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CHAPTER 2
Elliptic and hyperbolic geometry

There are three kinds of geometry which possess a notion of distance, and which
look the same from any viewpoint with your head turned in any orientation: these
are elliptic geometry (or spherical geometry), Euclidean or parabolic geometry, and
hyperbolic or Lobachevskiian geometry. The underlying spaces of these three geome-
tries are naturally Riemannian manifolds of constant sectional curvature +1, 0, and
—1, respectively.

Elliptic n-space is the n-sphere, with antipodal points identified. Topologically
it is projective n-space, with geometry inherited from the sphere. The geometry of
elliptic space is nicer than that of the sphere because of the elimination of identical,
antipodal figures which always pop up in spherical geometry. Thus, any two points
in elliptic space determine a unique line, for instance.

In the sphere, an object moving away from you appears smaller and smaller, until
it reaches a distance of 7/2. Then, it starts looking larger and larger and optically,
it is in focus behind you. Finally, when it reaches a distance of 7, it appears so large
that it would seem to surround you entirely.

In elliptic space, on the other hand, the maximum distance is 7/2, so that ap-
parent size is a monotone decreasing function of distance. It would nonetheless be
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2. ELLIPTIC AND HYPERBOLIC GEOMETRY

distressing to live in elliptic space, since you would always be confronted with an im-
age of yourself, turned inside out, upside down and filling out the entire background
of your field of view. Euclidean space is familiar to all of us, since it very closely
approximates the geometry of the space in which we live, up to moderate distances.
Hyperbolic space is the least familiar to most people. Certain surfaces of revolution
in R? have constant curvature —1 and so give an idea of the local picture of the
hyperbolic plane.

The simplest of these is the pseudosphere, the surface of revolution generated by
a tractrix. A tractrix is the track of a box of stones which starts at (0,1) and is
dragged by a team of oxen walking along the z-axis and pulling the box by a chain of
unit length. Equivalently, this curve is determined up to translation by the property
that its tangent lines meet the z-axis a unit distance from the point of tangency. The
pseudosphere is not complete, however—it has an edge, beyond which it cannot be
extended. Hilbert proved the remarkable theorem that no complete C? surface with
curvature —1 can exist in R®. In spite of this, convincing physical models can be
constructed.

We must therefore resort to distorted pictures of hyperbolic space. Just as it is
convenient to have different maps of the earth for understanding various aspects of its
geometry: for seeing shapes, for comparing areas, for plotting geodesics in navigation;
so it is useful to have several maps of hyperbolic space at our disposal.

2.1. The Poincaré disk model.

Let D™ denote the disk of unit radius in Euclidean n-space. The interior of D"
can be taken as a map of hyperbolic space H". A hyperbolic line in the model is any
Euclidean circle which is orthogonal to dD"; a hyperbolic two-plane is a Euclidean
sphere orthogonal to 0D"; etc. The words “circle” and “sphere” are here used in
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2.2. THE SOUTHERN HEMISPHERE.

the extended sense, to include the limiting case of a line or plane. This model
is conformally correct, that is, hyperbolic angles agree with Euclidean angles, but
distances are greatly distorted. Hyperbolic arc length v/ds? is given by the formula

ds* = <1 —17"2>2dx2’

where vdz? is Euclidean arc length and r is distance from the origin. Thus, the
Euclidean image of a hyperbolic object, as it moves away from the origin, shrinks in
size roughly in proportion to the Euclidean distance from 0D™ (when this distance
is small). The object never actually arrives at dD", if it moves with a bounded
hyperbolic velocity.

Lines -

People

The sphere D™ is called the sphere at infinity. It is not actually in hyperbolic
space, but it can be given an interpretation purely in terms of hyperbolic geometry,
as follows. Choose any base point py in H". Consider any geodesic ray R, as seen
from po. R traces out a segment of a great circle in the visual sphere at py (since
po and R determine a two-plane). This visual segment converges to a point in the
visual sphere. If we translate H" so that pg is at the origin of the Poincaré disk

model, we see that the points in the visual sphere correspond precisely to points
in the sphere at infinity, and that the end of a ray in this visual sphere corresponds
to its Euclidean endpoint in the Poincaré disk model.

2.2. The southern hemisphere.

The Poincaré disk D™ C R is contained in the Poincaré disk D"*! c R*™! as a
hyperbolic n-plane in hyperbolic (n + 1)-space.
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2. ELLIPTIC AND HYPERBOLIC GEOMETRY

Stereographic projection (Euclidean) from the north pole of D" sends the
Poincaré disk D™ to the southern hemisphere of D"+,

Souﬂ\_e,f'“
Hemisphete

Thus hyperbolic lines in the Poincaré disk go to circles on S™ orthogonal to the
equator S 1.

There is a more natural construction for this map, using only hyperbolic geometry.
For each point p in H™ C H™"!, consider the hyperbolic ray perpendicular to H™ at
p, and downward normal. This ray converges to a point on the sphere at infinity, 26
which is the same as the Euclidean stereographic image of p.

2.3. The upper half-space model.

This is closely related to the previous two, but it is often more convenient for
computation or for constructing pictures. To obtain it, rotate the sphere S™ in
R"*! so that the southern hemisphere lies in the half-space z,, > 0 is R**!. Now
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2.4. THE PROJECTIVE MODEL.

stereographic projection from the top of S™ (which is now on the equator) sends the
southern hemisphere to the upper half-space x,, > 0 in R**!,

A hyperbolic line, in the upper half-space, is a circle perpendicular to the bounding
plane R"~! C R". The hyperbolic metric is ds* = (1/z,)* dz?. Thus, the Euclidean
image of a hyperbolic object moving toward R"~! has size precisely proportional to
the Euclidean distance from R"~!.

2.4. The projective model.

This is obtained by Euclidean orthogonal projection of the southern hemisphere
of S™ back to the disk D™. Hyperbolic lines become Euclidean line segments. This
model is useful for understanding incidence in a configuration of lines and planes.
Unlike the previous three models, it fails to be conformal, so that angles and shapes
are distorted.

It is better to regard this projective model to be contained not in Euclidean
space, but in projective space. The projective model is very natural from a point of
view inside hyperbolic (n + 1)-space: it gives a picture of a hyperplane, H", in true
perspective. Thus, an observer hovering above H™ in H"*!, looking down, sees H"
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2. ELLIPTIC AND HYPERBOLIC GEOMETRY

as the interior of a disk in his visual sphere. As he moves farther up, this visual disk
shrinks; as he moves down, it expands; but (unlike in Euclidean space), the visual
radius of this disk is always strictly less than 7/2. A line on H? appears visually
straight.

It is possible to give an intrinsic meaning within hyperbolic geometry for the
points outside the sphere at infinity in the projective model. For instance, in the
two-dimensional projective model, any two lines meet somewhere. The conventional
sense of meeting means to meet inside the sphere at infinity (at a finite point). If
the two lines converge in the visual circle, this means that they meet on the circle at
infinity, and they are called parallels. Otherwise, the two lines are called ultraparallels;
they have a unique common perpendicular L and they meet in some point = in the
Mobius band outside the circle at infinity. Any other line perpendicular to L passes
through x, and any line through x s perpendicular to L.

/ A V4

To prove this, consider hyperbolic two-space as a plane P C H3. Construct
the plane @ through L perpendicular to P. Let U be an observer in H3. Drop a
perpendicular M from U to the plane (). Now if K is any line in P perpendicular

14 Thurston — The Geometry and Topology of 3-Manifolds

2.9



2.4. THE PROJECTIVE MODEL. 2.8a
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Evenly spaced lines. The region inside the circle is a plane, with a base line and a family of
its perpendiculars, spaced at a distance of .051 fundamental units, as measured along the base
line shown in perspective in hyperbolic 3-space (or in the projective model). The lines have been
extended to their imaginary meeting point beyond the horizon. U, the observer, is directly above
the X (which is .881 fundamental units away from the base line). To see the view from different
heights, use the following table (which assumes that the Euclidean diameter of the circle in your
printout is about 5.25 inches or 13.3cm):

To see the view of hold the picture a To see the view of hold the picture a
U at a height of distance of U at a height of distance of
2 units 11" ( 28 cm) 5 units 17" (519 cm)
3 units 27" ( 69 cm) 10 units 2523" (771 m )
4 units 6’ (191 cm) 20 units 10528.75 miles (16981 km)

For instance, you may imagine that the fundamental distance is 10 meters. Then the lines are
spaced about like railroad ties. Twenty units is 200 meters: U is in a hot air balloon.
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2. ELLIPTIC AND HYPERBOLIC GEOMETRY

to L, the plane determined by U and K is perpendicular to ), hence contains M;
hence the visual line determined by K in the visual sphere of U passes through the
visual point determined by K. The converse is similar.

This gives a one-to-one correspondence between the set of points x outside the
sphere at infinity, and (in general) the set of hyperplanes L in H". L corresponds
to the common intersection point of all its perpendiculars. Similarly, there is a
correspondence between points in H™ and hyperplanes outside the sphere at infinity:
a point p corresponds to the union of all points determined by hyperplanes through p.

2.5. The sphere of imaginary radius.

A sphere in Euclidean space with radius r has constant curvature 1/r?. Thus,
hyperbolic space should be a sphere of radius 7. To give this a reasonable interpreta-
tion, we use an indefinite metric dz? = dz? + - -+ + da? — da? , in R"*'. The sphere
of radius ¢ about the origin in this metric is the hyperboloid

2 2 2
i+t ay, —x,, = —L
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2.6. TRIGONOMETRY.

The metric dx? restricted to this hyperboloid is positive definite, and it is not
hard to check that it has constant curvature —1. Any plane through the origin is d?-
orthogonal to the hyperboloid, so it follows from elementary Riemannian geometry
that it meets the hyperboloid in a geodesic. The projective model for hyperbolic space
is reconstructed by projection of the hyperboloid from the origin to a hyperplane in
R™. Conversely, the quadratic form a3 + --- + 22 — 22, can be reconstructed from
the projective model. To do this, note that there is a unique quadratic equation of

the form
n
Z aijxixj =1

ij=1
defining the sphere at infinity in the projective model. Homogenization of this equa-
tion gives a quadratic form of type (n,1) in R""1 as desired. Any isometry of the
quadratic form % + -+ + 22 — 22, induces an isometry of the hyperboloid, and
hence any projective transformation of P" that preserves the sphere at infinity in-
duces an isometry of hyperbolic space. This contrasts with the situation in Euclidean
geometry, where there are many projective self-homeomorphisms: the affine transfor-
mations. In particular, hyperbolic space has no similarity transformations except
isometries. This is true also for elliptic space. This means that there is a well-defined
unit of measurement of distances in hyperbolic geometry. We shall later see how this
is related to three-dimensional topology, giving a measure of the “size” of manifolds.

2.6. Trigonometry.

Sometimes it is important to have formulas for hyperbolic geometry, and not just
pictures. For this purpose, it is convenient to work with the description of hyperbolic
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2. ELLIPTIC AND HYPERBOLIC GEOMETRY

space as one sheet of the “sphere” of radius ¢ with respect to the quadratic form
Q(X) :X12+"‘+X2_XZ+1

in R"*!. The set R"*!, equipped with this quadratic form and the associated inner
product

XY =) XiVi = Xpp1Vosn,
i=1
is called E™!. First we will describe the geodesics on level sets S, = {X : Q(X) = r?}
of ). Suppose that X; is such a geodesic, with speed

s =1/Q(X,).

We may differentiate the equations

Xt'Xt:T2> Xt'XtZSQa
to obtain

Xt'XtZO, Xt'Xt:O,
and

Xt . Xt = —Xt . Xt = —82.

Since any geodesic must lie in a two-dimensional subspace, X, must be a linear
combination of X; and X;, and we have

. S\ 2
2.6.1. % =-(3) x
r
This differential equation, together with the initial conditions
XO'X0:7"2> XO'X0:32, XO'X0:0>
determines the geodesics.
Given two vectors X and Y in E™!, if X and Y have nonzero length we define
the quantity
XY
(X)Y)= ——
X[ Y]]
where || X|| = v X - X is positive real or positive imaginary. Note that
c(X,Y) =c(AX,uY),

where A and p are positive constants, that ¢(—X,Y) = —¢(X,Y), and that ¢(X, X) =
1. In Euclidean space E"*1 ¢(X,Y) is the cosine of the angle between X and Y. In
E™! there are several cases.

We identify vectors on the positive sheet of S; (X,,+1 > 0) with hyperbolic space.
If Y is any vector of real length, then @ restricted to the subspace Y+ is indefinite
of type (n — 1, 1). This means that Y intersects H" and determines a hyperplane.
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2.6. TRIGONOMETRY.

We will use the notation Y to denote this hyperplane, with the normal orientation
determined by Y. (We have seen this correspondence before, in 2.4.)

2.6.2. If X and Y € H", then ¢(X,Y) = coshd (X,Y),

where d (X,Y) denotes the hyperbolic distance between X and Y.

To prove this formula, join X to Y by a geodesic X; of unit speed. From 2.6.1 we 2.14
have

Xt:Xt7 Xt'X0:07
so we get ¢( Xy, Xp) = (X, Xy), ¢(Xo, Xo) = 0, ¢(X, Xo) = 1; thus ¢(X, X;) = cosht.
When t = d(X,Y), then X; =Y, giving 2.6.2.
If X+ and Y are distinct hyperplanes, then
2.6.3.
X+ and Y+ intersect
<= ( is positive definite on the subspace (X,Y’) spanned by X and Y
— c¢(X,Y) <1
= ¢(X,Y) =cos Z(X,Y) = —cos (X, V™).

To see this, note that X and Y intersect in H" <= ( restricted to X+ NY* is
indefinite of type (n —2,1) <= (@ restricted to (X,Y’) is positive definite. ({(X,Y")
is the normal subspace to the (n — 2) plane X+ NY). 2.15
There is a general elementary formula for the area of a parallelogram of sides X
and Y with respect to an inner product:

area = /X - XY Y —(X-Y)2=|X| -|IY]-V1-cX,Y)2

This area is positive real if X and Y span a positive definite subspace, and pos-
itive imaginary if the subspace has type (1,1). This shows, finally, that X+ and
Y1 intersect <= ¢(X,Y)? < 1. The formula for ¢(X,Y’) comes from ordinary
trigonometry.
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2. ELLIPTIC AND HYPERBOLIC GEOMETRY

2.6.4.
X+ and Y+ have a common perpendicular <= @ has type (1,1) on (X,Y)

— o(X,Y)2>1
— ¢(X,Y) = £ cosh(d(X*+,Y7)).

The sign is positive if the normal orientations of the common perpendiculars coincide,
and negative otherwise.

O0<ec (X, 1Y)

cosh d4(X , Y) 916

The proof is similar to 2.6.2. We may assume X and Y have unit length. Since
(X,Y) intersects H™ as the common perpendicular to X+ and Y+, Q restricted to
(X,Y) has type (1,1). Replace X by —X if necessary so that X and Y lie in the
same component of S;N(X,Y). Join X to Y by a geodesic X; of speed i. From 2.6.1,
X, = X,. There is a dual geodesic Z; of unit speed, satisfying Z; - X; = 0, joining
X+ to Y+ along their common perpendicular, so one may deduce that

o, (X,Y)=+94EY — 4q(xt vh.

There is a limiting case, intermediate between 2.6.3 and 2.6.4:

2.6.5. X+ and Yt are parallel
<= (@ restricted to (X,Y’) is degenerate
— c(X,Y) =1

In this case, we say that X+ and Y+ form an angle of 0 or 7. X+ and Y+ actually
have a distance of 0, where the distance of two sets U and V is defined to be the
infimum of the distance between points u € U and v € V.
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2.6. TRIGONOMETRY.

There is one more case in which to interpret c¢(X,Y):

2.6.6. If X is a point in H™ and Y+ a hyperplane, then
sinh(d (X, Y"))

o X,Y) =

I

7

where d (X,Y™) is the oriented distance.

The proof is left to the untiring reader.

With our dictionary now complete, it is easy to derive hyperbolic trigonometric
formulae from linear algebra. To solve triangles, note that the edges of a triangle
with vertices u, v and w in H? are U+, V+ and W+, where U is a vector orthogonal
to v and w, etc. To find the angles of a triangle from the lengths, one can find
three vectors u, v, and w with the appropriate inner products, find a dual basis, and
calculate the angles from the inner products of the dual basis. Here is the general
formula. We consider triangles in the projective model, with vertices inside or outside
the sphere at infinity. Choose vectors vy, v and vz of length i or 1 representing these
points. Let ¢ = v; - v;, €; = /&€ and c¢i; = c(v;,v;). Then the matrix of inner
products of the v; is

€1 €12C12  €13C13
C = | e12012 €2 €23C23

€13C13  €23Ca3 €3

The matrix of inner products of the dual basis {v!,v* v3} is C~!. For our pur-
poses, though, it is simpler to compute the matrix of inner products of the basis
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2. ELLIPTIC AND HYPERBOLIC GEOMETRY
{V/—det C*},

—adjC = (—detC)-C' =

—6263(1 - 033) —61263(013023 - C12) —61362(012023 - 013)
—61263(013023 - 012) —6163(1 - 6%3) —62361(012013 - 023)
—61362(012023 - 013) —62361(012013 - 623) —6162(1 - C%g)

If v, 0%, 0% is the dual basis, and ¢ = ¢(v®,v7), we can compute

— €13C23 — C12
B 2 2’
V1 —c3/1 — ciy

where it is easy to deduce the sign

2.6.7. c'?

—€12€3
V —€2€34/ —€1€3

directly. This specializes to give a number of formulas, in geometrically distinct cases.
In a real triangle,

€ =

cos v cos 3 + cosy

2.6.8. coshC =

Y

sin asin 3

cosh A cosh B — coshC
sinh A sinh B ’

or coshC' = cosh Acosh B — sinh Asinh Bcosc. (See also 2.6.16.) In an all right
hexagon,

2.6.9. cosy =
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2.6. TRIGONOMETRY.

l
! /
(éee a.lgo' 2.6.18)
I
I A,
L 7
! [
(4
‘79‘
9 6.10 L cosh a cosh 3 + cosh
.6.10. coshC' = .

sinh a:sinh (3

(See also 2.6.18.) Such hexagons are useful in the study of hyperbolic structures on
surfaces. Similar formulas can be obtained for pentagons with four right angles, or
quadrilaterals with two adjacent right angles:

2.20

By taking the limit of 2.6.8 as the vertex with angle v tends to the circle at
infinity, we obtain useful formulas:
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2. ELLIPTIC AND HYPERBOLIC GEOMETRY

1
2.6.11. cosh € — o8 acos B+

sin acsin (3

and in particular

1

2.6.12. coshC = ——.
sin «v

These formulas for a right triangle are worth mentioning separately, since they are

particularly simple.
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2.6. TRIGONOMETRY.

oL
B C
Y
A g
From the formula for cosy we obtain the hyperbolic Pythagorean theorem:
2.6.13. cosh C' = cosh A cosh B.
Also,
2.6.14. cosh A = C(,)S a.
sin 8
(Note that (cosa)/(sin#) = 1 in a Euclidean right triangle.) By substituting
(cosh C)
(cosh A)
for cosh B in the formula 2.6.9 for cos «, one finds:
inh A
2.6.15. In a right triangle, sina = S?n .
sinh C'

This follows from the general law of sines,

sinh A B sinh B B sinh C

2.6.16. In any triangle, — - = — .
sin v sin (3 sin 7y

2.22
Similarly, in an all right pentagon,
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2. ELLIPTIC AND HYPERBOLIC GEOMETRY

one has
2.6.17. sinh Asinh B = cosh D.
It follows that in any all right hexagon,

there is a law of sines:
sinh A B sinh B B sinh C
sinha  sinh  sinhy’

2.6.18.
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