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NOTE

Since a new academic year is beginning, I am departing from the intended order
in writing these notes. For the present, the end of chapter 9 and chapters 10, 11 and
12, which depend heavily on chapters 8 and 9, are to be omitted. The tentative plan
for the omitted parts is to cover the following topics:

The end of chapter 9—a more general discussion of algebraic convergence.

Chapter 10—Geometric convergence: an analysis of the possibilities for geometric
limits.

Chapter 11. The Riemann mapping theorem; parametrizing quasi-conformal de-
formations. Extending quasi-conformal deformations of S? to quasi-isometric defor-
mations of H?®. Examples; conditions for the existence of limiting Kleinian groups.

Chapter 12. Boundaries for Teichmiiller space, classification of diffeomorphisms
of surfaces, algorithms involving the mapping class group of a surface.
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CHAPTER 11

Deforming Kleinian manifolds by homeomorphisms of the
sphere at infinity

A pseudo-isometry between hyperbolic three-manifolds gives rise to a quasi-con-
formal map between the spheres at infinity in their universal covering spaces. This is
a key point in Mostow’s proof of his rigidity theorem (Chapter 5). In this chapter, we
shall reverse this connection, and show that a k-quasi-conformal map of S% to itself
gives rise to a k-quasi-isometry of hyperbolic space to itself. A self-map f: X — X
of a metric space is a k-quasi-isometry if

Ld(fe, fy) < d(,y) < kd(f, fy)

for all x and y. By use of a version of the Riemann mapping theorem, the space
of quasi-conformal maps of S? can be parametrized by the non-conformal part of
their derivatives. In this way we obtain a remarkable global parametrization of
quasi-isometric deformations of Kleinian manifolds by the Teichmiiller spaces of their
boundaries.

11.1. Extensions of vector fields

In §§8.4 and 8.12, we made use of the harmonic extensions of measurable functions
on S, to study the limit set of a Kleinian group. More generally, any tensor field
on S% extends, by a visual average, over H*. To do this, first identify S? with the
unit sphere in T,(H?), where z is a given point in H®. If y € S2, this gives an
identification ¢ : T,(S%) — T,(H?). There is a reverse map p : T,(H?) — T,(S2)
coming from orthogonal projection to the image of . We can use 7, and p* to take
care of covariant tensor fields, like vector fields, and contravariant tensor fields, like
differential forms and quadratic forms, as well as tensor fields of mixed type. The
visual average of any tensor field 7' on S2% is thus a tensor field av T, of the same
type, on H3. In general, avT needs to be modified by a constant to give it the right
boundary behavior.

We need some formulas in order to make computations in the upper half-space
model. Let z be a point in upper half-space, at Euclidean height h above the bounding
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11. DEFORMING KLEINTAN MANIFOLDS

plane C. A geodesic through x at angle 6 from the vertical hits C at a distance
r = hcot(f/2) from the foot zy of the perpendicular from z to C.

~=hect &

Thus, dr = —(h/2) csc?(0/2) d§ = —1(h+7r?/h) df. Since the map from the visual
sphere at z to S2 is conformal, it follows that
2

v, — 4<h n %)_2 dy,

where p is Lebesgue measure on C and V, is visual measure at x.

Any tensor T at the point z pushes out to a tensor field T,, on S% = C by the
maps ¢* and p,. When X is a vector, then X is a holomorphic vector field, with
derivative field, with derivative £||X || at its zeros. To see this, let 7x be the vector
field representing the infinitesimal isometry of translation in the direction X. The
claim is that X, = 7x|S. This may be seen geometrically when X is at the center
in the Poincaré disk model.
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Alternatively if X is a vertical unit vector in the upper half-space, then we can
compute that

0 h sinf 0 0 0
XOO:_Q_:_—_: _— = — -,
90 T 2 sin? 6/2 or "or (z = 20) 0z
where zy is the foot of the perpendicular from x to C. This clearly agrees with
the corresponding infinitesimal isometry. (As a “physical” vector field, 0/0z is the
same as the unit horizontal vector field, d/0x, on C. The reason for this notation is

that the differential operators d/0x and 0/dz have the same action on holomorphic
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11.1. EXTENSIONS OF VECTOR FIELDS

functions: they are directional derivatives in the appropriate direction. Even though 11.4
the complex notation may at first seem obscure, it is useful because it makes it
meaningful to multiply vectors by complex numbers.)

When g is the standard inner product on T,(H?), then

2\ -2

gu(V1,Y2) =4(h+ ) ViV

where Y] - Y5 is the inner product of two vectors on C.

Let us now compute av(9d/0z). By symmetry considerations, it is clear that
av(0/0z) is a horizontal vector field, parallel to d/0z. Let e be the vector of unit
hyperbolic length, parallel to 0/0z at a point x in upper half-space. Then

We have

w5z = Ju ()

av2 e = L goo<£,€oo> dV,
C

SO

0z Am 0z

2

:i CRe(—%(z—zO) - n?) 16<h+%)_4du.

Clearly, by symmetry, the term involving Re(z — z0)? integrates to zero, so we have 115

4
ava e——/ / rdf - 8h h+h> dr
2h2 r

209 - O

Note that the hyperbolic norm of av(9/0z) goes to co as h — 0, while the Euclidean
norm is the constant %
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11. DEFORMING KLEINTAN MANIFOLDS

We now introduce the fudge factor by defining the extension of a vector field X
on S% to be

Sav(X) in H?
= 2 ’
ex(X) { X on S2.

PROPOSITION 11.1.1. If X is continuous or Lipschitz, then so is ex(X). If X is
holomorphic, then ex(X) is an infinitesimal isometry.

PrOOF. When X is an infinitesimal translation of C, then ex(X) is the same
infinitesimal translation of upper half-space. Thus every “parabolic” vector field
(with a zero of order 2) on S2 extends to the correct infinitesimal isometry. A
general holomorphic vector field on S2 is of the form (az? + bz + ¢)(9/9z) on C.
Since such a vector field can be expressed as a linear combination of the parabolic
vector fields 9/0z, 220/0z and (2 —1)? 3/0z, it follows that every holomorphic vector
field extends to the correct infinitesimal isometry.

Suppose X is continuous, and consider any sequence {x;} of points in H? converg-
ing to a point at infinity. Bring z; back to the origin O by the translation 7; along
the line Ox;. If 2; is close to S2,, 7; spreads a small neighborhood of the endpoint y;
of the geodesic from O to z; over almost all the sphere. 7;+ X is large on most of the
sphere, except near the antipodal point to y;, so it is close to a parabolic vector field
P;, in the sense that for any €, and sufficiently high i,

I X = Bl < € A,

b

where \; is the norm of the derivative of 7; at y;. Here P; is the parabolic vector
field agreeing with 7, X at y;, and 0 at the antipodal point of y;. It follows that

so X is continuous along 0B3. Continuity in the interior is self-evident (if you see
the evidence).

Suppose now that X is a vector field on S% C R? which has a global Lipschitz
constant

k= sup o= Xvl
y,y' €S2 Hy - y,H
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11.1. EXTENSIONS OF VECTOR FIELDS

Then the translates 7;+ X satisfy
||TZ'*X — ‘PZH S B7

where B is some constant independent of 7. This may be seen by considering stereo-
graphic projection from the antipodal point of y;. The part of the image of X — TZZIPZ»
in the unit disk is Lipschitz and vanishes at the origin. When 7;« is applied, the re-
sulting vector field on C satisfies a linear growth condition (with a uniform growth
constant). This shows that, on S, ||7;+X — P;|| is uniformly bounded in all but a
neighborhood of the antipodal point of Y, where boundedness is obvious. Then

| ex X (z;) — ex 7 Py(z)|| < B - s,

U at the origin in B3, or 1/A; up to a

where f; is the norm of the derivative of 7,
bounded factor.

Since p; is on the order of the (Euclidean) distance of z; from y;, it follows that
ex X is Lipschitz along S2 .

To see that ex X has a global Lipschitz constant in B2, consider € B3, and let 7
be a translation as before taking x to O, and P a parabolic vector field approximating
7+X. The vector fields 7,X — P obtained in this way are uniformly bounded, so it
is clear that the vector fields ex(7.X — P) have a uniform Lipschitz constant at the
origin in B3. By comparison with the upper half-space model, where 7, can be taken
to be a similarity, we obtain a uniform bound on the local Lipschitz constant for
ex(X — 771P) at an arbitrary point z. Since the vector fields 7! P are uniformly
Lipschitz, it follows that X is globally Lipschitz. 0]

Note that the stereographic image in C of a uniformly Lipschitz vector field on
S2 is not necessarily uniformly Lipschitz—consider 229/0z, for example. This is
explained by the large deviation of the covariant derivatives on S% and on C near the
point at infinity. Similarly, a uniformly Lipschitz vector field on B? is not generally
uniformly Lipschitz on H3. In fact, because of the curvature of H3, a uniformly
Lipschitz vector field on H? must be bounded; such vector fields correspond precisely
to those Lipschitz vector fields on B* which vanish on 0B3.

f_\‘ av \ \
/V\R/ l V—N{/{\" Pve'c::}-oe( —F;Q\J

Py
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11. DEFORMING KLEINTAN MANIFOLDS
A hyperbolic parallel vector field along a curve near S, appears to turn rapidly.

The significance of the Lipschitz condition stems from the elementary fact that
Lipschitz vector fields are uniquely integrable. Thus, any isotopy ¢, of the boundary
of a Kleinian manifold Or = (B? — Lr)/T" whose time derivative ¢, is Lipschitz as a
vector field on I x dOr extends canonically to an isotopy ex¢; on Or. One may see
this most simply by observing that the proof that ex X is Lipschitz works locally.

A k-quasi-isometric vector field is a vector field whose flow, ¢;, distorts distances
at a rate of at most k. In other words, for all x, y and ¢, ¢, must satisfy

e Md(z,y) < d(pix, pry) < eMd(,y).

A k-Lipschitz vector field on a Riemannian manifold is k-quasi-isometric. In fact, a
Lipschitz vector field X on B? which is tangent to dB? is quasi-isometry as a vector
field on H?® = int B3. This is clear in a neighborhood of the origin in B3. To see
this for an arbitrary point x, approximate X near x by a parabolic vector field, as in
the proof of 11.1.1, and translate x to the origin.

In particular, if ¢, is an isometry of OOr with Lipschitz time derivative, then ex ¢,
has a quasi-isometric time derivative, and (¢, is a quasi-isometry.

Our next step is to study the derivatives of ex X, so we can understand how a
more general isotopy such as ex ¢, distorts the hyperbolic metric. From the definition
of ex X, it is clear that ex is natural, or in other words,

ex(TuX) = T (ex(X))

where T is an isometry of H? (extended to S2, where appropriate).
If X is differentiable, we can take the derivative at T' = id, yielding

ex[Y, X] = [Y, ex X]

for any infinitesimal isometry Y. If Y is a pure translation and X is any point on the
axis of Y, then VxY, = 0. (Here, V is the hyperbolic covariant derivative, so VW
is the directional derivative of a vector field W in the direction of the vector field Z.)
Using the formula

Y, X]=VyX —VyY,

we obtain:

PROPOSITION 11.1.2. The direction derivative of ex X in the direction Y,, at a
point x € H3, is
Vy, ex X = ex[Y, X],

where Y is any infinitesimal translation with axis through x and value Y, at x. [
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11.1. EXTENSIONS OF VECTOR FIELDS

The covariant derivative VX, which is a linear transformation of the tangent
space T, (H?) to itself, can be expressed as the sum of its symmetric and antisym-
metric parts,

VX =V°X 4+ VX,
where
Vi XY = %(VYX Y +VyX-Y)
and
VXY = %(VyX Y = Vy X Y).
The anti-symmetric part VX describes the infinitesimal rotational effect of the flow

generated by X. It can be described by a vector field curl X pointing along the axis
of the infinitesimal rotation, satisfying the equation

vX = %CurlX xY

where X is the cross-product. If eg,eq, ey forms a positively oriented orthonormal
frame at X, the formula is

curl X = Z (Ve, X -€iy1— Ve, X - €) €ipa.
1€Z/3

Consider now the contribution to ex X from the part of X on an infinitesimal area on
S2 | centered at y. This part of ex X has constant length on each horosphere about
y (since the first derivative of a parabolic transformation fixing y is the identity),
and it scales as e73, where t is a parameter measuring distance between horospheres
and increasing away from y. (Linear measurements scale as e~*. Hence, there is a
factor of e=2! describing the scaling of the apparent area from a point in H?, and a
factor of —e' representing the scaling of the lengths of vectors.) Choose positively
oriented coordinates t, z1, To, so that ds? = dt? 4 €*'(dz? + dz3), and this infinitesimal
contribution to ex X is in the 0/0z; direction. Let ey, €; and ey be unit vectors in
the three coordinate directions. The horospheres ¢ = constant are parallel surfaces,
of constant normal curvature 1 (like the unit sphere in R3), so you can see that

Veoeo = Veoel = Ve(]eg =0

Ve e = +e1, Ve, e1 = —eg, Ve, e =0
and
V62€0 = €9, v6262 = —¢€p, vegel = 0.

(This information is also easy to compute by using the Cartan structure equations.)

The infinitesimal contribution to ex X is proportional to Z = e 3¢y, so

curl Z = (Ve Z - e1 — Ve, Z - €g) €9

_ —3t
= —2e eq.
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11. DEFORMING KLEINTAN MANIFOLDS

(The curl is in the opposite sense from the curving of the flow lines because the effect
of the flow speeding up on inner horospheres is stronger.)

g e
.-,

This is proportional to the contribution of X to exiX from the same infinitesimal
region, so we have

ProproOSITION 11.1.3.
Curl (ex X) = 2ex(iX),
and consequently
Curl® (ex X) = —4ex X
and

Div (ex X) = 0.

PRrOOF. The first statement follows by integration of the infinitesimal contribu-
tions to curlex X. The second statement

curl curlex X = 2curlexiX = 4exi?X = —4ex X,

is immediate. The third statement follows from the identity divcurlY = 0, or by
considering the infinitesimal contributions to ex X. U

The differential equation curl? ex X +ex X = 0 is the counterpart to the statement
that ex f = av f is harmonic, when f is a function. The symmetric part V*X of the
covariant derivative measures the infinitesimal strain, or distortion of the metric, of
the flow generated by X. That is, if Y and Y’ are vector fields invariant by the flow
of X, so that [X,Y] = [X,Y’] =0, then Vy X = VxY and Vy, X = VxY’ so the
derivative of the dot product of Y and Y” in the direction X, by the Leibniz rule is

X(Y -Y)=VyY V' +Y  VyY'
ZVYX-Y/+VY/X-Y
— (V5 X - Y)).

The symmetric part of V can be further decomposed into its effect on volume
and a part with trace 0,

VeX = L Trace(V°X) - [ + VX,
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11.1. EXTENSIONS OF VECTOR FIELDS

Here, I represents the identity transformation (which has trace 3 in dimension 3).

Note that trace V°X = trace VX = divergence X = XV, X - e; where {¢;} is an

orthonormal basis, so for a vector field of the form ex X, Vfex X = V% ex X. 11.13
Now let us consider the analagous decomposition of the covariant derivative VX

of a vector field on the Riemann sphere (or any surface). There is a decomposition

VX = VX + 3(trace VX)I + V*X.
Define linear maps 0 and 0 of the tangent space to itself by the formulas
OX(Y) = H{VyX —iVyy X}
and

0X(Y)=HVyX +iVy X}

2
for any vector field Y. (On a general surface, i is interpreted as a 90° counter-clockwise
rotation of the tangent space of the surface.)

ProproOSITION 11.1.4.
0X = 3(trace VX)I + VX
= 1{(div X)I + (curl X)il}

and
0X = V¥ X.
0X s invariant under conformal changes of metric.
REMARK (Notational remark). Any vector field on C be written X = f(2)0/0z,

in local coordinates. The derivative of f can be written df = f,dz + f,dy. This can
be re-expressed in terms of dz = dx + idy and dz = dx — idy as

df = f.dz + fsdz

where
.= %(fz - @fy)

and 11.14
Jz= %(fx +ify).

Then Of = f.dz and Of = f-dZ are the complex linear and complex conjugate linear

parts of the real linear map df. Similarly, X = f.dz9/0z and 0X = f,dz0/0z are

the complex linear and conjugate linear parts of the map dX = VX.
Proor. If L : C — C is any real linear map, then

L=%(L—ioLoi)+i(L+ioLoi)
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11. DEFORMING KLEINTAN MANIFOLDS

is clearly the decomposition into its complex linear and conjugate linear parts. A
complex linear map, in matrix form

i

is an expansion followed by a rotation, while a conjugate linear map in matrix form
a b
b —al’

To see that 0X is invariant under conformal changes of metric, note that VxiY =
1V xY and write 0X without using the metric as

is a symmetric map with trace 0.

OX(Y) = H{Vy X +iViy X}
= H{Vy X — VxY +iVy X —iVxiV}
= H[Y, X] +i[iY, X]}. U

We can now derive a nice formula for V®ex X:

PROPOSITION 11.1.5. For any vector Y € T,(H?) and any C* vector field X on
S2, 11.15

S ex X = 3/47r/ i (X (Vo)) V.
S

2
oo

PRrOOF. Clearly both sides are symmetric linear maps applied to Y, so it suffices
to show that the equation gives the right value for Vy ex X - Y. From 11.1.2, we have

Vyex X Y = ex[Va, X]- Y
- 3/87r/ Yao, X] - Yo dV,
SZ
and also, at the point = (where ex:Y,, = 0),
0= [ex1Yo, X] - exiYy

— 3/8x / (1Yo, X] - Yoo dV,
S’Q

:3/87T/ —i[iYao, X] - Yoo V.
52
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11.1. EXTENSIONS OF VECTOR FIELDS

Therefore
yexX Y =Vyex X Y

- 3/87r/ Vo, X] - Yoo +[iVae, X] - Yau dV,
SQ

= 3/4n (/ 0X(Yy) dV;)Y.
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