough 7. The image of N’ is homotopy equivalent to N;, so the fundamental
group of each boundary component of N’ must map surjectively, as well as injectively,
to the fundamental group of the neighboring component of (N;, P;) — N'. This implies
that the map of N’ into N; extends to a homeomorphism from N to N;.

There is a special case remaining. If any pair of the surfaces S; constructed
in N — P is homotopic, perform all such homotopies. Unless N — P is homotopy
equivalent to a product, the argument continues as before—there is no reason the
cover of S! must be a connected component of Ny — F.

When N — P is homotopy equivalent to the oriented surface S} in it, then by
a standard argument Ny — Py must be homeomorphic to S} x I. This is the case
essentially dealt with in 9.2. The difficulty is to control both ends of N — P—but
the argument of 9.2 shows that the ending or bending laminations of the two ends
of N; — P; cannot converge to the same lamination, otherwise the limit of some
intermediate surface would realize x;. This concludes the proof of 9.6.1a. O

9.7. Realizations of geodesic laminations for surface groups with extra
cusps, with a digression on stereographic coordinates

In order to analyze geometric convergence, and algebraic convergence in more
general cases, we need to clarify our understanding of realizations of geodesic lami-
nations for a discrete faithful representation p of a surface group m(S) when certain
non-peripheral elements of m(S) are parabolic. Let N = N, s be the quotient
three-manifold. Equip S with a complete hyperbolic structure with finite area. As in
§8.11, we may embed S in N, cutting it in two pieces the “top” N, and the “bottom”
N_. Let v, and 7_ be the (possibly empty) cusp loci for N, and N_, and denote by
Sit,...,Sj+ and S, ..., S,_ the components of S —v; and S — v_ (endowed with
complete hyperbolic structures with finite area). Let Ey4,..., E;j; and Ey_, ..., Ej_
denote the ends of N — P, where P is the union of horoball neighborhoods of all
cusps.

A compactly supported lamination on S;; or S;_ defines a lamination on S. In
particular, €(F;+) may be thought of as a lamination on S for each geometrically
infinite tame end of E,4.

PROPOSITION 9.7.1. A lamination v € GL(S) is realizable in N if and only if v
contains no component of v., no component of y_, and no €(E;;) or e(E;_).

PRrROOF. If 7 contains any unrealizable lamination, it is unrealizable, so the ne-
cessity of the condition is immediate.

Thurston — The Geometry and Topology of 3-Manifolds 261



9. ALGEBRAIC CONVERGENCE

Let v € MLy(S) be any unrealizable compactly supported measured lamination.
If v is not connected, at least one of its components is unrealizable, so we need only
consider the case that 7 is connected. If 4 has zero intersection number with any
components of v, or y_, we may cut S along this component, obtaining a simpler
surface S’. Unless v is the component of v, or v_ in question, S’ supports v, so we
pass to the covering space of N corresponding to 7m1S’. The new boundary components
of S" are parabolic, so we have made an inductive reduction of this case.

We may now suppose that + has positive intersection number with each com-
ponent of v, and ~v_. Let {f;} be a sequence of measures, supported on simple
closed curves non-parabolic in N which converges to 7. Let {U;} be a sequence of
uncrumpled surfaces realizing the ;. If U; penetrates far into a component of P
corresponding to an element « in v, or v_, then it has a large ball mapped into P;
by area considerations, this ball on U; must have a short closed loop, which can only
be in the homotopy class of a. Then the ratio

Is(3:)/i(Bi; @) = 1y, (8:)/i(Bi, @)
is large. Therefore (since i(7, «) is positive and lg(7) is finite) the U;, away from their
cusps, remain in a bounded neighborhood of N — P in N. If v, (say) is non-empty,
one can now find a compact subset K of N so that any U, intersecting N, must
intersect K.

N+

C ) e o - S
o= o F—L lN‘

By the proof of 8.8.5, if infinitely many U; intersected K, there would be a convergent
subsequence, contradicting the non-realizability of . The only remaining possibility
is that we have reached, by induction, the case that either N, or N_ has no extra
cusps, and 7 is an ending lamination.

A general lamination v € GL(S) is obtained from a possibly empty lamination
which admits a compactly supported measure by the addition of finitely many non-
compact leaves. (Let § C v be the maximal lamination supporting a positive trans-
verse measure. If [ is any leaf in v — §, each end must come close to § or go to oo
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in .S, otherwise one could enlarge . By area considerations, such leaves are finite in
number.) From §8.10, v is realizable if and only if 0 is. 0

The picture of unrealizable laminations in PLy(.S) is the following. Let A, consist
of all projective classes of transverse measures (allowing degenerate non-trivial cases)
on x+ = vy UUie(E;y). Ay is convex in a coordinate system V. coming from any
train track 7 carrying y..

To see a larger, complete picture, we must find a larger natural coordinate system.
This requires a little stretching of our train tracks and imaginations. In fact, it is
possible to find coordinate systems which are quite large. For any v € PLg, let
A, C PLj denote the set of projective classes of measures on 7.

PROPOSITION 9.7.2. Let v be essentially complete. There is a sequence of train
tracks T;, where 7; is carried by 7,11, such that the union of natural coordinate systems
Sy = U;V,, contains all of PLy — A,.

The proof will be given presently.

Since 7; is carried by 7,41, the inclusion V,, C V, is a projective map (in ML,
the inclusion is linear). Thus S, comes naturally equipped with a projective structure.
We have not made this analysis, but the typical case is that v = A,. We think of S,
as a stereographic coordinate system, based on projection from 7. (You may imagine
PLy as a convex polyhedron in R"™, so that changes of stereographic coordinates
are piecewise projective, although this finite-dimensional picture cannot be strictly
correct, since there is no fixed subdivision sufficient to make all coordinate changes.)

COROLLARY 9.7.3. PLy(S) is homeomorphic to a sphere.
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PROOF THAT 9.7.2 IMPLIES 9.7.3. Let v € PLy(S) be any essentially complete
lamination. Let 7 be any train track carrying 7. Then PLy(S) is the union of two
coordinate systems V, U S;, which are mapped to convex sets in Euclidean space.
If A, # v, nonetheless the complement of A, in V; is homeomorphic to V; — v, so
PL(S) is homeomorphic to the one-point compactification of S.,. U

COROLLARY 9.7.4. When PLy(S) has dimension greater than 1, it does not have
a projective structure. (In other words, the pieces in changes of coordinates have not
been eliminated.)

PrROOF THAT 9.7.3 IMPLIES 9.7.4. The only projective structure on S™, when
n > 1, is the standard one, since S™ is simply connected. The binary relation of
antipodality is natural in this structure. What would be the antipodal lamination
for a simple closed curve a? It is easy to construct a diffeomorphism fixing o but

moving any other given lamination. (If i(y, @) # 0, the Dehn twist around « will
do.) O

REMARK. When PLy(S) is one-dimensional (that is, when S is the punctured
torus or the quadruply punctured sphere), the PIP structure does come from a pro-
jective structure, equivalent to RP!. The natural transformations of PLy(S) are
necessarily integral—in PSLy(Z).

Proor oF 9.7.2. Don’t blink. Let v be essentially complete. For each region R;
of S —~, consider a smaller region r; of the same shape but with finite points, rotated
so its points alternate with cusps of R; and pierce very slightly through the sides of
R;, ending on a leaf of ~.
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By 9.5.4, 9.5.2 and 9.3.9, both ends of each leaf of v are dense in v, so the regions
r; separate leaves of v into arcs. Each region of S — v — U;r; must be a rectangle
with two edges on Jr; and two on -, since r; covers the “interesting” part of R;. (Or,
prove this by area, x). Collapse all rectangles, identifying the r; edges with each
other, and obtain a surface S’ homotopy-equivalent to S, made of U;r;, where Or;
projects to a train track 7. (Equivalently, one may think of S — U;r; as made of very
wide corridors, with the horizontal direction given approximately by 7).

9.65
If we take shrinking sequences of regions r; ; in this manner, we obtain a sequence
of train tracks 7; which obviously have the property that 7; carries 7, when j > k.
Let 7/ € PLy(S) — A, be any lamination not topologically equivalent to . From the
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density in v of ends of leaves of ~, it follows that whenever leaves of v and +' cross,
they cross at an angle. There is a lower bound to this angle. It also follows that
v U~ cuts S into pieces which are compact except for cusps of S.

When R; is an asymptotic triangle, for instance, it contains exactly one region of
S —~ —~" which is a hexagon, and all other regions of S — v —~' are rectangles. For
sufficiently high j, the r;; can be isotoped, without changing the leaves of v which
they touch, into the complement of +'. It follows that +' projects nicely to 7;.

O

Stereographic coordinates give a method of computing and understanding inter-
section number. The transverse measure for v projects to a “tangential” measure v,
on each of the train tracks 7;: i.e., v,(b) is the v-transverse length of the sides of the
rectangle projecting to b.
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It is clear that for any o € ML, which is determined by a measure p, on 7;

9.7.5. i(a,y) = Zua(b) - v,(D).
b

Thus, in the coordinate system V,, in MLy, intersection with v is a linear function.

To make this observation more useful, we can reverse the process of finding a fam-
ily of “transverse” train tracks 7; depending on a lamination . Suppose we are given 9.67
an essentially complete train track 7, and a non-negative function (or “tangential”
measure) v on the branches of b, subject only to the triangle inequalities

a+b—c>0 a+c—b>0 b+c—a>0

whenever a, b and c are the total v-lengths of the sides of any triangle in S — 7. We
shall construct a “train track” 7* dual to 7, where we permit regions of S — 7* to be
bigons as well as ordinary types of admissible regions—Ilet us call 7 a bigon track.

Qumtu |
Pabtured

SP‘“\Q e
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T* is constructed by shrinking each region R; of S — 7 and rotating to obtain a region
R} C R; whose points alternate with points of R;. These points are joined using one
more branch b* crossing each branch b of 7; branches b7 and b} are confluent at a
vertex of R* whenever b; and b, lie on the same side of R. Note that there is a bigon
in S — 7* for each switch in 7.

The tangential measure v for 7 determines a transverse measure defined on the
branches of 7* of the form b*. This extends uniquely to a transverse for 7* when S
is not a punctured torus. 9.68

G=Q,+Qy+ Qq

C=C1+C-)_ Bz‘\j_(a-r('.'l))

C-4la+b—c)

When §'is the punctured torus, then 7 must look like this, up to the homeomorphism
(drawn on the abelian cover of 7' — p):

Note that each side of the punctured bigon is incident to each branch of 7. Therefore,
the tangential measure v has an extension to a transverse measure v* for 7%, which
is unique if we impose the condition that the two sides of R* have equal transverse
measure.
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A transverse measure on a bigon track determines a measured geodesic lamination,
by the reasoning of 8.9.4. When 7 is an essentially complete train track, an open
subset of ML, is determined by a function g on the branches of 7 subject to a

condition for each switch that
> ) => " pb),
bed beO®

where J and O are the sets of “incoming” and “outgoing” branches. Dually, “tangen-
tial” measure v on the branches of 7 determines an element of ML, (via v*), but two
functions v and v/ determine the same element if v is obtained from v/ by a process
of adding a constant to the incoming branches of a switch, and subtracting the same
constant from the outgoing branches—or, in other words, if ¥ — v/ annihilates all
transverse measures for 7 (using the obvious inner product v - u = > v(b)u(d)). In
fact, this operation on v merely has the effect of switching “trains” from one side of
a bigon to the other.

(Some care must be taken to obtain ¢’ from v by a sequence of elementary “switching”
operations without going through negative numbers. We leave this as an exercise to
the reader.)

Given an essentially complete train track 7, we now have two canonical coordinate
systems V. and V* in MLy or PLy. If v € V. and v* € V* are defined by measures
o and v« on 7, then i(vy,~*) is given by the inner product

i(7,77) = Y iy () (0):

ber
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To see this, consider the universal cover of S. By an Euler characteristic or area
argument, no path on 7 can intersect a path on 7* more than once. This implies the
formula when v and +/ are simple geodesics, hence, by continuity, for all measured
geodesic laminations.

PROPOSITION 9.7.4. Formula 9.7.3 holds for ally € V. and v* € V*. Intersection
number is a bilinear function on V. x V* (in MLy ). O

This can be interpreted as a more intrinsic justification for the linear structure
on the coordinate systems V,—the linear structure can be reconstructed from the
embedding of V; in the dual space of the vector space with basis 7* € V*.

COROLLARY 9.7.5. If v, € MLq are not topologically conjugate and if at least
one of them is essentially complete, then there are neighborhoods U and U’ of v and
~" with linear structures in which intersection number is bilinear.

PROOF. Apply 9.7.4 to one of the train tracks 7; constructed in 9.7.2. 0

REMARK. More generally, the only requirement for obtaining this local bilinearity
near v and 4 is that the complementary regions of v U ' are “atomic” and that
S — =~ have no closed non-peripheral curves. To find an appropriate 7, simply burrow
out regions of r;, “transverse” to v with points going between strands of 4/, so the
regions r; cut all leaves of v into arcs. Then collapse to a train track carrying 7’ and
“transverse” to 7y, as in 9.7.2.

What is the image of R™ of stereographic coordinates .S, for MLy (S)? To under-
stand this, consider a system of train tracks

TL —> Ty —> " —> T —> -

defining S,. A “transverse” measure for 7; pushes forward to a “transverse” measure
for 7;, for j > ¢. If we drop the restriction that the measure on 7; is non-negative,
still it often pushes forward to a positive measure on 7;. The image of S, is the set of
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such arbitrary “transverse” measures on 7; which eventually become positive when
pushed far enough forward.
For 4" € A,, let v,y be a “tangential” measure on 7; defining 7.

PROPOSITION 9.7.6. The image of S, is the set of all “transverse,” not necessarily
positive, measures j1 on 1y such that for all v € Ay, vy - > 0.

(Note that the functions v, - p and v, - p are distinct for 4" # ~".)

In particular, note that if A, = «, the image of stereographic coordinates for ML,
is a half-space, or for PL, the image is R". If A, is a k-simplex, then the image of S,
for PLy is of the form int (A¥) x R, (This image is defined only up to projective
equivalence, until a normalization is made.)

g g Al ko

By, //S/'/Yﬁ
/> N

PROOF. The condition that v, - u > 0 is clearly necessary: intersection number
i(y,7") for v/ € A,, 4" € S, is bilinear and given by the formula

i) = vy .

Consider any transverse measure p on 7, such that p is always non-positive when
pushed forward to 7;. Let b; be a branch of 7; such that the push-forward of y is non-
positive on b;. This branch b;, for high 7, comes from a very long and thin rectangle
pi- There is a standard construction for a transverse measure coming from a limit
of the average transverse counting measures of one of the sides of p;. To make this
more concrete, one can map p; in a natural way to 77 for j <.

(In general, whenever an essentially complete train track 7 carries a train track
o, then ¢* carries 7*

o—T
o — T
To see this, embed ¢ in a narrow corridor around 7, so that branches of 7* do not pass
through switches of 0. Now ¢* is obtained by squeezing all intersections of branches
of 7" with a single branch of ¢ to a single point, and then eliminating any bigons
contained in a single region of S — o.)
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On 77, p; is a finite but very long path. The average number of times p; tranverses
a branch of 77 gives a function v; which almost satisfies the switch condition, but not

quite. Passing to a limit point of {;} one obtains a “transverse” measure v for 77,
whose lamination topologically equals 7, since it comes from a transverse measure on
77, for all 7. Clearly v - p < 0, since v; comes frm a function supported on a single
branch b of 7, and u(b;) < 0. O

For v € MLy let Z, C ML, consist of 4/ such that i(y,~") = 0. Let C, consist
of laminations 4’ not intersecting =, i.e., such that support of 4 is disjoint from the
support of 7. An arbitrary element of Z, is an element of C,, together with some
measure on . The same symbols will be used to denote the images of these sets in

PLo(S).

PROPOSITION 9.7.6. The intersection of Z., with any of the canonical coordinate
systems X containing v is convex. (In MLy or PLy.)

Proor. It suffices to give the proof in ML,. First consider the case that v is
a simple closed curve and X = V., for some train track 7 carrying . Pass to the
cylindrical covering space C' of S with fundamental group generated by . The path
of v on C'is embedded in the train track 7 covering 7. From a “transverse” measure
m on 7, construct corridors on C' with a metric giving them the proper widths.
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7
%{j’lﬁh

- H’ ’

For any subinterval I of «, let nxr(/) and nxl(/) be (respectively) the net right
hand exiting and the net left hand exiting in the corresponding to I; in computing
this, we weight entrances negatively. (We have chosen some orientation for 7). Let
i(I) be the initial width of I, and f(I) be the final width.

If the measure m comes from an element 7/, then 7' € Z, if and only if there is no
“traffic” entering the corridor of v on one side and exiting on the other. This implies
the inequalities

i(I) > nxI(1)

and

i(I) > nxr(I)

for all subintervals I.

1&{*«:&?'} enlered on
, ov rlgh{'
hcjl:ﬂ” :

Y.
. [4 < Q
______ (3 r— iy iy {'mf-ﬁ'& S &\ofcec‘ To
gl‘ @ § entey \'\'3‘\'{'} e,m‘f IG'H'.
9.76
It also implies the equation
nxl(y) =0,

Thurston — The Geometry and Topology of 3-Manifolds 273



9. ALGEBRAIC CONVERGENCE

so that any traffic travelling once around the corridor returns to its inital position.
(Otherwise, this traffic would spiral around to the left or right, and be inexorably
forced off on the side opposite to its entrance.)

Conversely, if these inequalities hold, then there is some trajectory going clear
around the corridor and closing up. To see this, begin with any cross-section of
the corridor. Let x be the supremum of points whose trajectories exit on the right.
Follow the trajectory of x as far as possible around the corridor, always staying in
the corridor whenever there is a choice.

The trajectory can never exit on the left—otherwise some trajectory slightly lower
would be forced to enter on the right and exit on the left, or vice versa. Similarly, it
can’t exit on the right. Therefore it continues around until it closes up.

‘_’Fg[_cezl to ex(T left

- e ey
—— N

~

X Fomec’ ’fo ex.('r V‘{Shf‘—@ ’

9.77

Thus when « is a simple closed curve, Z, NV, is defined by linear inequalities, so
it is convex.

Consider now the case X = V, and 7 is connected but not a simple geodesic.
Then ~ is associated with some subsurface M, C S with geodesic boundary defined
to be the minimal convex surface containing . The set C, is the set of laminations
not intersecting int (M,). It is convex in V, since

C, = ﬂ{Za]a is a simple closed curve C int (M,)}.
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A general element ' of Z, is a measure on yU~", so Z,, consists of convex combina-
tions of A, and C,: hence, it is convex.

If v is not connected, then Z, is convex since it is the intersection of {Z., }, where
the v; are the components of ~.

The case X is a stereographic coordinate system follows immediately. When
X =V, consider any essentially complete v € V.. From 9.7.5 it follows that V* is
linearly embedded in S,. (Or more directly, construct a train track (without bigons)
carrying 7*; or, apply the preceding proof to bigon track 7*.) O]

REMARK. Note that when 7 is a union of simple closed curves, C, in PLy(5) is
homeomorphic to PLy(S — 7), regarded as a complete surface with finite area—i.e., 9.78
C, is a sphere. When v has no component which is a simple closed curve, C, is
convex. Topologically, it is the join of PLy(S — |JS,) with the simplex of measures
on the boundary components of the S,,, where the S, are subsurfaces associated
with the components ~; of .

Now we are in a position to form an image of the set of unrealizable laminations
for pmS. Let Up C PLy be the union of laminations containing a component of y
and define U_ similarly, so that v is unrealizable if and only if y €e U, UU_. U, is a
union of finitely many convex pieces, and it is contained in a subcomplex of PLy of
codimension at least one. It may be disjoint from U_, or it may intersect U_ in an
interesting way.

EXAMPLE. Let S be the twice punctured torus. From a random essentially com-
plete train track,

X h %, 'V \ex
a+\o+<+x=J+yE /fd’ | A 3-simp A
ga +b+(‘,—\a—.x+\/ 3 1 I : arb+c +X g in pia(-r_ Pi_'u&)
(“ X= d b “V.Pﬂ, P:L. a cl
ey abre | e N | [T
A C b
' -'_‘\ &

we compute that ML, has dimension 4, so PLg is homeomorphic to S®. For any
simple closed curve o on S, C,, is PLy(S — «),

)
Q) D —E&a ()

where S — « is either a punctured torus union a (trivial) thrice punctured sphere, or
a 4-times punctured sphere. In either case, C, is a circle, so Z, is a disk.

9.79
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Here are some sketches of what U, and U— can look like.

Here is another example, where S is a surface of genus 2, and U (S)UU_(S) has
the homotopy type of a circle (although its closure is contractible):

9.80

In fact, Uy UU_ is made up of convex sets Z, — C, with relations of inclusion as
diagrammed:
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P

T= -
== =
B b | X

S TF 2 N @ =
G—E})

The closures all contain the element «; hence the closure of the union is starlike:

9.9. Ergodicity of the geodesic flow
We will prove a theorem of Sullivan (1979): There is no §9.8

THEOREM 9.9.1. Let M™ be a complete hyperbolic manifold (of not necessarily
finite volume). Then these four conditions are equivalent:

(a) The series
Z exp(—(n - 1) d(xoﬁiﬂo))
yeETLM™
diverges. (Here, xog € H™ is an arbitrary point, yxq is the image of xo under
a covering transformation, and d(, ) is hyperbolic distance).

(b) The geodesic flow is not dissipative. (A flow ¢y on a measure space (X, )
is dissipative if there exists a measurable set A C X and a T > 0 such that
(AN @(A)) =0 fort >T, and X = Ueya).)

(¢) The geodesic flow on Ty(M) is recurrent. (A flow ¢, on a measure space
(X, ) is recurrent when for every measure set A C X of positive measure
and every T' > 0 there is a t > T such that (AN ¢(A)) > 0.)

(d) The geodesic flow on T1(M) is ergodic.

Note that in the case M has finite volume, recurrence of the geodesic flow is
immediate (from the Poincaré recurrence lemma). The ergodicity of the geodesic
flow in this case was proved by Eberhard Hopf, in ??. The idea of (¢) — (d) goes
back to Hopf, and has been developed more generally in the theory of Anosov flows
77. 9.9-2
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COROLLARY 9.9.2. If the geodesic flow is not ergodic, there is a non-constant
bounded superharmonic function on M.

PROOF OF 9.9.2. Consider the Green’s function g(x) = f;(i o) SINAITE AL for
hyperbolic space. (This is a harmonic function which blows up at zy.) By (a), the
series Zy@rl v 9 © 7 converges to a function, invariant by 7, which projects to a
Green’s function G for M. The function f = arctan G (where arctanoco = 7/2 ) is a
bounded superharmonic function, since arctan is convex. O

REMARK. The convergence of the series (a) is actually equivalent to the existence
of a Green’s function on M, and also equivalent to the existence of a bounded super-
harmonic function. See (Ahlfors, Sario) for the case n = 2, and [ | for the general
case.

COROLLARY 9.9.3. IfT' is a geometrically tame Kleinian group, the geodesic flow
on Ty(H™/T") is ergodic if and only if Ly = S*.

PrRoOOF oF 9.9.3. From 9.9.2 and &8.12.3. O

PRrROOF OF 9.9.1. Sullivan’s proof of 9.9.1 makes use of the theory of Brownian
motion on M™. This approach is conceptually simple, but takes a certain amount
of technical background (or faith). Our proof will be phrased directly in terms of
geodesics, but a basic underlying idea is that a geodesic behaves like a random
path: its future is “nearly” independent of its past.

Fdes

(d) — (c). This is a general fact. If a flow ¢; is not recurrent, there is some set A
of positive measure such that only for ¢ in some bounded interval is p(AN@(A)) > 0.
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Then for any subset B C A of small enough measure, Uy¢;(B) is an invariant subset
which is proper, since its intersection with A is proper.

(¢) — (b). Immediate.

(b) — (a). Let B be any ball in H", and consider its orbit I'B where I' = m M.
For the series of (a) to diverge means precisely that the total apparent area of I'G' as
seen from a point zo € H", (measured with multiplicity) is infinite.

In general, the underlying space of a flow is decomposed into two measurable
parts, X = DU R, where ¢, is dissipative on D (the union of all subsets of X which
eventually do not return) and recurrent on R. The reader may check this elementary
fact. If the recurrent part of the geodesic flow is non-empty, there is some ball B in
M™ such that a set of positive measure of tangent vectors to points of B give rise to
geodesics that intersect B infinitely often. This clearly implies that the series of (a)
diverges.

The idea of the reverse implication (a) — (b) is this: if the geodesic flow is
dissipative there are points xy such that a positive proportion of the visual sphere
is not covered infinitely often by images of some ball. Then for each “group” of
geodesics that return to B, a definite proportion must eventually escape I' B, because
future and past are nearly independent. The series of (a) can be regrouped as a
geometric progression, so it converges. We now make this more precise.

Recall that the term “visual sphere” at zy is a synonym to the “set of rays”
emanating from zy. It has a metric and a measure obtained from its identification
with the unit sphere in the tangent space at xg.

Let xg € M™ be any point and B C M™ any ball. If a positive proportion of the
rays emanating from x, pass infinitely often through B, then for a slightly larger ball
B’, a definite proportion of the rays emanating from any point z € M™ spend an
infinite amount of time in B’, since the rays through x are parallel to rays through
xo. Consequently, a subset of T7(B’) of positive measure consists of vectors whose
geodesics spend an infinite total time in 77(B’); by the Poincaré recurrence lemma,
the set of such vectors is a recurrent set for the geodesic flow. (b) holds so (a) — (b)
is valid in this case. To prove (a) — (b), it remains to consider the case that almost
every ray from z, eventually escapes B; we will prove that (a) fails, i.e., the series of
(a) converges.

Replace B by a slightly smaller ball. Now almost every ray from almost every
point x € M eventually escapes the ball. Equivalently, we have a ball B C H" such
that for every point x € H", almost no geodesic through x intersects I' B, or even
['(N.(B)), more than a finite number of times.

Let xg be the center of B and let a be the infimum, for y € H", of the diameter
of the set of rays from xy which are parallel to rays from y which intersect B. This
infimum is positive, and very rapidly approached as y moves away from x.
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Let R be large enough so that for every ball of diameter greater than « in the
visual sphere at x(, at most (say) half of the rays in this ball intersect ' N¢(B) at a
distance greater than R from z. R should also be reasonably large in absolute terms
and in comparison to the diameter of B.

Let x¢ be the center of B. Choose a subset I C I' of elements such that: (i) for
every v € I there is a v/ € I with d(v'zo,vz9) < R. (ii) For any 7, and 7, in I",
d(m1z0, Y220) > R.

Any subset of ' maximal with respect to (ii) satisfies (i).

We will show that > ,p exp(—(n — 1) d(xg,y'z0)) converges. Since for any v/
there are a bounded number of elements v € I' so that d(vxg,v'z9) < R, this will
imply that the series of (a) converges.

Let < be the partial ordering on the elements of [ generated by the relation
7 < Y2 when v, B eclipses 7, B (partially or totally) as viewed from xg; extend < to
be transitive.

Let us denote the image of vB in the visual sphere of zy by B,. Note that when
7' < 7, the ratio diam(B,)/ diam(B,) is fairly small, less than 1/10, say. Therefore
Uy <y B, is contained in a ball concentric with B, of radius 10/9 that of B,.

Choose a maximal independent subset A; C I (this means there is no rela-
tion §; < &9 for any 01,02 € Ay ). Do this by successively adjoining any  whose
B, has largest size among elements not less than any previously chosen member.
Note that area (UseaBs)/ area(U,erv B,) is greater than some definite (a priori) con-
stant: (9/10)""! in our example. Inductively define I'y = I, 7/, = I'; — A;4; and
define A,y C I'; similarly to A;. Then IV = U2 A;.

For any v € I, we can compare the set B, of rays through x, which intersect
v(B) to the set C, of parallel rays through v.X.

Any ray of B, which re-enters I"(B) after passing through +/(B), is within € of
the parallel ray of C., by that time. At most half of the rays of C., ever enter N.(I'B).
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The distortion between the visual measure of B, and that of C is modest, so we can
conclude that the set of reentering rays, B, N J B, has measure less than 2/3
the measure of B,.

v <y

We conclude that, for each 4,

area( U Bv) — area ( U Bﬂ,)

Vel 4 Vel

> 1/3 area ( U Bs)

5€Ai+1

>1/3-(9/10)" " area (| B,).

~ery

The sequence {area(lJ, o B,)} decreases geometrically. This sequence dominates
the terms of the series ) . areaUsen, By = Zver’ area(B,), so the latter converges,
which completes the proof of (a) — (b).

(b) — (c). Suppose R C T} (M™) is any recurrent set of positive measure for the
geodesic flow ¢;. Let B be a ball such that R N T (B) has positive measure. Almost
every forward geodesic of a vector in R spends an infinite amount of time in B. Let
A C Ti(B) consist of all vectors whose forward geodesics spend an infinite time in B
and let v;, t > 0, be the measurable flow on A induced from ¢; which takes a point
leaving A immediately back to its next return to A.

Since v, is measure preserving, almost every point of A is in the image of 1, for
all t and an inverse flow 1 _; is defined on almost all of A, so the definition of A is
unchanged under reversal of time. Every geodesic parallel in either direction to a
geodesic in A is also in A; it follows that A = T7(B). By the Poincaré recurrence
lemma, v); is recurrent, hence ¢; is also recurrent.

(¢c) — (d). It is convenient to prove this in the equivalent form, that if the action
of T on S7' x 8" is recurrent, it is ergodic. “Recurrent” in this context means
that for any set A C S"~! x S"~1 of positive measure, there are an infinite number of
elements v € T such that u(yANA) > 0. Let I C S"! x S"~! be any measurable set
invariant by I'. Let —B; and By C S™ ! be small balls. Let us consider what I must
look like near a general point © = (x1,22) € By X By. If 7y is a “large” element of T’
such that vx is near x, then the preimage of v of a product of small e-ball around ~yx;
and vz, is one of two types: it is a thin neighborhood of one of the factors, (z; x Bs)
or (By X x2). (7 must be a translation in one direction or the other along an axis
from approximately z; to approximately x5.) Since I is recurrent, almost every point
x € By x By is the preimage of elements v of both types, of an infinite number of
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points where I has density 0 or 1. Define
f(z1) :/ X1(1, 22) dzo,
Ba

where x; is the characteristic function of I, for x; € By (using a probability measure
on By ). By the above, for almost every x; there are arbitrarily small intervals
around 1 such that the average of f in that interval is either 0 or 1. Therefore f is
a characteristic function, so I N By X By is of the form S x By (up to a set of measure
zero) for some set S C Bj.

Similarly, I is of the form B; x R, so I is either () x () or By x By (up to a set of
measure zero). O
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