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CHAPTER 6

Gromov’s invariant and the volume of a hyperbolic manifold

6.1. Gromov’s invariant

Let X be any topological space. Denote the real singular chain complex of X by
Cy(k). (Recall that C(X) is the vector space with a basis consisting of all continuous
maps of the standard simplex A into X.) Any k-chain ¢ can be written uniquely as
a linear combination of the basis elements. Define the norm ||¢|| of ¢ to be the sum
of the absolute values of its coefficients,

6.1.1. ||| = Z ;| where ¢ = Zaiai, o AF — X,

Gromov’s norm on the real singular homology (really it is only a pseudo-norm) is
obtained from this norm on cycles by passing to homology: if a € Hy(X;R) is any
homology class, then the norm of « is defined to be the infimum of the norms of
cycles representing a,

DEFINITION 6.1.2 (First definition).
||| = inf {]|z]| | z is a singular cycle representing ac}.

It is immediate that
oo+ 8] <l + 18]

and for A € R,

Il < Al el
If f: X — Y is any continuous map, it is also immediate that
6.1.2. [ fecell < [lev]]-

In fact, for any cycle Y a;0; representing «, the cycle > a;f o o; represents f.a,
and || > a;f ooyl = > |ai| < [|D] aio4|. (It may happen that foo; = foo;; even
when o; # 0;.) Thus | f.a|| < inf|la;f o 0;]| < ||af|. In particular, the norm of the
fundamental class of a closed oriented manifold M gives a characteristic number of M,
Gromov’s invariant of M, satisfying the inequality that for any map f : M; — Ms,

6.1.3. | [Mi] ]| = | deg f || [Ma] |-

What is not immediate from the definition is the existence of any non-trivial
examples where || [M] || # 0.
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6. GROMOV’S INVARIANT AND THE VOLUME OF A HYPERBOLIC MANIFOLD

ExAMPLE. The n-sphere n > 1 admits maps f : S™ — 5™ of degree 2 (and
higher). As a consequence of 6.1.2 ||[S"]|| = 0. More explicitly, one may picture a
sequence {z;} representing the fundamental class of S*, where z; is (})o; and o; wraps
a 1-simplex i times around S*. Since ||z]| = 1, || [S']]| = 0.

As a trivial example, || [S?]] = 2.

Consider now the case of a complete hyperbolic manifold M™. Any k 4+ 1 points
Vg, ...,V IN M" = H™ determine a straight k-simplex oy, ., : AF — H" whose
image is the convex hull of vy,...,vx. There are various ways to define canonical
parametrizations for o, ., ; here is an explicit one. Consider the quadratic form
model for H™ (§2.5). In this model, v, ..., v become points in R™™ so they deter-
mine an affine simplex «. [In barycentric coordinates, a(to,...,tx) = >_ t;v;. This
parametrization is natural with respect to affine maps of R"™!]. The central projec-
tion from O of @ back to one sheet of hyperboloid @ = z+---+22 —z2 | = —1 gives
a parametrized straight simplex o, ., in H", natural with respect to isometries of
H™.

k

Any singular simplex 7 : A¥ — M can be lifted to a singular simplex 7 in
M = H", since A¥ is simply connected. Let straight (7) be the straight simplex with
the same vertices as 7 and let straight(7) be the projection of 7 back to M. Since the
straightening operation is natural, straight(7) does not depend on the lift 7. Straight
extends linearly to a chain map

straight : C.(M) — C.(M),

chain homotopic to the identity. (The chain homotopy is constructed from a canon-
ical homotopy of each simplex 7 to straight(7).) It is clear that for any chain c,
|| straight (¢)|| < ||c||. Hence, in the computation of the norm of a homology class in
M , it suffices to consider only straight simplices.

PROPOSITION 6.1.4. There is a finite supremum vy to the k-dimensional volume
of a straight k-simplex in hyperbolic space H™ provided k # 1.
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6.1. GROMOV’S INVARIANT

ProoF. It suffices to consider ideal simplices with all vertices on S, since any
finite simplex fits inside one of these. For k& = 2, there is only one ideal simplex up to
isometry. We have seen that 2 copies of the ideal triangle fit inside a compact surface
(§3.9). Thus it has finite volume, which equals 7 by the Gauss-Bonnet theorem.
When k = 3, there is an efficient formula for the computation of the volume of an
ideal 3-simplex; see Milnor’s discussion of volumes in chapter 7. The volume of such
simplices attains its unique maximum at the regular ideal simplex, which has all
angles equal to 60°. Thus we have the values

vy = 3.1415926 ... = 7
vy = 1.0149416 . . .

It is conjectured that in general, vy is the volume of the regular ideal k-simplex; if so,
Milnor has computations for more values, and a good asymptotic formula as k — oo.
In lieu of a proof of this conjecture, an upper bound can be obtained for vy from the
inductive estimate

6.1.6. Vg <

6.1.5.

Uk—1

E—1

To prove this, consider any ideal k-simplex ¢ in H*. Arrange ¢ so that one of its
vertices is the point at oo in the upper half-space model, so that o looks like a
triangular chimney lying above a k — 1 face o¢ of o.

Let dWP* be the Euclidean volume element, so hyperbolic volume is dV* =
(3-)*dW*. Let 7 denote the projection of og to E"~', and let h(z) denote the
Euclidean height of oy above the point x € 7. The volume of o is

v(a):// tF dt a1
T Jh
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6. GROMOV’S INVARIANT AND THE VOLUME OF A HYPERBOLIC MANIFOLD

(where dW*~1 is the Euclidean k — 1 volume element for 7). Integrating, we obtain

(k—1)v(o) = / h k=D gkt
The volume of oy is obtained by a similar integral, where dW*~! is replaced by
the Euclidean volume element for ¢, which is never smaller than dW*~!. We have
(k—1)v(o) < v(og) < vg—1. O

We are now ready to find non-trivial examples for Gromov’s invariant:

COROLLARY 6.1.7. Fvery closed oriented hyperbolic manifold M™ of dimension
n > 1 satisfies the inequality
v(M)

Un

M| >
PROOF. Let Q be the hyperbolic volume form for M, so that [,, Q = v(M). If
z =) z;0; is any straight cycle representing [M], then

U(M):/MQ:ZZZ»/M i<y Jal v

Dividing by v,,, we obtain ||z|| > v(M)/v,. The infimum over all such z gives 6.1.7 [

A similar proof shows that the norm of element 0 # o € Hy(M,R) where k # 1
is non-zero. Instead of {2, use an k-form w representing some multiple Ao such that
w has Riemannian norm < 1 at each point of M. (In fact, w need only satisfy the
inequality w(V') < 1 where V' is a simple k-vector of Riemannian norm 1.) Then the
inequality ||a|| > A/ is obtained.

Intuitively, Gromov’s norm measures the efficiency with which multiples of a
homology class can be represented by simplices. A complicated homology class needs
many simplices.

Gromov proved the remarkable theorem that the inequality of 6.1.7 is actually
equality. Instead of proving this, we will take the alternate approach to Gromov’s
theorem developed in [Milnor and Thurston, “Characteristic numbers for three-
manifolds”], of changing the definition of || || to one which is technically easier to
work with. It can be shown that past and future definitions are equivalent. However,
we have no further use for the first definition, 6.1.2, so henceforth we shall simply
abandon it.

For any manifold M, let C1(A*, M) denote the space of maps of A* to M, with
the C! topology. We define a new notion of chains, where a k-chain is a Borel
measure p on C1(AK M) with compact support and bounded total variation. [The
total variation of a measure y is ||u| = sup{ [fdu||f] < 1}. Alternately, 1 can be
decomposed into a positive and negative part, 4 = p4 — p— where py and p_ are
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6.1. GROMOV’S INVARIANT

positive. Then ||| = [ dps + [ dp-—]. Let the group of k-chains be denoted Cy(M).
There is amap 0 : Cx(M) — Cx_1 (M), defined in an obvious way. It is not difficult to
prove that the homology obtained by using these chains is the standard homology for
M:; see [Milnor and Thurston, “Characteristic numbers for three-manifolds”| for more
details. (Note that integration of a k-form over an element of Cj (M) is defined; this
gives a map from C, (M) to currents on M. Some condition such as compact support
for p is necessary; otherwise one would have pathological cycles such as Z(%)Qai,
where o; wraps A! i times around S'. The measure has total variation > (+)? < oo,
yet the cycle would seem to represent the infinite multiple Y (1)[S'] of [S'].)

DEFINITION 6.1.8 (Second definition). i Let o € H*(M;R), where M is a mani-
fold. Gromov’s norm ||a| is defined to be

||| = inf{||ul| | € C*(M) represents a}.

THEOREM 6.2 (Gromov). Let M"™ be any closed oriented hyperbolic manifold.

Then A
=)

Un

PRrOOF. The proof of corollary 6.1.7 works equally well with the new definition
as with the old. The point is that the straightening operation is completely uniform,
so it works with measure-cycles. What remains is to prove that || [M] || < v(M) /vy,
or in other words, the fundamental cycle of M can be represented efficiently by a
cycle using simplices which have (on the average) nearly maximal volume.

Let o be any singular k-simplex in H™. A chain smeary/ (o) € Cr(M) can
be constructed, which is a measure supported on all isometric maps of ¢ into M,
weighted uniformly. With more notation, let A denote Haar measure on the group
of orientation-preserving isometries of H", Isom, (H™). Let h be normalized so that
the measure of the set of isometries taking a point z € H" to a region R C H" is
the volume of R. Haar measure on Isom, (H") is invariant under both right and left
multiplication, so it descends to a measure (also denoted h) on the quotient space
P(M) =m M\ Isom(H™).

There is a map from P(M) to C'(A*, M), which associates to a coset m My the
singular simplex powoo, where p : H" — M is the covering projection. The measure
h pushes forward to give a chain smeary/ (o) € C,(M). Since h is invariant on both
sides, smear); (o) depends only on the isometry class of 0. Smearing extends linearly
to Cr(H™). Furthermore, smear); Oc = 0 smear) c.

Let o0 now be any straight simplex in H", and o_ a reflected copy of . Then
%smearM(U — 0_)) is a cycle, since the faces of o and o_ cancel out in pairs, up to
isometries. We have

|3 smeary (o — o_)|| = v(M).

Thurston — The Geometry and Topology of 3-Manifolds 127

6.8



6. GROMOV’S INVARIANT AND THE VOLUME OF A HYPERBOLIC MANIFOLD

The homology class of this cycle can be computed by integration of the hyperbolic
form € from M. The integral over each copy of o is v(c), so the total integral is
v(M)v(o). Thus, the cycle represents

5 smear (o — 0_)] = v(c)[M]
so that
[o(o) [M] || < v(M).
Dividing by v(¢) and taking the infimum over o, we obtain 6.2. U

COROLLARY 6.2.1. If f : My — My is any map between closed oriented hyperbolic
n-manifolds, then

v(My) > | deg flv(My).

Gromov’s theorem can be generalized to any (G, X )-manifold, where G acts tran-
sitively on X with compact isotropy groups.

To do this, choose an invariant Riemannian metric for X and normalize Haar
measure on G as before. The smearing operation works equally well, so that one has
a chain map

smeary; : Cp(X) — Cx(M).

In fact, if NV is a second (G, X)-manifold, one has a chain map
smeary s - Gk(N) — (i’k(M),

defined first on simplices in N via a lift to X, and then extended linearly to all of
Cr(N). If z is any cycle representing [N], then smeary p/(z) represents

(v(N)/v(M))[M].
This gives the inequality

NI o [HEM ]

o(N) — o(M)
Interchanging M and N, we obtain the reverse inequality, so we have proved the
following result:

THEOREM 6.2.2. For any pair (G, X), where G acts transitively on X with com-
pact isotropy groups and for any invariant volume form on X, there is a constant C'
such that every closed oriented (G, X)-manifold M satisfies

1M = Co(M),
(where v(M) is the volume of M). O
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6.3. GROMOV’S PROOF OF MOSTOW’S THEOREM

This line may be pursued still further. In a hyperbolic manifold a smeared k-cycle
is homologically trivial except in dimension k£ = 0 or £ = n, but this is not generally
true for other (G, X )-manifolds when G does not act transitively on the frame bundle
of X. The invariant cohomology HE(X) is defined to be the cohomology of the cochain
complex of differential forms on X invariant by G. If « is any invariant cohomology
class for X, it defines a cohomology class ay; on any (G, X )-manifold M. Let PD(~)
denote the Poincaré dual of a cohomology class ~.

THEOREM 6.2.3. There is a norm || || in H:(X) such that for any closed oriented
(G, X)-manifold M,
[PD () || = v(M)]|ov]].

PrROOF. It is an exercise to show that the map
smeary a : Ho (M) — H. (M)

is a retraction of the homology of M to the Poincaré dual of the image in M of
H}(X). The rest of the proof is another exercise. O

In these variations, 6.2.2 and 6.2.3, on Gromov’s theorem, there does not seem
to be any general relation between the proportionality constants and the maximal 6.11
volume of simplices. However, the inequality 6.1.7 readily generalizes to any case
when X possesses and invariant Riemannian metric of non-positive curvature.

6.3. Gromov’s proof of Mostow’s Theorem

Gromov gave a very quick proof of Mostow’s theorem for hyperbolic three-manifolds,
based on 6.2. The proof would work for hyperbolic n-manifolds if it were known that
the regular ideal n-simplex were the unique simplex of maximal volume. The proof This is now known to
goes as follows. be true.

LEMMA 6.3.1. If My and My are homotopy equivalent, closed, oriented hyperbolic
manifolds, then v(M;) = v(Ms).

Proor. This follows immediately by applying 6.2 to the homotopy equivalence
M1 — Mz. |:|

Let fi1: M7 — M, be a hoznotopy equivalence and let fl : Ml — Mg be a lift of
f1. From 5.9.5 we know that f; extends continuously to the sphere S™ 1.

LEMMA 6.3.2. If n = 3, f takes every 4-tuple of vertices of a positively oriented
reqular ideal simplex to the vertices of a positively oriented regqular ideal simplez.
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6. GROMOV’S INVARIANT AND THE VOLUME OF A HYPERBOLIC MANIFOLD

PROOF. Suppose the contrary. Then there is a regular ideal simplex o such that
the volume of the simplex straight( fla) spanned by the image of its vertices is v3 — €,
with € > 0. There are neighborhoods of the vertices of o in the disk such that for any
simplex o’ with vertices in these neighborhoods, v(straight(fla’)) < w3 —€/2. Then
for every finite simplex o, very near to o, this means that a definite Haar measure
of the isometric copies ¢’ of o near ¢’ have v(straight(fla(’))) < vy —€/2. Such a
simplex oy, can be found with volume arbitrarily near v3. But then the “total volume”
of the cycle z = & smear(of, — o) strictly exceeds the total volume of straight(f,z),

2
contradicting 6.3.1. 0

To complete the proof of Mostow’s theorem in dimension 3, consider any ideal
regular simplex o together with all images of ¢ coming from repeated reflections in
the faces of 0. The set of vertices of all these images of ¢ is a dense subset of SZ.
Once f; is known on three of the vertices of ¢, it is determined on this dense set of
points by 6.3.2, so f; must be a fractional linear transformation of S2 | conjugating
the action of 71 M; to the action of 1 My. This completes Gromov’s proof of Mostow’s
theorem. U

In this proof, the fact that f; is a homotopy equivalence was used to show (a) that
v(M;) = v(M,) and (b) that fi extends to a map of S%. With more effort, the proof
can be made to work with only assumption (a):

THEOREM 6.4 (Strict version of Gromov’s theorem). Let f : My — My be any map
of degree # 0 between closed oriented hyperbolic three-manifolds such that Gromov’s
inequality 6.2.1 is equality, i.e.,

v(M,) = | deg f|v(Ma).

Then f is homotopic to a map which is a local isometry. If |degf| = 1, f is a
homotopy equivalence and otherwise it is homotopic to a covering map.

PROOF. The first step in the proof is to show that a lift f of f to the universal
covering spaces extends to S%. Since the information in the hypothesis of 6.4 has
to do with volume, not topology, we will know at first only that this extension is a
measurable map of S% . Then, the proof of Section 6.3 will be adapted to the current
situation.

The proof works most smoothly if we have good information about the asymptotic
behavior of volumes of simplices. Let o be a regular simplex in H? all of whose edge
lengths are F.

THEOREM 6.4.1. The volume of og differs from the maximal volume vs by a
quantity which decreases exponentially with E.
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6.3. GROMOV’S PROOF OF MOSTOW’S THEOREM

PRroor. Construct copies of simplices o centered at a point zy € H® by drawing
the four rays from a point zy through the vertices of an ideal regular simplex o
centered at xy5. The simplex whose vertices are on these rays, a distance D from z,
is isometric to og for some E. Let C' be the distance from x( to any face of this
simplex. The derivative dv(og)/dD is less than the area of Jog times the maximal
normal velocity of a face of og. If o is the angle between such a face and the ray
through x4, we have

dU(U E)
dD
From the hyperbolic law of sines (2.6.16) sin &« = sinh C'/ sinh D, showing that dv(o;)/dD
decreases exponentially with D (since sinh C' is bounded). The corresponding state-
ment for E follows since asymptotically, £ ~ 2D + constant. O

< 27 sin a.

6.14

LEMMA 6.4.2. Any simplex with volume close to vs has all dihedral angles close
to 60°.

PROOF. Such a simplex is properly contained in an ideal simplex with any two
face planes the same, so with one common dihedral angle. 6.4.2 follows form 777 [

LEMMA 6.4.3. There is some constant C' such that for every simplex o with volume
near vs and for any angle 8 on a face of o,

v3 —v(o) > CB%

PRroOF. If the vertex v has a face angle of 3, first enlarge o so that the other
three vertices are at oo, without changing a neighborhood of v. Now prolong one of
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the edges through v to S, and push v out along this edge. The new spike added
to o beyond v has thickness at v estimated by a linear function of § (from 2.6.12),
so its volume is estimated by a quadratic function of 3. (This uses the fact that a
cross-section of the spike is approximately an equilateral triangle.) O

LEMMA 6.4.4. For every point xo in My, and almost every ray r through o, fi(r)
converges to a point on SZ .

PROOF. Let 29 € H?, and let 7 be some ray emanating from xy. Let the simplex
o; (with all edges having length i) be placed with a vertex at xy and with one edge
on r, and let 7; be a simplex agreeing with o; in a neighborhood of xy but with the
edge on r lengthened, to have length 7 + 1.

~ o e —..,_»,,}.
r

The volume of o; and 7; D o; deviate from the supremal value by an amount
¢; decreasing exponentially with ¢, so smeary,, 7, and smeary;, o; are very efficient
cycles representing a multiple of [M;]. Since v(M;) = |deg f|v(Ms), the cycles
straight f. smear,;, 0; and straight f, smeary;, 7, must also be very efficient. In other
words, for all but a set of measure at most v(Mj)e; /vs of simplices o in smear o; (or
near smear 7;), the simplex straight fo must have volume > v3 — ¢;.

Let B be a ball around zg which embeds in M;. The chains smearg o; and
smearp 7; correspond to the measure for smear,; o; and smear,; 7; restricted to those
singular simplices with the first vertex in the image of B in M;. Thus for all but a
set of measure at most (2v(Mi)/vs) > i, € of isometries I with take xo to B, all
simplices I(0;) and I(7;) for all 4 > iy are mapped to simplices straight f smearg o
with volume > vy —¢;. By 6.4.3, the sum of all face angles of the image simplices
is a geometically convergent series. It follows that for all but a set of small measure
of rays r emanating from points in B, f(r) converges to a point on S%; in fact, by
letting 79 — o0, it follows that for almost every ray r emanating from points in B,
f(r) converges. Then there must be a point #’ in B such that for almost every ray r
emanating from 2/, f (r) converges. Since each ray emanating from a point in H? is
asymptotic to some ray emanating from ', this holds for rays through all points in

H3. U
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6.3. GROMOV’S PROOF OF MOSTOW’S THEOREM

REMARK. This measurable extension of f to S2 actually exists under very general
circumstances, with no assumption on the volume of M; and M;. The idea is that if
g is a geodesic in M, f (g) behaves like a random walk on M,. Almost every random
walk in hyperbolic space converges to a point on S™!. (Moral: always carry a map
when you are in hyperbolic space!)

LEMMA 6.4.5. The measurable extension of f to S2 carries the vertices of almost
every positively oriented ideal reqular simplex to the wvertices of another positively
oriented ideal regular simplex.

PRroor. Consider a point zo in H? and a ball B about 2y which embeds in M,
as before. Let o; be centered at xy. As before, for almost all isometries I which take
xo to B, the sequence {straight folo 0;} has volume converging to vs, and all four
vertices converging to SZ .

If for almost all I these four vertices converge to distinct points, we are done.
Otherwise, there is a set of positive measure of ideal regular simplices such that the
image of the vertex set of ¢ is degenerate: either all four vertices are mapped to the
same point, or three are mapped to one point and the fourth to an arbitrary point.
We will show this is absurd. If the degenerate cases occur

with positive measure, there is some pair of points vy and vy with f(ve) = f(v1)
such that for almost all regular ideal simplices spanned by vy, v1, v2, v3, either f (vg) =
f(vo) or f(vs) = f(vy). Thus, there is a set A of positive measure with f(A) a single
point. Almost every regular ideal simplex with two vertices in A has one other vertex
in A. It is easy to conclude that A must be the entire sphere. (One method is to use
ergodicity as in the proof of 6.4 which will follow.) The image point f(A) is invariant
under covering transformations of M;. This implies that the image of m M; in m Mo
has a fixed point on S, which is absurd. U

We resume the proof of 6.4 here. It follows from 6.4.5 that there is a vertex vy such
that for almost all regular ideal simplices spanned by vy, v, v2, v3, the image vertices
span a regular ideal simplex. Arrange vy and f (vg) to be the point at infinity in the
upper half-space model. Three other points v, v, v3 span a regular ideal simplex
with vy if and only if they span an equilateral triangle in the plane, £?. By changing
coordinates, we may assume that f maps vertices of almost all equilateral triangles
parallel to the x-axis to the vertices of an equilateral triangle in the plane. In complex
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notation, let w = v/—1, so that 0,1,w span an equilateral triangle. For almost all
z € C, the entire countable set of triangles spanned by vertices of the form z 4 27 %n,
2+ 27 +1), 24+ 27%(n +w), for k,n € Z, are mapped to equilateral triangles.

R
Then the map f must take the form
f(z +27%(n + mw)) = g(2) + h(2) - 27%(n + mw), k,n,m € Z,

for almost all z. The function h is invariant a.e. by the dense group 7' of translations
of the form 2z +— 2+ 27%(n+mw). This group is ergodic, so h is constant a.e. Similar
reasoning now shows that ¢ is constant a.e., so that f is essentially a fractional linear
transformation on the sphere S%. Since f oTy =Tf.q0 f, this shows that m M; is
conjugate, in Isom(H?), to a subgroup of m; Ms. O

6.5. Manifolds with Boundary

There is an obvious way to extend Gromov’s invariant to manifolds with boundary,
as follows. If M is a manifold and A C M a submanifold, the relative chain group
Cr(M,A) is defined to be the quotient Cx(M)/Cr(A). The norm on Cr(M) goes
over to a norm on Ci(M, A): the norm ||u|| of an element of Cr(M, A) is the total
variation of u restricted to the set of singular simplices that do not lie in A. The
norm ||| of a homology class v € Hy(M, A) is defined, as before, to be the infimal
norm of relative cycles representing . Gromov’s invariant of a compact, oriented
manifold with boundary (M, M) is ||[M, dM]||, where [M, dM] denotes the relative
fundamental cycle.

There is a second interesting definition which makes sense in an important special
case. For concreteness, we shall deal only with the case of three-manifold whose
boundary consists of tori. For such a manifold M, define

| [M,0M] ||o = lin%inf{HzH |z straight [M,OM] and ||0Z| < a}.

Observe that 0z represents the fundamental cycle of M, so that a necessary condi-
tion for this definition to make sense is that || [0M] | = 0. This is true in the present
situation that OM consists of tori, since the torus admits self-maps of degree > 1.
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Then ||(M,0M)||o is the limit of a non-decreasing sequence, so to insure the existence
of the limit we need only find an upper bound. This involves a special property of
the torus.

PROPOSITION 6.5.1. There is a constant K such that z s any homologically trivial
cycle in Co(T?), then z bounds a chain ¢ with ||c| < K||z||.

PROOF. Triangulate T2 (say, with two “triangles” and a single vertex). Partition
T? into disjoint contractible neighborhoods of the vertices. Consider first the case
that no simplices in the support of z have large diameter. Then there is a chain
homotopy of z to its simplicial approximation a(z).

The chain homotopy has a norm which is a bounded multiple of the norm of
z. Since simplicial singular chains form a finite dimensional vector space, a(z) is
homologous to zero by a homology whose norm is a bounded multiple of the norm
of a(z). This gives the desired result when the simplices of z are not large. In the
general case, pass to a very large cover T2 of T2. For any finite sheeted covering
space p : M — M there is a canonical chain map, transfer: C,(M) — €,(M). The
transfer of a singular simplex is simply the average of its lifts to M; this extends in
an obvious way to measures on singular simplices. Clearly p o transfer = id, and
|| transfer c|| = ||c||. If z is any cycle on T?, then for a sufficiently large finite cover
T2 of T2, the transfer of z to T2 = T2 has no large 2-simplices in its support. Then
transfer z is the boundary of a chain ¢ with ||c|]| < K||z|| for some fixed K. The
projection of ¢ back to the base space completes the proof. 0

We now have upper bounds for ||[M,9M]||o. In fact, let z be any cycle repre-
senting [M,0M], and let € be any cycle representing [0M]. By piecing together z
with a homology from 0z to e given by 6.5.1, we find a cycle 2’ representing [M, 0M|
with ||| < ||z]] + K(]|0z] + |le]|). Passing to the limit as ||¢[| — 0, we find that
[ [M, OM] || < [|z]| + K10z

The usefulness of the definition of || [M,dM] ||y arises from the easy
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PROPOSITION 6.5.2. Let (M,0M) be a compact oriented three-manifold, not nec-
essarily connected, with OM consisting of tori. Suppose (N,ON) is an oriented man-
ifold obtained by gluing together certain pairs of boundary components of M. Then

1N, ONTllo < [ [M, 0M] o

COROLLARY 6.5.3. If (S,05) is any Seifert fiber space, then
115, 05T llo = IS, 0511 = 0.
(The case 0S = ¢ is included.)

PRrROOF OF COROLLARY. If S is a circle bundle over a connected surface M with
non-empty boundary, then S (or a double cover of it, if the fibers are not oriented) is
M x S*. Since it covers itself non-trivially its norm (in either sense) is 0. If S is a circle
bundle over a closed surface M, it is obtained by identification of (M — D?) x S!
with D? x S, so its norm is also zero. If S is a Seifert fibration, it is obtained
by identifying solid torus neighborhoods of the singular fibers with the complement
which is a fibration. 0

PROOF OF 6.5.2. A cycle z representing [M,dM] with [|0z]] < € goes over to a
chain on [N, ON], which can be corrected to be a cycle 2’ with ||z||" < ||z|| + Ke. O

If M is a complete oriented hyperbolic mani_fold with finite total volume, recall
that M is the interior of a compact manifold M with boundary consisting of tori.
Both || [M,0M] || and || [M,0M] ||o can be computed in this case:

LEMMA 6.5.4 (Relative version of Gromov’s Theorem). If M is a complete ori-
ented hyperbolic three-manifold with finite volume, then

o(M)

U3

I[A, 0M]llo = [|[M,0M] || =

PROOF. Let 0 be a 3-simplex whose volume is nearly the maximal value, v3. Then
smear); o is a measure on singular cycles with non-compact support. Restrict this
measure to simplices not contained in Mg, and project to M ) by a retraction
of M to M ). Since the volume of M is small for small €, this gives a relative
fundamental cycle 2’ for

(M[e,oo)7 aM[E,OO)) = (M, aM)
with ||2/]| ~ %]f) and with [|0Z’|| small. This proves that

v(M)

> || [M, 0M] lo-
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There is an immediate inequality
| [M,0M] lo > || [M,0M]||.

To complete the proof, we will show that || [M,dM] || > v(M)/vs. This is done by a
straightening operation, as in 6.1.7. For this, note that if ¢ is any simplex lying in
Mg, then straight(c) also lies in M, since Mg is convex. Hence we obtain a
chain map

straight : C,(M, M,q) — C.(M, Mq),

chain homotopic to the identity, and not increasing norms. As in 6.1.7, this gives the
inequality

V(Moo
V1M, Mo || 2 2 ie0)

U3

Since for small € there is a chain isomorphism between €, (M, Mo ) and €y (M, M)
which is a || ||-isometry, this proves 6.5.4. O

Here is an inequality which enables one to compute Gromov’s invariant for much
more general three-manifolds:

THEOREM 6.5.5. Suppose M is a closed oriented three-manifold and H C M is a
three-dimensional submanifold with a complete hyperbolic structure of finite volume.
Suppose H is embedded in M and that OH is incompressible. Then
v(H)

U3

M =

REMARK. Of course, the hypothesis that OH is incompressible is necessary; oth-
erwise M might be S2. If H were not hyperbolic, further hypotheses would be needed
to obtain an inequality. Consider, for instance, the product M, x I where M, is a
surface of genus g > 1. Then || [M,] || = 2v(M,)/7m =4 |x(M,)|, so

1M > 1, 0(My x DI = [ IM] || = 4 [x(M,)]

On the other hand, one can identify the boundary of this manifold to obtain M, x S,

which has norm 0. The boundary can also be identified to obtain hyperbolic manifolds
(see §4.6, or § ). Since finite covers of arbitrarily high degree and with arbitrarily
high norm can also be obtained by gluing the boundary of the same manifold, no
useful inequality is obtained in either direction.

PROOF. Since this is a digression, we give only a sketch of a proof.
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non - kypﬂ'b&“ﬁ

kYFC‘ bﬂ{‘c —\

Stra »'q htfz P ﬂ\e AyPﬁ?{bﬁlm
N = CCS o a.

ﬁ;mp\& #m

O

With 6.5.5 combined with 6.5.2, one can compute Gromov’s invariant for any
manifold which is obtained from Seifert fiber spaces and complete hyperbolic mani-
folds of finite volume by identifying along incompressible tori.

The strict and relative versions of Gromov’s theorems may be combined; here is
the most interesting case:

THEOREM 6.5.6. Suppose My is a complete hyperbolic manifold of finite volume
and that My # M is a complete hyperbolic manifold obtained topologically by replac-
ing certain cusps of My by solid tori. Then v(My) > v(Ms).

PrROOF. No new ideas are needed. Consider some map f : M; — My which

collpases certain components of M; (0.q 1O short geodesics in Ms. Now apply the proof
of 6.4. O

6.6. Ordinals

Closed oriented surfaces can be arranged very neatly in a single sequence,

g o) K= 0 K- A= -4

in terms of their Euler characteristic. What happens when we arrange all hyper-
bolic three-manifolds in terms of their volume? From Jgrgensen’s theorem, 5.12 it
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follows that the set of volumes is a closed subset of R,. Furthermore, by combining
Jorgensen’s theorem with the relative version of Gromov’s theorem, 6.5.4, we obtain

COROLLARY 6.6.1. The set of volumes of hyperbolic three-manifolds is well-ordered.

PRrROOF. Let v(M;) > v(Ms) > ... > v(M) > ... be any non-ascending sequence
of volumes. By Jorgensen’s theorem, by passage to a subsequence we may assume that
the sequence {M;} converges geometrically to a manifold M, with v(M) < limv(M;).
By 6.5.2, eventually || [M] |lo < || [M] ||, so 6.5.4 implies that the sequence of volumes

is eventually constant. 0
6.26

COROLLARY 6.6.2. The volume is a finite-to-one function of hyperbolic manifolds.

ProOF. Use the proof of 6.6.1, but apply the strict inequality 6.5.6 in place of
6.5.2, to show that a convergent sequence of manifolds with non-increasing volume
must be eventually constant. 0

In view of these results, the volumes of complete hyperbolic manifolds are indexed
by countable ordinals. In other words, there is a smallest volume v;, a next smallest
volume vy, and so forth. This sequence v; < v9 < v3 < --- < v, < --- has a limit
point v, which is the smallest volume of a complete hyperbolic manifold with one
cusp. The next smallest manifold with one cusp has volume wvy,. It is a limit of
manifolds with volumes v 11, Vyio, - .., Upsk, --.. The first volume of a manifold
with two cusps is v,2, and so forth. (See the discussion on pp. 5.59-5.60, as well
as Theorem 6.5.6.) The set of all volumes has order type w”. These volumes are
indexed by the ordinals less than w*, which are represented by polynomials in w.
Each volume of a manifold with k cusps is indexed by an ordinal of the form a - w¥,
(where the product « - 3 is the ordinal corresponding to the order type obtained by
replacing each element of o with a copy of 3). There are examples where « is a limit
ordinal. These can be constructed from coverings of link complements. For instance,
the Whitehead link complement has two distinct 2-fold covers; one has two cusps and
the other has three, so the common volume corresponds to an ordinal divisible by
w?. T do not know any examples of closed manifolds corresponding to limit ordinals.

It would be very interesting if a computer study could determine some of the low
volumes, such as vy, v, v,,v,2. It seems plausible that some of these might come
from Dehn surgery on the Borromean rings.

There is some constant C' such that every manifold with k& cusps has volume
> (C'-k. This follows from the analysis in 5.11.2: the number of boundary components
of M ) is bounded by the number of disjoint €/2 balls which can fit in M. It would
be interesting to calculate or estimate the best constant C.
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COROLLARY 6.6.3. The set of values of Gromov’s invariant || []||o on the class
of connected manifolds obtained from Seifert fiber spaces and complete hyperbolic
manifolds of finite volume by identifying along incompressible tori is a closed well-
ordered subset of RT, with order type w®.

We shall see later (§ ) that this class contains all Haken manifolds with toral
boundaries.

PrOOF. Extend the volume function to v(M) = vz - || [M]]|lo when M is not
hyperbolic. From 6.5.5 and 6.5.2, we know that every value of v is a finite sum of
volumes of hyperbolic manifolds. Suppose {w;} is a bounded sequence of values of
v. Express each w; as the sum of volumes of hyperbolic pieces of a manifold M; with
v(M); = w;. The number of terms is bounded, since there is a lower bound to the
volume of a hyperbolic manifold, so we may pass to an infinite subsequence where
the number of terms in this expression is constant. Since every infinite sequence of
ordinals has an infinite non-decreasing subsequence, we may pass to a subsequence
of w;’s where all terms in these expressions are non-decreasing. This proves that
the set of values of v is well-ordered. Furthermore, our subsequence has a limit
W = Vg, + -+ V,,, which is expressed as a sum of limits of non-decreasing sequences
of volumes. Each v, is the volume of a hyperbolic manifold M; with at least as many
cusps as the limiting number of cusps of the corresponding hyperbolic piece of M;.
Therefore, the ]\7[]-’5 may be glued together to obtain a manifold M with v(M) = w.
This shows the set of values of v is closed. The fact that the order type is w“ can
be deduced easily by showing that every value of v is not in the k-th derived set, for
some integer k; in fact, k < v/C, where C' is the constant just discussed. ([l

6.7. Commensurability

DEFINITION 6.7.1. If I'y and I'y are two discrete subgroups of isometries of H",
then T'; is commensurable with T'y if T'; is conjugate (in the group of isometries of
H™) to a group I"] such that I'' NI’y has finite index in I} and in T's.

DEFINITION 6.7.2. Two mapifolds M; and My are commensurable if they have
finited sheeted covers M; and M, which are homeomorphic.

Commensurability in either sense is an equivalence relation, as the reader may
easily verify.

ExAMPLE 6.7.3. If W is the Whitehead link and B is the Borromean rings, then
S3 — W has a four-sheeted cover homeomorphic with a two sheeted cover of S® — B:
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! ;
homeo mor()l\ 1c

P! 7\ N\

¥=3.66286

The homeomorphism involves cutting along a disk, twisting 360° and gluing back.

Thus S3 — W and S® — B are commensurable. One can see that m(S® — W) and

71(S% — B) are commensruable as discrete subgroups of PSL(2, C) by considering the

tiling of H? by regular ideal octahedra. Both groups preserve this tiling, so they are

contained in the full group of symmetries of the octahedral tiling, with finite index.
Therefore, they intersect each other with finite index.

71 (S® — B) C Symmetries (octahedral tiling) D 71 (S® — W)
7T1(SS — B) D) 7T1(53 — B) ﬂﬂ'1<53 - W) C 7T1<SB - W)

WARNING. Two groups I['; and I'y can be commensurable, and yet not be conju-
gate to subgroups of finite index in a single group.

PROPOSITION 6.7.3. If My is a complete hyperbolic manifold with finite volume
and My is commensurable with My, then My is homotopy equivalent to a complete
hyperbolic manifold.

ProoOF. This is a corollary of Mostow’s theorem. Under the hypotheses, Ms has
a finite cover M3 which is hyperbolic. M3 has a finite cover M, which is a regular
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cover of Ms, so that m;(M,) is a normal subgroup of m(Ms). Consider the action
of m1(Ms) on m1(My) by conjugation. m (M) has a trivial center, so in other words
the action of m(My) on itself is effective. Then for every o € m;(My), since some
power of oF is in m (M), a must conjugate 7 (M) non-trivially. Thus my(Ms) is
isomorphic to a group of automorphisms of 71(My), so by Mostow’s theorem it is a
discrete group of isometries of H". 0

In the three-dimensional case, it seems likely that M; would actually be hyper-
bolic. Waldhausen proved that two Haken manifolds which are homotopy equivalent
are homeomorphic, so this would follow whenever M; is Haken. There are some sorts
of properties of three-manifolds which do not change under passage to a finite-sheeted
cover. For this reason (and for its own sake) it would be interesting to have a better
understanding of the commensurability relation among three-manifolds. This is diffi-
cult to approach from a purely topological point of view, but there is a great deal of
information about commensurability given by a hyperbolic structure. For instance,
in the case of a complete non-compact

hyperbolic three-manifold M of finite volume, each cusp gives a canonical Eu-
clidean structure on a torus, well-defined up to similarity. A convenient invariant
for this structure is obtained by arranging M so that the cusp is the point at oo
in the upper half space model and one generator of the fundamental group of the
cusp is a translation z — 2z + 1. A second generator is then z — z + a. The set
of complex numbers «; ... corresponding to various cusps is an invariant of the
commensurability class of M well-defined up to the equivalence relation

no; +m
QG ~ —,
po; +q

where

n,m,pq € Z, ’n "

0.
p q‘#

(n,m,p and ¢ depend on 7).

142 Thurston — The Geometry and Topology of 3-Manifolds

6.31



6.7. COMMENSURABILITY

ao+d

modulus = =533 3
In particular, if o ~ (3, then they generate the same fields Q(«) = Q(f3).

Note that these invariants «; are always algebraic numbers, in view of

PROPOSITION 6.7.4. If T is a discrete subgroup of PSL(2,C) such that H*/T has
finite volume, then I" is conjugate to a group of matrices whose entries are algebraic.

ProoF. This is another easy consequence of Mostow’s theorem. Conjugate I' so
that some arbitrary element is a diagonal matrix

w0

0 put
and some other element is upper triangular,

A

0 A tH|°
The component of I' in the algebraic variety of representations of I' having this form
is 0-dimensional, by Mostow’s theorem, so all entries are algebraic numbers. 0

One can ask the more subtle question, whether all entries can be made algebraic
integers. Hyman Bass has proved the following remarkable result regarding this
question:

THEOREM 6.7.5 (Bass). Let M be a complete hyperbolic three-manifold of finite
volume. Then either m (M) is conjugate to a subgroup of PSL(2,0), where O is
the ring of algebraic integers, or M contains a closed incompressible surface (not
homotopic to a cusp).
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The proof is out of place here, so we omit it. See Bass. As an example, very few
knot complements seem to contain non-trivial closed incompressible surfaces. The
property that a finitely generated group I' is conjugate to a subgroup of PSL(2, 0)
is equivalent to the property that the additive group of matrices generated by I’
is finitely generated. It is also equivalent to the property that the trace of every
element of I' is an algebraic integer. It is easy to see from this that every group
commensurable with a subgroup of PSL(2,0) is itself conjugate to a subgroup of
PSL(2,0). (If Try™ = a is an algebraic integer, then an eigenvalue A\ of ~ satisfies
A — A" + 1 =0. Hence \, \™! and Try = A + A\~! are algebraic integers).

If two manifolds are commensurable, then their volumes have a rational ratio.
We shall see examples in the next section of incommensurable manifolds with equal
volume.

QUESTIONS 6.7.6. Does every commensurability class of discrete subgroups of
PSL(2, C) have a finite collection of maximal groups (up to isomorphism)?

Is the set of volumes of three-manifolds in a given commensurability class a dis-
crete set, consisting of multiples of some number V{7

6.8. Some Examples

ExAMPLE 6.8.1. Consider the k-link chain C} pictured below:

QT

Co

\/\‘

If each link of the chain is spanned by a disk in the simplest way, the complement of
the resulting complex is an open solid torus.
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S3 — (), is obtained from a solid torus, with the cell division below on its boundary,

by deleting the vertices and identifying.

’

meridion

’ 6.35

To construct a hyperbolic structure for S* — Cj, cut the solid torus into two drums.
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Let P be a regular k-gon in H? with all vertices on S2 . If P’ is a copy of P obtained
by displacing P along the perpendicular to P through its center, then P’ and P can
be joined to obtain a regular hyperbolic drum. The height of P’ must be adjusted
so that the reflection through the diagonal of a rectangular side of the drum is an
isometry of the drum. If we subdivide the drum into 2k pieces as shown,

6.36

the condition is that there are horospheres about the ideal vertices tangent to three
faces. Placing the ideal vertex at oo in upper half-space, we have a figure bounded
by three vertical Euclidean planes and three Euclidean hemispheres of equal radius r.
Here is a view from above:
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>

Y

From this figure, we can compute the dihedral angles a and  of the drum to be

Q. = arc COS(

cosT/k

V2

), 0 =m—2a.

Two copies of the drum with these angles can now be glued together to give a hyper-
bolic structure on S%—Cj. (Note that the total angle around an edge is 4a+23 = 2.
Since the horospheres about vertices are matched up by the gluing maps, we obtain
a complete hyperbolic manifold).

From Milnor’s formula (6), p. 7.15, for the volume, we can compute some values.

—_
O O Utk WD R

(S48
e}

200
1000
8000

U(Ss — Ck)
0
2.33349
10.14942
14.60306
18.83169
22.91609
34.691601
182.579859
732.673784

3663.84264
29310.8990

o0

U(S3 — Ck)/k’

0
1.77782
2.53735
2.92061
3.13861
3.27373
3.4691601
3.65159719
3.66336892
3.66384264
3.66386238
3.66386238
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Note that the quotient space (S® — C})/Z; by the rotational symmetry of Cy is
obtained by generalized Dehn surgery on the White head link W, so the limit of 6.38
v(Cy)/k as k — oo is the volume of S — .

Note also that whenever k divides [, then there is a degree é map from S? — C;
to S? — Cf. This implies that v(S® — C))/l > v(S® — C)/k. In fact, from the table
it is clear that these numbers are strictly increasing with k.

The cases k£ = 3 and 4 have particular interest.

EXAMPLE 6.8.2. The volume of S® — C3 per cusp has a particularly low value
(1.7778). The holonomy of the hyperbolic structure can be described by

Cy  v= 53049
w = 1]
H(B) = :1—+aa 1fa]
H(C) = :_1a ﬂ

where o = _1+T\m Thus (X3 — C3) is a subgroup of PSL(2,0;) where Oy is the
ring of integers in Qv/—d. See §7.4. Referring to Humbert’s formula 7.4.1, we find
v(H?3/PSL(2,07) = .8889149. . ., so m;(S® — C3) has index 6 in this group.

EXAMPLE 6.8.3. When k = 4, the rectangular-sided drum becomes a cube with all
dihedral angles 60°. This cube may be subdivided into five regular ideal tetrahedra: 6.39
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Thus S3—C} is commensurable with S3— figure eight knot, since 7 (5% —C)) preserves
a tiling of H3 by regular ideal tetrahedra.

d—

3 3
Is” - ¢, ll, =10 Is” - Blly=2
commensurable with PSL(2, O3)

S3 — O, is homeomorphic to many other link complements, since we can cut along
any disk spanning a component of Cj, twist some integer number of times and glue
back to obtain a link with a complement homeomorphic to that of Cj. Further-
more, if we glue back with a half-integer twist, we obtain a link whose complement
is hyperbolic with the same volume as S® — C,. This follows since twice-punctured
spanning disks are totally geodesic thrice-punctured spheres in the hyperbolic struc-
ture of S — C}. The thrice-punctured sphere has a unique hyperbolic structure, and
all six isotopy classes of diffeomorphisms are represented by isometries. 6.40

Using such operations, we obtain these examples for instance:

EXAMPLE 6.8.4.

£
e, @ @

commensurable with Cs

The second link has a map to the figure-eight knot obtained by erasing a compo-
nent of the link. Thus, by 6.5.6, we have

v(S® — C3) = 5.33340 ... > 2.02988 = v(S® — figure eight knot).

These links are commensurable with Cf, since they give rise to identical tilings of
H? by drums. As another example, the links below are commensurable with Co:

EXAMPLE 6.8.5.
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A S
Cw

k = 5 Commensurable with C;9 v = 34.69616

The last three links are obtained from the first by cutting along 5-times punctured
disks, twisting, and gluing back. Since this gluing map is a diffeomorphism of the
surface which extends to the three-manifold, it must come from an isometry of a
6-punctured sphere in the hyperbolic structure. (In fact, this surface comes from the
top of a 10-sided drum).

The compex modulus associated with a cusp of C), is

1 L+ 1 + sin® =
2 cos? = A
Clearly we have an infinite family of incommensurable examples.

By passing to the limit £ — oo and dividing by Z, we get these links commensu-
rable with S® — W and S® — B, for instance:

EXAMPLE 6.8.6.

v = v(ss—B)
= T.32772.

Many other chains, with different amounts of twist, also have hyperbolic struc-
tures. They all are obtained, topologically, by identifying faces of a tiling of the
boundary of a solid torus by rectangles. Here is another infinite family Dqg(> 3)
which is easy to compute:

EXAMPLE 6.8.7.
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meridian

Hyperbolic structures can be realized by subdividing the solid torus into 4 drums
with triangular sides:

6.43

Regular drums with all dihedral angles 90° can be glued together to give S® — Dj,.
By methods similar to Milnor’s in 7.3, the formula for the volume is computed to be

0(S® — Do) = 8k (u(5 + 37) + (5 — 37))-

Thus we have the values

k ’U(53 — ng) ’U(53 — ng)/(Qk’)
3 14.655495 2.44257
4 24.09218 3.01152
5 32.55154 3.25515
6 40.59766 3.38314
100 732.750 3.66288
1000 7327.705 3.66386
00 00 3.66386
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The cases £k = 3 and k = 4 have algebraic significance. They are commensu-
rable with PSL(2,0;) nad PSL(2,0,), respectively. When k& = 3, the drum is an
octahedron and v(S% — Do) = 4v(S3 — W),

Note that the volume of (S% — Dy5) is 20 times the volume of the figure-eight knot
complement. 6.44

Two copies of the triangular-sided drum form this figure:

The faces may be glued in other patterns to obtain link complements. For instance,
if k is even we can first identify

A ANA C/ \C/
Am\ -
Z N\ “’ﬁ% L B%W‘/

the triangular faces, to obtain a ball minus certain arcs and curves on the boundary.

) A
A ¢
W. '
e .\“\ T -
o “"""\ o
M‘\M(-/\ \,‘M
£ I _
‘ v 6.45

If we double this figure, we obtain a complete hyperbolic structure for the com-
plement of this link, Fj:

EXAMPLE 6.8.8.

R
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Alternatively, we can identify the boundary of the ball to obtain

TR
b df

In these examples, note that the rectangular faces of the doubled drums

EXAMPLE 6.8.9.

6.46
have complete symmetry, and some of the link complements are obtained by gluing
maps which interchange the diagonals, while others preserve them. These links are
generally commensurable even when they have the same volume; this can be proven
by computing the moduli of the cusps.

There are many variations. Two copies of the drum with 8 triangular faces, glued
together, give a cube with its corners chopped off. The 4-sided faces can be glued,
to obtain the ball minus these arcs and curves:

The two faces of the ball may be glued together (isometrically) to give any of these
link complements: 6.47
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6. GROMOV’S INVARIANT AND THE VOLUME OF A HYPERBOLIC MANIFOLD

EXAMPLE 6.8.10.

v =12.04692 = 1v(S® — Ds) > v(C?) (commensurable with PSL(2, Zv/=2))

The sequence of link complements, F}, below can also be given hyperbolic struc-
tures obtained from a third kind of drum:

EXAMPLE 6.8.11.

—D

meridian

6.48

The regular drum is determined by its angles  and 8 = m — a. Any pair of
angles works to give a hyperbolic structure; one verifies that when the angle a =
arc cos(cos 5- — %), the hyperbolic structure is complete. The case n = 1 gives a
trivial knot. In the case n = 2, the drums degenerate into simplices with 60° angles,
and we obtain once more the hyperbolic structure on F, = figure eight knot. When
n = 3, the angles are 90°, the drums become octahedra and we obtain F; = B.
Passing to the limit n = oo, and dividing by Z, we obtain the following link, whose
complement is commensurable with S — figure eight knot:
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6.8. SOME EXAMPLES

EXAMPLE 6.8.12.

v=4—05977...

With these examples, many maps between link complements may be constructed.
The reader should experiment for himself. One gets a feeling that volume is a very
good measure of the complexity of a link complement, and that the ordinal structure
is really inherent in three-manifolds.
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