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CHAPTER 7

Computation of volume

by J. W. Milnor

7.1. The Lobachevsky function x().

This preliminary section will decribe analytic properties, and conjecture number
theoretic properties, for the function

0
n(f) = —/ log |2 sin u| du.
0
Here is the graph of this function:
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Thus the first derivative a’(0) is equal to —log|2sin 6|, and the second derivative
a”(0) is equal to — cot §. T will call n(6) the Lobachevsky function. (This name is not
quite accurate historically, since Lobachevsky’s formulas for hyperbolic volume were
expressed rather in terms of the function

0
/ log(secu) du = n(0 + w/2) + 0log 2
0
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7. COMPUTATION OF VOLUME

for |#] < m/2. However our function 7(6) is clearly a close relative, and is more
convenient to work with in practice. Compare Clausen [3]). references are

Another close relative of 1(6) is the dilogarithm function at end of chapter

P(z) = i 2"/n*  for |2| <1,
n=1

which has been studied by many authors. (See for example [1], [2], [8], [9], [12], [13].)
Writing

0 = = [ tog(1 = w)dww
(where |w| < 1, the substitution w = eom yields 7.2

log(1 — w) dw/w = (7 — 20 + 2ilog(2sind)) db
for 0 < € < 7, hence
Y(e”) = (1) = —0(r — 0) + 2in(0)

for 0 < 0 < 7. Taking the imaginary part of both sides, this proves the following: 7.3

LEMMA 7.1.2. The Lobacheuvsky function has uniformly convergent Fourier series
expansion

a(f) = %Zsin@n@)/n?

Apparently, we have proved this formula only for the case 0 < 6 < 7. However,
this suffices to show that s(0) = a(7) = 0. Since the derivative

dn(0)/df = —2log | sin 20|
is periodic of period m, this proves the following.

LEMMA 7.1.3. The function 1(0) is itself periodic of period w, and is an odd
function, that is, n(—0) = —u(0).

It follows that the equation in 7.1.2 is actually valid for all values of 6.
The equation 2" — 1 = H;.:é (z —e~27/m) for z = ¥ leads to the trigonometric
identity
n—1
2sinnu = H 2sin(u + jm/n).
=0
Integrating the logarithm of both sides and multiplying by n, this yields the following
for n > 1, and hence for all n.
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7.1. THE LOBACHEVSKY FUNCTION J1(0).

LEMMA 7.1.4. The identity
n(nb) = > na(d+ jr/n)
jmodn
is valid for any integer n # 0. (Compare [14].)

Here the sum is to be taken over all residue classes modulo |n|. Thus for n = 2
we get

1(20) = 1(0) + n(0 + 7/2),

D=

or equivalently
t1(20) = n(0) — n(w/2 - 6).

As an example, for § = 7/6:
Sn(r/3) = n(m/6).

(It is interesting to note that the function s(f) attains its maximum,
a(m/6) = .5074. ..,

at 0 = /6.)
It would abe interesting to know whether there are any other such linear relations
between various values of s1(#) with rational coefficients. Here is an explicit guess.

CONJECTURE (A). Restricting attention to angles 6 which are rational multiples

of 7, every rational linear relation between the real numbers s(f) is a consequence of
7.1.3 and 7.1.4.

(If we consider the larger class consisting of all angles # for which e is algebraic
then it definitely is possible to give other @-linear relations. Compare [4].)
A different but completely equivalent formulation is the following.

CONJECTURE (B). Fixing some denominator N > 3, the real numbers x(7j/N)
with j relatively prime to N and 0 < j < N/2 are linearly independent over the
rationals.

These numbers span a rational vector space vy, conjectured to have dimension
¢(N)/2, where it is easy to check that vy C vy whenever N divides M. Quite likely
the elements x(7j/N) with 1 < j < ¢(N)/2 would provide an alternative basis for
this vector space.

I have tested these conjectures to the following extent. A brief computer search
has failed to discover any other linear relations with small integer coefficients for
small values of N.
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7. COMPUTATION OF VOLUME

To conclude this section, here is a remark about computation. The Fourier series
7.1.2 converges rather slowly. In order to get actual numerical values for n(0), it is
much better to work with the series

n(6) = 9(1 — log |26 +;%%>

which is obtained by twice integrating the usual Laurent series expansion for the
cotangent of f. Here

Bi=1 B,=1

- 6’ 300"
are Bernoulli numbers. This series converges for |#| = 7, and hence converges rea-
sonably well for |0] < 7/2.

7.2

Having discussed the Lobachevsky function, we will see how it arises in the com-
putation of hyperbolic volumes. The first case is the ideal simplex, i.e., a tetrahedron
whose vertices are at oo and whose edges are geodesics which converge to the vertices
at 0o. Such a simplex is determined by the dihedral angles formed between pairs of
faces. The simplex intersects any small horosphere based at a vertex in a triangle
whose interior angles are precisely the three dihedral angles along the edges meeting
at that vertex. Since a horosphere is isometric to a Euclidean plane, the sum of the
dihedral angles at an infinite vertex equals 27. It follows by an easy computation
that the dihedral angles of opposite edges are equal.

Call the three dihedral angles determining the simplex «, (3,7 and denote the
simplex by ¥, 3. The main result of this section is:

THEOREM 7.2.1. The volume of the simplex equals n(a) + 71(B) + n(7).

a,Byy

In order to prove this theorem a preliminary computation is necessary. Consider
the simplex S, g pictured below, with three right dihedral angles and three other
dihedral angles «, (3, v and suppose that one vertex is at infinity. (Thus a4+ = 7/2.)
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7.2

It turns out that any simplex can be divided by barycentric subdivision into simplices
with three right angles so this is a natural object to consider. The decomposition of
Zm 5 18 demonstrated below, but first a computation, due to Lobachevsky.

LEMMA 7.2.2. The volume of So x/2—a~ equals [n(a+7y)+m(a—7)+2x(r/2—a)].

Proor. Consider the upper half-space model of H?, and put the infinite vertex
of Sar/2—a at 00. The edges meeting that vertex are just vertical lines. Further-
more, assume that the base triangle lies on the unithemisphere (which is a hyper-
bolic plane) Recall that the line element for the hyperbolic metric in this model is
ds® = dw+‘++d” so that the volume element is dV = %. Projecting the base tri-
angle to the (z,y) plane produces a Euclidean triangle T' with angles a,, 7/2 — o, /2, 7.8

which we may take to be the locus 0 < x < cosv,0 <y < ztana, with v as above.

REMARK. This projection of the unit hemisphere gives Klein’s projective model
for H2. The angles between lines are not their hyperbolic angles; rather, they are the
dihedral angles of corresponding planes in H?3.

Now it is necessary to compute

(). / // dxdgdz'
z,yeT 2> 1 172 y?2 z

Integrating with respect to z gives

dx dy
2). .
) v | [t
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7. COMPUTATION OF VOLUME

Setting a = v/1 — x2, we have 7.9

cos 7y xtan o dy cosy T a+ xtan «
V:/ d:v/ ﬁ:/ <_10g—)
o 0 2(a? — y?2) 0 4a a— rtan o
_/COS”Y dml 2(acosa + rsina)
—Jo 4a 2(acosa — xsina)

(3).

If we set « = cosf, then a = v/1 — 22 =sin6 and % = —df. Then (3) becomes

1 [ 2sin(6 + «)
— = [ —dglog( 2T
v 4/,r/2 °g<2sin(9—a))

~ Laty ) = sy — ) = (/24 ) + (/2 — ).

(4).

Since n(y) —a) = —a(a — ) and x(7/2 + a) = —u(n/2 — «) by 7.1.3, this is the
desired formula. O

Suppose that two vertices are at infinity in S, r/2—a. Then a = ~. The lemma
above implies that volume

(Sar/2-aa) = 1[1(20) + 20(7/2 — a)].
By lemmas 7.1.3 and 7.1.4
n(r/2—a)=-na(r/2+a) and n1(20) =2(x(a) + n(a+ 7/2))
so that

(5). Volume (Sg.x/2-a,a) = %n(a).

To see how 3 5
upper half-space model of H3. Put one vertex at the point at infinity and the base 7.10
on the unit sphere. Drop the perpendicular from oo to the sphere and draw the
perpendiculars from the intersection point x on the base to each of the three edges
on the base. Connect x to the remaining three vertices. Taking the infinite cone on
the lines in the base gives the decomposition. (See (A) below.) Projecting onto the
(x,y) plane gives a triangle inscribed in the unit circle with x projected into its center.
Figure (B) describes the case when x is in the interior of the base (which happens
when «, 3,7 < 7/2). Not that the pairs of triangles which share a perpendicular are
similar triangles. It follows that the angles around x are as described.

decomposes into simplices of the above type, consider the
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7.2

Each sub-simplex has two infinite vertices and three dihedral angles of 7/2 so
that they are of the type considered above. Thus

Volume (Y ) =2(3a(y) + 3a(8) + ().
By

In the case when z is not in the interior of the base triangle, Y, 5, can still be
thought of as the sum of six simplices each with three right dihedral angles. However,
some of the simplices must be considered to have negative volume. The interested
reader may supply the details, using the picture below.
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7. COMPUTATION OF VOLUME

EXAMPLE. The complement of the figure-eight knot was constructed in 3.1 by
gluing two copies of ¥, /3 +/3.»/3. Thus its volume is 6x(7/3) = 2.02988.. . ..

REMARK. It is not hard to see that the (7/3,7/3, 7/3) simplex has volume greater
than any other three-dimensional simplex. A simplex with maximal volume must
have its vertices at infinity since volume can always be increased by pushing a finite
vertex out towards infinity. To maximize V = s(a) + 1(5) + u(7y) subject to the
restraint a+ [+~ = 0 we must have a'(a)) = /() = a'(y) which implies easily that
a = 3 =~ = r/3. (The non-differentiability of n(a) at @ = 0 causes no trouble,
since V' tends to zero when «, 3 or 7 tends to zero.)

Theorem 7.2.1 generalizes to a formula for the volume of a figure which is an
infinite cone on a planar n-gon with all vertices at infinity. Let the dihedral angles
formed by the triangular faces with the base plane be (a,...,q,) and denote the
figure with these angles by X, .-
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7.3
THEOREM 7.2.3. (i) Y i, a; = 7. (ii) Volume (Zq,,  a,) = Dy 1().

PRroOOF. The proof is by induction. The case n = 3 is Theorem 1. Suppose the
theorem to be true for n = k — 1. It suffices to prove it for n = k.

Consider the base k-gon for X, . ,, and divide it into a k — 1-gon and a triangle.
Take the infinite cone on each of these two figures. If the new dihedral angle on the
triangle side is (3, the new angle on the k — 1-gon side in @ — 3. By the induction

hypothesis
2 n
(Zai>—|—ﬁ:7r and(Zai)—l—ﬂ—ﬁ:W.

i=1 i=3
Part (i) follows by adding the two equations. Similarly by the induction hypothesis,

Vol(Za,.a0.8) = (gn(&i)) + a1(3)

and .
Vol(Xus....onn—p) = <Z n(ozi)) + a(m — f).
i=3
Part (ii) follows easily since sn(m — 3) = —a(f3). O

ExAMPLE. The complement of the Whitehead link was constructed from a regular
ideal octahedron which in turn, is formed by gluing two copies of the infinite cone
on a regular planar quadrilateral. Thus its volume equals 8a(7w/4) = 3.66386.. ..
Similarly, the complement of the Borromean rings has volume 165(7w/4) = 7.32772. ..
since it is obtained by gluing two ideal octahedra together.

7.3

It is difficult to find a general pattern for constructing manifolds by gluing in-
finite tetrahedra together. A simpler method would be to reflect in the sides of a
tetrahedron to form a discrete subgroup of the isometries of H3. Unfortunately this
method yields few examples since the dihedral angles must be of the form 7 /a, a € Z
in order that the reflection group be discrete with the tetrahedron as fundamental
domain. The only cases when the sum of the angles is m are X /2 x/4.x /45 Xr/3,7/3,7/3
and X, /3 x/3,x/6 corresponding to the three Euclidean triangle groups.

Here is a construction for polyhedra in H3 due to Thurston. Take a planar regular
n-gon with vertices at infinity on each of two distinct planes in H?® and join the
corresponding vertices on the two figures by geodesics. If this is done in a symmetric
way the sides are planer rectangles meeting each other at angle # and meeting the
bases at angle . Denote the resulting polyhedra by N, g. Note that 2a + 3 = 7
since two edges of an n-gon and a vertical edge form a Euclidean triangle at infinity.
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7. COMPUTATION OF VOLUME

VA \

In order to compute the volume of N, g consider it in the upper half-space model
of H?. Subdivide N, s into n congruent sectors S, 3 by dividing the two n-gons into n
congruent triangles and joining them be geodesics. Call the lower and upper triangles
of So 3, Th and T; respectively. Consider the infinite cones C} and Cy on 17 and T5.
They have the same volume since they are isometric by a Euclidean expansion. Hence
the volume of S, s is equal to the volume of Q) = (S, 3U Cy) — C4.

—c,n¢,

4

M

-~
0 S e

Evidently () is an infinite cone on a quadrilateral. To find its volume it is necessary
to compute the dihedral angles at the edges of the base. The angles along the sides
are g The angle at the front face is a + v where ~ is the angle between the front
face and the top plane of N, g. Consider the infinite cone on the top n-gon of N, g.
By (1) of Theorem 7.2.3 the angles along its base are m/n. Thus v = 7/n and the

front angle is o + 7/n. Similarly the back angle is o — 7/n.
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By (2) of Theorem 7.2.3 we have
(6). Vol(Nag) = nVol(Q) = n(2n(8/2) + n(a + 7 /n) + n(a — 7/n)).

If a and ( are of the form 7 /a, a € Z then the group generated by the reflections
in the sides of N, 5 form a discrete group of isometries of H®. Take a subgroup
' which is torsion free and orientation preserving. The quotient space H3/T is an
oriented, hyperbolic three-manifold with finite volume.

Since 2a + [ = m the only choices for (a, 3) are (7/3,7/3) and (7,4,7/2). As
long as n > 4 both of these can be realized since 3 varies continuously from 0 to
n — 2/n as the distance between the two base planes of N, g varies from 0 to oco.
Thus we have the following:

THEOREM 7.3.1. There are an infinite number of oriented three-manifolds whose
volume is a finite rational sum of n(0) for 6’s commensurable with .

7.4

We will now discuss an arithmetic method for constructing hyperbolic three-
manifolds with finite volume. The construction and computation of volume go back
to Bianchi and Humbert. (See [5], [7], [10].) The idea is to consider Og4, the ring
of integers in an imaginary quadratic field, Q(v/—d), where d > 1 is a square-free
integer. Then PSL(2,0,) is a discrete subgroup of PSL(2,C). Let I" be a torsion free
subgroup of finite index in PSL(2,04). Since PSL(2,C) is the group of orientation
preserving isometries of H3, H? /T is an oriented hyperbolic three-manifold. It always
has finite volume.

EXAMPLE. Let Z[i] be the ring of Gaussian integers. A fundamental domain
for the action of PSL(2,Z[i]) has finite volume. Different choices of I" give different
manifolds; e.g., there is a T’ of index 12 such that H?/T is diffeomorphic to the
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7. COMPUTATION OF VOLUME

complement of the Whitehead link; another I' of index 24 leads to the complement
of the Borromean rings. (N. Wielenbert, preprint).

EXAMPLE. In case d = 3, Q4 is Z]w] where w = %TS and there is a sub-

group I' C PSL(2, Z|w]) of index 12 such that H3/T is diffeomorphic to the comple-
ment of the figure-eight knot. (R. Riley, [11]). In order to calculate the volume of

H?/PSL(2,0,4) in general we recall the following definitions. Define the discriminant, 7.8
D, of the extension Q(v/—d) to be

_ {d if d = 3(mod4),
4d  otherwise.

If Oy is considered as a lattice in T, then v/D/2 is the area of T/O4 . The Dedekind

(-function for a field K is defined to be

(k(S) = Z 1/N(a)®  where

a runs through all ideals in O and N(a) = |O/a| denotes the norm of {(.5) is also
equal to

taking all prime ideals of 3.

THEOREM 7.4.1 (Essentially due to Humbert).

Vol(H®/PSL(2,04)) = 2 oy (2)/¢a(2).

This volume can be expressed in terms of Lobachevsky’s function using Hecke’s
formula
=)

Cov=a(8)/C(S) = Z TRt

Here (ﬁ) is the quadratic symbol where we use the conventions:

(i) If n =p1,...,ps, p; prime then (%) = (;—f)) (;—f) e (‘p—?).
(i) If p| D then (=) = 0; (P) = +1.
(iii) for p an odd prime

—D\ _ [ +1 if =D = X?*(modp) for some X,
P —1 if not.
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—D\ _ [+1 if =D =1(mod38),
p ) | -1 if =D =5(mod8).
(Note that —D # 3 (mod 4) by definition.)

The function n +— (%) is equal to 1/4/—D times its Fourier transform;* i.e.,

> () —vn(2)

kmod D

(iv) For p=2

Multiplying by 1/n? and summing over n > 0 we get

(2). > 1/n? Z (_D) omikn/D _ \/_Z

n>0 n>0

For fixed k the imaginary part of the left side is just the Fourier series for 2:x(7k/D).
Since the right side is pure imaginary we have:

(3). 22( >7rk/D \/_Z< )1/71

kmod D n>0

Multiplying by D/24 and using Hecke’s formula leads to

(4). D/12 ) ( ) (nk/D) = Vol(H*/ PSL(2,04)).

kmod D

EXAMPLE. In the case d = 3, 7.4.4 implies that the volume of H?/(PSL(2, Z[w])
is +(n(m/3) — n(27/3)) = $n(w/3). Recall that the complement of the figure-eight
knot S?® — K is diffeomorphic to H3/T" where I' had index 12 in PSL(2, Z[w]). Thus it
has volume 6ui(7/3). This agrees with the volume computed by thinking of S® —

as two copies of X /3 73 x/3 tetrahedra glued together.

Similarly the volumes for the complements of the Whitehead link and the Bor-
romean rings can be computed using 7.4.4. The answers agree with those computed
geometrically in 7.2.

This algebraic construction also furnishes an infinite number of hyperbolic man-
ifolds with volumes equal to rational, finite linear combinations of n (a rational
multiple of 7). Note that Conjectures (A) and (B) would imply that any rational
relation between the volumes of these manifolds could occur at most as a result of
common factors of the integers, d, defining the quadratic fields. In fact, quite likely
they would imply that there are no such rational relations.

*Compare Hecke, Vorlesangen iiber algebr. Zahlen, p. 241. 1T am grateful to A. Adler for help
on this point.
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