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CHAPTER 3
Geometric structures on manifolds

A manifold is a topological space which is locally modelled on R™. The notion of
what it means to be locally modelled on R™ can be made definite in many different
ways, yielding many different sorts of manifolds. In general, to define a kind of
manifold, we need to define a set § of gluing maps which are to be permitted for
piecing the manifold together out of chunks of R™. Such a manifold is called a G-
manifold. G should satisfy some obvious properties which make it a pseudogroup of
local homeomorphisms between open sets of R™:

(i) The restriction of an element g € G to any open set in its domain is also in
g.
(ii) The composition g; o g, of two elements of G, when defined, is in G.
(iii) The inverse of an element of G is in G.
(iv) The property of being in G is local, so that if U = |J,, U, and if g is a local
homeomorphism g : U — V whose restriction to each U, isin G, then g € G.

It is convenient also to permit G to be a pseudogroup acting on any manifold,
although, as long as § is transitive, this doesn’t give any new types of manifolds. See
Haefliger, in Springer Lecture Notes #197, for a discussion.

A group G acting on a manifold X determines a pseudogroup which consists of
restrictions of elements of G to open sets in X. A (G, X)-manifold means a manifold
glued together using this pseudogroup of restrictions of elements of G.

ExaMPLES. If G is the pseudogroup of local C" diffeomorphisms of R", then
a G-manifold is a C"-manifold, or more loosely, a differentiable manifold (provided
r>1).

If G is the pseudogroup of local piecewise-linear homeomorphisms, then a §-
manifold is a PL-manifold. If G is the group of affine transformations of R", then a
(G,R™)-manifold is called an affine manifold. For instance, given a constant A\ > 1
consider an annulus of radii 1 and A+ e€. Identify neighborhoods of the two boundary
components by the map z — A\x. The resulting manifold, topologically, is T2.
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3. GEOMETRIC STRUCTURES ON MANIFOLDS

Here is another method, due to John Smillie, for constructing affine structures
on T? from any quadrilateral @ in the plane. Identify the opposite edges of @) by
the orientation-preserving similarities which carry one to the other. Since similarities
preserve angles, the sum of the angles about the vertex in the resulting complex is
27, so it has an affine structure. We shall see later how such structures on 72 are
intimately connected with questions concerning Dehn surgery in three-manifolds.

The literature about affine manifolds is interesting. Milnor showed that the only
closed two-dimensional affine manifolds are tori and Klein bottles. The main unsolved
question about affine manifolds is whether in general an affine manifold has Euler
characteristic zero.

If G is the group of isometries of Euclidean space E", then a (G, E™)-manifold
is called a Fuclidean manifold, or often a flat manifold. Bieberbach proved that a
Euclidean manifold is finitely covered by a torus. Furthermore, a Euclidean structure
automatically gives an affine structure, and Bieberbach proved that closed Euclidean
manifolds with the same fundamental group are equivalent as affine manifolds. If G
is the group O(n + 1) acting on elliptic space P™ (or on S™), then we obtain elliptic
manifolds.

CONJECTURE. Every three-manifold with finite fundamental group has an elliptic
structure.
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3.1. A HYPERBOLIC STRUCTURE ON THE FIGURE-EIGHT KNOT COMPLEMENT.

This conjecture is a stronger version of the Poincaré conjecture; we shall see the
logic shortly. All known three-manifolds with finite fundamental group certainly have
elliptic structures.

As a final example (for the present), when G is the group of isometries of hyper-
bolic space H", then a (G, H")-manifold is a hyperbolic manifold. For instance, any
surface of negative Euler characteristic has a hyperbolic structure. The surface of
genus two is an illustrative example.

e, >

Topologically, this surface is obtained by identifying the sides of an octagon, in
the pattern above, for instance. An example of a hyperbolic structure on the surface
is obtained form any hyperbolic octagon whose opposite edges have equal lengths
and whose angle sum is 27, by identifying in the same pattern. There is a regular
octagon with angles 7/4, for instance.

3.1. A hyperbolic structure on the figure-eight knot complement.

Consider a regular tetrahedron in Euclidean space, inscribed in the unit sphere,
so that its vertices are on the sphere. Now interpret this tetrahedron to lie in the
projective model for hyperbolic space, so that it determines an ideal hyperbolic sim-
plex: combinatorially, a simplex with its vertices deleted. The dihedral angles of the
hyperbolic simplex are 60°. This may be seen by extending its faces to the sphere at
infinity, which they meet in four circles which meet each other in 60° angles.

By considering the Poincaré disk model, one sees immediately that the angle
made by two planes is the same as the angle of their bounding circles on the sphere
at infinity.

Take two copies of this ideal simplex, and glue the faces together, in the pattern
described in Chapter 1, using Euclidean isometries, which are also (in this case)
hyperbolic isometries, to identify faces. This gives a hyperbolic structure to the
resulting manifold, since the angles add up to 360° around each edge.
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3. GEOMETRIC STRUCTURES ON MANIFOLDS

e S
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A regular octagon with angles /4,
whose sides can be identified to give a surface of genus 2.

A tetrahedron inscribed in the unit sphere, top view.

According to Magnus, Hyperbolic Tesselations, this manifold was constructed by
Gieseking in 1912 (but without any relation to knots). R. Riley showed that the
figure-eight knot complement has a hyperbolic structure (which agrees with this one).
This manifold also coincides with one of the hyperbolic manifolds obtained by an
arithmetic construction, because the fundamental group of the complement of the
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3.2. A HYPERBOLIC MANIFOLD WITH GEODESIC BOUNDARY.
figure-eight knot is isomorphic to a subgroup of index 12 in PSLy(Z|w]), where w is
a primitive cube root of unity.
3.2. A hyperbolic manifold with geodesic boundary.

Here is another manifold which is obtained from two tetrahedra. First glue the two
tetrahedra along one face; then glue the remaining faces according to this diagram:

In the diagram, one vertex has been removed so that the polyhedron can be
flattened out in the plane. The resulting complex has only one edge and one vertex.
The manifold M obtained by removing a neighborhood of the vertex is oriented with
boundary a surface of genus 2.

Consider now a one-parameter family of regular tetrahedra in the projective model
for hyperbolic space centered at the origin in Euclidean space, beginning with the
tetrahedron whose vertices are on the sphere at infinity, and expanding until the
edges are all tangent to the sphere at infinity. The dihedral angles go from 60° to 0°,
so somewhere in between, there is a tetrahedron with 30° dihedral angles. Truncate
this simplex along each plane v+, where v is a vertex (outside the unit ball), to obtain
a stunted simplexr with all angles 90° or 30°:
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3. GEOMETRIC STRUCTURES ON MANIFOLDS

3.9
Two copies glued together give a hyperbolic structure for M, where the boundary

of M (which comes from the triangular faces of the stunted simplices) is totally geo-

desic. A closed hyperbolic three-manifold can be obtained by doubling this example,

i.e., taking two copies of M and gluing them together by the “identity” map on the

boundary.

3.3. The Whitehead link complement.

The Whitehead link may be spanned by a two-complex which cuts the complement
into an octahedron, with vertices deleted:

) )

;
/
L

The one-cells are the three arrows, and the attaching maps for the two-cells are
indicated by the dotted lines. The three-cell is an octahedron (with vertices deleted), 3.10
and the faces are identified thus:
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3.4. THE BORROMEAN RINGS COMPLEMENT.

4
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A hyperbolic structure may be obtained from a Euclidean regular octahedron in-
scribed in the unit sphere. Interpreted as lying in the projective model for hyperbolic
space, this octahedron is an ideal octahedron with all dihedral angles 90°.

Gluing it in the indicated pattern, again using Euclidean isometries between the
faces (which happen to be hyperbolic isometries as well) gives a hyperbolic structure
for the complement of the Whitehead link.

3.4. The Borromean rings complement.

This is spanned by a two-complex which cuts the complement into two ideal
octahedra:
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3. GEOMETRIC STRUCTURES ON MANIFOLDS

Borromean rings A spenning 2-complex

Here is the corresponding gluing pattern of two octahedra. Faces are glued to
their corresponding faces with 120° rotations, alternating in directions like gears.

3.5. The developing map.

Let X be any real analytic manifold, and G' a group of real analytic diffeomor-
phisms of X. Then an element of GG is completely determined by its restriction to
any open set of X.

Suppose that M is any (G, X)-manifold. Let Uy, Us, ... be coordinate charts for
M, with maps ¢; : U; — X and transition functions v;; satisfying

Vij © Pi = @;.
In general the 7;;’s are local G-diffeomorphisms of X defined on ¢;(U; N Uj) so they
are determined by locally constant maps, also denoted +;;, of U; N U; into G.

Consider now an analytic continuation of ¢; along a path « in M beginning
in U;. It is easy to see, inductively, that on a component of o N U;, the analytic
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3.5. THE DEVELOPING MAP.

continuation of ¢; along « is of the form v o ¢;, where v € G. Hence, ¢ can be
analytically continued along every path in M. It follows immediately that there is
a global analytic continuation of ¢; defined on the universal cover of M. (Use the
definition of the universal cover as a quotient space of the paths in A.) This map,

D:M— X,

is called the developing map. D is a local (G, X )-homeomorphism (i.e., it is an im-
mersion inducing the (G, X)-structure on M.) D is clearly unique up to composition
with elements of G.

Although G acts transitively on X in the cases of primary interest, this condition
is not necessary for the definition of D. For example, if G is the trivial group and
X is closed then closed (G, X )-manifolds are precisely the finite-sheeted covers of X,
and D is the covering projection.

From this uniqueness property of D, we have in particular that for any covering

transformation 7, of M over M, there is some (unique) element g, € G such that
DoT,=g,0D.
Since DoT,0T3=g,0Do0Ts=g,0ggo D it follows that the correspondence
H:aw- g,

is a homomorphism, called the holonomy of M.
In general, the holonomy of M need not determine the (G, X)-structure on M,
but there is an important special case in which it does.

DEFINITION. M is a complete (G, X )-manifold if D : M — X is a covering map.
(In particular, if X is simply-connected, this means D is a homeomorphism.)

If X is similarly connected, then any complete (G, X)-manifold M may easily be
reconstructed from the image I' = H(m(M)) of the holonomy, as the quotient space
X/T.

Here is a useful sufficient condition for completeness.

PROPOSITION 3.6. Let G be a group of analytic diffeomorphisms acting transi-
tively on a manifold X, such that for any x € X, the isotropy group G, of x is
compact. Then every closed (G, X)-manifold M is complete.

PROOF. Let @) be any positive definite on the tangent space T, (X) of X at some
point x. Average the set of transforms ¢(Q), g € G, using Haar measure, to obtain
a quadratic form on T).(X) which is invariant under G,. Define a Riemannian metric
(ds?*), = g(Q) on X, where g € G is any element taking x to y. This definition
is independent of the choice of g, and the resulting Riemannian metric is invariant
under G.
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3. GEOMETRIC STRUCTURES ON MANIFOLDS

Therefore, this metric pieces together to give a Riemannian metric on any (G, X)-
manifold, which is invariant under any (G, X)- map.

If M is any closed (G, X )-manifold, then there is some € > 0 such that the e-ball
in the Riemannian metric on M is always convex and contractible. If x is any point
in X, then D™!(B,/2(x)) must be a union of homeomorphic copies of B(z) in M.
D evenly covers X, so it is a covering projection, and M is complete. 0

For example, any closed elliptic three-manifold has universal cover S®, so any
simply-connected elliptic manifold is S®. Every closed hyperbolic manifold or Eu-
clidean manifold has universal cover hyperbolic three-space or Euclidean space. Such
manifolds are consequently determined by their holonomy.

Even for G and X as in proposition 3.6, the question of whether or not a non-
compact (G, X)-manifold M is complete can be much more subtle. For example,
consider the thrice-punctured sphere, which is obtained by gluing together two tri-
angles minus vertices in this pattern:

A hyperbolic structure can be obtained by gluing two ideal triangles (with all vertices
on the circle at infinity) in this pattern. Each side of such a triangle is isometric to
the real line, so a gluing map between two sides may be modified by an arbitrary
translation; thus, we have a family of hyperbolic structures in the thrice-punctured
sphere parametrized by R3. (These structures need not be, and are not, all distinct.)
Exactly one parameter value yields a complete hyperbolic structure, as we shall see
presently.

Meanwhile, we collect some useful conditions for completeness of a (G, X )-struc-
ture with (G, X) as in 3.6. For convenience, we fix some natural metrics on (G, X)-
structures.

PropoSITION 3.7. With (G, X) as above, a (G, X)-manifold M is complete if
and only if any of the following equivalent conditions is satisfied.

(a) M is complete as a metric space.
(b) There is some € > 0 such that each closed e-ball in M is compact.
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3.5. THE DEVELOPING MAP.

The developing map of an affine torus constructed from a quadrilateral (see p. 3.3).
The torus is plainly not complete. FEzxercise: construct other affine toruses with the
same holonomy as this one. (Hint: walk once or twice around this page.)
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3. GEOMETRIC STRUCTURES ON MANIFOLDS

(c) For every k >0, all closed k-balls are compact.
(d) There is a family {S:};t € R, of compact sets which exhaust M, such that
Siia contains a neighborhood of radius a about S;.

PROOF. Suppose that M is metrically complete. Then M is also metrically com-
plete. We will show that the developing map D : M — X is a covering map by
proving that any path oy in X can be lifted to M. In fact, let T C [0, 1] be a maxi-
mal connected set for which there is a lifting. Since D is a local homeomorphism, T’
is open, and because M is metrically complete, T is closed: hence, o can be lifted,
so M is complete.

It is an elementary exercise to see that (b) <= (¢) <= (d) = (a). For any
point 2o € X there is some e such that the ball B,(x) is compact; this € works for
all z € X since the group G of (G, X)-diffeomorphisms of X is transitive. Therefore
X satisfies (a), (b), (¢) and (d). Finally if M is a complete (G, X )-manifold, it is
covered by X so it satisfies (b). The proposition follows. O

3.8. Horospheres.

To analyze what happens near the vertices of an ideal polyhedron when it is glued
together, we need the notion of horospheres (or, in the hyperbolic plane, they are
called horocycles.) A horosphere has the limiting shape of a sphere in hyperbolic
space, as the radius goes to infinity. One property which can be used to determine
the spheres centered at a point X is the fact that such a sphere is orthogonal to all
lines through X. Similarly, if X is a point on the sphere at infinity, the horospheres
“centered” at X are the surfaces orthogonal to all lines through X. In the Poincaré
disk model, a hyperbolic sphere is a Euclidean sphere in the interior of the disk,
and a horosphere is a Euclidean sphere tangent to the unit sphere. The point X of
tangency is the center of the horosphere.
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3.8. HOROSPHERES.

Concentric horocycles and orthogonal lines.

_——-———//

Translation along a line through X permutes the horospheres centered at X.
Thus, all horospheres are congruent. The convex region bounded by a horosphere is
a horoball. For another view of a horosphere, consider the upper half-space model. In
this case, hyperbolic lines through the point at infinity are Euclidean lines orthogonal
to the plane bounding upper half-space. A horosphere about this point is a horizontal
Euclidean plane. From this picture one easily sees that a horosphere in H™ is isometric
to Euclidean space E"~!. One also sees that the group of hyperbolic isometries fixing
the point at infinity in the upper half-space model acts as the group of similarities
of the bounding Euclidean plane. One can see this action internally as follows. Let
X be any point at infinity in hyperbolic space, and h any horosphere centered at X.
An isometry g of hyperbolic space fixing X takes h to a concentric horosphere h'.
Project h' back to h along the family of parallel lines through X. The composition
of these two maps is a similarity of h.

Consider two directed lines [; and [y emanating from the point at infinity in the
upper half-space model. Recall that the hyperbolic metric is ds? = (1/x2) dz?. This
means that the hyperbolic distance between [; and [, along a horosphere is inversely
proportional to the Euclidean distance above the bounding plane. The hyperbolic
distance between points X; and X5 on [y at heights of hy and hy is |log(hs) —log(hy)].
It follows that for any two concentric horospheres h; and hs which are a distance d
apart, and any pair of lines [; and [ orthogonal to hy and hs, the ratio of the distance
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3. GEOMETRIC STRUCTURES ON MANIFOLDS

F1GURE 1. Horocycles and lines in the upper half-plane

between [; and [y measured along h; to their distance measured along hs is exp(d).

Q‘L Qg,
C
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3.9. Hyperbolic surfaces obtained from ideal triangles.

Consider an oriented surface S obtained by gluing ideal triangles with all vertices
at infinity, in some pattern. Fzercise: all such triangles are congruent. (Hint: you
can derive this from the fact that a finite triangle is determined by its angles—see
2.6.8. Let the vertices pass to infinity, one at a time.)

Let K be the complex obtained by including the ideal vertices. Associated with
each ideal vertex v of K, there is an invariant d(v), defined as follows. Let h be a
horocycle in one of the ideal triangles, centered about a vertex which is glued to v
and “near” this vertex. Extend h as a horocycle in S counter clockwise about v. It
meets each successive ideal triangle as a horocycle orthogonal to two of the sides,
until finally it re-enters the original triangle as a horocycle A’ concentric with h, at a
distance +d(v) from h. The sign is chosen to be positive if and only if the horoball
bounded by A’ in the ideal triangle contains that bounded by h.
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3.9. HYPERBOLIC SURFACES OBTAINED FROM IDEAL TRIANGLES.

The surface S is complete if and only if all invariants d(v) are 0. Suppose, for
instance, that some invariant d(v) < 0. Continuing h further round v; the length
of each successive circuit around v is reduced by a constant factor < 1, so the total
length of h after an infinite number of circuits is bounded. A sequence of points
evenly spaced along h is a non-convergent Cauchy sequence.

If all invariants d(v) = 0, on the other hand, one can remove horoball neighbor-
hoods of each vertex in K to obtain a compact subsurface Sy. Let S; be the surface
obtained by removing smaller horoball neighborhoods bounded by horocycles a dis-
tance of ¢ from the original ones. The surfaces S; satisfy the hypotheses of 3.7(d)
1—hence S is complete.

3.22
For any hyperbolic manifold M, let M be the metric completion of M. In general,

M need not be a manifold. However, it S is a surface obtained by gluing ideal

hyperbolic triangles, then S is a hyperbolic surface with geodesic boundary. There is
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3. GEOMETRIC STRUCTURES ON MANIFOLDS

one boundary component of length |d(v)| for each vertex v of K such that d(v) # 0.
S is obtained by adjoining one limit point for each horocycle which “spirals toward” a
vertex v in K. The most convincing way to understand S is by studying the picture:

3.10. Hyperbolic manifolds obtained by gluing ideal polyhedra.

Consider now the more general case of a hyperbolic manifold M obtained by
gluing together the faces of polyhedra in H™ with some vertices at infinity. Let K
be the complex obtained by including the ideal vertices. The link of an ideal vertex
v is (by definition) the set L(v) of all rays through that vertex. From 3.7 it follows
that the link of each vertex has a canonical (similarities of E"~', E"~1 ) structure,
or similarity structure for short. An extension of the analysis in 3.9 easily shows
that M is complete if and only if the similarity structure on each link of an ideal
vertex is actually a Fuclidean structure, or equivalently, if and only if the holonomy
of these similarity structures consists of isometries. We shall be concerned mainly
with dimension n = 3. It is easy to see from the Gauss-Bonnet theorem that any
similarity two-manifold has Euler characteristic zero. (Its tangent bundle has a flat
orthogonal connection). Hence, if M is oriented, each link L(v) of an ideal vertex
is topologically a torus. If L(v) is not Euclidean, then for some o € m L(v), the
holonomy H («) is a contraction, so it has a unique fixed point xy. Any other element
B € m(L(v)) must also fix xg, since  commutes with . Translating zo to 0, we
see that the similarity two-manifold L(v) must be a (C*, C — 0)-manifold where C* is
the multiplicative group of complex numbers. (Compare p. 3.15.) Such a structure
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3.10. HYPERBOLIC MANIFOLDS OBTAINED BY GLUING IDEAL POLYHEDRA.

is automatically complete (by 3.6), and it is also modelled on
(C*,C - 0),

or, by taking logs, on (C,C). Here the first C is an additive group and the second
C is a space. Conversely, by taking exp, any (C,C) structure gives a similarity
structure. (C,C) structures on closed oriented manifolds are easy to describe, being
determined by their holonomy, which is generated by an arbitrary pair (z1,2) of 3.24
complex numbers which are linearly independent over R.

We shall return later to study the spaces M in the three-dimensional case. They

are sometimes closed hyperbolic manifolds obtained topologically by replacing neigh-
borhoods of the vertices by solid toruses.
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