
Dynamical systems amenable to formulation in terms of a Hamiltonian function
or operator encompass a vast swath of fundamental and applied mathematics and
physics. The book represents work carried out during the special program on Hamil-
tonian Systems at MSRI in the Fall of 2018. Topics covered include KAM theory,
polygonal billiards, Arnold diffusion, quantum hydrodynamics, viscosity solutions of
the Hamilton–Jacobi equation, surfaces of locally minimal flux, Denjoy subsystems
and horseshoes, and relations to symplectic topology.
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Denjoy subsystems and horseshoes
MARIE-CLAUDE ARNAUD

We introduce a notion of weak Denjoy subsystem (WDS) that generalizes the
Aubry–Mather–Cantor sets to diffeomorphisms of manifolds. We explain how
a rotation number can be associated to such a WDS. Then we build in any
horseshoe a continuous one parameter family of such WDS that is indexed by
its rotation number. Looking at the inverse problem in the setting of Aubry–
Mather theory, we also prove that for a generic conservative twist map of
the annulus, the majority of the Aubry–Mather sets are contained in some
horseshoe that is associated to a Aubry–Mather set with a rational rotation
number.

1. Introduction and main results

All the dynamicists know the famous Poincaré sentence about periodic orbits:

Ce qui nous rend ces solutions périodiques si précieuses, c’est qu’elles
sont, pour ainsi dire, la seule brèche par où nous puissions essayer de
pénétrer dans une place jusqu’ici réputée inabordable.

But a periodic orbit for a dynamical system f : X→ X is simply a finite invariant
subset and the dynamics restricted to this set cannot be very complicated. What
is more interesting is the dynamics close to such a periodic orbit, that may give
rise to various rich phenomena. For example, for a symplectic diffeomorphism
of a surface, two kinds of restricted dynamics to invariant Cantor sets can exist
close to the periodic orbits, that are:

• Horseshoes close to hyperbolic periodic points (see [27]);1 since the work
of Katok in [16], they are known to be the evidence of positive topological
entropy. Moreover, they contain a dense set of periodic points.

This material is based upon work supported by the National Science Foundation under Grant No.
DMS-1440140 while the author was in residence at the Mathematical Sciences Research Institute
in Berkeley, California, during the Fall 2018 semester.
MSC2020: 37B10, 37C05, 37C29, 37D05, 37E40.
Keywords: smooth mappings and diffeomorphisms, symbolic dynamics, homoclinic and

heteroclinic orbits, hyperbolic orbits and sets, twist maps, rotation numbers and vectors.
1We will define them precisely later in the article.
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• Aperiodic Aubry–Mather sets close to elliptic periodic points (see [3; 8; 22]);
they are known to have zero topological entropy and contain no periodic
points.

Although we will later focus on some specific horseshoes, we give here a general
definition of horseshoe.

Definition. Let f : M→ M be a surface diffeomorphism. A horseshoe for f
is a f -invariant subset H ⊂ M such that the dynamics f|H is C0 conjugate to
the one of a nontrivial transitive subshift with finite type. A horseshoe for f
is a σ2-horseshoe when the dynamics f|H is C0 conjugate to the shift with two
symbols.

Example. The first horseshoe was introduced by S. Smale in [27] close to a
transversal homoclinic intersection of a hyperbolic periodic point. This horseshoe
is hyperbolic. Burns and Weiss extended this in [7] to the case of topologically
transversal homoclinic intersection. Le Calvez and Tal use purely topological
horseshoes for 2-dimensional homeomorphisms in [20].

The category of aperiodic Aubry–Mather set was recently extended in [2] to
the notion of so-called Denjoy subsystem by P. Le Calvez and the author. We
recall the definition given in [2].

Definition. Let f : M→ M be a Ck diffeomorphism of a manifold M . A Ck

(resp. Lipschitz) Denjoy subsystem for f is a triplet (K , γ, h) where:

• γ : T→ M is a Ck (resp. bi-Lipschitz) embedding.

• h : T→ T is a Denjoy example with invariant compact minimal set K ⊂ T.

• f (γ (K ))= γ (K ).

• γ ◦ h|K = f ◦ γ|K .

Remarks. • In this definition, γ (T) is not necessarily invariant.

• Observe the importance of γ to fix the regularity of γ (K ).

• For k = 0, what we call a C0-diffeomorphism is in fact a homeomorphism
and in this case we just require that γ is a continuous embedding.

• The embedding is also useful to define a circular order on the Cantor
set γ (K ).

Example. There exists different notions of Aubry–Mather sets for the exact
symplectic twist maps of the annulus; see [3] and [22]. We will follow [4] and
for us, an Aubry–Mather set is a well ordered compact set that contains only
minimizing orbits in a variational setting; see, e.g., [3; 4]. Let us recall some
results that are contained in [4] and [1] and that we will use. We fix an exact
symplectic twist map f of the infinite annulus and a lift F : R2

→ R2. Then:
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• Every Aubry–Mather set is a partial Lipschitz graph.

• Every Aubry–Mather set A has a rotation number ρ(A) ∈ R.

• For every r ∈ R\Q, there exists a unique maximal (for ⊂) Aubry–Mather
set Ar with rotation number r that contains every Aubry–Mather set with
the same rotation number.

• For every r = p
q ∈Q, there exist two Aubry–Mather set A±r with rotation

number r that are maximal (for ⊂) among the Aubry–Mather sets with the
same rotation number. They are such that: ∀x ∈Ãr

+, π1◦Fq(x)≥π1(x)+ p
(resp. ∀x ∈ Ãr

−, π1 ◦ Fq(x) ≤ π1(x)+ p) where π1 : R
2
→ R is the first

projection.

• If (An) is a sequence of Aubry–Mather sets such that the sequence of rotation
numbers (ρ(An)) converges to some r ∈ R, then

⋃
n∈N An is relatively

compact and any limit point of (An) for the Hausdorff distance is an Aubry–
Mather set with rotation number r .

The Aubry–Mather sets Ar that have an irrational rotation number and that are
not a complete graph always contain a Lipschitz Denjoy subsystem Cr .

We noticed that an important advantage of γ is to define a circular order along
γ (K ). But to do that, we only need the embedding restricted to K . That is why
we introduce now a new notion, the one of weak Denjoy subsystem that extends
the one of Denjoy subsystem. This notion is similar to the one of Denjoy set that
was introduced by J. Mather in [23].

Definition. Let f : M→ M be a homeomorphism of a manifold M . A weak
Denjoy subsystem for f (in short WDS) is a triplet (K , j, h) where:

• h : T→ T is a Denjoy example with invariant minimal set K ⊂ T.

• j : K → M is a homeomorphism onto its image.

• f ( j (K ))= j (K ).

• j ◦ h|K = f ◦ j .

When j is bi-Lipschitz or a Ck embedding (in the Whitney sense), we speak
of Lipschitz or Ck weak Denjoy subsystem for f . Two WDS (K1, j1, h1) and
(K2, j2, h2) are equivalent if j1(K1)= j2(K2).

The restriction of a Denjoy subsystem to its nonwandering set is always a
WDS. On a surface, we have the reverse implication.

Proposition 1.1. Let (K , j, h) be a WDS of a surface homeomorphism. Then
there exists a C0 Denjoy subsystem (K , γ, h) such that γ|K = j .
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Remarks. • This result is specific to the case of surfaces because it uses a
classical result on extension of homeomorphisms between Cantor sets of
surfaces.

• We do not know about such a result with more regularity: Lipschitz, C1 (a
kind of Whitney extension theorem for diffeomorphisms). Observe that we
proved in [2] that there exists no C2 Denjoy subsystem.

Remark. Let us recall that a circular order relation on a set X is a relation ≺
that is defined on the triplets of points of X such that:

• If x, y, z ∈ X , we have x ≺ y ≺ z or z ≺ y ≺ x ; we use the notation
[x, z]≺ = {y ∈ X; x ≺ y ≺ z}.

• If x 6= z, the two previous lines of inequalities are simultaneously satisfied
if and only if x = y or y = z.

• If x ≺ y ≺ z, then y ≺ z ≺ x .

• If x ≺ y ≺ z and x ≺ z ≺ t then x ≺ y ≺ t .

If ≺ is a circular order on X , the inverse order −≺ is defined by

∀x, y, z ∈ X, x(−≺)y(−≺)z⇔ z ≺ y ≺ x .

Notations. • If (K , j, h) is a WDS, we denote by ≺K the circular order on
j (K ) that is deduced from the one of K ⊂ T via the map j .

• The graph G(≺K ) of this order relation is the set of the triplets (a, b, c) ∈
( j (K ))3 such that j−1(a)≺ j−1(b)≺ j−1(c) where ≺ is the usual order on
T. This graph G(≺K ) is then a closed subset of ( j (K ))3 and then of (M)3.
Observe that for every a, c ∈ j (K ), G(≺K , a, c) = {b ∈ j (K ); (a, b, c) ∈
G(≺K )} is a nonempty compact subset of M , called an interval of G(≺K ).

Remark. We have G(≺K , a, a)= j (K ) and for a 6= c, G(≺K , a, c) contains at
least a and c. Moreover, we have G(≺K , a, c) = {a, c} if and only if {a, c} is
one gap of the Cantor set.2

The first theorem we will prove allows us to extend Poincaré’s notion of
rotation number to WDS, or more precisely to the classes of equivalence of
WDS.

Theorem 1.2. Let (K1, j1, h1) and (K2, j2, h2) be two equivalent WDS for a
same homeomorphism f : M→ M of a manifold M. Then:

• There exists a homeomorphism h : T→ T such that h ◦ h1 = h2 ◦ h.

• We have ≺K1=≺K2 or ≺K1= − ≺K2 , hence the two orders have the same
intervals.

2Observe that in this case, a and c are α and ω-asymptotic under the dynamics.
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Corollary 1.3. The map ρ defined on the set of WDS with values in T/x ∼−x
that associates to any WDS (K , γ, h) the rotation number of h modulo its sign
is such that if (K1, γ1, h1) and (K2, γ2, h2) are equivalent, then ρ(K1, γ1, h1)=

ρ(K2, γ2, h2).

Let us endow the set of WDS with a topology that focus on their order relation.

Notations. We endow M with a Riemannian metric d and M3 is endowed with
the natural sup distance associated to d that is denoted by d∞. Then D (resp.
D∞) is the associated Hausdorff distance on the set of nonempty compact subsets
of M (resp. M3).

Definition. Let f : M → M be a homeomorphism of a manifold M . Let
(Ki , ji , hi ) be two weak Denjoy subsystems for f . We denote by G(≺Ki )⊂ M3

(resp. G(−≺Ki )) the graph of ≺Ki (resp. −≺Ki ).
We define a distance δ on the set of the weak Denjoy subsystems for f by the

following equality.
We have

δ((K1, j1,h1),(K2, j2,h2))

=max
{
D( j1(K1), j2(K2)),min{D∞(G(≺K1),G(≺K2)),D∞(G(−≺K1),G(≺K2))}

}
.

Proposition 1.4. The map that associates to every WDS its rotation number is
continuous.

Remark. The previous result extends a result that is well-known in the setting
of well-ordered sets for twist maps.

Horseshoes and WDS are different but in general, it is believed that, up to
some entropy restriction, horseshoes dynamics contain every dynamics (via
symbolic dynamics).3

We will prove that every horseshoe contains many WDS, and even a continuous
1-parameter family (Dρ) continuously depending on its rotation number ρ where
ρ is in a nontrivial interval of T/x ∼−x of irrational numbers.

Theorem 1.5. Let f :M→M be a Ck diffeomorphism and let H be a horseshoe
for f . Then exists N ≥ 1 and a continuous map D : r ∈ (T\Q)/x ∼−x 7→
(Kr , jr , hr ) such that:

• D(r)= (Kr , jr , hr ) is a continuous WDS with rotation number r for f N .

• jr (Kr )⊂H.

Moreover, if H is a σ2-horseshoe, we have N = 1.

3This is not completely correct because, for example, the dynamics of an odomoter cannot
be embedded in a horseshoe even if it has zero entropy: it is an isometry and the horseshoe is
expansive.
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Different authors before us built embedding of Denjoy dynamics into horse-
shoes. The first one is certainly [12], that embeds some Denjoy dynamics into the
abstract horseshoe by using Sturmian sequences (this article follows the seminal
work of Hedlund and Morse in [25]). In [15], the authors build an uncountable
family of Denjoy dynamics in a given horseshoe. If we analyze their construction,
for every irrational rotation number, they build an uncountable family of weak
Denjoy subsystems with two holes that are not conjugate together (see Markley,
[21], for a characterization of conjugated Denjoy examples). In [6], Boyland
used a distance different from the one we use (his distance uses the Hausdorff
distance D in M and also a distance on the set of Borel probability measures)
and proved that for every irrational rotation number and every integer N ≥ 1,
there is a N -dimensional topological disc of weak Denjoy subsystems having
this rotation number in every horseshoe. He also explained a general method to
obtain all the weak Denjoy subsystem of a horseshoe. In [5], looking for special
invariant measures of the angle doubling on the circle, Bousch uses the one side
shift on {0, 1}N and the unique invariant measure with support in a Cantor set
analogous to the one we build.

Remarks. • The continuous WDS that we will embed in the horseshoe are
WDS that have only a pair of orbits that are ω asymptotic (and then α-
asymptotic because we have a Denjoy dynamics), i.e., that correspond to a
Denjoy example with exactly one orbit of a wandering interval (we will say
one gap).

• Observe that the shift dynamics is expansive. Hence we cannot embed in it
a WDS with a infinite countable number of gaps: one of these gaps would
have all its orbit with diameter less than the expansivity constant, which is
impossible.

• But it is possible to embed a family of WDS with a finite number p of gaps
in a σsup{2,p}-horseshoe.

• A similar method to embed Cantor sets with an interval of rotation numbers
was proposed by K. Hockett and P. Holmes for dissipative twist maps in
[15]. Here we proved a more general statement (for WDS) and also prove a
continuity result.

Corollary 1.6. Let f : M (2)
→ M (2) be a Ck diffeomorphism of a surface and let

H be a horseshoe for f . Then exists N ≥ 1 and a map D : r ∈ (T\Q)/x ∼−x 7→
(Kr , γr , hr ) such that:

• D(r)= (Kr , γr , hr ) is a continuous Denjoy subsystem with rotation number
r for f N .

• The map W : r ∈ (T\Q)/x ∼−x 7→ (Kr , γr |Kr , hr ) is continuous.
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• γr (Kr )⊂H.

Moreover, if H is a σ2-horseshoe, we have N = 1.

Remarks. • We do not know how to choose continuously the embedding γr

or at least its image. But we do not need that to describe the dynamics on
γr (Kr ).

• In the setting of the Aubry–Mather theory, the map that associates to any
Aubry–Mather set Ar the graph that linearly interpolates Ar is in fact
continuous when we endow the set of functions with the C0 distance, and
we will see that the Aubry–Mather sets with an irrational rotation number are
actually contained in some horseshoes in the generic case. But the Aubry–
Mather set do not continuously depend on the rotation number r ∈ R\Q,
so even in the case of the Aubry–Mather sets we do not know if we can
interpolate in a continuous way by a curve.

We now focus on Aubry–Mather theory and address the inverse problem: are
the WDS that appear in a natural way in symplectic 2-dimensional dynamics
contained in some horseshoe?

Theorem 1.7. Let f : T×R→ T×R be an exact symplectic twist map and let
F : R2

→ R2 be a lift of f . Assume that A+r (resp. A−r ) is uniformly hyperbolic
for some rational number r ∈ Q. Let Vr be a neighborhood of A+r (resp. A−r ).
Then there exists a horseshoe H+r (resp. H−r ) for some f N and ε > 0 such that:

• H+r (resp. H−r ) contains A+r (resp. A−r ) and is contained in Vr .

• Every Aubry–Mather set with rotation number in (r, r + ε) (resp. (r − ε, r))
is contained in H+r (resp. H−r ).

• Every point in H+r (resp. H−r ) has no conjugate points, i.e., has its orbit that
is locally minimizing.

Remarks. • It is well known that the topological entropy of a twist map
restricted to the union of all its hyperbolic Aubry–Mather sets is zero and
has zero Hausdorff dimension; see [9]. Theorem 1.7 implies that for an open
and dense subset of conservative twist diffeomorphisms (in any reasonable
topology), there exists an invariant set K of points with no conjugate points
such that the dynamics restricted to K has positive topological entropy and
positive Hausdorff dimension.

• In [18], a transitive set that contains all the Aubry–Mather sets is built by P.
Le Calvez. But this set is very different from the one we build here, because
it contains in general orbits with conjugate points and is far from every
Aubry–Mather set A±r . Moreover, it is not a horseshoe.



8 MARIE-CLAUDE ARNAUD

• Observe that no WDS (K , j, h) that is contained in a hyperbolic horseshoe
is C1. Indeed, the endpoints a, b of every gap are α and ω-asymptotic and
their orbits are dense in j (K ). But for n large enough, f n(a) and f n(b) are
in the same local stable manifold and then oriented in the stable direction
and f −n(a) and f −n(b) are in the same local unstable manifold and the
oriented in the unstable direction. Hence, close to any point in j (K ), we
find points such that the geodesic that joins them is either along the stable
or the unstable direction. So j cannot be C1. In the Aubry–Mather setting,
it is Lipschitz.

• As we noticed before, a weak Denjoy subsystem (K , j, h) that is contained
in a horseshoe has a finite number of gaps. When the horseshoe is uniformly
hyperbolic with an expansivity constant equal to ε and j is k-bi-Lipschitz,
it can be proved that the number of gaps is at most k

ε
.

A remarkable result of P. Le Calvez asserts that general Aubry–Mather sets
of general exact symplectic twist diffeomorphisms are uniformly hyperbolic;
see[19]. Joint with Theorem 1.7, this implies the following corollary.

Corollary 1.8. There exists a dense Gδ subset G of the set of Ck exact symplectic
twist diffeomorphisms (for k ≥ 1) such that for every f ∈ G, there exist an open
and dense subset U ( f ) of R and a sequence (rn)n∈N in U ( f )∩Q such that every
minimizing Aubry–Mather set with rotation number in U ( f ) is hyperbolic and
contained in a horseshoe associated to a minimizing hyperbolic Aubry–Mather
set whose rotation number is rn .

Remark. Observe that in [11], Goroff gives an example where the union of all
the Aubry–Mather sets is uniformly hyperbolic.

An open problem is the possible extension of Theorem 1.7 in a relaxed setting.
Hence we rise the following questions.

Question (A. Fathi). Without assuming hyperbolicity, are the Aubry–Mather
sets that are Cantor contained in some (nonhyperbolic) horseshoe?

Another question concerns the dynamics that are not necessarily twist diffeo-
morphisms.

Question. For a (possibly generic) symplectic diffeomorphism, is any WDS
contained in some horseshoe?

It is possible to build C1 or C2 examples that have WDS that are not contained
in horseshoes (examples that have a C1 invariant curve on which the dynamics
is Denjoy, see [14]), but our question concerns higher differentiability.
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1A. Notations. For any hyperbolic periodic point x of a C1 diffeomorphism,
we denote by W s(x, f ) or W s(x) (resp. W u(x, f ) or W u(x)) its stable (resp.
unstable) submanifold and by W s

loc(x, f ) or W s
loc(x) (resp. W u

loc(x, f ) or W u
loc(x))

its local stable (resp. unstable) submanifold. We adopt exactly the same notations
for not necessarily periodic points that belong to some hyperbolic set.

Also we mention that the annulus is A=T×R, that its tangent space is A×R2

and that the tangent space at every point is endowed with its usual Euclidean
norm. Moreover, we use the notation π1 : A→ T for the first projection as well
as its lift π1 : R

2
→ R.

2. Proof of Proposition 1.1

We assume that (K , j, h) is a weak Denjoy subsystem of a surface homeomor-
phism. If we embed T in R2, then K is a Cantor set that is a subset of R2.

The main argument of the proof is a result that is contained in Chapter 13
of [24].

Theorem. Every homeomorphism between two Cantor subsets of R2 can be
extended so as to give a homeomorphism of R2 onto itself.

Corollary 2.1. Let C be a Cantor subset that is contained in a topological open
disc D. For every δ > 0, there exists a finite number of disjoint topological discs
D1, . . . , Dn with diameter less than δ such that

C ⊂
⋃

1≤i≤n

Dk ⊂
⋃

1≤i≤n

Dk ⊂ D.

Let us prove the corollary. If C is a Cantor set that is contained in an open disc
D, there exists a homeomorphism h : D→R2 such that h(C) is the triadic Cantor
set C0⊂R×{0}. We can decrease slightly D in such a way that C⊂ D′⊂ D′⊂ D
and h is restricted to the closed topological disc D′. For every ε > 0, there exists
a covering of C0 by a finite number of topological discs d1, . . . , dn that are
contained in h(D′) and have diameter less than ε; indeed, this result is well
known for the triadic subset in the real line and we just have to choose ε less than
the distance between C0 and R2

\h(D′) and thicken the intervals into topological
discs. Because h−1 is uniformly continuous, we deduce that for every ε > 0,
there exists a finite covering of C by a finite number of disjoint discs that are
contained in D′ and have diameter less than ε. �

There exists η > 0 (that is less than the radius of injectivity of the Riemannian
metric on j (K )) such that every set with diameter less than η that intersects
j (K ) = C is contained in some topological disc. As C = j (K ) is a Cantor
set, it is (uniformly) homeomorphic to the triadic Cantor set. Hence, there
exists a closed partition of C into a finite number of sets C1, . . . ,C p that are
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open an closed in C and have diameter less than η. As the diameter of every
C j is less than η, there exists a topological disc B j that contains the Cantor
set C j . We introduce the notation δ = min{min{d(Ci ,C j ); i 6= j}, η}. Then
we can apply Corollary 2.1: there exists a finite number of disjoint topological
discs D j

1 , . . . , D j
n j with diameter less than δ

2 such that C j ⊂
⋃

1≤k≤n j
D j

k ⊂⋃
1≤k≤n D j

k ⊂ B j . For every i 6= j , D j
k intersects C j and has diameter less than

d(Ci ,C j )/2. We deduce that if ( j, k) 6= ( j ′, k ′), then D j
k ∩ D j ′

k′ =∅. We have
found a covering of C by disjoint discs. We can join them to obtain a topological
disc D in M that contains C . There exists a homeomorphism 8 : D→ R2.

Then the Cantor subset 8◦ j (K ) of R2 is homeomorphic to the Cantor subset
K of R2.

We deduce that there exists a homeomorphism ψ : R2
→ R2 that extends the

homeomorphism 8 ◦ j : K → 8 ◦ j (K ).4 Then γ = 8−1
◦ψ : T→ D ⊂ M

is a simple continuous curve and (K , γ, h) is a Denjoy subsystem that extends
(K , j, h).

3. Proof of Theorem 1.2 and Corollary 1.3

3A. Proof of the first point of Theorem 1.2 and of Corollary 1.3. Let (X, d) be
a metric space. We associate to any continuous dynamical system F : X→ X
an equivalence relation RF that is defined by

xRF y⇔ lim
k→+∞

d(Fk x, Fk y)= 0.

Observe that if H : X→ Y is a homeomorphism and if X is compact, then we
have

xRF y⇔ H(x)RH◦F◦H−1 H(y).

Hence X/RF is compact if and only if Y/RH◦F◦H−1 is compact. We denote by
pF : X→ X/RF the projection.

Because of Poincaré classification of circle homeomorphisms (see for example
[17]), for every orientation preserving homeomorphism h of the circle with
an irrational rotation number, we have Rh = Rh−1 . Moreover, for such an
orientation preserving homeomorphism of the circle with irrational rotation
number, the relation is closed and it is also true for the restriction to any invariant
compact subset. In this case, the quotient space, that corresponds to a closed
equivalence relation on a compact space, is also compact. We then consider a
semiconjugation k between the orientation preserving homeomorphism h of the

4Observe that this is specific to the 2-dimensional setting and that there exists some homeomor-
phisms between two Cantor subsets of R3 that cannot be extended to a homeomorphism of R3,
see Theorem 5 of chapter 18 of [24].
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circle with irrational rotation number and a rotation Rα , i.e., k is nondecreasing
continuous map onto the circle such that

k ◦ h = Rα ◦ k.

Then k : T→ T is continuous and we have

∀x, y ∈ T, k(x)= k(y)⇔ xRh y.

We denote by Kh the unique nonempty minimal h-invariant compact subset (then
Kh is T or a Cantor subset) and we denote by Gh the set of points of Kh that are
Rh related to another point of T. In other words, Gh is the union of the endpoints
of the gaps of the set Kh . Then there exists a unique map k̄ : Kh/Rh → T

such that k̄ ◦ ph = k. The definition of the quotient topology implies that k̄ is
continuous and it is then a homeomorphism from Kh/Rh to T. Moreover, there
exists a unique map h̄ : Kh/Rh→ Kh/Rh that is the quotient dynamics and that
satisfies

h̄ ◦ ph = ph ◦ h;

we have then
k̄ ◦ h̄ = Rα ◦ k̄,

i.e., k̄ is a conjugation between h̄ and Rα.
Let us consider two WDS (K1, j1, h1) and (K2, j2, h2) for the same homeo-

morphism f : M→ M of a manifold M such that C = j1(K1)= j2(K2). Let ki

be a semiconjugation between hi and a rotation Rai , i.e.,

ki ◦ hi = Rai ◦ ki .

As f|C = ji ◦ hi ◦ j−1
i , then C/R f is homeomorphic to Ki/Rhi and so to T. We

denote by p :C→C/R f the projection and by f̄ :C/R f →C/R f the reduced
dynamics; see Figure 1.

Then the map ki ◦ j−1
i : C→ T is a continuous surjection such that

ki ◦ j−1
i (x)= ki ◦ j−1

i (y)⇔ p(x)= p(y).

Hence, there exists a unique homeomorphism `i :C/R f →T such `i◦p=ki◦ j−1
i .

We have then for all x̄ = p(x) ∈ C/R f

Rai ◦ `i (x̄)= Rai ◦ ki ◦ j−1
i (x)

= ki ◦ hi ◦ j−1
i (x)

= ki ◦ j−1
i ◦ ( ji ◦ hi ◦ j−1

i )(x)

= ki ◦ j−1
i ◦ f (x)

= `i ( f̄ (x̄)).
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hi

Ki

Rai

ki

phi
hi

flC

C/Rf

fi

p

ji C=ji(Ki)

Ki/Rhi

Figure 1. Two WDS, (K1, j1, h1) and (K2, j2, h2) for the same
homeomorphism f :M→M of a manifold M such that C = j1(K1)=

j2(K2).

We deduce that

Ra1 = `1 ◦ f̄ ◦ `−1
1 = (`1 ◦ `

−1
2 ) ◦ Ra2 ◦ (`1 ◦ `

−1
2 )−1.

As Ra1 and Ra2 are conjugate, we have a1 =±a2. More precisely, a1 = a2 when
the conjugation preserves the orientation (and then is (x 7→ x+C)) and a1=−a2

when the conjugation reverses the orientation (and then is (x 7→ C − x)). This
gives Corollary 1.3 but doesn’t end the proof of the first point of Theorem 1.2.

To finish the proof of this point, let us observe that

j1(Gh1 ∩ K1)= j2(Gh2 ∩ K2)= {x ∈ C; ∃y ∈ C; y 6= x, yR f x}

is the set of the endpoints of the gaps of f|C (gaps are pairs of points that are
ω-asymptotic). We denote this set by C0.

Thus we have ki (Ghi )= ki ◦ j−1
i (C0)= `i ◦ p(C0). We deduce that k1(Gh1)=

`1 ◦ `
−1
2 (k2(Gh2)). As `1 ◦ `

−1
2 is either a translation x 7→ x +C or a symmetry

x 7→ C − x , there exists C ∈ R such that either k1(Gh1) = C + k2(Gh2) or
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k1(Gh1)=C−k2(Gh2). In other words, the image by k1 of the union of the gaps
of Kh1 is the image by a translation or a symmetry of the image by k2 of the
union of the gaps of Kh2 . As explained in [13] and [21], this is equivalent to the
fact that h1 and h2 are conjugated.

3B. Proof of the second point of Theorem 1.2. For the second point, we know
that ji :Ki→C defines the order≺Ki . If we identify points that are ω-asymptotic,
we obtain a reduced order relation ≺Ki on Ki/Rhi and C/R f and j̄i : Ki/Rhi →

C/R f is an order preserving homeomorphism. As there are only two possible
orientations on the circle, we deduce for the two reduced order relations on
C/R f that either they are equal or they are reverse. To deduce the result for the
nonreduced relation, we have just to note that there is only one way to define the
closed order relation ≺Ki on C whose reduced relation is ≺Ki .

4. Proof of Proposition 1.4

Let us begin by explaining some results on the symbolic dynamics of WDS.
If (K , j, h) is a WDS for f , we can encode the dynamics in the following
noninjective way.5 Let x0 ∈ j (K ) be a point of j (K ). We consider the interval
I0 of j (K ) of the points y ∈ j (K ) such that x0, y and f (x0) are in this order
for ≺K . We decide that x0 ∈ I0 but f (x0) /∈ I0. We denote by I1 = j (K )\I0 the
complement of I0 in j (K ). Then we consider the map that associates to every
point x ∈ j (K ) its itinerary

I(x)= (nk(x))k∈Z

where f k(x) ∈ Ink(x). When x0 is the right end of a gap (a gap is the image by j
of the two endpoints of a wandering interval of h) of j (K ), I0 and I1 are closed
and open in j (K ) and then I is continuous.6

We assume that x0 is indeed the right end of a gap of j (K ) and we denote
by K the set I(K ). As the Denjoy example is semiconjugate to the rotation
with angle α = ρ(h), I(x0) is nothing else than the Sturmian sequence that is
associated to the rotation Rα , i.e., (see [10]) nk(x)= 0 if and only if kα ∈ [0, α).

Let us now consider a WDS (K1, j1, h1) that is close to (K , j, h) for the
topology that we defined before. Let (x1, x0) be the gap whose x0 is the right
end in j (K ). Then the interval G(≺K , x1, x0) = {x0, x1} has only two points.
As G(≺K1) is close to G(≺K ) for the Hausdorff distance, there exists two points
y1, y0 ∈ j (K1) that are close to x1, x0 and such that G(≺K1, y1, y0) is contained

5Observe that this is not necessarily the encoding that is given by the subshift of finite type on
the horseshoe when this WDS is contained in some horseshoe.

6We will prove in Section 5 that when h is a Denjoy example with one gap, then I is in fact a
homeomorphism on its image.
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in a neighborhood of G(≺K , x1, x0). As we know that y1, y0 ∈ G(≺K1, y1, y0),
that y0 is close to x0 and that y1 is close to x1, this implies that G(≺K1, y1, y0)

is close to G(≺K , x1, x0) for the Hausdorff distance. Then we write

G(≺K1, y1, y0)= G0 ∪G1

where the points of G0 are close to x0 and the points of G1 are close to x1. Observe
that G(≺K1, y1, y0) is an interval for ≺K1 , where ≺K1 define a (noncircular) total
order. Hence we can define z1 = supG1 and z0 = infG0. Then {z1, z0} is a gap
of K1 that is close to {x1, x0} for the Hausdorff topology. We then associate to
z1 its itinerary exactly as we did for x1. Let us fix N ≥ 1. Then if (K1, j1, h1) is
close enough to (K , j, h), the two itineraries between −N and N match. But
these itineraries determine the first terms of the continued fraction of the two
rotations numbers of h1, h (see [10]). Because they coincide up to the order N,
we deduce that ρ(h1) is close to ρ(h) and then that the rotation number map is
continuous.

5. Proof of Theorem 1.5 and Corollary 1.6

5A. Proof of Theorem 1.5. We will use the following notions.

Definition. A n-cylinder in 62 is a set of sequences (uk)k∈Z ∈ {0, 1}Z such that
u−n = δ−n; . . . , u0 = δ0; . . . ; un = δn where the δi s are fixed in {0, 1}. Defining
d((uk)k∈Z, (vk)k∈Z) = maxk∈Z|uk − vk |/(|k| + 1), observe that a n-cylinder is
exactly a closed ball with radius 1/(n+ 2). A n-word of u is a sequence of n
successive terms of u.

Let f : M → M be a Ck diffeomorphism and let H be a horseshoe for f .
Then there exists a transitive subshift with finite type σA :K→K that is defined
on some shift invariant compact subset K of 6p such that f|H is C0 conjugate
to σA. Then there exists a σA-invariant compact subset K0 ⊂ K and N ≥ 1 such
that σ N

A|K0
is C0 conjugate to σ2. Hence we just need to prove the theorem for a

σ2-horseshoe to deduce the general statement. We assume that f|H = k ◦σ2 ◦k−1.
Let hα : T→ T be a Denjoy example with minimal Cantor set Cα such that:

• T\Cα is the orbit of one interval Iα = (aα, bα).

• The rotation number of h is α.

We consider two disjoint segments I0(α) and I1(α) in T such that:

• One endpoint of I j (α) is in Iα and the other one is in hα(Iα).

• I0(α) joins Iα to hα(Iα) in the direct sense.

Let kα : T→ T be a semiconjugation between hα and Rα , i.e., kα ◦hα = Rα ◦ kα .
Then, the intervals I0(α) and I1(α) are mapped on intervals K0 = [0, α] and
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K1 = [α, 1]. As α is irrational, if (nk)k∈Z ∈62 is any sequence of 0 and 1, there
exists at most one θ ∈ T such that, for every k ∈ Z, we have θ + kα ∈ Knk . Let
us now consider two points θ1 6= θ2 in Cα such that for every k ∈ Z, hk

α(θ1)

and hk
α(θ2) belong to a same interval Ink (α). Then for every k ∈ Z, the points

kα ◦ hk
α(θ1) = kα(θ1)+ kα and kα ◦ hk

α(θ2) = kα(θ2)+ kα belong to the same
interval Knk and so kα(θ1)= kα(θ2), i.e., θ1 and θ2 are the two endpoints of some
gap of the Cantor set Cα. So there exists k ∈ Z such that hk

α(θ1) and hk
α(θ2)

are the two endpoints of Iα for example Iα = (hk
α(θ1), hk

α(θ2)). But this implies
that hk

α(θ1) ∈ I1(α) and hk
α(θ2) ∈ I0(α) and this contradicts that for every k ∈ Z,

hk
α(θ1) and hk

α(θ2) belong to a same interval Ink (α). So we have proved that if
we use the notation for θ ∈ Cα that hk

α(θ) ∈ Ink(θ), then the map `α : Cα→62

defined by `α(θ) = (nk(θ))k∈Z is injective. As the Ik(α) ∩ Cα are open (and
closed) in Cα , this map is also continuous and then is a homeomorphism onto its
image. This provides a homeomorphism from Cα onto `α(Cα)⊂62 such that

∀θ ∈ Cα, `α ◦ hα(θ)= σ2 ◦ `α(θ).

The WDS with rotation number α ∈
[
0, 1

2

)
\Q that we consider is then (Cα, jα =

k ◦ `α, hα).
Observe that `α(bα)= (nk(bα))k∈Z is the Sturmian sequence that is associated

to the rotation Rα . Let us recall that if u = (uk)k∈Z is a Sturmian sequence, then
for every n ≥ 1, there are exactly n+ 1 n-words in u. As hα|Cα is minimal, the
orbit of `α(bα) under σ2 is dense in `α(Cα). Now let us fix α0 ∈ [0, 1/2)\Q
and n ≥ 1. There exists N ≥ 1 such that all the m-words in `α0(bα0) with
m ≤ 2n + 1 are contained in (nk(bα0))k∈[−N ,N ]. If α is close enough to α0,
(nk(bα))k∈[−N ,N ] is equal to (nk(bα0))k∈[−N ,N ]. As `α(bα) = (nk(bα))k∈Z is
Sturmian, this implies that all the m-words in `α(bα)with m≤2n+1 are contained
in (nk(bα))k∈[−N ,N ]= (nk(bα0))k∈[−N ,N ], which means that the distance between
the σ2 orbits of `α(bα) and `(bα0) is less than 1/(n + 2). This implies that
`α(Cα) is 1

n -close to `α0(Cα0). Hence jα(Cα)= k(`α(Cα)) is close to jα0(Cα0)=

k(`α0(Cα0)).
Now we want to prove that G(≺Cα ) is close to G(≺Cα0

). In a equivalent way, we
can work in 62 instead of H and assume that the graphs of G(≺Cα ) and G(≺Cα0

)

are in (62)
3. Then the intersection of the n cylinder C(δ−n, . . . , δ0, . . . , δn)=

{(uk)k∈Z; ∀k ∈[−n, n], uk= δk}with `α(Cα) is an interval for the order≺Cα , that
is before encoding the intersection of intervals

⋂k=n
k=−n h−k

α (Iδk ). This interval is
nonempty if and only if (δi )i∈[−n,n] is a (2n+ 1)-word of the Sturmian sequence
(nk(bα0))k∈Z for α0. Now let us fix n ≥ 1. There exists N ≥ 1 such that all
the admissible (2n + 1)-words of (nk(bα0))k∈Z are contained in the sequence
(nk(bα0))k∈[−N ,N ]. There exists a neighborhood V of α0 in T such that, for every
α ∈ V , we have:
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• ∀k ∈ [−N , N ], nk(bα)= nk(bα0).

• The intervals

C(nk−n(bα), . . . , nk(bα), . . . , nk+n(bα))∩ `α(Cα)

and

C(nk−n(bα0), . . . , nk(bα0), . . . , nk+n(bα0))∩ `α(Cα0)

for n−N ≤ k ≤ N−n (that are 1
n -close to each other) are in the same order,

for ≺Kα
for the first ones and for ≺Kα0

for the second ones, because it is
the order of this intervals for the two rotations.

We deduce that G(≺Cα ) is 1
n -close to G(≺Cα0

).

5B. Proof of Corollary 1.6. It is a corollary of Proposition 1.1 and Theorem 1.5.

6. Proof of Theorem 1.7 and Corollary 1.8

Definition. Let f : A→ A be a diffeomorphism. Then f is an exact symplectic
twist map if:

• The diffeomorphism f is isotopic to identity.

• If λ= π2dπ1 is the Liouville 1-form on A, then f ∗λ− λ is exact.

• If F :R2
→R2 is a lift of f , for every x ∈R, the map y ∈R 7→ π1 ◦ f (x, y)

is a C1 diffeomorphism onto R.

6A. Proof of Theorem 1.7. We assume that f : T×R→ T×R is an exact
symplectic twist map and that F : R2

→ R2 is one of its lifts. We assume that
A+r is uniformly hyperbolic for some rational number r ∈Q. We want to prove
that there exists a horseshoe H+r for some f n and ε > 0 such that:

• H+r contains A+r .

• Every Aubry–Mather set with rotation number in (r, r + ε) is contained
in H+r .

• Every point in H+r has no conjugate points, i.e., has its orbit that is locally
minimizing.

We write r = p
q as an irreducible fraction. As A+r is a compact uniformly

hyperbolic set, it has a finite number of q-periodic points. We denote them by
x1, . . . , xn in the usual cyclic order along T (for the first projection). Then A+r
is the union of these periodic points and some heteroclinic orbits between these
heteroclinic points; see, e.g., [4]. Moreover, such heteroclinic orbit for f q that
is contained in A+r can only connect an xk to xk+1 (with xn+1 = x1). If two
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heteroclinic orbits in A+r connect the same xk to xk+1, we can choose an order
on the union of these two orbits (y j ) j∈Z and (z j ) j∈Z for f q such that

xk < · · ·< y j−1 < z j−1 < y j < z j < y j+1 < z j+1 < · · ·< xk+1.

Let ε > 0 be an expansivity constant for f q
|A+r

and let K be a Lipschitz constant
of the Aubry–Mather set A+r as a graph. Then for some j we have d(y j , z j )≥ ε.
Hence the distance between the projections of y j , z j on the first factor is more
than ε/(1+ K ) for some j . Of course we can use the same argument for any
finite set of heteroclinic orbits (y1

j ) j∈Z, . . . , (yN
j ) j∈Z connecting xk to xk+1 in

A+r . We have

xk · · ·< y1
j−1 < · · ·< yN

j−1 < y1
j < · · ·< yN

j < · · ·< xk+1,

and we find N integers j1, . . . , jN such that (with the convention yN+1
j = y1

j+1)

∀i ∈ {0, N }, d(yi
ji , yi+1

ji )≥ ε.

Then the intervals (π1(y1
j1), π1(y2

j1)), . . . , (π1(yN
jN
), π1(yN+1

jN
)) are disjoint inter-

vals in T with length larger or equal to ε/(K+1). This implies that N ≤ (K+1)/ε.
Hence A+r is a hyperbolic set that is the union of periodic orbits and of a finite
number of heteroclinic orbits. Moreover, there always exists at least a heteroclinic
connection in A+r between two adjacent periodic points in A+r (see [4]). Hence
A+r is a cycle of transverse heteroclinic intersections with period q (see definition
in the Appendix).

We introduce the notation p : R2
→ T×R for the usual projection. When

E ⊂ T×R, we denote by Ẽ = p−1(E) its lift.
Let us fix a neighborhood N of A+r . Then A−r \N is finite because A−r is the

union of A−r ∩A+r and the union of a finite number of orbits that are homoclinic
to A−r ∩A+r . For every x ∈ Ãr

−
\Ñ , we have π1 ◦ Fq(x) < π1(x)+ p. Then

ε=min{π1(x)+ p−π1◦Fq(x); x ∈ Ãr
−
\Ñ } is a positive number. We introduce

the open set

U = p
({

x ∈ R2
;π1(x)+ p−π1 ◦ Fq(x) > ε

2

})
that contains A−r \N . Then N ∪U is a neighborhood of A+r ∪A−r . As the rotation
number map is continuous and as the union of minimizing orbits is closed,
there exists η > 0 such that every Aubry–Mather set with rotation number in
(r − η, r + η) is in N ∪U . If moreover A is an Aubry–Mather set with rotation
number in (r, r + η), then we have

∀x ∈ Ã, π1 ◦ Fq(x) > π1(x)+ p.
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Hence A∩U =∅ and thus A⊂N . We have the proved that there exists η > 0
such that every Aubry–Mather set with rotation number in (r, r+η) is contained
in N .

We then use Section A3 of the Appendix. There exists N ≥ 1 and a neigh-
borhood N of the cycle of transverse heteroclinic intersections with period q
A+r , such that the maximal f q N invariant set contained in N is a horseshoe H+r
for f q N (see Definition). This horseshoe then satisfies the two first points of
Theorem 1.7.

Moreover, observe that along A+r , there exists a D f invariant field of half-lines
(the half Green bundles g+ of G+, see [1]) transverse to the vertical fiber, that is
a subset of the unstable bundle along A+r . By continuity of the unstable bundle
along any hyperbolic set, we can extend g+ to the whole H+r into a field of
half-line that are contained in the unstable bundle. If N is small enough, this
field as well as its first q N images by D f is also transverse to the vertical. This
implies the last point of Theorem 1.7.

6B. Proof of Corollary 1.8. We use the results of P. Le Calvez that are in [19].
We consider the Gδ subset G of the set of Ck symplectic twist diffeomorphisms
f whose elements satisfy the following conditions:

• If x is a periodic point for f with smallest period q , none of the eigenvalues
of D f q(x) is a root of unity.

• All the heteroclinic intersections between invariant manifolds of hyperbolic
periodic points are transverse.

It is proved in [19] that all the Aubry–Mather sets that have a rational rotation
number are hyperbolic. By Theorem 1.7, for every r ∈Q, there exists an open
interval (r − εr , r + εr ) such that every Aubry–Mather set with rotation number
in this interval is contained in the horseshoe H+r or the horseshoe H−r . This gives
the conclusion of the corollary for

U ( f )=
⋃
r∈Q

(r − εr , r + εr ).

Appendix: On horseshoes

In this section, we will be interested in some horseshoes that are related to
the heteroclinic intersections. Generally, authors look at what happens close
to one homoclinic point associated to a periodic point (in [7], the authors also
consider heteroclinic connections for two fixed points). But to apply our results
to Aubry–Mather sets, we will need to study the horseshoes that can be built by
using a (circular) family of periodic points and heteroclinic intersections. Let us
explain this now.
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A1. Introduction to heteroclinic horseshoes. We will consider heteroclinic
cycles. For a diffeomorphism f : M→ M of a surface, we will call a q-periodic
point x a saddle if the two eigenvalues λ, µ of D f q(x) are positive and such
that µ < 1< λ.

Definition. Let f : M→ M be a surface diffeomorphism. A cycle of transverse
heteroclinic intersections with period 1 is determined by:

• A finite cyclically ordered set of saddle hyperbolic fixed points xn+1 =

x1, . . . , xn with an orientation on each submanifold W s(xi ) and W u(xi ).

• For every k ∈ [1, n] a nonzero finite number nk of transverse heteroclinic
points yk

1 , . . . , yk
nk

in W u(xk, f )∩W s(xk+1, f ) such that xk, yk
1 , . . . , yk

nk
are

in this order along W u(xk, f ) and yk
1 ,. . ., yk

nk
, xk+1 also along W s(xk+1, f ).7

Moreover, they define different orbits:

Definition. Let f : M → M be a surface diffeomorphism and let q ≥ 1 be
an integer. A cycle of transverse heteroclinic intersections with period q is
determined by:

• A finite cyclically ordered set of saddle hyperbolic q-periodic points
xnq+1 = x1, . . . , xnq such that this order is preserved by f with an ori-
entation on each submanifold W s(xi ) and W u(xi ); we assume that every
set {xi , xi+n, . . . xi+(q−1)n} is an orbit.

• For every k ∈ [1, qn] a nonzero finite number nk of transverse heteroclinic
points yk

1 , . . . , yk
nk

in W u(xk, f )∩W s(xk+1, f ) such that xk, yk
1 , . . . , yk

nk
are

in this order along W u(xk, f ) and yk
1 ,. . ., yk

nk
, xk+1 also along W s(xk+1, f ).8

Moreover, they define different orbits.

7This implies that the yk
i are all on a same branch of W u(xk , f ) and W s(xk+1, f ).

8This implies that the yk
i are all on a same branch of W u(xk , f ) and W s(xk+1, f ).
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• We also assume nk+n = nk , that xk and xn+k are on a same orbit and that
yk

j and yn+k
j are on the same orbit.

Notation. Now we consider a cycle of transverse heteroclinic intersections H
with period q for f that is given by the xk and the yk

j as before. We denote by
K (H) the union of the orbits of the xk and the yk

j .

Remark. Observe that K (H) is a f -invariant compact set that is uniformly
hyperbolic. We denote by E the tangent bundle T M . By [28], we can translate
the hyperbolicity condition by using some cones. This is an open condition and
we can extend these cones to a compact neighborhood V of K (H) such that:

• There exists a continuous splitting E = E1
⊕ E2 on V that coincides with

E = E s
⊕ Eu on K (H) and two norms |·|i on E i such that

Cx = {v = v1+ v2, v1 ∈ E1
x , v2 ∈ E2

x , |v1|1,x ≤ |v2|2,x};

the family (Cx)x∈V is the associated cone field; the dual cone field is the
family (C∗x )x∈V defined by C∗x = Ex\ int Cx .

• For some constant c > 1, we have for every x ∈ V , v1 ∈ E1
x and v2 ∈ E2

x

c−1
‖v1+ v2‖ ≤max{|v1|1,x , |v2|2,x} ≤ c‖v1+ v2‖x .

• There exists an integer m ≥ 1 and a constant µ > 1 so that:

(1) For x ∈ V , D f (Cx)⊂ C̃µ, f (x) where

C̃λ,x = {v = v1+ v2 ∈ Ex ;µ|v1|1,x ≤ |v2|2,x}.

(2) For x ∈ V , for v ∈ Cx , ‖D f m(v)‖ f m(x) ≥ µ.‖v‖x .
(3) For x ∈ V , for v ∈ C∗x , ‖D f −m(v)‖ f −m(x) ≥ µ.‖v‖x .

We define
K(V)=

⋂
k∈Z

f k(V).

Then K(V) is compact and hyperbolic. Let ε > 0 be a constant of expansivity,
i.e., such that

∀x, y ∈ K(V), (∀k ∈ Z, d( f k x, f k y) < ε)⇒ x = y.

Choosing possibly a smaller neighborhood, we can assume that the diameter
of every connected component of V is smaller than ε, and also that V has a finite
number N of connected components that all meet K (V).

We denote by C1, . . . , CN the connected components of V and define the
itinerary function H :K(V)→6N by f k(x)∈ CH(x)k . Hence the k-th component
of H(x) corresponds to the connected component of V that contains f k x . Then
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H is continuous. Because of the expansiveness property, H is injective, so H is
a homeomorphism from K(V) onto H(K(V))⊂6N such that

∀x ∈ K(V), σ ◦ H(x)= H ◦ f (x).

But in fact, we are looking for dynamics that are actually conjugate to a
transitive subshift of finite type. In order to build such dynamics, we will be
more precise for the choice of V in Section A3.

A2. Rectangles partition. Here we explain how a good family of rectangles,
called a rectangles partition, is useful to build a locally maximal invariant hyper-
bolic sets. We introduce geometric Markov partition, that are reminiscent from
the Markov partition and that are studied in [26], but as we didn’t find the exact
setting that we use elsewhere, we give some details.

We assume that f : M→ M is a C1 diffeomorphism and that V ⊂ M is an
open set endowed with two continuous families of open symmetric cones, the
unstable one x ∈ V 7→ Cu(x)⊂ Tx M and the stable one x ∈ V 7→ C s(x)⊂ Tx M
such that, if we denote the closure of a set A by A, we have for a constant
λ ∈ (0, 1):

• ∀x ∈V∩ f −1(V), D f (Cu(x))⊂Cu( f (x)) and D f (C s(x))⊃C s( f (x)).

• ∀x ∈ V,∀v ∈ Cu(x), ‖D f (x)v‖ ≥ 1
λ
‖v‖ and ∀x ∈ V,∀v ∈ C s(x),

‖D f (x)v‖ ≤ λ‖v‖.

• ∀x ∈ V,Cu(x)∩C s(x)= {E0}.

Definition. • A C1-embedding γ : [a, b]→ V define a unstable (resp. stable)
curve if ∀t ∈ [a, b], γ ′(t) ∈ Cu(γ (t)) (resp. ∀t ∈ [a, b], γ ′(t) ∈ C s(γ (t))).

• A rectangle R is given by an embedding 8R : [0, 1]2→ R ⊂ V such that for
every t ∈ [0, 1], 8R({t}× [0, 1]) (resp. 8R([0, 1] × {t}) ) defines a stable
(resp. unstable) curve.

• Then the stable (resp. unstable) boundary of R is ∂s R=8R({0, 1}×[0, 1])
(resp. ∂u R =8R([0, 1]× {0, 1}).

• A rectangle R′ is a stable (resp. unstable) subrectangle of a rectangle R if
R′ ⊂ R and ∂u R′ ⊂ ∂u R (resp. ∂s R′ ⊂ ∂s R).

Remarks. (1) Observe that a stable curve is always transversal to an unsta-
ble curve, and that when their mutual intersection with some rectangle is
nonempty, then it is a point.

(2) To a given rectangle R, we can associate different embeddings 8R and then
different stable and unstable foliations F s(R) and F s(R).

(3) The stable and unstable boundaries are independent from the embedding.
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(4) When γ ⊂ V is a unstable (stable) curve, every connected component of
f (γ )∩V (resp. f −1(γ )∩V) is also an unstable (resp. stable) curve.

Let us now introduce the notion of rectangles partition that we will use.

Definition. A rectangles partition is a finite set {R1, . . . ,Rm} of disjoint rect-
angles of V such that, if we use the notation R jk = f (R j )∩Rk , we have:

• For every j, k ∈ {1, . . . ,m}, either R jk =∅ or R jk is an unstable subrect-
angle of Rk . When R jk 6=∅, we use the notation

R j
f
−→Rk,

and we say that we have a transition from R j to Rk .

• When R jk 6=∅, then f (∂uR j )∩ ∂
uRk =∅ and f (∂sR j )∩ ∂

sRk =∅.

An admissible sequence is then (ik)k∈Z ∈ {1, . . . ,m}Z =6m such that

∀k ∈ Z,Rik
f
−→Rik+1 .

Remark. Observe that R j
f
−→Rk if and only if Rk

f −1
−→R j (the stable boundary

for f −1 is then the unstable one for f ).

Notation. We denote by 3(R1, . . . ,Rm) the maximal invariant set that is con-
tained in R1 ∪ · · · ∪Rm , i.e.,

3(R1, . . . ,Rm)=
⋂
k∈Z

f k(R1 ∪ · · · ∪Rm).

Observe that this set is hyperbolic. Hence there exist a stable and an unstable
submanifold at every of its points. We even have the following result.

Proposition A.1. If x ∈3(R1, . . . ,Rm)∩Ri0 , then the connected component
of W s(x)∩Ri0 (resp. W u(x)∩Ri0) that contains x is a stable (resp. unstable)
curve that joins the two connected components of ∂uRi0 (resp. ∂sRi0).

Proof. As 3(R1, . . . ,Rm) is hyperbolic, there exists ε > 0 such that for every
x ∈3(R1, . . . ,Rm), the length of every branch of W s(x) is greater than ε. We
denote by M> 0 a lower bound of the length of the stable curves contained in
one R j0 that join the two components of ∂uR j0 . Then we choose N ≥ 1 such that
ε
λN >M. Then if j0 is such that f N (x)∈R j0 , the curve f −N (W s( f N (x))∩R j0)

is contained in W s(x) and crosses the two connected components of ∂uRi0 . This
gives the wanted result. �

Different versions of the following proposition exist in different settings. We
will provide a proof for the convenience of the reader.
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Proposition A.2. Let {R1, . . . ,Rm} be a rectangle partition for f in V . Let
(ik)k∈Z ∈6m be a sequence. The two following assertions are equivalent:

• (ik)k∈Z is an admissible sequence.

• There exists a unique point x ∈Ri0 such that

∀k ∈ Z, f (x) ∈Rik .

Proof. We just prove the direct implication, the only one that is nontrivial. Hence
we assume that (ik)k∈Z is an admissible sequence.

We begin by proving the existence of x . For every n ∈ N, we introduce the
notation

Ds
n =

n⋂
k=0

f −k(Rik ) and Du
n =

n⋂
k=0

f k(Ri−k ).

Then (Du
n )n∈N (resp. (Ds

n)n∈N) is a decreasing sequence of unstable (resp. stable)
rectangles of Ri0 . Hence (Kn)n∈N = (Du

n ∩ Ds
n)n∈N is a decreasing sequence of

nonempty compact subsets of Ri0 . Their intersection contains at least one point
x , and this point satisfies

∀k ∈ Z, f k(x) ∈Rik .

We now want to prove the unicity of x . We introduce the notation

Du
∞
=

⋂
n∈N

Du
n and Ds

∞
=

⋂
n∈N

Ds
n.

Lemma A.3. The set Du
∞

(resp. Ds
∞

) is an unstable curve that joins the two
connected components of ∂s Ri0 (resp. ∂u Ri0). More precisely, if {x}= Du

∞
∩Ds
∞

,
then Du

∞
⊂W u(x) and Ds

∞
⊂W s(x).

Let us prove Lemma A.3. We just prove the result for Ds
∞

. As every Ds
n is a

stable rectangle, Ds
∞

is a connected compact set that joins the two connected
components of ∂u Ri0 . To prove that it is a (at least continuous) curve, we just
need to prove that it intersects every leaf of the unstable foliation Fu(Ri0) of
Ri0 at most once. So let Lu be an unstable leaf of Ri0 and let x , y be two points
of Ds

∞
∩Lu . We denote by Lu

[x, y] the arc of Lu that has for endpoints x and y.
Observe that Lu

[x, y] ⊂Ri0 Then for every n ∈N, the connected component Ln

of f n(Lu)∩Rin that contains f n(Lu
[x, y]) is an unstable curve of Rin .9 Let B a

common upper bound of the lengths of the unstable leaves that are contained in
some rectangle of the Markov partition (observe that these curves are uniformly
Lipschitz graphs in the charts 8Ri ). Then we have length(Ln) ≤ B and we

9Observe that the endpoints of this curve are indeed in Rin and hence by the point (4) of the
remark, f n(Lu

[x, y])⊂Rin .
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deduce ∀n ∈ N, length(Lu
[x, y])= length( f −n(Ln))≤ λ

nB. So x = y and Ds
∞

intersects every unstable leaf at most once, and so exactly once because Ds
∞

is a
connected set that joins the two connected components of ∂u Ri0 .

Moreover, observe that Ds
∞

contains the connected component C s of W s(x)∩
Ri0 that contains x . This implies that Ds

∞
= C s is a smooth stable curve (see

Proposition A.1). �

A3. Precise construction of heteroclinic horseshoes. We use the same notations
as in Section A1.

Remark. As explained before, we want to build an invariant set that is close (for
the Hausdorff distance) to K (H). That is why we need to use all the heteroclinic
intersections that are in K (H) in our construction. Another approach could be
to use the transitivity of the relation R defined on q-periodic points by: xRy if
W s(x, f ) and W u(y, f ) have a transverse heteroclinic intersection. This implies
that every periodic point in K (H) has a homoclinic intersection and thus we
could use directly Smale’s method (see [27]) to build a homoclinic horseshoe.
Unfortunately, a neighborhood of this homoclinic orbit is not necessarily a
neighborhood of the whole K (H) and so this horseshoe is in general not close
to K (H) for the Hausdorff distance, so doesn’t give us what we want.

Theorem A.4. There exists N ≥ 1 and a neighborhood N of the cycle K (H) of
transverse heteroclinic intersections with period q , such that the maximal f q N

invariant set contained in N is a horseshoe 3 for f q N (see Definition).

As K (H) is (uniformly) hyperbolic, we can chose a neighborhood V of K (H),
a constant λ ∈ (0, 1) and two continuous families of open symmetric cones
(see Section A1) the unstable one x ∈ V 7→ Cu(x) ⊂ Tx M and the stable one
x ∈ V 7→ C s(x)⊂ Tx M such that, if we denote the closure of a set A by A, we
have:

• ∀x ∈ V ∩ f −1(V), D f (Cu(x))⊂ Cu( f (x)) and D f (C s(x))⊃ C s( f (x)).

• ∀x ∈ V,∀v ∈ Cu(x), ‖D f (x)v‖ ≥ 1
λ
‖v‖ and ∀x ∈ V,∀v ∈ C s(x),

‖D f (x)v‖ ≤ λ‖v‖.

• ∀x ∈ V,Cu(x)∩C s(x)= {E0}.

Notation. For every xk , we denote by Bs(xk) the branch of W s(xk) that contains
the yk−1

i s and by Bu(xk) the branch of W u(xk) that contains the yk
i s. Then we

choose a small (curved) rectangle Rk with two sides on Bs(xk) and Bu(xk); see
Figure 2.

We denote by δu
k and δs

k the size of Rk along Bu(xk) and Bs(xk).
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xk

Bs(xk)
Bu(xk)Rk

Figure 2. A small (curved) rectangle Rk with two sides on Bs(xk) and
Bu(xk).tw.

xk

Bs(xk)

Bu(xk)

Rk

xk+1

Bu(xk+1)

Rk+1

Figure 3. The subrectangles of Rk+1 which are connected components
of f q Nk (Rk)∩ Rk+1 that meets W s

loc(xk+1) at some point of the orbit
of yk

i .

Then we look at the Poincaré map for f q from Rk onto Rk+1. Adjusting the
quantities δu and δs , we can find some Nk such that f q Nk (Rk)∩ Rk+1 contains
the union of a finite numbers of unstable rectangles. There are two cases:

• When n = q = 1, there are n0+ 1 rectangles: R0
0 that contains x0 and R1

0 ,
R2

0 , . . . , Rn0
0 such that Ri

0 is a connected component of f q N0(R0)∩ R0 that
meets W s

loc(x0) at some point of the orbit of y0
i .

• When nq > 1, there are nk unstable subrectangles of Rk+1 that we denote
by R1

k+1, R2
k+1, . . . , Rnk

k+1 such that Ri
k+1 is a connected component of

f q Nk (Rk)∩ Rk+1 that meets W s
loc(xk+1) at some point of the orbit of yk

i ;10

see Figure 3.

10Observe that f q Nk (Rk)∩Rk+1 can have other connected components, for example connected
components that correspond to other heteroclinic intersections. We just work with some chosen
heteroclinic points.
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xk

Bs(xk)
Bu(xk)

Rk
Rk

0

Rk
1

Rk
2

Figure 4. The connected component of Rk ∩ f q N (Rk) that contains xk .

When we decrease δu
k or δs

k+1, then Nk increases and when we decrease δs
k or

δu
k+1, then Nk doesn’t change. Hence, if we possibly decrease the δu

k ’s, we can
assume that all the Nk are equal to some constant integer that we denote by N .
Let us denote by R0

k the connected component of Rk ∩ f q N (Rk) that contains
xk and let us prove that it is disjoint from the Ri

k for 1≤ i ≤ nk . There are two
cases:

• There is only one fixed point in the heteroclinic cycle, i.e., q = n= 1; in this
case the rectangles Ri

1 are different connected components of R1 ∩ f N (R1)

and so they are disjoint.

• If not, as the different Rk are disjoint, in particular f q N (Rk) and f q N (Rk−1)

are disjoint and every unstable rectangle that is contained in Rk ∩ f q N (Rk)

is disjoint from
⋃nk−1

i=1 Ri
k ; see Figure 4.

We introduce the notation Tk =
⋃nk

i=0 Ri
k and consider now the f q N -invariant

set

3=
⋂
j∈Z

f jq N
( qn⋃

k=1

Tk

)
.

Then the R j
k s with 1 ≤ k ≤ nq and 0 ≤ j ≤ nk define a rectangle partition for

f q N
|V and the following transitions occur:11

• ∀i ∈ [0, nk], Ri
k

f q N
−→ R0

k .

• ∀i ∈ [0, nk],∀ j ∈ [1, nk+1], Ri
k

f q N
−→ R j

k+1.

We denote by A the associated matrix. Observe that for every Ri
k , R j

h , then
Ri

k can be connected to R j
h by a succession of such transitions. We deduce from

Proposition A.2 that f Nq
|3 is conjugate to the subshift associated to A, that is

11We do not know if other transitions occur.
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transitive. In particular, f Nq
|3 is mixing, has an infinity of periodic points and has

positive topological entropy.

Remarks. • If we decrease the constants δu
k and δs

k , then we increase N but
this is not a problem because we just add some iterations of f q that are
close to the periodic orbits where we know exactly how the dynamics looks
like. An advantage is that decreasing sufficiently these constants, we can be
sure that

⋃q N
j=0 f j

(⋃qn
k=1 Tk

)
is contained in a small neighborhood of the

heteroclinic cycle K (H). So in this case, the Hausdorff distance between
K (H) and the invariant set

⋃q N
j=1 f j (3) is also as small as we want.

• Being defined by a rectangle partition, the set 3 is a locally maximal
invariant set by f q N .
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Impact Hamiltonian systems
and polygonal billiards

L. BECKER, S. ELLIOTT, B. FIRESTER, S. GONEN COHEN,
MICHAL PNUELI AND VERED ROM-KEDAR

The dynamics of a beam held on a horizontal frame by springs and bouncing
off a step is described by a separable two degrees of freedom Hamiltonian
system with impacts that respect, point wise, the separability symmetry. The
energy in each degree of freedom is preserved, and the motion along each
level set is conjugated, via action angle coordinates, to a geodesic flow on
a flat two-dimensional surface in the four dimensional phase space. Yet,
for a range of energies, these surfaces are not the simple Liouville–Arnold
tori — these are compact orientable surfaces of genus two, thus the motion
on them is not conjugated to simple rotations. Namely, even though energy
is not transferred between the two degrees of freedom, the impact system
is quasiintegrable and is not of the Liouville–Arnold type. In fact, for each
level set in this range, the motion is conjugated to the well studied and highly
nontrivial dynamics of directional motion in L-shaped billiards, where the
billiard area and shape as well as the direction of motion vary continuously
on isoenergetic level sets. Return maps to Poincaré section of the flow are
shown to be conjugated, on each level set, to interval exchange maps which
are computed, up to quadratures, in the general nonlinear case and explicitly
for the case of two linear oscillators bouncing off a step. It is established
that for any such oscillator-step system there exist step locations for which
some of the level sets exhibit motion which is neither periodic nor ergodic.
Changing the impact surface by introducing additional steps, staircases, strips
and blocks from which the particle is reflected, leads to isoenergy surfaces that
are foliated by families of genus k level set surfaces, where the number and
order of families of genus k depend on the energy.

1. Introduction

Quasiintegrable dynamics appear in nonconvex billiards with boundary consisting
of horizontal and vertical segments [3; 31; 32] and in nonconvex billiards created

MSC2020: 00A05.
Keywords: Hamiltonian systems.
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by segments belonging to confocal quadrics [7; 8; 13]. The resulting dynamics
are related to deep mathematical theories on interval exchange maps (IEM), on
directed motion on translation surfaces, on genericity of curves in the space
of affine lattices, on the Teichmüller geometry of moduli space and even on
some results in number theory; see [5; 13; 26]. We show that this fascinating
collection of interrelated mathematical fields are also related to the rich research
area of Hamiltonian impact systems (HIS). Thus, these theories are related to
a large variety of physically realizable models. We present this connection in
the simplest possible setting and in the discussion we comment on some future
synergetic directions.

In [7; 31] the two known integrable billiards in the plane, rectangles and el-
lipses, are modified by considering nonconvex boundaries consisting of segments
that respect the symmetries of the integrable billiard dynamics. The resulting
tables, nibbled rectangles [3] — domains defined by segments of horizontal
and vertical boundaries (the simplest nontrivial geometries are slitted rectangle
and L-shaped billiards, see, e.g., Figure 2) and nibbled ellipses [7; 8; 11; 13] —
domains defined by segments of confocal quadrics, display fascinating dynamical
properties. The nibbled rectangles are rational polygons and are thus analyzed
by constructing, by reflections along the horizontal and vertical segments, a flat
surface (possibly with singularities). Then, the directional billiard flow on the
nibbled rectangle is conjugated to the geodesic flow on the glued flat surface. The
genus of the flat surface is computable depending only on the number and type
of corners; see [3]. The return map to a transverse section of the surface is an
IEM, and thus, the dynamics on the flat surface and the properties of the IEM are
related. The dynamics on a given surface depend on the direction of motion. For a
flat torus, the dynamics satisfy the Veech dichotomy: depending on the direction,
either the motion is periodic or uniquely ergodic. The higher genus surfaces that
are produced by the nibbled rectangles do not necessarily satisfy this condition;
For the tables that do not produce lattice surfaces, there can be directions of
motion for which the dynamics are uniquely ergodic, directions of motion such
that a band of periodic trajectories coexists with a band of trajectories that are
dense on some set in the associated flat surface, and there can be also directions
which are ergodic but not uniquely ergodic. Characterizing the measure of these
sets of directions for a given billiard, the measure of parameters on which such
behavior occurs for a given family of billiards, and defining proper statistical
properties of the dynamics for such directions are delicate problems which are
under current study, see e.g., [3; 5; 11; 13; 16; 25].

In [7; 8; 11; 13] it was discovered that the above tools may be applied to
the study of the dynamics in nibbled ellipses. Since reflections from confocal
quadrics preserve the same integral of motion, for any fixed integral of motion
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a conjugacy to a directional motion on a glued flat surface is found, and, thus,
an IEM can be constructed. Notably, each constant of motion (namely, each
caustic) in a nibbled elliptic table defines a directional flow on a different flat
surface while the direction of motion is fixed [13]. Recently it was established
that under some conditions on the nibbled ellipse the family of directional flow
on the resulting surfaces corresponds to a generic curve in the corresponding
moduli space [11; 13]. We show here that a rich class of HIS produces families
of directional flow on flat surfaces, where both the direction and the geometry
of the surfaces vary piecewise smoothly. While the question of conditions for
genericity of the flow on isoenergetic surfaces remains open, the tools developed
in [11; 13] appear relevant; see [12].

The field of Hamiltonian impact systems (HIS), which corresponds to a smooth
conservative motion in a domain D with elastic impacts from its boundaries,
combines two types of dynamical systems — the nontrivial, possibly chaotic,
smooth motion associated with Hamiltonian flows [2], and, the dynamics resulting
from elastic impacts, which have been extensively studied mainly in the context
of billiards [19]. The combination of these two fields is natural from a modeling
point of view, as, in many systems, there is a smooth bounded interaction
component (e.g., attraction between atoms) and short range repulsion (e.g.,
atomic repulsion between atoms) giving rise to steep potentials that may be
approximated, as a singular perturbation, by elastic reflections [17; 19; 20; 22].
Analysis of nonintegrable HIS includes local analysis near periodic orbits of
the HIS [4; 9; 17], analysis near homoclinic orbits of the HIS [20], studies of
the impact dynamics in some adiabatic limits [14; 15], persistence of KAM tori
of motion along convex boundaries [30], and even establishment of hyperbolic
behavior for some specific type of systems of particles [27; 28].

A class of HIS systems which is amenable to analysis under various perturba-
tion is the Liouville integrable Hamiltonian impact systems (LIHIS) — these are
integrable Hamiltonian systems with impact surfaces which respect the integra-
bility symmetries and for which the motion on almost all level sets is rotational.

Definition 1.1. An HIS with compact level sets defined on a domain D belonging
to a smooth manifold with piecewise smooth boundary is a Liouville-integrable
HIS (LIHIS) if:

Resp F All the integrals of motion of the smooth Liouville-integrable Hamilton-
ian flow are preserved under impacts.

Resp θ The motion on any connected component of a regular level set, namely,
on components in the allowed region of motion on which the differentials
of the constants of motion are independent, is conjugated to a directed
motion on a torus.
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For smooth systems (hereafter, by smooth we mean C∞-functions as in
the Arnold–Liouville theorem, though, all results are probably correct also for
Cr , r > 2 potentials) the Resp θ condition follows from the Resp F condition
by the Arnold–Liouville theorem [1], and in some works HIS satisfying the
Resp F conditions are called integrable [27]. Examples for LIHIS are mechanical
separable Hamiltonians (i.e., H(q, p)=

∑N
i=1(p

2
i /(2m)+Vi (qi ))) with compact

level sets undergoing impacts from a perpendicular wall — an impact surface
which is an infinite N−1-dimensional plane in the configuration space with a
normal aligned along one of the qi axes; see [22; 23] for the N = 2 case.1 Then,
elastic impacts with the wall send pi →−pi , and both the Resp F and Resp θ
conditions are satisfied on regular level sets (as, in the (qi , pi ) plane one can
define action angle coordinates [14] and all other degrees of freedom are not
affected; see [23]). As argued in [23], it is expected that separable systems
with impact surfaces that consist of several such perpendicular walls are also
LIHIS (e.g., a billiard in a rectangular box). This class of LIHIS enriches the
number of integrable impact systems from merely two families for billiards
(ellipsoidal billiards [6] and rectangular boxes) to the huge class of all integrable
separable Hamiltonian systems with perpendicular walls (and possibly to other
integrable Hamiltonian systems with properly defined impact surfaces). Moreover
in [22; 23] it is establish that under some nondegeneracy assumptions on Vi ,
perturbations of such 2 degrees of freedom LIHIS by small smooth coupling
terms and/or small smooth deformation of the walls are amenable to perturbation
analysis (in particular to impact-KAM theory [22; 23]). The extension of these
ideas to HIS with quadratic potentials in elliptic billiards [10; 24] is yet to be
developed.

Now consider separable Hamiltonians impacting from surfaces in the configu-
ration space that are composed of several finite or semiinfinite planar plates, all
of which are perpendicular to one of the qi -axes. Then, elastic impacts are of the
same form, pi →−pi , so the Resp F condition is still satisfied. The HIS flow
resides on the intersection of the level set {(q, p) | Hi (qi , pi )= ei , i = 1, . . . , N }
with the billiard phase-space domain (i.e., with (q, p)∈D×Rn), and the boundary
created by the impact surfaces is glued according to the elastic impact rule. For
regular level sets of the smooth system these glued level sets are N dimensional
surfaces. Nonetheless, as shown next, in some cases the Resp θ condition is not
satisfied. We call such systems quasiintegrable HIS (QIHIS), as we show that
their dynamics is conjugated, on some of the level sets, to the directional motion
on quasiintegrable billiards.

1Separable systems means hereafter decoupled systems — product systems of N−1 degrees of
freedom mechanical Hamiltonians. The more general class of separable systems defined in [21] is
not analyzed here.
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Figure 1. A mechanical model for the Hamiltonian-step system (equa-
tions (1) and (3)). (a) A rigid beam is confined between rigid horizontal
and vertical springs hinged to supports that slide with no friction along
a frame. (b) Two aligned rigid steps are placed in front and on the back
of the frame, so when the beam hits these barriers an elastic impact
occurs.

To simplify the presentation we consider one of the simplest possible QIHIS:
two uncoupled oscillators that impact from a single right step in the configuration
space, see Figure 1 for a physical realization of such a system; a springy beam is
held on a horizontal frame and reflects from a step. The springs are connected
to slider blocks that slide with no friction along a rectangular frame of ducts,
and the step-walls, marked by a dotted line are out of the frame plane so that
the slider blocks slide freely under the step walls and do not collide with them.
The beam hits the step walls and bounces off them (always parallel to the out of
plane axis). The springs are rigid to bending (can extend only in one direction)
and are uncoupled. Thus, as the beam bounces off the step-walls elastically, it
retains its vertical and horizontal energies (e1, e2). Without the step, the system
is a classical integrable system — all orbits belonging to a given level set (e1, e2)

satisfy the Veech dichotomy: either all orbits are dense and cover the torus of
angle variables uniformly (equidistributed) or all orbits on this torus are closed.
This behavior also implies that the return map to a transverse section of this torus
is a rotation, and the rotation number on the prescribed level set determines which
of the two options occurs. We show that this basic property is changed in the
step-system. In particular, we identify a range of isoenergy level set surfaces that
are of genus two and thus the return maps to a transverse section on such surfaces
is, generally, a 5-IEM. This implies, for example, that an observable which
depends on the oscillators phases (e.g., observable depending on the location of
the beam) can have very delicate statistical properties [16; 25].

The paper is ordered as follows: in Section 2 we define the step-system
and state the main results: Theorem 2.2 which conjugates the step dynamics
to the quasiintegrable dynamics of directed motion on a compact orientable
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surfaces of genus two and to L-shaped billiards, Corllary 2.3 which concludes
that the energy surface has nontrivial foliation, Corllary 2.4 which concludes
that including additional steps, staircases, strips and rectangular scatterers can
be similarly analyzed, Theorem 2.5 which concludes that Poincaré return maps
of the Hamiltonian impact step flow are conjugated, on each level set, to an IEM
and Theorem 2.6 which summarizes the results for the case of linear oscillators
with impacts from a step. In Section 3 we prove our main results — that the
motion in this system, on each level set, is conjugated to either a billiard flow, in
a specific direction, on a rectangular domain, or to a billiard flow, in a specific
direction, on an L-shaped billiard. Moreover, we prove that beyond a prescribed
energy, the shape of the billiard on isoenergy surfaces changes from rectangular
to continuously varying L-shaped billiards, back to rectangular domain, namely,
that the topology of the invariant level set surfaces changes on isoenergy surfaces
from genus one surfaces to genus two surfaces and back to genus one surfaces. In
Section 4 we define and compute (up to quadratures) the corresponding Poincaré
return maps for the level-set dynamics (Theorems 4.1 and 4.2), thus proving
Theorem 2.5. Section 5 is devoted to establishing some specific properties of the
resulting IEM, in particular, showing that typically there are many isolated level
sets at which one of the intervals lengths vanishes. Section 6 applies these main
results to linear oscillators, where the IEM are explicitly found, thus proving
Theorem 2.6. We end with a discussion in which we list several natural extensions
of this work and some open problems.

2. The step-system: setup and main results

Consider an autonomous smooth separable Hamiltonian corresponding to a
particle motion in R2:

H = H1(q1, p1)+ H2(q2, p2)=
p2

1

2m
+ V1(q1)+

p2
2

2m
+ V2(q2) (1)

where we assume for simplicity of presentation that the potentials Vi (q) have
a single simple minimum and are concave — they monotonically increasing to
infinity as |q − qi,min| increases (other interesting cases will be studies else-
where). With no loss of generality, take the particle mass to be m = 1 and the
potentials minima to be at qi,min = 0 with Vi (0) = 0. For positive i-energies
ei = Hi (qi (t), pi (t)) > 0, i = 1, 2, the particle oscillates with frequencies
(ω1(e1), ω2(e2)) in the box [qmin

1 (e1), qmax
1 (e1)] × [qmin

2 (e2), qmax
2 (e2)] of the

configuration space, where qmin
i (ei ) and qmax

i (ei ) denote the minimal and maxi-
mal value of qi (t) on the level set ei (so Vi (qmin

i (ei ))= Vi (qmax
i (ei ))= ei ). Since

qi,min= 0, for all positive ei , qmin
i (ei )< 0< qmax

i (ei ) and the level sets are nested
d

dei
qmax

i (ei ) > 0, d
dei

qmin
i (ei ) < 0). Denote by (θi (t)=ωi (ei )t+θi (0), Ii (ei )) the
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action-angle coordinates of the 1 degrees of freedom Hamiltonian Hi (qi , pi )=

Hi (Ii ) (for one degrees of freedom systems with concave potential these always
exist and are unique up to a shift in the angle coordinate [2]). A mechanical
example of such a system is the beam held in a frame between two sets of
uncoupled springs hinged on sliding, frictionless blocks (see Figure 1). The
simplest case to consider is of linear oscillators (LO), namely, the case of quadratic
potentials:

V LO
i (qi )=

1
2ω

2
i q2

i , i = 1, 2. (2)

We formulate below the main results (Theorem 2.2, Corollaries 2.3 and 2.4 and
Theorem 2.5) for nonlinear oscillators and dedicate Theorem 2.6 and Section 6
to the LO case.

Now, introduce a step S in the configuration space (see Figure 1):

S = {(q1, q2) | q1 < qwall
1 and q2 < qwall

2 }, qwall
1 · qwall

2 6= 0, (3)

and assume the particle bounces off elastically from this step (we require, to
avoid degeneracies, that the step is located away from the two axes), yet see
[29] for a recent study on the quantized system that uses this singular case in an
essential way. At the right wall of the step (hereafter, the 1-boundary), where q1=

qwall
1 and q2 < qwall

2 , the horizontal momentum is switched (q1, q2, p1, p2)→

(q1, q2,−p1, p2) whereas at the step upper wall (the 2-boundary), where q1 <

qwall
1 and q2 = qwall

2 , the vertical momentum changes sign (q1, q2, p1, p2)→

(q1, q2, p1,−p2). When the particle hits the corner of the step the system is
not defined and the trajectory stops. The flow is discontinuous at impacts, is
smooth elsewhere, and the vertical and horizontal energies, ei , are conserved by
the impacts. We call this HIS the step system. Denote the step energies by

hstep
i = Vi (qwall

i ), hstep
= hstep

1 + hstep
2 , (4)

the step-family of level sets by:

Rc(h)={(e1,e2) |e1∈ (h
step
1 ,h−hstep

2 ),e2=h−e1}, defined for h>hstep, (5)

by Ti (ei )= 2π/ωi (ei ) the period of the smooth oscillators, by

2smooth
2 =2smooth

2 (e1, h)= 2π
T1(e1)

T2(h− e1)
(6)

the rotation number of θ2 on the level set (e1, e2 = h− e1), and by T̃i (ei ; qwall
i )

the period of the impact system when it is reflected from a wall at qi = qwall
i

(namely, T̃i (ei ; qwall
i )= 2

´ qmax
i (ei )

qwall
i

dq/(
√

2(ei − Vi (qi )))). Finally, let

θwall
i (ei ; qwall

i )= π
T̃i (ei ; qwall

i )

Ti (ei )
. (7)



36 BECKER, ELLIOTT, FIRESTER, GONEN COHEN, PNUELI AND ROM-KEDAR

�

�

�1 1(e )wall

1( eh− ))!1 !21(( e ), �2 1( eh− )wall

Figure 2. The directional flow on the L shaped billiard
L(π, π, θwall

1 (e1; qwall
1 ), θwall

2 (h− e1; qwall
2 )).

We will show later that by proper setting of the angle coordinate of the i th
oscillator, θwall

i (ei ; qwall
i ) is the angle variable phase at the wall (see Lemma 3.4).

Depending on the properties of Vi and on the sign of qwall
i , the functions

θwall
i (ei ; qwall

i ) may be monotone or not in ei (for the LO case they are monotone,
see below).

Definition 2.1. The step system is the two degrees of freedom HIS defined by
the smooth Hamiltonian of the mechanical form (1) defined on (q1, q2) ∈ R2

\ S,
with elastic reflections at the step S (equation (3)) boundaries. Each of the
potentials Vi (qi ) in (1) is smooth, has a single minimum at the origin and is
concave: qi V ′i (qi ) > 0 for all qi 6= 0.

Our main results are (see Figure 2) as follows.

Theorem 2.2. The step system is not Liouville-integrable HIS; For all h >
hstep, the flow on level sets belonging to the step family, Rc(h), is topologically
conjugate to the (ω1(e1), ω2(h− e1))- directional billiard flow on the L shaped
billiard L(π, π, θwall

1 (e1; qwall
1 ), θwall

2 (h − e1; qwall
2 )) whereas the step flow for

the isoenergy level sets belonging to the complement of Rc(h) is topologically
conjugate to a directional billiard flow on a rectangular billiard. For all h> hstep

both families have positive measure.

Corllary 2.3. For all h > hstep the foliation of the isoenergy surface to level sets
with increasing e1 value has two singularities at which the level sets topology
changes: at e1 = hstep

1 the topology changes from a genus one surface to a genus
two surface whereas at e1 = h− hstep

2 the topology changes back to a genus one
surface.

Corllary 2.4. By adding more steps, staircases, strips and rectangular barriers
it is possible to create impact systems with level sets with any given genus ≥ 1
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Figure 3. The return map geometry in configuration space.

and any number of disconnected components. The corresponding isoenergy
surfaces are foliated by a finite number of families of level sets with equigenus
and equinumber of components.

Theorem 2.5. The return map of the step system to the section 61 = {(q, p) |
p1 = 0, ṗ1 < 0} for each isoenergetic level set in Rc(h) is conjugated to an
interval exchange map of three intervals on a circle. Restricting the angle to a
natural fixed fundamental interval, for almost all level sets in Rc(h), the map
becomes a five-interval exchange map (5-IEM). The return map to the section
61 for isoenergy level sets in the complement to Rc(h) is a rotation on a circle,
namely a 2-IEM.

In Section 4, explicit formulae (up to quadratures) for the return map at the
isoenergy level sets (e1, h− e1) are derived (for concreteness we consider the
return map to 61 - the analogous computations for the return map to 62 amounts
to replacing 1↔ 2 in all definitions, and the same conclusions apply). These
computations show that the numerical properties of three functions of e1 (the
functions θwall

2 (h− e1),22(e1, h), χ2(e1, h) defined by equations (7), (23) and
(26)) determine the 5-IEM. In Section 5 we discuss some properties of these
functions and establish that there are isolated strongly resonant level sets at which
orbits of different periods coexist, level sets for which periodic and quasiperiodic
motion coexist, and, isolated level sets in Rc(h) at which the IEM reduces to a
rotation (at these values the level set surface is a lattice surface). We believe all
the other level sets have minimal dynamics and almost all of them have uniquely
ergodic dynamics. Proving this conjecture, namely the genericity of the isoenergy
curve of directional L-shaped billiard flows as in [11; 13], is beyond the scope
of this paper. The recent paper [12] implies such results for the case qwall

i < 0,
i = 1, 2.
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For the linear oscillator step system, the period of the smooth motion does
not depend on the energy, namely, Ti (ei )= 2π/wi , and qmax

i (ei )=−qmin
i (ei )=

√
2ei/ωi , hence all the functions which determine the dynamics are explicit:

hstep,LO
=

1
2(ω

2
1(q

wall
1 )2+ω2

2(q
wall
2 )2), (8)

θ
wall,LO
i (ei ; qwall

i )= arccos
ωi qwall

i
√

2ei
∈ (0, π), (9)

2LO
2 (e1)= 2

ω2

ω1
arccosω1qwall

1 /
√

2e1, (10)

χLO
2 (e1, h)=

ω2

ω1

(π − arccosω1qwall
1 /
√

2e1)

arccosω2qwall
2 /
√

2(h− e1)
. (11)

Theorem 2.6. For h > hstep,LO, the flow of the linear-oscillators-step system on
each level set in Rc(h) is topologically conjugated to the directional billiard flow
in the fixed direction (ω1, ω2) on the L-shaped billiard

L(π, π, θwall,LO
1 (e1; qwall

1 ), θ
wall,LO
2 (h− e1; qwall

2 )).

The L arms widths depend smoothly and monotonically on their arguments, and
are of opposite monotonicity if and only if qwall

1 qwall
2 > 0. The return map to the

section 61 is an IEM of the form (31) with

(θwall
2 ,22, χ2)= (θ

wall,LO
2 (h− e1; qwall

2 ),2LO
2 (e1), χ

LO
2 (e1, h))

of equations (9), (10) and (11).

The proof and other properties of the step LO are presented in Section 6.

3. The flow on level sets and the corresponding flat surfaces

In this section we prove Theorem 2.2. The main observation is that in terms
of the smooth action angle coordinates, for the proper range of energies (the
region Rc(h)), impacts from the step correspond to a rectangular hole in the
angle coordinates. Folding the torus according to the direction of motion in the
configuration space leads to the motion in an L-shaped billiard with prescribed
direction of motion and prescribed dimensions (up to quadratures). The rotational
motion in the complimentary regions to Rc(h) follows from realizing that in
these regions, for each level set, either there are no impacts at all or all impacts
occur with only one side of the step.

Proof of Theorem 2.2. We first divide the level sets to three different classes
according to the different types of impacts that may occur in each of them
(Lemmas 3.1–3.3). We then introduce the action-angle coordinates for the
smooth system, fold them to the proper billiard table (an L-shaped table for level
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Figure 4. Impact-energy momentum bifurcation diagram for the four
relative positions of the step. The region where motion is allowed and
no impacts occur (gray), the region where impacts occur at both sides
of the step (blue) and the regions where impacts occur only at the upper
(green) or right (orange) sides of the step are shown (see Lemmas
3.1–3.3).

sets in Rc(h) and a rectangular table for the other level sets), and establish that the
impacts from the step in the flow are mapped to impacts from the corresponding
boundaries of the billiard table.

Delineating the energy level sets according to the impacts character. In the next
few lemmas we detail how the collisions with the step depend on both the energy
in each direction and on the location of the step. This classification, which is
summarized by Figure 4 and its implications are shown in Figure 5, determines
to which billiard table the flow on the level set is conjugated. Let

R(h)= {(e1, e2) | e1,2 > 0, e1+ e2 = h}, (12)

denote the open segment of allowed level set energy values on the isoenergy
surface h (the white line in Figure 4) and by R(h) the corresponding closed
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Figure 5. The level sets projection to the configuration space (dashed
red box) for level sets in R1 (see Lemmas 3.1 and 3.2): (a) (top left) No
impacts, qwall

1,2 < 0, (e1, e2) ∈R1. (b) (top right) No impacts, qwall
1 >

0, qwall
2 < 0, (e1, e2)∈R1

∩R2. (c) (bottom left) Impacts only with the
2-boundary (upper boundary), qwall

1 > 0, qwall
2 < 0, (e1, e2) ∈R1

\R2.
(d) (bottom right) No motion for this level set, qwall

1 > 0, qwall
2 >

0, (e1, e2) ∈R1
∩R2.

interval. For all h > hstep, the isoenergy step-collision set, Rc(h), is an open
segment in the interior of R(h). Define the two isoenergy complementary closed
segments

Ri
(h)= {(e1, e2) | 06 ei 6min{h, hstep

i }, eī = h− ei }, (13)

(with interior open segments, Ri (h)), where, hereafter, we denote by ī the
complement degrees of freedom to i (namely 1̄ = 2, 2̄ = 1). Figure 4 shows
these sets in the energy-momentum diagram for different locations of the walls.

Lemma 3.1. All trajectories belonging to level sets in Ri (h) do not hit the i-
boundary. For 0< h < hstep, R(h)=R1(h)∪R2(h) and the segment R1

(h)∩
R2
(h) is nonempty. For all h > hstep, R(h)=R1

(h)∪Rc(h)∪R2
(h) and these

three segments are nonempty and disjoint.

Proof. Since the potentials are concave the level sets are nested. Level sets in
the interior of Ri (h) satisfy ei < hstep

i , hence, for all t , the trajectories satisfy:
qi (t; ei )∈ [qmin

i (ei ), qmax
i (ei )]⊂ (qmin

i (hstep
i ), qmax

i (hstep
i )). By definition, qwall

i ∈

{qmin
i (hstep

i ), qmax
i (hstep

i )} so such trajectories do not cross the line qi = qwall
i and

the step i th boundary cannot be impacted. The rest of the lemma follows from
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the definitions of R(h),R1,2(h),Rc(h), equations (5), (12) and (13); see also
Figure 4. �

Figure 5 demonstrates that in accordance with Lemma 3.1, level sets that
belong to R1(h) do not impact the 1-boundary (the right side of the step). Next
we establish when such level sets impact the 2-boundary (the upper side of the
step).

Lemma 3.2. If qwall
i < 0, trajectories associated with level sets in Ri (h) do not

hit the step. If qwall
i > 0, the dynamics in Ri (h) is further divided to the following

two cases:

For level sets in Ri (h)\Rī
(h): Trajectories hit the ī -boundary only, and the

impacts are transverse.

For level sets in R1(h)∩R2(h): Trajectories do not hit the step if qwall
ī

< 0 and
are not in the allowed region of motion if qwall

ī
> 0.

Proof. If (e1, e2) belong to Ri (h) then ei < hstep
i (see (13)). If additionally,

qwall
i < 0, then qmin

i (ei ) > qwall
i , so the oscillation in the i th direction do not

reach the wall, independently of the oscillation amplitude in the ī direction (see
Figure 5(a)).

If qwall
i > 0, then qmax

i (ei ) < qwall
i , so, while impacts cannot occur with the i

boundary, transverse impacts with the ī boundary occur wheneī > hstep
ī

, namely

when (e1, e2) ∈Ri (h)\Rī
(h) (see Figure 5(b)).

If qwall
i > 0 and eī < hstep

ī
, so (e1, e2) ∈R1(h)∩R2(h), the ī boundary cannot

be crossed. If, additionally, qwall
ī

< 0, then eī < hstep
ī

implies that qmin
ī
(eī ) > qwall

ī
and the oscillations are in the allowed region of motion and do not hit the step (see
Figure 5(c)), whereas if qwall

ī
> 0 then qmax

ī
(eī ) < qwall

ī
and the motion is “behind

the step” namely it is not in the allowed region of motion (see Figure 5(d)). �

Lemma 3.3. Each level set in the step collision set, Rc(h), includes trajecto-
ries which impact transversely the 1-boundary and trajectories which impact
transversely the 2-boundary.

Proof. Consider (e1, e2) ∈ Rc(h). Then, the projection of the level sets to the
configuration space include the step position, namely, qmin

i (ei )<qwall
i <qmax

i (ei ),
i = 1, 2. Denote hereafter the smooth Hamiltonian flow by ϕsmooth

t (z) where
z = (q1, q2, p1, p2). The open, one dimensional set of i.c.,

Z1={z |z=(qwall
1 ,q2,−

√
2(e1−hstep

1 ),±
√

2(e2−V2(q2))),q2∈(qmin
2 (e2),qwall

2 )}

is nonempty and belongs, by construction, to the level set (e1, e2). Its projection
to the configuration space belongs to the right, 1-boundary of the step. Hence,
for sufficiently small t , the set ϕ−t(Z1) is within the allowed region of motion,
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belongs to the level set (e1, e2)∈Rc(h), and consists of i.c., which impact at time t
the 1-boundary of the step transversely, with horizontal velocity−

√
2(e1− hstep

1 ).
Similarly, defining

Z2

=
{
z | z=

(
q1,qwall

2 ,±
√

2(e1−V1(q1)),−

√
2(e2−hstep

2 )
)
,q1∈ (qmin

1 (e1),qwall
1 )

}
,

the set ϕ−t(Z2) is within the allowed region of motion for sufficiently small t and
consists of i.c., belonging to the level set (e1, e2) ∈Rc(h) which impact at time
t the 2-boundary of the step transversely, with vertical velocity −

√
2(e2− hstep

2 ).
�

While, for most cases (“nonresonant”), each trajectory belonging to level
sets (e1, e2) ∈ Rc(h) hits both boundaries of the step many times, in some
resonant cases, it is possible to have families of trajectories belonging to level
sets (e1, e2) ∈ Rc(h) that hit only one of the step boundaries or even avoid
collisions (resonant trajectories belonging to the interval JK of (31) with K = 0,
see Section 4 for more details).

Action angle coordinates and transverse sections. The action angle coordinates
of the 1 degrees of freedom Hamiltonian, Hi (qi , pi ), (Ii , θi (t)=ωi (Ii )t+θi (0)),
are uniquely defined up to a shift in the angle. Since, by our assumptions,
Hi (Ii ) = ei is invertible, ei or Ii may be used to label level sets (to simplify
notation, we hereafter consider the frequencies as functions of the energies, ei ).
By the monotonicity of Vi (qi )|qi 6=0, for all energy surfaces h = e1+ e2 > 0, each
energy surface contains a family of invariant tori on which rotations occur, and
its boundary consists of the two invariant circles that correspond to the normal
modes — the oscillatory motion of only one oscillator with the other one at rest
(e1 = 0, e2 = h and e1 = h, e2 = 0).

For ei > 0, denote by 6i the three dimensional transverse section {pi = 0,
ṗi < 0}, and we set the phases of the action-angle coordinates to vanish on these
sections (so θi = 0 (mod 2π ) on 6i ):

6i : {(qi , qī , pi , pī ) | pi = 0, ṗi < 0} = {(θi , θī , Ii , Iī ) | θi = 0, Ii > 0}. (14)

By the symmetry of the mechanical Hamiltonian, with this choice of the phases,
pi (t) > 0 for θi (t) ∈ (−π, 0) mod 2π) and similarly pi (t) < 0 for θi (t) ∈
(0, π) mod 2π ), namely sign(pi (t))= sign(q̇i (t))=− sign(θi (t) mod 2π). For
pi which is bounded away from zero, the smooth flow is smoothly conjugate,
through the action angle transformation, to the directional motion on the flat
torus in the direction (ω1(e1), ω2(e2)). The directed motion on the torus is
conjugated, by standard folding, to the directed billiard motion on the square
(ψ1, ψ2) ∈ [−π, 0]×[−π, 0] (see Figure 6). For this specific folding and for the
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Figure 6. Folding the smooth flow to a billiard, the motion on a level
set is conjugated via action angle coordinated to the directional motion
on the angles-torus. The motion is conjugated to the directional billiard
motion on the left lower square. The direction of motion in this billiard
is in the same quadrant as the direction of motion in the configuration
space; see equation (15).

choice of the angle phase (14), the direction of time is preserved along trajectories
of the smooth flow and the billiard

sign(pi (t))= sign(q̇i (t))= sign(ψ̇i (t)) (15)

namely, the directed billiard in the square (hereafter called the ψ-billiard) and the
smooth flow on the level set (e1, e2) are topologically conjugated, see Figure 6.
By reflections and time reversal, the flow is also conjugated to the billiard on the
positive quadrant.

We use the same construction of conjugacy for the impact system. Let

6±i = {(q, p) | qi = qwall
i ,±pi > 0}, (16)

and let t6−i →6+i = Ti (ewall
i )− T̃i (ei ; qwall

i ), t6+i →6i
= t6i→6

−

i
=

1
2 T̃i (ei ; qwall

i )

denote the respective travel times between the sections.

Lemma 3.4. The sections 6±i are impacted/crossed transversely by the step-flow
if and only if ei > hstep

i . For all, i.c., belonging to a level set ei > hstep
i , with the

angle coordinate convention (14), the angle θi at the section 6−i is θwall
i (ei ):

θwall
i (ei ; qwall

i )= ωi (ei )t6i→6
−

i

= ωi (ei )

ˆ qmax
i (ei )

qwall
i

dq
√

2(ei − Vi (qi ))

= π
T̃i (ei ; qwall

i )

Ti (ei ; qwall
i )

, (17)
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and a reflection from the step at qwall
i sends the angle θwall

i (ei ; qwall
i ) to

2π − θwall
i (ei ; qwall

i )=−θwall
i (ei ; qwall

i ) mod 2π.

Proof. Since the level sets of Hi are nested, for ei < hstep
i the ei level set is

strictly interior to the hstep
i level set, and hence the sections 6±i are not reached

by the flow. Conversely, for ei > hstep
i , the sections 6±i are crossed by the

level set, and, by the mechanical form of the Hamiltonian Hi , on these sections
p2

i = 2(ei − V (qwall
i )) > 0 so they are crossed transversely. The formula for

θwall
i (ei ; qwall

i ) follows from the definition of action-angle coordinates and the
convention (14). By the symmetry pi→−pi of mechanical Hamiltonian function
it follows that the reflection from the step at qwall

i sends the wall angle coordinate
θwall

i to 2π − θwall
i (ei )=−θ

wall
i (ei ) mod 2π . �

Notice that, as summarized in Table 1,

lim
ei↘hstep

i

θwall
i (ei ; qwall

i )=

{
π for qwall

i < 0,
0 for qwall

i > 0.
(18)

and

lim
ei→∞

θwall
i (ei ; qwall

i )= θ
wall,∞
i , (19)

where, for symmetric potentials, θwall,∞
i =

π
2 .

Combining the classification of level sets according to their impacts with the
boundaries (Lemmas 3.1–3.3) with the action-angle representation of the flow
and the impacts on a given level set (Lemma 3.4), we establish the topological
conjugacy between the impact flow on a given level set and its corresponding
flat surface and billiard table. To this aim, it is convenient to define

θ̂wall
i (ei , eī ; q

wall
i , qwall

ī )

=


∅ if qwall

1,2 > 0∧ e1,2 < hstep
1,2

θwall
i (ei ; qwall

i ) if ei ≥ hstep
i ∧ (eī ≥ hstep

ī
∨ qwall

ī
> 0),

π otherwise.
(20)

By Lemmas 3.1–3.3,

θ̂wall
i (ei , eī ; q

wall
i , qwall

ī )= θwall
i (ei ; qwall

i )

for level sets for which impacts (transverse or tangent) with the i-boundary are
allowed,

θ̂wall
i (ei , eī ; q

wall
i , qwall

ī )=∅

for level sets that are not in the allowed region of motion, and

θ̂wall
i (ei , eī ; q

wall
i , qwall

ī )= π

for level sets in which impacts with the i-th boundary cannot occur.
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Rotational dynamics for level sets in Ri
(h).

Lemma 3.5. For level sets (e1, e2) in Ri
(h) the step-dynamics are smoothly

conjugate to the directional motion (ωi (ei ), ωī (eī )) on the torus

Ti (e1, e2)= {(θi , θī ) | θi ∈ [−π, π), θī ∈ [−θ̂
wall
ī , θ̂wall

ī )}, (21)

with θ̂ī defined by (20). This step-dynamics are also conjugated to the (±ωi (ei ),

±ωī (eī )) directional billiard motion on the rectangular billiard (ψi , ψī ) ∈

[−π, 0] × [−θ̂wall
ī
, 0]. In particular, the conjugation keeps the direction of

motion: the signs of ψ̇1,2 and the sign of q̇1,2 coincide.

Proof. By Lemma 3.2 the motion on level sets in Ri (h) is either: a) not defined
(so θ̂wall

ī
= ∅), b) corresponds to reflections only from the ī-boundary of the

step, or, c) the trajectory does not touch the step, so the motion occurs as in the
nonimpact case on the torus (21) with θ̂wall

ī
= π .

The three rows of conditions in the definition (20) of θ̂wall
ī

for ei < hstep
i

coincide with the conditions listed for cases a,b,c in Lemma 3.2, so, to complete
the proof we only need to show that case b) indeed corresponds to the rotation on
the clipped torus (21) with θ̂wall

ī
= θwall

ī
. Indeed, by the mechanical form of Hī , re-

flections only from the ī-boundary of the step imply that the corresponding angle
coordinate is restricted to the interval θī (t) ∈ [−θ

wall
ī
(eī ; q

wall
ī
), θwall

ī
(eī ; q

wall
ī
)],

where, by Lemma 3.4, the transverse impacts correspond to gluing the transverse
section 6±

ī
|Hī=eī

:

6−i |Hi=ei = {(θ, I ) | Ii = Ii (ei ), θi = θ
wall
i (ei )},

6+i |Hi=ei = {(θ, I ) | Ii = Ii (ei ), θi =−θ
wall
i (ei )}.

(22)

by identifying the angles θwall
ī
(eī ; q

wall
ī
) and−θwall

ī
(eī ; q

wall
ī
). Namely, we obtain

a directional motion on the torus (21), in the direction (ωi (ei ), ωī (eī )). By folding
to the rectangle (ψi , ψī ) ∈ [−π, 0] × [−θ̂wall

ī
, 0], the motion is conjugated to

the ψ-billiard in this rectangular billiard, and (15) holds for the impact flow as
well, proving the lemma for this case as well; see tables IIA, IIIIA, IIID, IIIID
of Figure 7. �

The flow in the region Rc(h) is conjugated to the L-shaped billiard flow.

Lemma 3.6. For level sets (e1, e2) in Rc(h) the step-dynamics are conjugate
to the directional motion (ω1(e1), ω2(e2)) on SW - the swiss-cross shaped
(θ1, θ2)-surface with vertical arms of width 2θwall

1 (e1) and length 2π , horizontal
arms of height 2θwall

2 (e2) and width 2π and the flat surface is achieved by
gluing of parallel opposite sides. This step-dynamics are also conjugate to
the (±ωi (ei ),±ωī (eī )) directional billiard motion on the L-shaped billiard
L(π, π, θwall

1 (e1; qwall
1 ), θwall

2 (h − e1; qwall
2 )). Reflecting the L-shaped billiard
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Figure 7. The isoenergy billiard geometry at the different step loca-
tions for h > hstep. The first and last rows present, respectively, the
rectangular billiards for level sets in R2(h) and R1(h). The second
and third rows present, respectively, the L-shaped billiards in Rc(h)
just below and just above the edges of the Rc(h) interval (so δ > 0 is
small).

with respect to the θ1-axis and the θ2-axis provides dynamics with conjugation
that keeps the direction of motion.

Proof. Recall that with the convention (14), qi (t; ei )>qwall
i if and only if the angle

coordinate of the smooth flow is in the interval (−θwall
i (ei ; qwall

i ), θwall
i (ei ; qwall

i )).
Hence, on a level set (e1, e2) ∈ Rc(h), the disallowed step region in the con-
figuration space is mapped by the smooth action-angle transformation to a
disallowed rectangular region in the angle variables: (θ1, θ2) ∈ Sθ(e1,e2) :=

[θwall
1 (e1; qwall

1 ), 2π − θwall
1 (e1; qwall

1 )] × [θwall
2 (e2; qwall

2 ), 2π − θwall
2 (e2; qwall

2 )]

all taken mod 2π . This rectangle cuts the four corners of the fundamental
domain creating a swiss-cross surface (see Figure 8). By Lemma 3.4, the re-
flection rule at impact, pi →−pi , translates to θwall

i → 2π − θwall
i . Hence, the

resulting flow under the step dynamics, expressed in the smooth action angle
coordinates, corresponds to setting the action values to constants, Ii (ei ), and
letting the angles (θ1, θ2) increase linearly at constant speeds (ω1(e1), ω2(e2))
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Figure 8. The step return map, the swiss-cross surface and the rotated
L-shaped billiard geometry for level sets in the step region, Rc(h). The
gray areas correspond to the step region in the angles space. The yellow
outlines the boundary of SW, the Swiss-cross flat surface for which
opposite parallel sides are glued.

on the torus [0, 2π ]×[0, 2π ], till the rectangle Sθ(e1,e2) is met. There, the gluing
condition θwall

i (ei ; qwall
i )→ 2π − θwall

i is applied. This is a directed flow on a
“torus with a rectangular hole” namely, a compact orientable surface of genus 2.
Equivalently, when shifting the torus center by (−π,−π), this is a directed flow
on a swiss-cross surface, see Figure 8. For all (e1, e2 = h − e1) ∈ Rc(h), the
dynamics under this gluing rule of the swiss-cross correspond to an unfolding
of a billiard motion in the B(e1)= L(π, π, θwall

1 (e1; qwall
1 ), θwall

2 (h− e1; qwall
2 ))-

shaped table [3; 32] in the directions (±ω1(e1),±ω2(h − e1)), where, as be-
fore, by the choice (14) of the angle phases, (15) holds on the L-shaped bil-
liard that is folded onto the low-left part of the swiss-cross; see Figures 8
and 9. Thus, we have shown that the dynamics on the isoenergetic level sets
in Rc(h) are conjugated to the family of α-directional flows on the family of
L-shaped billiards, B(h)= {α(e1)= ω2(h− e1)/ω1(e1), B(e1)}|e1∈Ic(h), where
Ic(h) := (hstep

1 , h− hstep
2 = hstep

1 + h− hstep). �

Finally, to complete the proof of Theorem 2.2, we notice that since the
directed flow on a genus-2 orientable compact surface is not conjugate to a
flow on a torus, and since by Lemma 3.6 the motion on the level sets (e1, h−e2)

for all e1 ∈ Ic(h) is conjugated to such a flow, the step system is not LIHIS.
The measure of the corresponding set is positive as the intersection of each
level set in Rc(h) with the allowed region of motion has positive area and
|Ic(h)| = h− hstep > 0. By Lemmas 3.5 the motion on the isoenergy level sets
(e1, h − e1) with e1 ∈ (0, hstep

1 ) ∪ (h − hstep
2 , h), the isoenergy complement to

Rc(h), is conjugate to the directed flow on a torus, and this complement also
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Figure 9. A simulation of the configuration space of the linear os-
cillators step system (left) with its corresponding matching L-shaped
billiard in the angle space (right). The turning points of the flow, where
pi = 0, are mapped to reflections from the outer square boundaries
and the elastic reflections of the flow from the step are mapped to the
billiard reflections from the step.

has positive measure since, for h > hstep, the intersection of these level sets with
the allowed region of motion is always of positive measure.

Each column of Figure 7 shows schematically the family of isoenergetic
billiard tables obtained for the indicated positions of the step. The directional
L-shaped billiard families, B(h), are shown in rows B and C and correspond to
level sets in Rc(h). The widths of the arms of L-shaped tables at the edges of the
segment Rc(h) (these depend on the signs of qwall

1,2 ) are listed in Table 1 — note
that they are distinct, namely, for all h> hstep, θwall

i (hstep
i ) 6= θwall

i (h−hstep
ī
). The

rectangular billiards shown in rows A and D correspond to level sets in R1(h)
and R2(h) respectively.

Lemma 3.4 in the above proof exposes the simple relation between reflections
from vertical and horizontal boundary segments and the corresponding gluing
rule in the angles variables. Corollaries 2.3 and 2.4 follow from this construction;
steps (two rays meeting at a 3π/2 corner) produce for sufficiently high individual
energies a single hole, a staircase in the configuration space creates at sufficiently
high individual energies a nibbled hole in the angles variables, a strip with handles
creates, for intermediate individual energies several disconnected components
and for sufficiently high individual energies two holes, and a rectangle creates for
sufficiently high individual energies four holes, see Figure 10 for a demonstration.
Thus, by constructing a nibbled scattering geometry which combines finite and
semiinfinite horizontal and vertical segments in the configuration space, the
number of holes and the number of connected components in the isoenergy
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qwall
1 qwall

2 θwall
1 (hstep

1 ) θwall
2 (hstep

2 )

< 0 < 0 π π

< 0 > 0 π 0
> 0 < 0 0 π

> 0 > 0 0 0

Table 1. The values of θwall
1,2 at the two edges of Rc(h). The values of

θwall
2 (h− hstep

1 ; q
wall
2 ) and θwall

1 (h− hstep
2 ; q

wall
1 ) vary accordingly with

h, with limiting values θwall,∞
i ∈ (0, π); see rows B and C of Figure 7.

�

�
−�

2q
2q

max

1qmax

1q

�2

�1

Figure 10. For the indicated level set (dashed line), a 2-step staircase
(red), a strip with a handle (green) and a block (blue) in the configu-
ration space (left figure) create, respectively, one, one and four holes
in the angle-angle torus representation, and divide the torus to two
disconnected components (inside and outside of the green frame). A
slight increase in the vertical energy e2 (dotted lines) makes the level
set surface connected with two green holes.

level set surfaces can be manipulated. Moreover, constructing an impact energy-
momentum diagram [22; 23], such as Figure 4 for the one-step system, allows
to identify the critical energy values at which the topology of the energy surface
changes.

4. Return maps

Proof of Theorem 2.5. In Theorem 2.2 we proved that the step dynamics on
each isoenergy level set is conjugated, via the action angle transformation, to
the (ω1(e1), ω2(h− e1)) directional flow on a flat surface — a glued swiss-cross
for level sets in Rc(h) (Lemma 3.6) and a torus for level sets in the complement
to Rc(h) (Lemma 3.5). The transverse Poincaré section 61 of the step flow is
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conjugated to the transverse section θ1 = 0 on these surfaces via the action-angle
transformation (recall (14), and notice that the assumptions on the potentials
imply that ω1(e1) is bounded away from zero for any finite e1), so the return map
of the step flow to 61 is conjugated to the return map to 61 on the corresponding
flat surface. The return map to 61 on the flat surface is an interval exchange
map on a circle: for the swiss-cross a three-interval exchange map and for the
torus a rotation of a single interval; see, e.g., [32]. For a fixed fundamental
interval on this circle, the return map becomes, in general, a 5-IEM for the
swiss-cross case and a 2-IEM for the torus. Computations of the resulting IEMs
(see Theorem 4.2) show that the lengths of the intervals of the 5-IEMs and their
positions on the circle for isoenergy level sets change smoothly in the step region.
In particular, conditions for having a zero length interval are expressed as an
equation of smooth, nonconstant functions of e1 which are shown to vanish at
most at isolated e1 values in the interior of Rc(h).

Next, we calculate F(h)= {F = F(e1,h−e1)}e1∈[0,h], the isoenergetic family of
IEMs, for the 2-IEM case (Theorem 4.1) and for the 5-IEM case (Theorem 4.2)
thus completing the proof of Theorem 2.5. In Section 5 we explore some of the
properties of the 5-IEM family.

Let 22 denote the gain in the θ2 phase of the return map to 61 when the
motion is to the right of the step:

22 =22(e1, h; qwall
1,2 )

=
θ̂wall

1

π
2smooth

2

=

{
2π T̃1(e1; qwall

1 )/T2(h− e1) if θ̂wall
1 (e1, h; qwall

1,2 ) 6= π,

2smooth
2 (e1, h) if θ̂wall

1 (e1, h; qwall
1,2 )= π,

(23)

where θ̂wall
1 (e1, h; qwall

1,2 ) (see equation (20)) is the effective impact angle with
the side boundary of the step and 2smooth

2 (e1, h) (see equation (6)) is the rotation
in θ2 for nonimpacting trajectories. Notice that for all level sets on which motion
is defined 22 ≤2

smooth
2 . Let

2∗2(e1, h; qwall
1,2 )= 2θ̂wall

2

{
22

2θ̂wall
2

}
(24)

where {x} denotes hereafter the fractional part of the number x . We first establish
that in the complementary sets to Rc(h) the return map to 61 is the rotation (25).

Theorem 4.1. Under the same conditions of Theorem 2.2, for all isoenergy level
sets in R1(h)∪R2(h), the return map F(e1,h−e1) to the section61 is topologically
conjugated to a 22 rotation on the [−θ̂wall

2 , θ̂wall
2 ) circle:

θ2→ θ2+22(e1, h; qwall
1,2 ) mod 2θ̂wall

2 , (25)
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or, equivalently, to a 2-IEM on the interval [−θ̂wall
2 , θ̂wall

2 ] with intervals lengths
λA = 2θ̂wall

2 −2∗2, λB =2
∗

2.

Proof. By Lemma 3.5 the flow on level sets belonging to R1(h) is topologically
conjugated to the (ω1(e1), ω2(h−e1)) directional flow on the torus T1(e1, h−e1)

of equation (21). Notice that if the level set is in the disallowed region of R1(h),
then θ̂wall

2 = ∅, hence T1(e1, h− e1) = ∅, so the Theorem trivially holds. For
the nontrivial case, by (14), the transverse section 61 to the flow is mapped, for a
fixed level set, to the transverse section θ1= 0 of the corresponding torus. Hence,
to complete the proof we need to show that the return map to the section θ1= 0 of
the (ω1(e1), ω2(h−e1)) directional flow on T1(e1, e2) is the rotation (25). Indeed,
notice that for the level sets in R1(h) the effective impact angle is θ̂wall

1 = π

(when motion is allowed), so 22 =2
smooth
2 (e1, h)= 2πω2(h− e1)/ω1(e1) and

thus (25) coincides with the return map on the T1(e1, h−e1) torus. Similarly, by
Lemma 3.5, the flow on level sets belonging to R2(h) is topologically conjugated
to the (ω1(e1), ω2(h−e1)) directional flow on the rotated torus T2(e1, e2) of equa-
tion (21), namely on T2(e1, e2)= {(θ1, θ2) | θ1 ∈ [−θ̂

wall
1 , θ̂wall

1 ), θ2 ∈ [−π, π)}.

The return map to the section θ1 = 0 on this torus is a rotation of the θ2 angle
on the 2π circle by ω2(h− e1)2θ̂wall

1 /(ω1(e1)), which is exactly 22 (see (23)).
Finally, since θ̂wall

2 = π for the allowed level sets in R2(h), (25) is verified. �

Next, we establish that for level sets in Rc(h), the return map defines a three-
interval map on the circle, namely a 5-IEM on the fundamental segment arises.
Let

χ2(e1, h; qwall
1,2 )=

2smooth
2 −22

2θwall
2

=
T1(e1)− T̃1(e1; qwall

1 )

T̃2(h− e1; qwall
2 )

=
ω2(h− e1)

ω1(e1)

π − θwall
1 (e1; qwall

1 )

θwall
2 (h− e1; qwall

2 )
(26)

denote the ratio between the time spent above the step and the return time to the
upper step boundary. The integer part of χ2 corresponds to the minimal number
of impacts with the upper boundary of the step during this passage:

K2(e1, h; qwall
1,2 )= bχ2c. (27)

Theorem 4.2. Under the same conditions of Theorem 2.2, for all isoenergy
level sets in Rc(h), the return map F(e1,h−e1) to the section 61 is topologically
conjugated to a 3 interval IEM on the θ2 circle of the form

(JR, JK2, JK2+1)→22+ (JR, JK2+1, JK2) mod 2π, (28)
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where the lengths of the intervals are

(λJR , λJK2
, λJK2+1)= (2π − 2θwall

2 , 2θwall
2 (1−{χ2}), 2θwall

2 {χ2}), (29)

and the phase of the left boundary of JR is

θ L
JR
= θwall

2 −
1
222 (mod 2π). (30)

In the above formulae (θwall
2 = θwall

2 (h− e1; qwall
2 ),22, χ2) are defined by equa-

tions (7), (23) and (26), respectively, and the phase θ2 is set by (14). The return
time to61 for θ2∈ JR is T̃1 whereas for θ2∈ JK2∪ JK2+1 it is T1. Equivalently, the
dynamics for each level set is conjugated to the induced 5-IEM on the [−π, π)
interval of θ2 values. This 5-IEM is uniquely defined by equations (28)–(30), and
apart of isolated points of e1 values in Rc(h), all its 5 intervals are of positive
lengths.

Proof. By Lemma 3.6 the flow on level sets belonging to Rc(h) is topologically
conjugated to the (ω1(e1), ω2(h−e1)) directional flow on SW — the swiss-cross
surface defined by θwall

1 (e1; qwall
1 ) and θwall

2 (h − e1; qwall
2 ). In particular, the

section 61 of the return map is mapped by the action-angle conjugation to the
vertical center of SW, the 2π circle of θ2 phases (see Figure 8), so the return
map on SW and the step dynamics return map to 61 are smoothly conjugated.
While the return map can be computed from the SW geometry alone, we find it
convenient at times to consider the step dynamics.

We divide the θ2 circle to two subintervals: JR consisting of phases with
trajectories which hit the right boundary of the step (equivalently, the right
boundary of the vertical arm of SW) and return to 61, and JU consisting of
phases with trajectories which do not hit the right boundary (equivalently, enter
the horizontal arm of the SW), go above the step, possibly hitting the upper
boundary of the step (equivalently, the horizontal boundaries of the SW horizontal
arm), and then return to61 (see Figures 3 and 8 where the return map construction
to 61 in the configuration space and in the directional flow on the swiss-crossed
shaped polygon are shown). Hence, the length of JR is the length of the vertical
right boundary of the SW, λJR = 2π − 2θwall

2 = 2π(1− T̃2/T2) and λJU = 2θwall
2 .

The return time for trajectories belonging to JR is T̃1, the phase θ2 for these
trajectories increases at the constant speed ω2(h − e1), so, the interval JR is
rotated by 2(ω2(h− e1)/ω1(e1))θ

wall
1 , namely by 22 as defined in (23).

The return time for trajectories belonging to JU is T1. It is divided to the time
T̃1, where the trajectories are to the right of the step and to the time interval
T1(e1)− T̃1(e1; qwall

1 ) where the trajectories are above the step, possibly bouncing
off its upper boundary. During the T̃1 time segment the phase θ2 increases,
as before, by 22. During the T1(e1)− T̃1(e1; qwall

1 ) segment, the phase gain
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depends on the number of bounces. Denote the interval of θ2 values for which
trajectories hit the upper step k times by Jk . The function χ2 (see (26)) provides
the ratio between the time trajectories in JU spend above the step and the
return time of trajectories with energy e2 = h− e1 to the step upper boundary.
Hence, the number of bounces of the trajectories belonging to JU is either
K2 = bχ2c or K2+ 1, namely, JU = JK2 ∪ JK2+1. The phase gained during the
T1(e1)− T̃1(e1; qwall

1 ) segment by trajectories in Jk is 2(π − θwall
2 )k+ω2T̃2χ2 =

2(π−θwall
2 )k+2θwall

2 (bχ2c+{χ2})= 2πk+2θwall
2 (K2−k)+2θwall

2 {χ2}, hence,
applying this formula for k = K2 and for k = K2+ 1 we obtain

F(θ2)=


θ2+22 θ2 ∈ JR,

θ2+22+ 2θwall
2 {χ2}+ 2πK2 θ2 ∈ JK2,

θ2+22+ 2θwall
2 (−1+{χ2})+ 2π(K2+ 1) θ2 ∈ JK2+1,

(31)

where the intervals (JR, JK2, JK2+1), correspond, respectively, to phases with
trajectory segments which hit exactly once only the right side of the step (JR),
those which hit only the upper side of the step exactly K2 times (JK2) and those
hitting only the upper side exactly K2+ 1 times (JK2+1), where K = K2(e1, h);
see (26)–(27). Notice that χ2 is finite since T̃2 > 0 for level sets in the step region
(yet, χ2 diverges at the step-region boundary when qwall

2 > 0; see Table 2).
The order of these intervals on the circle is (JR, JK2, JK2+1); this follows from

the geometry of the swiss-crossed surface or from realizing that the right (resp.
left) most end point of JR corresponds to a trajectory which hits the corner with
positive (resp. negative) vertical velocity, hence, a small shift into the interval
JU will result in missing the step on the right side and hitting the upper part of
the step on the left side, see Figure 11.

Under the return map to 61 the two intervals JK2, JK2+1 switch their position
and JU and JR rotate by 22; This follows from formulae (31). Indeed, the
dividing trajectory between these two intervals is the trajectory that hits the
corner from the direction above the step (i.e., with p1 > 0, p2 < 0), and this
dividing trajectory is glued to the lower boundary of J ′R — since the return map
is piecewise orientation preserving this implies that JK2, JK2+1 must switch their
positions — see Figure 11. In summary, we proved equation (28). The lengths
of the intervals, λα of (29), follow either from the swiss-cross geometry, or,
equivalently, from formulae (31), or by considering the phases of the trajectories
which hit the step corner (see Figure 11):

λJK2+1 = 2π
T̃2

T2

{
T1− T̃1

T̃2

}
= 2θwall

2 {χ2}

λJK2
= 2π

T̃2

T2

(
1−

{
T1− T̃1

T̃2

})
= 2θwall

2 (1−{χ2})

(32)
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The form of the IEM on the circle is now fully determined by the rotation (23),
the permutation (28), and the lengths of the intervals (29).

To determine the 5-IEM on the fundamental interval [−π, π), we need to
identify how the circle-intervals and their images Jα, J ′α, are cut by the chosen
fundamental interval, here [−π, π). Let θ L ,R

Jα , θ
L ,R
J ′α
∈ [−π, π) denote the left and

right end points of the circle interval Jα, J ′α mod 2π . Namely, when θ L
Jα < θ

R
Jα

the circle interval Jα is not cut by the fundamental interval, so J ∗α = [θ
L
Jα , θ

R
Jα )⊂

[−π, π) whereas θ L
Jα > θ R

Jα means that Jα is split to two intervals, so: J ∗α =
J 1
α∪ J 2

α =[−π, θ
R
Jα )∪[θ

L
Jα , π), and the same convention is applied to the intervals

images. To obtain the 5-IEM, given an α such that θ L
Jα >θ

R
Jα we split that interval

to two at the phase π . Similarly, given an α such that θ L
J ′α
> θ R

J ′α
we split its

preimage, Jα at θ∗— the preimage of π. In the nondegenerate case (i.e., when
θ

L ,R
Jα , θ

L ,R
J ′α
6=−π, Jα ∈{JR, JK2, JK2+1}), exactly one of the intervals and exactly

one image of an interval is split, so, if additionally {χ2} 6= 0, we obtain a 5-IEM.
We identify below the JR interval end points and their images and demonstrate
that this completely determines the 5-IEM on [−π, π).

The left boundary of JR , θ L
JR

, is the phase of the trajectory which reaches the
corner from the right with negative vertical velocity, i.e., it is the phase on 61

which arrives to the corner (θwall
1 , θwall

2 ) in the swiss-cross (see Figure 11). Since
the time of passage from 61 to 6−1 is half of T̃1, and since the phases in JR are
rotated by the phase 22, we immediately obtain that

θ L
JR
= θ R

JK2+1
= θwall

2 −
1
222 (mod 2π),

θ L
J ′R
= θ R

J ′K2
= θwall

2 +
1
222 (mod 2π).

(33)

This information, together with the order of the intervals (28) and their lengths
(29) completely determines the 5 IEM. Indeed,

θ R
JR
= θ L

JK2
= θ L

JR
+ λJR (mod 2π), (34)

hence

θ L
J ′K2+1
= θ R

J ′R
= θ R

JR
+22 (mod 2π), (35)

and

θ R
JK2
= θ L

JK2+1
= θ L

JK2
+ λJK2

(mod 2π), (36)

so

θ L
J ′K2
= θ R

J ′K2+1
= θ L

J ′K2+1
+ λJK2+1 (mod 2π), (37)

and all the intervals’ and their images’ end points are thus determined by
χ2,22, θ

wall
2 (all depending on (e1, h) and on the parameters e.g., qwall

1,2 ). In
particular, the conditions under which one or more of the 5-intervals in [−π, π)
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qwall
1 qwall

2 χ2(h
step
1 ), χ2(h− hstep

2 ) 22(h
step
1 ),22(h− hstep

2 )

< 0 < 0 0, A(h−hstep
2 )

2π 2smooth
2 (hstep

1 , h), B(h− hstep
2 )

< 0 > 0 0,∞ 2smooth
2 (hstep

1 , h), B(h− hstep
2 )

> 0 < 0 2smooth
2 (hstep

1 ,h)

2θwall
2 (h−hstep

1 )
,

A(h−hstep
2 )

2π 0, B(h− hstep
2 )

> 0 > 0 2smooth
2 (hstep

1 ,h)

2θwall
2 (h−hstep

1 )
,∞ 0, B(h− hstep

2 )

Table 2. The values of χ2 and 22 at the two edges of Rc
(h), where

we use the shorthand notations

A(h− hstep
2 )=2smooth

2 (h− hstep
2 )

(
1− θwall

1 (h− hstep
2 )/π

)
,

B(h− hstep
2 )=2smooth

2 (h− hstep
2 )(θwall

1 (h− hstep
2 )/π).

has zero length can be explicitly formulated:

22(e1,h,qwall
1 )

=


2smooth(e1,h)−2K θwall

2 (h−e1,qwall
2 ) then λJK+1 = 0,

±2θwall
2 (h−e1,qwall

2 )+2π(1+2M) then −π ∈ {θ L ,R
JR
,θ

L ,R
J ′R
},

2θwall
2 (h−e1,qwall

2 )(1−2{χ2})+2π(1+2M) then −π ∈ {θ R
JK
,θ R

J ′K+1
},

(38)

where K ,M ∈ Z. To complete the proof, we need to show that these conditions
may be satisfied at most at isolated e1 values. To this aim, we first notice

Lemma 4.3. For level sets in the step region Rc, the functions χ2,22, θ
wall
2 of

e1 are pairwise independent, and, when 2smooth
2 is nonconstant, they are also

pairwise independent of 2smooth
2 .

Proof. The independence follows from the observation that the functions are
smooth nonconstant functions (see Tables 1 and 2) that depend nontrivially on
e1 through distinct parameters. For example, 22 = 22(e1, h, qwall

1 ) whereas
θwall

2 = θwall
2 (h − e1, qwall

2 ) and the dependence of these two functions on e1

through qwall
1,2 is nontrivial (i.e., it follows from equations (7) and (23) that

∂2θwall
2

∂qwall
2 ∂e1

=−
d

de1

ω2(h− e1)√
2(h− e1− V2(qwall

2 ))

and
∂222

∂qwall
1 ∂e1

=−
d

de1

2ω2(h− e1)√
2(e1− V1(qwall

1 ))
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hence, with, possibly, the exception of isolated e1 values, these derivatives do
not vanish for all level sets in Rc). Hence, if they were functionally dependent,
i.e., there was a G(θwall

2 ,22; h, qwall
1,2 )≡ 0 then

d
dqwall

2

G(θwall
2 ,22; h, qwall

1,2 )=
∂G
∂θwall

2

∂θwall
2

∂qwall
2

+
∂G
∂qwall

2

≡ 0

and hence

d2

de1dqwall
2

G(θwall
2 ,22; h, qwall

1,2 )=
∂G
∂θwall

2

∂2θwall
2

∂e1∂qwall
2

+
∂ dG

de1

∂θwall
2

∂θwall
2

∂qwall
2

+
∂ dG

de1

∂qwall
2

=
∂G
∂θwall

2

∂2θwall
2

∂e1∂qwall
2

= 0.

Since ∂2θwall
2 /(∂e1∂qwall

2 ) 6= 0 we conclude that ∂G/∂θwall
2 = 0, namely, there

is no such G with nontrivial dependence on both θwall
2 and 22). Similarly,

since χ2 = χ2(e1, h, qwall
1 , qwall

2 ), and similarly to the above calculations, the
dependence of χ2 on both qwall

1 and qwall
2 is nontrivial in e1, the pairs (χ2,22) and

(χ2, θ
wall
2 ) are functionally independent. Finally, since 2smooth

2 =2smooth
2 (e1, h),

by the same argument as above, provided ∂2smooth(e1, h)/∂e1 6= 0 apart of
isolated points, it is pairwise independent from each of the functions χ2,22, θ

wall
2 .
�

Now, we can show that (38) is satisfied at most at isolated e1 values. For the
first two possibilities, both sides of the equation are smooth functions of e1 with
the right hand side depending nontrivially on qwall

1 whereas the left hand side
depending nontrivially on qwall

2 . Hence, by the same arguments as in Lemma 4.3,
the right and left hand side are functionally independent and their difference
vanish at most at isolated e1 values.

For the last row, notice that

χ2(e1, h, qwall
1 , qwall

2 )=
T2(h− e1)

T̃2(h− e1)

T1(e1)− T̃1(e1)

T2(h− e1)
=
2smooth

2 −22

2θwall
2

, (39)

namely, 2{χu}θ
wall
2 =2smooth

2 −22−2K2θ
wall
2 , hence the last equation becomes

2θwall
2 (h− e1; qwall

2 )(1+ 2K2)

= 22smooth
2 (e1, h)−22(e1, h, qwall

1 )− 2π(1+ 2M), (40)

which shows, as above, that it is also satisfied at most at isolated e1 values.
Notice that θwall

2 > 0 for all level sets in Rc(h), so the circle map has always
at least two nontrivial components (JR and JU ), and in fact, with the exception
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�J
L

A

R

Σ1
− Σ1

+ Σ1 Σ1
−

Σ2
−

Σ1
JR

JK+1
JK

�J
L
R

A

Σ1
− Σ1

+ Σ1
−

Σ2
−

Σ1 J'R

J'K+1

J'K

�J
L
R

Figure 11. Order of intervals: the intervals JK2, JK2+1 correspond to
orbits that bounce, respectively, K2, K2+ 1 times above the step. On
the SW surface these are the orbits that enter the horizontal arm and
wrap, respectively, K2, K2+ 1 times around it before returning to the
vertical arm. Thus, their order on 61 is reversed by the flow. The phase
θ L

JR
denotes the left edge of JR — the phase that separates the orbits

that enter the horizontal arm from those that bounce off the vertical
arm boundary, namely the vertical boundary of the step.

of isolated points within Rc(h), it has three nontrivial components since {χ2}

vanishes at most at isolated e1 values. �

5. Additional properties of the family of IEM

Theorem 4.2 implies that the dynamics for level sets in the step set are completely
determined by the numerical properties of χ2,22, θ

wall
2 . All these functions

depend smoothly on e1 for the level sets in Rc(h) and are nonconstant functions —
indeed, their values at the boundaries of Rc(h) are always distinct — see Tables 1
and 2. Hence, these functions attain both rational and irrational values as e1

is varied (in some cases, but not all, these functions are also monotone in e1).
While one may suspect that this implies that for almost all e1 values the dynamics
are uniquely ergodic, it is difficult to check directly when the corresponding
IEM satisfies the Veech condition; see [13]. Indeed, while Lemma 4.3 states
that the functions χ2,22, θ

wall
2 are pairwise independent, and, in Theorem 4.2



58 BECKER, ELLIOTT, FIRESTER, GONEN COHEN, PNUELI AND ROM-KEDAR

we established that the lengths of the intervals of the IEM are nonzero with the
exception of isolated e1 values, more delicate relations between the intervals
lengths may arise. Indeed, rewriting equation (39) as

2smooth
2 (e1, h)

= 2θwall
2 (h− e1, qwall

2 )χ2(e1, h, qwall
1 , qwall

2 )+22(e1, h, qwall
1 ), (41)

shows that in the linear case, where 2smooth,LO
2 = 2π ω2

ω1
, the three functions are

functionally related! The implications of this dependence on the dynamics and
the properties of it for general nonlinear oscillators are yet to be explored. For
now we show, by analyzing the properties of these functions, that, for some cases
minimal dynamics arise and in others nonminimal dynamics arise.

In particular, we establish that there can be isolated strongly resonant level sets
at which orbits of different periods coexist (e.g., if 22/2π, 2θwall

2 /2π, {χ2} ∈Q),
level sets for which periodic and quasiperiodic motion coexist (e.g., when
{2/2π, 2θ2/2π} ∈ Q, {χ2} /∈ Q such a case may emerge) and isolated level
sets in Rc(h) at which the IEM reduces to a rotation (when {χ2} = 0 so the
directional flow on SW has a diagonal trajectory in the horizontal arm). Notice
that the analogous computations for the return map to 62 amounts to replacing
1↔ 2 in all the above definitions.

In particular, we notice the special role the function χ2 plays: its magnitude
controls the number of bounces experienced by phases in JK2 (recall that K2 =

bχ2c) and its phase, {χ2}, controls the division of JU to two intervals (recall that
λJK2+1 = 2θwall

2 {χ2}). Hence, we study the dependence of χ2 on e1 and on the
parameters qwall

1,2 . We begin with two simple cases where we can completely
characterize the dynamics.

Corllary 5.1. For level sets in Rc(h) for which {χ2} = 0 the return map to 61 is
of only 2 intervals, namely it corresponds to a rotation by22, and is thus ergodic
if and only if 22/2π /∈Q.

Proof. By (29), {χ2} = 0 implies that λJK2
= 2θwall

2 > 0 and λJK2+1 = 0, hence,
(31) becomes a rotation by 22. �

In terms of the directed motion on the L-shaped billiard, the condition {χ2}= 0
corresponds to the case of a diagonal orbit connecting the corners of the horizontal
arm. If, additionally, 22/2π ∈Q then this orbit is also a diagonal of the vertical
arm. Notably, if qwall

2 > 0, close to the boundary of Rc(h) the horizontal sleeve
becomes narrow (see Figure 12) and thus there are many level sets at which
{χ2} = 0.

Lemma 5.2. If qwall
2 > 0, for all h > hstep, there are countable infinite level sets

in Rc(h) for which {χ2} = 0.
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Figure 12. The dynamics for small θwall
2 .

Proof. Since, for qwall
2 > 0, T̃2(h − e1; qwall

2 )→ 0 as e1 → h − hstep
2 whereas

T1(e1)− T̃1(e1; qwall
1 ) attains a finite positive limit (since h > hstep), the smooth

function χ2(e1, h) = (T1(e1)− T̃1(e1)/T̃2(h− e1)) in the open interval Ic(h)
becomes infinite on the interval right boundary, hence it passes through integer
values at countable infinite values of e1. �

Another case which allows a complete characterization of the motion is when
22 is rational and θwall

2 is small.

Lemma 5.3. For level sets in Rc(h) for which 22 = 2πm/n and 2θwall
2 < 2π/n,

the IEM to 61 is nonergodic. For such level sets, if {χ2} /∈Q the motion is dense
on a union of open intervals and is periodic on its complement. If {χ2} ∈Q, all
i.c., are periodic, yet, there are two distinct periods. All the above conditions are
realizable for some level sets and wall positions.

Proof. Let I = [−π, π)\
⋃n−1

j=0 F j (JU ) ⊂ JR where JU = JK2 ∪ JK2+1. Since
here λJU = 2θwall

2 < 2π/n, this is a nonempty set. It is invariant since the end
points of JU belong to JR , so the end points are n-periodic. Hence, all the i.c.,
in I are n periodic and thus F is nonergodic on the circle.

The dynamics in the complement to I , namely the invariant set
⋃n−1

j=0 F j (JU ),
depends on the numerical value of {χ2}. Notice that for all i.c., in JK2 , Fn(θ2)=

θ2+2θwall
2 {χ2}∈ JU whereas for all i.c., in JK2+1, Fn(θ2)=θ2−2θwall

2 (1−{χ2})∈

JU , namely, Fn(θ2) is a 2-IEM on JU , hence it is periodic for {χ2} =
p
q ∈ Q

and is dense in JU otherwise. In the periodic case, initial conditions in I are
n-periodic whereas initial conditions in its complement are nq periodic. Finally,
since the functions 22, χ2, θ

wall
2 are continuous (in fact, smooth) nonconstant

functions of e1 in Ic(h) and since 22 =22(e1, h, qwall
1 ) we obtain that for every

h, qwall
1 there is a countable set of e1 values in Ic(h), e∗1 = e1(m/n, h, qwall

1 ) for
which 22 = 2πm/n. Notice that 22 does not depend explicitly on qwall

2 . Fixing
m/n, h, qwall

1 , there is a qwall
2 (δ) value such that 2θwall

2 (h− e∗1, qwall
2 ) < 2π/n for

all qwall
2 >qwall

2 (δ); indeed, choose qwall
2 (δ)>0 such that V2(qwall

2 (δ))=h−e∗1−δ,
so, by (7) and (18), for small δ, θwall

2 (δ) = θwall
2 (h − e∗1, qwall

2 (δ)) is monotone
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decreasing (in δ) to 0 (see Figure 12). In particular, there exists δ∗(n) such
that for all δ ∈ (cδ∗(n), δ∗(n)), for any 0 < c < 1, the impact angle satisfies
2θwall

2 (cδ∗(n)) < 2θwall
2 (δ) < 2π/n, so it is small yet bounded away from 0,

as needed for the smooth dependence on e1 near e∗1 . In particular, for this
range of qwall

2 (δ) values, motion on the level set (e∗1, h − e∗1) is n-periodic for
the set I as described above. Moreover, on this level set, from (26), χ2(δ) =

(2smooth(e∗1, h) − 2πm/n)/θwall
2 (δ) > 0, hence, it is a continuous monotone

increasing function of δ, and thus, {χ2} /∈ Q for almost all δ values in the
interval and there is a countable set of δ values for which {χ2} ∈Q. Namely, we
established that these conditions are always realizable by varying the parameter
qwall

2 . �

Notice that for sufficiently small c in the above proof the function χ2(δ)

becomes large, as in Lemma 5.2, therefore, {χ2(δ)} vanishes at some isolated
δ values. Finally, since χ2 is continuous, its range for e1 ∈ Ic(h) is at least
as large as the interval (χ2(h

step
1 ), χ2(h − hstep

2 )). When one of these values is
an integer, the behavior below and above this energy changes. Thus, Table 2
provides conditions for energy values at which bifurcations occur. For linear
oscillators, we can find the ranges explicitly, see Section 6.

All the above properties were stated for the return map to 61, creating an
artificial asymmetry between the horizontal and vertical directions. The same
results apply to the return map to the 62 section by reversing the roles of 1 and
2 and horizontal and vertical in all definitions.

6. The step dynamics for linear oscillators

For the quadratic potentials (2), the L-shaped billiard tables vertices are found
explicitly and the direction of motion is fixed. We begin this section by proving
Theorem 2.6 regarding the linear-oscillators-step dynamics and continue with
additional observations regarding the singular level sets for this case.

Proof of Theorem 2.6. The transformation to action angle coordinates for linear
oscillators, with the convention (14), becomes

(qi (t), pi (t))=
(√

2Ii
ωi

cos θi (t),−
√

2Iiωi sin θi (t)
)
, Hi = ωi Ii ,

and Ii =
1
2

(
p2

i /ωi +ωi q2
i

)
. Hence, for ei > hstep

i =
1
2ω

2
i (q

wall
i )2:

θ
wall,LO
i (ei ; qwall

i )= arccos
√
ωi

2Ii
qwall

i

= arccos
ωi qwall

i
√

2ei
∈

{(
π
2 , π

)
qwall

i < 0,(
0, π2

)
qwall

i > 0.
(42)
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Since the frequencies of linear oscillators are independent of the energy, the
direction of motion in the isoenergetic billiard family, B(h), is fixed to (ω1, ω2)

for all the level sets. Hence, for a given energy surface h = e1+ e2 > hstep, the
linear oscillator step dynamics on each level set (e1, e2 = h− e1) ∈Rc(h) are
conjugated to the directed billiard motion, in direction (ω1, ω2), in the L-shaped
billiards L(π, π, arccosω1qwall

1 /
√

2e1, arccosω2qwall
2 /
√

2(h− e1)). Moreover,
since

dθwall,LO
1 (e1; qwall

1 )

de1
=
ω1qwall

1

2e1

1√
2e1− (ω1qwall

1 )2
(43)

and

dθwall,LO
2 (h− e1; qwall

1 )

de1
=−

ω2qwall
2

2(h− e1)

1√
2(h− e1)− (ω2qwall

2 )2
, (44)

the widths of the arms are monotone in e1 and are of opposite monotonicity if
and only if qwall

1 qwall
2 > 0. �

As shown in Section 5, the monotonicity, bounds and limits of the functions
22, χ2, θ

wall
2 determine the variety of behaviors of the dynamics on isoenergy

surfaces. For linear oscillators, 2LO
2 , θ

wall,LO
2 are monotone in the step region

whereas:

Lemma 6.1. For all h > hstep, the function χLO
2 (e1, h) is monotone if and only if

qwall
1 qwall

2 < 0.

Proof. Observe that for linear oscillators qwall
i T̃ ′LO

i (ei ; qwall
i ) > 0 (see equations

(7) and (9) and recall that T ′LO
i = 0, hence the result follows from the definition

(26) of χ2(e1, h), or, from direct differentiation of

χLO
2 (e1, h)=

ω2

ω1

(π − arccos(ω1qwall
1 /
√

2e1))

arccos(ω2qwall
2 /
√

2(h− e1))
=
ω2

ω1

π − θ
wall,LO
1 (e1; qwall

1 )

θ
wall,LO
2 (h− e1; qwall

2 )

(see (11)),

χLO′
2 (e1)=

ω2

(
−
ω1qwall

1 arccosω2qwall
2 /
√

2(h−e1)

2e1
√

2e1−(ω1qwall
1 )2

+
ω2qwall

2 (π−arccosω1qwall
1 /
√

2e1)

2(h−e1)
√

2(h−e1)−(ω2qwall
2 )2

)
ω1(arccosω2qwall

2 /
√

2(h− e1))2
.

(45)
The denominator is always positive (it approaches 0 when qwall

2 > 0 and e1↗

h− 1
2(ω2qwall

2 )2 ) so the sign is determined by the numerator. If qwall
1 qwall

2 <0 both
terms in the numerator have the same sign so χ2 is monotone. If qwall

1 qwall
2 > 0,

the first term in the numerator diverges to − sign(qwall
1 )∞ as e1↘

1
2(ω1qwall

1 )2,
the second term diverges to sign(qwall

2 )∞ as e1↗ h− 1
2(ω2qwall

2 )2, hence χ ′2(e1)

changes sign and χ2 is nonmonotone. �
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qwall
1 qwall

2 χLO
2 (hstep

1 )→ χLO
2 (h− hstep

2 ) 2LO
2 (hstep

1 )→2LO
2 (h− hstep

2 )

< 0 < 0 0↗↘ ω(1− 1/πθ∗1 (h)) 2πω↘ 2ωθ∗1 (h)

< 0 > 0 0↗∞ 2πω↘ 2ωθ∗1 (h)

> 0 < 0 ωπ/θ∗2 (h)↘ ω(1− 1/πθ∗1 (h)) 0↗ 2ωθ∗1 (h)

> 0 > 0 ωπ/θ∗2 (h)↘↗∞ 0↗ 2ωθ∗1 (h)

Table 3. The values of χLO
2 ,2LO

2 at the edges of Rc(h) and their
monotonicity properties, where ω = ω2

ω1
.

Corllary 6.2. If qwall
2 > 0, for all h > hstep, the step region has countable infinite

level sets at which {χLO
2 } = 0, namely at which the return map to 61 reduces to

a two intervals rotation on the circle. For qwall
2 < 0, for sufficiently large h, the

number, N 2
osc(h), of such level sets when qwall

1 < 0 is at least
⌊ 1

2
ω2
ω1

⌋
whereas if

qwall
1 > 0 there are

⌊ 3
2
ω2
ω1

⌋
such level sets. The same results hold for the return

map to 62 when replacing the roles of 1↔ 2 in the above statements.

Proof. First, it follows from (11) that in the step region χLO
2 (e1, h) is a smooth

nonoscillatory function which diverges only at the step region upper boundary
(and this occurs if and only if qwall

2 > 0). Hence, for any fixed h, there is at most
countable infinite level sets N 2

osc(h) at which {χLO
2 (e1)} may vanish. The edge

values — the values of χLO
2 ,2LO

2 at the end points of the step-region (namely
calculating (9), (11) at e1 = hstep

1 and at e1 = h− hstep
2 ) and their monotonicity

property are listed in Table 3, where

θ∗1 (h)= θ
wall
1 (h− hstep

2 ; q
wall
1 )= arccos

ω1qwall
1√

2h− (ω2qwall
2 )2

(46)

θ∗2 (h)= θ
wall
2 (h− hstep

1 ; q
wall
2 )= arccos

ω2qwall
2√

2h− (ω1qwall
1 )2

. (47)

For any energy h, these values supply the range of χLO
2 in the monotone

cases (second and third rows in the tables) and a lower bound on its range in the
nonmonotone cases (first and last rows). The number of isoenergy level sets at
which {χLO

2 = 0} (at which the directional motion in the horizontal arm of the
SW surface is diagonal) is determined by the number of integer values contained
in the range of χLO

2 . The second and fourth rows of Table 3 show that the range
is infinite when qwall

2 > 0, proving the first statement of the corollary. Table 4
shows the asymptotic edge values at large energies, using the observation that
θ∗1,2(h)→

π
2 . The rest of the corollary follows from this table — for qwall

2 < 0, the
first row of Table 4 corresponds to the nonmonotone case whereas the third row
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qwall
1 qwall

2 χLO
2 2LO

2 N 2
osc N 1

osc

< 0 < 0 0↗↘ ω/2 2πω↘ πω > bω/2c > b1/2ωc

< 0 > 0 0↗∞ 2πω↘ πω ∞ b3/2ωc

> 0 < 0 2ω↘ ω/2 0↗ πω b3ω/2c ∞

> 0 > 0 2ω↘↗∞ 0↗ πω ∞ ∞

Table 4. The behavior of χLO
2 ,2LO

2 on Rc(h) at large h and the number
of oscillations, N i

osc(h), of {χLO
i } in the family of isoenergy return maps

to 6i for sufficiently large h, where ω = ω2/ω1.

qwall
1 qwall

2 χLO
2 2LO

2 N 2
osc(h

step
+η)

<0 <0 0↗↘a1ω 2πω↘2πω(1−a1) &ba1ωc

<0 >0 0↗∞ 2πω↘2πω(1−a1) ∞

>0 <0 ω(1+a2)↘ω(1−a1) 0↗πa1 bω(a1+a2)c

>0 >0 ω/a2↘↗∞ 0↗πa1 ∞

Table 5. The values of χLO
2 ,2LO

2 at the edges of Rc(h=hstep
+η) for

small η>0, namely χLO
2 (hstep

1 ),χLO
2 (η+hstep

−hstep
2 ) and N 2

osc(h). The
values of N 1

osc(h) in the first and second rows are found by switching
1↔2 (as in Table 4). For shorthand notation we denote here ω=ω2/ω1

and ai=
1
π

√
η/hstep

i , i=1,2.

corresponds to the monotone case. Since N 2
osc(h) are integers, for sufficiently

large h the limiting values and N 2
osc(h) are identical. Finally, by symmetry,

replacing the roles of 1↔ 2, provides the estimates for N 1
osc(h), the number of

oscillations in the vertical arm before returning to the section 62. �

Table 5 displays the edge values at energies near hstep (i.e., for h = hstep
+ η,

and small, positive, η). Notice that for such h values

θ∗i (h)=
√
η/hstep

i if qwall
i > 0

and

θ∗i (h)= π −
√
η/hstep

i if qwall
i < 0.

We see that when qwall
2 > 0, infinite number of oscillations occur for arbitrary

small η, whereas in the other cases, the number of oscillations scales with
√
η.
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7. Summary and discussion

An integrable mechanical Hamiltonian system with a step barrier in the configu-
ration space which is aligned with the continuous symmetries of the integrable
Hamiltonian produces dynamics that are not Liouville integrable, yet are un-
analyzable. An experimental setup which realizes such a theoretical model
has been suggested (Figure 1). In such models, the motion on energy surfaces
is foliated by level sets, yet, the motion on a range of isoenergy level sets is
nonintegrable and is conjugated to the motion on a family of genus 2 flat surfaces
or, equivalently, to an L-shaped billiard (Theorem 2.2). The return map to a
Poincaré section for this range of level sets is a 5 interval exchange map, and
the lengths of the intervals change nontrivially along the isoenergy family of
level sets (Theorem 4.2). For the case of Linear oscillators the L-shaped billiard
dimensions and thus the intervals lengths are found explicitly (Theorem 2.6)
whereas for general nonlinear oscillators they are given up to quadratures. While
our main example included a single step, the same strategy may be applied to any
barrier geometry which combines horizontal and vertical barriers. The flow of the
HIS (1) with such barriers is conjugated, for any given level set, to a directional
motion in the angles’ space on nibbled a flat surface, and in some cases (see
[12]) one obtains rectangles similar to those analyzed in [11]. An important
conclusion is that above certain energy the energy surfaces of (1) are foliated
by several families of level set surfaces; within any such family the geometry
varies smoothly, and different families have distinct topology. Namely, on the
same energy surface there are families of level-set surfaces with different number
of connected components and different numbers of holes; see Corllary 2.3 and
Figure 10.

The implications of our findings are intriguing; First, the statistics of a typical
observable of such mechanical systems (i.e., an observable which does not depend
only on the energy distribution among the degrees of freedom) are now related to
the delicate theories derived for studying IEM and Teichmuler flows on moduli
spaces. Second, by considering soft steep potentials instead of impacts, the
topology of the energy surfaces remains as complex as the one constructed here
(then the motion is not expected to be foliated to level sets). Higher dimensional
extensions, other symmetries, potentials with local maxima (so that the smooth
system has singular level sets of the Liouville foliation), and the influence of small
perturbations and soft potentials are exciting directions to be further explored;
see related results in [18; 22].
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Some remarks on the classical KAM theorem,
following Pöschel
ABED BOUNEMOURA

We propose a slight correction and a slight improvement on the main result
contained in “A lecture on Classical KAM Theorem” by J. Pöschel.

1. Introduction and results

The paper [5] contains a very nice exposition of the classical KAM theorem which
has been very influential. It is our purpose in this short and non-self-contained
note to add two remarks to this remarkable paper.

The first one concerns a technical mistake in the proof of the main abstract
statement Theorem A,1 which has been recently pointed out and corrected in the
PhD thesis [3]. Yet a correction of this mistake, following Pöschel arguments,
leads to a final statement which is both less elegant and quantitatively weaker.
We would like to explain how, by modifying slightly the arguments using ideas
due to Rüssmann (see for instance [7]), Theorem A of [5] can be proved without
any changes. The aforementioned modifications consist of replacing the crude
Fourier truncation by a more refined polynomial approximation, and then set an
iterative scheme with a linear,2 rather than super-linear, speed of convergence.

The second one concerns the application of Theorem A to an ε-perturbation of
a nondegenerate integrable Hamiltonian system. This gives persistence of a set
of positive measure of analytic invariant quasiperiodic tori with fixed diophantine
frequencies, such that each torus in this set is at a distance of order

√
ε to

its associated unperturbed invariant torus. By using a more adapted version of
Theorem A, we can actually show that the distance is of order ε/α, where α is the
constant of the Diophantine vector. This is not a new result, as this was already

MSC2020: 37J40.
Keywords: classical KAM theorem.

1The choices of h0 and K0, page 23 in [5], violate the condition h0 ≤ α(2K ν0 )
−1.

2We would like to quote here the paper [6]: “It has often been said that the rapid convergence
of the Newton iteration is necessary for compensating the influence of small divisors. But a deeper
analysis shows that this is not true. The Newton method compensates not only the influence of
small divisors but also many bad estimates veiling the true structure of the problems.”
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proved in [9] using a refinement of Kolmogorov approach (for an individual
torus).

So let us recall the main result of [5], keeping the same notations. For a given
domain �⊆Rn , consider a subset �α ⊆� of Diophantine vectors with constant
α > 0 and exponent τ ≥ n− 1. Given 0< r, s, h ≤ 1, define

Dr,s ={I | |I |< r}×{θ | |Im(θ)|< s}⊆Cn
×Cn, Oh={ω | |ω−�α|< h}⊆Cn

where | · | is the sup norm for vectors, and let | · |r,s,h the sup norm for functions
defined on Dr,s × Oh and | · |L the Lipschitz seminorm with respect to ω. Let
N (I, ω)= e(ω)+ω · I , which can be seen as a family Nω of linear integrable
Hamiltonian depending on parameters ω ∈ �; the family of embedding 80 :

Tn
×�→ Rn

× Tn defined by 80(θ, ω) = (0, θ) defines, for each ω ∈ �, a
Lagrangian torus invariant by the Hamiltonian flow of Nω and quasiperiodic of
frequency ω.

Theorem A. Let H = N + P. Suppose P is real-analytic on Dr,s × Oh with

|P|r,s,h ≤ γαrsν, αsν ≤ h (1-1)

where ν = τ + 1 and γ is a small constant depending only on n and τ . Then
there exist a Lipschitz map ϕ :�α→� and a Lipschitz family of real-analytic
Lagrangian embedding 8 : Tn

×�α→ Rn
×Tn that defines, for each ω ∈�α, a

Lagrangian torus invariant by the Hamiltonian flow of Hϕ(ω) and quasiperiodic
of frequency ω. Moreover, 8 is real-analytic on T∗ = {θ | |Im(θ)| < s/2} for
each ω and{

|W (8−80)|, αsν |W (8−80)|L ≤ c(αrsν)−1
|P|r,s,h,

|ϕ− Id|, αsν |ϕ− Id|L ≤ cr−1
|P|r,s,h,

(1-2)

uniformly on T∗×�α and�α respectively, where c is a large constant depending
only on n and τ , and W = Diag(r−1 Id, s−1 Id).

As expressed in (1-2), the map (8, ϕ) is Lipschitz regular with respect to
ω∈�α , and its Lipschitz norm (suitably weighted) is close to the one of (80, Id);
this is all what is needed to transfer the positive measure in parameter space
ω ∈ �α to a positive measure of quasiperiodic solutions in phase space. One
course one may ask whether (8, ϕ) is more regular with respect to ω ∈�α (since
�α is a closed set, smoothness has to be understood in the sense of Whitney).
In fact, the sketch of proof we will give below implies the following: given any
l ∈ [1,+∞[, provided (1-1) is replaced by

|P|r,s,h ≤ γ (l)αrsν

for some h > 0 and some γ (l) > 0, (8, ϕ) is of class C l with respect to ω: we
simply chose l = 1 in Theorem A to obtain Lipschitz regularity. However, as
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l→+∞, γ (l)→ 0 and thus we cannot conclude that (8, ϕ) is smooth. In order
to reach such a statement, one can replace the linear scheme of convergence
by the usual super-linear scheme (as described in [5] for instance) but then the
exponent ν in (1-1) has to be deteriorate: given any µ > ν, we have that (8, ϕ)
is smooth with respect to ω provided (1-1) is replaced by

|P|r,s,h ≤ γ (µ, ν)αrsµ

for some h > 0 and some γ (µ, ν) > 0: again γ (µ, ν)→ 0 as µ→ ν. Popov
(see [4]) showed that one can even go further and obtain some Gevrey smoothness
of (8, ϕ) under a stronger smallness condition; without going into these rather
technical issues, let us just say that (8, ϕ) can be shown to be Gevrey with
exponent 1+µ provided the polynomially small threshold sν in (1-2) is replace by
a super-exponentially small threshold of order exp(−c(1/s)a)with a=a(µ, ν)=
ν/(µ− ν). This is probably the best smoothness one can achieve in general.

Next we consider a small perturbation of a nondegenerate integrable Hamil-
tonian, that is a real-analytic Hamiltonian of the form

H(q, p)= h(p)+ f (q, p), | f | ≤ ε

where | f | is the sup norm on a proper complex domain. Introducing frequencies
as independent parameters as in [5], one can write H as in Theorem A with

P = P f + Ph, |P f | ≤ ε, |Ph| ≤ Mr2

where M is a bound on the Hessian of h. At that point, the best choice for r
seems to be r '

√
ε so that the size of P is of order ε and Theorem A can be

applied; yet with such a choice it is obvious that because of the estimates for ϕ
in (1-2), the distance between the perturbed and unperturbed torus will be of order
ε/r '

√
ε. Such an argument, used in [5], do not take into account the fact that

the term Ph is actually integrable and at least quadratic in I (that is, Ph(0, ω)= 0
and ∇I Ph(0, ω)= 0): this is an important point, as the size of Ph will effectively
enter into the conditions (1-1) but not in the estimates (1-2), simply because
Ph do not get involved in the approximation procedure nor contribute to the
linearized equations one need to solve at each step of the iteration. Then, taking
into account the estimate for Ph (which itself is a consequence of the fact that it
is at least quadratic in I ), the requirement

|P|. αrsν

is then obviously implied by the conditions

|P f |. αrsν, r . αsν

and thus we can state the following theorem (with a change of notations).



70 ABED BOUNEMOURA

Theorem B. Let H = N+ P+Q. Suppose P , Q are real-analytic on Dr,s×Oh ,
Q is integrable and at least quadratic in I with |Q|r,h ≤ Mr2 and

|P|r,s,h ≤ γαrsν, r ≤ δM−1αsν, αsν ≤ h (1-3)

where ν = τ + 1, γ and δ are small constants depending only on n and τ . Then
there exist a Lipschitz map ϕ :�α→� and a Lipschitz family of real-analytic
Lagrangian embedding 8 : Tn

×�α→ Rn
×Tn that defines, for each ω ∈�α, a

Lagrangian torus invariant by the Hamiltonian flow of Hϕ(ω) and quasiperiodic
of frequency ω. Moreover, the estimates (1-2) holds true.

We may now choose r as large as possible, namely r ' αsν , and obtain as
a consequence that the distance between perturbed and unperturbed torus is of
order ε(αsν)−1. As we already said, this fact was proved in [9]; alternatively, a
slight modification in the proof in [2] yields the same result.

2. Sketch of proof

In this section, we will sketch the proof of Theorems A and B; actually, we will
simply indicate the modifications with respect to [5] and we will use the same
convention for implicit constants depending only on n and τ .

Proposition 2.1. Let H = N + P , and suppose that |P|s,r,h ≤ ε with
ε ·<αη2rσ ν,
ε ·< hr,
h ≤ α(2K ν)−1, K =· σ−1 log(nη−2)

(2-1)

where 0< η < 1
8 and 0<σ < s

5 . Then there exists a real-analytic transformation

F = (8, ϕ) : Dηr,s−5σ × Oh/4→ Dr,s × Oh

such that H ◦F = N++ P+ with

|P+| ≤ 9η2ε (2-2)

and {
|W (8− Id)|, |W (D8− Id)W−1

|<·(αrσ ν)−1ε,

|φ− Id|, h|Dϕ− Id|L <· r−1ε,
(2-3)

uniformly on Dηr,s−5σ × Oh and Oh/4, with W = Diag(r−1 Id, σ−1 Id).

The above proposition is a variant of the KAM step of [5], which we already
used in [1]. The only difference is that in [5], instead of (2-1) the following
conditions are imposed 

ε ·<αηrσ ν,
ε ·< hr,
h ≤ α(2K ν)−1,

(2-4)
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with a free parameter K ∈ N∗, leading to the following estimate

|P+|<·(ε(rσ ν)−1
+ η2
+ K ne−Kσ )ε. (2-5)

instead of (2-2). The last two terms in the estimate (2-5) comes from the
approximation of P by a Hamiltonian R which is affine in I and a trigonometric
polynomial in θ of degree K ; to obtain such an approximation, in [5] the author
simply truncates the Taylor expansion in I and the Fourier expansion in θ to
obtain the following approximation error

|P − R|s−σ,2ηr,h <·(η
2
+ K ne−Kσ ).

Yet we can use a more refined approximation result, which allows to get rid of
the factor K n in the above estimate. More precisely, we use Theorem 7.2 of [7]
(choosing, in the latter reference, β1 = · · · = βn =

1
2 and δ1/2

= 2η for δ ≤ 1
4 );

with the choice of K as in (2-1),3 this gives another approximation R̃ (which is
nothing but a weighted truncation, both in the Taylor and Fourier series, which
is affine in I and of degree bounded by K in θ ) and a simpler error

|P − R̃|s−σ,2ηr,h ≤ 8η2.

As for the first term in the estimate (2-5), it can be easily bounded by η2ε in view
of the first part of (2-1) which is stronger than the first part of (2-4) required
in [5].

Now, at variance with [5], we will use Proposition 2.1 in an iterative scheme
with a linear speed of convergence as η will be chosen to be a small but fixed
constant: for convenience, let us set

η = 10−14−ν, κ = 9η2.

Next, we define for i ∈ N,

σ0 = s/20, σi = 2−iσ0, s0 = s, si+1 = si − 5σi

so that si converges to s/2. Then, for Ki =· σ
−1
i log(nη2)=· σ−1

i , we set

hi = α(2K ν
i )
−1
= 2−iνh0, hi ·=ασ

ν
i

and the condition αsν ≤ h implies in particular than h0 ≤ h. Finally, we put

εi = κ
iε, ri = η

ir

and we verify that Proposition 2.1 can be applied infinitely many times: the
third condition of (2-1) holds true by definition, whereas the first two conditions

3There is a constant depending only on n that we left implicit in the definition of K , which
depends on the precise choice of norms for real and integer vectors, see [8] for instance.
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of (2-1) amount to εi ·<αriσ
ν
i which, in view of our choice of η, holds true for

all i ∈ N provided it holds true for i = 0; for i = 0 the condition is satisfied in
view of the threshold ε ≤ γαrsν . Once we can iterate Proposition 2.1 infinitely
many times, the convergence proof and the final estimates follow exactly as in
[5], since the sequences εi (hiri )

−1and εi (h2
i ri )
−1 decrease geometrically, again

by our choice of η. This concludes the sketch of proof.
To prove Theorem B, one needs the following variant of Proposition 2.1.

Proposition 2.2. Let H = N + P + Q, suppose that |P|s,r,h ≤ ε, |Q|r,h ≤ Mr2

with Q integrable and at least quadratic in I and
ε ·<αη2rσ ν,
r ·<M−1αη2σ ν,

ε ·< hr,
h ≤ α(2K ν)−1, K = nσ−1 log(η−2),

(2-6)

where 0< η < 1
4 and 0<σ < s

5 . Then there exists a real-analytic transformation

F = (8, ϕ) : Dηr,s−5σ × Oh/4→ Dr,s × Oh

such that H ◦F = N++ P++ Q with the estimates (2-2) and (2-3).

Let R̃ be the approximation of P; if { · , · } denotes the Poisson bracket and
[ · ] averaging over the angles, we solve the equation

{F, N } = R̃+ Q− [R̃+ Q]

which, since Q is integrable, is exactly the equation

{F, N } = R̃− [R̃]

that is solved in [5] (with, of course, R instead of R̃ as we explained above). This
justifies that the transformation in Proposition 2.2 is the same as in Proposition 2.1,
and in particular it satisfy the estimates (2-2). The only difference is that the
new Hamiltonian writes

H ◦F = N++ P++ Q, N+ = N + [R̃]

with

P+ =
ˆ 1

0
{(1− t)[R̃] + t R̃+ Q, F} ◦ X t

F dt + (P − R̃) ◦ X1
F .

As compared to [5], there is an extra term in P+ coming from Q, whose contri-
bution is easily bounded by the simple Poisson bracket

|{Q, F}|<·Mr(ασ ν)−1ε
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and, in view of the extra condition we imposed in (2-6), one can easily arrange
the estimate (2-3). This justifies Proposition 2.2, and the iteration leading to
Theorem B is exactly the same as the one leading to Theorem A.
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Some recent developments in Arnold diffusion
CHONG-QING CHENG AND JINXIN XUE

This survey paper grows out of the lecture notes of the nine-hour lectures
that the authors delivered in the special semester on Hamiltonian dynamics at
MSRI in the fall of 2018. It can be considered as an introduction to our work
on Arnold diffusion.

1. Introduction

In the Hamiltonian formalism of the classical mechanics, a smooth Hamiltonian
function H on a symplectic manifold (M, ω) is given, and defines a vector field
X through ω( · , X)= d H . The main problem is to study the dynamics, which
is the long time behavior, of the solution of the differential equation x ′ = X (x),
x ∈ M , determined by the vector field X . The dynamics of a Hamiltonian
system in general can be very complicated and deny analytical approaches. From
dynamical perspectives, the most well-understood class of Hamiltonian systems
is integrable systems. The classical Liouville–Arnold theorem states as follows.

Theorem 1.1 (Liouville–Arnold). Let H1 = H : M2n
→ R be a Hamiltonian

and suppose there are H2, . . . , Hn : M→ R satisfying:

(a) {Hi , H j } ≡ 0, for all i, j = 1, . . . , n.

(b) The level set Ma := {(q, p) ∈ M | Hi (q, p)= ai , i = 1, . . . , n} is compact.

(c) At each point of Ma, the n vectors DHi , i = 1, . . . , n are linearly indepen-
dent.

Then:

(1) Ma is diffeomorphic to Tn
= Rn/Zn and is invariant under the Hamiltonian

flow of each Hi .

(2) Ma is a Lagrangian submanifold, i.e., for any u, v ∈ Tx Ma,∀x ∈ Ma, we
have ω(u, v)= 0.

MSC2020: 00A05.
Keywords: Arnold diffusion.
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(3) In a neighborhood U of Ma, there is a symplectic transform8(q, p)= (θ, I )
such that

8(U )= Tn
× (−δ, δ)n

for some δ > 0.

(4) In the new coordinates, each Ki := Hi ◦8
−1 is a function of I only so the

Hamiltonian equation is

θ̇ = ωi (I ) :=
∂Ki

∂ I
, İ = 0.

Integrable systems are also important in algebraic geometry, representation the-
ory, etc; see Hitchin [27]. For the purpose of studying dynamics of Hamiltonian
systems, the Liouville–Arnold theorem gives a good description of the dynamics
of integrable systems. Each regular level set Ma is an invariant torus under the
Hamiltonian flow and the dynamics on it is linear flow. However, integrable
systems are very rare. In nature, a system always undergoes some internal
or external perturbations. Therefore the next interesting and natural class of
Hamiltonian systems is nearly integrable systems which are small perturbations
of integrable systems. This class of systems models many interesting natural
phenomena including in particular the Newtonian N -body problem. It turns out
that this class of systems has rich dynamics and also approachable to a large
extent by analytic tools. From the Liouville–Arnold theorem, we see that the
natural phase space for studying nearly integrable systems is the symplectic
manifold T ∗Tn or its subsets endowed with the standard symplectic structure.
We will call a system of the following form a nearly integrable system

H(x, y)= h(y)+ εP(x, y), (x, y) ∈ Tn
×Rn

= T ∗Tn (1-1)

which gives rise to the Hamiltonian equation{
ẋ = ∂yh(y)+ ε∂y P(x, y),
ẏ =−ε∂x P(x, y).

(1-2)

The natural regularity assumption on H is Cr , r ≥ 2 including∞ and ω (meaning
analytic).

The celebrated Kolmogorov–Arnold–Moser theorem says that under certain
isoenergetic nondegeneracy condition, when ε is sufficiently small, most volume
of the phase space is occupied by invariant Lagrangian tori, each of which carries
irrational flow with Diophantine frequency. Systems with n = 1 are integrable,
so are well understood by Liouville–Arnold theorem. For systems with n = 2,
the KAM theorem gives lots of disjoint two-dimensional tori separating the
three dimensional level set, so each orbit is either on a invariant torus or trapped
between two nearby tori. We may use the oscillation of the action variable y
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along an orbit as a measurement of the instability of the system. In both the
cases n = 1 and n = 2, we see that the oscillation of y along each orbit is small
(o(1) as ε→ 0) so we think the systems as being stable. However, the cases of
n ≥ 3 is drastically different. The KAM tori are n-dimensional invariant sets
of codimension n− 1 > 1 on each energy level set, so the complement of the
union of the KAM tori is connected (there may be other Lagrangian tori which
are not given by the KAM theorem). This leaves room for the possibility of
having orbits wandering in the complements of these tori. Moreover, Arnold
constructed an example in which one action variable can indeed oscillate as far
as possible. Thus Arnold proposed the following conjecture.

Conjecture [2; 4]. For any two points y′ and y′′ on the connected level hyper-
surface of h in the action space there exist orbits of (1-2) connecting an arbitrary
small neighborhood of the torus y = y′ with an arbitrary small neighborhood of
the torus y = y′′, provided that ε 6= 0 is sufficiently small and P is generic.

The statement can be found in [2; 4], as well as in the book [5] in Problems
1963-1, 1966-3, 1994-33 etc. We make the following remarks concerning the
statement of the conjecture.

Remark 1.2. (1) In some circumstances the statement of Arnold talks about
only “general” or “typical” systems without specifying the regularity of the
Hamiltonian; see [2]. In [4], Arnold considered generic analytic Hamiltoni-
ans. The KAM theory applies to both analytic Hamiltonians and smooth
(Cr , r large or∞) Hamiltonians. However, when talking about genericity
in differential topology and Riemannian geometry, the C∞ category is the
one used since it allows to construct bump functions and partition of unity.
So for this conjecture, the analytic category and the smooth category are
essentially different.

(2) The genericity as in this conjecture is not the usual Baire second category,
since the smallness parameter ε may depend on the perturbation P . We will
introduce a cusp-residual genericity similar to Mather [35].

(3) In [4] Arnold also talked about generic unperturbed part h. In particular,
he mentioned Lorentzian type mechanical systems as the first step to study
the conjecture for nonconvex h. Our variational method applies only to the
convex case i.e., D2h is positive definite, which includes already lots of
physical models, since mechanical systems (kinetic energy plus potential
energy) have positive definite kinetic energy part.

The conjecture is in essence asking for an understanding of the global dynamics
in the complement of the KAM tori, where the dynamics is expected to be very
chaotic but is very resistant to analysis. A related problem called standard map
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conjecture states that the system

(x, y) 7→ (x + y+ k sin x, y+ k sin x)

has positive Lyapunov exponent for a positive Lebesgue measure set for all or
some parameter k ∈ R. The conjecture expect that the complement of the KAM
curves are nonuniformly hyperbolic in the sense of Pesin theory. Having an orbit
with wandering action variable is a way to measure the instability. It was foreseen
by Arnold [4] that the major difficulty is caused by the double resonance, where
the system can be reduced to a nonperturbative mechanical system.

We next state our main result as follows, which is an answer to the above
conjecture in the smooth category for convex systems and in the sense of cusp-
residual genericity. In the main body of the survey, we will sketch the main
ingredients of our proof in a series of papers [16; 9; 8; 10; 11]. Readers are
also referred to [14; 15; 6; 18; 19; 37; 7; 35; 28; 24; 32; 37] for other relevant
work. Denote by S1 the unit sphere in Cr (T ∗Tn) (or Cr (Tn)) with r ∈ [7,∞],
we have:

Theorem 1.3. Given any small δ > 0, and finitely many small balls Bδ(yi )⊂ Rn ,
where yi ∈ h−1(E) with E >min h(y), there exists a residual set C⊂S1 such
that the following holds for the system (1-1). For each P ∈ C there exists an
εP > 0, such that there is a residual set of ε in (0, εP), the Hamiltonian flow
admits orbits visiting the balls Bδ(yi ) in any prescribed order.

The paper is organized as follows. In the main body of the paper, we explain
Arnold diffusion in a priori unstable systems and the proof of Theorem 1.3 in
the case of n = 3. We postpone the general n > 3 case to Appendix C due
to its technicality. Though a bit technical, Appendix C may still serve as a
road-map of our paper [11] for readers who want to understand the detailed
proof. In Section 2, we explain Arnold’s example. In Section 3, we explain the
variational method using the pendulum and Arnold’s example. We also provide
our mechanism of changing cohomology classes. In Section 4, we explain the
main difficulties in the proof of Arnold diffusion for a priori unstable systems
and how to overcome them. In Section 5, we derive the resonant normal form.
Section 6 is the important section, which is about mechanical systems with two
degrees of freedom. In Section 7, we explain how to construct diffusing orbit
in systems with three degrees of freedom, in particular how to overcome the
main difficulty of the strong double resonance. In Section 8, we briefly discuss
the issue of genericity. Finally, we have three appendices. In Appendix A, we
provide the basic concepts in Mather theory and in Appendix B, we provide the
theorem of normally hyperbolic invariant manifolds. In Appendix C, we explain
how to construct diffusing orbit in systems of arbitrary degrees of freedom.
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2. Arnold’s example

2A. The pendulum. The mathematical pendulum is prominent in the study of
Arnold diffusion. The Hamiltonian is

H0(x, y)= 1
2 y2
+ (cos 2πx − 1), (x, y) ∈ T ∗T.

First, as a system of one degree of freedom, the Liouville–Arnold theorem can
be applied to the regular values of H . Thus the phase space dynamics is further
determined by the critical values of H .

Near the fixed points O = (0, 0), the Hamiltonian can be linearized as y2/2−
(2πx)2/2. The linearized Hamiltonian equation is{

ẋ = y,
ẏ = 4π2x,

so the fixed point is hyperbolic. Let O be the hyperbolic fixed point and φt , t ∈R,
be the flow generated by the Hamiltonian vector field, we define the stable (W s)

and unstable (W u) manifolds of the fixed point O as

W s(O)= {z ∈ T ∗T | φt(z)→ O, as t→+∞},

W u(O)= {z ∈ T ∗T | φt(z)→ O, as t→−∞}.

For the pendulum, we see that W s(O) coincides with W u(O) consisting of two en-
tire homoclinic orbits denoted by {(x0(t),±y0(t)), t ∈R}with (x0(t),±y0(t))→
(0, 0) as t→±∞.

It was discovered by Poincaré that the stable and unstable manifold will split
(i.e., will not coincide) if a generic time-periodic perturbation is added. Let us
consider the perturbed Hamiltonian

Hε(x, y, t)= 1
2 y2
+ (cos 2πx − 1)+ εH1(x, y, t), (x, y) ∈ T ∗T,

where H1(x, y, t) = H1(x, y, t + 1) and ∂x H1(0, 0, t) = ∂y H1(0, 0, t) = 0 for
all (x, y, t) ∈ T ∗T×T. The latter assumption on H1 implies that O remains a
fixed point for the perturbed system Hε. In this case, the Hamiltonian equation is
time-dependent, so its solution is not an R-action on T ∗T. Instead, we consider
the time-1 map denoted by φ1

ε , whose iterations give rise to a Z-action on T ∗T,
due to the 1-periodic dependence on t of H1. We redefine the stable and unstable
manifolds as

W s
ε (O)= {z ∈ T ∗T | φn

ε (z)→ O, as n→+∞},

W u
ε (O)= {z ∈ T ∗T | φn

ε (z)→ O, as n→−∞}.

The splitting of W s
ε (O) and W u

ε (O) is one of the main mechanisms responsible
for the nonintegrability of the perturbed system. The general method of measuring
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the separatrix splitting to the first order is the Melnikov function

M(α)=

ˆ
R

{H0, H1}(x0(t), y0(t), t +α) dt,

{H0, H1} = ∂x H0 · ∂y H1− ∂y H0 · ∂x H1.

(2-1)

2B. Arnold’s example. Arnold in [1] constructed the following example for
which he first discovered the phenomena called now Arnold diffusion

H(θ, I, x, y, t)

=
I 2

2
+

y2

2
+ ε(cos(2πx)− 1)(1+µ(cos(2πθ)+ sin(2π t))), (2-2)

where (θ, I ; x, y; t) ∈ T ∗T1
× T ∗T1

×T. It is proved in [1] that

Theorem 2.1 (Arnold). In the system (2-2), for any given A < B, ε > 0, there is
an orbit {(θ(t), I (t), x(t), y(t))} of the system and time t1 < t2 with I (t1) ≤ A
and I (t2)≥ B, provided µ > 0 is small enough.

We first consider the case of µ = 0. The resulting system has two degrees
of freedom. Away from the set {y2/2+ ε(cos(2πx)− 1) = 0}, the system is
integrable in the Liouville–Arnold sense.

The product of the hyperbolic fixed point O = (0, 0) of the system H0 and
the phase space of the subsystem H̃ = I 2/2 gives rise to the following cylinder
in the product space T ∗T2

C = {(θ, I, x, y)= (θ, I, 0, 0), I ∈ R, θ ∈ T1
}.

Each circle C(I ) := {I = const, θ ∈ T, x = 0, y = 0} in the cylinder is invariant
under the Hamiltonian flow of H0. When restricted to C, the resulting Hamiltonian
system is given by the integrable Hamiltonian H̃ = I 2/2. The frequency ω along
C has the form (I, 0) (item (4) of Theorem 1.1), so the cylinder on which the
Liouville–Arnold theorem does not apply has resonant frequency, i.e., for all
integer vector k ∈ Z2 of the form (0, ∗), we have ω · k = 0. Each circle C(I ) also
has stable and unstable manifolds denoted by W u,s

I .
When the time-dependent perturbation is turned on, using the Melnikov func-

tion (2-1) in the previous subsection, it can be verified that the stable W s
I and

unstable manifolds W u
I of C(I ) intersect transversely for all I . Therefore the

transversality implies that W u
I intersects W s

I ′ transversely if I and I ′ is sufficiently
close. Then orbits can be found to shadow a sequence of W u/s chain to have
large oscillation of I . We refer readers to [25] for a shadowing lemma developed
recently. It is important to point out that the particularly chosen perturbation in
Arnold’s example gives a vanishing perturbation to the Hamiltonian vector field
on the cylinder C, so that the dynamics on C remains unperturbed. It is not the
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case for a generic perturbation, which constitutes the main difficulty for a priori
unstable systems.

3. The variational method

In this section, we briefly introduce the variational method after Mather [33; 34]
and Mañé [31]. Formal definitions of the objects in this theory are summarized
in the appendix. Here we only illustrate some of the key points using mainly the
pendulum.

3A. Variational methods in terms of rotator and pendulum. Let L : T Tn
→ R

be a Tonelli Lagrangian system. Let η be a closed 1-form with cohomology
class [η] = c ∈ H 1(Tn,R). We take infimum among all the invariant probability
measures µ supported on T Tn

−α(c) := inf
µ

ˆ
L(x, ẋ)− η dµ.

We define Mather set as M̃(c) := ∪ suppµ where the union is taken over all the
measures attaining the above infimum.

Let us first give an illuminating example. In the pendulum the hyperbolic fixed
point O = (0, 0) the Hamiltonian is linearized as H0 =

1
2 y2
− (2π)2x2, so after

Legendre transform, the corresponding Lagrangian is L0 =
1
2 ẋ2
+ (1/(2π)2)x2.

The probability measure minimizing the action infµ
´

L0 dµ is easily seen to be
the Dirac-δ supported at O . So we see the link

Minimal measure (Dirac-δ)
↔ Nondegenerate global maximum of the Hamiltonian

→ Hyperbolic fixed point.

This is a guiding principle for us to locate the Mather set with hyperbolicity for
nearly integrable systems.

In the example of the mathematical pendulum, the Mather set M̃(c) is sup-
ported on the hyperbolic fixed point when c = 0 and there are orbits homoclinic
to the hyperbolic fixed point. In variational methods, we introduce the Aubry
set and Mañé set to capture the homoclinic orbits and heteroclinic orbits. The
Aubry set Ã(c) is the lift to T ∗Tn of the following projected Aubry set

A(c)= {x ∈ Tn
| hc(x, x)= 0},

where

hc(x, y) := lim inf
t→∞

inf
γ

ˆ t

0
L(γ (s), γ̇ (s))− η+α(c) ds
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and γ : [0, t] → Tn is a C1 curve with γ (0) = x and γ (t) = y, x, y ∈ Tn . On
A(c), we can introduce an equivalence relation: x ∼ y if hc(x, y)= 0. Then we
get the quotient A(c) called the Aubry class.

Denoting by φt
: T Tn

→ T Tn , t ∈R, the Lagrangian flow, we can again define
the stable and unstable sets analogous to that in hyperbolic dynamics so we can
introduce

W u
c = {z ∈ T Tn

| φt z→ Ã(c), t→−∞},

W s
c = {z ∈ T Tn

| φt z→ Ã(c), t→+∞}.

Here we use the notations W u,s
c , though the Aubry set Ã(c)may not be hyperbolic.

In case when the Aubry class consists of a single point, these sets are defined
as graphs of the gradients of the backward/forward weak KAM solutions u−c and
u+c :T

n
→R respectively, which are known to be unique up to an additive constant.

We call the difference Bc(x)= u−c (x)−u+c (x) the barrier function, whose critical
points correspond to the intersection of W u

c and W s
c . If z = (x, y) ∈ W u

c ∩W s
c

and x is a global minimal point of Bc, then by definition φt(z) approaches M̃(c)
in both the future and the past, such an orbit is a prototypical orbit in the Mañé
set Ñ (c). The barrier function is in general only known to be Lipschitz, however,
it has the remarkable property of being differentiable at its global minimal points.
We refer readers to the appendix for formal definitions of the Mather set M̃(c),
Aubry set Ã(c), Mañé set Ñ (c) and weak KAM solutions u±c and their basic
properties. We also refer readers to [13] for how to realize these objects in the
pendulum.

We next explain the effect of changing cohomology class. In Liouville–
Arnold theorem, the action variable I is constructed by integrating the Liouville
1-form pdq along a basis of the first homology group H1(Ma,Z). In variational
methods, the changing of the cohomological class has the effect of selecting
the corresponding action variable for integrable systems hence selecting the
Lagrangian torus. Let H(I ) : T ∗Tn

→ R be a convex integrable Hamiltonian
independent of the angular variable θ ∈ Tn . The corresponding Lagrangian is
denoted by L(θ̇). We next show how to find the minimizer of the variational
problem infµ

´
L(θ̇)− η dµ with [η] = c ∈ H 1(Tn,Z) ∈ Rn . For simplicity, we

take η = cdθ , so the minimization problem is solved by Legendre transform as

−α(c) := inf
θ̇∈Rn

L(θ̇)− c · θ̇ =−H(c).

The infimum is attained as the point θ̇ = ∂c H(c) and c= ∂θ̇ L(θ̇)= I . So we see
that for integrable systems the cohomology class c agrees with the action variable
I , the Mather set is the corresponding invariant torus {θ̇ = ∂c H(c)}×Tn

⊂ T Tn .



SOME RECENT DEVELOPMENTS IN ARNOLD DIFFUSION 83

3B. Arnold’s example in the variational language. Recall that in Arnold’s
example, orbits are found to shadow different circles C(I )s. Each circle can be
realized as the Aubry set with cohomology class c= (I, 0)∈ H 1(T2,R). Thus in
variational terms, Arnold diffusing orbit corresponds to orbits shadowing different
Aubry sets Ã(c)s. To find orbit shadowing Aubry sets with different cohomology
classes, we have the following variational version of Arnold’s mechanism of
constructing diffusing orbit using the intersection of the stable and unstable
manifolds.

Theorem 3.1 (Type-h orbit). Let 0 : [0, 1] → H 1(M,R) be a continuous curve.
Suppose there exist a certain finite covering π̌ : M̌ → M , two open domains
N1, N2⊂ M̌ with d(N1, N2)> 0, and for each s ∈ [0, 1], there exist a codimenion
one disk Ds and small numbers δs, δ

′
s > 0 such that:

(1) The projected Aubry sets satisfy A(0(s))∩ N1 6=∅, A(0(s))∩ N2 6=∅ and
A(0(s ′))∩ (N1 ∪ N2) 6=∅ for each |s ′− s|< δs .

(2) π̌N (0(s), M̌)|Ds\(A(0(s)) + δ′s) is nonempty and totally disconnected,
where the +δ′s notation means a δ′s neighborhood.

Then there exists an orbit dγ ⊂ T ∗M such that α(γ ) ⊂ Ã(0(0)) and ω(γ ) ⊂
Ã(0(1)).

We call orbits in the theorem type-h, standing for heteroclinic. Bernard [6]
introduced a similar variational mechanism called forcing relations. The way the
theorem applies to Arnold’s example is as follows. We treat the x-variable in (2-2)
as being defined on R/(2(2πZ)), in other words, we lift the pendulum component
to the double covering space of T ∗T. Thus, the Aubry set for each cohomology
class c = (I, 0) has two copies and the second assumption is satisfied due to the
transversal intersection of the stable manifold of one component of the Aubry
set and the unstable manifold of the other component, for each cohomology
class (I, 0), hence the theorem applies to Arnold’s example. This advantage
of the lifting procedure here is that it produces orbits in the Mañé set but not
in the Aubry set. The last point is subtle, and we refer readers to [13] for the
description of Mañé set and Aubry set in the pendulum example.

Summarizing the above, we have the following dictionary:

hyperbolic objects variational objects

hyperbolic set Aubry set
stable/unstable manifold graph of differential of weak KAM

intersection of stable/unstable manifolds critical point of the barrier function
homo- or hetero-clinic orbits Mañé set\Mather set

Arnold’s orbit shadowing different C(I )s type-h orbit
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The main advantage of the variational methods is that the existence of the
variational objects such as Mather sets, Aubry sets and Mañé sets are always
assured. Without requiring good regularities of the variational objects, diffusing
orbits can still be constructed.

This dictionary goes far beyond Arnold’s example and a priori unstable
systems. In the next subsection, we will introduce a new way of changing
cohomology classes, which will be used crucially in the proof of Arnold diffusion
in a priori stable systems, in addition to Arnold’s mechanism.

3C. Type-c orbit. In this section, we introduce the second way of finding orbits
shadowing Aubry sets with different cohomology classes, which we call type-c,
standing for cohomology equivalence. The basic idea is that the cohomology
class can be changed in the orthogonal complement of the homology of a section
of the Mañé set. This mechanism first appeared in [34] proved in [14] for
nonautonomous systems. The version for autonomous systems that we are going
to give here was first established in [29; 30]; see Section 3.1 of [8].

We suppose that there exists6c nondegenerately embedded (n−1)-dimensional
torus on Tn given by an embedding ϕ: Tn−1

→Tn with 6c = ϕ(T
n−1) the image

of ϕ, and the induced map ϕ∗: H1(T
n−1,Z) ↪→ H1(T

n,Z) is an injection. We
can simply choose 6c in the nonautonomous setting to be the configuration space
with {t = 0}.

Let C⊂ H 1(Tn,R) be a connected set. For each class c ∈ C, we assume that
there exists a nondegenerate embedded (n− 1)-dimensional torus 6c ⊂ Tn such
that each c-semistatic curve γ transversally intersects 6c. Let

Vc =
⋂
U

{iU∗H1(U,R) :U is a neighborhood of N (c)∩6c in Tn
},

here iU : U → M denotes inclusion map. Denote by V⊥c the annihilator of Vc,
i.e., if c′ ∈ H 1(Tn,R), then c′ ∈ V⊥c if and only if 〈c′, h〉 = 0 for all h ∈ Vc.
Clearly,

V⊥c =
⋃
U

{ker i∗U :U is a neighborhood of N (c)∩6c in Tn
}.

Note that there exists a neighborhood U of N (c)∩6c such that Vc= iU∗H1(U,R)

and V⊥c = ker i∗U .

Definition 3.2 (c-equivalence). We say that c, c′ ∈ H 1(M,R) are c-equivalent
if there exists a continuous curve 0: [0, 1] → C such that 0(0)= c, 0(1)= c′,
α(0(s)) keeps constant for all s ∈ [0, 1], and for each s0 ∈ [0, 1] there exists
ε > 0 such that 0(s)−0(s0) ∈ V⊥0(s0)

whenever s ∈ [0, 1] and |s− s0|< ε.
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Theorem 3.3 (Type-c orbit). Suppose that two cohomology classes c and c′ are
c-equivalent, then there exists an orbit whose α-limit set is in Ã(c) and ω-limit
set is Ã(c′), and vice versa.

Proof. We only prove the case when |c− c′| is sufficiently small. The details
of changing c in the large scale (global connecting orbits) can be found in
Section 5 of [14]. We first denote by U c a small neighborhood of N (c)∩6c.
We next modify the Lagrangian Lc := L(γ, γ̇ )−〈c, γ̇ 〉 to Lc+ηρ := L(γ, γ̇ )−
〈c+ ηρ(t), γ̇ 〉 where η is a de Rham closed one-form with cohomology class
[η] = c′− c whose support lies in U c and ρ(t) ∈ C∞ satisfies ρ(t)= 0 for t ≤ 0
and ρ(t) = 1 for t ≥ ε for ε small. Such a closed one-form exists following
from the definition of the c-equivalence, c− c′ ⊥ H1(N (c)|6,R). The free time
global minimizer (defined as the semistatic curves, see appendix) of the action´

Lc+ηρ dt is taken over all the curves with endpoints in M̃(c) and M̃(c′). First
it is known that the minimizer stays close to the Mañé set Ñ (c) if |c− c′| is
small enough so it also passes through U . The proof of this fact is the same
as that of the upper-semicontinuity of the Mañé set; see Section 2 of [14]. We
claims that the minimizer satisfies the Euler–Lagrange equation. As we know,
adding a closed 1-form to the Lagrangian does not change the E-L equation. If
we keep track of the orbit, before entering U , the Lagrangian is Lc. In U , since
suppη ∩U = ∅, the Lagrangian is still Lc. When the orbit gets outside of U ,
for ε small enough, the Lagrangian is now actually Lc′ . In all the cases, the E-L
equation is the same as that of L so we have constructed an orbit dγ . Since
orbits in Ñ (c) \M̃(c) does not recur, as t→∞, the orbit dγ stays in a region
where the cohomology class is η(c′) hence the ω-limit set is Ã(c′) and similarly,
the α-limit set is Ã(c). �

4. a priori unstable systems

We now explain the main difficulty of constructing diffusing orbit in the so-called
a priori unstable system, which are generalizations of Arnold’s example but
maintaining the structure of normally hyperbolic invariant cylinder (NHIC). We
refer readers to the appendix for the definition of normally hyperbolic invariant
manifold (NHIM) and a theorem on its persistence under perturbations. A
prototypical form of the a priori unstable system is

H =
I 2

2
+

y2

2
+ (cos(2πx)− 1)+ εP(θ, I, x, y, t), (4-1)

where (θ, I, x, y, t) ∈ T ∗T2
× T1. This kind of system appears as the single

resonance normal form (see Section 5 below), thus the following problem is the
first step towards the conjecture of Arnold diffusion.
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For Cr -generic P with 2 ≤ r ≤ ∞ and for any A < B, the system (4-1)
admits an orbit {(θ(t), I (t), x(t), y(t)), t ∈R} and t1, t2 such that I (t1)≤ A and
I (t2)≥ B provided ε is sufficiently small.

The problem is solved by different authors using different methods. In this
section, we briefly explain the main difficulties and the solution of Cheng and
Yan [14; 15].

First, note that when ε = 0, the system admits a NHIC given by

C = {x = y = 0, (θ, I ) ∈ T×R}.

In order to apply the theorem of NHIM, we first replace the perturbation εP by
εχ P where χ : T ∗T2

→ R such that χ = 1 for |I |< R and |y|< 10, and χ = 0
for |I | > R + 1 and |y| > 11 for some large R with R > max{|A|, |B|}. Our
orbit will stay within the region where χ = 1 so it is also an orbit of the original
system. For the perturbed system, we shall consider the time-1 map denoted by
φ1
ε : T

∗T2
→ T ∗T2. By the theorem of NHIM so we get a NHIC Cε close to C

and is invariant under φ1
ε . Restricted to Cε, the map φ1

ε is a twist map, so we can
then apply KAM theorem to get that for ε small enough, there are uncountably
many invariant circles on Cε that are homologically nontrivial. In general there
are also other homologically nontrivial invariant circles that are not given by the
KAM theorem.

Here comes the first main difficulty. The distances between two neighboring
circles may be of order

√
ε. However, the size of separatrix splitting is only of

order ε. This means that Arnold’s mechanism of utilizing the intersection of
stable and unstable manifolds fails to find orbit crossing the

√
ε-gaps. This is

called the “big gap” problem.
The way to overcome this problem is to invoke the cohomology equivalence

mechanism in Section 3C. The reason is that for each c ∈ H 1(T2,R) such that
Ñ (c) lies in the gap, the Mañé set is contractible so Definition 3.2 is verified. Now
the general strategy is to apply the c-equivalence mechanism whenever there is a
big gap and to apply Arnold’s mechanism (variationally type-h orbit) whenever
nearby invariant circles are close enough to have transversely intersecting stable
and unstable manifolds.

Here comes the second main difficulty. There are uncountably many invariant
circles for which we want their stable and unstable manifolds to intersect trans-
versely in order to implement Arnold’s mechanism. It is easy to add a perturbation
to create the intersection for one such circle. However, it is not allowed to add
uncountably many perturbations for the consideration of genericity.

The key to this problem is the following regularity result, which holds for nearly
integrable twist maps on T ∗T1 or equivalently nearly integrable Hamiltonian
systems of one and a half degrees of freedom.
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Figure 1. Phase space dynamics of the mechanism in [14; 15].

Theorem 4.1. Let H : T ∗T× T→ R be a time-dependent nearly integrable
Tonelli Hamiltonian system and u±c : T→ R, c ∈ H 1(T,R) be its weak KAM
solutions. Then for all c, c′ in a bounded subset of H 1(T,R) and such that M̃(c)
and M̃(c′) are invariant circles, there is a uniform constant C such that

‖u±c ( · )− u±c′ ( · )‖C0 ≤ C‖c− c′‖1/2.

A similar regularity result holds for the barrier function of the full system.
We thus see that the set S of all weak KAM solutions corresponding to invariant
circles on Cε is a set of finite box dimension in C0(T2,R). We have seen in
Section 3A that the intersection of the stable and unstable manifolds can be
interpreted as the minimal point of the barrier function. Thus we need the barrier
function to be nonconstant outside Cε. Note that a C0 function f : T→ R being
constant on an interval J ⊂ T is of infinite codimension. Since S has finite box
dimension, it is easy to find an arbitrarily small ũ such that the entire set ũ+S
avoids the infinite codimensional space of functions that are constants over some
sets of the form T× J , where J ⊂ T is an interval. In this way, we thus have
verified assumption (2) of Theorem 3.1 and can facilitate Arnold’s mechanism.
We refer readers to [14; 15] for details of this argument. We finally emphasize
that the regularity of the weak KAM solutions of the form 4.1 is the essential
ingredient in the proof of the genericity.

We finally remark on the literature. The use of box dimension to the genericity
problem goes back to Moeckel [36] in which the author studied the iteration of a
pair of twist maps where the regularity problem is straightforward. The regularity
result Theorem 4.1, its generalization to the full system and the genericity
argument for a priori unstable systems first appeared in [14; 15]. Bernard [6]
gave a different mechanism for constructing diffusing orbit using only Arnold’s
mechanism designed for the variational objects, without a genericity argument.
The regularity result adapted to the mechanism of [6] was given in [38].
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5. The normal form

When applied to nearly integrable systems, the variational method is greatly
enhanced by the normal form theory. The basic objects such as Mather sets,
Aubry sets and Mañé sets are invariant under symplectomorphisms. In the normal
form theory, we will apply a symplectic transformation to reduce the Hamiltonian
to a normal form to reveal the rotator-pendulum structure. We have seen from
Arnold’s example that the rotator-pendulum structure is intimately related to
the appearance of resonances. The normal form theory reveals this link in this
section.

5A. Homogenization. For nearly integrable systems of the form (1-1), the nat-
ural scale to work with is

√
ε in the space of action variables. In this section,

we introduce a procedure called homogenization used to blow up a O(
√
ε)

ball in the space of action variables to the unit size. The main outcome of the
homogenization procedure is a mechanical system with a fast drift and a small
perturbation.

Consider an autonomous Hamiltonian H defined on T ∗Tn . Picking a point
y? ∈ Rn , we introduce the homogenization operator

H : y− y? :=
√
εY, H(x, y)= εH(x, Y ), (5-1)

where Y, τ,H are the homogenized action variable and Hamiltonian respec-
tively. We will simultaneously rescale the time t to the new time τ = t

√
ε, The

Hamiltonian (1-1) becomes

H(x, Y )= h(y?)
ε
+

1
√
ε
〈ω?, Y 〉+ 1

2〈AY, Y 〉+V(x)+P(x,
√
εY ), (5-2)

where:

(1) h(y?)
ε
+

1
√
ε
〈ω?, Y 〉+ 1

2〈AY, Y 〉 is the first three terms of the Taylor expansion
of h(y) around y?.

(2) ω? = ∂h
∂y (y

?).

(3) A= ∂2h
∂y2 (y?) is a positive definite constant matrix.

(4) V(x) = P(x, y?) is the constant term in the Taylor expansion of P(x, y)
with respect to the variable y.

(5) P(x,
√
εY ) consists of all the remaining terms and we have the estimate

‖P‖Cr = O(
√
ε) if ‖Y‖< C .

5B. Normal form. We next state a normal form proposition for the homogenized
system. Simply put, the normal form deduces the rotator+pendulum structure
from a resonance.
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Definition 5.1. A frequency vector ω ∈Rn
\{0} is said to be resonant if we have

〈ω, ki 〉 = 0 for some linearly independent k1, . . . , km ∈ Zn
\ {0}, 1≤m ≤ n− 1.

The number m is called the multiplicity of the resonance. We call ω a complete
resonance if m = n − 1, in which case ω is a nonzero multiple of a rational
vector.

Proposition 5.2 [11, Proposition 3.10]. For any δ>0, there exists ε0 such that for
all ε < ε0 the following holds. Suppose ω? ∈Rn admits m independent resonance
relations 〈ki , ω

?
〉 = 0 with |ki | ≤ δ

−1/2, i = 1, . . . ,m, and |〈k, ω?〉| > ε1/3 for
any |k| ≤ δ−1/2 and k /∈ spanZ{k1, . . . ,km}. Then there exists a symplectic
transformation φ, which is oε(1) close to identity in the Cr−2 norm in the domain
{|Y | ≤ 1}, such that the Hamiltonian system (5-2) is transformed to the following

H◦φ(x,Y )

=
1
ε
h(y?)+ 1

√
ε
〈ω?,Y 〉+1

2〈AY,Y 〉+V (〈k1, x〉, . . . , 〈km, x〉)+δR(x,Y ), (5-3)

where:

(1) V consists of all the Fourier modes of V in spanZ{k1, . . . ,km}.

(2) The remainder δR(x, Y )= RI (x)+
√
εRI I (x, Y ), where δRI consists of all

the Fourier modes in V with |k|> δ−1/2.

(3) If the perturbation P in (1-1) satisfies ‖P(x, y)‖Cr ≤ 1, then the norms of
V,RI ,RI I satisfy ‖V ‖Cr , ‖RI‖Cr−2, ‖RI I (x, Y )‖Cr−2 ≤ 1.

Sketch of proof. We sketch an argument to give the main idea of the proof and
refer readers to [11]. We consider the pullback of H by the time-1 map φ1√

εF
of another Hamiltonian

√
εF to be determined. Then we get by the definition

of the Poisson bracket
( d

dt |t=0H(φ
t√
εF )
)
:= {H,

√
εF} = ∂H

∂x
∂
√
εF
∂y −

∂H
∂y

∂
√
εF
∂x and

Taylor expansion that

H◦φ1√
εF =H+{H,

√
εF}+ε

ˆ 1

0
(1−t){{H,F},F}◦φt

F dt

=
1
ε
h(y?)+ 1

√
ε
〈ω?,Y 〉+1

2〈AY,Y 〉+V(x)+〈ω?,∂x F〉+O(ε1/3). (5-4)

We next decompose V(x)= V + Ṽ where V consists of all the Fourier modes
of V in spanZ{k1, . . . ,km}, and Ṽ consists of the rest. We further decompose
Ṽ = Ṽ1 + Ṽ2 where Ṽ1 consists of those Fourier modes with |k| ≤ δ−1/2 and
Ṽ2 consists of the rest. Note that Ṽ2 has Cr−2 norm less than δ by the decay
of Fourier coefficients. Then we can solve the equation Ṽ1 + 〈ω

?, ∂x F〉 = 0
by taking Fourier expansion and using the assumption |〈k, ω?〉|> ε1/3 for any
k ∈ Zn with |k| ≤ δ−1/2 and k /∈ spanZ{k1, . . . , km}. We thus obtain the normal
form. �
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Once we have the normal form, we can then find a matrix M ∈ SL(n,Z)

whose first m rows are k1, . . . ,km such that Mω? has 0 first m entries. Thus,
after a linear symplectic transformations (x, Y ) 7→ (M−1x,M t Y ), the potential
V is a function of x1, . . . , xm . This allows us to reduce the normal form to a
“pendulum+rotator” structure as in Arnold’s example.

5C. The pendulum+rotator structure near resonance. For example, we con-
sider the following Hamiltonian

H(x, y)= 1
2‖y‖

2
+ εP(x), (x, y) ∈ T ∗Tn.

We remark that we have chosen the kinetic energy part of the form 1
2‖y‖

2 to
simplify the discussion. A general kinetic energy of the form 1

2〈AY, Y 〉 will
create some new difficulty in separating the rotator and the pendulum. We have
developed systematic tools (shear transformation and undo-shear etc) in [11]
to deal with this issue. We avoid this complication by restricting ourselves to
the simple example and refer interested readers to [11] for more details in the
general case.

Suppose y?= (0, ω̂?) where ω̂? ∈Rn−m is Diophantine. Then the Hamiltonian
has the following normal form up to an additive constant

H(x, Y )= 1
√
ε
〈ω̂?, Ŷ 〉+ 1

2‖Ŷ‖
2
+

1
2‖Ỹ‖

2
+ V (x̃)+ δR(x, Y ), (5-5)

where we use notation x = (x̃, x̂) and Y = (Ỹ , Ŷ ), where ˜ means the first m
variables and ˆ means the last n − m variables. This Hamiltonian system is
split naturally into a product system if we discard the δR term. The subsystem
Ĥ(x̂, Ŷ )= 1

√
ε
〈ω̂?, Ŷ 〉+ 1

2‖Ŷ‖
2 is integrable and can be considered as a rotator.

Suppose V has a nondegenerate global maximum at 0 so the subsystem

H̃(x̃, Ỹ )= 1
2‖Ỹ‖

2
+ V (x̃) (5-6)

has a hyperbolic fixed point (0, 0). The Hamiltonian H now has the form of
“pendulum+rotator” structure as in Arnold’s example. In particular, single reso-
nance normal form gives rise to an a priori unstable system of the form (4-1)
(the pendulum subsystem has one degree of freedom).

We warn the readers that the normal form becomes singular as ε→ 0, which
is reflected in the term 1

√
ε
〈ω?, Y 〉 in (5-3) implying that the dynamics on the

NHIC is fast rotating ( ˙̂x = O(ε−1/2) in example (5-5)). This presents a technical
difficulty in the proof. The way we solve the problem is to notice that its
contribution to the variational equation disappears since ω? is a constant, hence
it has no contribution to the differential of the time-1 map of the Hamiltonian
system! This fact enables us to perform the graph transform as in [21; 26] to
obtain a version of the theorem of NHIM in this setting, with which we turn on
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the coupling δR in (5-5) (recall that in Theorem B.2, the assumptions are made on
the differential of the map f : M→ M but not on the vector field generating the
flow). Details of the statement and the proof can be found in Appendix E of [11].

6. Mechanical systems with two degrees of freedom

In this section, we study the dynamics of a mechanical system of two degrees of
freedom of the following form where A is positive definite

G(x, Y )= 1
2〈AY, Y 〉+ V (x), (x, Y ) ∈ T ∗T2. (6-1)

This system appears naturally in the double resonance normal form. We will
see in the next section that such a system is inevitable in constructing diffusing
orbits for system (1-1) with n = 3.

This system is hard to analyze in general due to its nonperturbative nature.
However, the two-dimensionality enables us to obtain enough information on the
structure of Mather sets and Mañé sets so that diffusing orbit can be constructed
passing through the double resonance.

6A. Two degrees of freedom: positive energy levels. We have the following
theorem describing Mather sets of rational rotation vectors.

Theorem 6.1 [16, Theorem 2.1]. Given a Tonelli Hamiltonian H : T ∗T2
→ R

and a class g ∈ H1(T
2,Z) and a closed interval [ν−, ν+] with ν+>ν−> 0, there

exists an open-dense set V⊂ Cr (T2,R)/R with r ≥ 5 such that for each V ∈V
normalized by max V = 0, it holds simultaneously for all ν ∈ [ν−, ν+] that the
Mather set Mνg for H +V consists of hyperbolic periodic orbits. Indeed, except
for finitely many ν j , the Mather set consists of two hyperbolic periodic orbits,
for all other ν ∈ [ν−, ν+] it consists of exactly one hyperbolic periodic orbit.

For each fixed positive energy level, the existence of periodic orbits as the
Mather set and its generic uniqueness were known in the Aubry–Mather theory
for twist maps. However, it is highly nontrivial to show that these periodic orbits
form smooth families and the finiteness of the bifurcations when varying energy
levels. This theorem completely describes the structure of the Mather set with
rotation vectors along a rational ray in the frequency space. These Mather sets
constitute a NHIC. At the bifurcation values ν j , the two components of the
Mather sets are connected by heteroclinic orbits in the Mañé set. When the
system is perturbed by a time-periodic perturbation, again we have a system of a
priori unstable type.

6B. Two degrees of freedom: the zeroth energy level. We next study the zero
frequency case. This was done in [8]. Instead of studying the dynamics in the
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Figure 2. Channel connected to a vertex of ∂F0.

Figure 3. Channel connected to an edge of ∂F0.

frequency space, we switch to the space of cohomology classes. This passage
has the effect of blowing up singularities.

We denote F0 = α
−1
G (0) and call it the flat, which is a convex set and by ∂F0

the boundary of F0. A simple example is the product of two identical pendulums
whose F0 is a square. We next introduce

∂∗F0 = {c ∈ ∂F0 :M(c)\{x = 0} 6=∅}.

The set ∂∗F0 can be nonempty. An example of a system with ∂∗F0 6= ∅ was
given in Section 2 of [9]. When ∂∗F0 6=∅ happens, then ∂F0 has infinitely many
edges; see [39].

We next introduce a subset Gm,c ⊂ H1(T
2,Z) be a subset that g ∈ Gm,c if

there is a minimal homoclinic orbit (γ, γ̇ ) in Ã(c) with [γ ] = g. Given an edge
Ei , we define Gm,Ei = Gm,c for each c ∈ int Ei since all classes in int Ei share the
same Aubry set.

The following theorem was proved in [8].

Theorem 6.2. Let F0 = α
−1
G (minαG) be a two dimensional flat, and M(c0) be a

singleton for c0 ∈ int F0. Let Ei denote an edge of F0 (not a point), then:

(1) Either Ei ∩ ∂
∗F0 =∅ or Ei ⊂ ∂

∗F0.

(2) If Ei ∩ ∂
∗F0 =∅, then Gm,Ei contains exactly one element, if Ei ⊂ ∂

∗F0, all
curves in M(Ei )\{0} have the same rotation vector.
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(3) If c ∈ ∂Ei and c /∈ ∂∗F0 then Gm,c contains exactly two elements.

(4) If Ei , E j ⊂ ∂
∗F0, then either Ei = E j , or Ei and E j are disjoint.

(5) If Ei ⊂ ∂
∗F0, M(c)=M(c′) holds for c ∈ ∂Ei and c′ ∈ intEi .

(6) If µc is an ergodic c-minimal measure for c ∈ ∂∗F0 and ω(µc) is irrational,
then the class c is an extremal point of F0.

(7) If c ∈ ∂F0\∂
∗F0 and Ã(c) consists of the fixed point and one homoclinic

orbit (γ, γ̇ ) only, then c is located in the interior of certain edge Ei .

(8) Each edge in ∂F0\∂
∗F0 is joined by two edges in ∂F0\∂

∗F0.

The result is summarized in the following dictionary. For each cohomology
class c in the right column, the corresponding Aubry set Ã(c) is in the left
column:

phase space H 1(T2,R)

hyperbolic fixed point convex disk int F0

homoclinic or periodic orbit edge of F0

two homoclinic orbits vertex of F0

homology class of homoclinic orbits ⊥ edge
NHIC foliated by periodic orbits channel connected to F0

To relate this dictionary to Theorem 6.1, we see that the NHIC foliated by periodic
orbits given in Theorem 6.1 gives the channel in the last row of the dictionary.
We may let the energy level to approach zero. The fact that there is no infinite
bifurcation in this limiting procedure is proved in the following Theorem 6.4. In
the limit, the Mather set may remain a periodic orbit or degenerate to a homoclinic
orbit as in the second line of the dictionary (see Figure 2) or degenerate to two
homoclinic orbits as in the third line of the dictionary (see Figure 3). The purpose
of a careful study of the structure of ∂F0 and its dynamical correspondence is to
understand the dynamics on small positive energy levels, as we shall talk about
in the next subsection.

6C. Dynamics around the strong double resonance. It is shown in [8] that for
all c ∈ ∂F0, the projected Mañé set N (c) (the projection of Ñ (c) from T ∗T2

to T2) does not cover the two torus.

Theorem 6.3 [8, Theorem 3.1]. Consider the Hamiltonian G of the type (6-1).
There exists a residual set in Cr (T2)/R, r ≥ 2 such that for each V in the set
normalized by max V = 0, and for each c ∈ ∂F0, the Mañé set N (c) does not
cover the whole configuration space, i.e., N (c)( T2 for all c ∈ ∂F0. Moreover,
the upper-semicontinuity of N (c) with respect to c implies that there is a 1 =
1(V ) > 0 such that the same conclusion holds for all c ∈ α−1

G ([0,1]).
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Figure 4. Turning around strong double resonance.

This theorem can be understood as that along the circle ∂F0, the dynamics is
similar to that of the Birkhoff instability region of the twist map where there is no
invariant circles. However, the facts that the dynamics on the zero energy level
of G cannot be written as a twist map, the destruction of N (c) for all c ∈ ∂F0

and the nonperturbative nature of the system G make the result highly nontrivial.
We refer readers to [8] for details.

The theorem implies that any two cohomology classes c, c′ ∈ ∂(α−1
0 (E)), E ∈

[0,1], are equivalent which gives rise to an orbit shadowing Mather sets M̃(c)
and M̃(c′); see Theorem 3.3. When viewed in the frequency space, this implies
in particular that for any two rational rays starting from 0, there is an orbit
shadowing Mather sets with rotation vectors lying on the two rays.

In general, it seems not easy to see the dynamical picture of orbits constructed
here in the phase space. On very small energy levels when two channels are
close, it seems natural that orbit shadows heteroclinics between periodic orbits
on two channels, but the dynamics seems much richer when ∂∗F0 6=∅. We also
remark that the number 1 here is obtained by the upper-semicontinuity of the
Mañé set, hence does not admit an estimate, but it is certainly independent of ε.
The numerical experiment of [23] seems to indicate that for dynamics around
double resonance should mostly follow the mechanism here.

6D. Cylinders with a hole. The phase space picture of the dynamics near dou-
ble resonance was studied by many authors. The idea is that the NHICs in
Theorem 6.1 can reach the zero energy level and even extend slightly to the
negative energy levels. On the zero energy level, the Poincaré return map takes
infinitely long time to return. This makes it hard to verify the smoothness of the
cylinder near the zero energy level. The classical theorem of normally hyperbolic
invariant manifold does not apply since the cylinder here is constructed from
periodic orbits but not perturbed from a known cylinder, while the theorem
of normally hyperbolic invariant manifold is a theorem about the persistence
of center manifolds under perturbations. The problem of the C1 regularity of
the cylinders was addressed in [17]. We state the main result of [17] in the
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general setting.

H(x, y)= 1
2〈Ay, y〉+ V (x), z = (x, y) ∈ Tn

×Rn, (6-2)

where the matrix A is positive definite and the smooth potential V attains its
maximum at a unique point x0 ∈ Tn . In this case, z0 = (x0, 0) is a fixed point
of the Hamiltonian flow 8t

H and there exist some orbits homoclinic to the fixed
point known after the work of Bolotin. Be aware that the system admits a
symmetry s : (x, y)→ (x,−y), we see that if z+(t)= (x+(t), y+(t)) is an orbit,
z−(t) = sz+(t) = (x+(−t),−y+(−t)) is also an orbit. Hence, nonshrinkable
homoclinic orbits emerge paired.

To formulate our result, by a translation of variables x→ x − x0 and V →
V − V (x0) we assume x0 = 0, V (0)= 0. We study k pairs of homoclinic orbits
{z±1 (t), . . . , z±k (t)} and denote by 0±i the closure of {z±i (t) | t ∈ R}. A periodic
orbit z+(t) is said to shadow the orbits {z+1 (t), . . . , z+k (t)} if the period admits
a partition [0, T ] = [0, t1] ∪ [t1, t2] ∪ · · · ∪ [tk−1, T ] such that z+(t)|[ti−1,ti ] falls
into a small neighborhood of z+i (t). In this case, its s-symmetric counterpart
z−(t)= sz+(t) shadows the orbits {z−k (t), . . . , z−1 (t)}.

The case of k = 1 will be studied in the original phase space Tn
×Rn . To

study the case k ≥ 2, we work in the covering spaces πh: Rn
×Rn

→ Tn
h ×Rn

and πh : T
n
h ×Rn

→ Tn
×Rn , where Tn

h = {(x1, x2, . . . , xn) ∈ Rn
: xi mod hi ∈

N\0}. To decide the class h = (h1, . . . , hn), we let z̄1(t) be the lift of z+1 (t)
to R2n such that limt→−∞ z̄1(t) = 0, then choose a lift z̄2(t) of z+2 (t) with
limt→−∞ z̄2(t) = limt→∞ z̄1(t). In the way, we get successively a lift z̄i (t) of
z+i (t) for each i and define h to be the integer vector limt→∞ z̄k(t). Let 0 be
the closure of

{
∪i≤k z̄i (t)) | t ∈ R

}
, then we construct a shift σ0 as follows. We

define z̄′1(t)⊂ σ0 to be the lift of z+1 (t) such that limt→−∞ z̄′1(t)= limt→∞ z̄k(t).
Other z̄′i (t), i = 2, . . . , k, is successively constructed. Let σ0 be the closure of{
∪i z̄′i (t)) | t ∈ R

}
. We make the following assumption:

For k pairs of homoclinic orbits {z±1 (t), . . . , z±k (t)}, there exists
a nonnegative integer ` and a covering space πh: Rn

×Rn
→

Tn
h × Rn such that πh(0 ∪ σ0 ∪ · · · ∪ σ

`0) is a closed curve
without self-intersection.

(H)

Theorem 6.4. Under certain genericity assumptions including (H) (see [17,
Theorem 1.1]) there exists a continuation of periodic orbits from the homoclinic
orbits {z±1 (t), . . . , z±k (t)}. More precisely, some E0 > 0 exists such that:

(1) For any E ∈ (0, E0], on the energy level E there exist unique periodic
orbit z+E (t) and its s-symmetric orbit z−E (t)= sz+E (t) shadowing the orbits
{z+1 (t), . . . , z+k (t)} and {z−k (t), . . . , z−1 (t)} respectively. The set {z±E (t) | t ∈
R} depending on E approaches ∪i0

±

i in Hausdorff metric as E ↓ 0.



96 CHONG-QING CHENG AND JINXIN XUE

Figure 5. Cylinder with a hole.

(2) For any E ∈ [−E0, 0) there exists a unique periodic orbit zE,i shadowing
the orbits {z+i (t), z−i (t)} for i = 1, . . . , k. As a set depending on E , {zE,i (t) |
t ∈ R} approaches 0+i ∪0

−

i in Hausdorff metric as E ↑ 0.

Let 5 = 5+ ∪1≤i≤k (5
−

i ∪ 0
+

i ∪ 0
−

i ) where 5+ = ∪E>0(∪t z+E (t) ∪ z−E (t))
and 5−i = ∪E<0 ∪t zE,i (t). For k = 1, it makes up a C1-NHIC with one hole.
For k ≥ 2, each connected component in the pull-back π−1

h 5 of 5 to Tn
h ×Rn is

a C1-NHIC with (`+ 1)k holes. The homoclinic orbits are contained inside of
the manifold.

In [17], to which readers are referred to, the authors give two more mechanisms
of crossing the double resonance utilizing the geometric structure of cylinders
with a hole. Compared to the first mechanism of turning around double resonance
using c-equivalence, in this mechanism using cylinders with holes, orbits has to
cross zero energy level hence we expect that the orbit should be much slower
than that in the first mechanism hence is less likely. This is an interesting subject
for future study.

7. Systems with three degrees of freedom

In this section, we give an overview of the proof of Theorem 1.3 in the case of
n = 3.

7A. Design resonance paths and separate single and double resonances. We
first show how to apply the homogenization and normal form to design resonance
paths along which we construct diffusing orbit. We consider the case of three
degrees of freedom for simplicity. Let ε = 0 in (1-1), now the frequency vector
ω(y) := Dh(y) : R3

→ R3 has range defined on a sphere when h is restricted to
an energy level E > min h. For any integer vector k ∈ Z3

\ {0}, the resonance
condition 〈k, ω(y)〉 = 0 defines a circle on the sphere. Given two balls on the
sphere, one can connect them by some of the resonant circles (in general at
least 2). Along each resonance circle Sk := {〈k, ω(y)〉 = 0, h(y) = E}, we
show that the perturbation P( · , y) : T3

→ R, y ∈ Sk generically has a unique
nondegenerate global max, up to finitely many bifurcation points where there
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are two nondegenerate global max (see Proposition 8.1 below for a version of
this type of parametric transversality result). As we have explained in Section 5,
we will cover such resonant circles by balls of radius 3

√
ε centered at y? ∈ Sk,

and perform the homogenization in each ball. The global max of P( · , y?) gives
rise to a hyperbolic fixed point in a pendulum-like subsystem as we have seen
in Section 5C. In particular, the normal hyperbolicity is uniform for all the
homogenized systems around Sk due to the uniform nondegeneracy of the global
max of P( · , y), y ∈ Sk. The uniform normal hyperbolicity gives a bound d0

of the maximal allowable C1-norm of the perturbation so that the theorem of
NHIM is valid. Note that this d0 is independent of ε but depends only on P .

Let δ be a small number but independent of ε and apply the normal form
Proposition 5.2 and we consider only finitely many integer vectors of lengths
less than δ−1/2. Along Sk, there might be a second resonance, i.e., there is k′

with |k′|< δ−1/2 linearly independent of k such that 〈ω(y∗), k′〉 = 〈ω(y∗), k〉 =
0, y∗ ∈ Sk. For each such point y∗, outside of its O(ε1/3)-neighborhood, we
can apply Proposition 5.2 with single resonance (m = 1), and within such an
O(ε1/3)-neighborhood, we apply Proposition 5.2 with double resonance (m = 2).
In the former case, the problem is essentially reduced to the a priori unstable
case after some highly nontrivial work (recall example (5-5) with m = 1). In
the latter case, the potential V (〈k, x〉, 〈k′, x〉) in (5-3) can be decomposed into
V (〈k, x〉)+ Ṽ (〈k, x〉, 〈k′, x〉), where Ṽ depends on 〈k′, x〉 nontrivially and its
C2 norm is estimated as C |k′|−(r−2) for fixed k and P ∈ Cr . When ‖Ṽ ‖C2 < d0,
we can still apply the theorem of NHIM by treating Ṽ as a perturbation so
we call this case weak double resonance and treat it in a similar manner as a
single resonance. Then the remaining case ‖Ṽ ‖C2 ≥ d0 is called strong double
resonance. Note that there are only finitely many of them, whose number is
independent of ε, δ. The O(ε1/3)-neighborhood of a strong double resonance
can be further divided into the O(ε1/2)-neighborhood and the region outside the
O(ε1/2)-neighborhood. The former case is reduced to the setting of Section 6 as
we will see in the next subsection. The latter case is the regime of transiting from
single to double resonance regimes. It can be treated as the high energy level sets
in the system (6-1) and in the normal form Proposition 5.2, the frequency ω?/

√
ε

goes from O(ε−1/6) to O(1). It is shown in [8] that the cylinder in Theorem 6.1
in the high energy level regime consists of a single piece, without bifurcation
and the normal hyperbolicity is uniform, so this transiting regime can also be
treated as a system of a priori unstable type. In the following, we focus on the
strong double resonances.

7B. The double resonance. In a 3
√
ε ball centered at a double resonance, we

apply the homogenization and the normal form followed by a linear symplectic
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transform to get the following Hamiltonian at double resonance

H(x, Y )= ω3√
ε
Y3+

1
2〈AY, Y 〉+ V (x1, x2)+ δR(x, Y ),

(x; Y )= (x1, x2, x3; Y1, Y2, Y3).

We perform a standard energetic reduction (fixing an energy level and solve for
Ydouble := (ω3/

√
ε)Y3 as the new Hamiltonian and its conjugate τ = (

√
ε/ω3)x3

as the new time) to get

Ydouble=
1
2〈ÃỸ , Ỹ 〉+V (x̃)+δR̃

(
x̃,
ω3τ
√
ε
, Ỹ
)
, (x̃; Ỹ )= (x1, x2; Y1, Y2) (7-1)

where Ã is obtained from A by removing the third row and column, which are
absorbed in δR̃ during the reduction. We thus arrive at a system that is a small
time-dependent perturbation of the nonperturbative mechanical system G of two
degrees of freedom. Note that the τ -dependence in δR̃ is fast oscillating as ε→ 0.
This singular behavior does not invalidate the theorem of NHIM since it does not
enter the estimate of the differential of the time-1 map for the similar reason to
the discussion near the end of Section 5. We again refer readers to Appendix E
of [11] for this point. We remark that Arnold [4] already identified this as the
main difficulty for Arnold diffusion.

Let us now see how the action variable changes if a diffusion orbit is to be
constructed. Suppose we want to move y along the resonant circles determined
by

S1 := {〈ω(y),k1〉 = 0} and S2 := {〈ω(y),k2〉 = 0}.

For simplicity we assume k1 = (0, 1, 0) and k2 = (1, 0, 0) hence along S1

the frequency has the form ω(y) = (ω1(y), 0, ω3(y)) and along S2 we have
ω(y)= (0, ω2(y), ω3(y)). When two resonances occur simultaneously we have
ω(y)= (0, 0, ω3(y)). Along the resonant circle S1, we apply the normal form
Proposition 5.2 with m = 1, then by the argument following Proposition 5.2, we
reduce the problem to an a priori unstable system in Section 4 so that we can
move y freely on the resonant circle S1 provided there is no second resonance.
When the second resonance appears, in a neighborhood of S1 ∩ S2 we apply
Proposition 5.2 with m = 2 to yield the normal form (7-1) after the energetic
reduction. The energetic reduction treats the third angular variable x3 as the new
time, hence for the system (7-1), the frequency vector is obtained by removing
the third entry from ω(y). So along S1 the reduced frequency vector has the
form ωa := (a, 0), a ∈ R and along S2 it has the form ωb := (0, b), b ∈ R, and
the double resonance corresponds to the frequency vector (0, 0). To cross the
strong double resonance S1 ∩ S2, we have to construct orbit moving along ωa

close to (0, 0) then along ωb.
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Equipped with the knowledge in Section 6 on the mechanical system G of
two degrees of freedom, we are ready to construct diffusing orbits moving
around the double resonance. We interpret the frequency ωa or ωb as the rotation
vector of a Mather set, which is the velocity averaged against the minimizing
measure. Theorem 6.1 enables us to move the frequencies along ωa and ωb

using the mechanism of a priori unstable systems up to a small neighborhood of
0. Next, we apply Theorem 6.3 and the c-equivalence mechanism to find orbit
shadowing Mather sets with rotation vectors on the frequency segments ωa and
ωb. Therefore we overcome the difficulty of strong double resonance and global
diffusing orbits are constructed in the case of n = 3.

8. The genericty

The genericity of the perturbations is a central issue and is closely related to
the dynamics. For a priori unstable systems, we have outlined the genericity
argument in Section 4, which is also applicable to a priori stable systems in
the regime of single resonances and transition from single to double resonances,
where the problem is essentially reduced to a priori unstable systems after some
work, though highly nontrivial. Near double resonance, the genericity of the
perturbations are given in Theorem 6.1 and 6.3. In Theorem 6.1, the genericity
originates from the following parametric transversality result; see [16].

Proposition 8.1. Let Fs :T
1
→R, s∈[0, 1] be a family of Cr , r>4 functions that

is Lipschitz in s. Then there is an open and dense subset R of Cr (T) such that for
each V ∈R, the function Fs+V admits a unique nondegenerate global minimum
for all but finitely many parameters s1, . . . , sn for which Fsi + V, i = 1, . . . , n
admits two nondegenerate global minimums.

The genericity in Theorem 6.3 is achieved by only finitely many perturbations
in the proof. Since the proof is a bit involved, we refer readers to [9] for details.

Note that in the main terms of the normal form (5-3) as well as the system
(6-1), the system is of the form of mechanical systems (kinetic energy+potential
energy). In particular, the potential part depends only on the angular variables.
That is why we consider only Mañé perturbations (perturbations depending only
on angular variables) in the statements of Theorem 6.1 and 6.3, which are the
only allowed perturbations.

In the statement of Theorem 1.3, the perturbation P can either depend on all
variables or simply Mañé. To achieve the genericity of Mañé perturbation, one
of the main difficulties is to do it for a priori unstable systems, considering that
Theorem 6.1 and 6.3 are stated for Mañé perturbations. Indeed, this is exactly
the content of Section 4.2 of [9], where we refer interested readers.
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Appendix A: Preliminary Hamiltonian dynamics

In this section, we give some preliminaries on Hamiltonian dynamics.

Definition A.1 (Tonelli Lagrangian). Let M be a closed manifold. A C2-function
L: T M × T → R is called a Tonelli Lagrangian if it satisfies the following
conditions:

(1) Positive definiteness: for each (x, t) ∈ M ×T, the Lagrangian function is
C2 strictly convex in velocity, i.e., the Hessian ∂ẋ ẋ L is positive definite.

(2) Super-linear growth: we assume that L has fiber-wise superlinear growth:
for each (x, t) ∈ M ×T, we have L/‖ẋ‖→∞ as ‖ẋ‖→∞.

(3) Completeness: all solutions of the Euler–Lagrange equation are well defined
for the whole t ∈ R.

We have the following remarks:

• (Euler–Lagrange equation) Given a Lagrangian L , its Lagrangian flow is
solved from the Euler–Lagrange equation d

dt
∂L
∂ ẋ −

∂L
∂x = 0; see [3, Chapter 3].

• (autonomous, nonautonomous, twist maps) We say that L is autonomous if
it does not depend on t , otherwise it is called nonautonomous. A nonau-
tonomous system L : T Tn

×T→ R will be said to have n+ 1
2 degrees of

freedom. When n = 1, a Tonelli Lagrangian of 1.5 degrees of freedom has
time-1 map defined on T T.

• (Tonelli Hamiltonian) A Hamiltonian H : T ∗M ×T→ R is called Tonelli,
if it is the Legendre transform of a Tonelli Lagrangian, i.e.,

H(x, y, t)=max
ẋ
〈y, ẋ〉− L(x, ẋ, t).

For instance, any mechanical Hamiltonian of the form H(x, y)= 1
2‖y‖

2
+

V (x), (x, y) ∈ T ∗Tn is Tonelli, since it is the Legendre transform of
L(x, ẋ)= 1

2‖ẋ‖
2
− V (x), (x, ẋ) ∈ T Tn .

• (energetic reduction) Given an autonomous Hamiltonian H : T ∗Tn
→ R,

denoting x = (x̂, xn) ∈ Tn−1
×T, y = (ŷ, yn) ∈ U (⊂ Rn−1

×R) where U
is a bounded domain, if we know ∂H

∂yn
6= 0, then we can apply the implicit

function theorem to the Hamiltonian H(x̂, xn, ŷ, yn)= E restricted to the
constant energy level E , to solve for yn = yn(x̂, xn, ŷ). Now yn can be
considered as a nonautonomous Hamiltonian of n− 1

2 degrees of freedom
with angular variables x̂ , action variables ŷ and xn as the time variable; see
[3, Section 45, Chapter 9].
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Appendix B: The theorem of normally hyperbolic invariant manifolds

In this section we give the version of normally hyperbolic invariant manifold
theorem that we used in the proof of our main theorem. The standard references
are [26; 22]. Readers are also referred to [20]. There are some subtleties of
applying the theorem in the proof concerning the fast oscillatory nature in the
nonresonant degrees of freedom. Readers can find more details in the appendix
of [11].

Definition B.1 (NHIM). Let N ⊂ M be a submanifold (maybe noncompact)
invariant under f , f (N )= N . We say that N is a normally hyperbolic invariant
manifold if there exist a constant C > 0, rates 0< λ < µ−1 < 1 and an invariant
(under D f ) splitting for every x ∈ N

Tx M = E s(x)⊕ Eu(x)⊕ Tx N

in such a way that

v ∈ E s(x)⇔ |D f n(x)v| ≤ Cλn
|v|, n ≥ 0,

v ∈ Eu(x)⇔ |D f n(x)v| ≤ Cλ|n||v|, n ≤ 0,

v ∈ Tx N ⇔ |D f n(x)v| ≤ Cµn
|v|, n ∈ Z.

Here the Riemannian metric |·| can be any prescribed one, which may change
the constant C but not λ,µ.

Theorem B.2. Suppose N is a NHIM under the Cr , r > 1, diffeomorphism
f : M → M. Denote ` = min{r, |ln λ|/|lnµ|}. Then for any Cr fε that is
sufficiently close to f in the C1 norm:

(1) There exists a NHIM Nε that is a C` graph over N.

(2) (Invariant splitting) There exists a splitting for x ∈ Nε

Tx M = Eu
ε (x)⊕ E s

ε(x)⊕ Tx Nε (B-1)

invariant under the map fε . The bundle Eu,s
ε (x) is C`−1 in x.

(3) There exist C` stable and unstable manifolds W s(Nε) and W u(Nε) that are
invariant under f and are tangent to E s

ε ⊕T Nε and Eu
ε ⊕T Nε respectively.

(4) The stable and unstable manifolds W u,s(Nε) are fibered by the correspond-
ing stable and unstable leaves W u,s

x,ε :

W u(Nε)= ∪x∈NεW
u
x,ε, W s(Nε)= ∪x∈NεW

s
x,ε .

(5) The maps x 7→W u,s
x,ε are C`− j when W u,s

x,ε is given C j topology.

(6) If f and fε are Hamiltonian and dim E s
= dim Eu , then Nε is symplectic

and the map fε restricted to Nε is also Hamiltonian [20].
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Appendix C: Systems of arbitrary degrees of freedom

In this appendix, we illustrate how to construct diffusing orbit in the general
n > 3 case. The main difficulty is that it is not avoidable to study the dynamics
around the complete resonance where the system is reduced to a mechanical
system of (n− 1) degrees of freedom, which is in general nonperturbative. The
high dimensional and nonperturbative nature of the problem creates serious
difficulties in general. For example, for a nonperturbative mechanical system of
(n− 1) degrees of freedom, Mather sets with rational rotation vectors may not
be periodic orbits and when they are periodic they are not necessarily hyperbolic.
So the theory in Section 6 cannot be recovered in this case. However, it turns out
that close to codimension 1 and 2 KAM tori, we can find a connected set where
perturbative techniques can be applied to reduce the problem to a multiscale
system such that in each scale we have only single or double resonances. In this
way, the methods in the previous sections can be applied to construct diffusing
orbits. The general strategy is as follows:

(1) Try to find NHIC homeomorphic to T ∗T×T to apply the method of a priori
unstable system (4-1).

(2) Apply the mechanism of c-equivalence when there is a strong double reso-
nance.

(3) Introduce new ideas to cross resonances of higher multiplicity.

In case (1), we require the NHIC to be homeomorphic to T ∗T instead of T ∗Tk ,
k > 1, mainly because the regularity Theorem 4.1 is only established in the case
of T ∗T.

C1. Choosing the frequency path. We describe an algorithm to choose the
frequency lines along which the diffusion orbits are constructed.

The diffusing orbit will be constructed along some resonant path in order to
utilize the resonant normal form. We design a procedure to construct a frequency
path with special hierarchy structure. In the first step we start with a frequency
segment of the form

ωa = ρa

(
a,

p2

q2
ω∗2,

p3

q3
ω∗2, ω̂

∗

n−3

)
∈ Rn, (C-1)

where (ω∗2, ω̂
∗

n−3)= (ω
∗

2, ω
∗

4, ω
∗

5, . . . , ω
∗
n)∈Rn−2 is a Diophantine vector in Rn−2,

and a lies in an interval, p2/q2, p3/q3 ∈ Q irreducible. For all a, the vector
ωa admits a resonant integer vector k1 = (0, q2 p3,−q3 p2, 0, . . . , 0). After a
linear transform by a matrix in SL(n,Z), we get ω̌a = ρa(a, 0, p

qω
∗

2, ω̂
∗

n−3) ∈Rn .
We want to show that a can be moved arbitrarily. More precisely, for any a′,
a′′ ∈ R and δ sufficiently small, there is an orbit (x(t), y(t)), t ∈ [t ′, t ′′], such
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that ω(y(t))|[t ′,t ′′] lies in a δ neighborhood of ωa, a ∈ [a′, a′′]. The frequency ω̌a

has at most two resonance relations, one of which is always (0, 1, 0, . . . , 0), so
the normal form Proposition 5.2 with either m = 1 or m = 2 applies.

We first consider region where Proposition 5.2 with m= 1 applies. In this case
the function V in (5-3) is defined on T1. Similar to Section 3A and the example
after the statement of Proposition 5.2, we see that the system admits a NHIC
homeomorphic to T ∗Tn−1 corresponding to the global max of V . In the case of
m = 2, the function V is defined on T2. We can then separate a subsystem of the
form (6-1), similar to the example after Proposition 5.2, and apply Theorem 6.1
to it to find a NHIC, which gives rise to a NHIC homeomorphic to T ∗Tn−1 for
the full system slightly away from the strong double resonance.

To proceed, we need the following observations:

(1) The Hamiltonian system restricted to the NHIC is still Hamiltonian with
one less degree of freedom.

(2) The hyperbolicity of the NHIC is determined by the nondegeneracy of the
global max of the potential V .

(3) The remainder δR can be made as small as we wish.

(4) The normal form Proposition 5.2 with m = 1 or 2 holds in a neighborhood
U of the frequency segment ωa . The size of the neighborhood depends
on δ.

Using (2) and (3), we choose δ so small that the perturbation δR does not
destroy the NHIC constructed above. We then fix δ to proceed to the next step.
Using (1), we obtain a Hamiltonian system restricted to the NHIC which is
still nearly integrable has n− 1 degrees of freedom. Item (4) implies that the
restricted Hamiltonian has frequencies (or rotation vectors of Mather sets, more
precisely) in a neighborhood of ρa

(
a, p

qω
∗

2, ω̂
∗

n−3

)
∈ Rn−1 which is obtained

from ω̌a by removing the zero entry corresponding to the normal to the NHIC.
So we can modify in the neighborhood U the first component ω∗4 of the vector
ω̂∗n−3 to a rational multiple of ω∗2 , so that the new frequency segment denoted by
ω̄a =

(
a, p

qω
∗

2,
p4
q4
ω∗2, ω̂

∗

n−4

)
has a similar structure as ωa so we can repeat the

above procedure. Note that the rational p4
q4

necessarily has large denominator
depending on δ. In the original system the means that we modify the frequency
segment ωa to ω′a = ρa

(
a, p2

q2
ω∗2,

p3
q3
ω∗2,

p4
q4
ω∗2, ω̂

∗

n−4

)
hence introduces a second

resonant integer vector k2 such that 〈k2, ω
′
a〉 = 0 for all a. We have |k2| � |k1|

(more precisely, as δ→ 0, we have |k1| fixed but |k2| →∞) and moreover, the
two vectors are not determined at once, instead, after k1 is determined and δ is
fixed, we can then determine k2 by choosing p4/q4.
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After n− 3 steps, the above algorithm gives a final frequency segment of the
form

ω]a = ρ
]
a

(
a,

p2

q2
,

p3

q3
, . . . ,

pn

qn

)
∈ Rn

with a special hierarchy structure: for fixed pi/qi , we then choose pi+1/qi+1

sufficiently close to a Diophantine number ω∗i+1/ω
∗

2 . We choose pi+1/qi+1 so
close to ω∗i+1/ω

∗

2 that the resonance integer vector ki has a large norm and the
Fourier modes5ki P are so small that it does not destroy the NHIC obtained in the
previous step applying the theorem of NHIM. Now the frequency vector ω]a has
at least n−2 resonant integer vectors ki , i = 1, 2, . . . , n−2 with |ki |� |ki+1| for
all a in an interval. For some a, there might be another resonant vector k′′ whose
length is comparable to one of ki . We note that the vectors ki , i = 1, . . . , n− 2
are not determined at once, instead, we determine ki+1 after ki is fixed.

Suppose we finish moving a and want to move the second component of the
frequency vector. The idea is to send a close to a Diophantine number that is
much closer than |pn/qn −ω

∗
n/ω
∗

2| and start moving p2/q2 applying the above
algorithm.

Carrying out the above procedure, we get the existence of NHICs outside a
small neighborhood of the complete resonance. With the presence of the NHICs,
we can consider the system as an a priori unstable system and construct diffusing
orbit. We thus have the following statement (except part (3)(c) to be explained
in the next subsection).

Theorem C.1 [11, Theorem 2.9]. Let the Hamiltonian system H = h + εP ∈
Cr (T ∗Tn,R), 7≤ r ≤∞, be as in (1-1) restricted to the energy level E >min h.
For any %> 0, and any M open balls B1, . . . ,BM of radius % centered on h−1(E),
there exist some ε0 > 0 and an open-dense set R⊂S1, such that for each P ∈R
there exist εP and a residual set RP ⊂ (0,min{εP , ε0}) such that for all ε ∈ RP

the following hold:

(1) There exists a continuous frequency path ω(t) with ∂β(ω(t)) ∈ α−1(E), t ∈
[1,M] satisfying:
(a) (∂h)−1(ω(i))∩ Bi 6=∅, i = 1, 2, . . . ,M.
(b) Each point ω(t) is resonant with multiplicity at least n− 2. There are

finitely many marked points on ω(t) denoted by ω1, . . . , ωm , where m
is independent of ε, that are resonant with multiplicity n− 1.

(2) On the energy level E there are finitely many disjoint Cr normally hyperbolic
invariant cylinders homeomorphic to T ∗T×T.

(3) For each ωi , i = 1, . . . ,m, there exists λi > 0 such that:
(a) The Mather sets of rotation vectors ω(t) with |ω(t)−ωi | ≥ λi

√
ε for

all i = 1, 2, . . . ,m, lie in the NHICs.
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(b) Any continuous curve lying in the interior of {∂β(ω(t)) | |ω(t)−ωi | ≥

λi
√
ε} ⊂ α−1(E) satisfies Theorem 3.1.

(c) The two neighboring connected components {∂β(ω(t)) | |ω(t)−ωi | ≥

λi
√
ε} ⊂ α−1(E) near ∂β(ωi ) are c-equivalent.

Remark C.2. Each marked point corresponds to a strong double resonance point
appearing at some step of the reduction of order where there is a resonant integer
vector k′′ whose length is comparable to some ki . We avoid getting too close to
the double resonance. The reason is that the NHIC, if it exists, has only C1+α

smoothness where α > 0 can be close to 0 since |ln λ/ lnµ| can be close to one
in Theorem B.2 near the strong double resonant point. The regularity is too low
to perform further reduction of order.

C2. Crossing the complete resonance. In the previous subsection, we have
shown how to construct NHICs away from complete resonances. In this sec-
tion, we show how to cross the complete resonance hence prove part (3)(c) in
Theorem C.1. Similar to the case of n = 3, the complete resonance causes
essential difficulty to construct diffusing orbit in the higher dimensional case.

The normal form near the complete resonance. Applying Proposition 5.2 repeat-
edly, we derive the following Hamiltonian normal form at the complete resonant
frequency ω]a; see Section 7.5 of [11]. After a linear transform in SL(n,Z), we
transform ω

]
a to (0, . . . , 0, ωn)

Hn−1 =
1
√
ε
ωnYn +

1
2〈An−1Y, Y 〉+

n−1∑
i=2

δi Vi (x1, . . . , xi )+ δn R(x, Y ),

where (x, Y )∈ T ∗Tn , Vi ∈Cr , and R ∈Cr−2. The Hamiltonian has the following
properties which originate from the hierarchy structure in the choice of the
frequency line in the previous section:

(1) δi+1 � δi , δ2 = 1, and we have the freedom to choose δi+1 as small as
we wish once δi Vi is fixed, and Vi+1 depends on δi+1 but ‖Vi+1‖Cr is
uniformly bounded as δi+1 → 0. The number δi+1 is chosen so that the
δi+1-perturbation does not destroy the NHIC constructed in the previous
step whose normal hyperbolicity depends on δi .

(2) The positive definite matrix An−1 depends on δi in the following way: the first
i×i block depends only on δ2, . . . , δi but does not depend on δi+1, . . . , δn−1

for i = 2, . . . , n−1. Such dependence on δi appears due to our introduction
of the linear symplectic map after applying the normal form.
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We next perform a standard energetic reduction to solve for Yn(x, xn, y) as
the solution of the equation

Hn−1(x, xn, y, Yn(x, xn, y))= E∗ >minαHn−1

to arrive at the normal form which is a nonautonomous system with n + 1/2
degrees of freedom

Yδ := −Yn
ωn√
ε
=

1
2〈Ay, y〉+

n−1∑
j=2

δi Vi (x1, . . . , xi )+ δn R̃
(
x, τ
√
ε
, y
)
, (C-2)

where we update the notation x = (x1, . . . , xn−1), y = (Y1, . . . , Yn−1), and A
denotes an (n−1)×(n−1)matrix obtained by removing the last row and column
in An−1.

In these coordinates, one case of crossing the complete resonance is to move
the frequency a(1, 0, . . . , 0) ∈ Rn−1 from some positive a to some negative a
along an orbit with the obstruction being the zero frequency.

The algorithm of constructing diffusing orbit crossing the complete resonance.
For simplicity, we consider the case n = 4 and assume A = Id3. The general
case is more complicated and we refer readers to Section 6 of [11] for details.
We also discard the term δ4 R̃ in Yδ since it is useless in our argument of passing
complete resonance.

Step 1 The cohomology space picture. We get the Hamiltonian

Yδ = 1
2‖y‖

2
+ V (x1, x2)+ δV3(x1, x2, x3), (x, y) ∈ T ∗T3. (C-3)

We first study the picture of F0 = α
−1
Yδ (0) in H 1(T3,R). This has the shape of

a big pizza (see Figure 6): O(1) in the c1, c2 direction and very tiny O(
√
δ)

in the c3 direction where c = (c1, c2, c3) ∈ H 1(T3,R), since the hyperbolicity
of the hyperbolic fixed point is weak in the x3, y3 component. Each NHIC
(homeomorphic to T ∗T1) provided by Theorem C.1 corresponds in H 1(T3,R)

to an open set that we call a channel connected to F0. The correspondence is
in the following sense. Each NHIC consists of hyperbolic periodic orbits in
the Mather sets with rotation vectors lying in the frequency line (a, 0, 0), a ∈
R \ {0} and the channels are the images of the frequency line under the map
∂β : H1(T

3,R)→ H 1(T3,R). One case of crossing the complete resonance is to
find an orbit shadowing Mather sets with rotation vectors (a, 0, 0) and (−a, 0, 0),
a 6= 0. Note that the picture of the pizza and channels is centrally symmetric
since the system Yδ is reversible (invariant under the change y → −y). Our
goal is to move the cohomology class c from one channel to another, hence by
symmetry c→−c. We have the following algorithm.
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Step 2 a priori unstable dynamics and center-straightening. The NHIC pro-
vided by Theorem C.1 is obtained in the following way. First, since the subsystem
G= 1

2(y
2
1 + y2

2)+ V (x1, x2) has two degrees of freedom, we apply Theorem 6.1
to get a NHIC foliated by action minimizing periodic orbits in the homology
class g = (1, 0) ∈ H1(T

2,Z). Moreover, action-angle coordinates (θ, I ) on the
cylinder can be introduced to reduce the subsystem to a system h̃(I ) of one
degree of freedom restricted to the NHIC. This reduces the Hamiltonian Yδ to
the form

Y δ = h̃(I )+ 1
2 y2

3 + δZ(θ, I, x3), (θ, I, x3, y3) ∈ T ∗T1
×R2,

to which we can apply Theorem 6.1 again to get a NHIC foliated by action
minimizing periodic orbits in the homology class g = (1, 0) ∈ H1(T

2,Z). This
gives the NHIC in Theorem C.1. Recovering the δ4 R̃ perturbation, diffusing
orbits can be constructed moving along the NHIC (channel in H 1(T3,R)) up
to a oδ4→0(1)-neighborhood of the pizza using the method of a priori unstable
systems.

Step 3 The cohomology equivalence. As a result of the previous step, we have
arrived at a neighborhood of the pizza where the cohomology class c= (c1, c2, c3)

satisfies αG(c1, c2) ∈ (0,1) and c3 close to zero; see Theorem 6.3 for the
definition of 1. We now view the system Yδ as a small perturbation of the
subsystem G. By Theorem 6.3 and the upper-semicontinuity of the Mañé set, for
small enough δ, the Mañé set Ñ (c) when projected to T2(3 (x1, x2)) does not
cover T2. We apply the c-equivalence mechanism (Theorem 3.3) to get that the
cohomology class (c1, c2, c3) is c-equivalent to (−c1,−c2, c3).

Step 4 The ladder climbing. Here comes an intrinsic problem due to the high
dimensionality. The two channels are centrally symmetric due to the reversibility
of the mechanical system. Namely, the projection of the two channels to the
c3 coordinate axis, may not overlap. So for c = (c1, c2, c3) in one channel, the
point (−c1,−c2, c3) does not lie in the opposite channel. We have to find a way
to change c3 to −c3. The idea is to notice that restricting the system Yδ to the
NHIC (homeomorphic to T ∗T2) obtained by applying Theorem 6.1 to G, we get
Y δ . The center manifold which is the phase space of Y δ , has stable and unstable
manifolds hence we are in a situation similar to Arnold’s example. Restricted to
an energy level of the system Yδ, the energy of the subsystem Y δ is also fixed,
so we get a curve αY δ (c)=const in H 1(T2,R). Along this curve, we can move
c3 significantly by Arnold’s mechanism, so we send

(−c1,−c2, c3)→ (−c1,−c2,−c3).
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Figure 6. Turning around complete resonance Channel:NHIC; Red:c-
equivalence; Blue:ladder.

To see the last mechanism clearly, we modify Arnold’s Hamiltonian slightly
to yield

H =
y2

1

2
+

y2
2

2
+

y2
3

2
+ (cos x3− 1)(1+ ε(cos x1+ sin x2)).

In this system, for each E > 0 there exists diffusing orbit along which (y1, y2)

moves arbitrarily on the circle {y2
1 + y2

2 = 2E}. In our case, the system Yδ plays
the role of H here and the subsystem Y δ plays the role of 1

2(y
2
1 + y2

2) which lies
on the NHIM {x3 = y3 = 0}.

As in the case of a priori unstable systems, we need a regularity result similar
to Theorem 4.1 to show that the barrier functions Bc(x) of the system Y δ for
αY δ (c) =constant can be parametrized into a Hölder family. This is proved
in [12].

We complete the sketch of the proof here and refer interested readers to [11]
for more details.
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Viscosity solutions of the Hamilton–Jacobi
equation on a noncompact manifold

ALBERT FATHI

We study the continuous viscosity solutions of the evolutionary Hamilton–
Jacobi equation

∂tU (t, x)+ H(x, ∂xU (t, x))= 0,

on [0,+∞[ × M , where H is a Tonelli Hamiltonian on the noncompact
manifold M . We establish that all such solutions are given by the Lax–Oleinik
formula. Moreover, we show that a finite everywhere Lax–Oleinik evolution
is necessarily continuous and a viscosity solution on ]0,+∞[×M .

The goal is also to provide a convenient reference for the evolutionary
Hamilton–Jacobi equation for Tonelli Hamiltonians on noncompact manifolds.

1. Introduction

This work was started in February 2017 in Rome, following a conversation with
Piermarco Cannarsa, Andrea Davini, Antonio Siconolfi and Afonso Sorrentino.
We discussed the problem of the Lax–Oleinik evolution û (see Definition 8.2)
of a continuous function u on a noncompact manifold. Although on a compact
manifold, it was known that the Lax–Oleinik evolution of a continuous function
is always locally concave and a solution of the Hamilton–Jacobi equation in
evolution form, at that moment, the situation on a noncompact manifold was
not clear, even assuming the continuity of the Lax–Oleinik evolution. The main
problem was that it was not clear that the inf in Definition 8.2 of û was attained.
After about a month, to my astonishment, I realized that no condition beyond
finiteness was necessary; see Theorem 1.1.

This brought back the problem of uniqueness of a solution of the Hamilton–
Jacobi equation in evolution form given an initial condition. In May 2016 in

Work begun under support of ANR-12-BS01-0020 WKBHJ. This material is also based upon work
supported by the National Science Foundation under Grant No. 1440140, while the author was in
residence at the Mathematical Sciences Research Institute in Berkeley, California, during the Fall
of 2018. During that stay the author was a Clay Senior Scholar.
MSC2020: 00A05.
Keywords: Hamilton–Jacobi equation.
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Shanghai, Kaizhi Wang, Lin Wang and Jun Yan, while discussing [11], brought to
my attention that, contrary to my belief, the uniqueness of a continuous solution
of the Hamilton–Jacobi equation in evolution form given an initial condition on a
noncompact manifold was not known at that time (and therefore the Lax–Oleinik
formula could not be established) unless the solution was uniformly continuous.
The best results on this problem were those contained, for example, in Hitoshi
Ishii’s lecture notes [10], on whose methods this present work heavily relies. The
difficulty here is that the maximum principle could not be applied directly, since
it requires some compactness. In 2018 and 2019, I was able to show directly the
Lax–Oleinik formula for arbitrary continuous solutions (see Theorem 1.2) and
therefore I obtained the uniqueness as a consequence.

Beyond the new results mentioned above, the goal of this work is to provide a
convenient reference for the evolutionary Hamilton–Jacobi equation

∂tU + H(x, ∂xU )= 0

for a Tonelli Hamiltonian H on a possibly noncompact manifold, thus extending
the results of the survey [7].

We will assume that the reader is familiar with [7], which is well adapted
to our manifold setting. Other classic treatments of viscosity solutions of the
Hamilton–Jacobi equation are [2; 1].

We consider a connected manifold M endowed with a complete Riemannian
metric. We will denote by ‖·‖x the induced norm on either Tx M or T ∗x M , the
fibers above x of the tangent TM or cotangent T ∗M bundle of M . We will denote
by d the Riemannian distance on M obtained from the Riemannian metric. It
might be useful to recall that, due to the completeness of the Riemannian metric,
bounded sets for d are relatively compact. Therefore the distance d is also
complete.

We endow R× M,R× M × M , and M × M with the product Riemannian
metrics, and Riemannian distances, where the Riemannian metric on R is the
usual one.

Throughout the paper H : T ∗M→R will denote a continuous function which
we will call the Hamiltonian.

We will study (continuous) viscosity subsolutions, supersolutions and solutions
of the evolutionary Hamilton–Jacobi equation

∂tU (t, x)+ H(x, ∂xU (t, x))= 0, (1-1)

on a subset of R×M .
In fact, the main results of this work will be proved for Tonelli Hamiltonians

(Definition 3.1). The statements use the (negative) Lax–Oleinik semigroup T−t ,
t ≥ 0 (see Definition 8.1).
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The main results are given in the next two theorems.

Theorem 1.1. Assume u :M→[−∞,∞] is a function such that its Lax–Oleinik
evolution û : [0,+∞[× M → [−∞,+∞], (t, x) 7→ T−t u(x) is finite at some
point (T, X), with T > 0 and X ∈ M. Then the function û is continuous and
even locally semiconcave on ]0, T [×M. Moreover, the function û is a viscosity
solution of the evolutionary Hamilton–Jacobi equation (1-1) on ]0, T [×M.

Note that we do not assume any continuity property on u. As we already said
the result above is surprising, even when u is continuous.

Theorem 1.2. Suppose H : T ∗M→R is a Tonelli Hamiltonian. Assume that, for
some T > 0 the function U : ]0, T [×M→ R is a continuous viscosity solution
of the evolutionary Hamilton–Jacobi equation (1-1). Define u : M→ [−∞,∞]
by

u(x)= lim inf
t→0

U (t, x).

Then U = û on ]0, T [×M→R, where û : [0,+∞[×M→[−∞,+∞], (t, x) 7→
T−t u(x) is the Lax–Oleinik evolution of u.

Obviously, Theorem 1.2 implies that continuous viscosity solutions of the
evolutionary Hamilton–Jacobi equation (1-1) satisfy the Lax–Oleinik formula
and also the uniqueness given a continuous boundary condition on {0}×M .

Remark 1.3. (1) Discussions in June 2019 in Rome, with A. Davini, Hitoshi
Ishii and Antonio Siconolfi pointed to the fact that the results above hold true
even if H is not C2, but still satisfies the other Tonelli conditions see 3.1.

(2) The method of this work does not allow to extend the results to the case
when H is time-dependent. For example, the proof of Proposition 2.2 is not
adaptable to the time-dependent case.

2. Approximation by Lipschitz subsolutions

We will assume in this section that H : T ∗M → R is a continuous function,
which we will call the Hamiltonian. Our goal is to show that we can approximate
locally continuous viscosity subsolutions of the evolutionary Hamilton–Jacobi
equation (1-1) with U defined on an open subset of R×M by Lipschitz viscosity
subsolutions, under a coercivity condition on H .

These results are well-known when M is the Euclidean space (see Hitoshi
Ishii’s lectures [10] for example), but the arguments in [10] can easily be adapted
to the manifold setting as we now proceed to do.
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2.1. Sup-convolution in one variable. The usefulness of sup-convolution to
improve regularity of viscosity subsolutions is already well established. As said
above, our treatment in this section follows closely [10] which dealt with the
Euclidean space case.

Let u : V →R, be a continuous function, where V is an open subset of R×M .
Assume K ⊂ V is compact subset. By continuity of u and compactness of K ,
we can find an open subset O1 ⊂ V , with K ⊂ O1, such that

m = supO1
|u|<+∞. (2-1)

Again by compactness of K , we can find δ>0 and an open neighborhood O2⊂O1

of K , with compact closure Ō2 ⊂ O1, and such that [t − δ, t + δ] × {x} ⊂ O1,
for every (t, x) ∈ Ō2.

For ε > 0, we define uε : Ō2→ R by

uε(t, x)= max
s∈[−δ,+δ]

u(t + s, x)−
s2

ε
. (2-2)

Note that uε is continuous by continuity of u and compactness of [−δ,+δ].
We summarize the properties of uε in the following proposition.

Proposition 2.1. (1) For every ε > 0, we have uε ≥ u.

(2) For every 0< ε < ε′, we have uε < uε′ .

(3) If (t, x)∈ Ō2, and sε ∈[−δ,+δ] is such that uε(t, x)=u(t+sε, x)−(sε)2/ε,
then |sε | ≤

√
2εm, where m is given by (2-1).

(4) For every (t, x) ∈ Ō2, we have uε(t, x) → u(t, x), when ε → 0. The
convergence is uniform on Ō2.

(5) If
√

2εm < δ, for each (t, x), (t ′, x) ∈ Ō2, with |t − t ′| < δ −
√

2εm, we
have

|uε(t ′, x)− uε(t, x)| ≤
2
√

2εm+ |t − t ′|
ε

|t − t ′| ≤

√
2εm+ δ
ε

|t − t ′|.

Moreover, if
√

2εm < δ, for every x ∈ M , the map t 7→ uε(t, x) is Lipschitz
on every connected component of O2 ∩ {x} × R with Lipschitz constant
≤ 2
√

2m/ε.

Proof. Parts (1) and (2) are obvious. For part (3), we notice that

uε(t, x)= u(t + sε, x)− (sε)2/ε ≥ u(t, x).

Therefore

(sε)2/ε ≤ u(t + sε, x)− u(t, x)≤ 2 supO1
|u| = 2m.
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For part (4), note that by part (3), we have

sup
(x,t)∈Ō2

|uε(t, x)−u(t, x)|≤ sup
{
|u(t+s, x)−u(t, x)|

∣∣ (t, x)∈ Ō2, |s|≤
√

2εm
}
.

By compactness of Ō2 and continuity of u, the right hand side of the inequality
above tends uniformly on Ō2 to 0 as ε→ 0.

For (5), we choose sε such that uε(t, x)= u(t + sε, x)− (sε)2/ε. By (3), we
have |sε | ≤

√
2εm. Therefore, we get

|sε + t − t ′| ≤ |sε | + |t − t ′| ≤
√

2εm+ δ−
√

2εm = δ.

Therefore, by the definition of uε , we obtain

uε(t ′, x)≥ u(t ′+ (sε+ t− t ′), x)−
(sε + t − t ′)2

ε
= u(t+ sε, x)−

(sε + t − t ′)2

ε
.

Subtracting this inequality from the equality uε(t, x) = u(t + sε, x)− (sε)2/ε
yields

uε(t, x)− uε(t ′, x)≤
(sε + t − t ′)2

ε
−
(sε)2

ε

=
(2sε + t − t ′)(t − t ′)

ε

≤
2|sε | + |t − t ′|

ε
|t − t ′|

≤
2
√

2εm+ |t − t ′|
ε

|t − t ′|,

where we used |sε | ≤
√

2εm, for the last inequality. By symmetry, we obtain

|uε(t ′, x)− uε(t, x)| ≤

√
2εm+ |t − t ′|

ε
|t − t ′|. (2-3)

Assume t, t ′, x are such that [t, t ′]× {x} ⊂ O2. For every η ∈ ]0, δ−
√

2εm[,
we can pick a monotone sequence t = t0, t1, . . . , tn = t ′, with |ti+1− ti | ≤ η, by
applying (2-3) for ti , ti+1 instead of t, t ′, and adding the inequalities, we obtain

|uε(t ′, x)− uε(t, x)| ≤
2
√

2εm+ η
ε

|t − t ′|.

We can then let η→ 0, to conclude that

|uε(t ′, x)− uε(t, x)| ≤
2
√

2εm
ε
|t − t ′|. �

Proposition 2.2. Let H : T ∗M → R be a continuous Hamiltonian. Suppose
u : V → R is a continuous function, defined on the open subset V ⊂ R× M ,
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which is a viscosity subsolution on V of the evolutionary Hamilton–Jacobi
equation (1-1).

Then, for every compact subset K ⊂ V , we can find a sequence of continuous
functions ûn : K → R such that ûn→ u uniformly on K and, for all n except a
finite number, the function ûn is a viscosity subsolution on the interior K̊ of K ,
not only of the evolutionary Hamilton–Jacobi equation (1-1), but also of

|∂t u(t, x)| + H(x, ∂x u(t, x))= C
√

n, (2-4)

for some C <+∞ independent of n. In particular, if H is coercive above each
compact subset of M , then each ûn is locally Lipschitz on K̊ .

Proof. We choose O1,m, δ, and O2 ⊃ K like it is done above in the beginning
of Proposition 2.1. We set ûn = u1/n : O2→ R, where u1/n is defined by (2-2)
with ε = 1/n. Hence

ûn(t, x)= min
s∈[−δ,+δ]

u(x,+s)− ns2.

By part (4) of Proposition 2.1, we get the uniform convergence of ûn to u.
We pick an integer n0 such that

√
2m/n0<δ. We now check the fact that ûn is

a viscosity subsolution of both Hamilton–Jacobi equations on O2, for all n ≥ n0.
Assume (t0, x0) ∈ O2, and that ϕ : V →R is C1 is such that ûn ≤ ϕ with equality
at (t0, x0). Since

√
2m/n ≤

√
2m/n0 < δ, by Proposition 2.1(5), we know that

t 7→ ûn(x,t) is locally Lipschitz with local Lipschitz constant ≤ 2
√

2mn. This
implies

|∂tϕ(t0, x0)| ≤ 2
√

2mn. (2-5)

We now choose sn ∈ [−δ,+δ] such that

u(t0+ sn, x0)− ns2
n = ûn(t0, x0)= ϕ(t0, x0).

For s small enough and y close to x0, we have (t0+ s, y) ∈ O2. Therefore, since
sn ∈ [−δ,+δ], by the definition of ûn , for s small enough and y close to x0,
we get

u(t0+ s+ sn, y)− ns2
n ≤ ûn(t0+ s, y)≤ ϕ(t0+ s, y).

Subtracting from this inequality the equality u(t0 + sn, x0)− ns2
n = ϕ(t0, x0),

we get

u(y, t0+ s+ sn)− u(t0+ sn, x0)≤ ϕ(t0+ s, y)−ϕ(t0, x0).

Since u is a viscosity subsolution on O1 3 (t0+ sn, x0), of (1-1), we must have

∂tϕ(t0, x0)+ H(x0, ∂xϕ(t0, x0))≤ 0. (2-6)
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Therefore ûn is a viscosity subsolution of (1-1). Using the inequalities (2-5)
and (2-6), we also obtain

|∂tϕ(t0, x0)| + H(x0, ∂xϕ(t0, x0))≤ 4
√

2mn.

Therefore ûn is a viscosity solution of (2-4) with C = 4
√

2m. �

Corollary 2.3. Let H : T ∗M→ R be a continuous Hamiltonian that is coercive
above each compact subset of M and convex in the momentum p; i.e., for each
x ∈ M , the map T ∗x M → R, p 7→ H(x, p) is convex. Let u : V → R be a
continuous functions defined on the open subset V ⊂ R×M which is a viscosity
subsolution of the evolutionary Hamilton–Jacobi equation (1-1).

For every open set V ′ ⊂ V whose closure V̄ ′ is compact and contained in V ,
we can approximate uniformly u on V ′ by a C∞ subsolution of the evolutionary
Hamilton–Jacobi equation (1-1).

Proof. By Proposition 2.2 above, we can make a first approximation by a
subsolution u1 : V ′→ R of (1-1) that is locally Lipschitz on V ′. The function
u2 : V ′ → R, (t, x)→ u1(t, x)− εt is therefore a locally Lipschitz viscosity
subsolution of

∂tv+ H(x, ∂xv)=−ε.

Note also that the variable t is bounded on the compact subset V̄ ′ of R× M .
Therefore, by choosing appropriately ε, we can assume u2 uniformly as close to
u1 as we wish. We can now consider the Hamiltonian H̄ : T ∗(R×M) defined by

H̄(t, s, x, p)= s+ H(x, p),

where we use the identification T ∗(R×M)= T ∗R×T ∗M =R×R×T ∗M . The
function u2 is a locally Lipschitz viscosity subsolution of

H̄(t, x, d(t,x)v(t, x))=−ε.

The Hamiltonian H̄ is convex in the momentum (s, p). We can now invoke
[7, Theorem 10.6, page 1219] to approximate uniformly u2 on V ′ by a C∞

viscosity subsolution u3 : V ′→ R of

H̄(t, x, d(t,x)vu(t, x))= 0.

This means that u3 is both a uniform approximation of u and a viscosity subso-
lution of the evolutionary Hamilton–Jacobi equation (1-1). �

Corollary 2.4. Let H : T ∗M→ R be a continuous Hamiltonian that is coercive
above each compact subset of M and convex in the momentum p; i.e., for each
x ∈ M , the map T ∗x M → R, p 7→ H(x, p) is convex. If u1 : V → R and
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u2 : V → R are continuous functions defined on the open subset V ⊂ R× M
which are viscosity subsolutions of

∂tv+ H(x, ∂xv)= 0, (2-7)

then u =min(u1, u2) is also a viscosity subsolution on V of (2-7).

Proof. Since H is convex, the corollary is well known when u1 and u2 are locally
Lipschitz. In fact, since u1 and u2 are locally Lipschitz, they are differentiable
almost everywhere and satisfy for almost every (t, x) ∈ V , the inequalities

∂t u1(t, x)+ H(x, ∂x u1(t, x))≤ 0 and ∂t u2(t, x)+ H(x, ∂x u2(t, x))≤ 0.

But the subset D ⊂ V where the three locally Lipschitz functions u, u1, u2 are
differentiable is of full measure and, for every (t, x)∈ D, we have either d(t,x)u=
d(t,x)u1 or d(t,x)u = d(t,x)u2. Therefore, ∂t u(t, x)+ H(x, ∂x u(t, x))= 0 almost
everywhere on V . Since the Hamiltonian H̄(t, x, s, p)= s+ H(x, p) is convex
in (t, p) by [7, Theorem 10.2, page 1217], we conclude that u = min(u1, u2)

is also a viscosity subsolution on V of (2-7), when both u1 and u2 are locally
Lipschitz.

The result for general continuous functions follows from this locally Lipschitz
case and the stability of viscosity solutions (see [7, Theorem 6.1, page 1209],
for example) using the approximation result obtained in Proposition 2.2. �

Corollary 2.5. Let H : T ∗M→ R be a continuous Hamiltonian that is coercive
above each compact subset of M and convex in the momentum p; i.e., for each
x ∈ M , the map T ∗x M → R, p 7→ H(x, p) is convex. Suppose the family of
functions ui : V → M, i ∈ I , where V ⊂R×M is an open subset, is such that its
infimum u = infi∈I ui is continuous and everywhere finite on V . If each ui , i ∈ I
is a viscosity subsolution (resp. solution) of the evolutionary Hamilton–Jacobi

∂tv+ H(x, ∂xv)= 0. (2-8)

on V , then u is also a viscosity subsolution (resp. solution) of the evolutionary
Hamilton–Jacobi (2-8) on V .

Proof. Since the space of continuous functions C(V,R) endowed with the
compact-open topology is metric and separable, we can find a sequence (in)n∈N,
with in ∈ I , such that the sequence (uin )n∈N is dense in the subset {ui | i ∈ I } ⊂
C(V,R) for the compact open topology. Therefore

u = inf
i∈I

ui = inf
n∈N

uin .

For m ∈ N, let us define Um : V → R by

Um = min
0≤n≤m

uin .
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If each ui , i ∈ I is a viscosity subsolution of (2-8) on V , Corollary 2.4 implies
that each Um is also a subsolution of (2-8) on V . Note that Um is nonincreasing
in m and Um ↘ u. Since we are assuming that u is finite and continuous on V ,
by Dini’s theorem, the nonincreasing convergence Um ↘ u is uniform on every
compact subset of V . Therefore by the stability theorem for viscosity solutions,
the function u is a viscosity solution of (1-1) on V .

If each ui , i ∈ I is a viscosity solution of (2-8) on V , then u = infi∈I ui is a
supersolution of (2-8) on V ; see for example [7, Proposition 8.1, page 1213]. �

2.2. Maximum principle.

Theorem 2.6 (maximum principle). Let H : T ∗M→ R be a Hamiltonian that
is continuous, coercive above each compact subset of M and convex in the
momentum p. For a < b ∈ R and K ⊂ M a compact subset, if the continuous
functions u, v : [a, b]×K→R are respectively a subsolution and a supersolution
of the evolutionary Hamilton–Jacobi equation (1-1) on ]a, b[ × K̊ then the
maximum of u−v on [a, b]×K is achieved on [a, b]×∂K ∪{a}×K . Therefore

max
[a,b]×K

u− v = max
[a,b]×∂K∪{a}×K

u− v.

Proof. It is not difficult to see that by the approximation result of Proposition 2.2,
we can assume u locally Lipschitz in K̊ × ]a, b[. As usual, for ε, δ > 0, we
introduce the function uε,δ : [a, b[× K → R by

uε,δ(t, x)= u(t, x)− ε(t − a)−
δ

b− t
.

Note that uε,δ ≤ u and that uε,δ(t, x)→−∞ as t→ b, uniformly in x ∈ K . Since
t 7→ −ε(t−a)− δ/(b− t) is C1, with derivative t 7→ −ε− δ/(b− t)2 ≤−ε, the
function uε,δ is a viscosity subsolution of

∂t uε,δ + H(x, ∂x uε,δ)=−ε, (2-9)

on ]a, b[× K̊ . Therefore by the doubling of variables argument (see [7, Theorem
7.1, page 1210], for example), using that uε,δ is locally Lipschitz on ]a, b[× K̊ ,
we conclude that uε,δ − v cannot have a local maximum in ]a, b[ × K̊ . Since
uε,δ(t, x)→−∞ as t→ b, the function uε,δ − v attains its maximum at a point
in [a, b[× ∂K ∪ {a}× K . Using that uε,δ ≤ u, we obtain

uε,δ − v ≤ max
[a,b]×∂K∪{a}×K

u− v

on K ×[a, b[. Letting δ, ε→ 0, we obtain u− v ≤max[a,b]×∂K∪{a}×K u− v on
K ×[a, b[. Continuity of both u and v yields

max
K×[a,b]

u− v ≤ max
[a,b]×∂K∪{a}×K

u− v. �
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For viscosity solutions, we obtain:

Corollary 2.7. Let H : T ∗M→R, (x, p) 7→ H(x, p) Hamiltonian that is contin-
uous, coercive above each compact subset of M and convex in the momentum p.
For a < b ∈ R and K ⊂ M a compact subset, assume that the two continuous
functions u, v : [a, b] × K → R are viscosity solutions of the evolutionary
Hamilton–Jacobi equation (1-1) on ]a, b[× K̊ . If u= v on [a, b]×∂K ∪{a}×K ,
then u = v on [a, b]× K .

3. Tonelli Hamiltonians and their Lagrangians

Definition 3.1. A Tonelli Hamiltonian H on the complete Riemannian manifold
(M, g) is a function H : T ∗M→ R satisfying the following conditions:

(1∗) The function H is C2.

(2∗) (uniform superlinearity) For every K ≥ 0, we have

C∗(K )= sup
(x,p)∈T ∗M

K‖p‖x − H(x, p) <∞.

(3∗) (uniform boundedness in the fibers) For every R ≥ 0, we have

A∗(R)= sup{H(x, p) | ‖p‖ ≤ R}<+∞.

(4∗) (C2 strict convexity in the fibers) For every (x, p) ∈ T ∗M , the second
derivative along the fibers, ∂2 H/∂p2(x, p), is (strictly) positive definite.

Note that both A∗ and C∗ are nondecreasing functions, and that (2*) implies

∀(x, p) ∈ T ∗M, H(x, p)≥ K‖p‖−C∗(K ).

If M is compact, the third condition is automatically satisfied, and the second
condition is equivalent to

H(x, p)
‖p‖x

→+∞ as ‖p‖x →+∞.

We thus recover the usual definition of a Tonelli Hamiltonian in the case of M
compact.

We note that the uniform superlinearity implies that a Tonelli Hamiltonian is
coercive.

We should emphasize that, in the noncompact case, the Tonelli condition
depends on the choice of the complete Riemannian metric on M .

Example 3.2. (1) The easiest example of a Tonelli Hamiltonian is H0 :T ∗M→R

defined by
H0(x, p)= 1

2‖p‖2x .
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In fact, in this case,

A∗0(R)= sup {H0(x, p) | ‖p‖x ≤ R} = 1
2 R2,

C∗0 (K )= sup
(x,p)∈T ∗M

K‖p‖x − H0(x, p)= sup
(x,p)∈T ∗M

K‖p‖x −
1
2‖p‖2x =

1
2 K 2.

(2) Let V : M→ R be a C2 function and let X : M→ TM be a C2 vector field
on M . We define the Hamiltonian HX,V : T ∗M→ R by

HX,V (x, p)= 1
2‖p‖2x + p(X (x))+ V (x).

For every x ∈ M , we have

sup
p∈T ∗x M
‖p‖x=R

HX,V (x, p)= 1
2 R2
+ R‖X (x)‖x + V (x).

Therefore
A∗X,V (R)=

1
2 R2
+ sup

x∈M
(R‖X (x)‖x + V (x)).

In particular, we get

A∗X,V (0)= sup
x∈M

V (x) and sup
x∈M
‖X (x)‖x + inf

x∈M
V (x)≤ A∗X,V (1).

For every x ∈ M , we have

sup
p∈T ∗x M
‖p‖x=R

K‖p‖x − HX,V (x, p)= sup
p∈T ∗x M
‖p‖x=R

K‖p‖x −
1
2‖p‖2x − p(X (x))− V (x)

= K R− 1
2 R2
+ R‖X (x)‖x − V (x).

Therefore, for every x ∈ M , we have

sup
p∈T ∗x M

K‖p‖x − HX,V (x, p)= 1
2(K +‖X (x)‖x)

2
− V (x),

and

C∗X,V (K )= sup
x∈M

K‖p‖x − HX,V (x, p)= sup
x∈M

1
2(K +‖X (x)‖

2
x)− V (x).

In particular, we get −infx∈M V (x) ≤ C∗X,V (0). Therefore, the Hamiltonian
HX,V is Tonelli if and only if ‖V ‖∞ = supx∈M |V (x)| < +∞ and ‖X‖∞ =
supx∈M‖X (x)‖x <+∞.

In the sequel, we will assume that H : T ∗M→ R is a Tonelli Hamiltonian on
the complete Riemannian manifold M . We now need to introduce the (Tonelli)



122 ALBERT FATHI

Lagrangian L : TM→ R associated to the Hamiltonian H . It is defined by the
Fenchel formula

L(x, v)= sup
p∈T ∗x M

p(v)− H(x, p) (3-1)

Since H is Tonelli, note that the sup in the definition of L is achieved at the
unique point p ∈ T ∗x M , where v = ∂p H(x, p).

Moreover, from the Fenchel formula (3-1) above, we obtain the Fenchel
inequality

p(v)≤ L(x, v)+ H(x, p) for all x ∈ M, v ∈ Tx M, p ∈ T ∗x M , (3-2)

with equality if and only if v = ∂p H(x, p).
This Lagrangian L is everywhere finite, and enjoys the same properties as H

(see [9], for example):

(1) The Lagrangian L is at least C2. In fact, it is as smooth as H .

(2) (uniform superlinearity) For every K ≥ 0, we have

C(K )= sup
(x,v)∈TM

K‖v‖x − L(x, v) <∞. (3-3)

(3) (uniform boundedness in the fibers) For every R ≥ 0, we have

A(R)= sup{L(x, v) | ‖v‖ ≤ R}<+∞. (3-4)

(4) (C2 strict convexity in the fibers) For every (x, v) ∈ TM , the second
derivative along the fibers, ∂2L/∂v2(x, v), is (strictly) positive definite.

Again (2) implies

∀(x, v) ∈ TM, L(x, v)≥ K‖v‖−C(K ). (3-5)

A Tonelli Lagrangian on the complete Riemannian manifold (M, g) is a
function L : TM → R which satisfies condition (1) to (4) above. As is well-
known, we can define a Hamiltonian H : T ∗M→R by the same Fenchel formula

H(x, p)= sup
v∈Tx M

p(v)− L(x, v).

Again the supremum above is attained precisely when p = ∂vL(x, v). This H is
a Tonelli Hamiltonian whose associated Lagrangian is precisely L .

Example 3.3. We give the Lagrangians of the Hamiltonians in Example 3.2.

(1) The Lagrangian L0 : TM→ R associated to the Tonelli Hamiltonian H0 :

T ∗M→ R is
L0(x, v)=

1
2
‖v‖2x ,

and A0(R)= R2/2,C0(K )= K 2/2.



VISCOSITY SOLUTIONS OF THE HAMILTON–JACOBI EQUATION 123

(2) The Lagrangian L X,V : TM → R associated to the Hamiltonian HX,V :

T ∗M→ R is

L X,V (x, v)= 1
2‖v− X (x)‖2x −V (x)= 1

2‖v‖
2
x −〈v, X (x)〉+ 1

2‖X (x)‖
2
x −V (x).

For every x ∈ M , we have

sup
v∈Tx M
‖v‖x=R

L X,V (x, v)= 1
2 R2
+ R‖X (x)‖x +

1
2‖X (x)‖

2
x − V (x)

=
1
2(R+‖X (x)‖x)

2
− V (x).

Therefore
AX,V (R)≤ 1

2(R+‖X‖∞)
2
− inf

x∈M
V (x).

A similar computation gives

CX,V (K )= 1
2 K 2
+ sup

x∈M
(K‖X (x)‖x + V (x))

≤
1
2 K 2
+ K‖X‖∞+ sup

x∈M
V (x).

4. Action, minimizers, Euler–Lagrange flow

Again in the sequel, we fix a Tonelli Hamiltonian H : T ∗M→R on the complete
Riemannian manifold (M, g) and we will denote by L : TM→ R its associated
Tonelli Lagrangian.

We need to use the calculus of variations for Lagrangians: minimizers, ex-
tremals, Euler–Lagrange equation and flow. An introduction to these concepts can
be found in [3; 5; 6], for example. We recall certain notions for the convenience
of the reader and to fix notation.

Definition 4.1 (length, action). Let γ : [a, b] → M be an absolutely continuous
curve.

• Its Riemannian length `g(γ ) is

`g(γ )=

∫ b

a
‖γ̇ (s)‖γ (s) ds.

• Its action L(γ ) (for L) is

L(γ )=

∫ b

a
L(γ (s), γ̇ (s)) ds.

Note that since L is bounded below by−C(0) the integral above makes always
sense (it can be +∞). In fact, since L +C(0)≥ 0, we set∫ b

a
L(γ (s), γ̇ (s)) ds =−C(0)(b− a)+

∫ b

a
L(γ (s), γ̇ (s)) +C(0)ds.
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From the definition of the distance d on the Riemannian manifold (M, g), we
also have

d(x, y)= inf
γ
`g(γ ),

where the inf is taken over all absolutely continuous curves γ : [a, b] → M with
γ (a)= x , γ (b)= y.

Here are some basic estimates relating action of curves to their length.

Lemma 4.2. Let γ : [a, b] → M be an absolutely continuous curve. For every
K ∈ [0,∞[, we have

L(γ )≥ K`g(γ )−C(K )(b− a)≥ K d(γ (a)γ (b))−C(K )(b− a) (4-1)

and

d(γ (a), γ (b))≤ `g(γ )≤
L(γ )+C(K )(b− a)

K
. (4-2)

In particular, for every ε > 0, we have

d(γ (a), γ (b))≤ `g(γ )≤ εL(γ )+ εC(1/ε)(b− a). (4-3)

Proof. We use the inequality (3-5), to obtain

L(γ (s), γ̇ (s))≥ K‖γ̇ (s)‖γ (s)−C(K ),

from which it follows by integration that

L(γ )≥ K`g(γ )−C(K )(b− a).

Both inequalities (4-1) and (4-2) follow easily. Moreover, inequality (4-3) follows
from (4-2) with K = 1/ε. �

The estimates above yield a modulus of continuity for curves with bounded
Lagrangian. Recall that a modulus of continuity is a nondecreasing function
η : [0,+∞[→ [0,+∞[ that is continuous at 0 and satisfies η(0)= 0.

Lemma 4.3. For every finite K , T ≥ 0, we can find a modulus of continuity
ηK ,T : [0,+∞[ → [0,+∞[ such that, for every absolutely continuous curve
γ : [a, b] → M , with b− a ≤ T and L(γ )≤ K , we have

d(γ (t ′), γ (t))≤ `g(γ |[t, t ′])≤ ηK ,T (|t ′− t |) for all t, t ′ ∈ [a, b].

Proof. Since L ≥−C(0), for any curve γ : [a, b] → M , and all a ≤ t ≤ t ′ ≤ b,
we obtain

−C(0)(t−a)+L(γ |[t, t ′])−C(0)(b−t ′)≤ L(γ |[0, t])+L(γ |[t, t ′])+L(γ |[t ′,b])

= L(γ ).
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Therefore

L(γ |[t, t ′])≤ L(γ )−C(0)(b− t ′)−C(0)(t − a)≤ L(γ )+ |C(0)|(b− a).

Hence, by (4-3) of Lemma 4.2, if L(γ )≤ K and b− a ≤ T , for every ε > 0, we
get

d(γ (t ′), γ (t))≤ `g(γ |[t, t ′])≤ ε(K + |C(0)|T )+ εC(1/ε)(t ′− t).

It is not difficult to see that we can take modulus of continuity the function ηK ,T

defined by
ηK ,T (s)= inf

ε>0
ε(K + |C(0)|T )+ ε|C(1/ε)|s. �

Once action is defined, the notion of minimizer can be introduced.

Definition 4.4 (minimizer). A minimizer (for L) is a curve γ : [a, b] → M such
that

L(δ)=

∫ b

a
L(δ(s), δ̇(s)) ds ≥ L(γ )=

∫ b

a
L(γ (s), γ̇ (s)) ds,

for every absolutely continuous curve δ : [a, b] → M such that δ(a)= γ (a) and
δ(b)= γ (b).

It is not difficult to show that the restriction to any subinterval [c, d] ⊂ [a, b]
of a minimizer γ : [a, b] → M is itself a minimizer.

Examples 4.5. (1) If L0 : TM → R is given by L0(x, v) = 1
2‖v‖

2
x , then γ :

[a, b] → M is a minimizer if and only if γ is a geodesic of M with `g(γ ) =

d(γ (a), γ (b)). Such a minimizer satisfies

L(γ )=
d(γ (a), γ (b))2

2(b− a)
.

(2) (Mañé Lagrangian) Let X be a C2 vector field on the complete Riemannian
manifold M . Define the Lagrangian L X : TM→ R by

L(x, v)= 1
2‖v− X (x)‖2x .

This Lagrangian is Tonelli. Since L ≥ 0, the solution curves of the vector field
X are minimizers. In fact, they are the only minimizers for L X with zero action.

(3) For a real number p ≥ 4, if L p : TM→ R is given by L p(x, v)= 1
2‖v‖

2
x +

1
p‖v‖

p
x , then L is a Tonelli Lagrangian. We note that Lagrangian L̃ p : TM→ R

defined by L̃ p(x, v)= 1
p‖v‖

p
x is not Tonelli since ∂2

v2 L(x, 0) is identically 0 for
every x ∈ M . If γ : [a, b] → M is a curve, we have

L(γ )=

∫ b

a

1
2‖γ̇ (s)‖

2
γ +

1
p‖γ̇ (s)‖

p
γ ds.
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Since the functions t 7→ t2 and t 7→ t p are strictly convex, Jensen’s inequality
implies

L(γ )

b− a
≥

1
2

(
1

b− a

∫ b

a
‖γ̇ (s)‖γ (s) ds

)2

+
1
p

(
1

b− a

∫ b

a
‖γ̇ (s)‖γ (s) ds

)p

≥
1
2

(
d(γ (a), γ (b))

b− a

)2

+
1
p

(
d(γ (a), γ (b))

b− a

)p

,

with equality if and only if ‖γ̇ (s)‖γ (s) identically equals d(γ (a), γ (b))/(b− a).
Hence, the curve γ is a minimizer if and only if it is a length minimizing geodesic
of M . Therefore the action of a minimizer γ : [a, b] → M is given by

L(γ )=
d(γ (a), γ (b))2

2(b− a)
+

d(γ (a), γ (b))p

p(b− a)p−1 . �

Minimizers play a crucial role. Like all minima of a function, minimizers
must be critical points for the action functional L. These critical points are called
extremals.

More precisely, an extremal (for L) is a curve γ : [a, b] → M such that the
derivative Dγ L|Eγ at γ vanishes, with

Eγ = {δ : [a, b] → M | δ(a)= γ (a), δ(b)= γ (b)}.

By the classical calculus of variations, the curve γ is an extremal if and only if
it satisfies the Euler–Lagrange equation, given in local coordinates by

d
dt

(
∂L
∂v
(γ (t), γ̇ (t))

)
=
∂L
∂x
(γ (t), γ̇ (t)). (4-4)

This last ODE (4-4) defines a second order ODE on M . Therefore there exists a
flow ϕt on TM , called the Euler–Lagrange flow, such that γ : [a, b] → M is an
extremal if and only if its speed curve s 7→ (γ (t), γ̇ (t)) is an orbit of ϕt . Moreover,
for any (x, v)∈TM , the projected curve γx,v(t)=πϕt(x, v), where π :TM→M
is the canonical projection, is an extremal with (γx,v(t), γ̇x,v(t)) = ϕt(x, v).
Hence, if two extremals have the same position and speed at a time t , then they
coincide on their common interval of definition.

We now state Tonelli’s theorem; see [3; 5; 6] for a proof.

Theorem 4.6 (Tonelli). Suppose L : TM → R is a Tonelli Lagrangian on the
complete Riemannian manifold M. For every t > 0 and every x, y ∈ M , there
exists an absolutely continuous curve γ : [0, t] → M , with γ (0)= x, γ (t)= y
which is a minimizer.

Any minimizer is as smooth as L and is a solution of the Euler–Lagrange
equation.
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There is a fundamental relation between the Euler–Lagrange flow for the
Lagrangian L : TM→R and the Hamiltonian flow of the associated Hamiltonian
H : T ∗M→ R of L . Recall that L is obtained from H by (3-1). As we already
observed, it is also true, in the Tonelli case, that H can be obtained in the same
way from L

H(x, p)= sup
v∈Tx M

p(v)− L(x, v). (4-5)

Again, since L is Tonelli, the supremum in the definition of H(x, p) is attained
at the unique v ∈ Tx M such that p = ∂vL(x, v). In particular, we have

H (x, ∂vL(x, v))= ∂vL(x, v)(v)− L(x, v).

Recall that the Hamiltonian flow of H is the flow ϕ∗t on T ∗M obtained from the
ODE on T ∗M given in local coordinates by

ẋ =
∂H
∂p
, ṗ =−

∂H
∂x
.

The Hamiltonian H is invariant under the flow ϕ∗t .
In fact the flow ϕt on TM and ϕ∗t on T ∗M are conjugated by the Legendre

transformation L : TM→ T ∗M given by

L(x, x)= (x, ∂vL(x, v)).

In particular, the function H ◦ L in invariant by the Euler–Lagrange flow.
Expressed in the variables (x, v), it is called the energy of the Lagrangian.

Definition 4.7. The energy E : TM → R of the Lagrangian L : TM → R is
defined by

E(x, v)= H ◦L(x, v)
= H(x, ∂vL(x, v))

= supu∈Tx M〈∂vL(x, v), u〉− L(x, u)

= ∂vL(x, v)(v)− L(x, v). (4-6)

As said above, E is constant along any orbit of the Euler–Lagrange flow.

Definition 4.8. Let γ : [a, b] → M be an extremal of L . Its energy E(γ (s),
γ̇ (s)), s ∈ [a, b], is constant along its speed curve. Therefore, we can define the
energy E(γ ) for the extremal γ : [a, b]→ M by E(γ )= E(γ (s), γ̇ (s)), for any
s ∈ [a, b].

We will give later estimates for speeds of extremals. We first define the
minimal action to join x to y in time t .



128 ALBERT FATHI

Definition 4.9 (minimal action ht ). For x, y ∈ M and t > 0, we define the
minimal action ht(x, y) to join x to y in time t by

ht(x, y)= inf
γ

∫ t

0
L(γ (s)γ̇ (s)) ds,

where the infimum is taken over all absolutely continuous curves γ : [0, t]→ M ,
with γ (0)= x and γ (t)= y.

We will also set h0(x, x)= 0 and h0(x, y)=+∞, for x 6= y. These last two
definitions are the natural ones in view of Lemma 4.11.

It is useful to introduce the function H : [0,+∞[×M ×M→ R defined by

H(t, x, y)= ht(x, y).

Since L is bounded from below by−C(0), we obtain that H(t, x, y)=ht(x, y)
is always finite, for t > 0.

By Tonelli’s theorem (Theorem 4.6), for t > 0, the infimum in the definition of
ht is always attained. We can also use the definition of ht to give a characterization
of minimizers:

Proposition 4.10. For any x, y ∈ M and every t > 0, we can find an absolutely
continuous curve γ : [0, t] → M , with γ (0)= x, γ (t)= y and

ht(x, y)= L(γ )= inf
γ

∫ t

0
L(γ (s)γ̇ (s)) ds.

Any such curve is a minimizer. Moreover, an absolutely continuous curve δ :
[a, b] → M is a minimizer if and only if

hb−a(δ(a), δ(b))=
∫ b

a
L(δ(s), δ̇(s)) ds.

A first estimate of ht(x, y) is given by the next lemma.

Lemma 4.11. For every t > 0, every x, y ∈ M and every K ≥ 0, we have

−C(K )t + K d(x, y)≤ ht(x, y)≤ t A(d(x, y)/t). (4-7)

In particular, we have −C(0)t ≤ ht(x, y), ht(x, x)≤ A(0)t , and hd(x,y)(x, y)≤
A(1)d(x, y).

Proof. A minimizing geodesic γx,y : [0, t] → M joining x to y has length
`g(γx,y) = d(x, y) and a speed of constant norm. But integrating the speed
yields the length; hence

‖δ̇(s)‖δ(s) = d(x, y)/t for s ∈ [a, b].
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By the uniform boundedness of L in the fibers (inequality (3-4)), we thus get

L(γx,y(s), γ̇x,y(s))≤ A (d(x, y)/t) for every s ∈ [a, b],

and again by integration

L(γ )≤ t A
(

d(x, y)
t

)
.

Therefore, we also obtain second inequality in (4-7).
For the first inequality of (4-7), we now observe that, by inequality (4-1) of

Lemma 4.2, for any absolutely continuous curve γ : [0, t] → M , with γ (0)= x
and γ (t)= y, we have

K d(x, y)−C(K )t ≤ L(γ ).

Taking the infimum of the above inequality over all such curves γ yields the
desired inequality. �

Examples 4.12. We estimate the function ht for some examples.

(1) If L0 : TM → R is given by L0(x, v) = 1
2‖v‖

2
x , from Example 4.5(1), we

obtain

ht(x, y)=
d(x, y)2

2t
.

(2) For a real number p ≥ 4, if L p : TM→ R is given by L p(x, v)= 1
2‖v‖

2
x +

1
p‖v‖

p
x , from of Example 4.5(1), we obtain

ht(x, y)=
d(x, y)2

2t
+

d(x, y)p

pt p−1 .

(3) If L X,V : TM→ R is given by

L X,V (x, p)= 1
2‖v− X (x)‖2x−V (x)= 1

2‖v‖
2
x−〈v, X (x)〉+ 1

2‖X (x)‖
2
x−V (x),

where V : M → R is a C2 function and X is a C2 vector field on M . From
Example 3.3(2), we know that

AX,V (R)≤ 1
2(R+‖X‖∞)

2
− inf

x∈M
V (x).

Therefore by Lemma 4.11, we get

ht(x, y)≤
(d(x, y)+ t‖X‖∞)2

2t
− t inf

x∈M
V (x).

Again by Example 3.3(2), we know that

CX,V (K )≤ 1
2 K 2
+ K‖X‖∞+ sup

x∈M
V (x).
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Therefore by inequality (4-1) of Lemma 4.2, we have

ht(x, y)≥ K d(x, y)− 1
2 t K 2

− t K‖X‖∞− t sup
x∈M

V (x).

Since this is true for every K ≥ 0, taking the supremum over all K ≥ 0 yields

ht(x, y)≥


−t supx∈M V (x) if d(x, y)≤ t‖X‖∞,

(d(x, y)− t‖X‖∞)2

2t
− t supx∈M V (x) otherwise.

We now give some more properties of ht(x, y).

Proposition 4.13. (1) For every t, t ′ > 0 and every x, y ∈ M , we have

ht+t ′(x, y)= inf
z∈M

ht(x, z)+ ht ′(y, z),

and this infimum is attained.

(2) If γ : [a, b] → M is a minimizer, for every a′, b′ ∈ [0, t], with a′ < b′, we
have

hb′−a′(γ (a′), γ (b′))=
∫ b′

a′
L(γ (s), γ̇ (s)) ds.

(3) If γ : [a, b] → M is a minimizer, we have

hb−a(γ (a), γ (b))≥ K`g(γ )−C(K )(b− a)

≥ K d(γ (a), γ (b))−C(K )(b− a) (4-8)

and

d(γ (a), γ (b))≤ `g(γ )≤
hb−a(γ (a), γ (b))+C(K )(b− a)

K
. (4-9)

In particular, for every ε > 0,

d(γ (a), γ (b))≤ `g(γ )≤ εhb−a(γ (a), γ (b))+ εC(1/ε)(b− a). (4-10)

Proof. Part (1) follows from the following facts:

• If γ : [0, t + t ′] → M ,

L(γ )= L(γ |[0, t])+ L(γ |[t, t + t ′]).

• If γ1 : [0, t] → M and γ2 : [0, t ′] → M are curves with γ1(t) = γ2(0), the
concatenation γ2 ∗ γ1 : [0, t + t ′] → M , defined by

γ2 ∗ γ1(s)=
{
γ1(s) for 0≤ s ≤ t ,
γ2(s− t) for t ≤ s ≤ t + t ′,

is a curve joining γ1(0) to γ2(t ′)whose action L(γ2∗γ1) equals L(γ1)+L(γ2).



VISCOSITY SOLUTIONS OF THE HAMILTON–JACOBI EQUATION 131

Part (2) follows from Proposition 4.10, since we already observed (after
Definition 4.4) that γ |[a′, b′] is also a minimizer.

Parts (3) and (4) follow from inequalities (4-1), (4-2) and (4-3) in Lemma 4.2
and Proposition 4.10. �

To estimate the speed of extremals, we start with two lemmas, providing first
an estimate of the partial derivative of L with respect to v, and then of the energy
(Lemma 4.15).

Lemma 4.14. For every K ≥ 0 and every (x, v) ∈ TM , we have

‖∂vL(x, v)‖x ≤ A(‖v‖x + 1)+C(0),

‖∂vL(x, v)‖x‖v‖x ≥ K‖v‖x −C(K )− A(0).

Therefore D(R)→+∞ as R→+∞, where D : [0,+∞[ → [0,+∞[ is the
function defined by

D(R)= inf
{
‖∂vL(x, v)‖x

∣∣ v ∈ Tx M, ‖v‖x ≥ R
}
.

The function D is nondecreasing and D(0)= 0. Moreover, we have

‖∂vL(x, v)‖x ≥ D(‖v‖x),

for every (x, v) ∈ TM.

Proof. By convexity of L(x, v) in v, we have

L(x, v+ u)− L(x, v)≥ ∂vL(x, v)(u). (4-11)

taking the sup over u with ‖u‖x ≤ 1, we obtain

‖∂vL(x, v)‖x ≤ max
‖u‖x≤1

L(x, v+ u)− L(x, v).

But we know that L ≥ −C(0) and max‖u‖x≤1 L(x, v + u) ≤ A(‖v‖x + 1), by
inequality (3-4). Therefore we get

‖∂vL(x, v)‖x ≤ A(‖v‖x + 1)+C(0).

Setting u =−v in (4-11), we obtain

L(x, 0)− L(x, v)≥−∂vL(x, v)(v),

from which we get

‖∂vL(x, v)‖x‖v‖x ≥ ∂vL(x, v)(v)

≥ L(x, v)− L(x, 0)

≥ K‖v‖x −C(K )− A(0),
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where we again used (3-4) and (3-5).
The function D is obviously nondecreasing. We then note that

D(0)= inf
(x,v)∈TM

‖∂vL(x, v)‖ ≥ 0.

Since L is superlinear in v, for every x ∈ M , the function L(x, · ) achieves a
minimum on Tx M , at which ∂vL(x, · ) vanishes. Therefore D(0)= 0.

We now show that D(R)→+∞ as R→+∞. Since D is nondecreasing
limR→+∞ D(R) exists in R∪ {+∞}.

Given K ≥ 0, for any v ∈ Tx M , with ‖v‖x ≥ R, we have

‖∂vL(x, v)‖x ≥ K −
C(K )+ A(0)
‖v‖x

≥ K −
|C(K )+ A(0)|

R
.

Therefore D(R) ≥ K − |C(K )+ A(0)|/R, and limR→+∞ D(R) ≥ K . Since
K ≥ 0 is arbitrary, we indeed get limR→+∞ D(R)=+∞. �

Lemma 4.15. We have

A(2‖v‖x)+ 2C(0)≥ E(x, v)≥ ‖∂vL(x, v)‖x − A(1).

Therefore E(x, v) ≥ D(‖v‖x)− A(1), where D is the nondecreasing function
defined in Lemma 4.14.

Proof. We use again the convexity of L expressed by (4-11), with u = v to obtain

L(x, 2v)− L(x, v)≥ ∂vL(x, v)(v).

Subtracting L(x, v) from both sides, we get

L(x, 2v)− 2L(x, v)≥ ∂vL(x, v)(v)− L(x, v)= E(x, v).

Since L(x, v)≥−C(0) and L(x, 2v)≤ A(2‖v‖x), we obtain

E(x, v)≤ A(2‖v‖x)+ 2C(0).

Since E(x, v)= supu∈Tx M ∂vL(x, v)(u)− L(x, u), we have

E(x, v)≥ sup
‖u‖x≤1

∂vL(x, v)(u)− L(x, u).

This last inequality, together with L(x, u) ≤ A(1), valid for ‖u‖x ≤ 1, yields
E(x, v)≥ ‖∂vL(x, v)‖x − A(1). �

We now give the estimate on the speed of an extremal. It uses the preservation
of energy along a solution of the Euler–Lagrange equation.
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Proposition 4.16. Suppose L : TM→ R is a given Tonelli Lagrangian. There
exists a nondecreasing function η : [0,+∞[→[0,+∞[ such that for every curve
γ : [a, b] → M which satisfies the Euler–Lagrange equation, we have

sup
t∈[a,b]

‖γ̇ (t)‖γ (t)≤ η
(

inf
t∈[a,b]

‖γ̇ (t)‖γ (t)
)
.

Therefore
sup

t∈[a,b]
‖γ̇ (t)‖γ (t)≤ η[`g(γ )/(b− a)].

Proof. Consider the nondecreasing function D introduced in Lemma 4.14. Since
D(0)= 0, we can introduce a nondecreasing function ζ defined on [0,+∞[ by

ζ(ρ)= sup{R ≥ 0 | D(R)≤ ρ}.

Since D(R)→+∞ as R→+∞, the function ζ is finite everywhere. We also
have ζ(D(R))≥ R, since ζ(D(R))= sup{R′ | D(R′)≤ D(R)}.

Consider now a solution γ : [a, b] → M of the Euler–Lagrange equation.
Define smin, smax ∈ [a, b] by

‖γ̇ (smin)‖γ (smin)= inf
t∈[a,b]

‖γ̇ (t)‖γ (t),

‖γ̇ (smax)‖γ (smax)= sup
t∈[a,b]

‖γ̇ (t)‖γ (t).

By Lemma 4.15, we get

A(2‖γ̇ (smin)‖γ (smin))+ 2C(0)≥ E[γ (smin), γ̇ (smin)]

and
E[γ (smax), γ̇ (smax)] ≥ D

(
‖γ̇ (smax)‖γ (smax)

)
− A(1).

We have E[γ (smin), γ̇ (smin)] = E (γ (smax), γ̇ (smax)), by the conservation of
energy. Therefore

A(2‖γ̇ (smin)‖γ (smin))+ 2C(0)+ A(1)≥ D
(
‖γ̇ (smax)‖γ (smax)

)
.

Since ζ is nondecreasing and ζ(D(R))≥ R, we obtain

ζ
(

A(2‖γ̇ (smin)‖γ (smin))+ 2C(0)+ A(1)
)
≥ ‖γ̇ (smax)‖γ (smax).

To finish the proof of the first inequality of the proposition, it suffices to define
the nondecreasing everywhere finite function η : [0,+∞[→[0,+∞[ by η(R)=
ζ(A(2R)+ 2C(0)+ A(1)).

The second inequality follows from the nondecreasing character of η and

(b− a) min
s∈[a,b]

‖γ̇ (s)‖γ (s) ≤
∫ b

a
‖γ̇ (s)‖γ (s) ds = `g(γ ). �
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Corollary 4.17. If L : TM → R is a given Tonelli Lagrangian, we can find
nondecreasing functions η̄, η̃ : [0,+∞[ → [0,+∞[ such that any minimizer
γ : [a, b] → M satisfies

sup
t∈[a,b]

‖γ̇ (t)‖γ (t)≤ η̄
(

hb−a(γ (a), γ (b))
b− a

)
and

sup
t∈[a,b]

‖γ̇ (t)‖γ (t)≤ η̃
(

d(γ (a), γ (b))
b− a

)
.

Proof. By (4-9), we have

`g(γ )≤ hb−a(γ (a), γ (b))+C(1)(b− a).

Therefore, using the function η from Proposition 4.16, since a minimizer satisfies
the Euler–Lagrange equation, we obtain

sup
t∈[a,b]

‖γ̇ (t)‖γ (t)≤ η
(

C(1)+
hb−a(γ (a), γ (b))

b− a

)
.

This finishes the proof of the first inequality, with η̄(s)= η(s+C(1)).
To prove the second one, we recall, from (4-7) in Lemma 4.11, that

hb−a(γ (a), γ (b))
b− a

≤ A
(

d(γ (a), γ (b))
b− a

)
.

Therefore

sup
t∈[a,b]

‖γ̇ (t)‖γ (t)≤ η̄
(

A
(

d(γ (a), γ (b))
b− a

))
.

The function t 7→ η̃(t)= η̄ ◦ A(t) is finite everywhere and nondecreasing. �

For a subset S ⊂ M , recall that its diameter diam S, for the Riemannian
distance d on M , is defined by

diam S = sup{d(x, y) | x, y ∈ S}.

The next result, a straightforward consequence of Corollary 4.17, provides us
with the criterion for compactness of a set of minimizers.

Proposition 4.18. Suppose S⊂M , with diam S finite, and t0 > 0. Any minimizer
γ : [a, b] → M such that γ (a), γ (b) ∈ S and b− a ≥ t0 satisfies

sup
t∈[a,b]

‖γ̇ (t)‖γ (s) ≤ η̃(diam S/t0),

where η̃ is the nondecreasing everywhere finite function from Corollary 4.17.
Therefore, the set of minimizers γ : [a, b] → M such that γ (a), γ (b) ∈ S and
b− a ≥ t0 is equi-Lipschitz.
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An important property of ht(x, y), namely its local semiconcavity in (x, y),
is proved in [8, Theorem B.19, page 50]. It is not difficult, using the proof of
Theorem B.19 in [8], to show that H(t, x, y) is locally semiconcave in (t, x, y)
on ]0,+∞[×M ×M .

Proposition 4.19. The function H is locally semiconcave on ]0,+∞[×M ×M.
Moreover, for every compact subset C ⊂ M ×M , and every t0 > 0, the family of
functions ht : C→ R, t ≥ t0 is equi-semiconcave.

Another useful reference on semiconcavity and the Hamilton–Jacobi equation
is [4].

Example 4.20. If L0 : TM→ R is given by L0(x, v)= 1
2‖v‖

2
x , from part (1) of

Example 4.12, we obtain

H(t, x, y)=
d(x, y)2

2t
.

Therefore, from the previous proposition we obtain that d2 is locally semiconcave
on M × M . Moreover, since s 7→

√
s is C∞ on ]0,+∞[, we obtain that d is

locally semiconcave on M × M \1M , where 1M = {(x, x) | x ∈ M} is the
diagonal in M ×M .

Since H is locally semiconcave, it is locally Lipschitz. Therefore, it has a
derivative almost everywhere in ]0,+∞[×M ×M . We proceed to express this
derivative.

We need to use the notion of upper and lower differentials (called also upper
and lower derivatives)–see [2; 1; 4; 6; 7] for more details on this notion and its
relationship with viscosity solutions.

Notation 4.21. If w : N → R is a function on the manifold N and n ∈ N , the
set of upper-differentials (resp. lower-differentials) of w at N is denoted by
D+w(n)⊂ T ∗n N (resp. D−w(n)⊂ T ∗n N ).

Proposition 4.22. Since H is locally semiconcave on ]0,+∞[× M × M , for
every (t, x, y) ∈ ]0,+∞[×M ×M the set of superderivatives D+H(t, x, y)⊂
T ∗(t,x,y)(]0,+∞[×M ×M = R× T ∗x M × T ∗y M is not empty. If γ : [0, t] → M
is a minimizer, with γ (0)= x and γ (t)= y, we have

(−E(γ ),−∂vL(γ (0), γ̇ (0)), ∂vL(γ (t), γ̇ (t))) ∈ D+H(t, x, y),

where E(γ )= E(γ (s), γ̇ (s)), s ∈ [0, t] is the energy of the minimizer γ .
In particular, we have

−E(γ ) ∈ D+t H(t, x, y),

−∂vL(γ (0), γ̇ (0)) ∈ D+x H(t, x, y),

∂vL(γ (t), γ̇ (t)) ∈ D+y H(t, x, y).

(4-12)
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The proof that (−∂vL(γ (0), γ̇ (0)), ∂vL(γ (t), γ̇ (t)))∈ D+ht(x, y) is given in
[8, Theorem B.20, page 53]. We leave it to the reader to check the superderivative
in t .

Corollary 4.23. For (t, x, y)∈]0,+∞[×M×M , the function H is differentiable
at (t, x, y) ∈ ]0,+∞[× M × M if and only if there exists a unique minimizer
γ : [0, t] → M , with γ (0)= x and γ (t)= y.

Moreover, for each (t, x, y) ∈ ]0,+∞[×M ×M , the set of superderivatives
D+H(t, x, y) is the convex hull of the set of covectors(

−E(γ ),−∂vL(γ (0), γ̇ (0)), ∂vL(γ (t), γ̇ (t))
)
,

where γ : [0, t] → M is an arbitrary minimizer with γ (0)= x and γ (t)= y.

Proof. If H is differentiable at (t, x, y) ∈ ]0,+∞[×M×M and γ : [0, t]→ M
is a minimizer, with γ (0) = x and γ (t) = y, then, by Proposition 4.22 above
∂yH(t, x, y) = ∂vL(γ (t), γ̇ (t)), since L is strictly convex the speed γ̇ (t) is
completely determined by ∂yH(t, x, y). Therefore, since a minimizer satisfies the
Euler–Lagrange equation, the curve γ is completely determined by ∂yH(t, x, y).

This proves half of the first statement of the corollary. To prove the second
part, we recall that D+H(t, x, y) is the convex hull of ∂H(t, x, y) where any
point in ∂H(t, x, y) is a limit of a sequence of derivatives DH(ti , xi , yi ), where
(ti , xi , yi ) → (t, x, y) as i → ∞, and H is differentiable at each (ti , xi , yi ).
By Proposition 4.22, the derivative DH(ti , xi , yi ) is given by a minimizer γi :

[0, ti ] → M with γ (0) = xi and γ (ti ) = y. If η̃ is the nondecreasing finite
everywhere function obtained in Corollary 4.17, we have

‖γ̇i (s)‖γi (s) ≤ η̃

(
d(γ (0), γ (ti ))

ti

)
for all s ∈ [0, ti ].

Since (ti , xi , yi )→ (t, x, y), with t > 0, we have supi d(γ (0), γ (ti ))/ti <+∞.
Let C be the value of this supremum. We see that the norm of the speed
‖γ̇i (s)‖γi (s) is bounded by η̃(C), independently of i and s ∈ [0, ti ]. Extracting a
subsequence if necessary, we can assume that (γi (0), γ̇i (0)) converges to some
(x, v) with v ∈ Tx M . If we call γ the solution of the Euler–Lagrange equation
with (γ (0), γ̇ (0))= (x, v), we obtain that γ : [0, t] → M is a minimizer, with
γ (0)= x and γ (t)= y. But we have

DH(ti , xi , yi )=
(
−E(γi ),−∂vL(γi (0), γ̇i (0)), ∂vL(γi (t), γ̇(ti ))

)
,

which tends to
(
−E(γ ),−∂vL(γ (0), γ̇ (0)), ∂vL(γ (t), γ̇ (t))

)
. This proves the

last part of the corollary.
To finish the proof of the corollary, it suffices to show that if there is a unique

minimizer γ : [0, t] → M , with γ (0)= x and γ (t)= y, then H is differentiable
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at (t, x, y). By what we just proved, this uniqueness condition implies that
D+H(t, x, y) = ∂H(t, x, y) is reduced to one point. Since H is semiconcave,
this implies that H is differentiable at (t, x, y). �

Corollary 4.24. For (t, x, y) ∈ ]0,+∞[×M ×M , the following statements are
equivalent:

(i) The function H is differentiable at (t, x, y).

(ii) The partial derivative ∂xH(t, x, y) exists.

(iii) The partial derivative ∂yH(t, x, y) exists.

(iv) There exists a unique minimizer γ : [0, t]→M , with γ (0)= x and γ (t)= y.

If any one of these statements is true, we have

∂tH(t, x, y)=−E(γ ),

∂xH(t, x, y)=−∂vL(γ (0), γ̇ (0)),

∂yH(t, x, y)= ∂vL(γ (t), γ̇ (t))),

(4-13)

where γ : [0, t] → M is the unique minimizer with γ (0)= x and γ (t)= y.

Proof. Of course (i) implies (ii) and (iii). From Corollary 4.23, statements
(i) and (iv) are equivalent. To finish proving that (i), (ii), (iii) and (iv) are all
equivalent, it remains to show that (ii) or (iii) imply (iv). We will show that (ii)
implies (iv). In fact, if ∂xH(t, x, y) exists and γ : [0, t] → M is a minimizer
with γ (0) = x and γ (t) = y, by equality (4-12) of Proposition 4.22, we have
∂xH(t, x, y)=−∂vL(γ (0), γ̇ (0)). Therefore not only the position at time 0 of
γ is unique, but also its speed γ̇ (0) is unique. Since such a minimizer γ satisfies
Euler–Lagrange, we conclude that γ is unique.

The last part of the corollary follows from (4-12). �

Corollary 4.25. We can find a nondecreasing everywhere finite function θ :
[0,+∞[→[0,+∞[ such that at every point (t, x, y)∈]0,+∞[×M×M , where
the derivative DH(t, x, y) exists, it is bounded in norm by θ(H(t, x, y)/t).

Proof. We first estimate ∂xH(t, x, y). By Proposition 4.22, if γ : [0, t]→ M is a
minimizer, with γ (0)= x and γ (t)= y, we have ∂xH(t, x, y)= ∂vL(γ (0), γ̇ (0)).
Therefore by Lemma 4.15, we get

‖∂xH(t, x, y)‖x ≤ A(‖γ̇ (0)‖γ (0)+ 1)+C(0).

Combining with Corollary 4.17, since L(γ )=H(t, x, y), we obtain

‖∂xH(t, x, y)‖x ≤ A(η̄[H(t, x, y)/t] + 1)+C(0).

Therefore if we define the nondecreasing function θ1 : [0,+∞[→ [0,+∞[ by

θ1(R)=max (0, A(η̄[R] + 1)+C(0)) ,
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we obtain
‖∂xH(t, x, y)‖x ≤ θ1(H(t, x, y)/t).

In the same way, we obtain

‖∂yH(t, x, y)‖x ≤ θ1(H(t, x, y)/t).

To estimate ∂tH(t, x, y)=−E(γ (s), γ̇ (s)), we use Lemma 4.15 and Corollary
4.17:

|∂tH(t, x, y)| = |E(γ (0), γ̇ (0))|

≤max
(

A(1), A(2‖γ̇ (0)‖γ (0))+ 2C(0)
)

≤max
(

A(1), A(2η̄[H(t, x, y)/t])+ 2C(0)
)
.

Hence, if we define the nondecreasing function θ2 : [0,+∞[→ [0,+∞[ by

θ2(R)=max
(
0, A(1), A(2η̄[R])+ 2C(0))

)
,

we obtain
|∂tH(t, x, y)| ≤ θ2(H(t, x, y)/t).

Therefore

‖DH(t, x, y)‖2(t,x,y) ≤ 2θ1(H(t, x, y)/t)2+ θ2(H(t, x, y)/t)2.

Since the functions θ1 and θ2 are both finite everywhere, nonnegative and nonde-
creasing, so is the function θ defined by

θ(R)=
√

2θ1(R)2+ θ2(R)2.

This function satisfies the inequality ‖DH(t, x, y)‖(t,x,y) ≤ θ(H(t, x, y)/t). �

Proposition 4.26. If we fix y ∈ M , the function Hy : ]0,+∞[×M , defined by

Hy(t, x)=H(t, y, x)= ht(y, x),

is a viscosity solution of

∂tHy + H(y, ∂yHy)= 0.

Proof. From Proposition 4.19, we know that Hy is locally semiconcave. There-
fore, since the Hamiltonian H is convex in p, it suffices to check the evolutionary
Hamilton–Jacobi equation at every point (t, x) where Hy is differentiable. If
(t, x) is such a point and γ : [0, t]→ M is a minimizer with γ (0)= y, γ (t)= x ,
by Corollary 4.24, we have

∂xHy(t, x)= ∂xH(t, y, x)= ∂vL(γ (t), γ̇ (t))

∂tHy(t, x)= ∂tH(t, y, x)=−E(γ (t), γ̇ (t))=−H(γ (t), ∂vL(γ (t), γ̇ (t))).
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Therefore

∂tHy(t, x)+ H(y, ∂yHy(t, x))

=−H(γ (t), ∂vL(γ (t), γ̇ (t)))+ H(γ (t), ∂vL(γ (t), γ̇ (t)))

= 0. �

5. Action and viscosity (sub)solutions

Again in the sequel, we fix a Tonelli Hamiltonian H : T ∗M→R on the complete
Riemannian manifold (M, g) and we will denote by L : TM→ R its associated
Tonelli Lagrangian.

A first relation between action and viscosity subsolution is given in the next
Proposition 5.5. To state it, it is convenient to recall the notion of evolution
domination by a Lagrangian introduced in [7, Definition 14.2, page 1232].

To do it in an appropriate way, we first recall that for a curve γ : I → M ,
where I is an interval in R, the graph Graph(γ )⊂ R×M of γ is

Graph(γ )= {(t, γ (t)) | t ∈ I }.

Definition 5.1 (evolution domination by a Lagrangian). We will say that the
function U : S→ [−∞,+∞], where S ⊂ R×M is evolution-dominated by L
on S, if, for every absolutely continuous curve γ : [a, b] → M with a < b ∈ R

and Graph(γ )⊂ S whose action L(γ )=
∫ b

a L(γ (s), γ̇ (s)) ds is finite, we have

U (b, γ (b))≤U (a, γ (a))+
∫ b

a
L(γ (s), γ̇ (s)) ds. (5-1)

We will say that such a U : S→ [−∞,+∞] is strongly evolution-dominated
by L on S, if for every (t, x), (t ′, x ′) ∈ S, with t < t ′, it satisfies the stronger
condition

U (t ′, x ′)≤U (t, x)+ ht ′−t(x, x ′). (5-2)

Remark 5.2. (1) If U (a, γ (a)) is finite, the inequality (5-1) is equivalent to

U (b, γ (b))−U (a, γ (a))≤ L(γ )=

∫ b

a
L(γ (s), γ̇ (s)) dt.

(2) If S ⊂ R×M is of the form S = I ×M , where I is an interval in R, then
U : I×M→[−∞,+∞] is evolution-dominated by L if and only if it is strongly
evolution-dominated by L .

Proposition 5.3. Let U : S→ [−∞,+∞] be evolution-dominated by L on the
subset S ⊂ R×M.
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(1) Assume γ : [a, b] → M is an absolutely continuous function curve, with
Graph(γ )⊂ S, whose action is finite. If U (t0, γ (t0))<+∞ (resp. U (t0, γ (t0))>
−∞), then U (t, γ (t)) < +∞ for t ∈ [t0, b] (resp. U (t, γ (t)) > −∞ for t ∈
[a, t0]).

(2) Let S ⊂×R→ M be such that S = I ×W , where I is an interval in R and
W ⊂ M is open and connected. If for some (x0, t0) ∈ I ×M we have U (x0, t0) <
+∞ (resp. U (x0, t0) >−∞) then U <+∞ everywhere on (I ∩ ]t0,+∞[)×W
(resp. U >−∞ everywhere on (I ∩ ]−∞, t0[)×W ).

(3) If U : S → [−∞,+∞] is strongly evolution-dominated by L on S and,
for some (x0, t0) ∈ S, we have U (x0, t0) < +∞ (resp. U (x0, t0) > −∞) then
U < +∞ everywhere on S ∩ (]t0,+∞[× M) (resp. U > −∞ everywhere on
S ∩ (]−∞, t0[×M)).

Proof. For part (1) we note that the evolution domination of U by L on S, for
t ∈ ]t0, b], we get

U (t, γ (t))≤U (t0, γ (t0))+
∫ t0

t
L(γ (s), γ̇ (s)) ds.

Since
∫ t0

t L(γ (s), γ̇ (s)) ds is finite, the inequality U (t0, γ (t0)) < +∞ implies
U (t, γ (t)) <+∞ for t ∈ ]t0, b].

For part (2), since W is open and connected in the manifold M , given t > t0
and x ∈, we can find a smooth curve γ : [t0, t] → W with γ (t0) = x0 and
γ (t) = x . Since L is continuous and γ is C1, the action L(γ ) of γ is finite.
Moreover Graph(γ ) ⊂ I × W , the evolution domination condition implies
U (t, x)≤U (t0, x0)+ L(γ ) <+∞.

For part (3), it suffices to observe that, for (t, x) ∈ S ∩ (]t0,+∞[ × M),
we have |ht−t0(x0, x)| < +∞ and the strong L domination implies U (t, x) ≤
U (t0, x0)+ ht−t0(x0, x). �

Proposition 5.4. Suppose U :O→R is finite-valued and evolution-dominated by
L on the open subset O ⊂R×M. Then U is locally bounded on O. The function
U is locally strongly evolution-dominated by L; that is, for every (t0, x0) ∈ O
there exists a neighborhood V ⊂ O of (t0, x0) such that the restriction U |V is
strongly evolution-dominated by L on V .

Proof. Fix a compact neighborhood of the form [t0−2δ, t0+2δ]× B̄(x0, 3r)⊂ O
of (t0, x0) ∈ O . For any x ∈ B̄(x0, 2r) and t ∈ [t0− δ, t0+ δ], the minimizing
geodesic γx0,x : [t0− 2δ, t] → M joining x0 to x is contained in B̄(x0, 2r) and,
by Lemma 4.11, its action L(γx0,x) is less than(

t − (t0− 2δ)
)

A
(

d(x0, x)
t − (t0− 2δ)

)
≤ 3δA

(
2r
δ

)
.
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Since the function is evolution-dominated by L on O ⊃ [t0 − 2δ, t0 + 2δ] ×
B̄(x0, 3r), we obtain

U (t, x)≤U (t0− 2δ, x0)+ L(γx0,x)≤U (t0− 2δ, x0)+ 3δA(2r/δ).

This shows that U is bounded above on the compact neighborhood of (t0, x0)

given by [t0− δ, t0+ δ]× B̄(x0, 2r). In the same way the minimizing geodesic
γx,x0 : [t, t0+ 2δ] → M joining x to x0 is contained in B̄(x0, 2r) and has action
L(γx,x0) less than (t0+2δ− t)A(d(x, x0)/(t0+2δ− t))≤ 3δA(2r/δ). Therefore

U (t0+ 2δ, x0)≤U (t, x)+ 3δA(2r/δ),

which implies that U is bounded below on [t0− δ, t0+ δ]× B̄(x0, 2r). We then
set

K = 2 sup
{
|U (t, x)|

∣∣ (t, x) ∈ [t0− δ, t0+ δ]× B̄(x0, 2r)
}
<+∞.

Fix (t, x), (t ′, x ′) ∈ [t0− δ, t0+ δ]× B̄(x0, 2r), with t ′ < t .
We obviously get

U (t ′, x ′)−U (t, x)≤ K ≤ ht ′−t(x, x ′) for ht ′−t(x, x ′)≥ K . (5-3)

If ht ′−t(x, x ′)≤ K , pick a minimizer γ : [t, t ′] → M , with γ (t)= x, γ (t ′)= x ′

and ht ′−t(x, x ′)= L(γ )≤ K , since |t ′− t | ≤ 2δ, from Lemma 4.3, we obtain

`g(γ |[t, t ′])≤ ηK ,2δ(|t ′− t |),

where ηK ,2δ : [0,+∞[→ [0,+∞[ is a modulus of continuity; i.e., the function
ηK ,2δ is continuous at 0 and ηK ,2δ(0) = 0. Therefore, we can find ε > 0, with
ε < δ, such that ηK ,2δ(s)≤ r for all s ≤ 2ε. Hence, if we further assume that

(t, x), (t ′, x ′) ∈ [t0− ε, t0+ ε]× B̄(x0, r),

we obtain `g(γ |[t, t ′]) ≤ r and γ ([t, t ′]) ⊂ B̄(x0, 2r). Since the graph of γ is
contained in [t0− δ, t0+ δ]× B̄(x0, 2r)⊂ O and U is evolution-dominated by
L on O , we get

U (t ′, x ′)−U (t, x)≤ ht ′−t(x, x ′).

Together with (5-3), this shows that U is strongly evolution-dominated by L on
[t0− ε, t0+ ε]× B̄(x0, r). �

The reader will notice that the proof of the next proposition, giving the con-
nection between evolution domination and viscosity subsolution, is very similar
to the (standard) proof of Proposition 14.3 in [7], once we have Corollary 2.3.
We provide a complete proof for the reader’s convenience.
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Proposition 5.5. Let H be a Tonelli Hamiltonian on the complete Riemannian
manifold M. Suppose U : O→ R is a continuous function defined on the open
subset O. Then U is a viscosity subsolution of

∂tU + H(x, ∂xU )= 0, (5-4)

on O if and only if it is evolution-dominated by L on O.

Proof. Assume that U is a viscosity subsolution of (5-4). We prove that

U (b, γ (b))−U (a, γ (a))≤
∫ b

a
L(γ (s), γ̇ (s)) dt, (5-5)

holds for an absolutely continuous curve γ : [a, b] → M , with Graph(γ )⊂ O .
If U is smooth, the Fenchel inequality (3-2) between L and H yields

∂xU (t, x)(v)≤ L(x, v)+ H(x, ∂xU (t, x)) for all v ∈ Tx M .

Since the viscosity subsolution U of (5-4) is smooth on O , we have

∂tU (t, x)+ H (x, ∂xU (t, x))≤ 0 everywhere on O .

We combine the two inequalities to obtain

∂tU (t, x)+∂xU (t, x)(v)≤ L(x, v) for all (t, x, v) with (t, x) ∈ O, v ∈ Tx M .

Therefore, since Graph(γ )⊂ O and γ is absolutely continuous, we obtain

∂tU (t, γ (t))+ ∂xU (t, γ (t))(γ̇ (t))≤ L(γ (t), γ̇ (t)) for almost all s ∈ [a, b].

By integration, this proves the desired inequality.
For U just continuous, since γ ([a, b]) is a compact subset, we can use

Corollary 2.3 to reduce, by an approximation argument, this continuous case to
the smooth case.

Let us now assume that U satisfies (5-5) for every absolutely continuous curve
γ : [a, b] → M , with Graph(γ )⊂ O . To prove that U is a viscosity subsolution
of (5-4), consider a C1 function 8 : O→ R, with 8≥U and 8(t, x)=U (t, x),
for some (t, x) ∈ O . If v ∈ Tx M , let γ : [t − 1, t] → M be a smooth curve with
γ (t) = x and γ̇ (t) = v. Since γ is continuous and O is open for ε > 0 small
enough, we have Graph(γ |[t − ε, t])⊂ O . Using 8≥U and inequality (5-5),
we get

8(t, γ (t))−8(t − ε, γ (t − ε))≤U (t, γ (t))−U (t − ε, γ (t − ε))

≤

∫ t

t−ε
L(γ (s), γ̇ (s)) dt.
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Dividing by ε and letting ε→ 0 yields

∂t8(t, x)+ ∂x8(t, x)[v] ≤ L(x, v),

or equivalently

∂t8(t, x)+ ∂x8(t, x)[v] − L(x, v)≤ 0.

Taking the supremum over all v ∈ Tx M , we obtain

∂t8(t, x)+ H(x, ∂x8(t, x))≤ 0. �

6. A construction of viscosity solutions

Again in the sequel, we fix a Tonelli Hamiltonian H : T ∗M→R on the complete
Riemannian manifold (M, g) and we will denote by L : TM→ R its associated
Tonelli Lagrangian.

We will give a rather general way to obtain viscosity solutions on open subsets
of R×M of the Hamilton–Jacobi equation (1-1).

We start with a nonempty subset K ⊂ R×M . Besides being nonempty, we
do not impose any other property on K . We set

tK ,inf = inf{t | (t, x) ∈ K },

We consider a function U : K→[−∞,+∞[. We do not assume U continuous
or even measurable; the only restriction (for convenience) is that U does not take
the value +∞. See Remark 6.1(1), however. We can define the function Û on
]tK ,inf,+∞[×M→ [−∞,+∞[ by

Û (t, x)= inf{U (t̃, x̃)+ ht−t̃(x̃, x) | (t̃, x̃) ∈ K and t̃ ≤ t}. (6-1)

Note that this definition makes sense for t > tK ,inf, since for such a t the set
{t̃ | (t̃, x̃) ∈ K and t̃ ≤ t} is not empty.

Remark 6.1. (1) Suppose that we have a function U : K →[−∞,+∞], which
may assume the value +∞. If U is not identically +∞, define K f as

K f = {(t, x) |U (t, x) 6= +∞}.

Then K f is not empty and U f =U |K f never takes the value +∞. We can then
define Û f : ]tinf(K f ),+∞[×M→ [−∞,+∞[ as above by

Û f (t, x)= inf{U (t̃, x̃)+ ht−t̃(x̃, x) | (t̃, x̃) ∈ K f and t̃ ≤ t}.

If tK ,inf = tK f ,inf or equivalently

tK ,inf = inf{t | (t, x) ∈ K and U (t, x) 6= +∞}, (6-2)
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then we have

Û f (t, x)= Û (t, x)= inf{U (t̃, x̃)+ ht−t̃(x̃, x) | (t̃, x̃) ∈ K and t̃ ≤ t}.

(2) A special case of the construction above is the Lax–Oleinik evolution; see
Definition 8.2 and Remark 8.4(3) below.

Theorem 6.2. Let U : K → [−∞,+∞[ be a function defined on the subset
K ⊂ R×M.

Define the function Û on ]tinf,K ,+∞[×M→ [−∞,+∞[ by

Û (t, x)= inf{U (t̃, x̃)+ ht−t̃(x̃, x) | (t̃, x̃) ∈ K and t̃ ≤ t}, (6-3)

where tK ,inf= inf{t | (t, x)∈K }. This function Û , is strongly evolution-dominated
by L on ]tinf,K ,+∞[×M. Moreover, if Û (T, X) is finite for some X ∈ M and
some T ∈ ]tK ,inf,+∞[, then the function Û is

(i) finite everywhere on ]tK ,inf, T [×M ;

(ii) bounded on every compact subset of ]tinf,K , T [×M ;

(iii) continuous, locally semiconcave on ]tK ,inf, T [×M \ K̄ ;

(iv) a viscosity solution of the evolutionary Hamilton–Jacobi (1-1) on

]tK ,inf, T [×M \ K̄ .

Proof. To prove the strong evolution domination, note that for (t, x), (t ′, x ′) ∈
]tinf,K ,+∞[× M , with t ′ < t , if t̃ ≤ t ′, then t̃ ≤ t . Therefore, for (t̃, x̃) ∈ K ,
with t̃ ≤ t ′, from (6-1), we get

Û (t, x)≤U (t̃, x̃)+ ht−t̃(x̃, x)≤U (t̃, x̃)+ ht ′−t̃(x̃, x ′)+ ht−t ′(x ′, x).

Again from (6-1), taking the inf over all (t̃, x̃) ∈ K , with t̃ ≤ t ′, we obtain

Û (t, x)≤ Û (t ′, x ′)+ ht−t ′(x ′, x),

which means that Û is strongly evolution-dominated by L on ]tinf,K ,+∞[×M .
For the rest of the proof, we assume that Û (T, X) is finite for some X ∈ M

and T ∈ ]tK ,inf,+∞[.
Property (i) is a consequence of (ii). We now prove (ii). Let C be a nonempty

compact subset of ]tinf,K , T [ × M . By the strong L evolution domination on
]tK ,inf, T [×M , we have

Û (T, X)≤ Û (t, x)+ hT−t(x, X) for t ∈ ]tinf,K , T [.

Since (t, x) 7→ hT−t(x, X) is finite and continuous on ]t̃, T [×M , which implies
that it is bounded from above on the compact subset C⊂]t̃, T [×M . We conclude
that Û is bounded from below on C .
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It remains to show that Û is bounded from above on C . By compactness of C ,
we have tinf,C = inf{t | (t, x) ∈ C}> tinf,K . In particular, we can find (t̃, x̃) ∈ K
with tinf,C > t̃ ≥ tinf,K . From (6-1)

Û (t, x)≤U (t̃, x̃)+ ht−t̃(x̃, x) for t > t̃ .

Note that we are assuming that U does not take the value +∞, hence U (t̃, x̃) <
+∞. Since C is a compact set contained in ]t̃, T [×M and (t, x) 7→ ht−t̃(x̃, x)
is finite and continuous on ]t̃,+∞[× M , this function (t, x) 7→ ht−t̃(x̃, x) is
bounded on the compact set C . Hence Û (t, x) is bounded from above on C .

To prove (iii) and (iv), we first prove a lemma.

Lemma 6.3. Under the hypothesis of Theorem 6.2, suppose that Û (T, X) is
finite for some X ∈ M and T ∈ ]tK ,inf,+∞[. Assume that δ > 0 and (t0, x0) ∈

]tinf,K , T [×M are such that

[t0− δ, t0+ δ]× B̄(x0, δ)⊂ ]tinf,K , T [×M \ K̄ .

We can find ε > 0, with 2ε < δ, such that, for all (t, x)∈ [t0−ε, t0+ε]× B̄(x0, ε),
we have

Û (t, x)= inf{Û (t ′, x ′)+ ht−t ′(x ′, x) | (t ′, x ′) ∈ [t0− δ, t0− 2ε]× B̄(x0, δ)}.

Proof. For all ε > 0, with 2ε < δ, the inequality

Û (t, x)≤ inf{Û (t ′, x ′)+ ht−t ′(x ′, x) | (t ′, x ′) ∈ [t0− δ, t0− 2ε]× B̄(x0, δ)}

follows from the just established strong L domination of Û . Therefore, it
suffices to show that, we can find ε > 0, with 2ε < δ, such that, for all (t, x) ∈
[t0− ε, t0+ ε]× B̄(x0, ε) and all η ∈ ]0, 1], we have

inf{Û (t ′, x ′)+ht−t ′(x ′, x) | (t ′, x ′) ∈ [t0− δ, t0−2ε]× B̄(x0, δ)} ≤ Û (t, x)+η.

From the already established part (ii), the function Û is bounded on the
compact subset [t0− δ, t0+ δ]× B̄(x0, δ) of ]tinf,K , T [×M \ K̄ . Therefore

A = 1+ 2 sup{|Û (t, x)| | [t0− δ, t0+ δ]× B̄(x0, δ)}<+∞. (6-4)

Denote by ηA,2δ the continuity modulus provided by Lemma 4.3. Hence, for
every absolutely continuous curve γ : [a, b]→M , with b−a≤ 2δ and L(γ )≤ A,
we have

d(γ (t ′), γ (t))≤ `g(γ |[t, t ′])≤ ηA,2δ(|t ′− t |) for all t, t ′ ∈ [a, b]. (6-5)

Since ηA,2δ is a modulus of continuity, we can pick ε > 0, with 3ε < δ such that

ηA,2δ(α) < δ/3 for 0≤ α ≤ 3ε. (6-6)
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Fix now (t, x) ∈∈ [t0− ε, t0+ ε]× B̄(x0, ε) and η ∈ ]0, 1]. By the definition of
Û , (6-1), we can find (t̃, x̃) ∈ K such that

U (t̃, x̃)+ ht−t̃(x̃, x)≤ Û (t, x)+ η. (6-7)

Pick a minimizer γ : [t̃, t]→M , with γ (t̃)= x̃ and γ (t)= x . Since (t̃, γ (t̃))∈ K ,
which is disjoint from [t0 − δ, t0 + δ] × B̄(x0, δ), and (t, γ (t)) ∈ [t0 − ε, t0 +
ε]× B̄(x0, ε)⊂ ]t0− δ, t0+ δ[× B̊(x0, δ), we can find s ∈ ]t̃, t[ with (s, γ (s)) ∈
∂
(
[t0− δ, t0+ δ]× B̄(x0, δ)

)
. We have

t0− δ ≤ s ≤ t ≤ t0+ ε < t0+ δ and γ (s) ∈ B̄(x0, δ). (6-8)

Since γ is a minimizer and γ (t̃)= x̃, γ (t)= x , we have

ht−t̃(x̃, x)= ht−t̃(γ (t̃), γ (t))

= hs−t̃(γ (t̃), γ (s))+ ht−s(γ (s), γ (t))

= hs−t̃(x̃, γ (s))+ ht−s(γ (s), x),

which, by (6-7), implies

U (t̃, x̃)+ hs−t̃(x̃, γ (s))+ ht−s(γ (s), γ (t))≤ Û (t, x)+ η.

But, again by the definition (6-1) of Û , we have

Û (s, γ (s))≤U (t̃, x̃)+ hs−t̃(x̃, γ (s)).

Combining the last two inequalities, we obtain

Û (s, γ (s))+ ht−s(γ (s), γ (t))≤ Û (t, x)+ η, (6-9)

Claim We have s ≤ t0− 2ε.

From this claim, we can finish the proof of the Lemma.
In fact, combining the claim and (6-8), we have (s, γ (s)) ∈ [t0− δ, t0−2ε]×

B̄(x0, δ). Therefore, using (6-9), we obtain

inf
{
Û (t ′, x ′)+ ht−t ′(x ′, γ (t)) | (t ′, x ′) ∈ [t0− δ, t0− 2ε]× B̄(x0, δ)

}
≤ Û (s, γ (s))+ ht−s(γ (s), γ (t))

≤ Û (t, x)+ η.

It remains to prove the claim. Since (s, γ (s)) ∈ ∂
(
[t0− δ, t0+ δ]× B̄(x0, δ)

)
and s < t0 + δ, either s = t0 − δ or γ (s) ∈ ∂ B̄(x0, δ). In the first case, we
get s = t0 − δ < t − 2ε and the claim holds. In the second case, we have
d(x0, γ (s))= δ. But γ (t)= y ∈ B̄(x0, ε), hence, using 3ε < δ, we get

d(γ (t), γ (s))≥ δ− ε > δ/3.
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We now observe that (6-9) implies

L(γ |[s, t])= ht−s(γ (s), γ (t))≤ Û (t, x)−Û (s, γ (s))+η≤ A<+∞, (6-10)

since η≤ 1, both (t, x), (s, γ (s)) are in [t0− δ, t0+ δ]× B̄(x0, δ) and A is given
by (6-4). Furthermore, we have s < t and s, t ∈ [t0 − δ, t0 + δ], which yields
0< t − s ≤ 2δ. Therefore, by the property (6-5) defining ηA,2δ, we get

d(γ (t), γ (s))≤ ηA,2δ(t − s).

Since d(γ (t), γ (s)) > δ/3, it follows from by the definition of ε, (6-6), that
t − s > 3ε, which implies

s < t − 3ε ≤ (t0+ ε)− 3ε = t0− 2ε. �

End of the proof of Theorem 6.2. To prove (iii) and (iv), we fix (t0, x0) in the
open subset ]tK ,inf, T [×M \ K̄ , we then pick δ > 0 such that

[t0− δ, t0+ δ]× B̄(x0, δ)⊂ ]tinf,K , T [×M \ K̄ .

By Lemma 6.3, we can find ε > 0 such that

Û (t, x)= inf{Û (t ′, x ′)+ ht−t ′(x ′, x) | (t ′, x ′) ∈ [t0− δ, t0− 2ε]× B̄(x0, δ)},

(6-11)
for all (t, x) ∈ [t0− ε, t0+ ε]× B̄(x0, ε). The map

[(t, x), (t ′, x ′)] 7→ (t − t ′, x ′, x)

is smooth and takes values in ]0,+∞[×M ×M on the compact set(
[t0− ε, t0+ ε]× B̄(x0, ε)

)
×
(
[t0− δ, t0− 2ε]× B̄(x0, δ)

)
.

Since, by Proposition 4.19, the map (s, x ′, x) 7→ hs(x ′, x) is locally semicon-
cave on ]0,+∞[ × M × M , we conclude that [(t, x), (t ′, x ′)] 7→ ht−t ′(x ′, x)
is locally semiconcave on a neighborhood of

(
[t0− ε, t0+ ε]× B̄(x0, ε)

)
×(

[t0− δ, t0− 2ε]× B̄(x0, δ)
)
. Hence, since [t0−δ, t0−2ε]× B̄(x0, δ) is compact,

we conclude that the family of maps

(t, x) 7→ ht−t ′(x ′, x), (t ′, x ′) ∈ [t0− δ, t0− 2ε]× B̄(x0, δ)

is uniformly locally semiconcave on a neighborhood of the compact set [t0− ε,
t0 + ε] × B̄(x0, ε); see [8, Appendix A]. Therefore, so is the family (t, x) 7→
Û (t ′, x ′)+ ht−t ′(x ′, x), (t ′, x ′) ∈ [t0− δ, t0− 2ε]× B̄(x0, δ), which by equality
(6-11) implies that the finite function Û is locally semiconcave (and therefore
continuous) on a neighborhood [t0− δ, t0+ δ] × B̄(x0, r). See [8, Proposition
A.16, p. 34–35].



148 ALBERT FATHI

We then observe that by Proposition 4.26, since H does not depend on the
time t , for each (t ′, x ′) ∈ [t0 − δ, t0 − 2ε] × B̄(x0, δ), the function (t, x) 7→
Û (t ′, x ′) + ht−t ′(x ′, x) is a viscosity solution of the evolutionary Hamilton–
Jacobi (1-1) on ]t0− 2ε,+∞[×M . Since we already now that Û is finite and
continuous on a neighborhood of [t0−ε, t0+ε]× B̄(x0, ε), by Corollary 2.5 and
equality (6-11), we conclude that Û is a viscosity solution of the evolutionary
Hamilton–Jacobi (1-1) on a neighborhood of [t0− ε, t0+ ε]× B̄(x0, ε). �

Proposition 6.4. Assume C ⊂ M is a closed subset and a < b ∈ R. Suppose
U : [a, b] × C → R is continuous and strongly evolution-dominated by L on
[a, b]×C. Set K = {a}×C ∪[a, b]×∂C ⊂R×M. Call Û the function defined
on ]a,+∞[×M by (6-1) using the restriction U |K :

Û (t, x)= inf{U (t ′, x ′)+ht−t ′(x ′, x) | (t ′, x ′)∈ K , t ′< t} for t > a and x ∈ M.
(6-12)

The function ˆ̂U : [a, b]×C→ R defined by

ˆ̂U (t, x)=
{

U (a, x) for t = a and x ∈ C ,
Û (t, x) for t > a and x ∈ C ,

is continuous, strongly evolution-dominated by L and ≥U on [a, b] ×C , with
ˆ̂U |K = Û |K .

Moreover, this function ˆ̂U is a locally semiconcave viscosity solution of the
evolutionary on Hamilton–Jacobi (1-1) on ]a, b[× C̊.

Proof. We first note that the inequality Û ≥ U on ]a,+∞[×M follows from
the definition of Û and the strongly L evolution domination of U on [a, b]×C .
This obviously implies that ˆ̂U ≥U on [a, b]×C .

Since, by Theorem 6.2, the function Û is strongly L evolution-dominated on
]a,+∞[×M , we obtain that ˆ̂U is strongly L evolution-dominated on ]a, b]×C .
From the definition of Û , we conclude that ˆ̂U is strongly L evolution-dominated
on [a, b]×C .

Since by Theorem 6.2, the function Û is continuous on ]a,+∞[×M \ K̄ ⊃
]a, b]×C̊ . We have to show continuity at every point of K ={a}×C∪[a, b]×∂C .
Let us start with continuity at (a, x) with x ∈ C . Using that ˆ̂U ≥U is strongly
L evolution-dominated on [a, b]×C , we get

U (t, y)≤ ˆ̂U (t, y)≤ ˆ̂U (a, y)+ ht−a(y, y)≤U (a, y)+ (t − a)A(0).

By continuity of U , we obtain the continuity of ˆ̂U at every point of {a}×C . It
remains to show that ˆ̂U is continuous at (t0, x0), with a < t0 ≤ b and x0 ∈ ∂C .
We will show at the same time that ˆ̂U (t0, x0)= Û (t0, x0). Fix t ′ ∈ ]a, t0[. Since
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ˆ̂U = Û ≥U on ]a, b]×C , for all (t, x) ∈ ]t ′, b]×C , we have

U (t, x)≤ ˆ̂U (t, x)= Û (t, x)≤U (t ′, x0)+ ht−t ′(x0, x), (6-13)

where the last inequality follows from the definition of Û , since t ′ < t and
(t ′, x0) ∈ ]a, t0[× ∂C ⊂ K . If we apply this inequality with (t, x)= (t0, x0), we
obtain

U (t0, x0)≤
ˆ̂U (t0, x0)≤U (t ′, x0)+ ht0−t ′(x0, x0)≤U (t ′, x0)+ A(0)(t0− t ′).

If we let t ′ → t0, by continuity of U , this last inequality yields ˆ̂U (t0, x0) =

U (t0, x0).
If, in equality (6-13), we keep t ′ ∈ ]a, t0[ fixed and we let (t, x)→ (t0, x0),

by continuity of U and h, we obtain

U (t0, x0)≤ lim inf
(t,x)→(t0,x0)

ˆ̂U (t, x)≤ lim sup
(t,x)→(t0,x0)

ˆ̂U (t, x)

≤U (t ′, x0)+ ht−t ′(x0, x0)≤U (t ′, x0)+ A(0)(t − t ′).

Letting again t ′ → t0, we conclude that lim(t,x)→(t0,x0)
ˆ̂U (t, x) = U (t0, x0) =

ˆ̂U (t0, x0). Therefore we finished both the proof of the continuity of ˆ̂U = Û , and
the equality ˆ̂U |K =U |K .

The fact that ˆ̂U is a locally semiconcave viscosity solution of the evolutionary
Hamilton–Jacobi equation (1-1) on ]a, b[× C̊ follows also from Theorem 6.2,
since ˆ̂U = Û on ]a, b[× C̊ . �

Theorem 6.5. Suppose O ⊂ R × M is an open subset. If U : O → R is a
continuous viscosity solution of the evolutionary Hamilton–Jacobi equation (1-1)
on O , then it is locally semiconcave.

Moreover, for every (t, x) ∈ O , we can find (t ′, x ′) ∈ O , with t ′ < t , such that

U (t, x)=U (t ′, x ′)+ ht−t ′(x ′, x).

Proof. Fix (t0, x0)∈O . Since U is a viscosity solution on O , from Proposition 5.5
we obtain that U is dominated by L on O . By Proposition 5.4, we can find a
neighborhood V of (t0, x0) in O on which U is strongly dominated by L . Without
loss of generality, we can assume that V = [t0− η, t0+ η]× B̄(x0, η)⊂ O , for
some η > 0. We set K= {t0− η}× B̄(x0, η)∪ [t0− η, t0+ η]× ∂ B̄(x0, η).

By Proposition 6.4, the function ˆ̂U : [t0− η, t0+ η]× B̄(x0, r)→ R defined
by

ˆ̂U (t, x)=


U (t, x) if t = a and x ∈ B̄(x0, η),

inf{U (t ′, x ′)+ ht−t ′(x ′, x) | (t ′, x ′) ∈ K, t ′ < t}
if t > a and x ∈ B̄(x0, η),



150 ALBERT FATHI

is continuous, is a locally semiconcave viscosity solution of the evolutionary
on Hamilton–Jacobi (1-1) on ]t0 − η, t0 + η[ × B̊(x0, r) and satisfies ˆ̂U = U
on K = {t0 − η} × B̄(x0, η) ∪ [t0 − η, t0 + η] × ∂ B̄(x0, η). Since ˆ̂U = U on
K={t0−η}× B̄(x0, η)∪[t0−η, t0+η]×∂ B̄(x0, η), Corollary 2.7 of the maximum
principle implies ˆ̂U =U on [t0− η, t0+ η]× B̄(x0, r). But, by Proposition 6.4,
the function ˆ̂U is locally semiconcave on ]t0−η, t0+η[× B̊(x0, η). This proves
the first part of the theorem.

To prove the remaining part of the theorem, we use the equality ˆ̂U = U on
[t0− η, t0+ η] × B̄(x0, r) and the definition of ˆ̂U to find a sequence (t ′n, x ′n) ∈
K= {t0− η}× B̄(x0, η)∪ [t0− η, t0+ η]× ∂ B̄(x0, η), with t ′n < t0, such that

U (t0, x0)≤U (t ′n, x ′n)+ ht0−t ′n (x
′

n, x0)→U (t0, x0) as n→+∞. (6-14)

Since K is compact, extracting if necessary, we can assume that (t ′n, x ′n) →
(t ′, x ′) ∈ K and

U (t ′n, x ′n)+ ht0−t ′n (x
′

n, x0)≤U (t0, x0)+ 1.

By continuity of U and convergence of (t ′n, x ′n), we have

m = supn U (t0, x0)−U (t ′n, x ′n)+ 1<+∞.

Therefore

ht−t ′n (x
′

n, x)≤ m for all n.

Using the left side of the inequality (4-7) in Lemma 4.11, we obtain

−C(K )(t0− t ′n)+ K d(x0, x ′n)≤ ht0−t ′n (x
′

n, x0)≤ m for all n and all K ≥ 0.

Taking the limit as n→+∞ and reshuffling, we get

K d(x0, x ′)≤ C(K )(t0− t ′)+m for all K ≥ 0.

We now claim that t ′ < t0. We already know that t ′ ≤ t0, since t ′n < t0, for all n.
Suppose then by contradiction that t ′ = t0. The inequality above then implies

K d(x0, x ′)≤ m for all K ≥ 0.

From m < +∞, we conclude x0 = x ′. Hence (t ′, x ′) = (t0, x0). This is a
contradiction, since (t ′, x ′)∈K={t0−η}× B̄(x0, η)∪[t0−η, t0+η]×∂ B̄(x0, η).
Now that we know that t ′ < t0, using the continuity of (s, x, y) 7→ hs(x, y) for
(s, x, y) ∈]0,+∞[×M ×M we can pass to the limit in (6-14) to obtain

U (t0, x0)=U (t ′, x ′)+ ht0−t ′(x ′, x0). �
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7. Calibrated curves, backward characteristics and differentiability

We again fix a Tonelli Hamiltonian H : T ∗M→ R on the complete Riemannian
manifold (M, g) and denote its associated Tonelli Lagrangian by L : TM→ R.

Definition 7.1 (calibrated curve). Let U : S→[−∞,+∞] be a function defined
on the subset S ⊂ R× M . A curve γ : [a, b] → M is said to be U -calibrated
for the Lagrangian L if it is an absolutely continuous curve, with Graph(γ )⊂ S,
whose action L(γ )=

∫ b
a L(γ (s), γ̇ (s)) ds is finite and

U (b, γ (b))=U (a, γ (a))+ L(γ )=U (a, γ (a))+
∫ b

a
L(γ (s), γ̇ (s)) ds.

Remark 7.2. (1) For such a U -calibrated curve γ : [a, b]→ M , since its action
is finite, if either U (a, γ (a)) or U (b, γ (b)) is infinite they are both equal and
infinite.

(2) It is not difficult to check that the property of being calibrated is stable
by concatenations of curves; i.e., if γ1 : [a, b] → M and γ2 : [b, c] → M are
U -calibrated, with γ1(b) = γ2(b), then so is the concatenation γ = γ1 ∗ γ2 :

[a, c] → M , defined by

γ (t)=
{
γ1(t) for t ∈ [a, b],
γ2(t) for t ∈ [b, c].

(3) More generally, a curve γ : [a, b] → M is said to be piecewise calibrated
if we can find a finite sequence a = t0 < t1 < · · · < t` = b such that each
restriction γ |[ti , ti+1], i = 0, . . . , `− 1 is U -calibrated. Of course, by part (2),
any piecewise U -calibrated is U -calibrated.

(4) Suppose u : O→ R is a function defined on the subset O ⊂ M and c ∈ R.
If we define U : R× O→ R by

U (t, x)= u(x)− ct,

it not difficult to see that the absolutely continuous curve γ : [a, b] → M is
U -calibrated if and only if γ ([a, b])⊂ O and

u(γ (b))− u(γ (b)=
∫ b

a
L(γ (s), γ̇ (s))+ c ds;

i.e., the curve γ is (u, L , c)-calibrated as defined, for example, in [6].

Definition 7.3 (local backward characteristic). Let U : S→ [−∞,+∞] be a
function defined on the subset S ⊂ R×M . A local backward U -characteristic
ending at (t, x) ∈ S is a U -calibrated curve γ : [t − ε, t] → M , with ε > 0 and
γ (t)= x .
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More generally, a curve γ : [a, t] → M is called a local backward U -
characteristic if it is a local backward U -characteristic ending at (t, γ (t)) ∈ S.

Theorem 6.5 obviously implies the following one:

Theorem 7.4. Suppose O ⊂ ]0,+∞[×M is an open subset. If U : O→ R is a
continuous viscosity solution of the evolutionary Hamilton–Jacobi equation (1-1)
on O , then for every (t, x) ∈ O , we can find a local backward U-characteristic
ending at (t, x).

In fact, the notion of U -calibrated curve, or of local backward U -characteristic
is useful when U is evolution-dominated as can be seen from Proposition 7.5
below, whose proof is quite similar to the case of stationary solutions of the
Hamilton–Jacobi equation. Again the proof is given for the reader convenience.
Notice that no continuity assumption has to be made on the function U which is
evolution-dominated by L . Note also that by Proposition 5.5, we can apply this
proposition when U : O→ R is continuous and a viscosity subsolution of the
evolutionary Hamilton–Jacobi equation (1-1) on the open subset O ⊂ R×M .

Proposition 7.5. Suppose that the function U : S→ [−∞,+∞] is evolution-
dominated by L on S ⊂ R×M and γ : [a, b] → M is a U-calibrated curve.

(1) One of the following statements holds.
• U (t, γ (t))=+∞ for every t ∈ [a, b].
• U (t, γ (t))=−∞ for every t ∈ [a, b].
• |U (t, γ (t))|<+∞ for every t ∈ [a, b].

(2) For any subinterval [a′, b′] ⊂ [a, b], the restriction γ |[a′, b′] is also U-
calibrated.

(3) If S is an open subset of R×M and |U (t, γ (t))| is not identically +∞, the
curve γ : [a, b] → M is a local minimizer of the action and, therefore, an
extremal of L.

Proof. Note that the action of γ is finite (as required in Definition 7.1). To
prove (1), assume for example U (t0, γ (t0)) = +∞ for some t0 ∈ [a, b], then
by Proposition 5.3, we must have U (t, γ (t))=+∞, for t ∈ [a, t0[. Therefore
U (a, γ (a))=+∞. Since γ is U -calibrated, we also obtain U (b, γ (b))=+∞.
Hence U (t, γ (t))=+∞ everywhere on [a, b[, again by Proposition 5.3. The case
U (t0, γ (t0))=−∞ for some t0 ∈ [a, b] is similar and leads to U (t, γ (t))=−∞
everywhere on [a, b].

To prove (2) we first observe that, since L is bounded from below, the action
L(γ |[a′, b′]) is also finite for any subinterval [a′, b′] ⊂ [a, b]. In the case where
U is identically either +∞ or −∞, this implies the U -calibration of γ |[a′, b′],
for [a′, b′] ⊂ [a, b]. By 1), it remains to consider the case |U (t, γ (t))|<+∞,
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for every t ∈ [a, b]. In that case, from the Definition 5.1 of evolution domination,
we obtain

U (a′, γ (a′))−U (a, γ (a))≤
∫ a′

a
L(γ (s), γ̇ (s)) dt,

U (b′, γ (b′))−U (a′, γ (a′))≤
∫ b′

a′
L(γ (s), γ̇ (s)) dt,

U (b, γ (b))−U (b′, γ (b′))≤
∫ b

b′
L(γ (s), γ̇ (s)) dt,

But if we add the three inequalities above we obtain

U (b, γ (b)−U (a, γ (a))≤
∫ b

a
L(γ (s), γ̇ (s)) dt,

which is an equality. Therefore all three inequalities are equalities.
To prove (3), we observe that, when S is an open subset of R×M , any curve

δ : [a, b] → M close enough to γ (in the C0 topology) has a graph Graph(δ)
which is also included in S. If δ(a)= γ (a) and δ(b)= γ (b), the U -calibration
of γ and the Definition 5.1 of evolution domination yield

U (b, γ (b))−U (a, γ (a))≤
∫ b

a
L(δ(s), δ̇(s)) dt,

for any absolutely continuous curve δ : [a, b] → M , with δ(a) = γ (a) and
δ(b)= γ (b). But, since γ is U -calibrated, by the definition of calibration, the left
side of the inequality is

∫ b
a L(γ (s), γ̇ (s)) dt . This proves the local minimization

property. By Tonelli’s theorem such a local minimizer is as smooth as L (or H )
and is an extremal of L . �

Theorem 7.6. Suppose O ⊂ R × M is an open subset. If U : O → R is a
continuous viscosity solution of the evolutionary on Hamilton–Jacobi (1-1) on O ,
then for every (t, x)∈ O , we can find a U-characteristic extremal γ : ]a, t]→ M
ending at (t, x) and such that either a = −∞ or γ extends to a continuous
extremal γ : [a, t] → M , with (a, γ (a)) ∈ ∂O.

By Theorem 6.5, we can find a U -calibrated curve γ : [t − ε, t] → O , with
γ (t)= x . But this curve γ is an extremal for the Lagrangian L . Therefore, we
can extend γ to an extremal γ : ]−∞,+∞[→ M . Hence Theorem 7.6 follows
from the next lemma.

Lemma 7.7. Suppose O ⊂ ]0,+∞[×M is an open subset. If U : O→ R is a
continuous viscosity solution of the evolutionary Hamilton–Jacobi equation (1-1)
on O. Assume that the curve γ : ]−∞,+∞[→ M is an extremal for L that is
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U-calibrated on an interval [t − ε, t] for some ε > 0, then γ is U-calibrated on
the maximal interval ]a, t] such that Graph(γ |]a, t])⊂ O.

Proof. Consider the maximal interval ]a, t] such that Graph(γ |]a, t]) ⊂ O .
Define b as the infimum of the s ∈ ]a, t] such that γ : [s, t] is U -calibrated.
We have b ≤ t − ε. Suppose that b > a, then (b, γ (b)) ∈ O , and by continuity
of U , the restriction γ |[b, t] is U -calibrated. By Theorem 7.4, there exists
a U -calibrated curve γ̃ : [b − η, b] → M , with η > 0 and γ̃ (b) = γ (b). By
Remark 7.2(2), the concatenation γ̃ ?γ : [b−η, t]→ M is also U -calibrated. By
Proposition 7.5(3), this U -calibrated curve γ̃ ? γ is also an extremal for L . Since
γ̃ ? γ = γ on [t − ε, t], with t − ε < t , we must have γ̃ ? γ = γ on [b− η, t].
This implies that γ |[b− η, t] is U -calibrated, which contradicts the definition
of b. �

Theorem 7.8 (Lax–Oleinik). A continuous function U : [0, T [ ×M→ R that
is a viscosity solution of the evolutionary Hamilton–Jacobi equation (1-1) on
]0, T [×M satisfies the Lax–Oleinik formula

U (t, x)= inf
y∈M

U (0, y)+ ht(y, x),

for all t > 0, x ∈ M. The infimum is achieved for all t > 0, x ∈ M.

Proof. Since U is a viscosity solution of the evolutionary Hamilton–Jacobi
equation (1-1) on ]0, T [×M , by Proposition 5.5, it is evolution-dominated by
L on ]0, T [×M . From Remark 5.2(2), it follows that U is strongly evolution-
dominated by L on ]0, T [ ×M . By continuity of U on [0, T [ ×M , we easily
obtain that U is strongly evolution-dominated by L on [0, T [×M . Therefore,
we have

U (t, x)≤ inf
y∈M

U (0, y)+ ht(y, x),

for all t > 0, x ∈ M . To finish the proof of the first part of the theorem, it
suffices to show that, for a given (t, x) ∈ ]0, T [×M , there exists a U -calibrated
curve γ : [0, t] → M , with γ (t) = x . Since, for a curve γ : ]a, b] → M such
that Graph(γ )⊂ ]0, T [ ×M , we must have a ≥ 0 and b < T , by Theorem 7.6
applied to the open set ]0, T [×M , we can find an extremal γ : [a, t] → M that
is U -calibrated on ]a, t] with γ (t)= x and (a, γ (a)) ∈ ∂]0, T [×M = {0}×M .
Hence a = 0, and the extremal γ : [0, t] → M is U calibrated by continuity
of U . �

Corollary 7.9. Suppose U, V : [0, T [ ×M→ R are two continuous functions
that are viscosity solutions of the evolutionary Hamilton–Jacobi equation (1-1)
on ]0, T [×M. If U ≤ V on {0}×M , then U ≤ V everywhere on [0, T [×M.

In particular, if U = V on {0}×M , then U = V everywhere on [0, T [×M.
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8. The Lax–Oleinik semigroup and the Lax–Oleinik evolution

Definition 8.1. If u : M → [−∞,+∞] is a function and t > 0, the function
T−t u : M→ [−∞,+∞] is defined by

T−t u(x)= inf
y∈M

u(y)+ ht(y, x).

We also set T−0 u = u. The (negative) Lax–Oleinik semigroup is T−t , t ≥ 0.

Definition 8.2 (Lax–Oleinik evolution). If u : M→[−∞,+∞], we will denote
by û : [0,+∞[×M→ [−∞,+∞] the function defined, for t > 0, by

û(t, x)= T−t u(x)= inf
y∈M

u(y)+ ht(y, x)

and by û(0, x)= u(x).
The function û is called the (negative) Lax–Oleinik evolution of u. We note

that û <+∞ on ]0,+∞[×M , if u is not identically +∞.

Proposition 8.3. For any function u : M→ [−∞,+∞], its Lax–Oleinik evolu-
tion û : [0,+∞[×M→ [−∞,+∞] is strongly evolution-dominated by L on
[0,+∞[×M.

Proof. This follows easily from the definition of û and Proposition 4.13(1). �

Remark 8.4. (1) If u is not identically +∞, then û(t, x) < +∞ for all t in
]0,+∞[ and x in M .

(2) If u(x0) = −∞ for some x0 ∈ M , then û(t, x) = −∞ for all t in ]0,+∞[
and x in M .

(3) If u is not identically +∞, then the set Fu = {x ∈ M | u(x) 6= +∞} is not
empty. If we set K ={0}×Fu and define U :K→[−∞,+∞[ by U (0, x)=u(x),
for all (0, x) ∈ K , then tK ,inf = 0 and Û = û on ]0,+∞[×M , where Û is given
(see (6-1)) by

Û (t, x)= inf{U (t̃, x̃)+ ht−t̃(x̃, x) | (t̃, x̃) ∈ K and t̃ ≤ t}

= inf{u(x̃)+ ht(x̃, x) | x̃ ∈ Fu}.

In particular, all the results given in Section 6 for functions of the type Û hold
for Lax–Oleinik evolutions.

Theorem 8.5. Assume u : M → [−∞,+∞] is such that û(T, X) is finite for
some (T, X)∈ ]0,+∞[×M. Then û is finite, locally semiconcave and a viscosity
solution of the evolutionary Hamilton–Jacobi equation

∂t û+ H(x, ∂x û)= 0,

on ]0, T [×M.
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Proof. As explained above, this now follows from Theorem 6.2. �

Examples 8.6. We give some examples of Lax–Oleinik evolution.

(1) For any Tonelli Lagrangian L : TM→ R, we know that ht(y, x)≥−C(0)t .
Therefore û(t, x)≥ infM u−C(0)t . This implies that û is finite everywhere, on
]0,+∞[× M , for any function u : M →]−∞,+∞[ which is bounded from
below and not identically equal to +∞.

(2) For any Tonelli Lagrangian L : TM→ R, if M is compact, we know that
−C(0)t≤ht(y, x)≤ A(diam M/t). Since, for any function u :M→[−∞,+∞],
we have

û(t, x)= inf
y∈M

u(y)+ ht(y, x),

we obtain
−C(0)t + inf

M
u ≤ û(t, x)≤ A(diam M/t)+ inf

M
u.

Hence, for a compact manifold û is finite everywhere on ]0,+∞[×M if and
only if u is bounded from below and not identically +∞. Therefore, for compact
M , the class of functions u for which û is finite on ]0,+∞[×M does not depend
on M .

(3) If A ⊂ M , we define 4A : M→ {0,+∞}

4A(x)=
{

0 if x ∈ A,
∞ otherwise.

Note that 4M is identically 0, and 4∅ is identically +∞. Moreover, the function
4A is not identically +∞ if A 6=∅.

For a given Tonelli Lagrangian L : TM → R, and A 6= ∅, we obtain, from
(1), that 4̂A is finite everywhere on ]0,+∞[×M , with

4̂A(t, x)= inf
y∈A

ht(y, x).

(4) If M =Rn with the Euclidean metric, we consider the Lagrangian L0(x, v)=
1
2‖v‖

2, where ‖·‖ is the usual Euclidean metric. We know from Example 4.12(1)
that ht(x, y)= ‖y− x‖2/2t . For α, β > 0, consider the function uα,β : M→ R

defined by
uα,β(x)=−α‖x‖β .

Its Lax–Oleinik evolution is given by

ûα,β(t, x)= inf
y∈Rn
−α‖y‖β +

‖y− x‖2

2t

=
‖x‖2

2t
+ inf

y∈Rn

(
‖y‖2

2t
−α‖y‖β +

〈y, x〉
t

)
.
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Therefore

(i) If β > 2 then ûα,β is identically −∞.

(ii) If β < 2 then ûα,β is finite everywhere.

(iii) If β = 2, for (t, x) ∈ M , we have

ûα,2(t, x) is


finite if t < α/2,

0 if (t, x)= (α/2, 0),

−∞ otherwise.

(5) If M=Rn with the Euclidean metric, for a real number p≥4, we consider the
Lagrangian L p(x, v)= 1

2‖v‖
2
+

1
p‖v‖

p, where ‖·‖ is the usual Euclidean metric.
We know from Example 4.12(2) that ht(x, y)= ‖y− x‖2/2t+‖y− x‖p/pt p−1.
Therefore if, for β > 0, we consider the function

uβ(x)=−‖x‖β .

In this case, we have

ûβ(t, x)= inf
y∈M
−‖y‖β +‖y− x‖2/2t +‖y− x‖p/pt p−1

;

hence ûβ is finite everywhere if β < p and is equal −∞ everywhere for β > p.
It follows that, for a noncompact manifold M , the class of functions u for

which û is finite depends on the Lagrangian.

Some of the well-known properties of the Lax–Oleinik semigroup (T−t )t≥0

(see [6]) are given in the following proposition.

Proposition 8.7. (1) (semigroup property) For every t, t ≥ 0, we have T−t+t ′ =

T−t ◦ T−t ′ . In particular, for every t, t ′ ≥ 0 and x, y ∈ M ,

T−t u(x)≤ u(x)+ ht(x, x)≤ u(x)+ A(0)t,

T−t+t ′u(x)≤ T−t ′ u(y)+ ht(y, x),

T−t+t ′u(x)≤ T−t ′ u(x)+ ht(x, x)≤ T−t ′ u(x)+ A(0)t.

(2) For every u : M → [−∞,+∞], and every c ∈ R, we have T−t (u + c) =
T−t (u)+ c, for every t ≥ 0.

(3) For every u, v : M→ [−∞,+∞] with u ≤ v everywhere, we have T−t u ≤
T−t v, for every t ≥ 0.

(4) For every u, v : M→ R, we have

−‖u− v‖∞+ T−t v ≤ T−t u ≤ T−t v+‖u− v‖∞,

for every t ≥ 0.
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Here is a further observation on the Lax–Oleinik evolution.

Definition 8.8 (lower semicontinuous regularization). If u : M→ [−∞,+∞],
we define its lower semicontinuous regularization u− : M→ [−∞,+∞] by

u−(x)= lim inf
y→x

u(y)= sup
V

inf
y∈V

u(y),

where the supremum is taken over all neighborhoods V of x . The function u− is
the largest lower semicontinuous function which is ≤ u.

Proposition 8.9. For every function u : M→ [−∞,+∞], we have û = û− on
]0,+∞[×M.

Proof. Since u− ≤ u, we have û− ≤ û. To prove the converse inequality, it
suffices to show that for (t, x, y) ∈ ]0,+∞[×M ×M , we have

u−(y)+ ht(y, x)≥ inf
z∈M

u(z)+ ht(z, x)= û(x).

By definition of u−(y), we can find a sequence yn→ y such that u(yn)→ u−(y).
Since ht( · , x) is continuous we obtain

u−(y)+ ht(y, x)= lim
n→+∞

u(yn)+ ht(yn, x)≥ inf
z∈M

u(z)+ ht(z, x). �

We will now consider the Lax–Oleinik evolution of Lipschitz functions.
We start with a lemma connecting the Lipschitz property with the action and

the Lax–Oleinik semigroup.

Lemma 8.10. (1) For a function u :M→R, and a constant c∈R, the following
two conditions are equivalent:
• u(x)− u(y)≤ hs(y, x)+ cs, for all s > 0 and x, y ∈ M.
• u ≤ T−s u+ cs, for all s ≥ 0.

(2) If a function u : M → R, for some c ∈ M satisfies u ≤ T−s u + cs, for all
s ≥ 0, then so does T−t u for all t ≥ 0.

(3) If the function u : M → R is globally Lipschitz function, with Lipschitz
constant ≤ λ, then u ≤ T−t u + C(λ)t , for all t ≥ 0, where C( · ) is the
function defined in (3-3).

(4) If , for some c ∈ R, the function v : M→ R satisfies v ≤ T−t v+ ct , for all
t > 0 and x, y ∈ M , then v is Lipschitz, with Lipschitz constant ≤ A(1)+ c,
where A( · ) is the function defined in (3-4)

Proof. To prove (1), we note that the condition u(x)− u(y) ≤ hs(y, x)+ cs is
equivalent to u(x)≤ u(y)+ hs(y, x)+ cs. Therefore the two conditions in part
(1) are equivalent since T−s u(x)= infy∈M u(y)+ hs(y, x).

Part (2) follows easily from parts (1), (2) and (3) of Proposition 8.7.
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To prove (3), using (4-9), we note that

u(x)− u(y)≤ λd(x, y)≤ hs(y, x)+C(λ)s.

To prove (4), we note that hd(x,y)(x, y)≤ A(1)d(x, y) by Lemma 4.11. Hence

v(y)− v(x)≤ hd(x,y)(x, y)+ cd(x, y)≤ [A(1)+ c]d(x, y).

By symmetry, we conclude that the Lipschitz constant of v is ≤ A(1)+ c. �

We recall that a function u : M → R is said to be evolution-dominated by
L + c if it satisfies the equivalent properties of Lemma 8.10(1).

Proposition 8.11. The Lax–Oleinik evolution û of any (globally) Lipschitz func-
tion u : M→ R is finite everywhere on [0,+∞[×M.

Moreover, for every constant λ ∈ [0,+∞[, we can find a constant 3 such that
û has Lipschitz constant ≤3 as soon as u has Lipschitz constant ≤ λ.

Proof. Assume that u : M→ R has Lipschitz constant ≤ λ. By Lemma 8.10(3)
we have

u(x)≤ Tsu(x)+C(λ)s,

for all s ≥ 0. This implies that û is finite everywhere.
Lemma 8.10(2) yields

T−t u(x)≤ T−s T−t u(x)+C(λ)s, (8-1)

for all t, s ∈ [0,+∞[, and x ∈M . Therefore, by Lemma 8.10(4), the Lax–Oleinik
evolution has a Lipschitz constant in x which is ≤ A(1)+C(λ).

To compute the Lipschitz constant in t , we note that, by the semigroup property,
we have

T−t+su(x)≤ T−t u(x)+ hs(x, x)≤ T−t u(x)+ A(0)s.

Combining this last equality with (8-1), we get

−C(λ)s ≤ T−t+su(x)− T−t u(x)≤ A(0)s.

It follows that the Lipschitz constant in t of û is ≤ max
(
|A(0)|, |C(λ)|

)
. This

finishes the proof of the existence of the constant 3. �

We next extend the results obtained above to uniformly continuous function.

Corollary 8.12. The Lax–Oleinik evolution û : [0,+∞[×M→R of a uniformly
continuous function u : M→ R is finite everywhere and uniformly continuous.

Proof. By Lemma A.1 in the Appendix, there is a sequence of Lipschitz functions
un : M→ R such that ‖u− un‖∞→ 0 as n→+∞. By Proposition 8.7(4), for
every t ≥ 0, and every n ≥ 0, we have

−‖u− un‖∞+ T−t un ≤ T−t u ≤ T−t un +‖u− un‖∞.



160 ALBERT FATHI

Therefore û is finite everywhere and ‖û−ûn‖∞≤‖u−un‖∞→0 as n→+∞. By
Proposition 8.11, each function ûn is Lipschitz. Therefore, again by Lemma A.1,
the uniform limit û of the Lipschitz functions ûn is uniformly continuous. �

We then consider the case when u is Lipschitz in the large; see Definition A.2.

Corollary 8.13. For any finite constant K ≥ 0, we can find a finite constant κ
such that any function u : M→ R Lipschitz in the large with constant K has a
Lax–Oleinik evolution û : [0,+∞[× M → R, which is finite everywhere and
Lipschitz in the large with constant κ on [0,+∞[×M→ R.

Proof. By Proposition A.4, we can find a Lipschitz function ϕ : X → R, with
Lipschitz constant K , such that ‖u−ϕ‖∞ = supx∈M |u(x)−ϕ(x)| ≤ K/2.

From Proposition 8.11, the Lax–Oleinik evolution ϕ̂ is Lipschitz with a Lip-
schitz constant ≤ 3(K ), where 3(K ) depends only on K . As in the proof of
Corollary 8.12, by Proposition 8.7(4), we have

‖û− ϕ̂‖∞ ≤ ‖u−ϕ‖∞ ≤ K/2.

We can now apply again Proposition A.4 of the Appendix, to conclude that
û : [0,+∞[ × M → R is finite everywhere and Lipschitz in the large with
constant κ =max(3(K ), K ) on [0,+∞[×M→ R. �

Of course, in Corollary 8.13 the Lax–Oleinik evolution û of the Lipschitz
in the large function u : M → R is, as for all Lax–Oleinik evolutions, locally
Lipschitz on ]0,+∞[×M , since it is everywhere finite on ]0,+∞[×M . We
will show in Theorem 9.5 that û is globally Lipschitz on [t0,+∞[×M , for every
t0 > 0.

Our goal now is the case to give properties of û near {0}×M when u is just
continuous or merely lower semicontinuous.

We start with a remark.

Remark 8.14. Suppose that U : [0,+∞[×M→ [−∞,+∞]. Denote by U∗

the restriction of U to ]0,+∞[×M . If x ∈ M , we can define

lim inf
(t,y)→(0,x)

U (t, y), lim inf
(t,y)→(0,x)

U∗(t, y) and lim inf
y→x

U (0, y),

where in the first case we take (t, y)→ (0, x) with t ≥ 0 and y ∈ M ; in the case
of U∗ we take (t, y)→ (0, x) with t > 0 and y ∈ M ; and in the last case y→ x
with y ∈ M .

Of course we have

lim inf
(t,y)→(0,x)

U (t, y)≤ lim inf
(t,y)→(0,x)

U∗(t, y),

lim inf
(t,y)→(0,x)

U (t, y)≤ lim inf
y→x

U (0, y).
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Since for any sequence (ti , yi )→ (0, x), with ti ≥ 0 and yi ∈ M , either ti = 0
for infinitely many i , or ti > 0 for infinitely many i , we conclude

lim inf
(t,y)→(0,x)

U (t, y)=min
(

lim inf
(t,y)→(0,x)

U∗(t, y), lim inf
y→x

U (0, y)
)
. (8-2)

Theorem 8.15. Let L :TM→R be a Tonelli Lagrangian. If u :M→[−∞,+∞]
is a lower semicontinuous function such that its Lax–Oleinik evolution û :
[0,+∞[×M, (t, x) 7→ T−t u(x) is finite at some (T, X) ∈ ]0,+∞[×M , then it
satisfies the following properties:

(i) For every x ∈ M , we have

lim inf
(t,y)→(0,x)

û(t, y)= lim inf
(t,y)→(0,x)

û∗(t, y)= u(x).

Therefore the function û is lower semicontinuous on [0, T [×M.

(ii) For every x ∈ M , we have

lim sup
(t,y)→(0,x)

û(t, y)= lim sup
y→x

u(y).

Therefore, if u is continuous on M then û is continuous on [0, T [×M.

(iii) For every x ∈ M , both limits limt→0 û(t, x)= limt→0 û∗(t, x) exist and

lim
t→0

û(t, x)= lim
t→0

û∗(t, x)= u(x).

For every x ∈ M , the function t 7→ û(t, x)+ A(0)t is nondecreasing in t.

Proof. We first note that from Proposition 8.7(1), we have

û(t, y)≤ u(y)+ A(0)t. (8-3)

This obviously implies the equality in (ii). By the lower semicontinuity of u, this
also implies

lim inf
(t,y)→(0,x)

û∗(t, y)≤ u(x).

Therefore, from (8-2), we conclude that

lim inf
(t,y)→(0,x)

û(t, y)= lim inf
(t,y)→(0,x)

û∗(t, y).

To finish the proof of (i), it remains to show that

`= lim inf
(t,y)→(0,x)

û∗(t, y)≥ u(x).

If `=+∞, there is nothing to prove. Therefore we assume that ` <+∞. We
then choose a sequence (ti , yi )→ (0, x), with ti > 0 such that

lim
i→+∞

û(ti , yi )= `.
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We now note, again by Proposition 8.7(1), that for all (t, y), (t ′, y′)∈ [0,+∞[×
M , with t ′ < t , we have

û(t, y)≤ û(t ′, y′)+ ht−t ′(y′, y). (8-4)

In particular, we get

û(t, y)≥ û(T, X)+ hT−t(y, X), (8-5)

for all (t, y) ∈ [0, T [×M . We then use

û(ti , yi )= inf
z∈M

u(z)+ hti (z, yi )

to find a sequence zi ∈ M such that

û(ti , yi )≤ u(zi )+ hti (zi , yi )→ `.

From (4-7), we know that hti (z, yi ) ≥ −C(0)ti → 0. Therefore, if zi admits x
as an accumulation point of the sequence zi , from the lower semicontinuity of u,
we would obtain

`= lim
i→+∞

u(zi )+ hti (z, yi )≥ lim inf
i→+∞

u(zi )≥ u(x).

It remains to consider the case when x is not an accumulation point of the
sequence zi . Therefore we can find ε > 0 such that

d(x, zi ) > ε for all i . (8-6)

Since yi → x , neglecting the first terms of the sequence, we can assume

d(x, yi ) < ε for all i . (8-7)

For every i , we can now find a minimizer γi : [0, ti ] → M , with γi (0)= zi and
γi (ti )= yi . From (8-6) and (8-7), we can find t ′i ∈ ]0, ti [ such that d(x, γi (t ′i ))= ε,
for all i . Since γi : [0, ti ] → M is a minimizer, with γi (0)= zi and γi (ti )= yi ,
we have

hti (zi , yi )= ht ′i (zi , γi (t ′i ))+ hti−t ′i (γi (t ′i ), yi ).

Therefore

u(zi )+ hti (zi , yi )= u(zi )+ ht ′i (zi , γi (t ′i ))+ hti−t ′i (γi (t ′i ), yi )

≥ û(t ′i , γi (t ′i ))+ hti−t ′i (γi (t ′i ), yi ).

Since the sequence γi (t ′i ) is contained in the compact ball B̄(x, ε) and ti→ 0< T ,
from (8-5), we get

infi û(t ′i , γi (t ′i ))= κ >−∞.
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Hence
u(zi )+ hti (zi , yi )≥ κ + hti−t ′i (γi (t ′i ), yi ),

which implies

`= lim
i→+∞

u(zi )+ hti (z, yi )≥ κ + lim
i→+∞

hti−t ′i (γi (t ′i ), yi ). (8-8)

For K > 0, we now use (4-8) and d(x, γi (t ′i ))= ε to obtain

hti−t ′i (γi (t ′i ), yi )≥ K d(γi (t ′i ), yi )−C(K )(ti − t ′i )

≥ K (ε− d(x, yi ))−C(K )(ti − t ′i ).

Since yi → x and 0< t ′i < ti → 0, we obtain

lim
i→+∞

hti−t ′i (γi (t ′i ), yi )≥ K ε.

Since ε > 0 and K > 0 is arbitrary, we get

lim
i→+∞

hti−t ′i (γi (t ′i ), yi )=+∞.

This contradicts (8-8), since ` <+∞ and κ >−∞. This finishes the proof of
the equality in (i). The last part of (i) follows from this equality and the already
observed continuity of û on the open subset ]0,+T [ × M ; see Theorem 8.5.
Note that this same continuity of û on ]0,+T [ ×M , together with (i) and the
inequality in (ii), yields also the last part of (ii).

To prove the equality in (iii), we first note, using (i), that

u(x)= lim inf
(t,y)→(0,x)

û(t, y)≤ lim inf
t→0

û(t, x)≤ lim inf
t→0

û∗(t, x).

Moreover, from (8-3), we have

û(t, x)≤ u(x)+ A(0)t,

which yields
lim sup

t→0
û∗(t, x)≤ lim sup

t→0
û(t, x)≤ u(x).

The above inequalities on the lim inf’s and lim sup’s imply the equality in (iii).
The last statement in (iii) follows from the third inequality in Proposition 8.7(1),
which yields

û(t + t ′, x)≤ û(t, x)+ A(0)t ′ for all t, t ′ ≥ 0. �

Corollary 8.16. Let u : M→ [−∞,+∞] be a lower semicontinuous function,
such that û(T, X) is finite for some (T, X) ∈ ]0,+∞[ × M. Then for every
(t, x) ∈ ]0, T [ × M , we can find a backward û-characteristic γ : [0, t] → M



164 ALBERT FATHI

ending at (t, x). In particular, for every (t, x) ∈ ]0, T [×M , we can find y ∈ M
such that

û(t, x)= u(y)+ ht(y, x).

Proof. Fix (t, x) ∈ ]0, T [ × M . From Theorem 7.6, we can find an extremal
γ : [0, t]→M , with γ (t)= x , which is û-calibrated on ]0, t]; i.e., for all s ∈ ]0, t[,
we have

û(t, x)= û(s, γ (s))+
∫ t

s
L(γ (σ ), γ̇ (σ )) dσ. (8-9)

Since (s, γ (s))→ (0, γ (0)) as s→ 0, from part (i) of Theorem 8.15, we obtain
lim infs→0 û(s, γ (s)) ≥ u(γ (0))= û(0, γ (0)). Hence, if we let s→ 0 in (8-9),
we obtain

û(t, x)= lim inf
s→0

û(s, γ (s))+
∫ t

0
L(γ (σ ), γ̇ (σ )) dσ

≥ û(0, γ (0))+ ht(γ (0), x)≥ û(t, x).

Therefore all inequalities are equalities. Hence γ is û-calibrated on the closed
interval [0, t]. �

We conclude this section with a proof that all continuous viscosity solutions
of the evolutionary Hamilton–Jacobi equation on an open set ]0, T [ × M are
given by a Lax–Oleinik evolution of a unique lower semicontinuous function.

Theorem 8.17. Assume U : ]0, T [×M→ R, with T ∈ ]0,+∞] is a continuous
viscosity solution of the evolutionary Hamilton–Jacobi equation

∂tU + H(x, ∂xU )= 0,

on ]0, T [ × M. Then there exists a unique lower semicontinuous function u :
M→ [−∞,+∞] such that U = û on ]0, T [×M. In fact, we have

u(x)= lim inf
(t,y)→(0,x)

U (t, y)= lim
t→0

U (t, x).

Proof. If u exists, it follows from Theorem 8.15 that we must have

u(x)= lim inf
(t,y)→(0,x)

U (t, y)= lim
t→0

U (t, x).

This implies the uniqueness if u exists. To prove the existence, we define
u : M→ [−∞,+∞] by

u(x)= lim inf
(t,y)→(0,x)

U (t, y).

This function u is lower semicontinuous. We first show that û≤U on ]0, T [×M .
For this, we fix (t, x) ∈ ]0, T [×M . For any y ∈ M , by definition of u, we can
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find a sequence (ti , yi ) ∈ ]0, T [×M with

(ti , yi )→ (0, y) and U (ti , yi )→ u(y) as i→+∞.

Since U is a viscosity solution on ]0, T [ ×M , we know from Proposition 5.5
and Remark 5.2(2), that U is strongly evolution-dominated by L . Using that
ti → 0< t , for i large, we must have

U (t, x)≤U (ti , yi )+ ht−ti (yi , x).

If we let i→+∞, we obtain

U (t, x)≤ u(y)+ ht(y, x).

Since y ∈ M is arbitrary, we conclude that U ≤ û on ]0, T [×M .
It remains to show that û≤U on ]0, T [×M . The argument is almost identical

to the proof of last corollary. Fix (t, x) ∈ ]0, T [ ×M . From Theorem 7.6, we
can find an extremal γ : [0, t] → M , with γ (t) = x , which is U -calibrated on
]0, t]; i.e., for all s ∈ ]0, t[, we have

U (t, x)=U (s, γ (s))+
∫ t

s
L(γ (σ ), γ̇ (σ )) dσ. (8-10)

Since (s, γ (s)) → (0, γ (0)) as s → 0, from the definition of u, we obtain
lim infs→0 U (s, γ (s))≥ u(γ (0)). Hence, if we let s→ 0 in (8-10), we obtain

U (t, x)= lim inf
s→0

U (s, γ (s))+
∫ t

0
L(γ (σ ), γ̇ (σ )) dσ

≥ u(γ (0))+ ht(γ (0), x)≥ û(t, x). �

9. Differentiability properties of the Lax–Oleinik evolution

Theorem 9.1 (differentiability theorem). Assume that the function U : O→ R,
defined on the open subset O of R×M , is evolution-dominated by L. If the curve
γ : [a, b] → M , is U-calibrated for L , we have:

(i) If t ∈ ]a, b] then U is upper semicontinuous at (t, γ (t)) and

(−E(γ ), ∂vL(γ (t), γ̇ (t)) ∈ D+U (t, γ (t)).

(ii) If t ∈ [a, b[ then U is lower semicontinuous at (t, γ (t)) and

(−E(γ ), ∂vL(γ (t), γ̇ (t)) ∈ D−U (t, γ (t)).

(iii) For every t ∈ [a, b], if the function U is differentiable at (t, γ (t)), then

DU (t, γ (t))= (−E(γ ), ∂vL(γ (t), γ̇ (t)) ∈ T ∗(t,γ (t))R×M = R× T ∗γ (t)M.

(iv) If t ∈ ]a, b[, then U is indeed differentiable (hence continuous) at (t, γ (t)).
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Proof. To prove (i), fix t ∈ ]a, b]. By Proposition 5.4, there exists an open
subset O ′ ⊂ O , with (t, γ (t)) ∈ O ′, such that the restriction U |O ′ is strongly
evolution domination by L . By continuity of γ , we can then find [a′, b′] ⊂ [a, b],
with a′ < t ≤ b′, and (s, γ (s)) ∈ O ′, for all s ∈ [a′, b′]. The strong L evolution
domination of U |O ′ implies

U (s, x)−U (a′, γ (a′))≤ hs−a′(γ (a′), x)=H(s− a′, γ (a′), x), (9-1)

for every (s, x)∈O ′, with s> a′. Applying this inequality with (s, x)= (t, γ (t)),
and using that γ |[a′, t] is U -calibrated, we obtain∫ t

a′
L(γ (s), γ̇ (s))=U (t, γ (t))−U (a′, γ (a′))≤H(t − a′, γ (a′), γ (t)).

But
∫ t

a′ L(γ (s), γ̇ (s))≥H(t − a′, γ (a′), γ (t)). Therefore the inequality above
is an equality. Subtracting this equality from the inequality (9-1), we get

U (s, x)−U (t, γ (t)≤H(s− a′, γ (a′), x)−H(t − a′, γ (a′), γ (t)). (9-2)

Since H is continuous, we first obtain from this inequality (9-1) the upper
semicontinuity. Moreover, inequality (9-1) together with the equality case at
(t, γ (t)) implies

D+(t,x)H(t − c, γ (t), γ (c))⊂ D+U (t, γ (t)).

But by Proposition 4.22, we have

(−E(γ ), ∂vL(γ (t), γ̇ (t)) ∈ D+(t,x)H(t − c, γ (t), γ (c)).

The proof of (ii) is similar.
To prove (iii), we recall that if DU (t, γ (t)) exists then D+U (t, γ (t)) =

D−U (t, γ (t))= {DU (t, γ (t))}.
To prove (iv), observe that, for t ∈]a, b[, both D+U (t, γ (t) and D−U (t, γ (t))

are nonempty by (i) and (ii). This implies that U is differentiable at (t, x); see
for example [7, Proposition 3.3]. �

Corollary 9.2. Assume L : TM→ R is a Tonelli Lagrangian. Let U : [0, T [×
M→ R be evolution-dominated by L.

(i) If U is differentiable at (t, x), then there is at most one U-calibrated γ :
[c, d] → M , with t ∈ [c, d] and x = γ (t).

(ii) If γ1 : [c1, d1]→M and γ2 : [c2, d2]→M are U-calibrated curves such that
γ1(t)= γ2(t), with t ∈ [c1, d1]∩[c2, d2] and either t ∈ ]c1, d1[ or t ∈ ]c2, d2[,
then γ1 = γ2 on [c1, d1] ∩ [c2, d2].
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(iii) If γ1 : [0, c] → M and γ2 : [0, d] → M are two U-calibrated curves, with
c ≤ d such that γ1(t) = γ2(t), for some t ∈ [0, c], if γ1 and γ2 are not
identical on [0, c], then either t = 0 or t = c = d.

Proof. Part (i) follows from part (iii) of Theorem 9.1, since for any such minimizer
we have

∂xU (t, x)= ∂vL(γ (t), γ̇ (t))= ∂vL(x, γ̇ (t)),

which shows that not only the position of the extremal γ at time t is fixed (= x)
but so is its speed at time t .

Part (ii) follows from part (i). In fact, if either t ∈ ]c1, d1[ or t ∈ ]c2, d2[, then,
by part (iv) of Theorem 9.1, the function U is differentiable at (t, x).

To prove part (iii), we observe that part (ii) implies t ∈ {0, c} and t ∈ {0, d},
which implies either t = 0 or t = c = d. �

The next corollary follows from the previous one applied to backward U -
characteristics.

Corollary 9.3. Assume L : TM→ R is a Tonelli Lagrangian. Let

U : ]0, T [×M→ R

be evolution-dominated by L.

(i) If U is differentiable at (t, x) ∈ ]0, T [ × M , then there is at most one
backward U-characteristic γ : ]0, t] → M ending at (t, x).

(ii) If γ : ]0, a] → M is a backward U-characteristic, then U is differentiable
at every (t, γ (t)), with t ∈ ]0, a[.

Proposition 9.4. Let u : M→ [−∞,+∞] be a lower semicontinuous function
such that û(T, X) is finite for some (T, X) ∈ ]0,+∞[ × M. Then û is dif-
ferentiable at (t, x) ∈ ]0, T [ × M if and only if there is a unique backward
U-characteristic ending at (t, x). Moreover, the set of upper differentials
D+û(t, x) is equal to the convex hull of all covectors (−E(γ ), ∂vL(γ (t), γ̇ (t)),
with γ : [0, t] → M a backward û-characteristic ending at (t, x).

Proof. By Theorem 6.5, we already know that û is locally semiconcave. We first
show that for a backward û-characteristic γ : [0, t] → M ending at (t, x), we
have (−E(γ ), ∂vL(γ (t), γ̇ (t)) ∈ D+û(t, x).

Since γ is calibrating for û, it is a minimizer; therefore we have

H(t, γ (0), x)=
∫ t

0
L(γ (s), γ̇ (s)) ds,

and
û(t, x)= u(γ (0))+H(t, γ (0), x).
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By definition of û, we also have

û(t ′, x)≤ u(γ (0))+H(t ′, γ (0), x ′),

for all (t ′, x ′)∈ ]0,+∞[×M . This implies that D+(t,x)H(t, γ (0), x)⊂ D+û(t, x).
But by Proposition 4.22, we have (−E(γ ), ∂vL(γ (t), γ̇ (t))∈D+(t,x)H(t, γ (0), x).

The rest of the proof is similar to the proof of Corollary 4.23. �

We now apply the results above to Lipschitz in the large functions; see A.2
for the definition.

Theorem 9.5. Assume that L : TM → R is a Tonelli Lagrangian. For every
finite constant K , t0 > 0, we can find a constant λ < +∞ such that for any
u : M→ R Lipschitz in the large with constant K , its Lax–Oleinik evolution û
is finite everywhere and (globally) Lipschitz on [t0,+∞[× M , with Lipschitz
constant ≤ λ.

Proof. Since û = û− on ]0,+∞[×M , where u− is the lower semicontinuous
regularization of u and u− is Lipschitz in the large with the same constant
by Lemma A.3, without loss of generality, we can assume that u is lower
semicontinuous.

Since, from Corollary 8.13, the Lax–Oleinik evolution û is finite everywhere,
from Theorem 6.5, we obtain that it is locally semiconcave. Hence, the Lax–
Oleinik evolution û locally Lipschitz on ]0,+∞[ × M . Therefore, we need
to show that the norm of derivative of û is bounded almost everywhere, on
[t0,+∞[×M , by a constant that depends only on K and t0, but not on u.

From Corollary 8.16, for every (t, x) ∈ ]0,+∞[× M , we can find y ∈ M
such that

û(t, x)= u(y)+ ht(y, x)= u(y)+H(t, y, x). (9-3)
Since

H(t, y, x)= ht(y, x)≤ u(x)− u(y)+ A(0)t ≤ K + K d(x, y)+ A(0)t.

We now use the fact that 2K d(x, y)−C(2K )t ≤ ht(y, x) =H(t, y, x), to get
K d(x, y)≤ 1

2 [H(t, y, x)+C(2K )t]. Combining with the inequality above, we
obtain

H(t, y, x)≤ K + 1
2 [H(t, y, x)+C(2K )t] + A(0)t.

Since H(t, y, x)= ht(y, x), the inequality above is equivalent to

H(t, y, x)≤ 2K +C(2K )t + 2A(0)t.

Therefore, we get

H(t, y, x)
t

=
ht(y, x)

t
≤

2K
t
+C(2K )+2A(0)≤

2K
t0
+C(2K )+2A(0). (9-4)
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By its definition, the Lax–Oleinik evolution û is strongly evolution-dominated
by L , as before, we have

û(t ′, x ′)≤ u(y)+H(t ′, y, x ′) for all (t ′, x ′) ∈ ]0,+∞[×M .

Subtracting from this last inequality the equality (9-3), we obtain

û(t ′, x ′)− û(t, x)≤H(t ′, y, x ′)−H(t, y, x) for all (t ′, x ′) ∈ ]0,+∞[×M .

If û is differentiable at (t, x), since H is locally semiconcave, the inequality
above implies that (t ′, x ′) 7→H(t ′, y, x ′) is differentiable at (t, x), with

∂t û(t, x)= ∂tH(t, y, x) and ∂x û(t, x)= ∂xH(t, y, x).

By Corollary 4.24, this implies that H is differentiable at (t, y, x). But by
Corollary 4.25 and (9-4), the derivative DH(t, y, x) is bounded in norm by a
constant depending only on 2K t−1

0 +C(2K )+ 2A(0). Therefore, the same is
true for the derivative of û at (t, x). �

Appendix: Uniformly continuous and Lipschitz in the large functions

The following lemma is well-known.

Lemma A.1. Let N be a Riemannian manifold (not necessarily complete or
without boundary). Denote by d the distance on N associated to the Riemannian
metric. For any function u : M→ R, the following conditions are equivalent:

(1) The function u is uniformly continuous (with respect to d).

(2) For every ε > 0, we can find λε <+∞ such that

|u(x)− u(y)| ≤ ε+ λεd(y, x).

(3) There exists a sequence of Lipschitz (for d) functions un : M → R, n ∈ N

such that un→ u uniformly on M ; that is, the norm ‖u−un‖∞ approaches 0
as n→+∞.

Proof. The implication (3) =⇒ (1) is well-known.
We now prove (1) =⇒ (2). Since u is uniformly continuous, we can find α > 0

such that
d(x, y)≤ α =⇒ |u(y)− u(x)| ≤ ε.

For x, y ∈ N fixed, we can find n ∈ N such that nα ≤ d(x, y) < (n+ 1)α. By
definition of the Riemannian distance, we can find a curve γ : [0, `] → M ,
parametrized by arc-length and such that γ (0) = x, γ (`) = y, and d(x, y) ≤
` < (n + 1)α. We set xi = γ (iα), for i = 0, . . . , n, and xn+1 = y. Since
d(xi , xi+1)≤ `g(γ |[iα, (i + 1)α])= α, for i = 0, . . . , n− 1, and d(xn, xn+1)≤
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`g(γ |[nα, `]) = `− nα < α, we get |u(xi )− u(xi+1)| ≤ ε, for i = 0, . . . , n.
Using n ≤ d(x, y)/α, this yields

|u(x)− u(y)| =
∣∣∣∣ n∑

i=0
u(xi )− u(xi+1)

∣∣∣∣≤ n∑
i=0
|u(xi )− u(xi+1)|

≤ (n+ 1)ε ≤ ε+
ε

α
d(x, y).

This proves (2) with λε = ε/α.
It remains to prove (2) =⇒ (3). From (2), we get

u(x)− ε ≤ u(y)+ λεd(y, x).

Taking the infimum over y, we get

u(x)− ε ≤ inf
y∈M

u(y)+ λεd(y, x)≤ u(x).

The function uε : M → R defined by uε(x) = infy∈M u(y) + λεd(y, x) has
Lipschitz constant ≤ λε , and satisfies ‖uε − u‖∞ ≤ ε. �

We now recall the definition of Lipschitz in the large for a function, see [12,
Definition A.5].

Definition A.2. Let X be a metric space with distance d . A function u : X→ R

is said to be Lipschitz in the large if there exists a constant K <+∞ such that

|u(y)− u(x)| ≤ K + K d(x, y) for every x, y ∈ X . (A-1)

When the inequality above is satisfied, we say that u is Lipschitz in the large
with constant K .

Lemma A.3. Let X be a metric space with distance d. If u : X→ R is Lipschitz
in the large with constant K , its lower semicontinuous regularization u− is finite-
valued, Lipschitz in the large with the same constant K , and |u(x)−u−(x)| ≤ K ,
for every x ∈ X.

Proof. We can find a sequence xi→ x such that u(xi )→ u−(x). Taking the limit
in inequality (A-1), with y = xi , yields |u(x)− u−(x)| ≤ K . We can also find a
sequence yi → y such that u(yi )→ u−(y). Taking the limit in inequality (A-1),
with y = yi and x = xi , yields |u−(y)− u−(x)| ≤ K + K d(x, y). �

Proposition A.4. Let X be a metric space with distance d. For any function
u : X → R and any finite constant K ≥ 0, the following two statements are
equivalent:

• The function u is Lipschitz in the large with constant K .

• There exists a Lipschitz function ϕ : X→R, with Lipschitz constant K , such
that ‖u−ϕ‖∞ = supx∈M |u(x)−ϕ(x)| ≤ K/2.
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Proof. If u satisfies |u(y)− u(x)| ≤ K + K d(x, y), for every x, y ∈ X . We get
−K + u(y)≤ u(x)+ K d(x, y). If we define the function ϕ : X→ R by

ϕ(y)= inf
x∈M

u(x)+
K
2
+ K d(x, y),

we get −K/2+u(y)≤ ϕ(y)≤ u(y)+ K/2. Therefore ϕ is finite everywhere. It
is also Lipschitz with Lipschitz constant K <+∞, and ‖u−ϕ‖∞ ≤ K/2.

To prove the converse, assume ϕ : X → R has Lipschitz constant ≤ K , and
‖u−ϕ‖∞ ≤ K/2, we have

|u(y)− u(x)| ≤ |u(y)−ϕ(y)| + |ϕ(y)−ϕ(x)| + |ϕ(x)− u(x)|

≤
K
2
+ K d(x, y)+

K
2
= K + K d(x, y). �
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We consider a new geometric approach to Madelung’s quantum hydrodynam-
ics (QHD) based on the theory of gauge connections. Our treatment comprises
a constant curvature thereby endowing QHD with intrinsic nonzero holonomy.
In the hydrodynamic context, this leads to a fluid velocity which no longer is
constrained to be irrotational and allows instead for vortex filaments solutions.
After exploiting the Rasetti–Regge method to couple the Schrödinger equation
to vortex filament dynamics, the latter is then considered as a source of
geometric phase in the context of Born–Oppenheimer molecular dynamics.
Similarly, we consider the Pauli equation for the motion of spin particles in
electromagnetic fields and we exploit its underlying hydrodynamic picture to
include vortex dynamics.
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1. Introduction

1.1. The role of geometric phases. In his seminal work [5], Berry discovered
that after undergoing an adiabatic cyclic evolution, a quantum system attains an
additional phase factor independent of the dynamics and depending solely on
the geometry of the evolution, since referred to as Berry’s phase. This discovery
opened up an entire field of study of the more general concept of geometric phase
which has since been found to comprise the underlying mechanism behind a wide

Keywords: quantum hydrodynamics.
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variety of physical phenomena, in both the classical and quantum domains. A key
example of each is the Pancharatnam phase in classical optics, [72], which has
been experimentally verified using experiments involving laser interferometry
[6] and the celebrated Aharonov–Bohm effect of quantum mechanics, discovered
in 1959 [3] and experimentally verified in the late 1980s [94], which was given
a geometric phase interpretation in [5]. One particular discipline which has
benefited greatly from the understanding of geometric phase is quantum chemistry,
in which the separation of the molecular wavefunction into nuclear and electronic
components gives rise to geometric phase effects in an array of phenomena [67],
perhaps most famously including the Jahn–Teller effect [49; 59]. To this day
there is extensive research into the role of the geometric phase in quantum
systems and in particular the application to molecular dynamics in quantum
chemistry [1; 2; 33; 67; 78; 80; 81; 82].

Originally considered by Simon [87], the geometric interpretation of Berry’s
phase hinges on the gauge theory of principal bundles. The latter serves as
a unifying mathematical framework so that the geometric phase identifies the
holonomy associated to the choice of connection on the bundle. In this picture
one considers a base manifold M with fibers isomorphic to a Lie group G which
can be put together in such a way to create a globally nontrivial topology. The
external parameters provide the coordinates on the base space, whilst the fibers are
given simply by the U (1) phase factor (not the phase itself!) of the wavefunction.
Then, when one considers an adiabatic cyclic evolution of the external parameters,
forming a closed loop in the base manifold, the corresponding curve in the U (1)-
bundle (specified uniquely by a choice of connection) need not form a closed
loop, with the extent of the failure to do so called the holonomy or Berry phase.
This geometric picture on a principal bundle serves as the setting for all such
geometric phase effects, with the base and fibers given by the problem under
consideration. As mentioned before, holonomy manifests also in many classical
systems, for example that discovered by Hannay [37], with perhaps the most
famous physical example being the Foucault pendulum [86]. Such classical
examples have led to much further study of these ideas, for example using
reduction theory and geometric mechanics [63] as well as applications to the
n-body problem [58] and guiding center motion [57].

Recently, a gauge theoretical description of quantum hydrodynamics in terms
of connections has been suggested [88], using the Madelung transform [60; 61]
to write the wavefunction in exponential form of an amplitude-phase product,
ψ =Rei h̄−1 S . This change of variables has the well-known effect of transforming
the Schrödinger equation into a hydrodynamical system upon defining a fluid
velocity through the relation v = m−1

∇S. Whilst the hydrodynamic picture of
quantum mechanics dates back to Madelung [60; 61], it was Takabayasi [90;
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92] who first realized that the circulation of the fluid velocity
¸
v · dx must be

quantized to ensure that the total wavefunction is single-valued, a fact which was
later rediscovered by Wallstrom [98]. As shown in [88], the Madelung transform
naturally allows one to consider a principal U (1)-bundle over R associated to
the phase of the wavefunction. In this picture, the quantization condition of the
circulation is in fact another example of holonomy, now corresponding to the
connection dS. More specifically, as the curvature of the connection vanishes
everywhere except at those points for which S is not single-valued, this is in fact
a type of monodromy, with the exact value depending on the winding number of
the loop surrounding the singularity.

Here we consider an alternative approach to holonomy in QHD, using the Euler–
Poincaré framework [45] to introduce a nonflat differentiable U (1) connection
whose constant curvature can be set as an initial condition. This results in
holonomy with trivial monodromy as well as corresponding to a nonzero vorticity
in the hydrodynamic setting. The key feature of this new approach to QHD is that
it allows us to include geometric phase effects without entertaining double-valued
functions or singular connections. Indeed, while the latter are still allowed as
special cases, thereby leading to quantum vortex structures [90; 93; 92; 8; 9],
here we shall apply the present construction to incorporate also nonquantized
hydrodynamic vortex filaments, which are then coupled to the equations of
quantum hydrodynamics. In this way, we provide an alternative approach to
capture geometric Berry phases in the Born–Oppenheimer approximation or
in the Aharonov–Bohm effect. We then consider the applications of this new
approach to adiabatic molecular dynamics as well as extend the approach to
include particles with spin by considering the Pauli equation. Motivated by the
latter we then present the framework for introducing our connection in nonabelian
systems.

The remainder of this introduction is devoted to presenting a more detailed
exposition of the necessary background material and mathematical formalism to
set the scene within which we present our results. Section 1.2 commences by out-
lining the necessary geometric structures of quantum mechanics used throughout
this paper, including the Dirac–Frenkel variational principle and Hamiltonian
structure of quantum mechanics, before switching to the hydrodynamic picture by
introducing the Madelung transform and demonstrating the Lie–Poisson structure
of QHD by using momentum map techniques. Section 1.3 presents the geometric
interpretation of Wallstrom’s quantization condition in terms of the holonomy of
the multivalued phase connection. Finally, we conclude the Introduction with
an outline of the rest of the paper in Section 1.4, presenting a summary of the
results in each subsequent section.
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1.2. Hamiltonian approach to quantum hydrodynamics. In this section we
provide the conventional geometric setting for quantum mechanics and its hy-
drodynamic formulation. As customary in the standard quantum mechanics of
pure states, we consider a vector ψ(t) ∈ H in a Hilbert space H. Then, the
Schrödinger equation i h̄ψ̇ = Ĥψ [85] can be derived from the Dirac–Frenkel
(DF) variational principle [26]

0= δ
ˆ t2

t1
〈ψ, i h̄ψ̇ − Ĥψ〉 dt , (1-1)

where the bracket 〈ψ1, ψ2〉 denotes the real part of the Hermitian inner product
〈ψ1|ψ2〉. For the case of square-integrable wavefunctions H = L2(R3), we
have 〈ψ1|ψ2〉 =

´
ψ∗1ψ2 d3x . The variational principle (1-1) can be generalized

upon suitable redefinition of the total energy h(ψ), which in the standard case
considered here is simply given as the expectation of the Hamiltonian operator
Ĥ , that is h(ψ) = 〈ψ |Ĥψ〉. In fact, the Schrödinger equation also admits
a canonical Hamiltonian structure. For an arbitrary Hamiltonian h(ψ), the
generalized Schrödinger equation reads

∂ψ

∂t
=−

i
2h̄
δh
δψ
=: Xh(ψ), (1-2)

in which Xh is the corresponding Hamiltonian vector field. It can be checked
that h(ψ) = 〈ψ |Ĥψ〉 recovers the standard Schrödinger evolution. Then, the
Hamiltonian structure arises from the symplectic form

�(ψ1, ψ2)= 2h̄ Im 〈ψ1|ψ2〉 (1-3)

on H. It can then be readily verified that the corresponding Poisson bracket
returns (1-2) upon considering the relation ḟ = �(X f , Xh). In the standard
interpretation of quantum mechanics, H= L2(R3) and the wavefunction identifies
the probability density D = |ψ |2 which evolves according to

∂D
∂t
=

2
h̄

Im(ψ∗ Ĥψ). (1-4)

In the case of spin-less particles, the Hamiltonian operator Ĥ is constructed
out of the canonical observables Q̂ = x and P̂ = −i h̄∇ satisfying [Q̂i , P̂j ] =

i h̄δi j , so that Ĥ = Ĥ(Q̂, P̂). As we shall now show, for the particular case of
the physical Hamiltonian Ĥ = P̂2/2m + V (Q̂), an equivalent hydrodynamic
formulation of the theory emerges by rewriting the wavefunction in its polar
form (Madelung transform) ψ(x, t)=

√
D(x, t)ei S(x,t)/h̄ . Upon performing the
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appropriate substitutions in the DF variational principle (1-1), the latter becomes

0= δ
ˆ t2

t1

ˆ
D
(
∂t S+

|∇S|2

2m
+

h̄2

8m
|∇D|2

D2 + V
)

d3x dt , (1-5)

leading to

∂t D+ div
D∇S

m
= 0, (1-6)

∂t S+
|∇S|2

2m
−

h̄2

2m
1
√

D
√

D
+ V = 0 . (1-7)

The first equation is clearly the continuity equation for the probability density
D = |ψ |2. The second equation resembles the Hamilton–Jacobi equation of
classical mechanics, albeit with an additional term, often referred to as the
quantum potential

VQ := −
h̄2

2m
1
√

D
√

D
. (1-8)

Madelung’s insight was to recognize that, written in terms of the variables (D, S),
the equation for conservation of probability takes the form of a fluid continuity
equation for a fluid velocity field v := m−1

∇S. Then, upon taking the gradient
of the quantum Hamilton–Jacobi equation, both equations can be rewritten in
terms of the new variables (D, v) and one obtains the hydrodynamical system

∂t D+ div (Dv)= 0, (1-9)

m(∂t + v · ∇)v =−∇(VQ + V ), (1-10)

corresponding to the standard Eulerian form of hydrodynamic equations of
motion, from here on referred to as the quantum hydrodynamic (QHD) equations.
It is important to notice that as v is a potential flow, the vorticity ω := ∇ × v of
the flow is identically zero unless there are points where S is multiple-valued.

These quantum hydrodynamic equations were the starting point for several
further interpretations of quantum mechanics, most notably Bohmian mechanics
[10], inspired by earlier works of de Broglie [20], in which one considers a phys-
ical particle that is guided by the quantum fluid. Whilst we do not consider the
implications of such theories here, we remark that trajectory-based descriptions
of quantum mechanics have been used to simulate a wide variety of physical
processes [100] and the use of a QHD approach continues to be an active area
of research, particularly in the field of quantum chemistry [47]. More recently
the geometric approach to QHD was extended to comprise hybrid quantum-
classical dynamics [30]. With this in mind we shall consider the application of
the fundamental ideas presented in this paper to quantum chemistry in Section 3.
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We now turn our attention to the geometric structure underlying QHD [25;
27; 51]. It has long been known that the map ψ 7→ (m Dv, D) =: (µ, D) is a
momentum map for the natural symplectic action of the semidirect-product group
Diff(R3)sF(R3,U (1)) on the representation space L2(R3)'Den1/2(R3). Here,
Diff(R3) denotes diffeomorphisms of physical space, F(R3,U (1)) denotes the
space of U (1)-valued scalar functions, while Den1/2(R3) denotes the space of
half-densities on physical space [4]. Then, as described in [27; 25], it can be
shown that, for the case of the physical Hamiltonian operator, the total energy
h(ψ)= Re

´
ψ∗ Ĥψ d3x can be expressed as a functional of these momentum

map variables (µ, D) to read

h(µ, D)=
ˆ (
|µ|2

2m D
+

h̄2

8m
|∇D|2

D
+ DV (x)

)
d3x . (1-11)

This process of expressing a Hamiltonian functional in terms of momentum
map variables is known as Guillemin–Sternberg collectivization [36] and it
leads to a Lie–Poisson system which in this case is defined on the dual of the
semidirect-product Lie algebra X(R3)sF(R3), where X(R3) denotes vector
fields on physical space while F(R3) stands for scalar functions. More explicitly,
the Lie–Poisson bracket arising from the Madelung momentum map is as follows:

{ f, g}(µ, D)=
ˆ
µ ·

((
δg
δµ
· ∇

)
δ f
δµ
−

(
δ f
δµ
· ∇

)
δg
δµ

)
d3x

+

ˆ
D
((

δg
δµ
· ∇

)
δ f
δD
−

(
δ f
δµ
· ∇

)
δg
δD

)
d3x , (1-12)

which coincides with the Lie–Poisson structure for standard barotropic fluid
dynamics [46]. A vector calculus exercise [27] shows that Hamilton’s equations
ḟ = { f, h} recover the hydrodynamic equations (1-9)–(1-10).

Despite its deep geometric footing, this construction invokes a Lie–Poisson
reduction process [46; 62] involving the existence of smooth invertible Lagrangian
fluid paths η∈Diff(R3), so that η̇(x0, t)= δh/δµ|x=η(x0,t). Thus, this description
assumes that the phase S is single-valued thereby leading to zero circulation and
vorticity. In other words, this geometric formulation of QHD does not capture
holonomy. As we shall see in the remainder of this paper, holonomy can still
be restored by purely geometric arguments which however involve a different
perspective from the one treated here.

1.3. Multi-valued phases in quantum hydrodynamics. Having previously inves-
tigated the geometry of QHD in terms of momentum maps [25], the rest of this
paper focuses on an alternative geometric interpretation of QHD in terms of gauge
connections. To see their role in QHD, we notice that whilst the equations of
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motion (1-9), (1-10) had been known since the early days of quantum mechanics,
in 1994 Wallstrom [98] demonstrated that the requirement that the wavefunction
be single-valued does not actually imply that the QHD equations are equivalent
to the Schrödinger equation i h̄∂tψ =−(h̄2/2m)1ψ + Vψ , unless one has the
following additional condition on the phase of the wavefunction˛

c0

∇S · dx = 2π h̄n , (1-13)

around any closed loop c0 : [0, 1]→R3 and for n∈Z. This condition, equivalently
asserting that the circulation of the fluid flow 0 =

¸
c0
v · dx is quantized, is

originally due to Takabayasi [90], and arises due to the fact that S can be
considered a multivalued function, by which we mean that the replacement

S(x)→ S(x)+ 2π h̄n (1-14)

leaves the wavefunction invariant. Then, the condition (1-13) is nontrivial, that is
n 6= 0, whenever the curve c0 encloses regions in which S is multivalued, which
itself occurs only at points where the wavefunction vanishes (nodes) [35; 39].
This can easily be seen by inverting the Madelung transform so that

S =−i h̄ ln
ψ

|ψ |
= h̄

(
arctan

Reψ
Imψ

+ nπ
)
, (1-15)

where n ∈Z arises from the multivalued nature of the inverse tangent function. In
the hydrodynamic context, examples of this are given by the presence of vortices,
a topic which has been studied extensively [8; 9; 90; 93; 92] and which we will
turn our attention to in Section 2.4.

In fact, the condition (1-13) can be interpreted geometrically as in [88] by
considering the 1-form ∇S · dx = dS as a connection on a U (1)-bundle over R3.
This is explained as follows. Firstly, in writing ψ =

√
Dei S/h̄ , we effectively

make the decomposition C= R+×U (1). We then consider the principal U (1)-
bundle over R3, where the object i h̄−1dS can be considered as a u(1)-valued
connection 1-form. Furthermore, it can be shown that the exponential of the
loop integral in (1-13) is indeed an element of the holonomy group of this
bundle. See Chapter II in the standard reference [53] for details on holonomy
and principal bundles and [86; 23; 15; 99; 14] for their appearance in mechanical
systems. As the curvature of the connection vanishes everywhere except at
those points where S is multivalued, the quantization of the circulation can be
explained geometrically, simply as the presence of the winding number through
monodromy. Following the discovery of the Berry phase [5] and its geometric
interpretation due to Simon [87], this concept connecting geometric phases and
holonomy via monodromy has been found to arise in a wide variety of situations
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in quantum mechanics, ranging from QHD to the Aharonov–Bohm effect, and
molecular dynamics. In this paper, we shall present a new alternative approach
to QHD that features holonomy without monodromy by introducing a nonflat
connection.

1.4. Outline of paper. Section 2 presents the key idea of this paper, providing an
alternative framework for understanding holonomy in QHD. Starting with 2.1, we
introduce a different method of writing the wavefunction as an amplitude-phase
product, allowing us to introduce a phase connection and write the Lagrangian
in terms of this new dynamical variable. In deriving the equations of motion, we
allow for this connection to possess nontrivial curvature resulting in new terms
in phase equation. In Section 2.2 we move to the fluid picture and show how
these new terms give rise to a nontrivial circulation theorem and demonstrate that
this connection carries nontrivial holonomy without monodromy. In Section 2.3
we reconstruct the Schrödinger equation from the QHD system and see how the
nontrivial curvature of the connection appears through minimal coupling, whilst
Section 2.4 demonstrates how the nonzero vorticity can sustain solutions corre-
sponding to vortex filaments and presents a coupled system of vortex dynamics
within the Schrödinger equation.

In Section 3 we consider the application of these techniques to the Born–
Oppenheimer factorization of the molecular wavefunction in adiabatic quantum
chemistry. We begin in Section 3.1 by presenting the standard approach used in
the literature and derive the QHD version of the equations of motion from the
standard exponential polar form applied to the nuclear factor. This section also
presents a summary of the key simplifications often used in the nuclear equation
to aid simulations. In Section 3.2 we simply apply the formalism developed in
Section 2 to the Born–Oppenheimer system and comment on how these novel
features may provide alternative viewpoints on key problems, which in the usual
case arise due to the multivalued nature of the objects in question. We conclude
the section by considering a modified approach which couples a classical nuclear
trajectory to a hydrodynamic vortex, incorporating geometric phase effects.

In Section 4 we apply our treatment to exact factorization (EF) systems, in
which one considers a wavefunction with additional parametric dependence. We
commence in Section 4.1 by considering the time-dependent generalization of the
Born–Oppenheimer ansatz, to which the name EF was given in [1], and apply our
treatment to this system whilst also demonstrating its variational and Hamiltonian
structures. In Section 4.2, we consider the exact factorization in the special case
in which the “electronic factor” is given by a two-level system, thus leading us
to introduce the spin density vector and accordingly specialize the geometric
structures. Finally, as a particular case, we consider the exact factorization of the
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Pauli spinor in Section 4.3 and show that this treatment endows the hydrodynamic
form of the Pauli equation with our additional holonomy. This section concludes
with the coupling of the Pauli equation to vortex filament dynamics.

The method of deriving the QHD phase connection implies that it has vanishing
curvature. In Section 5 we show this explicitly and continue to show that in fact
any gauge connection (corresponding to any arbitrary Lie group G) introduced
in this way must have zero curvature. In this more general (nonabelian) case,
we also demonstrate how, for mechanical systems that give rise to connections
through this approach, this zero curvature relation can be relaxed at the level
of the Lagrangian, instead with the connection allowed to possess constant
curvature as an initial condition, exactly as in the abelian case of QHD presented
in Section 2.

2. Phase factors in quantum hydrodynamics

Having reviewed the standard approach to quantum hydrodynamics, including the
interpretation of the quantized circulation condition as monodromy on a principal
bundle, in this section we present an alternative approach in which nontrivial
holonomy is built-in as an initial condition through a new dynamical connection.
The point of departure is that, since the exponential map in U (1) is not one-to-
one, we are motivated to look at phase factors as elementary objects rather than
expressing them as exponentials of Lie algebra elements in u(1)= iR. As we
shall see, this simple step eventually leads to a new method for incorporating
holonomy in quantum hydrodynamics.

2.1. Hamiltonian approach to connection dynamics. Instead of using the stan-
dard polar decomposition of the wavefunction, we begin by writing

ψ(x, t)=
√

D(x, t) θ(x, t), with θ ∈ F(R3,U (1)). (2-1)

By writing explicitly the U (1) factor θ we avoid using the exponential map,
which is not injective and works only with single-valued functions. Furthermore,
this expression for the wavefunction has the advantage of making the (gauge) Lie
group U (1) appear explicitly, allowing us to use the tools of geometric mechanics
[62]. The relation θ∗ = θ−1 allows us to write the Dirac–Frenkel variational
principle (1-5) as

0= δ
ˆ t2

t1

ˆ (
i h̄ Dθ−1∂tθ −

h̄2

2m

(∣∣∇√D
∣∣2+ D|∇θ |2

)
− DV

)
d3x dt . (2-2)

Now, we let the phase factor θ(x, t) evolve according to the standard U (1) action:

θ(x, t)=2(x, t)θ0(x), with 2 ∈ F(R3,U (1)). (2-3)



182 MICHAEL S. FOSKETT AND CESARE TRONCI

In turn, this allows us to rewrite the time derivative as

∂tθ = (∂t22
−1)θ := ξθ , where ξ ∈ F(R3, u(1)), (2-4)

so that ξ(x, t) is a purely imaginary function. We can further evaluate terms
involving the gradient of θ by introducing a connection ν thus:

∇θ =∇2θ0+2∇θ0 =∇22
−1θ −2ν0θ0

=−(−∇22−1
+ ν0)θ =: −νθ, (2-5)

where we have ν0 :=−∇θ0/θ0 and ν= ν ·dx ∈ u(1)⊗�1(R3), the factor�1(R3)

being the space of differential one-forms on R3. Such approaches to introducing
gauge connections have been used in the geometric mechanics literature before,
for example in the study of liquid crystal dynamics [28; 29; 31; 32; 42; 95].
Indeed, we present the general formulation for gauge connections in continuum
mechanical systems in Section 5.

Remark 2.1 (trivial and nontrivial connections). As discussed in the next section,
the gauge connection introduced in this way must have zero curvature. This is
shown by taking the curl of the relation ∇θ = −νθ . In the present approach,
we are exploiting this zero curvature case in order to have a final form of the
QHD Lagrangian. Once variations have been taken in Hamilton’s principle, the
equations will be allowed to hold also in the case of nonzero curvature. This is
a common technique used in geometric mechanics to derive new Lagrangians,
for example used in [16] to generalize the Dirac–Frenkel Lagrangian to include
mixed state dynamics as well as in the study complex fluids [31; 32; 42]. Within
the theory of quantum dynamics, a similar approach was also used by Dirac in

In terms of our newly introduced ξ and ν, our variational principle reads

0= δ
ˆ t2

t1

ˆ (
i h̄ Dξ −

h̄2

2m

(
D|ν|2+

∣∣∇√D
∣∣2)− DV

)
d3x dt , (2-6)

where we have set |ν|2 = ν∗ · ν. At this stage noting that both ξ and ν are purely
imaginary, we define their real counterparts

ξ̄ := i h̄ξ , ν̄ := i h̄ν , (2-7)

so that we can rewrite the variational principle (2-6) as

0= δ
ˆ t2

t1

ˆ
D
(
ξ̄ −
|ν̄|2

2m
−

h̄2

8m
|∇D|2

D2 −V
)

d3x dt =: δ
ˆ t2

t1
`(ξ̄ , ν̄, D) dt . (2-8)
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After computing (δξ̄ , δν̄) = (∂t η̄,−∇η̄) with arbitrary η̄ := i h̄δ22−1, taking
variations with arbitrary δD yields the following general equations of motion:

∂t

(
δ`

δξ̄

)
− div

δ`

δν̄
= 0, ∂t ν̄+∇ ξ̄ = 0,

δ`

δD
= 0 . (2-9)

More specifically, the first equation leads to the continuity equation

∂t D+ div(m−1 Dν̄)= 0, (2-10)

in which we notice how ν̃ := m−1ν̄ plays the role of a fluid velocity. Next, the
third equality in (2-9) becomes

ξ̄ =
|ν̄|2

2m
+ VQ + V , (2-11)

where we recall the quantum potential (1-8). Then, the second in (2-9) leads to

∂t ν̄+∇

(
|ν̄|2

2m
+ VQ + V

)
= 0, (2-12)

which formally coincides with the gradient of (1-7).

Remark 2.2 (Lie–Poisson structure I). The new QHD equations (2-10) and (2-12)
comprise a Lie–Poisson bracket on the dual of the semidirect-product Lie algebra
F(R3)s�1(R3). Specifically, the Lie–Poisson bracket for equations (2-10)–
(2-12) reads

{ f, h} =
ˆ (

δh
δν̄
· ∇

δ f
δD
−
δ f
δν̄
· ∇

δh
δD

)
d3x , (2-13)

while the Hamiltonian is

h(D, ν̄)=
ˆ

D
(
|ν̄|2

2m
+

h̄2

8m
|∇D|2

D2 + V
)

d3x .

The bracket (2-13) arises from a Lie–Poisson reduction on the semidirect-product
group F(R3,U (1)) s�1(R3, u(1)). Here, �1(R3, u(1)) denotes the space of
differential one-forms with values in u(1) ' iR, while the semidirect-product
structure is defined by the affine gauge action ν 7→ ν +2−1

∇2, where 2 ∈
F(R3,U (1)) and ν ∈ �1(R3, u(1)). For further details on this type of affine
Lie–Poisson reduction, see [28; 42].

Before continuing we specify the three different manifestations of the U (1)
connection we use in this paper. Firstly, we introduced the u(1)-valued connection
ν via the relation ∇θ =: −νθ . Then, its real counterpart ν̄ was introduced
via ν̄ := i h̄ν ∈ �1(R3), which, for θ = ei S/h̄ , coincides with ∇S. Finally, in
anticipation of the next section, we define ν̃ ∈�1(R3) by performing a further
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division by the mass, ν̃ := i h̄m−1ν = m−1ν̄. This, corresponding to m−1
∇S in

the standard approach, will serve as the fluid velocity in the QHD picture.
Note how the usual exponential form θ = ei S/h̄ in (2-1) returns ξ̄ = −∂t S

and ν̄ = ∇S, thus transforming equation (2-11) into the standard phase equation
(quantum Hamilton–Jacobi equation) (1-7) of QHD. However, in our approach ν̄
is allowed to have nontrivial curvature, as can be seen from the curl of (2-12):

∂t(∇ × ν̄)= 0 . (2-14)

This relation demonstrates explicitly how, in view of Remark 2.1, the curvature
of the connection ν̄ need not be trivial (unlike ordinary QHD) but is instead
preserved in time. This is one of the main upshots of the present approach. We
will develop this observation in the next section.

2.2. Hydrodynamic equations and curvature. In order to reconcile the new
QHD equations with the Madelung–Bohm construction, this section discusses
the hydrodynamic form of (2-10)–(2-12) in terms of the velocity-like variable ν̃.
As already seen, the continuity equation is naturally rewritten in terms of ν̃ as

∂t D+ div(Dν̃)= 0 . (2-15)

Next, we multiply (2-12) by m−1 and expand the gradient to obtain the hydro-
dynamic-type equation

m(∂t + ν̃ · ∇)ν̃ =−ν̃× (∇ × ν̄)−∇(V + VQ). (2-16)

This equation again clearly demonstrates the importance of not utilizing the
exponential form of the phase as we now have the additional Lorentz-force
term −ν̃× (∇ × ν̄), which is absent in the equation (1-10) of standard quantum
hydrodynamics. Indeed, one sees that this additional term vanishes exactly when
ν̃ is a pure gradient. In the Bohmian interpretation, the Lagrangian fluid paths
(aka Bohmian trajectories) are introduced via the relation η̇(x, t)= ν̃(η(x, t), t),
so that Bohmian trajectories obey the Lagrangian path equation

mη̈ =−η̇×∇ × ν̄−∇x(V + VQ)|x=η(x,t). (2-17)

We observe that a nonzero curvature modifies the usual equation of Bohmian
trajectories by the emergence of a Lorentz-force term. Notice that this term
persists in the semiclassical limit typically obtained by ignoring the quantum
potential contributions.

We continue by writing the fluid equation in terms of the Lie derivative and the
sharp isomorphism induced by the Euclidean metric in the fluid kinetic energy
term in (2-8). We have

m(∂t + £ν̃])ν̃ =−ν̃
]
× (∇ × ν̄)+ 1

2 m∇|ν̃|2−∇(V + VQ). (2-18)
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Then, we obtain Kelvin’s circulation theorem in the form

0=
d
dt

˛
c(t)
ν̃ · dx+

1
m

˛
c(t)
ν̃]× (∇ × ν̄) · dx =

d
dt

˛
c0

ν̃ · dx. (2-19)

Here, c(t) is a loop moving with the fluid velocity ν̃] such that c(0)= c0 and the
last equality follows directly from (2-14). In terms of the geometry of principal
bundles, the last equality tells us that the holonomy of the connection ν must
be constant in time. Since no singularities are involved and ν is assumed to be
differentiable, the last equality in (2-19) is an example of nontrivial holonomy
with trivial monodromy.

We conclude this section with a short comment on helicity conservation. By
taking the dot product of the second equation in (2-9) with ∇ × ν̃,

∂t(ν̃ · ∇ × ν̃)=−m−1 div(ξ∇ × ν̃),

so that hydrodynamic helicity is preserved in time:

d
dt

ˆ
ν̃ · (∇ × ν̃) d3x = 0 . (2-20)

Now that the hydrodynamic Bohmian interpretation has been discussed, it is
not yet clear how this construction is actually related to the original Schrödinger
equation of quantum mechanics. This is the topic of the next section.

2.3. Schrödinger equation with holonomy. In this section, we discuss the rela-
tion between the new QHD framework given by equations (2-10)–(2-12) and the
original Schrödinger equation. As a preliminary step, we consider the Helmholtz
decomposition of ν̄, that is,

ν̄(x, t)=∇s(x, t)+ h̄∇ ×β(x), (2-21)

where β is a constant function to ensure (2-14). Also, we have added the factor h̄
and fixed the Coulomb gauge divβ=0 for later convenience. Notice that although
s appears exactly in the place that S would in the standard Madelung transform
from Section 1.2, here we have used the lowercase letter to emphasize that in this
case we consider s as a single-valued function. The relation (2-21) is reminiscent
of similar expressions for the Bohmian velocity ν̃ already appearing in [12],
although in the latter case these were motivated by stochastic augmentations of
standard quantum theory. One can verify that upon substituting (2-21) into the
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equations of motion (2-9) and (2-10), the latter become

∂t s+
|∇s+ h̄∇ ×β|2

2m
+ V + VQ = 0, (2-22)

∂t D+ div
(

D
∇s+ h̄∇ ×β

m

)
= 0 (2-23)

Here, we have discarded numerical integration factors in the first equation. We
recognize that these correspond to the standard Madelung equations for a free
elementary charge in a magnetic field h̄1β.

We will further characterize the Helmholtz decomposition (2-21) of the con-
nection ν in terms of its defining relation (2-5). In particular, after constructing
the Lagrangian (2-8), ν is then only defined as the solution of ∂tν = −∇ξ in
(2-9). Combining the latter with ∂tθ = ξθ leads to ∂t(ν + θ

−1
∇θ) = 0 so that

direct integration yields

ν =−
∇θ

θ
+ i3(x), (2-24)

for a constant real function 3(x). An immediate calculation then shows that
∇ × (∇θ/θ)= 0. Then, upon moving to the real-valued variables (2-7), direct
comparison to (2-21) yields

∇s =−i h̄
∇θ

θ
, ∇ ×β =−3 . (2-25)

Now that we have characterized the additional terms due to the presence
of nonzero curvature in the Madelung equations, we can use the expressions
above to reconstruct the quantum Schrödinger equation. As we shall see, this
coincides with the equation for ψ =

√
Deis/h̄ , as it arises from the new Madelung

equations (2-22)–(2-23). Introducing R =
√

D in (2-1), we compute

i h̄∂tψ = i h̄(∂t R θ + R ∂tθ)

=

[
−

i h̄
m

(
∇R
R
· ν̄

)
−

i h̄
2m

div ν̄+
|ν̄|2

2m
+ VQ

]
ψ + Vψ , (2-26)

having used the continuity equation in (2-10) to find ∂t R and (2-4) with (2-7)
and (2-11) to find ∂tθ .

We must still manipulate the kinetic energy term to express everything in
terms of ψ . Before continuing we notice that (2-1) leads to

∇ψ = (R−1
∇R+ θ−1

∇θ)ψ, (2-27)

so that, since θ−1
∇θ is purely imaginary,

∇R
R
=

Re(ψ∗∇ψ)
|ψ |2

,
∇θ

θ
=

i Im(ψ∗∇ψ)
|ψ |2

. (2-28)
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Using (2-24) now leads to ν̄ = h̄ Im(ψ∗∇ψ)/|ψ |2− h̄3, so that the right-hand
side of (2-26) can be entirely written in terms of ψ . As shown in Appendix A,
lengthy calculations yield[
−

i h̄
m
∇R
R
· ν̄−

i h̄
2m

div ν̄+
|ν̄|2

2m
+ VQ

]
ψ=−

h̄2

2m
1ψ+

i h̄2

m
3·∇ψ+

h̄2

2m
|3|2ψ.

Putting everything back together we obtain the Schrödinger equation associated
to the modified Madelung equations (2-22)–(2-23):

i h̄∂tψ =

[
(−i h̄∇ − h̄3)2

2m
+ V

]
ψ . (2-29)

Notice how h̄3, corresponding to the constant curvature part of our U (1) con-
nection, appears in the place of a magnetic vector potential in the Schrödinger
equation in which h̄ plays the role of a coupling constant. The quantity h̄3 has
been called the internal vector potential in quantum chemistry [89] and its role
is to incorporate holonomic effects in quantum dynamics. A static version of
equation (2-29) also appeared in Dirac’s work on singular electromagnetic fields
[24].

Remark 2.3 (Lie–Poisson structure II). Going back to Madelung hydrodynamics,
we notice that the introduction of the vector potential 3 leads to writing the
hydrodynamic equation (2-16) in the form

m(∂t + ν̃ · ∇)ν̃ = h̄ν̃×∇ ×3−∇(V + VQ).

In turn, upon recalling the density variable D = R2 and by introducing the
momentum variable µ= m Dν̃+ h̄ D3, the equation above possesses the alter-
native Hamiltonian structure (in addition to (2-13)) given by the hydrodynamic
Lie–Poisson bracket (1-12), although the Hamiltonian (1-11) is now modified to

h(µ, D)=
ˆ (
|µ− h̄ D3|2

2m D
+

h̄2

8m
|∇D|2

D
+ DV (x)

)
d3x .

At this point topological defects may be incorporated by allowing 3 in (2-29)
to satisfy ˛

c0

3 · dx = 2πn; (2-30)

in this case, the present construction reduces to the standard approach to multival-
ued wavefunctions in condensed matter theory; see, e.g., [52]. In the variational
framework, the velocity field ν̃ = δh/δµ (introduced by the reduced Legendre
transform [62]) becomes the fundamental variable, the resulting hydrodynamic
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Lagrangian being

`(ν̃, D)=
ˆ (

1
2

m D|ν̃|2+ h̄ Dν̃ ·3−
h̄2

8m
|∇D|2

D
− DV

)
d3x . (2-31)

Thus, the treatment in this paper may accommodate both geometric and topolog-
ical features depending on the explicit expression of 3.

Motivated by the appearance of the phase connection as a minimal coupling
term in the Schrödinger equation (2-29), it may be useful to include the effect
of an external magnetic field on the quantum system within this new QHD
framework. Then, in the case of a spinless unit charge, the Schrödinger equation
with holonomy reads

i h̄∂tψ =

[
(−i h̄∇ − (h̄3+ A))2

2m
+ V

]
ψ . (2-32)

In this instance3 and A are formally equivalent U (1) gauge connections. Setting
3= 0 in the Hamiltonian operator of (2-32) yields the Aharonov–Bohm Hamil-
tonian, in which case again the magnetic potential has a topological singularity.
However, despite the apparent equivalence between 3 and A, they are related to
essentially different features: while the holonomy associated to A is associated
to the properties of the external magnetic field, the holonomy associated to
3 is intrinsically related to the evolution of the quantum state ψ itself. This
specific difference is particularly manifest in the case of two spinless unit charges
moving within an external magnetic field. Indeed, in that case the 2-particle
wavefunction ψ(x1, x2, t) leads to defining 3(x1, x2) and A(x) on different
spaces, thereby revealing their essentially different nature. At present, we do not
know if this difference plays any role in the two-particle Aharonov–Bohm effect
[84], although we plan to develop this aspect in future work.

2.4. Schrödinger equation with hydrodynamic vortices. In this section, we
show how the present setting can be used to capture the presence of vortices in
quantum hydrodynamics. While the presence of topological vortex singularities
in quantum mechanics has been known since the early days, this problem was
considered in the context of the Madelung–Bohm formulation by Takabayasi
[90; 93; 92] and later by Białynicki-Birula [8; 9]. In the hydrodynamic context,
the vorticity two-form ω is the differential of the Eulerian velocity field so that
in our case ω := ∇ × ν̃. Then, upon using (2-24), one has

ω(x)=−
h̄
m
∇ ×3(x). (2-33)

In this section we wish to introduce the presence of hydrodynamic vortices in
Schrödinger quantum mechanics. To this purpose, we consider a hydrodynamic
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vortex filament of the form

ω(x)= 0

ˆ
Rσ δ(x− R(σ )) dσ , (2-34)

where R(σ ) is the curve specifying the filament, σ is a parametrization of the
curve, Rσ := ∂R/∂σ , and the number 0 is the vortex strength and the expression
0 = 2nπ h̄/m recovers the particular case of quantized vortices [92]. For the
quantization of three-dimensional vortex filaments, we refer the reader to [34].
Here, in order to avoid problems with boundary conditions, we consider the
simple case of vortex rings. Then, inverting the curl operator in (2-33) by using
the Biot–Savart law [83] yields

3(x)=
m
h̄
∇ ×1−1ω =

m0
h̄
∇ ×

ˆ
Rσ G(x− R) dσ , (2-35)

where G(x − y) = −|x − y|−1/(4π) is the convolution kernel for the inverse
Laplace operator 1−1 and we have made use of (2-34). Thus, the Schrödinger
equation (2-29) becomes

i h̄∂tψ =
1

2m

(
−i h̄∇ +m0∇ ×

ˆ
Rσ G(x− R) dσ

)2

ψ + Vψ , (2-36)

where the vortex position appears explicitly. In what follows, we will set 0 = 1
for simplicity without affecting the general treatment.

Since in the present treatment the vorticity is constant, including the motion
of the vortex filament in this description requires the addition of extra features.
In quantum mechanics, the dynamics of hydrodynamic vortices has been given a
Hamiltonian formulation by Rasetti and Regge [76] and it was later developed
in [43; 54; 55; 73; 74; 97]. Then, one can think of exploiting the Rasetti–Regge
approach to let the quantum vortex move while interacting with the quantum
state obeying (2-36). At the level of Hamilton’s variational principle, this method
leads to the following modification of the Dirac–Frenkel Lagrangian in (1-1):

L(R, ∂t R, ψ, ∂tψ)

=
1
3

ˆ
∂t R·R×Rσ dσ

+Re
ˆ

i h̄ψ∗∂tψ−ψ
∗

[
1

2m

(
−i h̄∇+m∇×

ˆ
Rσ G(x−R) dσ

)2

+V
]
ψ d3x ,

(2-37)

where the expression ψ∗[ . . . ]ψ on the last row identifies the Hamiltonian func-
tional h(R, ψ) satisfying Rσ ·δh/δR= 0 (valid for any Hamiltonian of the form
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h = h(ω) [44]) and

Rσ ×
(

Rσ ×
∂R
∂t
−
δh
δR

)
= 0 .

Then, one finds

δh
δR
=−

m
h̄

Rσ ×
δh
δ3

∣∣∣∣
x=R
= h̄ Rσ ×P

(
Im(ψ∗∇ψ)− |ψ |23

)∣∣
x=R ,

where P = Id−∇1−1 div is the Leray projection on the divergence-free part.
The coupled system reads

∂t R = h̄P
(
Im(ψ∗∇ψ)− |ψ |23

)∣∣
x=R + κRσ , (2-38)

i h̄∂tψ =
1

2m
(−i h̄∇ − h̄3)2ψ + Vψ . (2-39)

where 3 is given as in (2-35) and κ is an arbitrary quantity. We also have that
in the presence of vortex filaments the holonomy around a fixed loop c0 can be
expressed as

−h̄
˛

c0

3 · dx = m
ˆ

S0

ˆ
dσ δ(x− R(σ )) Rσ · dS, (2-40)

via Stokes’ theorem, where S0 is a surface whose boundary defines the loop
∂S0 =: c0.

The idea of vortices in quantum mechanics has potentially interesting applica-
tions in the field of quantum chemistry. For example, in the Born–Oppenheimer
approximation, the curvature of the Berry connection is given by a delta function
at the point of conical intersections [50]. Once more, as conical intersections are
topological singularities, the vortex structures generated by a singular Berry con-
nection are quantized. After reviewing the general setting of adiabatic molecular
dynamics, the next section shows how the construction in this paper can be used
to deal with geometric phases in the Born–Oppenheimer approximation.

3. Born–Oppenheimer molecular dynamics

Motivated by the importance of geometric phase effects in quantum chemistry
[14; 33; 50; 80; 81; 82], this section applies the formalism outlined in Section 2
to the field of adiabatic molecular dynamics.

We start our discussion by considering the starting point for all quantum chem-
istry methods, the Born–Oppenheimer ansatz for the molecular wavefunction.
As explained in [22; 65], for example, the molecular wavefunction 9({r}, {x}, t)
for a system composed of N nuclei with coordinates ri and n electrons with
coordinates xa is factorized in terms of a nuclear wavefunction �({r}, t) and a
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time-independent electronic function φ({x}; {r}) depending parametrically on
the nuclear coordinates {r}i=1...N . In the simple case of a single electron and
nucleus, we have 9(r, x, t)=�(r, t)φ(x; r), so that the normalizations of 9
and � enforce

´
|φ(x; r)|2 d3x = 1. Equivalently, upon making use of Dirac’s

notation, we denote |φ(r)〉 := φ(x; r) and write

9(t)=�(r, t) |φ(r)〉 . (3-1)

The partial normalization condition becomes ‖φ(r)‖2 := 〈φ(r)|φ(r)〉 = 1 and
the Hamiltonian operator for the system reads Ĥ =−h̄2 M−11/2 + Ĥe. Here,
M is the nuclear mass and all derivatives are over the nuclear coordinate r . In
addition we have that the electronic state is the fundamental eigenstate of the
electronic Hamiltonian Ĥe, so that Ĥe |φ(r)〉 = E(r) |φ(r)〉. The motivation for
this ansatz comes from the separation of molecular motion into fast and slow
dynamics due to the large mass difference between the electron and nucleus, the
idea for which goes back to the original work of Born and Oppenheimer [18].

3.1. Variational approach to adiabatic molecular dynamics. After applying
the factorization ansatz (3-1) and following some further manipulation involving
integration by parts, the total energy h = Re

´
〈9|Ĥ9〉 d3r of the system reads

h(�)=
ˆ (

�∗
(−i h̄∇ +A)2

2M
�+ |�|2ε(φ,∇φ)

)
d3r , (3-2)

in which we have introduced the Berry connection [5]

A(r) := 〈φ | −i h̄∇φ〉 ∈�1(R3), (3-3)

and defined the effective electronic potential

ε(φ,∇φ) := E +
h̄2

2M
‖∇φ‖2−

|A|2

2M
. (3-4)

Here, we have used the eigenvalue equation of Ĥe, while the last two terms
correspond to the trace of the so-called quantum geometric tensor; see [75]
for details. The appearance of the Berry connection is a typical feature of the
Born–Oppenheimer method, which is well-known to involve nontrivial Berry
phase effects [15; 68; 67]. In order to write the nuclear equation of motion, we
use the Dirac–Frenkel Lagrangian L =

´
i h̄�∗∂t� d3r − h(�) and move to a

hydrodynamical description. In the standard approach, one writes the nuclear
function in the polar form �(r, t)=

√
D(r, t)ei S(r,t)/h̄ . Then, the previous DF

Lagrangian becomes

L(D, S, ∂t S)=
ˆ

D
(
∂t S+

|∇S+A|2

2M
+

h̄2

8M
|∇D|2

D2 + ε(φ,∇φ)

)
d3r . (3-5)
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We notice that the Born–Oppenheimer system is formally equivalent to stan-
dard quantum mechanics in the presence of an external electromagnetic field.
Indeed, the Berry connection A plays the role of the magnetic vector potential
and one has a scalar potential in the form of ε. Hence, the standard interpretation
is to think of the nuclei evolving in an effective magnetic field generated by
the electronic motion. In what follows, we shall adopt Madelung’s hydrody-
namic picture although an alternative approach using Gaussian wavepackets
[56; 38] is reported in Appendix B. Here, we proceed by applying Hamilton’s
principle δ

´ t2
t1

L dt = 0 for arbitrary variations δD and δS, which returns the
Euler–Lagrange equations

∂D
∂t
+ div

(
D
∇S+A

M

)
= 0,

∂S
∂t
+
|∇S+A|2

2M
+ VQ + ε = 0, (3-6)

as usual understood as a quantum Hamilton–Jacobi equation for the nuclear phase
and a continuity equation for the nuclear density |�|2 = D. Next, we follow the
standard approach by introducing v = M−1

∇S. Finally, we write the Madelung
equations in hydrodynamic form in terms of the velocity u := v+M−1A:

∂t D+ div (Du)= 0, M(∂t + u · ∇)u =−u×B−∇(ε+ VQ), (3-7)

where B := ∇ ×A. Notice how in this frame a Lorentz force becomes apparent.
The last equations above capture the nuclear motion completely; however, in

the quantum chemistry literature there are a variety of further specializations
that can be made to the nuclear equation of motion, all aiming to alleviate
computational difficulty. In the remainder of this section we summarize most of
them by considering their subsequent effects on the nuclear fluid equation.

(1) Second order coupling: In the quantum chemistry literature it is often the
case that the second order coupling term, 〈φ|1φ〉, is neglected on the grounds
that it has a negligible effect on the nuclear dynamics [96; 64]. As can be verified
directly upon expanding the real part, one has ‖∇φ‖2 = −Re 〈φ|1φ〉; hence
such an approximation transforms equation (3-4) to

ε(φ,∇φ) := E −
|A|2

2M
,

At this stage, one is left with the Lorentz force acting on the nuclei as well as
the potential given by the sum of the new effective electronic energy and nuclear
quantum potential.

(2) Real electronic eigenstate: Next, we make the assumption that the electronic
eigenstate φ(r) is real-valued, which is valid when the electronic Hamiltonian is
nondegenerate [19; 96]. The immediate consequence of the reality of φ is that
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the Berry connection A := 〈φ| − i h̄∇φ〉 vanishes since the electronic phase is
spatially constant. In this case the nuclear fluid equation becomes

(∂t + u · ∇)u =−M−1
∇(E + VQ). (3-8)

Clearly we still have the nuclear quantum potential as well as the potential energy
surface capturing electron-nuclear coupling.

(3) Quantum potential: As detailed in [25], the quantum potential can also
cause difficulties in numerical simulations. If we also consider neglecting the
quantum potential term VQ , the nuclear hydrodynamic equation can be written
in its simplest form:

(∂t + u · ∇)u =−M−1
∇E . (3-9)

The quantum potential is usually neglected by taking the singular weak limit
h̄2
→ 0 of the Lagrangian (3-5). Then, upon considering the single particle

solution D(r, t)= δ(r − q(t)), the nuclear equation is equivalent to Newton’s
second law M q̈ =−∇E for a conservative force.

It is only after this extreme level of approximation, neglecting all quantum
terms (involving h̄), that one obtains a classical equation of motion for the nuclei,
in which one considers the picture of a nucleus evolving on a single potential
energy surface [22; 96].

Whilst in this section we have considered adiabatic dynamics in the hy-
drodynamic picture via the Madelung transform, one can also proceed with
an alternative approach in which the nuclear wavefunction is modeled by a
frozen Gaussian wavepacket. This idea is presented in Appendix B, where we
demonstrate how employing Gaussian coherent states within the variational
principle (3-5) provides an alternative approach to regularizing the singularities
that are known to arise in Born–Oppenheimer systems.

3.2. Holonomy, conical intersections, and vortex structures. In the context of
the Born–Oppenheimer approximation, our approach to holonomy can be applied
by writing the nuclear wavefunction as in (2-1) while leaving the electronic
wavefunction unchanged. For a real-valued electronic wavefunction, the Berry
connection then vanishes and the Madelung equations (3-6) are replaced by

∂t D+ div(Dν̃)= 0, (3-10)

M(∂t + ν̃ · ∇)ν̃ = h̄ν̃×∇ ×3−∇
(

E +
h̄2

2M
‖∇φ‖2+ VQ

)
. (3-11)

We notice that in the case when the gauge potential 3 is singular, these equations
correspond to those appearing in the Mead–Truhlar method of adiabatic molecular
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dynamics [68]. This is a method to deal with the geometric phase arising from
double-valued electronic wavefunctions produced by the presence of conical
intersections [50; 67; 21]. This is called the molecular Aharonov–Bohm effect
[66]. As double-valued wavefunctions pose relevant computational difficulties,
the Mead–Truhlar method performs a gauge transformation to move the presence
of singularities from the wavefunction to the Berry connection.

To illustrate the setting, we first consider the electronic eigenvalue problem

Ĥe |φn(r)〉 = En(r) |φn(r)〉 (3-12)

and in particular the possibility that the first two separate eigenvalues (known
as potential energy surfaces in the chemistry literature) intersect for a given
nuclear configuration r0, that is E0(r0)= E1(r0). In the previous sections, the
fundamental eigenvalue E0 was simply denoted by E . It is well-known that
such intersections of the energy surfaces often form the shape of a double cone
and are therefore referred to as conical intersections in the quantum chemistry
literature. The nontrivial Berry phase that arises in such situations corresponds
to the fact that the real electronic wavefunction |φ0(r)〉 (previously denoted
simply by |φ(r)〉) is double-valued around the point of degeneracy. The Mead–
Truhlar method exploits the invariance of the electronic eigenvalue problem
under the gauge transformation |φ(r)〉 7→ |φ′(r)〉 = eiζ(r)/h̄

|φ(r)〉 , thereby
redefining the Berry connection according to A 7→A′ =A+∇ζ . Specifically,
one selects ζ such that the phase eiζ/h̄ exactly compensates the double-valuedness
of |φ〉 resulting in the new electronic state |φ′〉 being single-valued [50; 67] and
thus avoiding the need to deal with double-valued functions. However, since
A= 0 (because |φ〉 is real) and eiζ/h̄ must be multivalued, such a transformation
has the cost that the corresponding vector potential A′ = ∇ζ is singular at
the point of the conical intersection. Then, after replacing |φ〉 → |φ′〉, one
obtains equations (3-10)–(3-11) in the case ν̃ = M−1

∇S and h̄3=∇ζ , so that
the problem under consideration becomes equivalent to the Aharonov–Bohm
problem, whence the name “molecular Aharonov–Bohm effect”.

While conical intersections are essentially topological defects, the physical
consistency of these singularities has been recently questioned by Gross and
collaborators [70; 78]. In their work, it is argued that the emergence of these
topological structures is intrinsically associated to the particular type of adiabatic
model arising from the Born–Oppenheimer factorization ansatz. Indeed, the
results in [70; 78] and following papers show that these type of singularities are
absolutely absent in the exact case of nonadiabatic dynamics. This leads to the
question of whether alternative approaches to adiabatic dynamics can be obtained
in order to avoid dealing with conical intersections. Notice that the absence of
these defects does not imply the absence of a geometric phase. Indeed, as the
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Berry connection is not generally vanishing in nonadiabatic dynamics, this leads
to nontrivial holonomy which in turn does not arise from topological singularities.
In this context, a gauge connection associated to hydrodynamic vortices as in
Section 2.4 may be representative of an alternative molecular geometric effect
in which the geometric phase depends on the integration loop. In this case,
one could drop the quantum potential in (3-11) and select the particle solution
D(r, t)= δ(r − q(t)) in (3-10).

However, due to (2-33) and (2-34), this approach would produce a δ-like
Lorentz force in the nuclear trajectory equation, thereby leading to major diffi-
culties.

The latter may be overcome by finding appropriate closures at the level
of Hamilton’s principle. For example, one could use Gaussian wavepackets
as presented in Appendix B. However, here we adopt a method inspired by
previous work in plasma physics [40] and geophysical fluid dynamics [41].
Let us start with the hydrodynamic Lagrangian, of the type (2-31), underlying
equations (3-10)–(3-11):

`(D, ν̃)=
ˆ

D
(
M |ν̃|2/2+ h̄ν̃ ·3− VQ − ε

)
d3r.

Here, the Eulerian variables D(r, t) and ν̃(r, t) are related to the Lagrangian
fluid path η(r, t) (Bohmian trajectory) by the relations η̇(r, t)= ν̃(η(r, t), t) and
D(η(r, t), t) d3η(r, t) = D0(r) d3r . If we now restrict the Bohmian trajectory
to be of the type η(r, t) = r + q(t), we have ν̃(r, t) = q̇(t) and D(r, t) =
D0(r − q(t)). Since in this case

´
DVQ d3r = const., the Lagrangian `(D, ν̃)

then becomes

L(q, q̇)=
M
2
|q̇|2+

ˆ
D0(r − q)

[
h̄q̇ ·3(r)− ε(r)

]
d3r . (3-13)

Here, D0 is typically a Gaussian distribution and we recall that we are considering
the case of a real electronic wavefunction, so that A= 0 in the definition of ε
(3-4). Then, one obtains the Euler–Lagrange equation

M q̈ = h̄q̇×∇ ×
ˆ

D0(r − q)3(r) d3r −∇
ˆ
ε(r)D0(r − q) d3r , (3-14)

where 3 is given as in (2-35). (This method was recently applied to the Jahn–
Teller problem by one of us in [77], where it was shown to recover some recent
results obtained from exact nonadiabatic treatments [79].) We see that the nuclear
density acts as a convolution kernel regularizing both the connection 3 and the
potential energy surface appearing in ε. For example, this method could be used
to regularize topological singularities arising from conical intersections. Then,
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the geometric phase and the regularized potential energy surface read

−h̄
˛

c0

ˆ
d3r ′ D0(r ′− r)3(r ′) · dr and

ˆ
d3r ′ D0(r ′− r)E(r ′).

Also, in the present context, the self-consistent vortex evolution may be in-
cluded upon constructing a Rasetti–Regge type Lagrangian by the replacement
L(q, q̇)→ L(q, q̇)+ 1

3

´
∂t R·R×Rσ dσ , similarly to the approach in Section 2.4.

In this case, the vortex evolution equation reads ∂t R = M D0(R− q)q̇+ κRσ .

4. Exact wavefunction factorization

4.1. Nonadiabatic molecular dynamics. While the Born–Oppenheimer approxi-
mation has been very successful in the modeling of adiabatic molecular dynamics,
many processes in both chemistry and physics involve quantum electronic transi-
tions. In this case, the Born–Oppenheimer approximation breaks down so that
nonadiabatic processes require a new modeling framework. In this context, the
molecular wavefunction 9(r, x, t) in (3-1) is expanded in the basis provided by
the spectral problem (3-12) so that the resulting series expansion is known as
Born–Huang expansion [17]. While this expansion is the basis for several ab initio
methods in nonadiabatic molecular dynamics, an alternative picture, originally
due to Hunter [48], has recently been revived by Gross and collaborators [1]. In
this alternative picture, the exact solution of the molecular Schrödinger equation
is written by allowing the electronic wavefunction in (3-1) to depend explicitly
on time, that is

9(t)=�(r, t) |φ(r, t)〉 . (4-1)

Going back to von Neumann [71], this type of wavefunction factorization also
represents the typical approach to Pauli’s equation for charged particle dynamics
in electromagnetic fields [91]. In this context, the electronic coordinates are
replaced by the spin degree of freedom while the nuclear coordinates are replaced
by the particle position coordinate. In more generality, the exact factorization
picture is applicable in a variety of multi-body problems in physics and chemistry.
In this section, we investigate the role of holonomy in the exact factorization
picture. Then, when the holonomy arises from a delta-like curvature, we shall
present how the quantum hydrodynamics with spin is modified by the presence of
vortex filaments. Before moving on to the Pauli equation, here we shall present
the general hydrodynamic equations arising from the exact factorization (4-1).

The typical Hamiltonian for the total system is written as

Ĥtot =−
h̄2

2M
1+ Ĥ(r) (4-2)

so that, after rearrangement, replacing (4-1) in the Dirac–Frenkel Lagrangian
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L = Re
´
〈9|(i h̄∂t − Ĥtot)9〉 d3r leads to the exact factorization Lagrangian

L = Re
ˆ

i h̄
(
�∗∂t�+ |�|

2
〈φ|∂tφ〉

)
d3r

−

ˆ (
1

2M
�∗(−i h̄∇ +A)2�+ |�|2

(
〈φ|Ĥφ〉+

h̄2

2M
‖∇φ‖2−

|A|2

2M

))
d3r ,

(4-3)

where the second line identifies (minus) the expression of the total energy and
we recall (3-3). Notice that we have not enforced the partial normalization
condition ‖φ(r)‖2= 1 in the variational principle, although this condition can be
verified to hold a posteriori after taking variations. When dealing with molecular
problems, |φ〉 = φ(x, t; r) is a time-dependent electronic wavefunction [1] and
Ĥ(r) is the electronic Hamiltonian in (3-12) from Born–Oppenheimer theory.
On the other hand, if we deal with 1

2 -spin degrees of freedom, |φ〉 = |φ(r, t)〉 is
a two-component complex vector parametrized by the coordinate r , while Ĥ(r)
is of the form Ĥ(r)= a(r)+ b(r) · σ̂ and σ̂ denotes the array of Pauli matrices
σ̂ = (σ̂x , σ̂y, σ̂z).

At this point, the standard approach to QHD requires replacing the polar form
of � in (4-3). If instead we adopt the method developed in Section 2 and write �
as in (2-1), we obtain the following hydrodynamic Lagrangian of Euler–Poincaré
type [45]:

`(D, ξ̄ , ν̄, |φ〉)=
ˆ

D
(
ξ̄ −
|ν̄+A|2

2M
−

h̄2

8M
|∇D|2

D2 +8

+〈φ|Ĥφ〉−
h̄2

2M
‖∇φ‖2+

|A|2

2M

)
d3r , (4-4)

where 8(r) := 〈φ|i h̄∂tφ〉. At this stage one can compute the corresponding
equations of motion.

Upon introducing the hydrodynamic velocity v and the matrix density ρ̃,

v(r, t)= M−1(ν̄+A) and ρ̃(r, t)= D|φ〉〈φ|, (4-5)

we obtain the hydrodynamic equations in the form

∂t D+ div(Dv)= 0, (4-6)

M D(∂t + v · ∇)v

= h̄ Dv×∇ ×3+ D∇VQ −〈ρ̃|∇ Ĥ〉−
h̄2

2M
∂ j
(
D−1
〈∇ρ̃|∂ j ρ̃〉

)
, (4-7)

i h̄(∂t ρ̃+ div(ρ̃v))=
[

Ĥ −
h̄2

2M
div(D−1

∇ρ̃), ρ̃

]
. (4-8)
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Here, we have used the notation

〈A(r)|B(r)〉 = Tr(A(r)† B(r)),

where Tr denotes the matrix trace.
Interestingly, as shown in [25] for an equivalent variant of these equations, this

system can also be derived via the standard Euler–Poincaré variational principle
for hydrodynamics (as presented earlier in Section 1.2) in which the Eulerian
quantities D(r, t) and v(r, t) are related to the Lagrangian (Bohmian) trajectory
η(r, t) by the relations

η̇(r, t)= v(η(r, t), t) and D(η(r, t), t) d3η(r, t)= D0(r) d3r.

In this instance, as seen before, equations (4-6)–(4-8) correspond to a Lagrangian
of the type as given by (2-31), here written as

`(v, D, 4, ρ̃)

=

ˆ (
1
2

M D|v|2+ h̄ Dv ·3+
h̄2

8M
|∇D|2

D
+〈ρ̃, i h̄4− Ĥ〉−

h̄2

4M
‖∇ρ̃‖2

D

)
d3r ,

(4-9)

in which 4(r, t) is defined by the Schrödinger equation

∂tU (r, t)=4(η(r, t), t)U (r, t)

for the propagator U (r, t)with ρ̃(η(r, t), t) d3η(r, t)=U (r, t)ρ̃0(r)U †(r, t) d3r .
Then, applying Hamilton’s principle by combining the variations

δD =− div(Dw), δv = ∂tw+ (v · ∇)w− (w · ∇)v , (4-10)

δρ̃ = [ϒ, ρ̃] − div(ρ̃w), δ4= ∂tϒ + [ϒ,4] −w · ∇4+ v · ∇ϒ , (4-11)

with the auxiliary equations ∂t D + div(Dv) = 0 and ∂t ρ̃ + div(ρ̃v) = [4, ρ̃]
returns equations (4-6)–(4-8). Here, w and ϒ are both arbitrary and vanish at
the endpoints. In the special case when 3 = 0, a detailed presentation of this
approach can be found in [25].

Remark 4.1 (semidirect product Lie–Poisson structure). Upon defining m :=
M Dv+ h̄ D3, equations (4-6)–(4-8) acquire the following Poisson structure:

{ f, g}(m, D, ρ̃)=
ˆ

m ·
(
δg
δm
· ∇

δ f
δm
−
δ f
δm
· ∇

δg
δm

)
d3r

−

ˆ
D
(
δ f
δm
·∇

δg
δD
−
δg
δm
·∇
δ f
δD

)
d3r

−

ˆ 〈
ρ̃,

i
h̄

[
δ f
δρ̃
,
δg
δρ̃

]
+
δ f
δm
·∇
δg
δρ̃
−
δg
δm
·∇
δ f
δρ̃

〉
d3r , (4-12)
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which is accompanied by the Hamiltonian functional

h(m, D, ρ̃)

=

ˆ (
|m− h̄ D3|2

2M D
−

h̄2

8M
|∇D|2

D
+〈ρ̃, Ĥ〉+

h̄2

4M
‖∇ρ̃‖2

D

)
d3r . (4-13)

We remark here that the change of variables ρ̃→ i h̄ρ̃ takes the bracket (4-12)
into a Lie–Poisson bracket on the dual of the semidirect-product Lie algebra
X(R3)s

(
F(R3)⊕ F(R3, u(He))

)
.

4.2. Exact factorization for electronic two-level systems. Instead of treating
infinite-dimensional two-particle systems, the remainder of this paper studies the
case in which the electronic state is represented by a two-level system, so that

ρ̃(r, t)=
D(r, t)

2

(
1+

2
h̄

s(r, t) · σ̂
)
=:

1
2

(
D(r, t)1+

2
h̄

s̃(r, t) · σ̂
)
,

where s is the spin vector as described in [7; 13; 11; 91], given by s= h̄ 〈φ|σ̂φ〉 /2
and satisfying |s|2 = h̄2/4, and 1 is the 2× 2 identity operator. In addition, the
Hamiltonian operator reads Ĥ = a(r)1 + b(r) · σ̂ . Under these changes of
variables, equations (4-6)–(4-8) become

∂t D+ div(Dv)= 0, (4-14)

M D(∂t + v · ∇)v

= h̄ Dv×∇×3− D∇a− 2
h̄
∇b · s̃+M−1∂ j (s̃ · ∇(D−1∂ j s̃)), (4-15)

h̄M(∂t s̃+ div(v s̃))= s̃×
(
h̄ div(D−1

∇ s̃)− 2Mb
)
. (4-16)

For example, in the case of the spin-boson model, one has a(r) = Mω2r2/2
and b(r)= (D, 0,C · r)/2, where C and D are time-independent and spatially
constant.

Then, equations (4-14)–(4-16) possess the Euler–Poincaré Lagrangian

`(v, D,4, s̃)

=

ˆ (
1
2

M D|v|2+ D(h̄v ·3− a)+ s̃ ·
(
4−

2
h̄

b
)
−
|∇ s̃|2

2M D

)
d3r , (4-17)

where4=−i4·σ/2, having used the Lie algebra isomorphism (su(2), [ · , · ])∼=
(R3 , · × · ) [62], with the variations (4-10) as well as

δ s̃ =ϒ × s̃− div(w s̃), δ4= ∂tϒ +ϒ ×4−w · ∇4+ v · ∇ϒ .

Here, ϒ(r, t) is arbitrary and vanishing at the endpoints. We notice that in
using the variable s̃ := Ds, the quantum potential term has been absorbed in the
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Lagrangian and correspondingly no longer appears explicitly in the hydrodynamic
equation of motion (4-15).

Analogously, in the case of electronic two-level systems, the Lie–Poisson
bracket (4-12) becomes

{ f, g}(m, D, s̃)=
ˆ

m ·
(
δg
δm
· ∇

δ f
δm
−
δ f
δm
· ∇

δg
δm

)
d3r

−

ˆ
D
(
δ f
δm
· ∇

δg
δD
−
δg
δm
· ∇

δ f
δD

)
d3r

−

ˆ
s̃ ·
(
δ f
δ s̃
×
δg
δ s̃
+
δ f
δm
· ∇
δg
δ s̃
−
δg
δm
· ∇
δ f
δ s̃

)
d3r . (4-18)

This is accompanied by the Hamiltonian

h(D,m, s̃)=
ˆ (
|m− h̄ D3|2

2M D
+
|∇ s̃|2

2M D
+

2
h̄

b · s̃+ Da
)

d3r , (4-19)

where we recall the definition m := M Dv+ h̄ D3.

4.3. The Pauli equation with hydrodynamic vortices. Having considered a spin-
less particle in a magnetic field in Section 2.3, here we broaden our treatment to
include particles with spin. To do so, one must consider the Pauli equation which
captures the interaction of the particle’s spin with an external electromagnetic
field. Firstly, to describe a spin-1

2 particle (of charge q = 1, mass M), one
considers the two-component spinor wavefunction

9(r)=
(
91(r)
92(r)

)
, (4-20)

where now 9 ∈ L2(R3)⊗C2 and is normalized such that
´
9†9 d3r = 1. Then,

the dynamics are given by the Pauli equation which amounts to the Schrödinger
equation i h̄∂t9 = Ĥtot9 with the Hamiltonian operator

Ĥtot =
(−i h̄∇ − A)2

2M
−

h̄
2M

B · σ̂ + V 1, (4-21)

in which A(r) is the constant magnetic potential, B := ∇ × A is the magnetic
field and V (r) is a scalar potential.

In order to proceed with the method proposed in the previous section, we follow
the idea outlined in [88; 13; 11] and decompose the spinor wavefunction into the
form 9 =

√
D(r, t)θ(r, t) |φ(r, t)〉 (here we use the Dirac notation convention

for the “electronic factor”), in which φ satisfies the partial normalization condition
〈φ(r)|φ(r)〉=:‖φ(r)‖2=1. Clearly, we are in the situation described in Sections
4.1 and 4.2 so that, upon absorbing the additional external magnetic field, the
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fluid velocity (4-5) now reads

v = M−1(ν̄+A− A), (4-22)

and one can immediately specialize the results from the previous section, so that
the Lagrangian (4-17) becomes

`(v, D,4, s̃)

=

ˆ (
1
2

M D|v|2+ Dv · (h̄3+ A)− DV + s̃ · (4+M−1 B)−
|∇ s̃|2

2M D

)
d3r .

(4-23)

In turn, this produces the equations of motion

∂t D+div(Dv)= 0, (4-24)

M D(∂t+v ·∇)v

= h̄ Dv×∇×3−D∇V+M−1
∇B · s̃+M−1∂ j (s̃·∇(D−1∂ j s̃)), (4-25)

M(∂t s̃+div(v s̃))= s̃×
(

div(D−1
∇ s̃)+B

)
. (4-26)

In the special case of 3= 0, this agrees with the results of [91] upon changing
variables back to s = s̃/D. In more generality, the corresponding circulation
theorem for a loop c(t) moving with the fluid velocity v reads

d
dt

˛
c(t)
(Mv+h̄3+A)·dr =

d
dt

˛
c(t)

A·dr

=−
1

M D

˛
c(t)

(
∇ s̃·(B+div(D−1

∇ s̃))
)
·dr , (4-27)

which, as in [25], gives an expression for the time evolution of the Berry phase,
here governed by the external magnetic field and spin degrees of freedom.

Remark 4.2 (Mermin–Ho relation and Takabayasi vector). In general, the circu-
lation around a fixed loop c0 (with a surface S0 such that its boundary defines
the loop ∂S0 =: c0) reads
˛

c0

v · dr =
ˆ

S0

∇ × v · dS= M−1
ˆ

S0

(
h̄
2

T − h̄∇ ×3− B
)
· dS, (4-28)

where T := εi jkni∇n j × ∇nk and n := 2s/h̄ is the Bloch vector field. The
relation ∇ ×A= h̄T/2 underlying (4-28) first appeared in Takabayasi’s work
[91] in 1955, hence later motivating the name Takabayasi vector [7], and can
more explicitly be written in components as

Tc = εi jkεabcni (∂an j )(∂bnk)= 2iεabc
(
〈∂bφ|∂aφ〉− 〈∂aφ|∂bφ〉

)
=

2
h̄
Bc , (4-29)
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relying on the definition ni = 〈φ|σiφ〉 = φ
∗
a (σi )abφb and the property

εi jk(σi )ab(σ j )cd(σk)e f = 2i(δa f δcbδed − δadδc f δeb).

Despite Takabayasi’s work, the equality 2h̄−1
∇×A= εi jkni∇n j ×∇nk is more

commonly known as the Mermin–Ho relation [69] after its appearance in the
context of superfluids two decades later. For applications of the Mermin–Ho
relation in the more general context of complex fluids, see also [42].

In [93], Takabayasi pointed out the existence of vortex structures in spin
hydrodynamics starting from the analysis of the Pauli equation and his work
was later revived in [7], where it was extended to comprise the relativistic
Weyl equation. Motivated by these old works and proceeding in analogy with
the previous sections, here we shall discuss the Rasetti–Regge dynamics of
hydrodynamic vortices upon extending the arguments in Section 2.4. To do so,
we write the Rasetti–Regge hydrodynamic Lagrangian

¯̀(R, ∂t R, v, D,4, s̃)= 1
3

ˆ
∂t R · R× Rσ dσ + `(v, R, D,4, s̃), (4-30)

where ` is obtained upon replacing (2-35) in (4-23). The resulting vortex equation
of motion is ∂t R=M(Dv)r=R+κRσ (where as before κ is an arbitrary quantity),
complemented by the hydrodynamic form of the Pauli equations (4-24)–(4-26),
in which again 3 is written in terms of the vortex filament according to (2-35).

Remark 4.3 (Pauli equation with hydrodynamic vortices). Naturally, this con-
struction can also be applied to the full Pauli spinor 9(r, t), in which case one
writes the Rasetti–Regge Dirac–Frenkel Lagrangian

L(R, ∂t R, 9, ∂t9)

=
1
3

ˆ
∂t R · R× Rσ dσ

+Re
ˆ (

i h̄9†∂t9 −9
†
[
(−i h̄∇ − (h̄3+ A))2

2M
−

h̄
2M

B · σ̂ + V
]
9

)
d3r ,

(4-31)

so that the coupled system reads

∂t R = h̄P
(
Im(9†

∇9)− |9|2(3+ h̄−1 A)
)∣∣

r=R + κRσ , (4-32)

i h̄∂t9 =
1

2M
(−i h̄∇ − (h̄3+ A))29 −

h̄
2M

B · σ̂ 9 + V 9. (4-33)

Upon expanding 9 in terms of the exact factorization and recalling the definition
of the velocity (4-22), we see the agreement in the vortex equations. Upon
performing a long calculation similar to Appendix A, one can also reconstruct
the Pauli equation given here from the hydrodynamic equations (4-24)–(4-26).
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5. Nonabelian generalizations

As mentioned in Remark 2.1, the QHD gauge connection ν from Section 2 was
introduced by following an approach that invokes zero curvature, i.e., ∇× ν = 0,
although this relation was later relaxed to comprise a nonzero initial curvature. In
this section, motivated by the appearance of the differential of the spin vector ∇s
appearing in the previous sections, we shall include the possibility of nonabelian
groups, therefore extending our treatment to a whole class of models employing
the general relation ∇n =−γ n, where n ∈F(R3,M) is an order parameter field
and γ is a gauge connection corresponding to an arbitrary gauge group F(R3,G),
where G acts on M . Nevertheless, even though the relation ∇n = −γ n again
implies zero curvature, the equations resulting from Hamilton’s principle still
allow for a more general nontrivial connection whose curvature again arises as
an initial condition.

To begin, we consider the previous treatment of QHD. We consider a U (1)
connection defined by ∇θ =−νθ , (2-5), and see that this definition immediately
implies that the connection has zero curvature. Indeed, one has 0= ∇ ×∇θ =
−∇ × (νθ)=−(∇ × ν)θ , so that ∇ × ν = 0.

Now we consider the more general case of an order parameter n ∈ F(R3,M)
(where at this point M is an arbitrary manifold) whose evolution is given by an
element g of the Lie group F(R3,G),

n(x, t)= g(x, t)n0(x). (5-1)

Then, one can construct a gauge connection γ from the gradient of n as follows:

∇n =∇gn0+ g∇n0

=∇g g−1n− gγ0n0

=−(−∇g g−1
+ gγ0g−1)n =: −γ n , (5-2)

and we have ∇n =−γ n. Here, we show that such a relation must mean that the
connection is trivial, i.e., has zero curvature: �i j =∂iγj−∂jγi+[γi , γj ]. Writing
our defining relation in terms of differential forms as dn =−γ n, we compute

0= d2n =−d(γ j n dx j )

=−
(
(∂[iγ j])n+ γ[ j (∂i]n)

)
dx i
∧ dx j

=−(∂[iγ j]− γ[ jγi])n dx i
∧ dx j

=−
1
2(∂iγ j − ∂ jγi + γiγ j − γ jγi )n dx i

∧ dx j

=−
1
2�i j n dx i

∧ dx j

=−�n , (5-3)
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where the square brackets denote index antisymmetrization. At this point, we
observe that since γ := −∇g g−1

+ gγ0g−1, then

�= g�0g−1

and it follows that 0 = �0n0. Thus, we end up in a situation in which either
�0 = 0 thus rendering � = dγ γ = 0 for all time, or n0 belongs to the kernel
of �0, a statement that we cannot impose in general. As a specific example
of this relation, reconsider the material involving the spin vector in Section 4.
There, the order parameter is the spin vector s ∈ F(R3,R3) which evolves under
the action of the rotation group G = SO(3) so that g = R(x, t) and the above
formula specialize to

s(x, t)= R(x, t)s0(x), (5-4)

∇s =−γ̂ s =−γ × s , (5-5)

0= �̂s =�× s , (5-6)

having used the Lie algebra isomorphism (hat map)

(so(3), [ · , · ])∼= (R3, · × · ).

Despite this result, we now turn our attention to the particular step in which
the gauge connection is introduced in the Lagrangian of a field theory. As an
example, consider a Lagrangian of general type

`= `(n, ṅ,∇n),

where n ∈ F(R3,M). For example, in the case of the Ericksen–Leslie theory
of liquid crystal nematodynamics, we have M = S2 [31; 32]. According to the
previous discussion one can let n evolve under local rotations g ∈ F(R3,G),
so that n(t) = g(t)n0. This leads to introducing a gauge connection such that
∇n =−γ n. In turn, the latter relation can be used to obtain a new Lagrangian
of the form ` = `(n, ξ, γ ), where ξ := ġg−1. Then, the Hamilton’s principle
associated to this new Lagrangian produces a more general set of equations in
which γ is allowed to have a nonzero curvature (constant if the gauge group
is abelian), as it appears by taking the covariant differential dγ = d+ γ of the
evolution equation ∂tγ + dξ = [ξ, γ ] thereby producing ∂t� = [ξ,�]. Notice
that, while one has (∂t − ξ)(dn+ γ n)= 0, allowing for a nontrivial connection
enforces the presence of an M-valued one-form φ(t) = g(t)φ0 ∈ �

1(R3,M)
such that dn(t)+γ (t)n(t)= φ(t) 6= 0. This observation (basically amounting to
∇n0 6= −γ0n0) offers a general method for constructing defect theories whose
defect topology does not depend on time. This is precisely the approach that we
followed in Section 2 and applied in the following sections.
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6. Conclusions

This paper has introduced a new method for introducing holonomy in quantum
hydrodynamics. Upon focusing on single-valued phase-factors rather than multi-
valued phases, we have shown how a constant nonzero curvature can be naturally
included to incorporate a nontrivial geometric phase in Madelung’s equations.
Also, it was shown how this method corresponds to simply applying minimal
coupling at the level of Schrödinger’s equation. In turn, this new picture led to
the possibility of dealing with vortex singularities in the hydrodynamic vorticity.
While topological singularities may be captured by the present treatment, our
attention focused on vortex filaments of hydrodynamic type. By using the
Rasetti–Regge framework, coupled equations were presented for the evolution
of a Schrödinger wavefunction interacting with a hydrodynamic vortex filament.

As a first application of our approach, we considered the Born–Oppenheimer
approximation in adiabatic molecular dynamics. After reviewing the variational
setting of adiabatic dynamics, we presented the standard approach along with a
modified approach presented in Appendix B and exploiting Gaussian wavepackets.
Remarkably, in the latter approach, conical intersections are filtered by the
Gaussian convolution kernel so that the nuclear motion occurs on a smoothed
electron energy surface in agreement with the recent proposal by Gross and
collaborators [70; 78]. A similar approach was then used on the variational
side to incorporate vortex singularities in the Born–Oppenheimer approximation
so that nuclei interact with a hydrodynamic vortex incorporating molecular
geometric phase effects.

Last, the treatment was extended to the exact factorization of wavefunctions
depending on more than one set of coordinates. Recently revived within the chem-
ical physics community, this method has been widely used in the literature on the
Pauli equation for a spin particle in an electromagnetic field. After reviewing the
theory in both its variational and Hamiltonian variants, we specialized to consider
the case of electronic two-level systems thereby studying the dynamics of the
spin density vector. Finally, motivated by previous work by Takabayasi, we used
this setting to include vortex filament dynamics in the quantum hydrodynamics
with spin.

Appendix A. Schrödinger reconstruction calculation

This appendix presents the explicit calculations that reconstruct the Schrödinger
equation from the QHD equations in Section 2. We begin with the expansion

i h̄∂tψ = i h̄(∂t R θ + R ∂tθ).
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Then, we find ∂t R from (2-10) as

∂t R =−∇R ·
ν̄

m
−

R
2m

div ν̄ .

Next, using (2-9) and (2-11), we can also compute ∂tθ and obtain

∂tθ =−
i
h̄

(
|ν̄|2

2m
+ V + VQ

)
θ .

Hence, at this stage the Schrödinger equation reads

i h̄∂tψ =

[
−

i h̄
m

(
∇R
R
· ν̄

)
−

i h̄
2m

div ν̄+
|ν̄|2

2m
+ VQ

]
ψ + Vψ .

Clearly, we must manipulate the kinetic term to get back to ψ . To do so, we
recall the relations

∇R
R
=

Re(ψ∗∇ψ)
|ψ |2

, ν̄ =
h̄ Im(ψ∗∇ψ)
|ψ |2

− h̄3,

VQ =−
h̄2

2m

(
|∇R|2

R2 + div
∇R
R

)
,

and compute term by term. Firstly,

−
i h̄
m

(
∇R
R
· ν̄

)
=−

i h̄2

m
Re(ψ∗∇ψ) · Im(ψ∗∇ψ)

|ψ |2 |ψ |2
+

i h̄2

m
Re(ψ∗∇ψ)
|ψ |2

·3 .

Secondly,

−
i h̄
2m

div ν̄

=−
i h̄2

2m

(
∇((ψ∗ψ)−1) · Im(ψ∗∇ψ)+��

��
���

�: 0
Im(∇ψ∗ · ∇ψ)
|ψ |2

+
Im(ψ∗1ψ)
|ψ |2

)
=−

i h̄2

2m

(
−(ψ∗ψ)−2(∇ψ∗ψ +ψ∗∇ψ) · Im(ψ∗∇ψ)+

Im(ψ∗1ψ)
|ψ |2

)
=−

i h̄2

2m
Im(ψ∗1ψ)
|ψ |2

+
i h̄2

m
Re(ψ∗∇ψ) · Im(ψ∗∇ψ)

|ψ |2 |ψ |2
,

where in the second line we have used that 3 = −∇ × β so that its gradient
vanishes. Thirdly,

|ν̄|2

2m
=

h̄2

2m
Im(ψ∗∇ψ) · Im(ψ∗∇ψ)

|ψ |2 |ψ |2
−

h̄2

m
Im(ψ∗∇ψ)
|ψ |2

·3+
h̄2

2m
|3|2 .
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Finally, letting K = Re(ψ∗∇ψ) to lighten notation,

VQ =−
h̄2

2m

(
K · K
|ψ |2 |ψ |2

+
Re(∇ψ∗ · ∇ψ)
|ψ |2

+
Re(ψ∗1ψ)
|ψ |2

+∇((ψ∗ψ)−1) · K
)

=−
h̄2

2m

(
K · K
|ψ |2 |ψ |2

+
|∇ψ |2

|ψ |2
+

Re(ψ∗1ψ)
|ψ |2

− 2
K · K
|ψ |2 |ψ |2

)
=−

h̄2

2m

(
−

K · K
|ψ |2 |ψ |2

+
|∇ψ |2

|ψ |2
+

Re(ψ∗1ψ)
|ψ |2

)
.

All together the kinetic term reads

−
i h̄
m

(
∇R
R
· ν̄

)
−

i h̄
2m

div ν̄+
|ν̄|2

2m
+ VQ

=−
h̄2

2m

(
Re(ψ∗1ψ)
|ψ |2

+
i Im(ψ∗1ψ)
|ψ |2

)
+

i h̄2

m

(
Re(ψ∗∇ψ)
|ψ |2

+
i Im(ψ∗∇ψ)
|ψ |2

)
·3+

h̄2

2m
|3|2

+
h̄2

2m
Re(ψ∗∇ψ) ·Re(ψ∗∇ψ)

|ψ |2 |ψ |2

+
h̄2

2m
Im(ψ∗∇ψ) · Im(ψ∗∇ψ)

|ψ |2 |ψ |2
−

h̄2

2m
|∇ψ |2

|ψ |2
,

at which point we rewrite the following terms:

h̄2

2m
Re(ψ∗∇ψ) ·Re(ψ∗∇ψ)

|ψ |2 |ψ |2
+

h̄2

2m
Im(ψ∗∇ψ) · Im(ψ∗∇ψ)

|ψ |2 |ψ |2
=

h̄2

2m
|ψ∗∇ψ |2

|ψ |2 |ψ |2

=
h̄2

2m
|∇ψ |2

|ψ |2
,

and after cancellations one is left with

−
i h̄
m

(
∇R
R
· ν̄

)
−

i h̄
2m

div ν̄+
|ν̄|2

2m
+VQ =−

h̄2

2m
1ψ

ψ
+

i h̄2

m
∇ψ

ψ
·3+

h̄2

2m
|3|2 .

Multiplying by ψ and factorizing returns the desired result.

Appendix B. Adiabatic dynamics with Gaussian wavepackets

Whilst the main focus of this paper revolves around employing hydrodynamic
descriptions of quantum mechanics, in this appendix we approach the adiabatic
problem in quantum chemistry through the use of frozen Gaussian wavepackets
at the level of the variational principle.

In line with the adiabatic separation of nuclei and electrons, we model the
nuclear wavefunction �(r, t) via a Gaussian wavepacket, which corresponds to
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the following replacements in the standard Madelung transform �=
√

Dei S/h̄ :

D(r, t)= D0(r − q(t)), S(r, t)= p(t) · (r − q(t)/2), (B-1)

where D0 is a Gaussian of constant width (frozen). This implies that ∇S = p so
that the Born–Oppenheimer total energy, corresponding to the Lagrangian (3-5),
reads

h =
ˆ

D0(r − q)
(
| p+A|2

2M
+

h̄2

8M
|∇D0(r − q)|2

D0(r − q)2
+ ε(φ,∇φ)

)
d3r

=

ˆ
D0(r − q)

(
| p+A|2

2M
+ ε(φ,∇φ)

)
d3r + const, (B-2)

where we have noticed that the quantum potential term collapses to an irrelevant
constant. At this stage, we invoke the commonly used approximation neglecting
the second order coupling h̄2

‖∇φ‖2/(2M) in (3-4) so that upon expanding the
effective potential the total energy is

h =
| p|2

2M
+M−1 p ·A + E , (B-3)

where we have defined

A(q)=
ˆ

D0(r − q)A(r) d3r , E(q)=
ˆ

D0(r − q)E(r) d3r .

Then, upon performing the Legendre transform M q̇ = p+A(q), one obtains

L(q, q̇)=
M
2
|q̇|2− q̇ ·A(q)− ε̄(q), (B-4)

where we have defined

ε̄(q) := E(q)−
1

2M

∣∣A(q)∣∣2 .
Since both the energy surface and the Berry connection are smoothened by a
Gaussian convolution filter, we notice that the resulting equation of motion

M q̈ =−q̇×∇q ×A(q)−∇q ε̄(q)

is entirely regularized so that conical singularities are smoothened by the Gaussian
convolution.
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Surfaces of locally minimal flux
ROBERT S. MACKAY

In memory of John Mather (9 June 1942 – 28 January 2017).

For exact area-preserving twist maps, curves were constructed through the
gaps of cantori, which were conjectured to have minimal flux subject to passing
through the points of the cantorus. It was pointed out by Polterovich (1988)
that these curves do not have minimal flux if there coexists a rotational invariant
circle of a different rotation number, but if hyperbolic they do have locally
minimal flux even without the constraint of passing through the points of the
cantorus. Following the criterion of MacKay (1994) for surfaces of locally
minimal flux for 3D volume-preserving flows, I revisit this result and show
that in general the analogous curves through the points of rotationally ordered
periodic orbits or their heteroclinic orbits do not have locally minimal flux.
Along the way, various questions are posed. Some results for more degrees of
freedom are summarised.

1. Introduction

An exact area-preserving twist map is a C1 map f : (x, y) 7→ (x ′, y′) of a cylinder
T×R (where T = R/Z) that preserves the standard area-form dx ∧ dy, such
that for one or any lift f̃ to R×R the image of each vertical x = constant is
a C1 graph over x ′ (twist condition), and the nett flux

´
γ

y′ dx ′− y dx for any
homotopically nontrivial circle γ is zero. We usually fix a lift and often drop the
tilde.

There exists a C2 function h : R×R→ R, called generating function, with
h12 < 0 and h(x + 1, x ′+ 1)= h(x, x ′), such that for the lift f̃ ,

y =−h1(x, x ′),

y′ = h2(x, x ′),
(1)

where subscript i denotes the derivative with respect to the i-th argument. It
can be constructed by h(x, x ′)=

´
γ

y′ dx ′− y dx for any curve γ from a base
point (x0, x ′0) to (x, x ′), using the functions y′(x, x ′) and y(x, x ′) defined by the

MSC2020: 00A05.
Keywords: locally minimal flux, Hamiltonian system, action differences.
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twist condition. It follows that (xn, yn)n∈Z is an orbit of f̃ if and only if for all
M < N ∈ Z, (xM , . . . , xN ) is a critical point of WM N (x)=

∑N−1
n=M h(xn, xn+1)

subject to xM , xN fixed, and yn=−h1(xn, xn+1). An orbit is said to be minimising
if the sequence (xn)n∈Z (globally) minimises WM N (x) for each M < N over
variations with fixed endpoints.

For exact area-preserving twist maps f of a cylinder T×R with generating
function h :R×R→R, Aubry–Mather theory (e.g., [10]) establishes the existence
for each rational p/q (in lowest terms) of a closed rotationally ordered set Mp/q

of periodic points (xn, yn) of type (p, q) (meaning xq = x0+ p, yq = y0 in the
cover) that (globally) minimise the action Wp,q =

∑q−1
n=0 h(xn, xn+1). In each gap

in Mp/q , it also establishes the existence of a minimax orbit, which forms a saddle
point of the action between the consecutive minima. More precisely, denote the
sequences of type (p, q) for the endpoints of a gap g in Mp/q by x−� x+ (where
� means each component on the left is less than the corresponding one on the
right), let Xg be the set of sequences x of type (p, q) with x−n ≤ xn ≤ x+n , and let
Wg be Wp,q on Xg; let Hg be the infimum of H ∈ R such that x− and x+ lie in
the same connected component of {x ∈ Xg :Wg(x)≤ H} (note that the endpoints
have the same value of Wg). Mather proved there is a critical point x of Wg in
the interior of Xg with Wg(x) = Hg. The difference 1Wg = Hg −Wg(x−) is
known as the Peierls–Nabarro barrier for shifting a type (p, q) sequence between
the consecutive pair of minima while maintaining type (p, q).

For any gap (in the rotational order) in the set of minimising periodic orbits of
type (p, q), Aubry–Mather theory gives also the existence of heteroclinic orbits
from the orbit of the left end of the gap to that of the right end, and vice versa,
that are minimising, and associated minimax heteroclinic orbits.

Finally, for each irrational ω, it gives a closed rotationally ordered invariant
set with rotation number ω whose orbits minimise the action sum between any
pair of its points. Its subset of recurrent points is either a circle or a Cantor
set, the latter case being christened “cantorus” by Percival [20]. The gaps of a
cantorus come in orbits. We call an orbit of gaps a hole. The number of holes in
a cantorus is countable (a question is whether it is generically finite). For each
hole g in a cantorus, an analogue of 1Wg is defined and an associated minimax
orbit M proved to exist [17], with

1W (M,m) :=
∑
n∈Z

h(Mn,Mn+1)− h(mn,mn+1) (2)

equal to 1Wg, where m is the sequence for either of the minimising orbits
bounding the hole. The sum 1W (M,m) converges even though the individual
sums do not in general. The orbits of the endpoints of a hole converge together
in both directions of time and the minimax orbit lies between them, so it is
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Figure 1. Decomposition of a turnstile.

homoclinic to the cantorus. 1Wg ≥ 0 with equality if and only if there is an arc
of minimising orbits connecting the endpoints of the gap (in which case those
minimising orbits are all minimax).

For any rotational (i.e., homotopically nontrivial) closed curve γ around the
cylinder, the net flux ˆ

f (γ )
y dx −

ˆ
γ

y dx

is zero, but we define its flux to be the area of the set lying in the component
below f (γ ) and not in the component below γ , sometimes called geometric flux.

For a rotational invariant circle, the flux is zero. For a cantorus of rotation
number ω, one can close its gaps by curves through corresponding minimax
orbits, to produce what [15] called a partial barrier. For example, if the cantorus
is hyperbolic, for each hole one can choose a zeroth gap and close it and its
forward images by arcs of stable manifold of the cantorus and its backward
images by arcs of unstable manifold.1 These automatically join the ends of the
gaps and pass through the minimax points. This was the choice made in [15],
though it was indicated there that there is a wealth of other options. In particular,
[15] defined a turnstile in the zeroth gap as the structure formed by the arc of
stable manifold of the partial barrier and the arc of unstable manifold whose
backward images were used to close the backward gaps. In the simplest case
when the stable and unstable manifolds in each gap intersect precisely once,
thus in the minimax point, the turnstile can be sliced into slivers by disjoint
curves γn, n ∈ Z, joining the ends (like the layers of an onion), and the γn can
be mapped by f n to the n-th gap to make a curve closing the gaps and having
the same flux (see Figure 1).

In this simplest case, the flux of such a curve, whether the original partial
barrier or one as constructed by the onion picture, is

1̃Wω =

∑
g

1Wg,

1The stable and unstable manifolds are better called forward-contracting and backward-
contracting manifolds but I stick with convention for shorter names.
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Figure 2. An example of a gap in a cantorus for which the arcs of
stable and unstable manifold closing the gap intersect more than once.
The endpoints of the gap are m1,m2. The areas Ai satisfy A2 < A1,
A3 < A4, and A1+ A3 = A2+ A4, the common value being the flux of
the set of curves formed by iterating the unstable manifold backwards
and the stable manifold forwards. If A1 > A4, as shown here, then the
minimax point is M1, so Mather’s 1W = A1. The point M2 is a lower
saddle, but to get from the orbit of m1 to the orbit of m2 one has to
pass at least as high as M1 in action. The point µ belongs to a local
minimum orbit with higher action than m1 and m2 (which have the same
action).

where the sum ranges over the holes g of the cantorus [15]. Mather defined1Wω

for a cantorus to be the maximum of 1Wg over its holes g [17]. We see here
that the sum over holes has a valuable interpretation, because it gives the flux
for a closed curve through all the points of the cantorus (note that the sum over
holes converges even if there are infinitely many, because the gaps are disjoint).
Mather was surprisingly (to me) uninterested in replacing the maximum by the
sum when I proposed this to him in 1984. I suspect that the continuity properties
he proved for the maximum apply equally well to the sum, but it would be good
to check this. He was nevertheless interested in the question of motion within a
Birkhoff zone of instability, notably proving existence of an orbit whose α-limit
set is in the lower boundary and ω-limit set in the upper boundary [18].

More complicated scenarios can occur, however, which might explain Mather’s
disinterest. One way to construct such examples is to use Aubry’s idea of the
antiintegrable limit [1]. Firstly, there may be other equilibrium sequences in
a hole besides the chosen minimax, as in Figure 2. The stable and unstable
manifolds intersect at each of them. If the stable and unstable manifolds are
graphs in the gap, or even just if there is a homeomorphism that makes them
both graphs, then the flux is the sum of differences of action between alternating
successive pairs of equilibrium sequence, which is larger than 1̃Wω. A good
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Figure 3. A more complicated scenario for the stable and unstable
manifolds of the endpoints m1,m2 of a gap in a cantorus. The upward
flux of the set of curves formed by iterating the unstable manifold
backwards and the stable manifold forwards is the vertically shaded
area and the (equal) downward flux is the horizontally shaded area.
One of the points Mi is a minimax point, depending which is the lowest
saddle permitting to go from m1 to m2 without passing to higher action.
The pointsµi belong to local minima of the action. The point C belongs
to an index-2 critical point of the action.

question, however, is whether there is an alternative way of closing the gaps for
which the flux is just 1̃Wω.

Secondly, one can make cases where the stable and unstable manifolds in a
gap are not simultaneously homeomorphic to graphs, like that of Figure 3. In
the case shown, there are seven equilibrium sequences in the hole (plus the two
endpoints) and the flux is given by

1W (M2,m)−1W (C,M1)+1W (M3, µ3)+1W (M4, µ4), (3)

where the notation 1W is extended to arbitrary pairs of equilibrium sequences
converging together sufficiently fast to make the sum (2) converge.

It is conjectured in [15] that the curves γ closing the gaps of hyperbolic cantori
by arcs of stable or unstable manifold have minimal flux subject to passing
through the cantorus (the local minimality or otherwise of the flux of such curves
was also addressed by [2]). However, it was proved in [21] that this is false
if there coexists a rotational invariant circle (necessarily of a different rotation
number), because large deformations of such curves can be made to obtain curves
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through the cantorus with arbitrarily small flux. Nevertheless, he proved that
the curves γ have locally minimal flux, even without the constraint of passing
through the points of the cantorus. This makes them valuable for transport theory.

Nevertheless, there are alternative constructions of curves closing the gaps of
cantori, and the question arises whether they also have locally minimal flux. We
address that here. Secondly, there are related constructions of curves through
minimising and minimax periodic orbits and through minimising and minimax
heteroclinic orbits to minimising periodic orbits [2; 15; 16], and the question
arises whether they have locally minimal flux too. The answer is no: they do not
have locally minimal flux, a result that I am not aware has been noted before.
Thirdly, the issues arise equally in continuous-time Hamiltonian systems of 1 1

2
degrees of freedom (DoF), and more generally in 3D volume-preserving flows.
We address these contexts. Fourthly, we summarise some related results for
Hamiltonian systems of more DoF.

2. Other constructions of partial barriers

Various other constructions of curves closing the gaps of cantori can be used. I
survey two here. One is Hall’s “ridge curves”, the other is Dewar’s “quadratic
flux minimisers”.

2.1. Ridge curves. Ridge curves were proposed by Hall (private communication)
and popularised under the name “ghost circles” by Golé [9]. A nice description
is via the “invariant ordered circles” (IOC) of [22]. An ordered circle is a
continuous curve x : R→ RZ that is ordered (for each pair of distinct t, t ′ ∈ R

either xn(t) < xn(t ′) for all n ∈ Z or vice versa), periodic (invariant under the
translation T01(x)n = xn + 1), and unbounded (there is no y ∈ RZ such that
x(t)≤ y for all t ∈R, nor x such that x ≤ x(t) for all t ∈R). It is called invariant
if it is also invariant under the translation T10(x)n = xn+1 and the gradient flow
of the action

ẋn =−h2(xn−1, xn)− h1(xn, xn+1). (4)

Note that the gradient flow, T01 and T10 commute.
Golé [9] constructs IOCs firstly in the space of sequences of type (p, q)

by assuming the action Wp,q is a Morse function and using minimax theory
iteratively, and then takes limits for the irrational and heteroclinic cases. Qin and
Wang [22] construct them by the Schauder fixed point theorem for the time-1
map of the gradient flow, which is more elegant as it does not require the Morse
assumption and applies equally well to periodic and irrational cases.
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However constructed, they produce curves that close the gaps of cantori and a
nice flux formula [9], as follows. If we let

y+n = h2(xn−1, xn), (5)

y−n =−h1(xn, xn+1), (6)

then each IOC produces two rotational circles around the cylinder: γ−n =
(xn(t), y−n (t)) and γ+n (xn(t), y+n (t)), where t is a parameter along the IOC. Both
are graphs over x . Furthermore, f (γ−n )= γ

+

n+1. We see that γ+n is above γ−n at
places where ẋn < 0 and below at places where ẋn > 0. The dynamics of the
gradient flow (and its time-reverse) are monotone, so if x is an initial condition
for which ẋn < 0 for all n ∈ Z (we write ẋ � 0) then it remains so for all t ∈ R.
Ridge curves are curves in the space of sequences consisting of gradient curves
on which ẋ � 0 or ẋ � 0, joined at equilibria. By the above construction,
they produce pairs (γ−, γ+) of graphs on the cylinder with f (γ−)= γ+ such
that for each interval where ẋ � 0 then γ+ is above γ− and for each interval
where ẋ � 0 then γ+ is below γ−. They intersect at orbits corresponding to
the equilibrium sequences. Thus the flux of γ− is produced precisely by its
intervals with ẋ � 0. Furthermore the contribution of such an interval to the
flux is precisely the difference in action 1W (r, l) between the orbits of the
equilibrium sequences r, l at its right and left ends. Thus the flux of γ− is the
sum of 1W (r, l) over those intervals (l, r) with ẋ � 0, which is Golé’s formula.

The construction can be generalised. It is not necessary for the ordered circle
to be invariant under the gradient flow. All that we need is for ẋ ≥ 0 or ẋ ≤ 0 in
the standard partial order on RZ at each point.

2.2. Quadratic flux minimisers. Dewar didn’t like the nonuniqueness of local
flux minimisers and proposed an L2 variational principle instead, to select a
preferred L1 minimiser. He first did this to construct a preferred action variable
for a nonintegrable Hamiltonian system. In the context of area-preserving maps,
it was worked out with Meiss in [4]. The idea is that the flux of an area-preserving
map f across a closed curve γ around the cylinder can be written as

1
2

ˆ
|1y(x)| dx

if γ and f (γ ) are both graphs of functions y0, y1 of x and1y(x)= y1(x)−y0(x).
Minimising this is an L1 variational problem. To overcome the nonuniqueness,
they proposed instead to minimise something like

´
|1y(x)|2 dx , with the hope

that there is a local minimiser associated to each rotation number and that the
resulting curves γ are disjoint for different rotation numbers.
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The approach is somewhat analogous to that for geodesics in a Riemannian
manifold. They are defined as curves for which every short enough segment
minimises the L1 functional

´ t1
t0
|ẋ(t)| dt subject to fixed endpoints x(t0) =

x0, x(t1)= x1. But the minimisers can be reparametrised by any increasing func-
tion of t fixing the ends, which does not change the value of the integral. The L2

variational principle of minimising
´
|ẋ |2 dt selects a preferred parametrisation,

namely such that |ẋ(t)| is constant. The relation between the two variational
principles is nicely summarised in Section 12 of [19].

The variational principle in [4] is slightly more subtle than sketched above. In
fact they proposed to locally minimise

´
|1y(x)|2x ′(θ) dθ over pairs (x, ρ) of

increasing diagonally periodic homeomorphisms (i.e., x(θ + 1)= x(θ)+ 1 and
the same for ρ), with the functions y0, y1 determined by

y0(x(θ))=−h1(x(θ), x(ρ(θ))), (7)

y1(x(θ))= h2(x(ρ−1(θ), x(θ)), (8)

so
1y(x(θ))= h2(x(ρ−1(θ), x(θ))+ h1(x(θ), x(ρ(θ))). (9)

The nice result is that the Euler–Lagrange equations for stationarity of the L2

functional implies that if 1y(x(θ))= 0 for some θ then 1y(x(ρn(θ)))= 0 for
all n ∈ Z. Thus the L2 critical points make a curve γ and its image f (γ ), whose
intersections are orbits of f . So the L2 variational principle constructs preferred
curves through selected orbits of f .

Yet many questions remain (at least for me). Does the principle have local
minimisers? Is there one for each rotation number? Are the curves γ for different
rotation number disjoint? Is there a relation between the L2 minimisers and the
ridge curves? The papers [5; 6; 7] address these questions but I’m not yet clear
if they resolve them totally.

An alternative selection procedure among curves of locally minimal flux has
been proposed by [8], based on minimising their length.

3. Continuous-time analogues

For many applications, rather than area-preserving maps it is better to consider
continuous-time systems, e.g., time-periodic Hamiltonian systems of 1 1

2 DoF:

ẋ = H,p(x, p, t),

ṗ =−H,x(x, p, t),
(10)

with H(x, p, t + 1) = H(x, p, t) (where H,p denotes the partial derivative of
H with respect to p etc.). They preserve the volume-form dx ∧ dp ∧ dt on
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the extended state space of (x, p, t). More generally one could consider 3D
volume-preserving vector fields, such as a magnetic field B.

Let us take the time-periodic Hamiltonian context, with x an angle variable.
The flux-form of the Hamiltonian vector field in extended state space (x, p, t) is
d H ∧ dt + dx ∧ dp. So the flux across a piece of a C1 graph p = P(x, t) is

ˆ
(H,x + H,p P,x + P,t) dx ∧ dt. (11)

The nett flux across the whole graph is zero, but we define the flux of the surface
to be the positive part, so the flux is

1
2

ˆ
|H,x + H,p P,x + P,t | dx dt.

Now we can apply a result from [13], which was derived in the more general
context of 3D volume-preserving flows.

Theorem 1. A surface has locally minimal flux for a 3D volume-preserving
vector field if and only if it can be decomposed into surfaces of unidirectional
flux bounded by trajectories and it has no local recrossings.

Here, we say an oriented surface S has local recrossings if for all ε > 0 there
exists an orbit segment z(t), t0 ≤ t ≤ t1, that intersects S in opposite directions
at times t0 and t1, and for which 0< d(z(t), S) < ε for all t ∈ [t0, t1], where d
denotes distance. There is no requirement for t0 and t1 to be close. The idea is
close in spirit to Conley’s concept of isolating block.

In particular, Aubry–Mather theory extends to time-periodic Hamiltonian
systems with x an angle and H,pp ≥ C > 0. Cantori are now invariant subsets
of graphs p = P(x, t) where one or more infinitely long disjoint irrationally
winding strips have been removed. They consist of minimisers for the action
functional

´
L(x, ẋ, t) dt with L(x, v, t)=minp(pv−H(x, p, t)). In each strip

there is at least one minimax orbit. If the cantorus is hyperbolic the stable and the
unstable manifolds of the boundaries of each strip connect the boundaries and the
minimax orbits. A surface can be chosen between the invariant manifolds to fill
in each strip, passing through the intersection orbits, and having unidirectional
flux in between them. One way to do this is to choose the unstable manifold up
to t = 0 and then switch with a vertical surface to the stable manifold for t > 0,
but this can be smoothed out if desired. Along the lines of [21], it looks likely
that the resulting surface has no local recrossings. It would be good to write out
a complete proof. If so, then by the above theorem, hyperbolic cantori can be
spanned by surfaces of locally minimal flux.
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Note the corollary that every irrational ω is a local minimiser of the function
1̃Wω. This is because the cantorus of rotation number ω is a limit point of
cantori of rotation numbers converging to ω [17].

4. Surfaces through minimising and minimax periodic orbits

We continue the discussion in the time-periodic Hamiltonian context of 1 1
2 DoF

with H,pp positive. The set of minimising periodic orbits of type (p, q) is
rotationally ordered and closed. For each gap in it there is a minimax periodic
orbit. Choose any closed surface that passes through the minimising and minimax
orbits in rotational order. Suppose we can choose it so that the parts between
neighbouring minimax and minimising orbits have unidirectional flux. Can one
choose it so that it has no local recrossings? Not in general, because the vector
field rotates around any nondegenerate minimax periodic orbit, so there are arcs
of trajectory arbitrarily close that cross the surface in one direction and recross
in the other. The flux can be reduced by pushing the surface off the minimax
periodic orbit, analogous to [2].

So the conclusion is that (except perhaps for degenerate cases) there are
no surfaces of locally minimal flux through minimising and minimax periodic
orbits.

5. Surfaces through heteroclinic orbits to minimising periodic orbits

In each gap of the set of minimising periodic orbits of type (p, q) there is a
set of minimising advancing heteroclinic orbits and in each gap of the latter
there is a minimax heteroclinic orbit. Advancing heteroclinic means that the
orbit converges in forwards time to one periodic orbit and in backwards time to
another and the forward limit is to the right of the backwards one. The same
result holds for retreating heteroclinic orbits (for which the forward limit is to
the left of the backward one), but without loss of generality, we will restrict the
discussion to the advancing case.

One can construct a surface through the minimising periodic orbits and their
minimising advancing heteroclinic orbits, for example by taking the unstable
manifold of a minimising periodic orbit up to some minimising heteroclinic
orbit and the stable manifold on the other side, for one period of the periodic
orbits and then closing by the required part of t = cst . The only places where
there is flux are the t = cst pieces and it is unidirectional for the pieces between
neighbouring pairs of heteroclinic orbits.

But local recrossings occur: see Figure 4. So such surfaces do not have locally
minimal flux. This is consistent with numerics (e.g., Figure 11 of [11]) showing
that there are cantori of smaller flux with arbitrarily close rotation number and
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Figure 4. Local recrossings happen for surfaces through hyperbolic
minimising advancing heteroclinic orbits formed from stable and un-
stable manifolds. p is a minimising periodic point, m and minimising
advancing heteroclinic point and M a minimax advancing heteroclinic
point. The picture is drawn at a Poincaré section t = cst .

lying in an arbitrarily small neighbourhood of the minimising periodic orbit. But
I am not aware of its having been remarked before.

6. More degrees of freedom

Finally, we summarise some results for Hamiltonian systems of more DoF. An
autonomous Hamiltonian system of N DoF is specified by a 2N -dimensional
manifold M , a symplectic form ω on M and a smooth function H : M→R. The
Hamiltonian vector field v is determined by ivω = d H .

Let the geometric flux for a codimension-1 closed surface in H−1(E) be the
integral of the flux ivσ of energy-surface volume σ (defined so that d H ∧ σ =
ωN/N !) across the part where the flux is positive (the net flux = 0). Note that

ivσ = ω(N−1)/(N − 1)! (12)

A transition state (TS) for an autonomous Hamiltonian system is a closed
invariant oriented codimension-2 submanifold (not necessarily connected) of an
energy level H−1(E) that can be spanned by compact codimension-1 surfaces of
unidirectional flux whose union (dividing surface DS) locally separates H−1(E)
into two components and has no local recrossings (recall this means there is a
neighbourhood of DS that a trajectory has to leave before it can recross) [14].

Theorem 2 [14, Theorem 2.3]. A codimension-1 closed submanifold in H−1(E)
has locally minimal geometric flux if and only if it is a DS for a TS. If ω =−dα
locally then the minimising flux is the action integral of the TS:

ˆ
α∧ω(N−2)/(N − 2)!.

The result is formulated differently in [14] to motivate the definition of TS
later, but it is equivalent to Theorem 2.3 there.
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Examples can be constructed, in particular for energies just above an index-1
saddle of the Hamiltonian (these go back a long time in history, but see [14] for
a coherent presentation).

A related variational principle for odd-dimensional invariant submanifolds
of an autonomous Hamiltonian system, including the case of codimension-
2 submanifolds of an energy level, was given in [12], but with no general
construction of minimisers.

7. Potential application areas

The theory of surfaces of locally minimal flux has many potential applications. I
mention two, to give an idea of the scope. One is chemical reaction dynamics,
as discussed in [14]. Another is transport in magnetically confined plasmas, e.g.,
[3; 23; 24], and the design of divertors. To these one could add interplanetary
travel and high energy particle storage rings.
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A symplectic approach to Arnold diffusion
problems

JEAN-PIERRE MARCO

The purpose of this text is to present a symplectic approach to Arnold diffusion
problems, that is, the existence of orbits of perturbed integrable systems along
which the action variables experience a drift whose length is independent
of the size of the perturbation. We chose to focus on the construction of
orbits drifting along “chains of cylinders”, taking for granted the existence of
the chains. We however give a rather complete description of these chains,
together with some elements on their symplectic features and some main ideas
to prove their existence. We adopt the setting introduced by John Mather to
prove the Arnold conjecture for perturbations of Tonelli Hamiltonians, which
we see as the good one to set out the various (and numerous) problems of the
construction, and give some ideas to show how the symplectic approach may
enable one to enlarge its scope.

1. Introduction

In this text we denote by An
=T ∗Tn the cotangent bundle of the torus Tn

=Rn/Zn ,
endowed with its angle-action coordinates (θ, r) and its usual exact-symplectic
structure.

1. The questions addressed in this paper originate in the famous Boltzmann
conjecture, rephrased in the modern mathematical language (following [54]) as:

For (almost) all proper Hamiltonian function H on a 2n-dimensional
symplectic manifold and (almost) all real value e, the associated Hamil-
tonian vector field is ergodic on each connected component of H−1(e).

Forgetting about the real scope of this conjecture — certainly limited to m-
body problems with very large m — it is well-known that the KAM theorem
yields counterexamples to the previous statement as soon as n ≥ 2. One can see
the following weaker quasiergodic conjecture by Poincaré and Ehrenfest as an
attempt to partially recover its possible dynamical applications:

MSC2020: 00A05.
Keywords: Arnold diffusion problems.
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For (almost) all proper Hamiltonian function H on a symplectic mani-
fold and (almost) all real value e, the associated Hamiltonian vector
field admits an orbit which is dense in H−1(e).

It turns out that the Poincaré–Ehrenfest conjecture is false too: this is a
consequence of the KAM theorem if n = 2, while Herman proved (see [54]) that
it is false for n ≥ 3, at least on nonexact symplectic manifolds. He also asked
the simpler — but still open — question of the existence of a C∞ perturbation of
1
2‖r‖

2 on An with a dense orbit on some energy level.
A possible way to state a correct but even weaker question in the spirit of

the previous conjectures comes from [25], where Arnold introduced the first
example of an “unstable” family of Hamiltonian systems on A3, namely:

Hε(θ, r)= r1+
1
2(r

2
2 + r2

3 )+ ε(cos θ3− 1)+µ(ε)(cos θ3− 1)g(θ), (1)

where g is a suitably chosen trigonometric polynomial, ε > 0 is small enough
and µ(ε)� ε. The main result of Arnold is the existence of ε0 > 0 such that
for 0< ε < ε0, the system Hε admits an “unstable solution” γε(t)= (θ(t), r(t))
such that

r2(0) < 0, r2(Tε) > 1, (2)

for some (large) Tε. Orbits experiencing this type of behavior are said to be
diffusion orbits. In view of this result and the associated constructions, Arnold
conjectured (see [25]) that for “typical” systems of the form

Hε(θ, r)= h(r)+ ε f (θ, r, ε) (3)

on An , n ≥ 3, the projection in action of some orbits should visit any element of
a prescribed collection of arbitrary open sets intersecting a connected component
of a level set of h. One therefore gets an “asymptotic density” of the projection
of the orbit onto the action space when the size of the perturbation tends to 0.
Taking the variation of the angles into account, one can also produce examples
of perturbations of 1

2‖r‖
2 on the annulus A3 with orbits dense on subsets of

Hausdorff dimension 5 inside an energy level; see [32].

2. The Arnold conjecture is directly related to the existence or nonexistence of
particular invariant subsets acting as “barriers” inside an energy level. Assume
that X is a complete vector field on a manifold M . Given some open connected
subset O and a point x in M , consider the full orbit of O under the flow 8 of X :

O =8(R× O).

Hence O is the “accessibility domain” attached to O and its boundary ∂O =
Adh O \O is invariant under the flow 8. The existence of an orbit connecting O



A SYMPLECTIC APPROACH TO ARNOLD DIFFUSION PROBLEMS 231

and x is equivalent to x and O being in the same connected component of the
complement of ∂O.

Understanding the structure of the boundaries of the domains of accessibility
is in general hopeless. However, in the discrete case of area-preserving twist
maps of the annulus X =T×[0, 1], Birkhoff’s theory gives a satisfactory answer
(see Appendix B). Consider a neighborhood O=T×[0, ε[ of the lower boundary
and assume that O ⊂ T×[0, 1[. Then by the standard trick of “filling the holes”
(see [48]), one proves that the boundary ∂O admits a connected component
which disconnects T× ]0, 1[ and is the graph of a Lipschitz map T→ [0, 1].
More generally, one proves in the same way the existence of orbits connecting
any neighborhoods of the lower and upper essential circles bounding a Birkhoff
zone: a first example of diffusion behavior.

In general, an area-preserving twist map of X has essential invariant circles in
T×]0, 1[ and do not admit diffusion orbits starting arbitrarily close to T×{0}
and ending arbitrarily close to T×{1}. A crucial idea was introduced by Moeckel
[48] and then by Le Calvez [41], who studied the diffusion properties of bisystems
of maps on the annulus.1 A bisystem is a pair of maps (ϕ0, ϕ1) : X ý, and one
defines an orbit of (ϕ0, ϕ1) as a sequence (xn)n∈N such that xn+1 = ϕi (xn), with
i = 0 or 1. It turns out that if ϕ0 is an area-preserving twist map of X =T×[0, 1]
and ϕ1 : X→ X is area-preserving, then a sufficient condition for the bisystem
(ϕ0, ϕ1) to admit an orbit connecting arbitrary neighborhoods of T× {0} and
T×{1} is that both maps do not admit any essential invariant circle in common,
apart from the boundary ones. The underlying idea, close to the setting of control
theory, is that the action of ϕ1 destroys the boundaries of accessibility of ϕ0; see
[42] for a study of diffusion bisystems of integrable Hamiltonian systems based
on this type of methods.

The previous ideas have been generalized by Koropecki and Nassiri [35; 36] to
the dynamics of bisystems of symplectic diffeomorphisms on compact surfaces,
which are proved to be generically transitive. We will go back to this work in
the last section of this text.

Our approach to constructing diffusion orbits for systems (3) on A3 is based
on the embedding of bisystems on subsets of A into the system generated by
Hε, restricted to some energy level. More precisely, the orbits of our bisystems
will only be pseudoorbits, which have the additional property to admit genuine
shadowing orbits of the Hamiltonian system. Moreover, the bisystems satisfy the
previous property of noncoincidence of invariant circles under mild nondegener-
acy conditions (which can be made rather explicit), which yields the existence
of diffusion pseudoorbits, and thus to diffusion orbits.

1Also called IFS.
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As an ubiquitous example, setting ε = 1 in (1) yields a class of systems
for which the unperturbed part no longer depends on the actions only, but still
remains completely integrable (with nondegenerate hyperbolicity). It has been
a challenging question to prove the existence of unstable solutions (2) for the
slightly more general class of systems

Gµ(θ, r)= r1+
1
2(r

2
2 + r2

3 )+ (cos θ3− 1)+µg(θ, r), (4)

where g belongs to a residual subset of a small enough ball in some appropriate
function space (finitely or infinitely differentiable, Gevrey, analytic). This setting
(with its natural generalizations) is now called the a priori unstable case of
Arnold diffusion. In [21] we set out a geometric framework to deal with such
systems, using the previous bisystem method; see also [8; 11; 12; 13; 15; 16;
19; 20; 22; 23; 24; 48; 53] amongst others for different approaches. Another
different and very promising direction has been introduced in a related context
by Nassiri and Pujals [49], where the notion of robust transitivity is used in place
of the sole existence of diffusing orbits.

3. To some extent, the a priori unstable geometric and dynamical features can
be recovered in the so-called a priori stable case (3). This problem leads one
first to analyze the hyperbolic structure of such systems (under nondegeneracy
conditions) in the complement of the set of Lagrangian invariant tori. Due to the
many technicalities involved in this geometric part of the study, in this text we
will take for granted the existence of a large family of compact 3-dimensional
hyperbolic invariant submanifolds (described in the next section), with a rich
homoclinic structure, which form “chains” contained in a regular energy level.
Given a finite family of open subsets intersecting a connected component of
a level h−1(e), there is an ε0 such that these chains exist for 0 < ε < ε0 and
connect these open sets.

The cylinders could be seen as the counterpart in the Baire category of the
Lagrangian tori. The latter form subsets whose complement has relative measure
tending to 0 when the size of the perturbation tends to 0, while our invariant
cylinders tend to form dense subsets of a given regular level; see [32] for an
example.

One main difficulty to recover the a priori unstable setting in a priori stable
perturbations is the essentially singular nature of the problem: no hyperbolicity
is present in the unperturbed system, so that the hyperbolicity constants of our
3-dimensional manifolds tend to 0 when ε→ 0, which makes their embedding
properties a very delicate matter. We will limit ourselves here to give a description
of the cylinders and chains and underline the various difficulties raised by their
construction, we refer to [5; 7; 44] for more.



A SYMPLECTIC APPROACH TO ARNOLD DIFFUSION PROBLEMS 233

Once the chains are given, one can focus on the construction of diffusion orbits
drifting along them. We will describe quite extensively two simple but relevant
examples in this paper, which correspond to the two situations encountered
in the n = 3 setting: the case of doubly resonance cylinders (the so-called a
priori chaotic case) and the case of simple resonance cylinders (the singular a
priori unstable case). In both cases, our method is to reduce the problem to the
embedding of a bisystem of maps (or correspondences) on an annulus to which
one can apply the Moeckel’s method under mild nondegeneracy conditions. Then
a normally hyperbolic shadowing process using the area preservation and the
Poincaré recurrence theorem (as introduced and used in [15; 24]) will provide us
with the diffusion orbits connecting the initially given open sets.

4. Let us briefly describe our setting, beginning with the functional spaces. Fix
n ≥ 1. For 2≤ κ <+∞ and f ∈ Cκ(An) := Cκ(An,R) we let

‖ f ‖κ =
∑

k∈N2n,0≤|k|≤κ

‖∂k f ‖C0(An) ≤+∞

and we set Cκ
b (A

n)= { f ∈ Cκ(An) | ‖ f ‖κ <+∞}, so that Cκ
b (A

n) is a Banach
space. We consider systems on A3, of the form

H(θ, r)= h(r)+ f (θ, r), (5)

where h : R3
→ R is Cκ and the perturbation f ∈ Cκ

b (A
3) is small enough.

Even if our point of view here is essentially symplectic, we will adopt
the setting introduced by Mather for proving the Arnold conjecture by vari-
ational methods. A first restriction in [47] is that the unperturbed part h is a
Tonelli Hamiltonian, that is, strictly convex with superlinear growth at infinity
(lim‖r‖→+∞ h(r)/‖r‖ → +∞). We will limit here to Tonelli Hamiltonians
too, since convexity reveals itself to be necessary in our constructions in the
neighborhood of double resonance points, in order to get well-defined classical
systems as main parts of normal forms. However, the symplectic approach seems
to make it possible to relax the convexity assumptions, at least to some extent.

A natural expectation, already illustrated by (1), would be the existence of
diffusion orbits for all systems in “segments” in Cκ

b (A
3) originating at h, of the

form
{Hε(θ, r)= h(r)+ ε f (θ, r) | ε ∈ ]0, ε0[} (6)

where f is a fixed function, where of course the smallness threshold ε0 may
explicitly depend on f . However, it seems difficult to prove the existence
of diffusion over whole segments such as (6). To take this observation into
account, still following Mather, one uses a more global framework and introduce
“anisotropic balls” in which the diffusion phenomenon can be expected to occur
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Sκ

Bκpε0q

1

Figure 1. A generalized ball.

generically. Let Sκ be the unit sphere in Cκ
b (A

3). Given ε0 : Sκ→ [0,+∞[ (a
“threshold function”), we define the associated ε0-ball:

Bκ(ε0) := {ε f | f ∈ Sκ , ε ∈ ]0, ε0( f )[}. (7)

Note also that if ε0 is lower-semicontinuous, the associated ball is open in
Cκ

b (A
3).

This yields the following version of the diffusion conjecture,2 to be compared
with [25].

Conjecture (diffusion conjecture in the convex setting). There is an integer
κ0 ≥ 2 such that for κ ≥ κ0, given a Cκ integrable Tonelli Hamiltonian h on A3,
an e>Min h and a finite family of open sets O1, . . . , Om which intersect h−1(e),
then there exists a lower semicontinuous function

ε0 : Sκ→ R+

with positive values on a dense open subset of Sκ such that for f in a dense open
subset of Bκ(ε0) the system

H(θ, r)= h(r)+ f (θ, r) (8)

admits an orbit which intersects each T3
× Oi .

The zeros of ε0 correspond to directions along which diffusion cannot occur.
Simple examples show that such directions exist in general: for instance if
h(r)= 1

2(r
2
1 +r2

2 +r2
3 ), the system Hε = h+ε f with f (θ)= sin θ3 is completely

integrable and does not admit diffusion orbits connecting open sets which are far
from the θ3 = 0 plane. In view of the shape of Bκ(ε0), a residual subset in such

2Mather’s formulation is indeed still more precise and involved.
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a ball is said to be cusp-residual and a property which holds on a cusp-residual
subset is said to be cusp-generic.

From our point of view, one main interest (amongst many others) of the Mather
setting comes from the possibility of proving first the existence of chains of
cylinders for perturbations in a small enough generalized ball, and then prove
that a new but arbitrarily small perturbation of any system in that ball yields the
existence of diffusion orbits drifting along the chain, so connecting the open sets.

We wish to mention that very important advances has been achieved towards
the proof of this conjecture, first by John Mather himself in his unfortunately
unpublished notes, and more recently by P. Bernard, C.-Q. Cheng, V. Kaloshin,
Ke Zhang and their collaborators; see [5; 7; 10; 33] and the many references
therein. The methods in these works are either purely variational, or based on the
weak KAM theory developed by A. Fathi; see [18]. Our methods in this text are
more geometric and use in a crucial way the symplectic features of the systems.

2. The cusp-generic hyperbolic structure

This section is devoted to the geometric part of our study. We limit ourselves to
a description of the main steps and refer to [44] for details and proofs.

2.1. Cylinders and chains. 1. Let us briefly describe the various objects in-
volved in our construction. We refer to [21] for precise definitions, which will
also be recalled in the next two sections. Let X be a C1 complete vector field on
a smooth manifold M , with flow 8. Let p be an integer ≥ 1:

• We say that C ⊂ M is a C p invariant cylinder with boundary for X if C is a
submanifold of M , C p-diffeomorphic to T2

× [0, 1], which is invariant under
the flow of X : 8t(C )= C for all t ∈ R.

• We denote by Y any realization of the two-sphere S2 minus three open discs
with nonintersecting closures, so that ∂Y is the union of three circles. We say
that C• ⊂ M is an invariant singular cylinder for X if C• is a C1 submanifold
of M , C1 diffeomorphic to T× Y and invariant under 8. The boundary of a
singular cylinder is the disjoint union of three tori.

Throughout this paper we will consider vector fields generated by Hamiltonian
functions H ∈ Cκ(A3), κ ≥ 2. The cylinders or singular cylinders will be
contained in regular levels of H .

2. The notion of normal hyperbolicity for submanifolds with boundary requires
some care. We refer to [9] for a general presentation, well-adapted to our setting
(see also Appendix A). It suffices here to say that the normally hyperbolic
invariant submanifolds we are dealing with here are invariant submanifolds
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1

Figure 2. Cylinder and singular cylinder.

with boundary contained in usual normally hyperbolic manifolds of the same
dimension (invariant for a new system slightly modified outside the submanifold
at hand). In particular, our normally hyperbolic cylinders and singular cylinders
admit well-defined 4-dimensional stable and unstable manifolds, contained in
their energy level.

3. In addition to the normal hyperbolicity, to reduce the dynamics inside the
cylinders to that of twist maps, we require that they admit global Poincaré
sections, diffeomorphic to T×[0, 1], whose associated Poincaré maps satisfy a
twist condition. Analogous (but slightly more involved) notions are required for
singular cylinders. The invariant tori contained in the cylinders which intersect
these global sections along essential circles will be called essential tori. Moreover,
in order to reduce the dynamics in the neighborhood of the cylinders to that of a
suitable bisystem, we require that they satisfy specific homoclinic conditions,
which yields the notion of admissible cylinders. Again, we refer to [21] for
a complete description of the previous conditions, the necessary ones will be
recalled in the following and illustrated by specific examples.

4. Finally, we will introduce various heteroclinic conditions to be satisfied
by pairs of cylinders in order for them to admit orbits drifting along both of
them. This yields the notion of admissible chains, that is, finite ordered families
(Ck)1≤k≤k∗ of admissible cylinders or singular cylinders, in which two consecutive
elements satisfy these heteroclinic conditions.

5. Our main statement regarding the existence of chains is the following one,
for which we refer to [44].

Statement I (usp-generic existence of admissible chains). There is an integer
κ0 ≥ 2 such that for κ ≥ κ0, given a Cκ integrable Tonelli Hamiltonian h on A3,
an e>Min h and a finite family of open sets O1, . . . , Om which intersect h−1(e),
then there exist a δ > 0 and a lower semicontinuous function

ε0 : Sκ→ R+
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with positive values on a dense open subset of Sκ such that for f in a dense open
subset of Bκ(ε0) the system

H(θ, r)= h(r)+ f (θ, r) (9)

admits an admissible chain of cylinders and singular cylinders, such that each
open set T3

× Ok contains the δ-neighborhood in A3 of some essential torus of
the chain.

The fact that the statement is true only for f in a dense open subset of Bκ(ε0)

and not for any f in Bκ(ε0) comes from the transversality conditions on the
heteroclinic connections required in the definition of a chain. Less stringent
conditions on a chain would be satisfied for all perturbations in Bκ(ε0).

6. One can be more precise and localize the previous chain. Since h is a Tonelli
Hamiltonian, one readily checks that ω := ∇h is a diffeomorphism from R3 onto
R3, and that the level set h−1(e) is diffeomorphic to S2. Given an indivisible
vector k ∈ Z3

\ {0}, set

0k = ω
−1(k⊥)∩ h−1(e),

where k⊥ is the plane orthogonal to k for the Euclidean structure of R3. Then
one checks that 0k is diffeomorphic to a circle, and that if k 6= k ′ then 0k

and 0k′ intersect at exactly two points (such intersection points are said to be
double resonance points). By projective density, it is possible to choose a family
k1, . . . , km−1 of indivisible and pairwise independent vectors of Z3 such that

• 0ki intersects Oi and Oi+1 for 1≤ i ≤ m− 1;

• for 2≤ i ≤ m− 1, 0ki−1 ∩0ki contains a point ai ∈ Oi .

Fix a1 ∈0k1∩O1 and am ∈0km−1∩Om . Fix an arbitrary orientation on each circle
0ki and let [ai , ai+1]0i be the segment of 0i bounded by ai and ai+1 according
to this orientation. Set finally

0 =
⋃

1≤i≤m−1

[ai , ai+1]0i .

We will prove that one can choose ε0 in Theorem I so that for f ∈B(ε0) the
projection to R3 of the admissible chain is located in a ρ( f )-tubular neighborhood
of 0, whose radius ρ( f ) tends to 0 when f → 0 in Cκ(A3).

2.2. Simple resonance cylinders. 1. In this section we assume for simplicity
and with no loss of generality that h(r)= 1

2(r
2
1 + r2

2 + r2
3 ), so that the frequency

vector is just ω(r)= r . We fix an energy e> 0 and consider the broken line 0
defined in the previous section. We will focus on a single arc 0 = 0ki for which
we can assume, up to a linear change, that ki = (0, 0, 1). Hence 0 is contained
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Figure 1: A “broken line” Γ of resonance arcs

1

Figure 3. A “broken line” 0 of resonance arcs.

in the great circle intersection of the plane r3 = 0 with the sphere h−1(e). The
double resonance points r0

= (r1, r2, 0) on 0 are those for which there exists
k̂ ∈ Z2

\ {0} such that k̂ · (r1, r2)= 0. The order of r0 is then the minimal norm
of such a vector k̂.

The proof of existence of cylinders whose projection in action lies along 0
relies on a suitable averaging of the perturbation, which necessitate to determine
the zones where averaging with respect to two fast angles yield a satisfactory
normal form. In the complement of these zones, where a single fast angle only is
available for averaging, another process is to be used to construct the cylinders.
However, the “main part” of the cylinders will come from the former process.

To make this effective, one writes the Fourier expansion of f in the form

f (θ, r)=
∑
k̂∈Z2

(∑
k3∈Z

[ f ]
(k̂,k3)

(r)e2iπk3θ3

)
e2iπ k̂θ̂ ,

where [ f ]k stands for the Fourier coefficient relative to k ∈ Z3. For K ∈ N, we
set

f>K (θ, r)=
∑
‖k̂‖>K

(∑
k3∈Z

[ f ]
(k̂,k3)

(r)e2iπk3θ3

)
e2iπ k̂θ̂ .

When f ∈Cκ with κ ≥ 6 and p ∈ {2, . . . , κ−4}, given a control parameter δ > 0
(which will be one main parameter in the whole construction), one proves the
existence of a cutoff Kδ such that

‖ f>Kδ
‖C p(A3) ≤ δ.

Up to a symplectic conjugacy, one can cancel the harmonics of order < K when
the homological equation

ω̂(r) · ∂θ̂ S(θ, r)= f (θ, r)− V (θ3, r)− f>K (θ, r).
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can be solved, where r ∈ 0 and

V (θ3, r)=
ˆ

T2
f (θ̂ , θ3, r)d θ̂ .

This yields the definition of a finite set D(δ) ⊂ 0 of strong double resonance
points relative to δ, namely, those r ∈ 0 for which there exist an integer vector
k̂ ∈ Z2

\ {0} with ‖k̂‖ ≤ Kδ such that

ω̂(r) · k̂ = 0.

Far enough from any strong double resonance point, averaging with respect to
the angles (θ1, θ2) yields a one-degree-of freedom (integrable) normal form +
remainder, which makes the geometry of the situation easy to analyze. This
becomes irrelevant in the neighborhood of the strong double resonance points,
where the main part of the normal form is a classical (nonintegrable) system
on T2.

2. More precisely, in the neighborhood of a (closed) segment S ⊂ 0 located at a
distance ρ of D(δ), averaging with respect to the angles (θ1, θ2) yields a close
to identity conjugacy 8ε such that, setting θ̂ = (θ1, θ2) and r̂ = (r1, r2)

Nε(θ, r)= Hε ◦8ε(θ, r)= h(r)+ εV (θ3, r̂)+ R(θ, r, ε) (10)

where R is small (depending on δ, ρ and ε) in some arbitrary C p topology
(p ∈ {2, . . . , κ−4} has to be chosen large enough, and so also κ , in particular to
apply the KAM theorem, see below).3 The truncated normal form

1
2(r

2
1 + r2

2 )+
[ 1

2r2
3 + εV (θ3, r̂)

]
(11)

is the skew-product of the unperturbed Hamiltonian 1
2(r

2
1 + r2

2 ) with a family of
“generalized pendulums”, functions of (θ3, r3) ∈ A and parametrized by r̂ . This
is indeed a one-parameter family since (r̂ , 0) belongs to the curve S.

Assume moreover that for (r̂ , 0) ∈ S the function V ( · , r̂) admits a single
and nondegenerate maximum at some point θ3(r̂), and, for simplicity, that
V (θ3(r̂))=0. Then Or̂= (θ3(r̂), 0) is a hyperbolic fixed point for the Hamiltonian
1
2r2

3 + εV (θ3; r̂) and one immediately gets a normally hyperbolic cylinder C at

3More precisely

N (θ, r)= H ◦8ε(θ, r)= h(r)+ εV (θ3, r)+ εW0(θ, r)+ εW1(θ, r)+ ε
2W2(θ, r),

where the functions W0 ∈ C p(A3), W1 ∈ Cκ−1(Wρ/4), W2 ∈ Cκ (Wρ/4) satisfy

‖W0‖C p(Wρ/4) ≤ δ, ‖W1‖C2(Wρ/4)
≤ c1ρ

−3
‖W2‖C2(Wρ/4)

≤ c2ρ
−6,

for suitable constants c1, c2 > 0, where ρ is the distance from the segment S to the closest strong
double resonance point.
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energy e for Nε by taking the product of the torus T2 of the fast angles θ̂ with
the curve

{Or̂ | (r̂ , 0) ∈ S}.

Note that C is diffeomorphic to T2
× [0, 1] and that its stable and unstable

manifolds are the unions for (r̂ , 0) ∈ S of the products of the stable and unstable
manifolds W±(Or̂ ) with the torus T2 of fast angles.

3. We have then to choose S far enough from D(δ) so that the remainder R is
small enough for the previous cylinder together with its boundary to persist in
the system Hε. This necessitates two steps:

• One first proves the existence of pseudoinvariant cylinders (that is, open
cylinders which are tangent to the Hamiltonian vector field) which have
transverse hyperbolic properties,4 but are not necessarily invariant under
the flow.

• One then proves the existence of two dimensional invariant tori inside the
previous pseudoinvariant cylinder, so that two of them bound an invariant
and genuinely normally hyperbolic cylinder.5

The main difficulty is to choose S not too far from D(δ), in such a way that
the cylinders one obtains with the previous construction can be compared with
those to be constructed below in the neighborhood of double resonance points.
The main point is to prove that pairs of KAM tori simultaneously belong to the
previous cylinders and those close to double resonance, so that one deduces that
they bound part of their intersection. This proves that the “double resonance”
cylinders continue the “simple resonance” ones.

This process necessitates a smallness condition of the remainder in the C p

topology with p≤2 for the normally hyperbolic persistence results of Appendix A
to apply,6 and an additional smallness condition in the C p topology with p large
enough to apply the KAM theorem and get invariant boundaries.

As a consequence, one has to make a careful choice of the parameter δ, and
to make the distance ρ depend on ε in a proper way; see [44] for these technical
details. The main problem is to chose this size so that the boundaries of the
cylinders C constructed above match those which will be proved to exist inside

4In this noninvariant setting, the hyperbolic properties can be defined by embedding the
manifold in an invariant one, after modification of the vector field. The resulting property depends
on this embedding, but we will be concerned only in invariant subsets of those manifolds, limited
by KAM tori, which makes our approach legitimate.

5This step is indeed one main difference with the other approaches to Arnold diffusion.
6I consider the results applied in this study as genuine persistence results, since one starts with

a normally hyperbolic manifold for the normal form, which is then perturbed by the remainder -on
which nothing but its size is known- and is proved to persist after perturbation.



A SYMPLECTIC APPROACH TO ARNOLD DIFFUSION PROBLEMS 241

r2

r3

Singular cylinder

?
εE

. . .

εν

?
ε

. . .

1

* ✗ ✗ ✗ ✗ ✗

Figure 4. The arc 0 with the low-order double resonance and the
bifurcation points.

this neighborhood. Even if one could expect this size to be of the order of
√
ε

(which would be the optimal one), we find it efficient to use a more flexible scale
and work with εν-neighborhoods, with some constant ν < 1

2 which will be made
precise in the text. The cylinders along the simple resonance segments such as S
will be called s-cylinders, (where s stands for “pure simple resonance”).

This enables us to split 0 into “s-segments” which are bounded by the neigh-
borhoods of consecutive low order double resonance points (denoted by©• in the
following picture where the curved arc is projected onto a plane). Note that one
can assume without loss of generality that the extremal points of 0 are double
resonance points of low order.

4. The situation is in fact slightly more complicated, due to the possible generic
occurrence of bifurcation points for the two-phase averaged systems (11). These
are the parameters r̂ where the potential V ( · , r̂) admits two nondegenerate global
maxima instead of a single one (depicted by a × in the following figure). In
the neighborhood of these points two cylinders coexist, for which we prove
the existence of heteroclinic connections. We will not give more details here,
since this does not yield serious additional difficulties in the construction (the
arguments here are standard in transversality theory).

2.3. The generic hyperbolic structure of classical systems on A2. A classical
system on A2 is a Hamiltonian of the form

C(x, y)= 1
2 T (y)+U (x), (x, y) ∈ A2 (12)

where T is a positive definite quadratic form of R2 and U a Cκ potential function
on T2, where κ ≥ 2. In the sequel we require the potential U to admit a single
maximum at some x0, which is nondegenerate in the sense that the Hessian of
U at x0 is negative definite. Consequently, the lift of x0 to the zero section of
A2 is a hyperbolic fixed point which we denote by O . We set ē =Max U and
we say that ē is the critical energy for C .

Such systems appear, up to a nonsymplectic rescaling, in the neighborhood of
a double resonance point r0 of the initial system (8), as the main part of normal
forms. The aim of this section is to depict some relevant hyperbolic properties
of C , when T is fixed and U belongs to a dense open subset of Cκ(T2), κ large
enough.
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Figure 2: Transition between two arcs at a double resonance point
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Figure 5. A singular 2-dimensional annulus.

1. Let π : A2
→ T2 be the canonical projection.

Definition 1. Let c ∈ H1(T
2,Z). Let I ⊂ R be an interval. An annulus for XC

realizing c and defined over I is a 2-dimensional submanifold A, contained in
C−1(I ) ⊂ A2, such that for each e ∈ I , A ∩ C−1(e) is the orbit of a periodic
solution γe of XC , which is hyperbolic in C−1(e) and such that the projection
π ◦γe on T2 belongs to c. We also require that the period of the orbits decreases
with the energy and that for each e ∈ I , the periodic orbit γe admits a homoclinic
orbit along which W±(γe) intersect transversely in C−1(e). Finally, we require
the existence of a finite partition I = I1 ∪ · · · ∪ In by consecutive intervals such
that the previous homoclinic orbit varies continuously for e ∈ Ii , 1≤ i ≤ n.

When I is compact, the annulus A is clearly normally hyperbolic in the usual
sense (the boundary causes no trouble in this simple setting). The stable and
unstable manifolds of A are well-defined, as the unions of those of the periodic
solutions γe. Moreover, A can be continued to an annulus defined over a slightly
larger interval I ′ ⊃ I .

2. Note that, due to the reversibility of C , the solutions of the vector field XC

occur in “opposite pairs,” whose time parametrizations are exchanged by the
symmetry t 7→−t . We introduce now the second definition to be used throughout
the whole paper.

Definition 2. Let c ∈ H1(T
2,Z) \ {0}. A singular annulus for XC realizing ±c

is a C1 compact invariant submanifold Y of A2, diffeomorphic to the sphere S2

minus three disjoint open discs with disjoint closures (so that ∂Y is the disjoint
union of three circles), such that there exist constants e∗ < ē < e∗ which satisfy:

• Y ∩ C−1(ē) is the union of the hyperbolic fixed point O and a pair of
opposite homoclinic orbits.

• Y ∩C−1(]ē, e∗]) admits two connected components Y+ and Y−, which are
annuli defined over the interval ]ē, e∗] and realizing c and −c respectively.

• Y0 = Y ∩C−1([e∗, ē[) is an annulus realizing the null class 0.
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A singular annulus, endowed with its induced dynamics, is essentially the
phase space of a simple pendulum from which an open neighborhood of the
elliptic fixed point has been removed.

3. We will finally need the following notion of chains of annuli for C ,7 from
which we will deduce the existence and properties of the chains of cylinders near
the double resonance points.

Definition 3. Let c ∈ H1(T
2,Z). We say that a family (Ii )1≤i≤i∗ of nontrivial

intervals, contained and closed in the energy interval ]ē,+∞[, is ordered when
Max Ii =Min Ii+1 for 1 ≤ i ≤ i∗− 1. A chain of annuli realizing c is a family
(Ai )1≤i≤i∗ of annuli realizing c, defined over an ordered family (Ii )1≤i≤i∗ , with
the additional property

W−(Ai )∩W+(Ai+1) 6=∅, W+(Ai )∩W−(Ai+1) 6=∅,

for 1≤ i ≤ i∗− 1, both intersections being transverse in their energy levels.

The last condition is equivalent to assuming that the boundary periodic orbits
of Ai and Ai+1 at energy e =Max Ii =Min Ii+1 admit transverse heteroclinic
orbits.8 Note that, following Definition 1, an annulus can itself be considered as a
chain, whose elements are the subannuli along which the homoclinic orbits vary
continuously. This slight ambiguity will cause no trouble in the construction.

4. We say that c ∈ H1(T
2,Z) \ {0} is primitive when the equality c = λc′ with

c′ ∈ H1(T
2,Z) implies λ = ±1. We denote by H1(T

2,Z) the set of primitive
homology classes, by d be the Hausdorff distance for compact subsets of R2 and
by 5 : A2

→ R2 the canonical projection.

Statement II (generic hyperbolic properties of classical systems). Let T be a
quadratic form on R2 and for κ ≥ 2, let U κ

0 ⊂ Cκ(T2) be the set of potentials
with a single and nondegenerate maximum. Then there is an integer κ0 ≥ 2 such
that if κ ≥ κ0, there exists a dense open subset

U (T )⊂ U κ
0 (13)

in Cκ(T2) such that for U ∈U (T ), the associated classical system C = 1
2 T +U

satisfies the following properties:

(1) For each c ∈ H1(T
2,Z) there exists a chain A(c)= (A0, . . . ,Am) of annuli

realizing c, defined over ordered intervals I0, . . . , Im , with

Im = [eP ,+∞[,

7we keep the same terminology as for the cylinders, with a slightly different sense here.
8But the previous formulation is more appropriate when hyperbolic continuations of the annuli

are involved.
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for a suitable constant eP which we call the Poincaré energy.

(2) Given two primitive classes c 6= c′, there is a σ ∈ {−1,+1} such that the
chains A(c)= (Ai )0≤i≤m and A(σc′)= (A′i )0≤i≤m′ satisfy

W−(A0)∩W+(A′0) 6=∅ and W−(A′0)∩W+(A0) 6=∅,

both heteroclinic intersections being transverse in A2.

(3) There exists a singular annulus Y which admits transverse heteroclinic
connections with the first annulus A0 of the chain A(c), for all c∈H1(T

2,Z).

(4) Under the canonical identification of H1(T
2,Z) with Z2 and for e > 0, let

us set, for a given primitive class c ∼ (c1, c2) ∈ Z2:

Yc(e)=

√
2ec√

c2
1+ c2

2

∈ R2

Let A(c)= (A0, . . . ,Am) be the associated chain and set γe = Am ∩C−1(e)
for e in [eP ,+∞[. Then

lim
e→+∞

d(5(γe), {Yc(e)})= 0.

We say that a chain with I0 and Im as in 1) is biasymptotic to ē :=Max U
and to +∞. We will not only consider chains formed by nonsingular annuli,
but also “generalized ones” in which we will allow a single annulus to be
singular. With this terminology, one can rephrase the content of 1) and 3) of
Statement II in the following concise way: for U ∈ U (T ) and for each pair of
classes c, c′ ∈ H1(T

2,Z), there exists a generalized chain:

Am↔ · · · ↔ A1↔ Y ↔ A′1↔ · · · ↔ A′m′

(where↔ stands for the heteroclinic connections) which is biasymptotic to +∞,
and realize c and c′ respectively.

In the x-plane, one therefore gets the following symbolic picture for the
projection of 6 generalized chains of annuli, where the annuli are represented by
fat segments, the singular annulus by a fat segment with a circle and the various
heteroclinic connections are represented by↔.

The projections of the annuli on the action space are in fact more complicated
than lines, they are rather 2-dimensional submanifolds with boundary, which
tend to a line when the energy grows to infinity.

2.4. Double resonance cylinders. The dynamical structure of Hamiltonian sys-
tems at double resonance points has been widely studied, not only in the above
mentioned works about Arnold diffusion, but also as an interesting problem per
se. A complete list of these works would be unrealistic, let us only mention the
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Figure 6. Projections in action of chains of annuli.

ones by G. Haller [27; 28] whose point of view is close to ours in the particular
case of the intersection of a strong and a weak resonance.

1. Our point now is to construct cylinders located inside the εν-neighborhoods
of the strong double resonance points, and prove that they match the s-cylinders.
Fix such a double resonance point r0 and assume (up to a linear change of
variables) that r0

= (
√

2e, 0, 0). Hence θ1 is the only fast angle with respect to
which the averaging can be performed. This yields a normal form

Nε(θ, r)= h(r)+ gε(θ, r)+ Rε(θ, r)

where

‖gε − ε[ f ]‖C p(T2×B(0,εν) ≤ ε
1+σ , ‖Rε‖C p(T3×B(0,εν) ≤ ε

`,

where σ > 0 and ` arbitrarily large. To derive this normal form in a quite flexible
way, we start from Pöschel’s normal form for analytic systems and apply an
analytic smoothing; see [3].

The dynamical study of this normal form requires some care. To simplify we
will assume here that

Nε(θ, r)= 1
2r2

1 +
[1

2(r
2
2 + r2

3 )+ εU (θ2, θ3)
]
+ R(θ, r, ε),

U (θ2, θ3):=

ˆ
T

f ((θ1, (θ2, θ3)), r0)dθ1,
(14)

where now the remainder R is extremely small (of order ε` with large `) in some
suitably chosen C p topology over a neighborhood of r0 of diameter εν .9

9The complete study requires a careful analysis of mixed terms which do not appear here and
whose size has to be taken into account.
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2. The main role in (14) is played by the ε-dependent classical system

Cε(θ, r̄)= 1
2(r

2
2 + r2

3 )+ εU (θ2, θ3), θ = (θ2, θ3), r̄ = (r2, r3).

To recover the unperturbed setting of Statement II, we perform the usual linear
rescaling r̄ =

√
εr̄ of the action variable only, which transforms Cε into

C(θ, r̄)= εCε(θ, r̄),

so that the dynamics is only changed by a time dilatation, while the geometry
is preserved. We assume that C satisfies the properties of Statement II. Let us
fix a finite number of primitive homology classes ck , 1≤ k ≤ k∗, and consider
the associated chains A(ck). Let ep(k) be the Poincaré energy of A(ck) and fix
E ≥maxk ep(k), so that, setting A(ck)= (A1(ck), . . . ,Amk (ck)) the annuli

A1(ck), . . . ,Amk−1(ck)

are contained in the sublevel C ≤ E , while the annulus Amk (ck) intersects that
level along the compact subannulus

Ãmk (ck)= Amk (ck)∩C
−1([ep(k), E]).

The previous coordinate change sends these annuli onto “homothetic” ones
(parametrized by ε), contained in the sublevel Cε ≤ εE . Forgetting about the
class ck , let us denote them by

A1(ε), . . . ,Amk−1(ε), Ãmk (ε). (15)

In addition, the singular annulus A• of C is sent onto a singular annulus A•(ε) of
Cε. The “length” of these annuli is of order

√
ε.

We can now analyze the ε-dependent truncated normal form

N ε(θ, r̄)= 1
2r2

1 +
[1

2(r
2
2 + r2

3 )+ εU (θ2, θ3)
]

(16)

on the energy level e. Let A(ε) be an element of the family (15). Since r1 is a first
integral of N ε, taking the product of A(ε) with the circle T of the angle θ1 gives
rise to a 3-dimensional (invariant and normally hyperbolic) cylinder C(A(ε))
contained in N−1

ε (e), the variable r1 being expressed (for ε small enough) as the
function of (θ, r̄) deduced from the energy relation

r1 = 2
√

e− e, e = Cε(θ, r̄), (θ, r̄) ∈ A(ε).

Similarly, the singular annulus A•(ε) gives rise to a normally hyperbolic invariant
singular cylinder C(A•(ε)) at energy e for N ε.

Since ω(r0)= (
√

2e, 0, 0), the tangent space to h−1(e) at r0 is the affine plane
r1 =
√

2e, so that one can see the variables (r2, r3) as natural coordinates on
h−1(e), and the localization of the previous invariant cylinders at energy e is
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Figure 7. Projections of chains of cylinders for (16).

well-described by their projection on the (r2, r3)-plane. As a consequence, the
arrangement of cylinders of N ε in a zone of diameter

√
εE around r0 is suitably

deduced from the arrangement of annuli in the sublevel C ≤ E , as shown in
Figure 7 (in projection on the (r2, r3)-plane).

Note finally that the (4-dimensional) stable and unstable manifolds of C(A(ε))
and C(A•(ε)) are the products of those of A(ε) and A•(ε) with the circle of θ1.
Consequently, the homoclinic and heteroclinic connections are the products of
those of the annuli of C with the circle of θ1. This is a degenerate situation which
generically gives rise to transverse intersections when the remainder R is taken
into account.

3. Once the invariant cylinders for the truncated normal form are properly
determined, it remains to show their persistence in the initial system. In a similar
way as for simple resonances, we take advantage of the smallness of R first
to use normal hyperbolic persistence and second to show the persistence of
the boundaries of the cylinders of N ε. This way we prove the existence in the
initial system of a family of invariant 3-dimensional cylinders, with homoclinic
and heteroclinic connections, located in an O(

√
ε) neighborhood of the double

resonance point r0. We call them d-cylinders.

4. So far we have described the global picture in the neighborhood of r0. We now
go back to our initial problem, which is to use (a subset of) the previous family
of d-cylinders to form a chain whose extremal elements match the s-cylinders
along the simple resonance 0. To do this, due to the fact that 0 ⊂ {r3 = 0}, we
only need to consider the d-cylinders located along the r2-axis in the previous
description. Therefore we focus on the chains of annuli of C which realize the
homology classes c= (±1, 0), whose projection lies along the r2-axis. Taking the
singular annulus into account and truncating the extremal annuli at the energy E ,
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Figure 8. A chain of cylinders along 0.

we get a generalized chain10

Ã−m↔ · · · ↔ A−1 ↔ Y ↔ A+1 ↔ · · · ↔ Ã+m,

which yields the chain of cylinders

C(Ã−m(ε))↔ · · · ↔ C(A−1 (ε))↔ C(Y(ε))↔ C(A+1 (ε))↔ · · · ↔ C(Ã+m(ε)).

Now a crucial observation is that both extremal cylinders C(Ã±m(ε)) can be
continued in a unique way over an O(εν)-neighborhood of r0, giving rise to
“longer” cylinders C̃±m , still lying along the resonant line 0. To compare these new
cylinders to the s-cylinders C± located on both sides of the double resonance
point, we prove that C̃+m and C̃−m both contain two (essential) KAM tori, which
are also contained in the s-cylinders C+ and C− respectively. By normally
hyperbolic uniqueness, this proves that the s-cylinders continue C̃±m outside the
εν-neighborhood and completes the picture: there is a chain of cylinders and
singular cylinders passing through the double resonance point and connecting
together the two s-cylinders C± in the εν gluing zone:

C−↔ · · · ↔ C(A−1 (ε))↔ C(Y(ε))↔ C(A+1 (ε))↔ · · · ↔ C+.

Applying this process for all strong double resonance points contained in 0
(and taking the bifurcations points between them into account), we construct a
chain C of hyperbolic cylinders and singular cylinders whose projection π(C) in
action satisfies dH (π(C), 0)→0 when ε→0 (where dH stands for the Hausdorff
distance in A3). This yields the following final picture for the arrangement of
cylinders along the arc 0.

5. This construction applies to each segment 0ki of the initial broken line. To
get a chain along the full broken line, we have to pass from one resonance arc to
another one through the double resonance point at their intersection. For doing
this, we use the full structure at this double resonance point and choose two
homology classes c1, c2 in H1(T

2,Z) which correspond to the simple resonances

10By symmetry of C , the numbers of annuli realizing ±c are equal.
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Figure 9. Transition between two arcs at a double resonance point.

arcs crossing at that point. In the same way as above, we get a chain of cylinders
(with one singular cylinder) whose projection is located along both resonance
arcs in an O(

√
ε) neighborhood of the double resonance point:

C(Ã−m1
(c1, ε))↔ · · ·

↔ C(A−1 (c1, ε))↔ C(Y(ε))↔ C(A+1 (c2, ε))↔

· · · ↔ C(Ã+m2
(c2, ε)).

Again, we prove that the extremal cylinders C(Ã−m1
(c1, ε)) and C(Ã−m2

(c2, ε))

admit continuations to an εν neighborhood of the double resonance point, and
that these continuations match the s-cylinders located on both sides of the
neighborhood along the simple resonance arcs.

2.5. Thresholds. The minimal regularity κ0≥2 is assumed to be large enough for
our subsequent (finite number of) applications of normally hyperbolic persistence,
genericity and KAM theorems to apply for κ ≥ κ0 in the various settings involved
in the construction. We fix a Tonelli integrable Hamiltonian h ∈ Cκ(R3) with
κ ≥ κ0 together with a broken line of simple resonance arcs as in Figure 3. We
outline the main steps of a proof of the existence of the lower semicontinuous
threshold function ε0 of Statement I. Without loss of generality, we can focus on
a single resonant arc 0 and assume that:

• 0 is a graph over the plane P ={r3= 0}, so that its equation reads r3= r∗3 (r̂)
with r̂ := (r1, r2) in 0̂ := πP(0).

• The frequency vector along 0 reads ω(r)= (ω1(r), ω2(r), 0).

By compactness and convexity, the spectrum of the normal Hessian of h along
0 is bounded from below by a positive constant.
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1. Conditions for the existence of simple resonance cylinders.

• For κ ≥ κ0, the Cκ one-parameter families of functions on T with parameter
in 0̂ which admit a single and nondegenerate maximum up to a finite number of
values of the parameter, for which there are exactly two nondegenerate maxima,
form an open and dense subset of Cκ(T× 0̂). The averaging operator f 7→ 〈 f 〉0 ,
where

〈 f (θ3; r̂)〉0 =
ˆ

T2
f (θ̂ , θ3, r̂ , r∗3 (r̂))d θ̂

is linear and surjective from Cκ(A3,R) to Cκ(T× 0̂), hence is an open mapping.
Therefore there is a dense open subset S1⊂ Sκ such that for f ∈ Sκ1 the averaged
potential 〈 f (θ3; r̂)〉0 admits a single and nondegenerate maximum θ∗3 (r̂) outside a
finite subset of bifurcation points in 0̂, where it admits exactly two nondegenerate
maximums.

Consequently, thanks to the remark on the normal Hessian of h along 0, over
closed intervals limited by bifurcation points the hyperbolicity constant of the
hyperbolic point O (̂r)= (θ∗3 (r̂), r

∗

3 (r̂)) is uniformly bounded from below.11

• Using to a suitable
√
ε rescaling, one proves (see [5] and early works by

Kaloshin) that, given f ∈ Sκ1 , the previous uniform bound yields the existence
of a finite number of double resonance points (di ) in 0 such that one gets (pseu-
doinvariant) simple resonance cylinders outside the union of εν-neighborhoods
of the fibers T3

×{di } in Hε(e). The choice of κ0 depends on the required value
of ν < 1

2 (see [44]) and this statement holds for and 0< ε < ε1( f ).

• For each f ∈ S1, there is an open neighborhood O( f ) of f in S1 such that
the set of double resonance points to be removed from the arc 0 do not depend
on the choice of the perturbation g ∈ O, and moreover the function ε1 can be
chosen so as to depend continuously on g in O.

This process provides us with a multivalued locally continuous threshold
function ε1 : Sκ1 → R∗+.

2. Conditions at a double resonance point. We fix now an open subset O ⊂ S1

over which the previous two properties (double resonant points and continuity of
ε1) are satisfied. It is enough to consider a single double resonance point r0

∈ 0,
and one can assume its frequency vector to have the form (ω1, 0, 0) with ω1 6= 0.
Set θ := (θ2, θ3) and for f ∈ O let

U (θ) := 〈 f 〉r0(θ)=

ˆ
T

f (θ1, θ, r0)dθ1

11This point is uniquely defined by continuity at the boundaries of the interval.
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be the averaged potential at r0. The (
√
ε-rescaled) main part of the averaged

system at r0 reads
C(θ, r̄)= 1

2 Q(r̄)+U (θ), (17)

where Q is a fixed quadratic form deduced from the Hessian of h at r0. We fix a
finite number of homology classes in H1(T

2) (one class in the case of a double
resonant point in Int0 and two classes in the case of a boundary point, according
to the fact that one wants to construct chains following 0 in the first case and
passing to another resonance arc in the second):

• Since the averaging operator 〈 〉r0 is an open mapping Cκ(A3)→ Cκ(T2),
provided that κ0 is large enough, there is a dense open subset O ′ ⊂ O such
that the classical system (17) satisfies the properties quoted in Statement II
relative to the previous homology classes. In particular, there is a chain of
annuli (with a single singular annulus) attached to the previous homology
class (in the case of an inner double resonance point) and to the pair of
classes (in the case of a boundary point).

• By (singular) normally hyperbolic persistence of the annuli, there is a
multivalued locally continuous function ε2 : O2→ R∗+ such that for 0 <
ε < ε2(g) < ε1(g) there exist chains of (pseudoinvariant) cylinders (with a
single singular cylinder) obtained by suspension relative to the fast angle,
and then perturbation, of the chains of annuli in the averaged system

Cε(θ, r̄)= 1
2 Q(r̄)+ ε〈g〉r0(θ).

• The Poincaré pseudoinvariant cylinders in these chains extend to an εν-
distance away from the double resonance.

This step (applied to each double resonance point in 0) provides us with a
cover (O j ) of S1 by open sets over which the function ε2 is continuous and is a
threshold for the existence of pseudoinvariant cylinders along 0, and along two
other resonant arcs in a small neighborhood of the boundary double resonance
points.

3. Conditions for the existence of KAM tori and invariant cylinders. We fix now
f in some O j . For 0 < ε < ε2( f ), the existence of a sufficiently large set of
2-dimensional unperturbed tori inside the pseudoinvariant cylinders (neglecting
the remainders of the various normal forms) is guaranteed by usual considerations
from Diophantine theory; see for instance [15]. After reducing the system (in
normal form) inside the pseudoinvariant cylinders to a two dimensional discrete
setting, one can apply a version of KAM theorem with vanishing torsion (which
reflects the singular nature of the perturbation), deduced from Herman’s work
(see [29; 30]), to show the existence of 2-dimensional invariant tori close to
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the “boundaries” of the pseudoinvariant cylinders. These tori therefore bound
genuinely invariant and normally hyperbolic tori. In the same way, one proves
the existence of invariant tori inside the matching zone at an εν distance of the
double resonance points, proving that the simple resonance cylinders and the
(suitably chosen) double resonance Poincaré cylinders continue one another. This
provides us with a new open cover of O and a multivalued threshold function
0< ε3 < ε2 which is continuous on each open set of the cover and is a threshold
for the existence of a family of compact invariant normally hyperbolic cylinders
and singular cylinders along the arc 0.

4. The lower-semicontinuous threshold ε0. At this point the initial open dense
set S1 is endowed with an open cover (Ui )i∈I together with a threshold function
ε3 which is positive and continuous on each Ui . For each i , we continue the
function (ε3)|Oi to Sκ by 0 on the closed set Sκ \Ui . The resulting continuation
ε
(i)
3 is therefore lower-semicontinuous on Sκ . Applying the previous process to

each arc in the initial broken line, one gets a final threshold

ε0 = Supi∈I ε
(i)
3 ,

which is lower-semicontinuous, positive on the dense open set S1 and such that
each element in the generalized ball Bκ(ε0) admits a family of compact normally
hyperbolic invariant cylinders along the broken line.

5. Connections. We will not address in detail here the question of homoclinic
and heteroclinic connections. New conditions to ensure the existence of trans-
verse heteroclinic connections between distinct consecutive cylinders come from
usual arguments from transversality theory, while the (topologically transverse)
homoclinic connections require more subtle arguments (see Section 5 and [44])
from dimension theory, which finally yield the admissible chains along which
the diffusion orbits can be proved to exist. Both type of connections require
adding arbitrarily small perturbations to the elements of the generalized ball
B(ε0) (which is legitimized by the fact that B(ε0) is open), which explains that
our admissible chains exist only for a dense open set of perturbations in B(ε0)

in our Statement I (openness being trivial by continuity).

2.6. Conclusion. To conclude this geometric description, we want to emphasize
that, while the geometric analysis is more complicated near double resonances
than along simple resonance arcs, the dynamical analysis along d-cylinders is by
far simpler than that along s-cylinders. Indeed, due to the existence of a global
transverse intersection of the stable and unstable manifolds of a 2-dimensional
annulus in the averaged classical system on T2, the stable and unstable manifolds
of the corresponding perturbed cylinder in the initial system at fixed energy
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intersect transversely along a two-dimensional homoclinic annulus. After a two-
dimensional reduction of the dynamics on a Poincaré section inside the cylinder
(see Section 5), this yields a bisystem of globally defined maps (the inner and
the homoclinic one) for which the existence of drifting orbits is easy to prove
(see the next section for a simplified model). By contrast, the stable and unstable
manifolds of an s-cylinder do coincide if the remainder of the normal form is
neglected. This makes the construction of homoclinic orbits more difficult: after
taking the remainder into account, they essentially come from the homoclinic
intersections of invariant tori contained inside the cylinder, which yields only
a locally defined homoclinic correspondence. In this case usual transversality
arguments do not apply, due to the uncountable number of objects to control.
Sections 4 and 5 below are devoted to this difficulty, in the general discrete case
in Section 4, which is then applied in a simplified model in Section 5.

3. Diffusion orbits in the a priori chaotic discrete setting

The purpose of this section is to exhibit a class of symplectic diffeomorphisms
of A2

= T ∗T2, for which diffusion properties can be detected with minimal
technicalities, which in addition are good models for the dynamics along double
resonance cylinders.

Our framework is a discrete version of the so-called “a priori chaotic” setting
developed in relation to Mather’s work on unbounded growth of energy for
nonautonomous perturbations of geodesic flows. This problem was investigated
by Bolotin and Treschev [8] and Delshams, De la Llave, Seara [16]; more
recently Gelfreich and Turaev systematically revisited this question in the analytic
category [19]. However some significant features of our systems are rather
different and make our approach both simpler and more general to some extent,
since they are far from any integrable ones.

The main feature of our diffeomorphisms g : A2 ý is the existence of a
normally hyperbolic annulus A (diffeomorphic to A) that admits a homoclinic
intersection which is itself diffeomorphic to an annulus. This yields the existence
of a natural bisystem on A , formed by the restriction of g to A together with
a homoclinic map defined everywhere on A . It is then easy to show that an
arbitrarily small perturbation of g puts this bisystem in a general position and
allows one to apply Moeckel’s theorem [48]. This yields the existence of drifting
pseudoorbits, which are in turn shadowed by genuine orbits, due to normally
hyperbolic shadowing properties.

3.1. The setting. We fix once and for all a closed interval I ⊂ [−1, 2] of R

which contains [0, 1] in its interior. We work in the space Dκ of Cκ symplectic
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diffeomorphisms of A2 with support contained in T2
× I 2, endowed with the

natural uniform Cκ metric dκ . The space (Dκ , dκ) is complete.
We first introduce a diffusion property for diffeomorphisms in Dκ together

with a specific class F κ
⊂ Dκ (uncoupled products), whose elements do not

satisfy this property and which we consider as “unperturbed systems”. Our main
result then proves the existence of a large subset of suitable Cκ perturbations of
f which admit the diffusion property.

1. Let us now give precise definitions, beginning with that of diffusion orbits.

Definition 4. Fix δ > 0 and set

U 0(δ)= {(θ, r) ∈ A2
| |r1|}< δ}, U 1(δ)= {(θ, r) ∈ A2

| |r1− 1|< δ}. (18)

Given a diffeomorphism g ∈ Dκ , we say that a finite orbit x0, . . . , xN of g is a
δ-diffusion orbit when x0 ∈ U 0 and xN ∈ U 1.

2. The elements f ∈F κ are Cκ symplectic diffeomorphisms of A2 and admit
the product form

f (θ, r)= ( f1(θ1, r1), f2(θ2, r2)), (θ, r) ∈ A2, (19)

where the diffeomorphisms fi : A ý satisfy some additional conditions:

• Conditions on f1. We denote by DD(τ ) the set of real numbers which are
Diophantine of exponent τ > 1. Given κ ≥ 1, we introduce the set F κ

1 of Cκ

symplectic diffeomorphisms f1 : A ý which satisfy the following conditions:

(C1) Supp f1 ⊂ T× I .

(C2) The circles 00
= T× {0} and 01

= T× {1} are invariant under f1, and
their rotation numbers ρ0, ρ1 are in DD(τ ) for some τ > 1.

To introduce the third condition we use the coordinate chart (θ1, r1) of A and
write

f1(θ1, r1)= (21(θ1, r1), R1(θ1, r1)). (20)

(C3) The restriction of f1 to the annulus T×[0, 1] uniformly tilts the vertical to
the right, that is, there is a c > 0 such that

∂21

∂r1
(θ1, r1)≥ c, ∀(θ1, r1) ∈ T×[0, 1]. (21)

Note that, due to (C1) and (C2), the annulus T × [0, 1] is invariant under
f1. The condition that the rotation numbers of the circles 0i are in DD(τ ) will
ensure their persistence under perturbation.

• Conditions on f2. We introduce the set F κ
2 of Cκ symplectic diffeomorphisms

f2 : A ý which satisfy the following conditions:
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Figure 10. An unperturbed diffeomorphism.

(C4) Supp f2 ⊂ T× I .

(C5) The diffeomorphism f2 possesses a hyperbolic fixed point O2.

(C6) The point O2 admits a transverse homoclinic point P2.

We will denote by
λ(O2) > 1 (22)

the maximal eigenvalue of the derivative DO2 f2. Note that O2 and P2 are
contained in the support of f2.

3. We now define our set of “unperturbed” diffeomorphisms in order to guarantee
additional stability properties under perturbations.

Definition 5. We define F κ as the set of (symplectic) diffeomorphisms on A2

of the form (19), where f1 ∈F κ
1 and f2 ∈F κ

2 with

(Maxx∈A‖Tx f1‖)
κ < λ(O2). (23)

where ‖·‖ stands for the operator norm.

The domination condition (23) ensures that the invariant annulus A× {O2}

is uniformly normally hyperbolic for f , with persistence properties in the Cκ

topology and additional specific symplectic features.12

4. Given τ > 1, when κ is large enough, for any f ∈F κ there exists an arbitrarily
small δ > 0 such that f does not possess any δ-diffusion orbit: classical KAM
theorems in the finitely differentiable setting prove the existence of an essential
invariant circle 0 for f1 located in the zone r1 > 0 (one indeed gets an infinite
family of such circles), and the claim comes from the product structure of f .
However, we will prove that under generic and small enough perturbations, any
element of F κ gives rise to a diffeomorphism which admits diffusion orbits.
More precisely, our main result is the following.

12A weaker condition could be required, at the cost of a smoothing argument which would
obscure the description.
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Theorem 6. There is a κ0 such that, given f ∈F κ and δ > 0, then there is an
ε( f ) > 0 such that the subset of all diffeomorphisms g in Bκ( f, ε( f )) which
admit a δ-diffusion orbit is open in the C0 topology and dense in Bκ−1( f, ε( f )).

The existence of δ-diffusion orbits being clearly an open property in the C0

topology, we will therefore focus on the “density”. The loss of 1 derivative could
be avoided using a smoothing argument that we will not describe here.

5. As already mentioned in the introduction, the proof of Theorem 6 is based on
a method introduced by Moeckel in [48] to prove the existence of drifting orbits
for bisystems of maps τ0, τ1 on the annulus. If 0• and 0• are two disjoint graphs
of C1 functions T→ R, we denote by A[0•, 0•] ⊂ A the subannulus bounded
by their union.

Theorem A [48]. Let τ0, τ1 : A ý be C1 diffeomorphisms with compact support
in T× I , where τ0 is area-preserving and τ1 is exact symplectic. Assume that
there exist two disjoint τ0-invariant C1 graphs 0•, 0• in T× I and that τ0 is a
twist map in restriction to the annulus A := A[0•, 0•]. Let EssA(τi ) be the set of
essential τi -invariant circles contained in A. Assume that

EssA(τ0)∩Ess(τ1)=∅. (24)

Then for any connected neighborhoods U• and U • of 0• and 0• in A, with
τ1(0•)⊂U• and τ1(0

•)⊂U • the bisystem (τ0, τ1) admits an orbit with first point
in U• and last point in U •.

This in fact is a slight generalization of the theorem of [48], since the bound-
aries 0• and 0• are not assumed to be invariant under τ1.

The next result, based on the study of the Minkowski dimension of the sets
EssA(τ0) and Ess(τ1), will provide us with the necessary tool for proving the
density statement in Theorem 6.

Theorem B [48]. Fix an integer p ≥ 1. Let τ0, τ1 : A ý be C p area-preserving
diffeomorphisms with compact support in T× I . Assume that there exist two
disjoint τ0-invariant C1 graphs 0•, 0• in T× I , and that τ0 is a twist map in
restriction to A := A[0•, 0•]. Assume moreover that (τ0)|A has no essential in-
variant circle with rational rotation number. Then there exists a C∞ Hamiltonian
h :A→R with support in T× I , arbitrarily small in the C∞ topology, such that

EssA(τ0)∩Ess(8h
◦ τ1 ◦8

−h)=∅, (25)

where 8h stands for the time-one map of the Hamiltonian flow generated by h.

Note that assuming that the τi are area-preserving is equivalent to assuming
that they are exact-symplectic a property directly related to the constructions of
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our bisystems in the following. The proof of Theorem B is exactly the same as
in [48].

3.2. Proof of Theorem 6. Let us first informally describe the proof. The first
ingredient is the choice of ε small enough so that any g in Bκ( f, ε( f )) exhibits
some of the main dynamical features of f . In particular, we require that g admits
a normally hyperbolic invariant annulus Ag close to A×{O2} and a homoclinic
annulus Hg close to A×{P2}. We then consider two diffeomorphisms of Ag.

• The first one, ϕg, is nothing but the restriction of g to Ag. Thanks to the
domination condition (23) normally hyperbolic persistence proves that ϕg is Cκ

close to f1 (in suitable coordinates). In particular, the initial invariant circles
0i of f1 will persist and give rise to essential invariant circles 0i

g for ϕg, which
bound a compact annulus Ag ⊂ Ag.

• The definition of the second diffeomorphism — the homoclinic map ψg — is
based on the existence of a (full) homoclinic annulus Hg. The diffeomorphismψg

encodes the asymptotic properties of the associated homoclinic orbits of Ag. More
precisely, if x, y in Ag satisfy y =ψg(x), then there exists an orbit z−M , . . . , zN

of g, located in A2
\Ag, with z−M arbitrarily close to g−M(x)= ϕ−M

g (x) and zN

arbitrarily close to gN (y)= ϕN
g (y), where the integers N and M can be chosen

arbitrarily large.

A key observation (introduced in [24]) is that the Poincaré recurrence theorem
applies to ϕg on the compact annulus Ag and allows one to choose M and N
so that ϕ−M

g (x) and ϕN
g (y) are arbitrarily close to the initial points x and y

respectively.
Using Moeckel’s results, we prove that after a small perturbation of g the

bisystem (ϕg, ψg) admits “drifting orbits”, whose initial and final points are
arbitrarily close to the boundary circles of Ag.

Finally, in view of the definition of ϕg and the asymptotic properties of ψg, one
expects that the connecting orbits of the bisystem can be uniformly approximated
by genuine orbits of g. Here, for completeness, we prove that this is the case by
means of a normally hyperbolic shadowing lemma, whose idea is reminiscent of
[8; 17]. Our proof closely follows the (more general) one in [23].

3.2.1. The symplectic geometry of perturbed products. 1. Let us first examine
the dynamical features of a diffeomorphism f ∈F κ(τ ), which are immediately
deduced from the product form (19):

• The annulus A = A×{O2} is invariant under f and diffeomorphic to A. It is
moreover κ-normally hyperbolic, due to condition (23). The stable and unstable
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manifolds of A inherit the product structure of f :

W±(A )= A×W±(O2). (26)

These are hypersurfaces of A2 of class Cκ (since W±(O2) are Cκ ), and so are
coisotropic in A2. Their characteristic leaves are the 1-dimensional submanifolds

{x}×W±(O2), x ∈ A. (27)

which coincide with the stable and unstable manifolds of the points of A respec-
tively (this fact is general, see Appendix A). Let5± :W±(A )→A stand for the
characteristic projections, so that if (x, w) ∈W±(x), then 5±(x, w)= (x, O2).

• The manifolds W±(A ) intersect transversely in A2 along both A and the
homoclinic annulus

H = A×{P2}. (28)

Moreover, for each (x, O2) ∈A , the leaf W−((x, O2)) transversely intersect the
manifold W+(A ) at a unique point of H , namely

W−((x, O2))∩H = {(x, P2)}. (29)

One has a similar observation for the stable leaves. We denote by π± the
restrictions of 5± to the annulus H , so that

π± :H → A , π±(x, P2)= (x, O2), x ∈ A. (30)

• Clearly A and H are symplectic submanifolds of A2 and π± are symplectic
diffeomorphisms.

• There exists a pair of natural f -induced symplectic diffeomorphisms of A . The
first one is just the restriction ϕ = f|A , which here admits a natural identification
with f1. The second one is the map

ψ = π+ ◦ (π−)−1

which describes the homoclinic excursion of the orbits, we call it the homoclinic
map. Clearly ψ = Id here.

The manifolds W±(A ) do indeed admit a much larger intersection than A ∪H ,
but we neglect the other components which play no role in our construction.

The homoclinic map has been introduced in [14] and carefully studied in [17]
and subsequent papers by the same authors, under the name of scattering map.
We use this new terminology here to make a distinction between the homoclinic
maps (or correspondences) and the heteroclinic ones, which necessarily appear
when chains of cylinders are considered. While the ideas are very close, one
slight difference in our (complete) work is that we perform a systematic reduction
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of the homo-heteroclinic map to a two-dimensional object (in order to obtain a
two-dimensional bisystem), while the scattering map is usually used in a more
global higher dimensional setting.

2. The symplectic features of small enough perturbations of f are immedi-
ately deduced from the symplectic normally hyperbolic persistence theorem
(see Appendix A). Note in particular that even if the unperturbed annulus is
noncompact, the existence and uniqueness of the perturbed one is not difficult,
thanks to the compact-supported character of the perturbation.

Lemma 7. Let f = ( f1, f2) ∈F κ(τ ) be fixed. Then there exists ε( f ) > 0 such
that for each g in Bκ( f, ε( f )):

• There exists a (uniquely defined) symplectic normally hyperbolic g-invariant
annulus Ag of the form

Ag = {(x, ag(x)) | x ∈ A}, (31)

where ag is a Cκ function A→ B2(O2, α) ⊂ A such that ‖ag − O2‖Cκ (A)→ 0
when dκ(g, f )→ 0 (where α > 0 is a suitable constant).

• The manifolds W±(Ag) are coisotropic with characteristic foliations

(W±(z))z∈Ag ,

and the characteristic projections 5±g :W
±(Ag)→ Ag are Cκ−1.

• There exists a (uniquely defined) symplectic homoclinic annulus

Hg ⊂W+(Ag)∩W−(Ag),

of the form

Hg = {(x, hg(x)) | x ∈ A}, (32)

where hg is a Cκ function A→ B2(P2, α) ⊂ A such that ‖hg − P2‖Cκ (A)→ 0
when dκ(g, f )→ 0.

• The restrictions

π±g := (5
±

g )|Hg :Hg→ Ag (33)

are Cκ−1 symplectic diffeomorphisms.

• For each z ∈ Ag, the unstable manifold W−(z) intersects Hg at (π−g )
−1(z)

transversely in A2, with an analogous property for the stable manifold.
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3.2.2. The bisystem. We can now introduce our bisystem on Ag, assuming that
g ∈ Bκ( f, ε( f )). We first consider the restriction

ϕg : Ag ý, ϕg = g|Ag , (34)

which is a Cκ symplectic diffeomorphism for the induced structure on Ag. As
for our second map, we set

ψg : Ag ý, ψg = π
+

g ◦ (π
−

g )
−1. (35)

Therefore ψg is a Cκ−1 symplectic map. The next lemma (which is an appli-
cation of Moser’s isotopy argument) enables us to identify ϕg (and ψg) with a
diffeomorphism of the standard annulus A in a proper way.

Lemma 8. If ε( f ) is small enough and g ∈ Bκ( f, ε( f )), there exists a Cκ−1

symplectic embedding 8g of A, equipped with the standard form, into A2 such
that:

• 8g(A)= Ag.

• The diffeomorphism ϕ̂g = 8
−1
g ◦ ϕg ◦8g : A ý has support in T× I and

tends to f1 in the Cκ−1 uniform topology when dκ(g, f )→ 0.

• The diffeomorphism ψ̂g =8
−1
g ◦ψg ◦8g : A ý has support in T× I and

tends to Id in the Cκ−1 uniform topology when dκ(g, f )→ 0.

The following corollary is an immediate application of the previous lemma
and finitely differentiable KAM theory.

Corollary 9. There is an ε( f ) ∈]0, ε( f )] such that for each diffeomorphism
g ∈ Bκ( f, ε( f )) there exists a Cκ−1 symplectic embedding8g of A into Ag such
that the map ϕ̂g =8

−1
◦ϕg ◦8 admits two (disjoint) essential invariant circles

0• and 0• with rotation numbers ρ0 and ρ1 respectively (see (C2)), such that
0•→ 00 and 0•→ 01 in the C0 topology when dκ(g, f )→ 0. Moreover, the
map ϕ̂g uniformly tilts the vertical over the annulus Ag bounded by 0• and 0•.

3.2.3. The perturbative step. We fix now a diffeomorphism g ∈ Bκ( f, ε( f )),
where ε( f ) is defined in Corollary 9, and get rid of the ˆ in the previous corollary.
We want to prove the existence of a perturbed diffeomorphism g̃ ∈ Bκ( f, ε( f )),
arbitrarily close to g in the Cκ−1 topology, for which the associated bisystem
(ϕg̃, ψg̃) satisfies condition (24). We proceed in two steps: we first perturb g
so that ϕg has no rational essential circle, and we then perturb the resulting
diffeomorphism again (without perturbing ϕg) to ensure condition (24). We write
ε instead of ε( f ) in the following.

1. First perturbation of g: making ϕg admissible Let J be a closed interval
of R containing [0, 1] in its interior and contained in the interior of I . Taking
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into account that Ag is of class Cκ and invariant under g, by usual perturbation
techniques (see [50; 51]), there exists a Cκ diffeomorphism g∗ ∈ Bκ( f, ε),
arbitrarily close to g in the uniform Cκ topology, which satisfies:

• The invariant annulus Ag∗ coincides with Ag.

• All periodic points of ϕg∗ = g∗
|Ag∗

in T2
× J 2 are either hyperbolic or elliptic

with nondegenerate Birkhoff invariant.

• The stable and unstable manifolds of the periodic orbits intersect trans-
versely.

As a consequence, if κ is large enough to ensure the existence of invariant
curves surrounding each elliptic point, one easily proves that ϕg∗ cannot admit
an essential invariant circle with rational rotation number in the compact annulus
Ag∗ defined in Corollary 9.

2. Second perturbation of g: making ψg admissible In view of the last section,
replacing g with g∗, we can assume that g has no invariant circle in Ag with
rational rotation number. We want now to perturb g into a new diffeomorphism
g̃ such that

Ag̃ = Ag, Hg̃ =Hg, ϕg̃ = ϕg, EssAg (ϕg)∩Ess(ψg̃)=∅. (36)

We first analyze the composition of g with a diffeomorphism with support
localized in a small enough neighborhood of the annulus Hg.

Lemma 10. Let W±0 be the submanifolds (diffeomorphic to [0, 1] × A) of
W±(Ag) bounded by Ag and Hg. Let N be a neighborhood of Hg such that

dist(Ag,N ) > 0, g(W+0 )∩N =∅, g−1(W−0 )∩N =∅. (37)

Assume that χ is a diffeomorphism of A2 with support in N , which leaves the
annulus Hg invariant, and set g̃ = χ ◦ g. Then Ag̃ = Ag, Hg̃ =Hg and

ϕg̃ = ϕg, ψg̃ = ψg ◦ (π
−

g ◦χ ◦ (π
−

g )
−1). (38)

See [45] for a proof. We can now use Moeckel’s Theorem B in order to
produce our perturbation g̃.

Lemma 11. There exists a diffeomorphism g̃ ∈Dκ−1, arbitrarily close to g in the
Cκ−1 topology such that Ag̃ = Ag, ϕg̃ = ϕg and the maps τ0 = ϕg and τ1 = ψg̃

satisfy condition (24) of Theorem A.

Proof. By Theorem B there exists a C∞ Hamiltonian h :A→R arbitrarily close
to 0 such that ϕg and the modified diffeomorphism

8h
◦ψg ◦8

−h (39)



262 JEAN-PIERRE MARCO

satisfy (24). In view of Lemma 10, (38), let us introduce the perturbed diffeo-
morphism

ψpert = ψg ◦ [π
−

g ◦χ ◦ (π
−

g )
−1
] : A ý, (40)

where χ :Hg ý is a diffeomorphism we want to determine (and which we then
have to continue to a diffeomorphism χ defined in a neighborhood of Hg). We
want to choose χ in order to solve the equation

ψpert =8
h
◦ψg ◦8

−h . (41)

Straightforward computation yields

χ = (π−g )
−1
◦ψ−1

g ◦8
h
◦ψg ◦8

−h
◦π−g . (42)

Therefore χ is a Cκ−1 Hamiltonian diffeomorphism of the annulus Hg, with
compact support, which tends to Id in the Cκ−1 topology when dκ(g, f )→ 0.
As a consequence, there is a Cκ function ξ : R×Hg → R, with support in
]0, 1[×Hg such that

χ =8ξ :Hg ý, (43)

where 8ξ is the time-one map starting at 0 generated by ξ . Using the Moser
isotopy argument, one proves the existence of a Cκ−1 symplectic diffeomorphism

T : A× B2(0, α)→N , T (A× 0})=Hg, (44)

where N is a neighborhood of Hg in A2, α is a positive constant and the first
factor is endowed with the usual symplectic structure. Fix a C∞ bump function
η : B2(0, α) → R equal to 1 in a neighborhood of 0 and define a function
H : R×A× B2(0, α)→ R by

H(t, x1, x2)= η(x2)ξ(t, T (x1, 0)). (45)

Then clearly the time-one map χ = T ◦8H leaves Hg invariant, with χ|Hg = χ

and the support of χ is contained in N . Moreover, χ tends to the identity in the
Cκ−1 topology when h tends to 0 in the Cκ topology. Setting g̃ = χ ◦ g provides
us with the perturbed diffeomorphism we were looking for. �

3.2.4. Conclusion of the proof of Theorem 6. Fix f ∈F κ and δ > 0. We assume
that κ is large enough so that all the conclusions and identifications of the last
sections hold. Set

U• = {(θ1, r1) ∈ A | r1 ∈ ]−δ/4, δ/4[},

U •
= {(θ1, r1) ∈ A | r1 ∈ ]1− δ/4, 1+ δ/4[},

U• = {(θ, r) ∈ A2
| r1 ∈ ]−δ/2, δ/2[},

U •
= {(θ, r) ∈ A2

| r1 ∈ ]1− δ/2, 1+ δ/2[}.

(46)
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By Lemma 8 and Corollary 9, one can choose ε ∈ ]0, ε( f )[ small enough so that
for any diffeomorphism g ∈ B( f, ε), with the notation of Lemma 8, the invariant
circles 0• and 0• of ϕg satisfy

0• ⊂U•, ψ(0•)⊂U•, 0• ⊂U •, ψ(0•)⊂U •, (47)

and are such that moreover

8g(U•×{0})⊂ U•, 8g(U •
×{0})⊂ U •. (48)

We then proved the existence of a Cκ−1 diffeomorphism g̃∈ B( f, ε( f )) arbitrarily
close to g in the Cκ−1 topology, such that the bisystem (ϕg̃, ψg̃) associated with
g̃ satisfies (24). In particular, (ϕg̃, ψg̃) admits an orbit with first point in U• and
last point in U •.

The last step is to apply the normally hyperbolic shadowing lemma (see
Theorem 40 in Appendix C) (with δ/2 instead of δ) to the bisystem (ϕg̃, ψg̃).
The previous orbit produces an orbit of g̃ with first point in U 0 and last point in
U 1 (see Definition 4). This concludes the proof. �

4. The discrete setting for simple resonance annuli

Our objective now is to generalize the previous result to a (still discrete) case
which well-adapted to the diffusion properties of the dynamics along simple
resonance cylinders. The main difference with the previous model is that we have
to replace the globally defined homoclinic map by a correspondence formed by a
family of locally defined maps. We therefore have to introduce a local version of
the Moeckel noncoincidence condition and prove that it yields the existence of
drifting orbits for this type of bisystem: we require that each essential invariant
circle of g admits a splitting arc, that is, a C0 arc located below the invariant
circle and which is sent into the invariant circle by some locally defined maps
of the previous family. The question of the generic existence of such arcs for
relevant examples will necessitate specific symplectic ingredients and will be
examined in the next section — together with the definition of these examples.
This section is extracted from the joint work [21].

4.1. Special twist maps and splitting arcs. Given a < b, we set A= T×[a, b]
and for each c ∈ [a, b], we write 0(c) for T× {c}. Given a map f : A ý, we
denote by Ess( f ) its set of invariant essential circles.

1. We begin with the following definition for twist maps.

Definition 12. Here we say that an area-preserving twist map ϕ of A is special
if ϕ does not admit any essential invariant circle with rational rotation number.13

13Our definition in [21] is more stringent but we will not need it in the present setting.
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Figure 11. Positively and negatively tilted arcs.

Given an essential circle 0⊂T×]a, b[, 0− (resp. 0+) stands for the connected
component of A \0 located below 0 (resp. above 0) in A. In the following we
will crucially use the following result.

Lemma 13. Let ϕ be a special area-preserving twist map ϕ of A. Then any two
distinct elements of Ess(ϕ) are disjoint. Moreover, given an invariant essential
circle 0 ⊂ (A \0(a)), then either 0 is the upper boundary of a Birkhoff zone of
ϕ, or it is accumulated by a sequence of elements of Ess(ϕ) located in 0−.

See Appendix B for a proof.

2. We now list the necessary definitions and results for arcs. Given (u, v) ∈ R2,
let 6 (u, v) be the oriented angle of (u, v) in [0, 2π [. Let f : A ý be an area-
preserving twist map. Fix a circle 0 ∈ Ess( f ). An arc based on 0 is a C0

function γ : [0, 1] → A such that γ (0) ∈ 0 and γ (]0, 1]) ∈ 0+. We usually
denote by γ̃ the image γ ([0, 1]).

A C1 arc based on 0 with γ ′(s) 6= 0 for s ∈ [0, 1] is said to be positively tilted
(resp. negatively tilted) when 6 ((0, 1), γ ′(0)) ∈ ]0, π[ (resp. 6 ((0, 1), γ ′(0)) ∈
]−π, 0[) and when the continuous lift to R of s 7→ 6 ((0, 1), γ ′(s)) is positive
(resp. negative) over [0, 1].

Definition 14. Let ϕ : A ý be a twist map and let ψ = (ψi )i∈I be a correspon-
dence on A, where each ψi : Domψi → Imψi is a local homeomorphism of A.
Fix 0 ∈ Ess(ϕ), 0 ⊂ A \0(a):
• A splitting arc based at α for these data is an arc ζ of A whose projection

on 0(a) has length < 1
2 , for which

ζ(0)= α, ζ(]0, 1])⊂0−; ∃i ∈ I, ζ(]0, 1])⊂Domψi , ψi (ζ(]0, 1]))⊂0.

• A right splitting arc based at α= (θ, r) is a splitting arc ζ based at α, which
admits a derivative ζ ′(0)= (u, v) with u> 0, and such that π(ζ̃ )=[θ, θ+τ ]
with 0< τ < 1

2 .

• A left splitting arc based at α = (θ, r) is a splitting arc ζ based at α, which
admits a derivative ζ ′(0)= (u, v) with u< 0, and such that π(ζ̃ )=[θ−τ, θ]
with 0< τ < 1

2 .
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Figure 12. Splitting arcs.

Figure 13. Domain associated to a right splitting arc.

The length < 1
2 condition on an arc is there just to ensure the existence of a

natural order between the projections of points located in the neighborhood of it.
We will implicitly use this order in the following. One easy remark is that if ζ
is a right (resp. left) splitting arc, then (up to reparametrization) the restriction
ζ|[0,s] with 0< s ≤ 1 is also a right (resp. left) splitting arc, so that the previous
condition is not restrictive.

Given a point α = (θ0, r0) in A, we denote by

V−(α)= {(θ0, r) | r ∈ [a, r0]}

the vertical below α in A.

Definition 15. Let 0 ∈ Ess(ϕ), 0 ⊂ A \0(a), be the graph of the continuous
function γ : T→ [a, b] and α0 ∈ 0. Let ζ be a right splitting arc based on 0 at
α0 = ζ(0), let α∗ be a point in 0 such that

π(α0) < π(α∗) <Maxs∈[0,1] π(ζ(s)),

and let β∗ = ζ(s∗) be the point in V−(α∗)∩ ζ̃ with maximal r -coordinate. Let C
be the Jordan curve formed by the concatenation of the arcs ζ([0, s∗]), [β∗, α∗],
and [α∗, α0] ⊆ 0. We denote by D(ζ|[0,s∗]) the connected component of the
complement of C contained in 0−. We say that D(ζ|[0,s∗]) is a domain associated
with ζ . We define a domain associated with a left splitting arc similarly.
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The first obvious property of the domains defined above is the obvious fol-
lowing remark.

Lemma 16. For any x ∈ D(ζ ), the vertical V−(x) below x intersects ζ(]0, 1[).

The crucial property is the following.

Lemma 17. Consider an essential circle 0 ∈ Ess(ϕ̂) contained in A \ 0(a),
and a right (resp. left) splitting arc ζ based on 0. Consider an essential circle
0• ⊂ A such that ζ̃ is contained in the domain 0+

•
above 0•. Let D be a domain

associated to ζ . Let η be a negatively (resp. positively) tilted arc with η(0) ∈ 0•,
η(]0, 1])⊂ 0+

•
∩0−, and η(1) ∈ D. Then η(]0, 1[)∩ ζ(]0, 1]) 6=∅.

The proof is an immediate consequence of Lemmas 34 and 38.

4.2. Existence of pseudoorbits for bisystems of correspondences. We can now
state and prove a generalization of Moeckel’s theorem to bisystems of corre-
spondences on a two-dimensional annulus, which has to be seen as a Poincaré
section of a compact hyperbolic invariant cylinder. We prove the existence of
pseudoorbits “drifting from the bottom to the top of the annulus”. We do not
present here the more complete formalism of [21] which is adapted to the case
of pseudoorbits drifting along chains of heteroclinically connected annuli.

1. We first need to make the definition of an orbit of a polysystem more precise.
Let A be some set and consider a set f = { fi | i ∈ I } of locally defined maps fi :

Dom fi→ A. We say that a finite sequence (xn)0≤n≤n∗−1 of points of A is a finite
orbit of f , of length n∗≥ 1, when there exists a sequence ω= (in)0≤n≤n∗−1 ∈ I n∗

such that, for 0≤ n ≤ n∗− 1,

xn+1 = fin (xn),

and we write
xn∗ = f ω(x0).

We formally consider the point x0 as being the 0-length orbit of x0.
Given a subset B ⊂ A, we set

f ω(B)=
⋃

x∈Bω

f ω(x)

where Bω is the subset of B formed by the points x such that f ω(x) is well-
defined.

The full orbit of B ⊂ A under f is the subset of A formed by the union of all
f ω(B) for all sequences (of any length) ω (so that in particular B is contained
in its full orbit under f ).
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Figure 14. The setting of Theorem 19.

2. To deal with the notions of right and left splitting arcs in a similar way, we
will need the following result of symmetrization of a polysystem; see [21] for a
proof.

Lemma 18. Let A be a metric space endowed with a finite Borel measure,
positive on the nonempty open subsets of A. Let ϕ be a measure-preserving
homeomorphism of A and let (ψi )i∈I be a polysystem on A, where Domψi is
open and the map ψi : Domψi → Imψi is a homeomorphism, for all i ∈ I . Fix
a nonempty open subset V ⊂ A. Let U f and Ug be the full orbit of V under the
polysystems

f = (ϕ, ψ = (ψi )i∈I ) and g = (ϕ, ϕ−1, ψ = (ψi )i∈I )

respectively. Then U f is contained and dense in Ug.

3. The main result of this section is the following.

Theorem 19. Let ϕ : A ý be a special twist map and let ψ = (ψi )i∈I be a
correspondence on A. Assume that for each element 0 ∈ Ess(ϕ) there is a right
or left splitting arc based on 0. Fix 0 ∈ Ess(ϕ) \ {0(a), 0(b)} together with a
neighborhood V of 0(a) in A. Then given δ > 0, the full orbit of V under the
polysystem f = (ϕ, ψ = (ψi )i∈I ) intersects 0(b− δ)+.

Given ν > 0, we define a ν-ball of T×R as a subset B = Bθ × Br where Bθ
and Br are intervals of T and R respectively, such that

length Br > ν length Bθ . (49)

The center of B is (aθ , ar ), where aθ , ar are the mid-points of Bθ and Br . Given
a topological space E and A ⊂ B ⊂ E with A connected, CC(B, A) stands for
the connected component of B containing A.

Proof. We assume for example that ϕ tilts the vertical to the right, the other case
being exactly similar:

• We assume without loss of generality that V is open in A, and connected.
Let U be the full orbit of the open set V under the symmetrized polysystem



268 JEAN-PIERRE MARCO

g = (ϕ, ϕ−1, ψ = (ψi )i∈I ) on A. Note that ϕ(U ) = U and ψi (U ) ⊂ U . Set
Uc = CC(U, 0(a)). Then Uc is open and contains V , so ϕ(Uc)=Uc. Thanks to
Lemma 18, it is enough to prove that Uc intersects 0(b− δ)+.

Let us assume by contradiction that Uc is contained in 0(b− δ)−.

• Set O = A \Uc, so that O is open, contains 0(b), and O ∩ V =∅. Moreover,
since ϕ(Uc)=Uc,

ϕ(O)= A \ϕ(Uc)= A \Uc = O.

Then ϕ(CC(O, 0(b)))= CC(O, 0(b)) and so ϕ(CC(O, 0(b))= CC(O, 0(b)).
Let

U = A \CC(O, 0(b)),

so that U is open and ϕ(U )=U , and set finally

U = CC(U, 0(a)), (50)

hence U is open, connected and ϕ(U)= U . Moreover clearly

U ⊂ A \CC(O, 0(b)), (51)

and
Uc ⊂ U, (52)

since O = A \ Int(Uc) ⊂ A \ Uc, so CC(O, 0(b)) ⊂ A \ Uc and Uc ⊂ A \
CC(O, 0(b))=U , which proves our claim since 0(a)⊂Uc.

• Let us prove that 0 := FrU is a Lipschitz graph over T, invariant under ϕ, by
the Birkhoff theorem (see Appendix B). By local connectedness of A, one readily
proves that IntU = U , since U is a connected component of the complement
of the closure of an open set. Moreover ϕ(U)= U . Let now S be the quotient
of A by the identification of each boundary circle to one point, so that S is
homeomorphic to S2. Up to this quotient, U is a connected component of the
complement in S of a compact connected subset, so is homeomorphic to a disk.
Going back to the initial space A proves that U is homeomorphic to T×[0, 1[.
So by the Birkhoff theorem, 0 = ∂U is a Lipschitz graph over T, invariant under
ϕ; see [48] for more details.

• We now prove that 0 ⊂ Uc, and so 0 ⊆ Fr(Uc) = cl(Uc) \Uc. Assume that
x ∈0 is not in Uc, so that there exists a small ball B(x, ε) with B(x, ε)∩U c=∅.
Let z be some point on the vertical through x , located under 0 and inside
B(x, ε). Let us show that the semivertical σ over z in A is disjoint from Uc.
First 0 ∩ σ = {x}, since 0 is a graph, so that σ = [z, x] ∪ [x, ξ ], with ξ ∈ 0(b).
Clearly [z, x] ⊂ B(x, ε) so [z, x]∩Uc =∅, and ]x, ξ ]∩U =∅ since 0 = ∂U is
a graph. Since Uc ⊂ U , this proves that σ ∩U c =∅.
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As a consequence σ∪0(b) is a connected set which satisfies (σ∪0(b))∩Uc=

∅. Therefore
(σ ∪0(b))⊂ CC(O, 0(b))

and thus (σ ∪0(b))∩U =∅ by (51). This is a contradiction since x ∈ 0 ⊂ U .
Therefore 0 ⊂Uc.

• Since 0 is an invariant essential circle for the special twist map ϕ, there are
only two possibilities:

– 0 is the upper boundary of a Birkhoff zone.

– 0 is accumulated from below by essential invariant circles in the Hausdorff
topology.

We will prove that both possibilities yield a contradiction with the initial assump-
tion that Uc ∩0(b)=∅.

• Assume first that 0 is the upper boundary of a Birkhoff zone Z and let 0∗ be
the lower boundary of Z . Let ν be the Lipschitz constant of 0∗. Since 0∗ is a
graph and Uc is open, connected, contains V and Uc∩0 6=∅, then Uc∩0∗ 6=∅.
So there exists a ν-ball B ⊂Uc centered on 0∗.

We assumed that there exists a right or left splitting arc ζ based at some point
α of 0. Let D be its associated domain. By restricting ζ if necessary, one can
moreover assume without loss of generality that D⊂Z . We introduce the closed
connected set X = 0∪ ζ̃ , where ζ̃ = ζ([0, 1]), which disconnects the annulus A
since it contains 0.

Assume first that ζ is a right splitting arc. By Proposition 39, there exist
z0 ∈ B and n ∈ N such that zn := ϕ

n(z0) ∈ D. Then, by Lemma 17 there exists
a positively tilted arc based on 0∗ and ending at zn which does not intersect X .

By Lemma 35 there exists a negatively tilted arc γ with image in B based on
0∗ and ending at z0. Therefore, by Lemma 37, γn := f n

◦γ is a negatively tilted
arc based on 0∗ and ending at zn .

Assume that the image γ̃n does not intersect X , then by Lemma 38 the vertical
V−(zn) does not intersect X , which contradicts Lemma 16. Therefore γ̃n∩X 6=∅,
thus γ̃n ∩ ζ̃ 6=∅.

If now ζ is a left splitting arc, we use ϕ−1 instead of ϕ. This first yields a
z0 ∈ B such that z−n :=ϕ

−n(z0)∈ D, then a negatively tilted arc based on 0∗ and
ending at z−n which does not intersect X , and a positively tilted arc, still denoted
by γn , based on 0∗ and ending at z−n . As above, this proves that γ̃n ∩ ζ̃ 6=∅.

As a consequence, Uc ∩ ζ̃ 6=∅ since γ̃n ⊂Uc, and therefore there is a small
open ball B ⊂Uc centered on ζ(]0, 1]) and, by definition, an index i ∈ I such
that B ⊂ Domψi . Thus ψi (B) is an open set which intersects 0, and therefore
also Uc since 0 ⊂Uc. This proves that ψi (B)⊂Uc by connectedness, so that
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Uc contains points strictly above the circle 0. This is a contradiction with the
construction of 0 = FrU and the inclusion Uc ⊂ U , which ensures that all points
of Uc are located below 0.

• Assume now that 0 is accumulated from below by an increasing sequence
(0m)m≥1 of essential invariant circles for ϕ. Let ζ be a splitting arc based on 0.
Let Sm be the closed strip limited by 0m and 0m+1. For m large enough, Sm ∩ ζ̃

contains a C0 curve ` which intersects both 0m and 0m+1. Now 0 ⊂ Uc, so
that Uc ∩ Sm contains a C0 curve `′ which also intersects both 0m and 0m+1.
Therefore, by Lemma 36, there exists an integer n such that ϕn(Uc)∩ ` 6= ∅,
and so by invariance of Uc under ϕ, Uc ∩ ` 6= ∅. Since ` ⊂ ζ̃ ⊂ Domψi for
some i ∈ I , there exists a ball B⊂Uc centered on `⊂ ζ̃ and contained in Domψi .
This yields the same contradiction as in the previous paragraph. �

Slightly more involved assumptions and arguments show that the full orbit of V
intersects each pair of disjoint essential circles located in T×]a, b[, which enables
us in [21] to prove the existence of orbits drifting along chains of heteroclinically
connected annuli (and cylinders). We show in the next section how the present
result can be implemented in a model of a single s-resonance cylinder.

5. Diffusion orbits along simple resonance cylinders

In this section we introduce an example of a priori unstable perturbation of an
integrable Hamiltonian on the annulus A3, which admits a normally hyperbolic
3-dimensional cylinders with coinciding stable and unstable manifolds. To deal
with this degenerate situation, symplectic geometry reveals itself to be crucial at
two levels.

First, to prove the existence of homoclinic solutions for the essential invariant
tori located inside the cylinders. Then, to reduce the problem to a two-dimensional
setting and use the result of the previous section, we introduce a Poincaré
section (diffeomorphic to A) of the flow in the cylinder and we assume that
the unperturbed system induces a twist return map — not necessarily close to
any integrable one. The homoclinic intersections then enable us to construct a
homoclinic correspondence (a family of locally defined diffeomorphisms) on the
annulus, which breaks each essential invariant circle of the twist map (due to the
existence of a splitting arc).

The second crucial resort to symplectic geometry is to prove the genericity
of the existence of these splitting arcs. Our approach consist proving a general
result on the existence of homoclinic intersections, which would be violated if
some invariant circle would not admit a splitting arc.
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The results of this section give an account of a work joint work in progress
with L. Lazzarini, devoted to the complete description of a simple example
illustrating the methods of [43].

5.1. Setting and main result. We write θ = (θ0, θ1, θ2) and r = (r0, r1, r2) for
the angle and action variables in A3. We set θ̂ = (θ0, θ1), r̂ = (r0, r1).

1. Given an integer κ ≥ 2, we denote by G κ the affine subspace of Hamiltonians
on A3 of the form

G(θ, r)= r0+ g(θ0, θ1, θ2, r1, r2), (θ, r) ∈ A3, (53)

where g is of class Cκ and satisfies

‖g‖κ :=
κ∑

k=0

Supx∈A3‖Dk g(x)‖<+∞. (54)

We endow G κ with the uniform distance induced by the previous norm and we
denote by Bκ(G, r) the associated open ball centered at G ∈ G κ , with radius r .

2. We introduce a subset of G κ formed by the “unperturbed” Hamiltonians of
the form

F(θ, r)= F1(θ0, θ1, r0, r1)+ F2(θ2, r2),

F1(θ0, θ1, r0, r1)= r0+ f1(θ0, θ1, r1),
(55)

where the Hamiltonians Fi satisfy a set of additional conditions:

• Conditions on F1. The level F−1
1 (0) is a cylinder which admits the global

coordinates (θ0, θ1, r1). To set out our first conditions we focus on the dynamics
generated by F1 on F−1

1 (0) only. For each θ∗0 ∈ T, the surface

6θ
∗

0 = {θ0 = θ
∗

0 } ∩ F−1
1 (0)⊂ A2

is a global section for the restriction of X F1 to F−1
1 (0), since θ̇0 = 1. Moreover,

the standard Liouville form λ on A3 induces on 6θ
∗

0 the form r1dθ1, so that
(θ1, r1) are global exact-symplectic coordinates on 6θ

∗

0 . We denote by ϕθ
∗

0

the (exact-symplectic) Poincaré map induced on 6θ
∗

0 by the flow 8F1 . In the
coordinates chart (θ1, r1) we write

ϕθ
∗

0 (θ1, r1)= (2
θ∗0
1 (θ1, r1), R

θ∗0
1 (θ1, r1)). (56)

The maps ϕθ
∗

0 are clearly pairwise conjugated. We now list the conditions to be
satisfied by the Hamiltonians F1:
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(C1) For each θ∗0 ∈ T, the circles 0(0) = T× {0} and 0(1) = T× {1} in 6θ
∗

0

(relative the coordinates (θ1, r1)) are invariant under ϕθ
∗

0 , and their rotation
numbers ν0 and ν1 are Diophantine.14

(C2) There is a constant µ > 0 such that for all θ∗0 ∈ T,

∂2
θ∗0
1

∂r1
(θ1, r1)> µ

for all (θ1, r1) ∈ T×[0, 1].

By (C1), the 2-dimensional tori T (i)= T2
×{r1 = i} ⊂ F−1

1 (0) are invariant,
and they bound a compact invariant cylinder C ⊂ F−1

1 (0). Moreover, by (C2),
the map ϕθ

∗

0 induces is a twist map of 6θ
∗

0 ∩C = T×[0, 1], with twist constant
µ independent of θ∗0 .

• Conditions on F2. On the last factor A, endowed with the coordinates (θ2, r2),
we introduce the following conditions to be satisfied by the Hamiltonians F2.

(C3) The vector field X F2 possesses a hyperbolic fixed point O2, with F2(O2)=0.

(C4) The fixed point O2 admits a homoclinic orbit ζ for X F2 and there exists
an open interval I ⊂ R such that ζ transversely intersects σ =

{ 1
2

}
× I at

exactly one point, that we denote by P2. Moreover the map r2 7→ F2
( 1

2 , r2
)

is a diffeomorphism from I2 onto its image.

(C5) Let λO2 stand for the positive eigenvalue of TO2 X F2 . Then there is a p > 0
such that

λO2 > p[Maxx̂∈A2‖Tx̂ X F1‖]. (57)

In the sequel, we denote by F κ(p), or F κ for short, the set of Hamiltonians
F of the form (55) which satisfy conditions (C1)–(C5).15

Note in particular that when ε = 0, the Arnold Hamiltonian is in Fω, so that
our study extends Arnold’s one.

3. As in Section 3, it is not difficult to prove that given F ∈F κ(p) with p large
enough for the normally hyperbolic persistence to hold and κ ≥ κ0 large enough
for the KAM theorem to apply,16 there is a δ0 ∈ ]0, 1[ such that no orbit of X F

can intersect both zones {r1 <δ0} and {r1 > 1−δ0}. This motivates the following
definition.

Definition 20. Fix δ > 0. Given a Hamiltonian G ∈ G κ , we say that a solution
γ (t)= (θ(t), r(t)) of the system generated by G on A3 is a δ-diffusion solution

14These rotation numbers are independent of θ∗0 .
15The choice of µ is quite innocuous.
16Both values being dependent.



A SYMPLECTIC APPROACH TO ARNOLD DIFFUSION PROBLEMS 273

r0

�0

r1
r2

P
I

2

O2

�1
*

�2

Figure 15. An unperturbed system.

when it is defined on some interval [0, T ] and satisfies

r1(0) < δ, r1(T ) > 1− δ. (58)

The main result of this section is the following.

Theorem 21. There exist p> 0 and κ0 ≥ p such that for κ ≥ κ0 and F ∈F κ(p),
then for any δ ∈]0, 1[ there is an ε > 0 such that the set of Hamiltonians in the
ball Bκ(F, ε)⊂ G κ which admit a δ-diffusion solution is dense for the induced
Cκ topology and open for the C2 topology.

The existence of δ-diffusion solutions is clearly an open condition in the C1

topology for Hamiltonians of G κ . So the main task to prove Theorem 21 is
to ensure that the conditions introduced in [21], which yield the existence of
diffusion solutions and are encoded in the notion of “good cylinders” below (see
Theorem 31), are satisfied for a dense subset of Bκ(F, ε) in the Cκ topology.

5.2. Geometry and dynamics of the perturbed systems. The proof of the fol-
lowing lemma is a simple application of the normally hyperbolic persistence
theorem, the normally hyperbolic symplectic theorem of Appendix A and the
KAM theorem in the version of Herman [29].

Lemma 22. Fix κ ≥ κ0 ≥ p (large enough) and F ∈F κ(p). Let R = I0× I1 be
a fixed rectangle (with I1 ⊂ Int I1) in and fix ρ > 0. Then there is an ε0(F) > 0
such that for any Hamiltonian G ∈ Bκ(F, ε0(F)) the following properties are
satisfied:

(1) There exists a normally hyperbolic symplectic invariant annulus for XG , of
the form

AG = {(θ, r) ∈ A3
| (θ2, r2)= aG(θ̂ , r̂)} (59)

where aG : A
2
→ A is a C4 function whose image is contained in a small ball

centered at O2, which satisfies

‖aG − O2‖C p(T2×R)→ 0 when ‖G− F‖Cκ (A3)→ 0. (60)
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Moreover, AG admits (θ̂ , r̂) ∈ T2
×R2 as global coordinates (nonsymplectic in

general).

(2) The level G−1(0) intersects AG ∩ (T
2
× R) transversely in A3 and

CG :=AG ∩ (T
2
× R)∩G−1(0) (61)

is a 3-dimensional submanifold of A3, diffeomorphic to T2
×R, with coordinates

(θ0, θ1, r1). There is an open interval I1 ⊂ I1 containing [0, 1] such that the
domain (θ0, θ1, r1) ∈ T2

× I1 is well-defined in CG .

(3) For any θ∗0 ∈ T2, the surface

6
θ∗0
G = CG ∩ {θ0 = θ

∗

0 } (62)

is a global symplectic section of the Hamiltonian flow 8G restricted to CG , with
coordinates (θ1, r1) (nonsymplectic in general). The domain (θ1, r1) ∈ T× I1

is well-defined in6
θ∗0
G , for any θ∗0 ∈ T.

(4) For any θ∗0 , in the coordinates (θ1, r1), the Poincaré return map ϕ
θ∗0
G associ-

ated with 6
θ∗0
G converges to the map ϕ

θ∗0
F in the compact-open C p topology when

‖G− F‖Cκ → 0.

(5) For any θ∗0 , the map ϕ
θ∗0
G leaves invariant two (uniquely defined) essential

circles 0
θ∗0
G (0) and 0

θ∗0
G (1) in 6G , with rotation numbers ν0 and ν1 (see (C1)),

which moreover satisfy

0
θ∗0
G (0)⊂ {|r1|< ρ}, 0

θ∗0
G (1)⊂ {|1− r1|< ρ}. (63)

(6) For any θ∗0 , let Aθ
∗

0
G be the compact annulus bounded by 0

θ∗0
G (0) and 0

θ∗0
G (1)

inside6
θ∗0
G . Then the restriction of ϕ

θ∗0
G to Aθ

∗

0
G is a twist map, with twist constant≥

µ/2. We denote by Ess(ϕ
θ∗0
G ) the set of essential invariant circles of this restriction.

Each element of Ess(ϕ
θ∗0
G ) is a 2/µ-Lipschitz-continuous graph relative to the

coordinates (θ1, r1).

(7) Set ϕG := ϕ
0
G . For each 0 ∈ Ess(ϕG) we set T (0) = 8G(R× 0), so that

T (0) is a 2-dimensional invariant torus. We set

Tess(G)= {T (0) | 0 ∈ Ess(ϕG)}.

(8) For x ∈ AG , let W±(x) be the local invariant manifolds attached to x. Let
W±(CG) and W±(AG) be those attached to CG and AG (defined as the unions
of the previous ones). Then W±(AG) are coisotropic and their characteristic
foliations coincide with their foliations {W±(x) | x ∈}.

(9) For x ∈AG , W±(x) intersect transversely3=
{
θ2=

1
2

}
in A3 and for x ∈CG ,

W±(x) intersect transversely 1G in G−1(0). Both intersections are singletons.
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We set
A±G :=W±(AG)∩3, C±G :=W±(CG)∩1G,

The first intersection is transverse in A3, while the second one is transverse in
G−1(0).

(10) The annuli AG admits (θ̂ , r̂) as coordinates, while the cylinders CG) admit
(θ̂ , r1) as coordinates. Due to the particular choice of the section 3, the induced
Liouville form on A ±G reads

r0dθ0+ r1dθ1,

so that (θ̂ , r̂) are exact-symplectic coordinates.17

(11) We denote by 5±G : W±(AG) → AG the characteristic projections, by
π±G :A±G→AG the restrictions of 5±G to A±G and by j±G := (π

±

G )
−1
:AG→A±G .

The maps π±G and j±G are exact-symplectic and converge to π±F and j±F in the
compact-open C p−1 topology when ‖G− F‖κ→ 0. As a consequence, π±G ◦ j±G
converge to Id in the compact-open C p−1 topology.

We denote by CG the compact cylinder bounded in CG by T (0G(0)) and
T (0G(1)), so that

CG =8G(R× AG). (64)

In the following we will implicitly assume that κ0 and p are large enough for
the previous conclusions to hold true.

5.3. Homoclinic intersections. This section is devoted to the existence of homo-
clinic intersections for tori in Tess(G), where G is a small enough perturbation
of an element of F κ .

Proposition 23. Fix F ∈ F κ , κ ≥ κ0. Then there is a positive ε1(F) < ε0(F)
(where ε0(F) was defined in Lemma 22) such that for any G ∈ Bκ(F, ε1(F)),
and for any torus T ∈ Tess(G)

#(W−(T )∩W+(T )∩1G)≥ 3.

Under specific convexity assumptions on G, this could easily be deduced from
Fathi’s weak KAM theory, but we deal here with more general Hamiltonians and
we want a purely symplectic proof based on Lagrangian intersection arguments.
The main difficulty here is that the tori of Tess(G) are not smooth, so that we
need to generalize the standard notion of Lagrangian manifold. There are several
ways for doing this, see [1], here we adopt Herman’s one since our tori are
Lipschitz-continuous graphs. The Lagrangian character of such a graph amounts
to saying that the induced Liouville form is closed in the sense of distributions.

17This property will be crucial in the following.
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We will take advantage of the Lipschitzian character of the tori of at each step,
and since the proof is not completely standard, we will give all details for the
sake of completeness.

Here we only give a sketch of proof in the regular case. Assume that T is
smooth (at least C2) and, with the notation of Lemma 22, set

T± := j±G (T )⊂A±G ∩1G .

• We identify 1G with A2 by using the global symplectic chart (θ̂ , r̂) ∈ A2 of
1G . A simple application of the usual implicit function theorem proves that for
G close enough to F in G κ , the tori T± are graphs over the base T2.

• The torus T is clearly Lagrangian in AG (transport of an isotropic curve by the
Hamiltonian flow) and, since the maps j±G are exact-symplectic for the induced
structures on AG and A±G , the tori T± are Lagrangian in A±G . They are therefore
isotropic and contained in 1G , so T± are Lagrangian in 1G . As a consequence,

T± = α±(T2),

where α± : T2
→ A2 are closed 1-form on T2.

• By compactness, T+∩T− is nonempty if the form α=α+−α− is exact. Thus
all we need is to check that the class [α] ∈ H 1(T2,Z) vanishes on H1(T

2,Z).
This can be done by comparing the integrals of α± along two closed curves c1

and c2 in T2 generating H1(T
2,Z). But since the induced Liouville form ι∗λ

satisfies (α±)∗(ι∗λ)=α±, where ι is the inclusion1G ⊂A3, we may equivalently
compare the integrals of the ambient Liouville form λ along c±i = (ι ◦α

±)(ci ),
for i = 1, 2.

• The key observation is that the cycles c±i belong to A±G , and these two annuli are
exchanged by the exact symplectic map j+G ◦ ( j−G )

−1. This yields the equalities:

ˆ
c−i

λ=

ˆ
( j+G ◦( j−G )

−1)(c−i )
λ=

ˆ
c+i

λ,

where the first one comes from the exactness of j+G ◦ ( j−G )
−1 and the second one

from the fact that j+G and ( j−G )
−1 are close to the identity relative to the charts

(θ̂ , r̂) in their respective domains, so that ( j+G ◦ ( j−G )
−1)(c−i ) is homotopic to c+i

in T+.

• As a consequence [α] vanishes on H1(T
2,Z) and α is exact. This ends the

sketch of proof in the regular case.
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5.4. Generic properties of CG and W±(CG). 1. The following statement is the
continuous version of the one in Section 3.2.3. It is now based of the global flow-
box theorem (Appendix D), together with the methods introduced by Robinson
in [50; 51]; see also [29].

Proposition 24. For κ ≥ κ0, the subset of all Hamiltonians G in Bκ(F, ε1(F))
such that no circle in Ess(ϕG) has rational rotation number is a residual subset
of Bκ(F, ε1(F)).

2. The following result is also an application of the global flow-box theorem,
it is also a continuous version of the perturbative result used in the discrete
setting. Given G ∈ Bκ(F, ε1(F)), we examine the perturbations of the asymptotic
manifolds of CG and their characteristic foliations that come from the perturbation
of G.

Proposition 25. Fix G ∈ Bκ(F, ε1(F)). Then there exists a compact neighbor-
hood K of C−G ∪C+G in 1G , which satisfies

8G([−2, 2]× K )∩CG =∅, (65)

such that for any pair of C∞ Hamiltonian diffeomorphisms φ− :1G ý and φ+ :
1G ý with support in Int K , there exists a Cκ Hamiltonian G̃ ∈ Bκ(F, ε1(F))
which coincides with G outside a compact subset of 8G(]−1, 0[ × K ) ∪
8G(]0, 1[× K ), so that CG̃ = CG , which satisfies

φ−(C−G )= C−
G̃
, j−

G̃
= φ− ◦ j−G ,

φ+(C+G )= C+
G̃
, j+

G̃
= φ+ ◦ j+G .

(66)

Moreover one can choose G̃ so that ‖G̃−G‖κ→ 0 when φ± are generated by
Hamiltonians which tend to 0 in the C∞ topology.

3. Our first application of the previous result ensures the generic transversality
of the intersection C+G ∩C−G , it is based only on standard transversality arguments.

Proposition 26. The set G0 of hamiltonians G ∈ Bκ(F, ε1(F)) such that the
intersection C+G ∩ C−G is transverse in 1G in the neighborhood of C+G ∩ C−G is
open and dense in Bκ(F, ε1(F)).

The existence of homoclinic intersections hence immediately yields the fol-
lowing.

Corollary 27. There is a neighborhood O of C−G ∩C+G in 1G such that IG ∩O

is a 2-dimensional submanifold of 1G .
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Z

Figure 16. Intersection and singular curve.

5.5. Reduction to the 2-dimensional setting. The last corollary gives us now
the possibility to recover the two-dimensional discrete setting introduced in
Section 4.

1. The submanifold IG is an interesting example of intersection of two transverse
coisotropic submanifolds of a symplectic manifold. We were unable to find a
systematic study of the generic singularities of such intersections, so let us quote
here one remarkable genericity property. We first introduce the vector fields
along C±

G̃
defined by

X±G = XG − ( j±G )?XG (67)

One easily proves that they are tangent to the leaves of the characteristic foliations
of W±(CG).

We introduce the following sets:

• ZG = {x ∈IG | Tx W−(CG)∩ Tx W+(CG) is Lagrangian}.

• Z+G = {x ∈IG | X+G(x) ∈ Tx W−(CG)}.

• Z−G = {x ∈IG | X−G(x) ∈ Tx W+(CG)}.

Note that ZG is precisely the complement of the symplectic locus inside IG .
The striking fact is the following remark.

Lemma 28. The sets Z±G and ZG coincide, and the set G1 of Hamiltonians
G ∈ G0 such that ZG is a 1-dimensional submanifold of IG in the neighborhood
of C−G ∩C+G is open and dense in Bκ(F, ε1(F)).

The points of the singular locus ZG are precisely those where the characteristic
projections 5±G restricted to the intersection W+(CG)∩W−(CG) are not local
diffeomorphisms (by definitions of Z±G ). These points necessitate special care in
our construction, and we will forget about them in the following.
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2. Recall that
6G = CG ∩ {θ0 = 0}

is a two dimensional annulus, which contains two disjoint invariant circles 00(G)
and 01(G) bounding a compact invariant annulus AG . We therefore have a first
global return (twist) map ϕG at our disposal and we need to construct a homoclinic
correspondence to get the bisystem of Section 4. This correspondence would
ideally be obtained by transport of small pieces of the intersection IG on CG by
the characteristic projections, and then on 6G by the Hamiltonian flow inside
CG , which is not possible in the neighborhood of points of ZG . Let us introduce
the subset

4⊂I

of all homoclinic points corresponding to the essential invariant tori contained in
CG , and, for simplicity, assume that

4∩ ZG =∅.

By compactness, one can find a cover (Dα)α∈A of 4 by small discs contained in
I \ ZG , such that moreover, setting D± = π±(D)⊂ CG :

• There are C1 functions τ± : D±→ R such that 8τ
±

G (D±)⊂6G and 8τ
±

G
are C1 diffeomorphisms onto their images.

Definition 29 (homoclinic diffeomorphisms and correspondences). Given a small
disc D satisfying the previous constraint, we define the homoclinic diffeomor-
phism ψD attached to D by

ψD : DomψD→ ImψD

x 7→8τ
+

G ◦5
−
◦ (5+

|D)
−1
◦ (8τ

−

G )−1(x).
(68)

where

DomψD :=8
τ−

G (D−)⊂6G, ImψD :=8
τ−

G (D+)⊂6G .

We define a homoclinic correspondence for 6G as a family of homoclinic dif-
feomorphisms ψ = (ψα := ψDα

)α∈A attached to a cover (Dα)α∈A of 4 by small
discs in I \ ZG .

Note that we do not require the supports of the homoclinic diffeomorphisms
in a homoclinic correspondence to be pairwise disjoint. Given a homoclinic
correspondence ψ = (ψα)α∈A, we define the associated set X − of (negative)
transported homoclinic points as

X −
=

⋃
α∈A

ψα(4∩ Dα).
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Figure 17. A homoclinic diffeomorphism.

3. Good cylinders. We now come to our main definition and result; see [21].

Definition 30. We say that the compact invariant cylinder CG defined in (64) is
a good cylinder when the return map ϕG attached to the section AG is a simple
twist map, and when there exists a homoclinic correspondence ψG = (ψα)α∈A of
CG such that for any 0 ∈ Ess(ϕG) there exists a (right or left) splitting arc based
on 0 for the correspondence ψG .

Theorem 31. Fix F ∈ F κ , κ ≥ κ0. Then there is an ε(F) ∈]0, ε1(F)] such
that the set of Hamiltonians G in the ball Bκ(F, ε(F)) for which CG is a good
cylinder is dense in Bκ(F, ε).

The results of Section 4 (Theorem 19) immediately enables us to deduce
Theorem 21 from Theorem 31.

4. Idea of the proof of Theorem 31. The genericity results of Section 5.4 are
taken for granted. It therefore remains to show the following proposition, where,
given G, G̃ in G κ , we say that G̃ is G-admissible when G̃ coincides with G
outside a neighborhood of AG .

Proposition 32. Fix F ∈F κ with κ ≥ κ0 and G ∈ G1(F). Then for any α > 0,
there exists an admissible Hamiltonian G̃ ∈ G1(F) with

‖G̃−G‖κ < α (69)

such that CG̃ = CG is a good cylinder for G̃.

We require the admissibility condition to ensure that the inner map ϕG̃ and
ϕG coincide, and therefore admit the same set of essential invariant circles. To
prove Proposition 32, we have to find an arbitrarily small perturbation G̃ of G
such that each invariant circle of Ess(ϕG) admits a (right or left) splitting arc.
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Figure 18. Essential circles and homoclinic points for ϕG .
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Figure 19. Disjunction of the arcs.

The idea is essentially symplectic and is based on the existence of (trans-
ported) homoclinic points on each invariant circle of ϕĜ for each Ĝ in G1(F)
(by construction and Proposition 23).

We argue by contradiction. The main ingredient is the possibility to construct
an arbitrarily small and admissible perturbation Ĝ ∈ G1(F) of G whose set of
transported homoclinic points is totally disconnected.18 We then prove that
if ϕĜ admits an invariant circle 0 with no splitting arc, then it is possible to
perturb Ĝ another time — still inside G1(F)— to ensure that the new homoclinic
correspondence satisfies

ψ−1
α (0)∩0 =∅, ∀α ∈ A.

18This is done by local arguments of Minkowski dimension and a convergent sequence of
Hamiltonian perturbations of the homoclinic correspondence, of the same type as Moeckel’s ones.
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Consequently the circle 0 do not posses (transported) homoclinic points,
which contradicts Proposition 23. The disconnectedness of the set of homoclinic
points is used to produce local perturbations of the homoclinic correspondence
by composition with local Hamiltonian diffeomorphisms which increase the
action r in a very small neighborhood of each homoclinic point, and decrease
the action where the arcs a far from the circle 0. The proof will full details will
appear in the joint work with L. Lazzarini.

6. Broadening the scope

The previous presentation has to be seen as a first introduction to the geometric ap-
proach to Arnold diffusion, whose methods, results and scope can be improved on
by using recent developments in symplectic topology, two-dimensional dynamics
and control theory. We briefly discuss the first two points in this section.

6.1. Symplectic topology. We refer to [2] for a survey of the origins of the
questions in symplectic topology and to Gromov’s seminal paper [26], and
Laudenbach and Sikorav [38] for seminal results in Lagrangian intersection
problems. Here we will a similar result, in its most basic form proved by Lalonde
and Sikorav [37].

One main difficulty in the application of the methods presented in Section 5 to
the a priori stable case comes from the essentially singular perturbations involved
in this setting. The absence of hyperbolicity in the unperturbed system makes
the embedding of the cylinders very delicate, in the sense that they are graphs
of function whose C1 norm tends to infinity when the size of the perturbation
tends to 0. This makes in turn very difficult the detection of the graph properties
of the essential circles contained in these cylinders.19 This difficulty can be
overcome by a very careful analysis of the location of these objects (as in [33])
or by cutting the cylinders into smaller and smaller pieces (as in [44]). However
a way to get rid of the graph constraint in the proof of existence of Lagrangian
intersection would be much more satisfactory, and this is precisely the content
of another famous Arnold conjecture — which could perhaps have been inspired
by the present problem.

Let us recall one first result in the direction of the Arnold intersection con-
jecture. Let M and L be compact manifolds of the same dimension. Endow
T ∗M with its usual Liouville form λ and set �= dλ. Recall that an embedding
j : L→ T ∗M is said to be exact when j∗λ is an exact form. An embedded sub-
manifold of T ∗M is said to be exact when it is the image of an exact embedding.

19As is the also case for the usual invariant objects from weak KAM theory.
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Theorem [37]. Let L and L ′ be two exact submanifolds of T ∗Tn . Then L ∩ L ′ is
nonempty.

This enables us to some extent to relax the graph assumption for the essential
circles in the previous section. Indeed, given an essential smooth torus T con-
tained in the hyperbolic cylinder CG , without any torsion assumption on return
map, one can introduce a Weinstein tubular neighborhood N ∼ T ∗( j−(T )) of
the image j−G (T ) ⊂ 1G . Then, since j±

G̃
are exact-symplectic for the induced

Liouville form on A ±
G̃

, one can prove that j+(T ) is an exact submanifolds of
N (for the usual exact structure), hence the previous theorem proves that the
intersection j−(T ) ∩ j+(T ) is nonempty (where j−(T ) is identified with the
zero section of N ).

To conclude in the case of Lipschitz tori, it suffices to prove the existence
of two sequences (T±n )n∈N of tori of 1 with T+n ∩ T−n 6=∅ which converge to
j±
G̃
(T ) in the C0 topology. To see this, one can first perform a smoothing of

the initial torus T =8G̃(R×0) by symplectic plumbing of the transport of a
smoothed invariant circle 0, and then to perform a smoothing of j±

G̃
by means of

their generating Hamiltonians. We expect this strong result to enable us to give
simpler proofs of the existence of homoclinic orbits in the a priori stable case,
as well as to deal with a larger set of perturbations of the completely integrable
Hamiltonian h.

6.2. Two-dimensional dynamics without convexity. One can also expect new
results for diffusion without the convexity assumption on h, using the generic
transitivity result of [35; 36]. Let us give an example which mimics the a priori
chaotic setting of Section 3, without any twist condition. Let Dκ be the group
of Cκ symplectic diffeomorphisms of the product S = S1× S2, where (Si , ωi )

are compact symplectic smooth surfaces, equipped with the symplectic form
ω=ω1⊕ω2. Let F κ

⊂Dκ be the subset formed by the product diffeomorphisms
of the form

f (x1, x2)= ( f1(x1), f2(x2)), xi ∈ Si , (70)

satisfying the following conditions:

(C1) Both f1, f2 are symplectic.

(C2) f2 admits a hyperbolic fixed point O2.

(C3) The Lyapunov exponents of f2 at O2 dominate the Lyapunov exponents of
f1 on S1.

(C4) f2 has a transverse homoclinic point P2 for O2 in S2.

Then the following result (from a current joint work with M. Gidea) holds
true: there is a κ0 such that for κ ≥ κ0, for every f ∈F κ there exists an ε0 > 0
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(depending on f ) such that for every diffeomorphism g in a residual subset
Rκ( f, ε0) of the ball Bκ( f, ε0), there exists an orbit (xn

1 , xn
2 )n∈N of g such that

the projected sequence (xn
1 )n∈N is dense in S1.

An extension to this result to the discrete setting for a priori unstable systems
as in section IV is a very challenging question which has deep consequences for
diffusion for perturbations of nonconvex completely integrable Hamiltonians.

Appendix A. Normal hyperbolicity and symplectic geometry

We refer to [4; 9; 31] for general definitions an results on normal hyperbolicity.
Here we limit ourselves to a very simple class of systems which admit a normally
hyperbolic invariant (noncompact) submanifold, which serves us as a model
from which all other definitions and properties will be deduced.

1. The following statement is a simple version of the persistence theorem for
normally hyperbolic manifolds well-adapted to our setting, whose germ can be
found in [6]. We limit ourselves to the case of 1-dimensional stable and unstable
directions, which is the only one we have to deal with in this paper. We fix
an integer m ≥ 1 and endow Rm+2 with the coordinates (x, u, s), with x ∈ Rm ,
(u, s) ∈ R2.

Theorem (the normally hyperbolic persistence theorem). Fix m≥ 1 and consider
a vector field of class C1 V0 on Rm+2 of the form

V0(x, u, s)= (X (x, u, s), λu(x)u,−λs(x)s), (x, u, s) ∈ Rm+2. (71)

Assume moreover that there exists λ > 0 such that for x ∈ Rm :

λu(x)≥ λ, λs(x)≥ λ. (72)

Fix a constant R > 0 and set OR = {(x, u, s)∈Rm+2
| ‖(u, s)‖< R} and assume

that

‖∂x X‖C0(OR) < λ. (73)

Then there exist constants δ∗ > 0, c∗ > 0, C > 0, such that if Vr is a C1 vector
field on Rm+2 such that

‖Vr‖C1(Rm+2) ≤ δ∗, (74)

setting V = V0+ Vr , the following assertions hold:

• The maximal invariant set for V contained in OR is an m-dimensional manifold
A(V ) which admits the graph representation:

A(V )= {(x, u =U (x), s = S(x)) | x ∈ Rm
},
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where U and S are C1 maps Rm
→ R such that

‖(U, S)‖C0(Rm) ≤ c∗‖Vr‖C0 . (75)

• The maximal positively invariant set for V contained in OR is an (m + 1)-
dimensional manifold W+(A(V )) which admits the graph representation:

W+(A(V ))= {(x, u =U+(x, s), s) | x ∈ Rm, s ∈ ]−R, R[},

where U+ : Rm
×]−R, R[ → R is a C1 map such that

‖U+‖C0(Rm) ≤ c∗‖Vr‖C0 . (76)

• The maximal negatively invariant set for V contained in OR is an (m + 1)-
dimensional manifold W−(A(V )) which admits the graph representation:

W−(A(V ))= {(x, u, s = S−(x, u)) | x ∈ Rm, u ∈ ]−R, R[},

where S− : Rm
×]−R, R[ → R is a C1 map such that

‖S−‖C0(Rm) ≤ c∗‖Vr‖C0 . (77)

• The manifolds W±(A(V )) admit C0 foliations (W±(x))x∈A(V ) such that for
w ∈W±(x)

dist(8t(w),8t(x))≤ C exp(±λt), t ≥ 0. (78)

• If moreover V0 and Vr are assumed to be of class C p, p ≥ 1, and if

p‖∂x X‖C0(OR) < λ (79)

then the functions U , S, U+, S− are of class C p and there is a constant C p,
depending only on V0, such that U , S U+, S+ tend to 0 in the C p compact-open
topology when Vr tends to 0 in the C p topology.

• Assume moreover that the vector fields V0, Vr are L-periodic in x , where L is
a lattice in Rm . Then their flows and the manifolds A(V ) and W±(A(V )) pass
to the quotient (Rm/L)×R2

The last statement will be applied in the case where m = 2` and L = Z`×{0},
so that the quotient A(V ) is diffeomorphic to the annulus A`.

2. The following result describes the symplectic geometry of our system in the
case where V is a Hamiltonian vector field. We keep the notation of the previous
theorem.

Theorem (the symplectic normally hyperbolic theorem). Endow R2m+2 with
a symplectic form � such that there exists a constant C > 0 such that for all
z ∈ OR

|�(v,w)| ≤ C‖v‖‖w‖, ∀v,w ∈ Tz M. (80)
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Let H0 be a C2 Hamiltonian on R2m+2 whose Hamiltonian vector field V0 satisfies
(71) and (72), and consider a Hamiltonian H = H0+ P. Then if the vector field
V generated by H satisfies (73) and (74) the following properties hold:

• The manifold A(V ) is �-symplectic.

• The manifolds W±(A(V )) are coisotropic and the 1-dimensional stable
and unstable foliations (W±(x))x∈A(V ) coincide with the characteristic
foliations of W±(A(V )).

• If H is C p+1 and condition (79) is satisfied, then the manifolds A(V ),
W±(A(V )) are of class C p and the foliations (W±(x))x∈A(V ) are of class
C p−1.

Appendix B. A reminder on twist maps

We refer to the appendix of [29] and [40; 41] for more details and proofs about
the Birkhoff theory of twist maps. Let a < b be fixed. We set

A= T×[a, b], 0(a)= T×{a}, 0(b)= T×{b}.

The closure of a subset E ⊂ A will be indifferently denoted by cl E or E , and
its interior will be denoted by Int E . The set Fr E = cl E \ Int E is the frontier
of E . A disk is an open connected and simply connected subset of A.

Here we say that f : A→ A is a twist map when it is a C1 diffeomorphism,
preserves 0(a) and 0(b) and tilts the vertical, that is, f (θ, r)= (2, R) with

∂r2(θ, r) > 0 or ∂r2(θ, r) < 0, ∀(θ, r) ∈ A.

Then f tilts the vertical to the right in the former case and to the left in the
latter one. A continuous map f : A→ A is said to be area-preserving when it
leaves invariant a Radon measure which is positive on the open subsets of A. An
essential circle in A is a C0 curve which is homotopic to 0(a).

Theorem (Birkhoff). Let f : A→ A be an area-preserving twist map. Then
there exists ν > 0 such that any essential circle invariant under f is the graph of
some ν-Lipschitz function ` : T→ [a, b].

The second result from Birkhoff’s theory we need is the following.

Theorem (Birkhoff). Let f : A→ A be an area-preserving twist map. Assume
that U is an open subset of A homeomorphic to T×[0, 1[, with 0(a)⊂U , such
that f (U )⊂U and such that U is the interior of its closure. Then the frontier
Fr U is an invariant essential circle.

One easily deduces from the first Birkhoff theorem that the set Ess( f ) of
essential invariant circles of f , endowed with the Hausdorff topology, is compact.
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Given 0 ∈ Ess( f ) with 0 = Graph(`), we set

0+ = {(θ, r) ∈ A | r > `(θ)}, 0− = {(θ, r) ∈ A | r < `(θ)}. (81)

By the Poincaré theory, every 0 ∈ Ess( f ) admits a rotation number in T for f|0 .
One can choose a common lift to R for the rotation number of all circles, which
yields a function ρ : Ess( f )→ R. This function is continuous and increasing,
in the sense that if 0i = Graph `i , i = 1, 2 are invariant with `1 ≤ `2, then
ρ(`1)≤ ρ(`2). Moreover, ρ(`1) < ρ(`2) when `1 < `2.

Definition 33. Let f : A→ A be an area-preserving twist map of the annulus
A. Let `• and `• be two functions T→]a, b[ whose graphs 0(a) and 0• are in
Ess( f ). Then one says that the set

B = {(θ, r) | θ ∈ T, `•(θ)≤ r ≤ `•(θ)}

is a Birkhoff zone when that there is no element 0 = Graph ` ∈ Ess( f ) such that
`• ≤ `≤ `

• and ` 6= `•, ` 6= `•.

We now prove Lemma 13, which was used in Section 3

Proof of Lemma 13. The main property of a special twist map f , coming from the
fact that no element of Ess( f ) has rational rotation, is that two distinct elements
of Ess( f ) are disjoint; see [34], Section 13.2. As a consequence, the rotation
number ρ : Ess( f )→ R is a homeomorphism onto its image R = ρ(Ess( f )),
by compactness of Ess( f ). The boundaries of the Birkhoff zones are sent by ρ
on the boundaries of the maximal intervals in the complement Rot \ρ(Ess( f )),
where Rot= [ρ(0(a)), ρ(0(b))] is the rotation interval of f . Our claim easily
follows. �

We can now state a second easy lemma on special twist maps and domains
associated with right or left splitting arcs.

Lemma 34. Consider an essential circle 0 ∈ Ess(ϕ), 0 ⊂ A \ 0(a), and a
right (resp. left) splitting arc ζ based on 0, with domain D(ζ ). Consider an
essential circle 0(a)⊂ A such that ζ̃ is contained in the domain 0(a)+ above
0(a). Then for x ∈ D(ζ ) there exists a positively (resp. negatively) tilted arc γ
with γ (0) ∈ 0(a) and γ (1)= x , whose image does not intersect the union 0 ∪ ζ̃ .

The following easy result on negatively tilted arcs is used several times in our
constructions.

Lemma 35. Let 0 be an essential circle of A which is the graph of a ν-Lipshitz
function ` : T → [0, 1], and let B be a ν-ball centered on 0. Then for any
z ∈0+∩ B, there exists a negatively tilted arc based on 0 and ending at z, whose
image is contained in B.
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The proof of the following lemma is immediate.

Lemma 36. Let f : A→ A be an area-reserving twist map. Let 0± be two non-
intersecting essential invariant circles contained in A. Then for any continuous
curves C and C ′ which intersect both circles 0±, the positive orbit of C under f
intersects C ′.

We refer to [39] for the proofs of the following two results from Birkhoff’s
theory.

Lemma 37. Let f : A→ A be an area-preserving twist map and let 0 be an
essential invariant circle for f . The inverse image f −1

◦ γ of a positively tilted
arc γ based on 0 is a positively tilted arc based on 0. The direct image f ◦ γ of
a negatively tilted arc γ emanating from 0 is a negatively tilted arc based on 0.

Given a point x ∈ A, we define the lower vertical V−(x) as the vertical segment
joining a point of the lower boundary of A to x .

Lemma 38. Let f : A→ A be an area-preserving twist map. Let 0 ∈ Ess( f ).
Let X be a connected closed subset of A which disconnects the annulus A and
such that X ⊂0+. Let x ∈ A be such that there exists a positively tilted arc γ and
a negatively tilted arc η, both based on 0 and ending at x , such that the images
of γ and η do not intersect X. Then the vertical V−(x) does not intersect X.

The following strong connecting lemma appeared with a different proof in [22].

Proposition 39. Let f : A→ A be a (not necessarily special) area-preserving
twist map. Let 0(a) and 0• be the boundary components of some Birkhoff zone
of instability for f . Fix a pair of open sets V•, V • which intersect 0(a) and 0•

respectively, with moreover V• ⊂ (0•)−. Then there exist a point z ∈ V• and
an integer n ≥ 0 such that f n(z) ∈ V •. Moreover the integer n can be chosen
arbitrarily large.

Proof. Set

U =
⋃
n≥0

f n(0(a)− ∪ V•)= 0(a)− ∪
(⋃

n≥0

f n(V•)
)
,

so that U is a connected and f -invariant neighborhood of ∂•A, which satisfies

U ⊂ (0•)−.

Hence the frontier 0 := FrU of its associated filled subset is in Ess( f ) and
satisfies 0(a)≤ 0 ≤ 0•. Therefore 0 = 0(a) or 0 = 0•. The former equality is
impossible by construction, so 0 = 0•.

As a consequence, 0•⊂ FrU ⊂ Fr U , so there exists an integer n ≥ 0 such that

f n(V•)∩ V • 6=∅,
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which proves our claim. Finally, observe that by choosing arbitrarily small open
subsets W• ⊂ V•, W •

⊂ V • and applying the previous result to the pair W•, W •,
one can ensure that the integer n can be chosen arbitrarily large. �

Appendix C. Normally hyperbolic shadowing

For the convenience of the reader, we add a proof of the normally hyperbolic
shadowing lemma, whose main ingredient is the Poincaré recurrence theorem
and which closely follows [23; 24]. Let d stand for the product metric on A2.

Theorem 40. Fix f ∈F κ with κ so that the statements of the last section hold.
Fix g in Bκ( f, ε( f )) and fix an orbit x0, . . . , xn of the polysystem (ϕg, ψg) on Ag.
Then for any δ > 0 there is an orbit z0, . . . , zN of g in A2 such that d(z0, x0) < δ

and d(zN , xn) < δ. One can moreover choose z0 so that for each i ∈ {0, . . . , n},
there is an m(i) with

d(gm(i)(z0), xi ) < δ. (82)

Since ϕg has compact support and preserves the symplectic area on Ag, by the
Poincaré recurrence theorem almost every point of Ag is positively and negatively
recurrent for ϕg. In the following we use recurrent as a shorthand for positively
and negatively recurrent.

The other main tool of the proof is the following λ-lemma.

Lemma (normally hyperbolic inclination lemma). Fix f ∈F κ with κ so that
the statements of the last section hold, and fix g in B( f, ε( f )). Let ( jx)x∈Ag

be a continuous family of C1 parametrizations of the local unstable manifolds
attached to Ag, that is, a C0 map j :Ag×[−1, 1] →W−(Ag) such that, setting
jx = j (x, · ),

jx(0)= x, jx([−1, 1])⊂W−(x), (83)

and jx is C1. Then for any C1 submanifold 1 of A2 which intersects W+(Ag)

transversely in A2 at some point ξ ∈ W+(x), there exist a sequence (1n)n∈N

such that
ξ ∈1n ⊂1 ∀n ∈ N, (84)

and for n ∈ N, a C1 diffeomorphism `n : [−1, 1] → gn(1n) such that

lim
n→∞
‖`n − jgn(x)‖C0 = 0. (85)

We refer to [52] for a proof with detailed estimates in the compact setting,
which directly applies here thanks to our compactness assumption on the support
of g.

Proof of Theorem 40. We will write ϕ,ψ instead of ϕg, ψg. Fix an orbit
x0, . . . , xn of the polysystem (ϕ, ψ) on Ag and fix δ > 0. We fix a tubular



290 JEAN-PIERRE MARCO

neighborhood N of Ag in A2 such that N ∩W−(Ag) is invariant by g−1 and
for each z ∈N ∩W−(Ag) with z ∈W−(y)

d(g−1(z), g−1(y)) < d(z, y). (86)

Setting τ0 = ϕ and τ1 = ψ , by definition, there exists a sequence ω0, . . . , ωn−1

in {0, 1} such that, for 0≤ j ≤ n− 1,

x j+1 = τω j (x j ). (87)

Choose r > 0 small enough so that if D0 = Ag ∩ B(x0, r) and if

D j+1 = τω j (D j ) for 0≤ j ≤ n− 1, (88)

then D j ⊂ Ag ∩ B(x j , δ/2) for 0 ≤ j ≤ n (which is possible by continuity of
both maps τ j ).

We will prove the existence of an orbit (y j )1≤ j≤n of (τ0, τ1) associated with
the same sequence (ω j ), such that the point y j belongs to D j and is recurrent for
τ0 = ϕ, and the existence of a sequence of balls (B j )0≤ j≤n of A2 which satisfy
the following two properties:

(C j ) For 0 ≤ j ≤ n, B j is centered at some point z j ∈ W−(y j ) ∩ N and
B j ⊂ B(y j , δ/2).

(T j ) For 0≤ j ≤ n− 1, ∃m j > 0 such that gm j (B j )⊂ B j+1.

We will construct these objects backwards, by finite induction. It is enough
to prove that given some recurrent point y j+1 ∈ D j+1 together with a ball B j+1

satisfying (C j+1), one can find a recurrent point y j ∈ D j , a ball B j satisfying
(C j ) and a positive m j which satisfies (T j ).

3. Assume first that x j+1 = ϕ(x j ), so D j+1 = ϕ(D j ). By assumption, the
point y j+1 ∈ D j+1 is recurrent for ϕ, hence the point y j = ϕ

−1(y j+1) is in
D j and is recurrent for ϕ too. By (C j+1), the ball B j+1 is centered at some
z j+1 ∈W−(y j+1). By our assumption on W−(Ag)∩N and since g coincides
with ϕ on Ag, setting z j = g−1(z j+1),

d(z j , y j )= d(g−1(z j+1), g−1(y j+1)) < d(z j+1, y j+1) <
δ
2 . (89)

Therefore, by continuity of g, there exists a ball B j centered at z j and contained
in B(y j , δ/2) such that g(B j )⊂ B j+1.

4. Assume now that x j+1 = ψ(x j ), so that D j+1 = ψ(D j ). Let R j and R j+1

be the full-measure subsets of D j and D j+1 formed by the recurrent points
for ϕ. Since ψ is measure preserving, R j+1 ∩ψ(R j ) is a full measure subset
of D j+1. Therefore, there exists a recurrent point ȳ j ∈ R j such that ȳ j+1=ψ(ȳ j )

is recurrent, and so close to y j+1 that, by continuity of the unstable foliation,
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the leaf W−(ȳ j+1) intersects the ball B j+1. By definition of ψ and by the last
item in Lemma 7, the submanifold 1=W−(ȳ j ) intersects W+(Ag) transversely
in A2 at some point ξ ∈ W+(ȳ j+1). Apply the inclination lemma to 1 in the
neighborhood of ξ , together with the positive recurrence property of ȳ j+1: there
exists an arbitrarily large integer m′ such that gm′(1) intersects B j+1. Fix

z ∈ gm′(1)∩ B j+1, (90)

then
g−m′(z) ∈1⊂W−(ȳ j ). (91)

Now, by definition of W−(ȳ j ) and since ȳ j is negatively recurrent, there is an
(arbitrarily large) integer m′′ such that

d(g−m′′(g−m′(z)), g−m′′(ȳ j )) < δ/2 and g−m′′(ȳ j ) ∈ D j . (92)

Set y j = g−m′′(ȳ j ), so that y j is recurrent and the point z j = g−(m
′′
+m′)(z) ∈

W−(y j ) satisfies

d(y j , z j ) < δ/2 and g(m
′′
+m′)(z j )= z ∈ B j+1. (93)

Hence by continuity there exists a ball B j centered at z j such that conditions
(C j ) and (T j ) are satisfied.

5. As a consequence, there exists a sequence of integers (mi )1≤≤n such that for
1≤ i ≤ n

gmi ◦ · · · ◦ gm1(B0)⊂ Bi .

By construction, any z0 ∈ B0 satisfies our statement. �

Appendix D. A global Hamiltonian flow-box theorem

We refer to [46] for the necessary definitions and results in symplectic geometry.
The proof of the following global form of the Hamiltonian flow-box theorem is
immediate.

Lemma 41. Let (M2m, �) be a symplectic manifold with Poisson bracket { · , · },
and fix a Hamiltonian H ∈ C∞(M) with complete vector field X H .

• Let 3 be a codimension 1 submanifold of M , transverse to X H , such that there
exists an open interval I ⊂R with 0 ∈ I , for which the restriction of8H to I ×3
is an embedding. Set

D =8H (I ×3) (94)

and let T : D→ R be the transition time function defined by

8H (−T (x), x) ∈3, ∀x ∈ D . (95)
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Then T is C∞, {H, T } = 1 and 3= T−1(0), so XT is tangent to 3.

• Assume moreover that there exist an open interval J and e0 ∈ J such that,
setting

3e0 = H−1(e0)∩3,

the flow of XT is defined on J ×3e0 and satisfies

3=8T (J ×3e0). (96)

Then the form �e0 induced by � on 3e0 is symplectic, and the map

χ : (I × J )×3e0 → D

((t, e), x) 7→8H (t,8T (e− e0, x))
(97)

is a C∞ symplectic diffeomorphism on its image, where (I× J )×3e0 is equipped
with the form

(de∧ dt)⊕�e0 . (98)

Moreover

H ◦χ((t, e), x)= e, ∀(t, e, x) ∈ (I × J ×3e0), (99)

and
χ∗(X H )=

∂

∂t
. (100)
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1. Introduction

Hamiltonian systems of ordinary differential equations appear in celestial me-
chanics to describe the motion of planets. They are also used in statistical
mechanics to model the dynamics of particles in a fluid, gas or many other
microscopic models. It was known to Liouville that the flow of a Hamiltonian
system preserves the volume. Poincaré observed that the Hamiltonian flows are
symplectic; they preserve certain symplectic area of two dimensional surfaces.
Various symplectic rigidity phenomena offer ways to take advantage of the
symplecticity of Hamiltonian flows.

Writing q and p for the position and momentum coordinates respectively, a
Hamiltonian function H(q, p) represents the total energy associated with the pair
(q, p). We regard a Hamiltonian system associated with H completely integrable
if there exists a symplectic change of coordinates (q, p) 7→ (Q, P), such that our
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Hamiltonian system in new coordinates is still Hamiltonian system that is now
associated with a Hamiltonian function H(P). For completely integrable systems
the coordinates of P = P(q, p) are conserved and the set of (q, p) at which
P(q, p) takes a fixed vector is an invariant set for the flow of our system. These
invariant sets are homeomorphic to tori in many classical examples of completely
integrable systems. According to Kolmogorov–Arnold–Moser (KAM) theory,
many of the invariant tori survive when a completely integrable system is slightly
perturbed. Aubry–Mather theory constructs a family of invariant sets provided
that the Hamiltonian function is convex in the momentum variable. These
invariant sets lie on the graph of the gradient of certain scalar-valued functions.
A. Fathi [10] uses viscosity solutions of the Hamilton–Jacobi PDE associated
with the Hamiltonian function H to construct Aubry–Mather invariant measures;
see also [3]. Recently there have been several interesting works to understand
the connection between Aubry–Mather theory and symplectic topology. The
hope is to use tools from symplectic topology to construct interesting invariant
sets/measures for Hamiltonian systems associated with nonconvex Hamiltonian
functions.

Most of the aforementioned works on Hamiltonian systems are done when the
Hamiltonian function is defined on the cotangent bundle of a compact manifold.
A prime example is when p, q ∈ Rd , with H periodic in q-variable, so that we
may regard H as a function that is defined on T ∗Td

= Td
×Rd . To go beyond

the periodic case, we may take a Hamiltonian function that is quasiperiodic
with respect to q . In fact there is a probabilistic generalization of quasiperiodic
condition by selecting H randomly according to a probability measure P that
is invariant with respect to spatial shifts: τa H(q, p)= H(q + a, p). As it turns
out the Hamiltonian H can be obtained from H by a scaling limit that is called
homogenization.

In these notes we will explore the connection between Hamilton–Jacobi PDE,
homogenization, Hamiltonian ODE and symplectic topology.

1A. Hamiltonian ODE. In Euclidean setting a Hamiltonian system associated
with a C2 Hamiltonian function H : R2d

→ R is the ODE

ẋ = X H (x) := J∇H(x), (1-1)
where

J :=
[

0 I
−I 0

]
,

with I denoting the d × d identity matrix. Writing x = (q, p) with q, p ∈ Rd ,
the system (1-1) means

q̇ = Hp(q, p), ṗ =−Hq(q, p).
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We write φH
t (x) for the flow of the vector field X H . Poincaré discovered that

the form
(φH

t )
∗(αam)−αam,

is exact for αam = p · dq . As a consequence (φH
t )
∗(αm)= αm, where

αm := dαam =
d∑

i=1

dpi ∧ dqi .

This means that if A(x, t)= (dφH
t )x , then

αm(A(x, t)v, A(x, t)w)= αm(v,w) or A(x, t)∗ J A(x, t)= J.

More generally, we can define Hamiltonian vector fields on any symplectic
manifold. By a symplectic manifold we mean a pair (M, ω) with M a smooth
manifold, and ω a nondegenerate closed 2-form on M . Given a smooth function
H : M→R, we define the vector field X H = Xω

H as the unique vector field such
that

iX Hω =−d H.

In particular, LX Hω = 0, which implies the following identity for its flow

(φH
t )
∗ω = ω.

When ω = αm, and M = R2d , we have Xαm
H = J∇H .

Given a vector field X on a manifold M , we write ψ X
t for its flow. Given C1

scalar-valued function f : M→ R, we define its Lie derivative with respect to
X by

LX f (x)= d
dt f (ψt(x))

∣∣
t=0 = (d f )x(X (x)). (1-2)

More generally, if u(x, t)= f (ψt(x)), then

ut = LX u.

where ut denotes the partial derivative of u with respect to t . From this, we learn
that a function f ∈ C1(M;R) is conserved along the flow of X if and only if
LX f = 0. In the case of a Hamiltonian vector field X = X H , the Lie derivative
LX f is the Poisson bracket of H and f :

{H, f } := LX H f = (d f )(X H )=−ω(X f , X H )= ω(X H , X f ).

1B. Completely integrable systems. We may call a Hamiltonian ODE com-
pletely integrable if we have a sufficiently explicit formula for its solutions. One
strategy to achieve this is by finding enough conservation laws. As it turns out, a
Hamiltonian system on a manifold M is completely integrable if it has d many
independent conservation laws that do not interact with each other. Note that if
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f1, . . . , fk : M→ R are C2 functions such that {H, fi } = 0, i = 1, . . . , k, then
the set

MP = {x ∈ M : ( f1(x), . . . , fk(x))= P},

is invariant for the flow

x ∈ MP =⇒ φt(x) ∈ MP .

We recall a classical result of Liouville and Arnold; see for example [2].

Theorem 1.1. Assume that there are C2 functions f1, . . . , fd : M→R such that
the following conditions hold:

• {H, fi } = { fi , f j } = 0 for all i and j .

• For P ∈ Rd , the corresponding set MP is compact.

• For each x ∈ MP , the vectors X f1(x), . . . , X fd (x) are linearly independent.

Then each such MP is homeomorphic to a d-dimensional torus. Moreover, the
motion of X H on MP is conjugate to a linear motion. In other words, there exists
a symplectic diffeomorphism 9 : Td

×Rd
→ M such that 9−1

◦φH
t ◦9 is the

flow of a Hamiltonian ODE for which the Hamiltonian function is independent of
position.

Remark 1.2. (i) For an example, assume that M = T ∗Td
= Td

× Rd , and
consider a Hamiltonian function H that is independent of q. If we think of a
torus as [0, 1]d with 0= 1, then the motion is given by x(t)= x + tv (mod 1),
for some vector v =∇H(p) ∈ Rd . Depending on the vector v, we may have a
periodic or quasiperiodic orbit. (The latter means that the closure of the orbit is
a k-dimensional linear subtorus for some k > 1.)

(ii) The set MP is an example of a Lagrangian submanifold. This means that
dim MP = d and ω �MP= 0. The latter follows from

ω(X fi , X f j )= { fi , f j } = 0,

and the independence of {X fi (x)}
d
i=1, for every x ∈ MP .

(iii) When f1 = H , let us present a sketch of the proof of the Arnold–Liouville
theorem. If we define φt : M→ M, t = (t1, . . . , td) ∈ Rd by

φt(x)= φ
f1

t1 ◦ · · · ◦φ
fd

td ,

then φt(MP)⊆ MP . On the other hand, if we pick some point a ∈ MP and set
ϕ(t)= φt(a), then ϕ : Rd

→ MP , and the set

0 = {t ∈ Rd
: ϕ(t)= ϕ(0)= a},
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is a subgroup of (Rd ,+). Indeed the compactness of MP and the linear indepen-
dence of {X fi (x)}

d
i=1 imply that the subgroup 0 is discrete. That is, there are

vectors v1, . . . , vd , such that

0 = {n1v1+ · · ·+ ndvd : n1, . . . , nd ∈ Z}.

Hence the quotient Rd/0 is a torus and the map ϕ yields a homeomorphism
ϕ̂ : Rd/0→ MP . Moreover, assuming that f1 = H , then φH

s is conjugate to
the map (t1, . . . , td) 7→ (t1+ s, . . . , td). If we use the basis (v1, . . . , vd) for Rd ,
we can then show that φH

s is conjugate to a linear motion. Writing Q for the
coordinates of Rd/0 ≡ Td , we have a homeomorphism 9 P

= ϕ̂ : Td
→ MP .

As we vary P , we obtain a map

9 : T ∗Td
= Td

×Rd
→ M.

We think of 9(Q, P)= x as a parametrization of M . Setting H(P)= H(x)=
H(9(Q, P)), for x ∈MP , we obtain a new Hamiltonian function H : T ∗Td

→R

that is independent of Q. The motion of φ̂t(Q(0), P(0)) := (Q(t), P(t)) may
be defined by

φ̂t :=9
−1
◦φH

t ◦9.

We already know that Q(t) is a linear motion and that P(t) = P(0). We may
regard this motion as a solution to the Hamiltonian ODE

Q̇ =∇H(P), Ṗ = 0.

In summary, we have seen that for a completely integrable Hamiltonian ODE,
we can find a change of coordinates that turns our system to a linear motion.
That is, there exists a diffeomorphism 9 such that

φH
t =9

−1
◦φH

t ◦9, H = H ◦9, (1-3)

for a Hamiltonian function H that is independent of position. Recall that both φH
t

and φH
t are symplectic. It is no surprise that the change of coordinates map 9

is also symplectic. As the following proposition indicates, a symplectic change
of coordinates always transforms a Hamiltonian system to another Hamiltonian
system.

Proposition 1.3. Let (M, ω) and (M ′, ω′) be two symplectic manifolds and
assume that9 :M ′→M is a diffeomorphism such that9∗ω=ω′. Let H :M→R

be a Hamiltonian function on M , and let φH
t be the flow of Xω

H . Then

φ̂t :=9
−1
◦φH

t ◦9,

is the flow of the vector field Xω′

H
for H = H ◦9.

We refer to [13; 19; 24] for an introduction to symplectic geometry.
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1C. Kolmogorov–Arnold–Moser (KAM) theory. We may take a small perturba-
tion of a completely integrable system and wonder whether or not some of the in-
variant tori persist. It turns out that for a small perturbation, an invariant torus per-
sists if the action variable ∇H(P) is sufficiently irrational; see for example [32].

Theorem 1.4. Assume that H : Td
×Rd

→ R is of the form

H ε(q, p)= H 0(p)+ εK (q, p),

with det D2 H0 6= 0 and K real analytic. Then for every τ, γ > 0, there exists
ε0 = ε0(τ, γ ) > 0 such that if ∇H 0(p) satisfies a Diophantine condition of the
form

n ∈ Zd
\ {0} =⇒ |n · ∇H 0(p)| ≥ γ |n|−τ ,

then the vector field X H ε has a quasiperiodic orbit of velocity ∇H 0(p), whenever
|ε| ≤ ε0.

Remark 1.5. It is worth mentioning that if we set

D(γ, τ )= {v ∈ Rd
: |v · n| ≥ γ |n|−τ for all n ∈ Zd

\ {0}},

then the set D(τ )=∪γ>0 D(γ, τ ) is of full measure whenever τ > d−1. This is
because, the complement of D(γ, τ ), restricted to a bounded set, has a volume
of order O(γ |n|−τ−1), and ∑

n 6=0

|k|−τ−1 <∞,

if and only if τ + 1> d .

1D. Generating function. Note that a Hamiltonian vector field is very special
as it is fully determined by a scalar-valued function, namely its Hamiltonian
function. As it turns out, the symplectic maps are also locally determined by
scalar-valued functions known as generating functions. To explain this, take an
αm-symplectic map ψ(q, p)= (Q, P), and observe that since ψ∗αm = αm, we
can find a scalar-valued function S such that

p · dq − P · d Q = d S. (1-4)

Normally we think of S as a function of (q, p) or (Q, P). However, it is more
convenient to think of S as a function of other pairs. For example under some
nondegeneracy assumption (for example if Q p(q, p) is invertible so that we
can locally solve Q(q, p) = Q implicitly for p = p(q, Q)), we may regard
S = S(q, Q) as a function of the pair (q, Q). Under such circumstances, (1-4)
implies

Sq(q,Q)= p, −SQ(q,Q)= P, ψ(q, Sq(q,Q))= (Q,−SQ(q,Q)). (1-5)
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The scalar-valued functions S is an example of a generating function for the
symplectic map ψ . Since there are other type of generating functions that we
may consider for a symplectic map, let us refer to S as a generating function of
type I (in short GFI).

Alternatively, we may set W = p ·q− S, and regard W as a function of (Q, p)
so that (1-4) means

Wp(Q, p)= q, WQ(Q, p)= P, ψ(Wp(Q, p), p)= (Q,WQ(Q, p)).

The function W is another example of a generating function for the symplectic
map ψ and we will refer to it as a generating function of type II (in short GFII).
Another popular choice for a generating function is W ′ =W ′(q, P) that will be
referred to as a generating function of type III (in short GFIII).

If ψ is the change of coordinates transformation of a completely integrable
system, we have

H(P)= H(q, p)= H(q,W ′q(q, P)).

This means that for each fixed P , the function q 7→W ′(q, P) is a solution to a
Hamilton–Jacobi equation (HJE) associated with H . Thinking of Td

×Rd , as
T ∗Td , we interpret W ′q(q, P) as a 1-form on the torus for each P . If we write
W ′(q, P)= q · P +wP(q) and assume that wP

: Td
→ R, is periodic, then our

HJE reads as
H(q, P + (dwP)q)= H(P). (1-6)

We think of αP
= P + dwP as a closed 1-form that belongs to the cohomology

class of the constant (closed) form P .

1E. Weak KAM theory. In the classical KAM theory, we consider a small per-
turbation of a nondegenerate Hamiltonian function H0(p) that depends on p only.
We have learned that the majority of the invariant tori of unperturbed systems
persist for a sufficiently small perturbation. However some invariant tori could
be destroyed after a small perturbation. In fact Arnold constructed an example
of a perturbed integrable system, in which chaotic orbits — resulting from the
breaking of unperturbed KAM tori — coexist with the invariant tori of KAM
theorem. This phenomenon is known as Arnold diffusion. A natural question
is whether or not we can construct a family of invariant sets (MP : P ∈ Rd) for
perturbed systems that come from the invariant tori of the unperturbed system
and still carry some of their features. Aubry and Mather constructed such family
for the so-called twist maps (these maps are the analog of Hamiltonian systems
when d = 1 and time is discrete). The generalization of Aubry–Mather invariant
sets to higher dimensions was achieved by Mather, Mañé and Fathi. They prove
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the existence of interesting invariant (action-minimizing) sets, which generalize
KAM tori, and which continue to exist even after KAM tori disappearance.

Aubry–Mather theory replaces the condition of being close to an integrable
Hamiltonian with the Tonelli condition. We say that a Hamiltonian function
H : Td

×Rd
→ R is Tonelli, if the following conditions are true:

• H(q, p) is C2, and the matrix Hpp(q, p) is positive definite for every (q, p).

• |p|−1 H(q, p)→∞ as |p| →∞, uniformly in q.

According to Aubry–Mather and Mather–Mane–Fathi theory, for each P , there
exists a constant H(P), a Lipschitz function wP

: Td
→ R, and an invariant

measure µP for φH such that:
• The function wP solves the HJE (1-6) in a suitable weak sense.

• The support of the measure µP is a subset of

MP = {(q, P + (dwP)q) : q ∈ Td
}.

Note that we only require the function wP to be Lipschitz and not everywhere
differentiable. This is because the HJE (1-6) does no possess classical solutions
in general. One remedy for this is to consider certain generalized solutions. In
fact if we consider the so called viscosity solutions, then (1-6) always has at least
one Lipschitz solution for each P . This was established by Lions, Papanicolaou
and Varadhan [17] in 1987. We then modify the definition of MP with

MP = {(q, P + (dwP)q) : q ∈ Td , wP differentiable at q}. (1-7)

1F. From torus to general closed manifolds. We may replace the torus with any
sufficiently smooth manifold M in weak KAM theory. Now our Hamiltonian
function H is a C2 function on the cotangent bundle T ∗M . The manifold T ∗M
carries a standard symplectic form ω = dλ with λ defined as

λ(q,p)(a)= pq((dπ)(q,p)a),

where π : T ∗M → M is the projection π(q, p) = q to the base point, and its
derivative (dπ)(q,p) : T(q,p)T ∗M→ Tq M projects onto tangent vectors. Recall
that in the case of a torus, we know that the (1-6) has at least one solution by [17].
This existence result has been extended to arbitrary closed manifold and convex
Hamiltonian by Albert Fathi [10].

Theorem 1.6. Let M be a smooth closed manifold and assume that H :T ∗M→R

is a Tonelli Hamiltonian. Then for every closed form α, there exists a unique
constant H(α), and a Lipschitz function w : M→ R such that w satisfies

H(q, αq + (dw)q)= H(α), (1-8)

in viscosity sense.
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Because of the uniqueness of H , it is clear that if we add an exact form to α,
the value of H does not change. Abusing the notation slightly, we may define H
on the space H 1(M) of the cohomology classes of 1-forms and write H([α]) in
place of H(α). Alternatively, for each P ∈ H 1(M), we may fix a representative
αP in class P and search for a Lipschitz wP

:M→R such that αP
= αP

+dwP .
Even when we fix the representative, the function wP may not be unique. Given
a choice of wP , we define an invariant set M ′ by

M ′ = {(q, αP
q + (dw

P)q) : q ∈ M, wP
{ differentiable at q}. (1-9)

1G. From torus to stochastic Hamiltonian and homogenization. Weak KAM
theory à la Fathi employs the HJE (1-6) in order to construct interesting invariant
measures for the corresponding Hamiltonian ODE. It turns out that HJE can
be used to model certain deterministic and stochastic growths. More precisely,
imagine that we have an interface that separates different phases and this interface
is represented by a graph of function u( · , t) : Rd

→ R at time t . Suppose that
the growth rate of this interface depends on the position q , and the inclination of
the interface uq . Mathematically speaking, u satisfies a HJE of the form

ut + H(q, uq(q, t))= 0, (1-10)

for a Hamiltonian function H : R2d
→ R. We think of (1-10) as the microscopic

equation describing the evolution of the interface. If a large parameter n represents
the ratio between the macro and micro scales, then

un(q, t)= n−1u(nq, nt),

is the corresponding macroscopic height above that macro position q at the macro
time t . We observe that un now solves

un
t + H n(q, un

q(q, t))= 0, (1-11)
where

H n(q, p)= (γn H)(q, p) := H(nq, p).

A homogenization occurs if the limit

α(q, t)= lim
n→∞

un(q, t),

exists whenever the limit

g(q) := lim
n→∞

un(q, 0),

exists. As it turns out, in many examples of interest, the limit α satisfies a simpler
HJE of the form {

αt + H(αq)= 0,
α(q, 0)= g(q).

(1-12)
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In fact we may use (1-6) to guess that when H is periodic in q, then H that
appears in (1-12) coincides with H that appears in (1-6). This is because if wP

is a periodic function that satisfies (1-6), and we choose u(q, 0)= P ·q+wP(q)
as the initial condition for (1-10), then u(q, t)= P · q − t H(P)+wP(q), and

α(q, t)= lim
n→∞

un(q, t)= P · q − t H(P),

which solves (1-12).
We may wonder whether a weak KAM theory can be achieved for H :R2d

→R

that is not necessarily periodic. Let us denote by H the set of all C1 Hamiltonian
functions H : R2d

→ R. For homogenization question, there are two relevant
group actions on H, namely the spacial translation and scaling. More precisely
we set

τa H(q, p)= H(q + a, p), γn H(q, p)= H(nq, p),

for a ∈ Rd and n ∈ R+. We certainly have

τa ◦ τb = τa+b, γm ◦ γn = γmn.

We are interested to know for what Hamiltonian H ∈ H we have weak KAM
theory and homogenization. Let us make a comment on bounded continuous
functions K of the position variable. For K : Rd

→ R, we define the translation
operator τa K (q)= K (q + a) as before. We note that if a function K is periodic
in q , then the set

{τa K : a ∈ Rd
},

is homeomorphic to a d-dimensional torus. More generally, let us take a function
K̂ : TN

→ R, and a N × d matrix A. We then set K (q)= K̂ (Aq), which is an
example of a quasiperiodic function. In fact the closure of the set

0(K ) := {τa K : a ∈ Rd
},

with respect to the uniform topology is

0(K̂ ) := {K̂ ( · + b) : b ∈ RN
},

if the following condition holds:

n ∈ ZN
\ {0} =⇒ n A 6= 0.

In general a bounded continuous function K : Rd
→ R is called almost periodic

if the set 0(K ) is precompact in Cb(R
d) with respect to the uniform topology.
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We regard the group {τa : a ∈ Rd
} as a d-dimensional dynamical system

on H. A probability measure P on H is translation invariant and ergodic if the
following conditions are met:

• For every Borel set A⊂H, and a ∈ Rd , we have P(τaA)= P(A).

• If a Borel set A is invariant i.e., τaA=A for all a ∈Rd , then P(A) ∈ {0, 1}.

We may wonder whether or not the weak KAM theory or homogenization are
applicable to generic Hamiltonian functions in the support of an invariant ergodic
measure. The hope is that Birkhoff ergodic theorem would make up for the lack
of compactness that has played an essential role when we considered a cotangent
bundle of a compact manifold in Section 1F.

1H. Variational techniques. Homogenization questions and the existence of
interesting invariant measures are closely related to the existence of special orbits
of the Hamiltonian ODEs. Such existence questions also play central role in
several recent developments in symplectic topology. (A prime example is Floer
homology that was formulated by Floer in order to prove Arnold’s conjecture.)
Hamilton discovered a variational description for the solutions of Hamiltonian
systems. More specifically, we may reduce the existence of special orbits of
(1-1) to the existence of a critical point of a suitable action functional. To explain
this, let us assume that (M, ω) is a symplectic manifold with ω = dλ. We also
write 0T for the space of C1 functions x : [0, T ] → T ∗M . Given a Hamiltonian
function H : T ∗M ×[0, T ] → R, we define A=AH : GT → R by

A(γ )=AT
H (γ ) :=

ˆ T

0
[λγ (t)(γ̇ (t))− H(γ (t), t)] dt. (1-13)

The form λH
= λ−H dt is known as the Poincaré–Cartan form. We note that if

we regard dλH
= ω+dt ∧d H as a form on T ∗M×R, and X H = (X H , 1), then

i X̂ H
dλH
= iX Hω+ d H = 0.

Moreover, if we take a variation of a path with fixed end points, for example

w : [0, T ]× [0, δ] → T ∗M, (t, θ) 7→ w(t, θ),

with

w(t, 0)= γ (t), w(0, θ)= w(0, 0),

w(T, θ)= w(T, 0), wθ (t, 0)= v(t),
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then

−
d

dθ

ˆ
w( · ,θ)

λ
∣∣
θ=0 = lim

h→0
h−1

[ˆ
w( · ,0)

λ−

ˆ
w( · ,h)

λ

]
= lim

h→0
h−1
ˆ
w([0,T ]×[0,h])

ω

= lim
h→0

h−1
ˆ h

0

ˆ T

0
ωw(wt , wθ ) dt dθ

=

ˆ T

0
ωγ (γ̇ , v) dt.

(Note that the orientation of w must be compatible with γ = w( · , 0) for Stokes
theorem to apply.) This in turn implies

d
dθ

AT
H (w( · , θ))

∣∣
θ=0 =−

ˆ T

0
(iγ̇ω+ d H)γ (v) dt

=−

ˆ T

0
(iγ̇−X H (γ )ω)γ (v) dt. (1-14)

Hence, if we restrict A to the set of curves with the same end points, then its
critical points are the orbits of X H . In fact the critical values of A solve the
corresponding Hamilton–Jacobi PDE. To explain this, first we argue that the
action functional can be used to produce generating functions for φH

T . Indeed if
we define λT

H : T
∗M→ R, by

λT
H (x)=AH (η

x
T ), where ηx

T (t)= φ
H
t (x) for t ∈ [0, T ], (1-15)

then λT
H is a generating function for φH

T .

Proposition 1.7. For every T ≥ 0 and any Hamiltonian H , we have

dλT
H = (φ

H
T )
∗λ− λ. (1-16)

Proof. Set

A(x)=
ˆ
ηx

T

λ, B(x)=
ˆ T

0
H(ηx

T (t), t) dt.

Take any (τ (θ) : 0 ≤ θ ≤ δ) with τ(0)= x and τ̇ (0)= v ∈ Tx M . Set y(t, θ)=
φH
−t(τ (θ)),

2h = {y(t, θ) : 0≤ t ≤ T, 0≤ θ ≤ h},
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and use Stokes’ theorem to assert that for h ∈ (0, δ),

h−1
ˆ h

0

ˆ T

0
ωy(yt , yθ )dt dθ = h−1

ˆ
2h

dλ

= h−1
[ˆ

ητ(0)
λ−

ˆ
ητ(h)

λ+

ˆ
ϕ◦τ( ·)

λ−

ˆ
τ( ·)

λ

]
,

h−1
ˆ h

0

ˆ T

0
(iX Hω)y(yθ )dt dθ = h−1

[ˆ
ητ(0)

λ−

ˆ
ητ(h)

λ+

ˆ
τ( ·)

(ϕ∗λ−λ)

]
,

where ϕ = φH
T . Sending h→ 0 yields

−(d B)x(v)=−(d A)x(v)+ (ϕ∗λ− λ)x(v).

This is exactly (1-16). �

Let us assume that M=R2d , ω=αm, and that H is a C2 Hamiltonian function
with D2 H uniformly bounded. With the aid of Proposition 1.7 we may define a
GFI of φH

t by

S(q(t), t; q) :=
ˆ t

0
[p(s) · q̇(s)− H(q(s), p(s), s)] ds, (1-17)

where (q(s), p(s))= φH
s (q(0), p(0)). Hence

φH
t (q,−Sq(Q, t; q))= (Q, SQ(Q, t; q)),

q(0)= q,

q(t)= Q,

p(t)= SQ(Q, t; q).

Differentiating both sides of (1-17) with respect to t yields

St(Q, t; q)+ SQ(Q, t; q) · q̇ = p(t) · q̇(t)− H(q(t), p(t), t).

As a result,
St(Q, t; q)+ H(Q, SQ(Q, t; q), t)= 0. (1-18)

Similarly if we set W = S+q · p, and regard W (Q, t; p) as a function of (Q, p),
then

W (q(t), t; p(0))= p(0) · q(0)+
ˆ t

0
[p(s) · q̇(s)− H(q(s), p(s), s)] ds.

Differentiating both sides with respect to t yields

Wt(q(t), t; p(0))+WQ(q(t), t; p(0)) · q̇(t)= p(t) · q̇(t)− H(q(t), p(t), t).
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This yields
Wt(Q, t; p)+ H(Q,WQ(Q, t; p), t)= 0, (1-19)

because WQ(q(t), t; p(0))= p(t).

Remark 1.8. (i) In particular, if H is 1-periodic in t , T = 1, and we define A
on the space of 1-periodic paths (loops), then the critical points of A correspond
to the periodic orbits of X H . Floer uses the gradient flow equation

ws =−∂A(w), (1-20)

to prove the existence of periodic orbits by showing that

lim
s→∞

w( · , s),

exists. Here the gradient is defined with respect to the L2 inner product, which
guarantees that (1-20) is an elliptic (in fact Cauchy–Riemann type) PDE. One
may use the elliptic regularity of the solutions to obtain the compactness of path
w in a suitable Sobolev space.

(ii) When H is a Tonelli Hamiltonian, it is more convenient to work with an action
functional that is expressed in terms of the Legendre transform of H . To explain
this, let us assume that there exists a C2 function L : T M → R, L = L(q, v),
that is convex in the velocity v, and that the transformation L : T M→ T ∗M ,

L(q, v)= (q, Lv(q, v)), (1-21)

is a C1 diffeomorphism with

p = Lv(q, v) if and only if v = Hp(q, p).

(Here we identify (Tq M)∗∗ with Tq M .) The Lagrangian function L and the
Hamiltonian function H are related to each other by Legendre transform

L(q, v)= sup
p∈T ∗q M

(p(v)− H(q, p)), H(q, p)= sup
v∈Tq M

(p(v)− L(q, v)).

Moreover
H ◦ L(q, v)= Lv(q, v)(v)− L(q, v).

Given a C1 path α : [0, T ] → M , we may define,

L(α) :=
ˆ T

0
L(α, α̇) dt.

Note that if x(t)= φH
t (a) is a solution of (1-1), then

λx(ẋ)− H(x)= pq((dπ)x(ẋ))− H(q, p)= pq(q̇)− H(q, p)= L(q, q̇).
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Hence

A(x( · ))=
ˆ T

0
(λx(ẋ)− H(x)) dt =

ˆ T

0
L(q, q̇) dt = L(q( · )).

By a classical work of Tonelli, we have the following results:

• If we regard the action functional L as a function on paths α : [0, T ] → M
with specified endpoints, then L has a minimizer q( · ). As a consequence,
this minimizer is a critical point of L, and satisfies the Euler–Lagrange
equation

d
dt

Lv(q, q̇)= Lq(q, q̇). (1-22)

• The corresponding path x(t)= L(q(t), q̇(t)) satisfies equation (1-1).

1I. Discrete models. Any symplectic map ψ from a symplectic manifold to
itself serves as an example of a discrete analog of a Hamiltonian flow. We will
be mainly interested in those symplectic diffeomorphisms for which a global
generating function exists. For example, we may assume that a generating
function of the first kind exists, i.e., (1-5) holds for some S(q, Q) (with a slight
abuse of notation we use the letter S for our generating function as in Section 1D).
In the Euclidean setting, we may write S(q, Q) =: L(q, Q − q). If L(q, v) is
bounded below and has a superlinear growth at infinity in the velocity variable v,
we call the corresponding map ψ a twist map and the corresponding dynamical
model is a generalization of the Frenkel–Kontorova model. Given a sequence
q = (q0, q1, . . . , qn), we define its action by

A(q)=
n∑

i=1

S(qi−1, qi )=

n∑
i=1

L(qi−1, qi − qi−1).

The critical points of A correspond to the orbits of ψ . As we will see in Section 2,
we may use the minimizers of A to construct interesting orbits of ψ .

We may also consider a generating function W (Q, p)= Q · p−w(Q, p) of
type III so that

ψ(Q−wp(Q, p), p)= (Q, p−wQ(Q, p)).

In other words,

Q = q +wp(Q, p), P = p−wQ(Q, p),

which should be regarded as a discrete analog of a Hamiltonian ODE, with the
function w playing the role of the Hamiltonian function.
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Example 1.9 (standard map). Consider the Hamiltonian function H(q, p) =
1
2 |p|

2
+ V (q) for a C2 potential function V : Td

→ R. The corresponding
Hamiltonian equations are

q̇ = p, ṗ =−∇V (q).

For a discrete version of these equations, we consider a map ψ(q, p)= (Q, P)
with

P = p−∇V (q), Q = q + P.

This corresponds to a symplectic map associated with the generating function

S(q, Q)= 1
2 |Q− q|2− V (q).

2. Twist maps and their generalizations

The origin of the twist maps goes back to Poincaré’s work on area-preserving
maps on annulus that he encountered in his work on 3-body problem of celestial
mechanics. Before embarking on studying twist maps, we give an overview of
circle diffeomorphisms and their rotation numbers.

Definition 2.1. (i) Regarding S1 as the interval [0, 1] with 0 = 1, let f :
bS1
→ S1 be an orientation preserving homeomorphism. Its lift F = `( f )

is an increasing map F : R→ R such that f (x) = F(x) (mod 1), and F
can be written as F(x)= x +G(x), for a 1-periodic function G : R→ R.
We may also regard G as a map on the circle: g : bS1

→ R, g(x)= G(x)
for x ∈ [0, 1).

(ii) We define π : R→ S1 by π(x) = e2π i x . For f and F as in (i), we define
its rotation number

ρ(F)= lim
n→∞

n−1 Fn(x), ρ( f )= π(ρ(F)). (2-1)

(iii) Given ρ ∈ [0, 1), we write rρ for a rotation of the circle through the angle
ρ. Its lift Rρ is given by Rρ(x)= x + ρ.

(iv) We write D(τ ) for the set of numbers that satisfy a Diophantine condition
of type τ . More precisely, ρ ∈ D(τ ) if and only if there exists a positive
constant c such that for every r, s ∈ Z,∣∣∣∣ρ− r

s

∣∣∣∣≥ c
|s|τ

.

Theorem 2.2 (Poincaré). Let f : bS1
→ S1 be an orientation preserving homeo-

morphism and write F for its lift. Then the following statements are true:
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(i) The rotation number always exists and is independent of x.

(ii) f has a fixed point if and only if ρ( f )= 0.

(iii) ±ρ(F) > 0 if and only if ±(F(x)− x) > 0.

(iv) Let (r, s) be a pair of coprime positive integers. Then f has a (r, s)-periodic
orbit (this means that F s(x) = F(x) + r for F = `( f )), if and only if
ρ( f )= r/s.

(v) If ρ( f ) /∈Q, then the set �∞(x) of the limit points of the sequence { f n(x) :
n ∈ N} is independent of x , and is either S1 or nowhere dense.

Proof. We only prove (i) and refer to [14] for the proof of the other parts.
By induction, we can readily show that if F(x) = x + g(x) for a periodic

function g, then Fn(x) = x +Gn(x) for a periodic function Gn that is simply
given by

Gn(x)=
n−1∑
i=0

G(F i (x))=
n−1∑
i=0

g( f i (x)). (2-2)

Since Fn is increasing, we learn that if 0≤ y ≤ x < 1, then

x +Gn(x)= Fn(x)≥ Fn(y)= y+Gn(y) or Gn(y)−Gn(x)≤ x − y < 1.

From this and 1-periodicity of Gn we deduce that Gn(y)−Gn(x) < 1 for all x
and y. Hence

Gm+n(x)= Gm(x)+Gn(Fm(x))≤ Gm(x)+Gn(x)+ 1.

This means that the sequence {an =Gn(x)} is almost subadditive (more precisely,
the sequence {an + 1} is subadditive). From this we deduce

ρ(x)= lim
n→∞

n−1Gn(x)= lim
n→∞

n−1(Fn(x)− x)= lim
n→∞

n−1 Fn(x),

exists. From the last equality we learn that the limit ρ is nondecreasing, whereas
the first equality implies that ρ is 1-periodic. This is possible only if ρ(x) is a
constant function. �

Theorem 2.3. Let f and F be as in Theorem 2.2:

(i) (Denjoy) If f ∈C1 with f ′ a function of bounded variation, and ρ = ρ( f ) /∈
Q, then there exists a homeomorphism h such that f = h−1

◦ rρ ◦ h.

(ii) (Herman [12]) If f ∈ C2+α with α ∈ [0, 1), and ρ(F) ∈ D(τ ) for some
τ > 2, then h in part (i) is in C1+α . (See Definition 2.1(iv) for the definition
of D(τ ).)
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Remark 2.4. (i) Let us write H , F , and Rρ(x) = x + ρ, for the lifts of the
maps h, f and rρ , respectively. Since the Lebesgue measure is invariant for Rρ ,
and F ◦ H−1

= H−1
◦ Rρ , we learn that for any 1-periodic continuous function

ζ : R→ R, ˆ
ζ ◦ F d H =

ˆ
ζ d H.

In other words, the measure µ with µ[0, x]= H(x) is invariant for f . Hence part
(ii) is equivalent to the statement that if f ∈ C2+α, then the dynamical system
associated with f is (uniquely) ergodic with an invariant measure that has a Cα

density with respect to Lebesgue measure.

(ii) In terms of the invariant measure, the rotation number can be express as

ρ( f )=
ˆ

g dµ,

by (2-1), (2-2) and the ergodic theorem.

(iii) Define F to be the set of continuous increasing functions F : R→ R such
that

sup
x
|F(x)− x |<∞.

Write F(x)= x +G(x), and define a translation operator that translates G:

(τa F)(x)= F(x + a)− a = x +G(x + a).

Let P be a τ -invariant ergodic probability measure on F . Then one can show
that there exists a constant ρ(P) such that

lim
n→∞

n−1 Fn(x)= ρ(P),

for P-almost all choices of F .

We next study cylinder maps.

Definition 2.5. (i) Let ϕ : bS1
× [−1, 1] → S1

× [−1, 1], be an orientation
preserving homeomorphism. Its lift `(ϕ)=8 : R×[−1, 1] → R×[−1, 1]
is a homeomorphism such that

ϕ(x)=8(x) (mod 1),

and 8 can be written as 8(q, p) = (q, 0) + 9(q, p), for a continuous
9 : R×[−1, 1] → R×[−1, 1], that is 1-periodic function in q-variable.

(ii) An orientation-preserving diffeomorphism ϕ : bS1
×[−1, 1]→S1

×[−1, 1]
is called a twist map if the following conditions are met:

(a) ϕ (or equivalently its lift 8) is area-preserving.
(b) If we define 8± by (8±(q),±1)=8(q,±1), then ±(8±(x)− x) > 0.

Equivalently, ±ρ(8±) > 0.
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Our main result about twist maps is the following:

Theorem 2.6 (Poincaré and Birkhoff). Any twist map has at least two fixed
points.

Poincaré established Theorem 2.6 provided that ϕ has a global generating
function. Such a generating function exists if ϕ is a monotone twist map. To
explain Poincare’s argument, let us formulate a condition on8= `(ϕ) that would
guarantee the existence of a global generating function S(q, Q) for 8.

Definition 2.7. A C1 area-preserving map ϕ or its lift 8(q, p) = (Q(q, p),
P(q, p)) is called positive twist if Q p(q, p) > 0 for all (q, p). We say ϕ is
negative twist if ϕ−1 is a positive twist. We say that ϕ is a monotone twist, if ϕ
either positive or negative twist.

Proposition 2.8. Let8 be a monotone twist map. Then there exists a C2 function
S :U → R with

U = {(q, q ′) : Q(q,−1)≤ q ′ ≤ Q(q,+1)}

such that
8(q,−Sq(q, Q))= (Q, SQ(q, Q)).

Moreover
S(q + 1, Q+ 1)= S(q, Q), Sq Q < 0. (2-3)

Proof. The image of the line segment {q}× [−1, 1] under 8 is a curve γ with
parametrization γ (p)= (Q(q, p), P(q, p)). By the monotonicity, the relation
Q(q, p) = Q can be inverted to yield p = p(q, Q) which is increasing in Q.
The set γ ([−1, 1]) can be viewed as a graph of the function

Q 7→ P(q, p(q, Q))

with Q ∈ [Q(q,−1), Q(q,+1)]. The antiderivative of this function yields
S(q, Q). This can be geometrically described as the area of the region1 between
the curve γ ([−1, 1]), the line P =−1, and the vertical line {q}× [−1, 1]. We
now apply 8−1 on this region. The line segment {Q} × [−1, 1] is mapped to
a curve γ̂ ([−1, 1]) which coincides with a graph of a function q 7→ p(q, Q).
Since 8 is area preserving the area of 8−1(1) is S(q, Q). From this we deduce
that SQ =−p. Here we have used the fact that 8−1 is a (negative) twist map;
indeed if we write 8−1(Q, P)= (q̂(Q, P), p̂(Q, P)), then

(8−1)′ =

[
q̂Q q̂P

p̂Q p̂P

]
=

[
Qq Q p

Pq Pp

]−1

=

[
Pp −Q p

−Pq Qq

]
which implies that q̂P =−Q p < 0.
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The periodicity (2-3) is an immediate consequence of8(q+1, p)=8(q, p)+
(1, 0);

8({q + 1}× [−1, 1])=8({q}× [−1, 1])+ (1, 0).

As for the second assertion in (2-3), recall that p(q, Q) is increasing in Q. Hence

Sq Q =−pQ < 0. �

We now show how the existence of a generating function can be used to prove
the existence of fixed points.

Proof of Theorem 2.6 for a monotone twist map. Define L(q) = S(q, q). We
first argue that a critical point of L corresponds to a fixed point of 8. Indeed,
if L ′(q0) = 0, then Sq(q0, q0)+ SQ(q0, q0) = 0. Since 8(q0,−Sq(q0, q0)) =

(q0, SQ(q0, q0)), we deduce that 8(q0, y0)= (q0, y0) for y0
=−Sq(q0, q0)=

SQ(q0, q0). On the other hand, by (2-3), we have that L(q + 1)= L(q). Either
L is identically constant which yields a continuum of fixed points for 8, or L is
not constant. In the latter case, L has at least two distinct critical points, namely
a maximizer and minimizer. These yield two distinct critical points of φ. �

See for example [19] for a proof of Theorem 2.6 for general twist maps.
To see Poincaré–Birkhoff’s theorem within a larger context, we interpret it in

the following way: since 0 ∈ (ρ(8−), ρ(8+)), then ϕ has at least two orbits in
the interior of the cylinder that are associated with 0 rotation number, namely
fixed points. In fact an analogous result is true for periodic orbits that is in the
same spirit as Theorem 1.1(iv).

Theorem 2.9 (Birkhoff). Let ϕ : bS1
× [−1, 1] → S1

× [−1, 1], be an area
and orientation preserving C1-diffeomorphism. If r/s ∈ (ρ(8−), ρ(8+)) is a
rational number with r and s coprime, then ϕ has at least two (r, s)-periodic
orbits in the interior of S1

×[−1, 1].

We may wonder whether a similar strategy as in the proof of Theorem 2.6
can be used to prove Theorem 2.9 when ϕ is a monotone area-preserving map.
Indeed if 8 is a monotone twist map, then we can associate with it a variational
principle which is the discrete analog of the principle of least action, as can be
seen in the following proposition.

Proposition 2.10. Let 8 be a monotone twist map with generating function S.
Fix an integer n ≥ 2:

(i) Given q and Q ∈ R, define

L(q1, q2, . . . , qn−1; q, Q)=
n−1∑
j=0

S(q j , q j+1),
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with q0 = q , and qn = Q. Then (q1, q2, . . . , qn−1) is a critical point of
L( · ; q, Q) if and only if there exist p0, p1, . . . , pn such that 8(q j , p j )=

(q j+1, p j+1) for j = 0, 1, 2, . . . , n− 1.

(ii) Given a positive integer r , define

K (q0, q1, . . . , qn−1)= S(qn−1, q0+ r)+
n−2∑
j=0

S(q j , q j+1).

Then (q0, q1, . . . , qn−1) is a critical point of K if and only if there exist
p0, p1, p2, . . . , pn such that8(q j , p j )= (q j+1, p j+1) for j = 0, . . . , n−1,
with qn = q0+ r .

Proof. We only prove (ii) because (i) can be proved by a verbatim argument.
Let (q0, . . . , qn−1) be a critical point and set qn = q0 + r . We also set p j =

−Sq(q j , q j+1). The result follows because if Pj = SQ(q j , q j+1), then

Kq j = p j − Pj−1, 8(q j , p j )= (q j+1, Pj ),

for j = 0, 1, 2, . . . , n− 1. �

As we mentioned earlier, Theorem 2.9 for monotone twist maps can be
established with the aid of Proposition 2.10. See, for example, [14] or [11] for a
reference.

Remark 2.11. Naturally we are led to the following question: Can we find
an orbit of ϕ associated with such ρ ∈ (ρ(8−), ρ(8+))? The answer to this
question is affirmative and this is the subject of the Aubry–Mather theorem. For
any irrational ρ ∈ (ρ(8−), ρ(8+)), There exists an invariant set on the cylinder
that in some sense has the rotation number ρ. This invariant set q-projects onto
either a Cantor-like subset of S1 or the whole S1. The invariant set lies on a
graph of a Lipschitz function defined on S1. These invariant sets are known as
Aubry–Mather sets.

Arnold formulated an influential conjecture that is a vast generalization of
Theorem 2.6 to higher dimensions. Given a Hamiltonian function H :M×R→R

on a closed symplectic manifold (M, ω), we may wonder whether or not the
corresponding Hamiltonian vector field X H = Xω

H has T -periodic orbits for a
given period T . Arnold’s conjecture offers a nontrivial lower bounds on the
number of such periodic orbits. To convince that such a question is natural
and important, let us examine this question when the Hamiltonian function is
time-independent first. We note that for the autonomous X H we can even find
rest points (or constant orbits) and there is a one-one correspondence between
the constant orbits of X H and the critical points of H . We can appeal to the
following classical theories in algebraic topology to obtain sharp universal lower
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bounds on the number of critical points of a smooth function on M where M is
a smooth closed manifold. Let us write Crit(H) for the set of critical points of
H : M→ R:

(i) According to Lusternik–Schnirelmann (LS) theorem,

]Crit(H)≥ c`(M), (2-4)

where c`(M) denotes the cuplength of M .

(ii) According to Morse theory, for a Morse function H ,

]Crit(H)≥
∑

k

βk(M), (2-5)

where βk(M) denotes the k-th Betti’s number of M .

According to Arnold’s conjecture, the analogs of (2-4) and (2-5) should be
true for the nonautonomous Hamiltonian functions provided that we count 1-
periodic orbits of X H in place of constant orbits. For the sake of comparison, we
may regard (2-4) and (2-5) as a lower bound on the number of 0-periodic orbits
when H is 0-periodic in t . In Arnold’s conjecture, we replace 0-periodicity with
1-periodicity. Note that if H is 1-periodic in time, then φH

t+1(x)= φ
H
t (x) for all

t if and only if φH
1 (x)= x . To this end, we define

Fix(H) := {x ∈ M : φH
1 (x)= x} =: Fix(φH

1 ). (2-6)

Arnold’s conjecture. Let (M, ω) be a closed symplectic manifold and let H :
M×[0,∞)→R be a smooth Hamiltonian function that is 1-periodic in the time
variable. Then

] Fix(H)≥ c`(M). (2-7)

Moreover, if ϕ := φH
1 is nondegenerate in the sense that det(dϕ− id)x 6= 0 for

every x ∈ Fix(ϕ), then
] Fix(H)≥

∑
k

βk(M). (2-8)

We now describe a strategy for tackling Arnold’s conjecture under some addi-
tional conditions on M : We may establish the Arnold’s conjecture by studying
the set of critical points of AH : G → R, where 0 is the space of 1-periodic
x : bS1

→ M and

AH (x( · ))=
ˆ
w

ω−

ˆ
S1

H(x(t), t) dt. (2-9)

where w : bD→ M is any extension of x : bS1
→ M to the unit disc D. Note

that the right-hand side of (2-9) would be independent of the extension w if
the symplectic form ω is aspherical i.e.,

´
f (S2)

ω = 0 for every smooth map
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f : bS2
→ M . We may try to apply LS and Morse theory to the functional AH

in order to get lower bounds on ]Fi x(H). Of course we cannot apply either
Morse theorem (2-5) or LS theorem (2-4) to AH directly because 0 is neither
compact nor finite-dimensional. However in the case of a torus or the cotangent
bundle of a torus (namely M = Td

×Rd), we may reduce the dimension to a
finite (possibly very large) number by using generalized generating functions;
see [11] for example. In fact, one can show that φH

t has a type II or III generating
function (as we discussed in Section 1H and 1I) provided that t is sufficiently
small. We then use the group property of the flow to write

ϕ = φH
1 = ψ1 ◦ · · · ◦ψN ,

where each ψi has a generating function. This can be used to build a generalized
generating function for ϕ à la Chaperon [7]. We may establish Arnold’s conjec-
ture with the aid of generalized generating functions in some cases. Arnold’s
conjecture was established by Conley and Zehnder when M = T2d .

Theorem 2.12. Assume that ϕ = φH
1 , for a smooth Hamiltonian function H :

T2d
×R→ R such that H(x, t + 1)= H(x, t) for every (x, t) ∈ T2d

×R. Then
ϕ has at least 2d + 1 fixed points.

We first prove Theorem 2.12, when the map φ has a global generating function.
Before embarking on this, we make some observations and state some definitions.

For our purposes, it is more convenient to think of the Hamiltonian function
as a function H : R2d

×R→ R that is 1-periodic in all the coordinates of (x, t).
(With a slight abuse of notion, this Hamiltonian function is also denoted by H .)
The flow of this Hamiltonian function is denoted by 8H

t : R
2d
→ R2d . Note that

8 :=8H
1 is a lift of ϕ of Theorem 2.12.

Definition 2.13. (i) Let us write H=H(R2d) for the space of C2 Hamiltonian
functions H : R2d

×R→ R. For each a = (b, c) ∈ Rd
×Rd , we define

(τb H)(q, p, t)= H(q + b, p, t),

(ηc H)(q, p, t)= H(q, p+ c, t),

(θa H)(q, p, t)= H(q + b, p+ c, t).

(ii) We write C1 for the set of C1 maps 8 :R2d
→R2d . We set F(8)=8− id ,

where id denotes the identity map. We write S for the set of symplectic
diffeomorphism 8 : R2d

→ R2d and set S̃ = F(S). For a ∈ R2d , the
translation operators θa : R

2d
→ R2d and θa, θ

′
a : cC1

→ C1 are defined by

θa(x)= x + a, θa F = F ◦ θa, θ ′a = F−1
◦ θa ◦F,
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for x ∈ R2d and F ∈ C1. Note that for 8 ∈ C1,

(θ ′a8)(x)= (θ−a ◦8 ◦ θa)(x)=8(x + a)− a.

(iii) Let 8 be a symplectic diffeomorphsim with

8(q, p)= (Q(q, p), P(q, p)).

We say that 8 is exact if for every p ∈ Rd , the map q 7→ Q(q, p) is a
diffeomorphism of Rd . We write q̂(Q, p) for the inverse:

Q(q, p)= Q⇔ q = q̂(Q, p).

We also set P̂(Q, p)= P(q(Q, p), p), and

8̂(Q, p)= (q̂(Q, p), P̂(Q, p)), 8̃(Q, p)= (P̂(Q, p), q̂(Q, p)).

Proposition 2.14. (i) We have F(θ ′a8)= θaF(8), and

φθa H
= θ−a ◦φ

H
◦ θa = θ

′

aφ
H . (2-10)

In particular, if H is 1-periodic, i.e., θn H = H , for all n ∈Z2d , and8=φH
1 ,

then F(8) is also 1-periodic.

(ii) For every exact 8, and a ∈ Rd , we have

θ̂ ′a8= θ
′

a8̂.

In particular, if F(8) is 1-periodic, then so is F(8̂).

(iii) Assume that 8 ∈ S is exact. Then there exists a C2 function W : R2d
→ R

such that 8̃=∇W .

(iv) If F(8) is 1-periodic, withˆ
T2d

F(8)(x) dx = 0,

then
W (Q, p)= Q · p−w(Q, p),

for a function w that is 1-periodic.

Proof. (i) The proof of F(θ ′a8)= θaF(8) is straightforward and is omitted. The
claim (2-10) is an immediate consequence of the fact that if y( · ) is an orbit of
Xθa H , then x( · )= θ−a y( · )= y( · )− a is an orbit of X H .

(ii) Fix a = (b, c) ∈ R2d . Let us define

8a(q, p) := (θ ′a8)(q, p)= (Qa(q, p), Pa(q, p)),

8̂a(Q, p) = (q̂a(Q, p), P̂a(Q, p)).
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We certainly have

Q(q + b, p+ c)− b = Qa(q, p)= Q⇔ q̂a(Q, p)= q,

Q(q + b, p+ c)= Q+ b⇔ q̂(Q+ b, p+ c)= q + b.

Hence q̂a(Q, p)= q̂(Q+ b, p+ c)− b. On the other hand

P̂a(Q, p)= Pa(q̂a(Q, p), p)

= P(q̂a(Q, p)+ b, p+ c)− c

= P(q̂(Q+ b, p+ c), p+ c)− c

= P̂(Q+ b, p+ c)− c,

as desired.

(iii) Since 8 is symplectic, we have

d(P̂ · d Q+ q̂dp)= d(P̂ · d Q+ d(p · q̂)− p · dq̂)

= d(P̂ · d Q− p · dq̂)

= d(P · d Q− p · dq)

= 0.

Hence, there exists a function W =W (Q, p) such that

dW = P̂ · d Q+ q̂ · dp.

As a result, ∇W = 8̃.

(iv) Define

Ĝ := F(8̂), w(Q, p) := Q · p−W (Q, p), ∇̂w := (wp, wQ).

We certainly

(Q, p)+ Ĝ(Q, p)=∇W (Q, p)

= (Wp(Q, p),WQ(Q, p))

= (Q−wp(Q, p), p−wQ(Q, p))

= (Q, p)−∇̂w(Q, p).

In summary, ∇̂w =−G. By (ii) we know that Ĝ is a 1-periodic function. We
wish to show that w is also a 1-periodic function. For this, it suffices to show

ˆ
[0,1]2d

∇̂w(y) dy =−
ˆ
[0,1]2d

Ĝ(y) dy = 0.
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(Here y = (Q, p).) To verify this, observe that if

A := (B,C) :=
ˆ
[0,1]2d

Ĝ(y) dy, B,C ∈ Rd ,

then there exists a C2 periodic function v(Q, p) such that Ĝ− A =−∇̂v, or

P̂(Q, p)= C + p− vQ(Q, p), q̂ = B+ Q− vp(Q, p).

On the other hand, by assumption,

0=
ˆ
[0,1]2d

G(q, p) dq dp

=

ˆ
[0,1]2d

(Q(q, p)− q, P(q, p)− p) dq dp

=

ˆ
[0,1]2d

(Q− q̂(Q, p), P̂(Q, p)− p) det(q̂Q(Q, p)) d Q dp

=

ˆ
[0,1]2d

(vp(Q, p)− B,C − vQ(Q, p)) det(I − vQp(Q, p)) d Q dp

= (−B,C)+
ˆ
[0,1]2d

J∇v(Q, p) det(I − vQp(Q, p)) d Q dp,

where I denotes the (2d)× (2d) identity matrix. We are done if we can showˆ
[0,1]2d

∇v(Q, p) det(I − vQp(Q, p)) d Q dp = 0. (2-11)

The proof of this is left as an exercise. �

Exercise. Verify (2-11).

With the aid of Proposition 2.14, we can establish Theorem 2.12 when 8 (the
lift of ϕ) is exact in the sense of Definition 2.13(iii). The proof can be carried
out in exactly the same way that we proved Theorem 2.6 for monotone twist
maps. To go beyond exact maps, we first express8=81

H as a finite composition
of exact maps and use their generating functions to construct a (generalized)
generating function of type II for 8.

Proposition 2.15. Let 8i , i = 1, . . . , k, be k exact symplectic diffeomorphisms
with generating functions W i (Q, p)=Q·p−wi (Q, p), i=1, . . . , k, respectively.
Let 8=8k ◦ · · · ◦81:

(i) With p0 = p, qk = Q, and ξ = (q1, p1, . . . , qk−1, pk−1), define

W (Q, p; ξ)=
k∑

i=1

W i (qi , pi−1)−

k−1∑
i=1

qi · pi =: Q · p+w(Q, p; ξ).
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Then

Wξ (Q, p; ξ)= 0=⇒8(Wp(Q, p; ξ), p)= (Q,WQ(Q, p; ξ)). (2-12)

In particular, if the full derivative ∇W of W with respect to its arguments
Q, p and ξ vanishes at some point (α, α, ξ), then (α, α) is a fixed point
of 8.

(ii) Given x = (x0, . . . , xk−1), x0 = (q0, p0), . . . , xk−1 = (qk−1, pk−1), define

Ak(x)=
k∑

i=1

W i (qi , pi−1)−

k∑
i=1

qi · pi ,

with x0 = xk = (qk, pk). (In other words, Ak is defined for k-periodic
sequences.) Then any critical point x of Ak yields an orbit 8i (xi−1) =

xi , i = 1, . . . , k. In particular x0 = xk is a fixed point of 8.

Proof. (i) If we write q̂i−1 = W i
p(qi , pi−1), and p̂i = W i

Q(qi , pi−1), then
8i (q̂i−1, pi−1)= (qi , p̂i ). On the other hand, for i = 1, . . . , k− 1,

Wqi (Q, p; ξ)= p̂i − pi , Wpi (Q, p; ξ)= q̂i − qi ,

Wp(Q, p; ξ)=W 1
p(q1, p)= q̂0, WQ(Q, p; ξ)=W k

Q(Q, pk).

From this, we can readily deduce (2-12).

(ii) As in part (i),

Ak
qi
(x)= p̂i − pi , Ak

pi
(x)= q̂i − qi ,

Ak
qk
(x)= p̂k − pk, Ak

p0
(x)= q̂0− q0

for i = 1, . . . , k − 1. Hence at a critical point we have 8i (xi−1) = xi for
i = 1, . . . , k. This completes the proof. �

Remark 2.16. Note that Ak can be written as

Ak(x)=
k∑

i=1

(pi−1 · (qi − qi−1)−w
i (qi , pi−1)),

which is a discrete variant of (1-17).

Proof of Theorem 2.12 (sketch). For some sufficiently large k, we can find exact
symplectic diffeomorphisms 8i , i = 1, . . . , k, such that 8=8k ◦ · · · ◦81. In
Proposition 2.15(ii), we found a one-to-one correspondence between a fixed
point x0 of 8, and a critical point x = (x0, . . . , xk−1) of Ak . Observe that
from Proposition 2.14(iv) we know that w1, . . . , wk are periodic. Let us write
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Ak
=Ak

0−w, where

Ak
0(x)=

k∑
i=1

pi−1 · (qi − qi−1), w(x)=
k∑

i=1

wi (qi , pi−1).

To ease the notation, let us write zi = xi−xi−1= (q ′i , p′i ), and z= (z1, . . . , zk−1).
Since xk = x0, we may rewrite Ak

0 as

Ak
0(x)=

k∑
i=1

(pi−1− p0) · (qi − qi−1)=

k∑
i=1

(p′i−1+ · · ·+ p′1) · q
′

i ,

Ak
0(x)=−

k∑
i=1

(pi − pi−1) · qi =−

k∑
i=1

(pi − pi−1) · (qi − q0)

=−

k∑
i=1

(q ′i + · · ·+ q ′1) · p
′

i .

Using this, we can express Ak
0(x) as 2−1 B z · z, for a matrix B = [Bi j ]

k−1
i, j=1, with

each Bi j a (2d)× (2d) matrix. We may express B as

B =
[

0 C
−D 0

]
,

with both C and D invertible. Hence B is nonsingular. Since for each m ∈ Z2d ,

Ak(x0+m, . . . , xk−1+m)=Ak(x0, . . . , xk−1),

we can write
Ak(x)= 1

2 B z · z+ ŵ(x0, z),

for a bounded C2 function ŵ(x0, z) that is periodic in x0. Let us y= (x0, z), and
B( y) for Ak(x) in these new coordinates. Observe that B : T2d

×R2d(k−1)
→ R

is a bounded perturbation of a nondegenerate quadratic function z 7→ 2−1 B z · z.
We may study the set of critical points of B by analyzing the corresponding
gradient flow ẏ =−∇B( y). Equivalently,

ż = B z+ ŵz(x0, z), ẋ0 = ŵx0(x0, z). (2-13)

If we write ψt( y) for the flow of (2-13), and X for the set y such that the
corresponding orbit (ψt( y) : t ∈ R) is bounded, then X inherits the topology
of T2d . To explain this, observe that X = T2d

×{0}, when ŵ= 0. In general, the
projection map (x0, z) 7→ x0 from X to T2d induces an injective map from the
Cech homology of T2d to the Cech homology of X . This allows us to deduce
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that (2-13) has at least 2d + 1 many constant solution; we refer to [13] for more
details. �

Remark 2.17. (i) The full proof of Theorem 2.12 as we sketched above can
be found in [19]. A similar proof has been used in [13] by studying critical
points of the operator AH of (1-13) directly.

(ii) A variant of Theorems 2.6 and 2.12 can be proved when the periodicity of
8− id is replaced with almost periodicity, or even when 8− id is selected
randomly according to a translation invariant probability measure; see [20;
21] for more details.

Exercises. (i) Let b : R→ R be a positive 1-periodic function and write φt for
the flow of the ODE ẋ = b(x). Find the rotation number of this ODE by
evaluating the following limit:

lim
t→∞

t−1(φt(x)− x).

Also, find a strictly increasing function K : R→ R such that

K ◦φt ◦ K−1,

is a translation.

(ii) Define τab(x) = b(x + a), and write B for the set of uniformly positive
Lipschitz function b : R→ R. Let P be a τ -invariant ergodic probability
measure on B. For each b, write φt(x; b) for the flow of the ODE ẋ = b(x).
Show that P-almost surely, the limit

lim
t→∞

t−1(φt(x; b)− x),

exists for every x . Evaluate this limit.

3. Discrete type Hamilton–Jacobi equation

In Section 2 we learned how the critical points of the action functional yield the
orbits of the corresponding dynamical system. In this chapter we focus on the
critical values of the action functional. We also examine how the stochasticity
can play a role. We may choose the generating function randomly according to
a probability law, or add some noise to the dynamics.

3A. Frenkel–Kontorova model. Imagine that we have a sequence of symplectic
maps (8i : i ∈ N) such that each 8i has a type I generating function Si (q, Q),
so that

8i (q, Si
q(q, Q))= (Q,−Si

Q(q, Q)).
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We may define a dynamical system with orbits (x0, x1, . . . , xn, . . . );

xi+1 =8i+1(xi ) or xn =8n ◦ · · · ◦81(x0).

If 8i =8 is independent of i , then we have an autonomous dynamical system
with xn = 8

n(x0). Under some type of nondegeneracy assumptions on the
generating functions, we may regard our system as a second order dynamical
system in q components. By this we mean that if (xn : n = 0, 1, . . . ) is an orbit
with xi = (qi , pi ), then (qn : n = 0, 1, . . . ) is an orbit of the dynamical system
with the rule qn = Fn(qn−2, qn−1), where Fn is implicitly defined by

Sn−1
Q (qn−2, qn−1)+ Sn

q (qn−1, qn)= 0. (3-1)

Moreover, given q and Q, we can find an orbit (q0, . . . , qn), with q0= q, qn = Q,
if and only if (q1, . . . , qn−1) is a critical point of

Sn(q1, . . . , qn−1; q, Q)=
n∑

i=1

Si (qi−1, qi ).

For the construction of invariant measures, we may consider the following
variation: given a continuous function g : Rd

→ R, consider

Sn(q0, q1, . . . , qn−1; g; Q)= g(q0)+Sn(q1, . . . , qn−1; q0, Q).

Given q and Q, a critical point of Sn(q0, q1, . . . , qn−1; g; Q) yields an orbit
(x0, . . . , xn) of our dynamical system with the properties

p0 =−S1
q(q0, q1)=∇g(q0), pn = Sn

Q(qn−1, Q).

As we mentioned in Section 2, it is more convenient to write Si (q, Q) =
L i (q, Q − q). Because of some of the examples we have in mind, it is quite
natural to assume that

lim inf
|v|→∞

inf
q
|v|−1L i (q, v)=∞. (3-2)

Note that this condition is satisfied for a standard map associated with L(q, v)=
|v|2/2− V (q), for a bounded C1 function V . Assuming (3-2) is valid for each
Si , we define two operators

(Ti g)(Q)= inf
q
(g(q)+ Si (q, Q)), (T̂i g)(q)= sup

Q
(g(Q)− Si (q, Q)), (3-3)

on the space 3 of Lipschitz functions g : Rd
→ R. Note that if S(q, Q) is a

generating function for 8, then S′(q, Q)=−S(Q, q) is a generating function
for 8−1. We will see later that Ti g ∈3 when g ∈3. Observe

un(Q) := (Tn ◦ · · · ◦ T1)(g)(Q)= inf
q0,...,qn−1

(g(q0)+Sn(q1, . . . , qn−1; q0, Q)).
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We regard
un = Tn(un−1), u0 = g,

as a discrete variant of the (time inhomogeneous) HJE, where g is the initial
data. Similarly,

u−n = T̂n(u1−n), û0 = g,

is a discrete HJE with final condition u0 = g. In particular, when Si
= S is

independent of i , we simply have un = T n(g), and un = T̂ n(g), where

u(Q) := (T g)(Q)= inf
q
(g(q)+ S(q, Q)),

û(q) := (T̂ g)(q)= sup
Q
(g(Q)− S(q, Q)).

(3-4)

If we assume that L(q, v)= S(q, q + v) has a superlinear growth at infinity,
then the inf in (3-4) can be replace with min.

Assumption 3.1. There exists constants c0, c1 and δ > 0, α > 1 such that

inf
q

L(q, v)≥ δ|v|α − c0, sup
q

L(q, 0)≤ c1,

sup
q

sup
|v|≤`

|L(q + z, v)− L(q, v)| ≤ c2(`)|z|.
(3-5)

Proposition 3.2. Assume that (3-5) holds and that |g(q ′)− g(q)| ≤ `|q ′−q| for
all q, q ′. Then

(T g)(Q)= min
q:|Q−q|≤`′

(g(q)+ S(q, Q)), (3-6)

|u(Q′)− u(Q)| ≤ `′′|Q′− Q|, (3-7)

for `′ = c0+ c1+ (δ
−1(`+ 1))1/(α−1) and `′′ = `+ c2(`

′).

Proof. Observe

g(q)+ S(q, Q)≥ g(Q)− `|Q− q| + δ|Q− q|α − c0.

Hence
g(Q)+ S(Q, Q)≤ g(q)+ S(q, Q),

if c0 + c1 ≤ δ|v|
α
− `|v|, for v = Q − q. Then note that δ|v|α − `|v| ≥ |v| if

|v| ≥ (δ−1(`+ 1))1/(α−1). This implies (3-6).
If u(Q) = g(q) + L(q, Q − q) for some Q with |Q − q| ≤ `′, then for

q ′ = q + Q′− Q,

u(Q′)≤ g(q ′)+ L(q ′, Q− q)

≤ g(q)+ L(q, Q− q)+ `|Q′− Q| + c2(`
′)|Q′− Q|

= u(Q)+ (`+ c2(`
′))|Q′− Q|,

which proves (3-7). �
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We now describe some plausible applications of the operators T and T̂ for
finding invariant sets for the dynamical system associated with the transformation
8. Recall that by Proposition 3.2, for each Q, there exists a point q such that

u(Q) := (T g)(Q)= g(q)+ S(q, Q).

Let us write q = q(Q) for a minimizer in (3-4), which could be multivalued. If
g is differentiable at q, then we have ∇g(q)+ Sq(q, Q) = 0, and if we write
A(q, Q)= g(q)+ S(q, Q), then Aq(q, Q)= 0 when q = q(Q). For now let us
assume that the function q( · ) is single-valued and differentiable at Q. Under
such assumptions, u is differentiable at Q, and

∇u(Q)= Aq(q, Q)∇q(Q)+ AQ(q, Q)= SQ(q, Q).

As a result,
8(q, g(q))= (Q,∇u(Q)). (3-8)

This suggests that if U solves the discrete Hamilton–Jacobi equation T (U )=
U + c for a constant c (or equivalently ∇T (U ) = ∇U at any differentiability
point of U ), then the set

Gr(U )= {(q,∇U (q)) :U differentiable at q},

may serve as an invariant set for 8. We will discuss the relevance of the equation
T (U )=U+c and T̂ (U )=U+c′ to the question of homogenization in Section 5.

3B. Type II generating function. If we consider a symplectic map with a type II
generating function W (Q, p)= Q · p−w(Q, p), then a candidate for the action
is

A(q, p; Q)= A(x; Q)= g(q)+W (Q, p)−q · p= g(q)+(Q−q)· p−w(Q, p).

Let us assume that both g and w are differentiable functions. Given Q, at any
critical point x = (q, p) of A we have

0= Aq(q, p; Q)=∇g(q)− p, 0= Ap(q, p; Q)=Wp(Q, p)− q.

Imagine that we can find a function x( · ) such that Ax(x(Q); Q) = 0. If the
function x( · ) is differentiable at some α, then u(Q) := A(x(Q); Q) is also
differentiable at α, and

∇u(α)= Ax(x(α);α)(∇x)(α)+WQ(Q, α)=WQ(α, α),

where x(α)= (α, α). From this and8(Wp(α, α), α)= (α,WQ(α, α))we deduce

8(α,∇g(α))= (α,∇u(α)).
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In the case of type I generating function, we simply take the minimum of the
action when L is bounded below (see (3-4)). This is no longer the case for type II
generating function. For example if 8 is a lift of a symplectic map on the torus,
then w is periodic and A is a periodic perturbation of the quadratic function
A0(x; Q);= (Q− q) · p. Since 0, the only critical point of A0 is a saddle point,
the best we can hope for is that given Q, the function A( · ; Q) has a saddle point
which is of the same type as the type 0 is for A0( · ; Q). Now imagine that we
come up with a universal way of selecting a critical value of A no matter what g
is. This critical value yields an operator

V(g)(Q)= A(x(Q); Q),

where x(Q) is our selected critical point. A solution to the equation V(U )=U+c,
for a constant c, may be used to construct invariant sets of the map 8.

More generally, assume that 8=8k ◦ · · · ◦81 and each 8i has a generating
function W i (qi , pi−1) = qi · pi−1 −w

i (qi , pi−1). Then 8 has a (generalized)
generating function of the form

W (qk, p0; ξ)=W (qk, p0; q1, p1, . . . , qk−1, pk−1)

= q1 · p0+

k∑
i=2

pi−1 · (qi − qi−1)−

k∑
i=1

wi (pi−1, qi ).

Recall that by (2-12),

Wξ (qk, p0; ξ)= 0=⇒8(Wp0(qk, p0; ξ), p0)= (qk,Wqk (qk, p0; ξ))

Given an initial data g, we set

A(ξ ′; qk)= A(q1, p1, . . . , qk−1, pk−1; qk)

= g(q0)− p0 · q0+W (qk, p0; ξ)

= g(q0)+

k∑
i=1

(pi−1 · (qi − qi−1)−w
i (pi−1, qi )),

where ξ ′ = (q0, p0, ξ). To study the orbits of the map 8, we may search for
a function ξ ′(qk) such that Aξ ′(ξ ′(qk); qk) = 0 for every qk . Setting uk(qk) =

A(qk; ξ
′(qk)), we have

p0 =∇g(q0), 8(q0, p0)= (qk,∇uk(qk)),

provided that g is differentiable at q0, and ξ ′ is differentiable at qk . In Section 4,
we will address the question of selecting the critical point ξ ′.
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3C. Gibbs measures. There is a viscous variant of the discrete HJE that is related
to the orbits (or rather realizations) of a Markov chain. Given S : M ×M→ R,
recall the action function Sn of Section 3A Instead of minimizing Sn , we define
a probability measure on Mn−1 that favors states qn

= (q1, . . . , qn−1) of lower
energy Sn . This measure depends on a positive parameter β > 0 that represents
the inverse temperature. More precisely, we define a Gibbs measure Pn( · ) =

Pn( · ; q, Q;β) on Mn−1 as

P(dqn)= Zn(q, Q)−1 exp(−βSn(qn
; q, Q))

n−1∏
i=1

ν(dqi ),

where ν(dq) is a finite reference measure (for example a volume form associated
with a metric when M is a Riemannian manifold), and Z is the normalizing
constant:

Zn(q, Q)=
ˆ

Mn−1
exp(−βSn(qn

; q, Q))
n−1∏
i=1

ν(dqi ).

This constant is finite if for example

sup
a,b∈M

ˆ
M

exp(−βSi (a, q)−βSi+1(q, b)) ν(dq) <∞

for every i . For simplicity, let us assume that Si
= S for all i . Now, if we attempt

to normalize our measure inductively, we need to calculate

Z(qn−2, Q) :=
ˆ

M
exp(−βS(qn−2, qn−1)−βS(qn−1, Q)) ν(dqn−1),

which depends on qn−2. Dividing the integrand by Z(qn−2, Q) would alter S.
To avoid this, observe that if we replace S(q, Q) with S(q, Q)+ u(Q)− u(q),
then the corresponding Gibbs measure would not be affected (it only changes
the normalizing constant). Motivated by this, we define

Rβ(h)(g)(Q)=
ˆ

M
e−βS(q,Q)h(Q) ν(d Q),

R∗β(h)(g)(Q)=
ˆ

M
e−βS(q,Q)h(q) ν(dq).

The operator R∗β is the adjoint of Rβ with respect to the inner product

〈h, k〉 =
ˆ

M
hk dν.
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The celebrated Krein–Rutman theorem (an infinite-dimensional generalization of
Perron–Frobenius theorem) offers a way of modifying S so that we can normalize
our measure inductively.

For simplicity, let us assume that M is a compact metric space.

Theorem 3.3. The largest eigenvalue λ′β = eβλβ of Rβ is positive and λ′β satisfies
λ′β ≥ |λ

′
| for any other eigenvalue λ′. Moreover λ′β is simple, and there exist

functions uβ, u∗β : M→ R such that

Rβ(eβuβ )= eβλβeβuβ , R∗β(e
−βu∗β )= eβλβe−βu∗β .

See, for example, [16] for a proof of Theorem 3.3 and the Krein–Rutman
theorem. Motivated by Theorem 3.3, we set

Ŝ(q, Q) := S(q, Q)− (uβ(Q)− uβ(q))+ λβ,

p(q, d Q) := p(q, Q) ν(d Q) := exp(−β Ŝ(q, Q)) ν(d Q).

By Theorem 3.3, the kernel p(q, d Q) is a probability measure for each q . Using
this kernel, we may define a Markov chain q = (q0, q1, . . . , qn, . . . ) such that

Pq(qn ∈ A | q0, . . . , qn−1)=

ˆ
A

p(qn−1, dqn), q0 = q,

for every measurable set A ⊆ M . Here Pq is a probability measure on the set of
sequences q with q0 = q. Hence

Pq(q1 ∈ A1, . . . , qn ∈ An)=

ˆ
A1

· · ·

ˆ
An

n∏
i=1

p(qi−1, dqi )

=

ˆ
A1

· · ·

ˆ
An

exp
(
−

n∑
i=1

β Ŝ(qi−1, qi )

) n∏
i=1

ν(dqi ).

Writing P
q
n(dq1, . . . , dqn) for the n-dimensional marginal of Pq , we deduce

Pn(dq1, . . . , dqn−1; q, Q)= Pq
n(dq1, . . . , dqn | qn = Q).

Also, if we define
T̂β(g)= β−1 logRβ(eβg),

then
un = T̂β(un−1),

is a discrete analog of viscous HJE. Note that we always have T̂β(g)≤ T̂ (g). In
fact

lim
β→∞

T̂β(g)= T̂ (g),
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if for example ν(U ) > 0 for every nonempty open subset U of M : If

Uδ(q)= {Q ∈ M : g(Q)− S(q, Q)≥ T̂ (q)− δ},

for q ∈ M , and δ > 0, then Uδ(q) is a nonempty open set, and

T̂β(g)(q)≥ T̂ (g)(q)− δ+β−1 log ν(Uδ(q))→ T̂ (g)(q)− δ,

as β→∞.
In the same vein, we set

Tβ(g)=−β−1 logR∗β(e
−βg),

so that
u−n = Tβ(u1−n),

is a discrete analog of backward viscous HJE. Also

lim
β→∞

Tβ(g)= T (g). (3-9)

We note
T̂ (uβ)= uβ + λβ, T (u∗β)= u∗β − λβ,

which is the analog of (3-7). Moreover, the eigenfunctions eβuβ , and e−βu∗β , can
be used to find an invariant measure for our Markov chain. For this, observe that
if we look for an invariant measure of the form dµ= Z−1eh dν, the function h
must satisfy

eh(Q)
=

ˆ
eh(q) p(q, Q) ν(dq)= eβ(uβ (Q)−λβ )R∗β(e

h−βuβ )(Q),

which holds, if we choose h so that eh−βuβ = e−βu∗β . Hence for an invariant
measure, we may choose a measure of the form

µ(dq)= Z−1eβ(uβ−u∗β )(q) dq,

where Z is the normalizing constant.
As (3-9) indicates, the zero-temperature limit of our Gibbs measure P is

associated with the Frenkel–Kontorova model of Section 3A. We refer to Anan-
tharaman [1] for some deep results regarding the type of limiting measure we
obtain as β→∞.

4. Variational and viscosity solutions

In Section 1H we learned that critical points of the action functional AH are
the orbits of the Hamiltonian ODE associated with the Hamiltonian function H .
This was used in Section 2 to prove the existence of periodic orbits. We also
argued that the critical values of AH yield solutions to HJE associated with the
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Hamiltonian function H . Though our derivations of the HJEs (1-18) and (1-19)
were rather formal. For example, the derivation of (1-18), requires the existence a
global C1 generating function which is hardly the case. In this section, we focus
on the HJE and try to figure out how generalized solutions can be constructed.
Insisting on constructing a solution as a critical value of the action AH would
lead to the notion of variational solutions to HJEs. However, HJE also appears
as a model of stochastic growth. Statistical mechanical considerations suggest
an alternative strategy for constructing solutions: We may add a small viscous
term to the HJE to guarantee the existence of a global solution, and then send the
viscosity to 0. This yields the notion of viscosity solutions. Surprisingly viscosity
solutions may differ from variational solutions when the Hamiltonian function is
not convex in the momentum variables. As we saw in Sections 1E–1F, solutions
to HJE may be used to construct invariant measures for the corresponding
Hamiltonian ODE. This has been the case for Tonelli Hamiltonians. For such
Hamiltonians viscosity solutions coincide with variational solutions. One may
hope to use variational solutions to come up with an analog of weak KAM
theory for nonconvex Hamiltonian. Viterbo’s work [31] settles the question of
homogenization for such Hamiltonian functions.

4A. Variational solutions. Let 8 : R2d
→ R2d be a symplectic map with a

generating function W (Q, p)= Q · p−w(Q, p). In Section 3B we learned that
if g is a C1 function, and

A(q0, p0, . . . , qn−1, pn−1; qn; g)= g(q0)+

k∑
i=1

(pi−1 ·(qi−qi−1)−w(qi , pi−1)),

then a critical point of A yields an orbit xi = (qi , pi ) = 8
i (x0), i = 1, . . . , n,

with x0 = (q0, p0), and p0 =∇g(q0). Motivated by this, let us define

Wn(x0)=

n∑
i=1

(pi−1 · (qi − qi−1)−w(qi , pi−1)),

where xi =8
i (x0) for i = 1, . . . , n. In other words, Wn(x0) denotes the action

at time n of an orbit that starts from x0. We then set

Fn(g)= {(Q, g(q)+Wn(q,∇g(q))) : q ∈ Rd ,8n(q,∇g(q))

= (Q, P) for some P ∈ Rd
}.

We may extend the definition of Fn to Lipschitz g. Recall that 3 denotes the set
of Lipschitz functions g : Rd

→ R.
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Definition 4.1. (i) Given g ∈3, we write ∂̂g(q) for the set of vectors p such
that there exists a sequence qk for which the following conditions hold:

∇g(qk) exists and q = lim
k→∞

qk, p = lim
k→∞
∇g(qk).

The convex hull of the set ∂̂g(q) is denoted by ∂g(q).

(ii) Given g ∈3, we set

Fn(g)={(qn,g(q0)+Wn(q0, p0)) :q0∈Rd , p0∈∂g(q0),8
n(q0, p0)= (qn, pn)}.

(iii) By a variational solution associated with 8, we mean a collection of opera-
tors Vn = Vwn : L→3, n ∈ N with the following properties:
• Vn(g+ c)= Vn(g)+ c for each n and every constant c ∈ R.
• For g, g′ ∈3 with g ≤ g′, we have Vn(g)≤ Vn(g′).
• For every g ∈3, and n ∈ N,

{(q,Vn(g)(q)) : q ∈ Rd
} ⊆ Fn(g).

In the same fashion, variational solutions of the HJE (1-10) are defined. For
this, let us assume that H :R2d

→R is a C2 Hamiltonian function such that D2 H
is uniformly bounded. For this H , the corresponding flow 8H is well-defined.
Recall that for γ : [0, t] → R2d , with γ (s)= (q(s), p(s)), the action is defined
by

At(γ )=AH
t (γ )=

ˆ t

0
[p · q̇ − H(γ )] ds.

Definition 4.2. (i) We set φH
[0,t](a) for the restriction of the flow φH

s (a) to
the interval [0, t]. Given a ∈ R2d , we define

AH
t (a)=AH

t (φ
H
[0,t](a)).

(ii) Given a Lipschitz function g, we set

Ft(g)

={(q(t),g(q0)+AH
t (q0, p0)) : q0 ∈Rd , p0 ∈ ∂g(q0),φ

H
t (q0, p0)= (q(t), p(t))}.

(iii) By a variational solution of (1-10), we mean a collection of operators
Vt = VH

t : L→3, t ∈ [0,∞) with the following properties:
• V0 is identity, and Vt(g+ c)= Vt(g)+ c for each t and every constant

c ∈ R.
• For g, g′ ∈3 with g ≤ g′, we have Vt(g)≤ Vt(g′).
• For every g ∈3, and t ∈ [0,∞),

{(q,Vt(g)(q)) : q ∈ Rd
} ⊆ Ft(g).
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When H is independent of q , then

φH
t (q, p)= (q + t∇H(p), p), AH

t (q, p)= t (p · ∇H(p)− H(p)).

As a result, Ft can simply be described as

Ft(g)={(q+t∇H(p), g(q)+t (p·∇H(p)−H(p))) :q ∈Rd , p∈∂g(q)}

= {(Q, g(q)+ p · (Q− q)− t H(p))

: Q ∈ Rd , Q− q = t∇H(p), p ∈ ∂g(q)}

= {(Q, At(x; Q; g)) : Q ∈ Rd , 0 ∈ ∂x At(x; Q; g)}, (4-1)

where At(q, p; Q; g)= At(x; Q; g)= g(q)+ p · (Q− q)− t H(p).
Before examining some examples in dimension one, we define a type of

discontinuity of uq that will be relevant as we compare variational solutions with
viscosity solutions.

Definition 4.3. Let H : R→ R be a continuous function. We say that a pair of
momenta (p−, p+) satisfies the Oleinik condition with respect to H , if either
p− > p+, and the graph of the restriction of H to [p+, p−] is above the chord
connecting (p−, H(p−)) to (p+, H(p+)), or p− < p+, and the graph of the
restriction of H to [p−, p+] is below the chord connecting (p−, H(p−)) to
(p+, H(p+)).

Example 4.4. Assume d = 1 and the Hamiltonian function H is independent of
q , and that the initial condition is given by g(q)= p−q11(q ≤ 0)+ p+q11(q ≥ 0).
Set

α(p−, p+) :=
H(p+)− H(p−)

p+− p−
, v± := H ′(p±).

As we will see in this example,

u(q, t)= (p−q − t H(p−))1(q ≤ tα)+ (p+q − t H(p+))1(q ≥ tα), (4-2)

provided that (p−, p+) satisfies the Oleinik condition with respect to H . The
solution (4-2) is an example of a shock wave. Our expression for the shock
speed α is the celebrated Rankine–Hugoniot formula. On the other hand, if H is
concave, then the initial condition g results in solution that is an example of a
rarefaction wave. The details of our claims follow.

Set K (p)= pH ′(p)− H(p). Recall

Ft(g)= {(q + t H ′(p), g(q)+ t K (p)) : q ∈ R, p ∈ ∂g(q)}.
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For example, if with p− > p+, then Ft(g)= F−t ∪F0
t ∪F

+
t , where

F−t = {(q + t H ′(p−), p−q + t K (p−)) : q ≤ 0}

= {(q, p−q − t H(p−)) : q ≤ tv−},

F+t = {(q + t H ′(p+), p+q + t K (p+)) : q ≥ 0}

= {(q, p+q − t H(p+)) : q ≥ tv+},

F0
t = {(t H ′(p), t K (p)) : p ∈ [p+, p−]}.

Note
F±t = tF±1 =: tF

±, F0
t = tF0

1 =: tF
0.

Hence we only need to determine F · = F ·1. To analyze F · further, we examine
several cases:

(i) Assume that H is strictly convex, or equivalently H ′ is increasing. We then
set L = K ◦ (H ′)−1, which is simply the Legendre transform of H . Moreover
v− > v+, and

F0
= {(v, L(v)) : v ∈ [v+, v−]}.

Note that F± are lines that intersect at the point (α, α) where α= p±α−H(p±).
Clearly the only continuous function u( · ) such that the graph of u is a subset of
F(g) is

u(q)= (p−q − H(p−))1(q ≤ α)+ (p+q − H(p+))1(q ≥ α).

This yields the solution u(q, 1) = u(q) when t = 1. For general t we simply
have (4-2). Observe that g = min{g−, g+}, with g±(q) = qp±, and Vt(g) =
min{Vt(g−), (g+)}. This strong form of monotonicity is true for any pair of
initial data g±, and is a consequence of the convexity of H .

(ii) If H is strictly concave, then H ′ is decreasing. As before, we set L =
K ◦ (H ′)−1, which is now concave. It may be defined by

L(v)= min
p∈[p+,p−]

(vp− H(p)).

Moreover, v− < v+, and

F0
= {(v, L(v)) : v ∈ [v−, v+]}.

In fact Ft(g) is the graph of a function û( · , t) that is given by

u(q, t)= (p−q − t H(p−))1(q ≤ tv−)+ (p+q − t H(p+))1(q ≥ tv+)

+t L(q)1(tv− ≤ q ≤ tv+).

What we have is an example of a rarefaction wave.
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(iii) We now relax the convexity assumption of part (i) to the Oleinik condition.
More precisely, we assume that the graph of H : [p+, p−] → R lies below the
chord connecting (p+, H(p+)) to (p−, H(p−)). We claim that under Oleinik
condition, the only possible u with its graph subset of F1(g)= F(g), is given
by (4-2). For this, it suffices to show that no point of F0 can reach the set below
the graph of u. Indeed by Oleinik condition

H(p)− H(p+)
p− p+

≤ α =
H(p+)− H(p−)

p+− p−
≤

H(p−)− H(p)
p−− p

,

for every p ∈ [p+, p−]. Hence

α ≤ q =⇒
H(p)− H(p+)

p− p+
≤ q =⇒ p+q − H(p+)≤ pq − H(p),

α ≥ q =⇒
H(p−)− H(p)

p−− p
≥ q =⇒ p−q − H(p−)≤ pq − H(p).

As a result, we must have

u(q)≤ min
p∈[p+,p−]

(pq − H(p)),

for every q. This means that the set F0 lies above the graph of u. On the other
hand, if for some point (H ′(p), pH ′(p)−H(p)) lies on the graph of û for some
p ∈ [p+, p−], then either

α ≤ q = H ′(p)=
H(p)− H(p+)

p− p+
or α ≥ q = H ′(p)=

H(p−)− H(p)
p−− p

.

By Oleinik condition, we must have α = q , which implies that the only possible
intersection point between the graph of u and F0 is the corner point of the graph
of u. This completes the proof of our claim.

(iv) Assume that H(p+)= H(p−)= H ′(p−)= 0, H ′(p+) < 0, and H(p) < 0
for every p ∈ (p+, p−). We also assume that there exists p0 ∈ (p+, p−), such
that H is convex in [p+, p0], and that H is concave in the interval [p0, p−].
Clearly the Oleinik condition is satisfied. We note that F− ends at the origin,
F+ passes through the origin, and F0 has two concave and convex pieces that
are tangent to F− and F+ respectively. The shock location is the origin, and
u(q, t)= g(q) for all t ≥ 0.

As Example 4.4 indicates, we may have a simple formula for the variational
solution when H is convex in momentum variable. Note that the action can be
expressed in terms of the Lagrangian because when ẋ = J∇H(x) for x = (q, p),
then

p · q̇ − H(q, p)= L(q, q̇).
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In fact in this case the variational solution is given by the Lax–Oleinik formula;
see [27; 28] for reference.

Theorem 4.5. For a Tonelli Hamiltonian function H , we have

VH
t (g)(Q)= inf{g(q(0))+

ˆ t

0
L(q, q̇) ds : q( · ) ∈ C1

[0, t], q(t)= Q}. (4-3)

In particular if H is convex and independent of q , we may use (4-3) and (4-1)
to write

VH
t (g)(Q)= inf

q

(
g(q)− t L

(
Q− q

t

))
= inf

q
sup

p
(g(q)+ p · (Q− q)− t H(p))

= inf
q

sup
p

At(q, p; Q; g). (4-4)

This formula is not surprising; after all we are looking for a critical value of
At( · ; Q; g), which is a concave function in p. So it is natural to try a simple
minimax critical value that happens to be finite when H is convex.

In fact if we set t = 1, then the role of q and p are of the same flavor. Because
of this, we may wonder whether or not we have a simple formula for a variational
solution when, for example g is concave. This is indeed the case as the following
result confirms; see for example [27].

Theorem 4.6. Assume that H is independent of q and has a superlinear growth
as |p| →∞, and g is Lipschitz and concave. Then

VH
t (g)(Q)= inf

p
sup

q
(g(q)+ p · (Q− q)− t H(p)). (4-5)

The identity (4-5) is known as Hopf’s formula and can be rewritten as

VH
t (g)(Q)= inf

p
(p · Q− g†(p)− t H(p))= (g + t H)†(Q), (4-6)

where we have used † for the Legendre transform:

g†(p)= inf
q
(p · q − g(q)).

Note that (g+ t H)† is always well-defined and concave, even when H is not
concave. If g is convex instead, then (4-5) and (4-6) change to

VH
t (g)(Q)= sup

p
inf
q
(g(q)+ p · (Q− q)− t H(p))= (g∗+ t H)∗(Q), (4-7)

where we have used ∗ for the other Legendre transform:

g∗(p)= sup
q
(p · q − g(q)).
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Example 4.7. (i) If the graph of H over [p+, p−] consists of a collection of
concave and convex pieces, then the set F0 is a union of the graphs of the
Legendre transforms of such pieces. However, when g(q) = min{p−q, p+q}
with p+ < p−, then g is concave, and the corresponding function u depends
only the concave hull of the restriction of H to [p+, p−]. Indeed from (4-6),
and the elementary fact that g†(p)=−∞1(p /∈ [p+, p−]), we deduce

u(q, 1)= u(q)= min
p∈[p+,p−]

(pq − H(p))= min
p∈[p+,p−]

(pq − Ĥ(p)),

where Ĥ denotes the concave hull of the restriction of H to [p+, p−]. Note that
the graph of H is below the chord connecting (p+, H(p+)) to (p−, H(p−)), if
and only if the concave hull of the restriction of H to [p+, p−] is this cord. If
this is the case, then the Oleinik condition is satisfied, and we have a shock.The
solution is simply given by

u(q)= min
p∈[p+,p−]

(pq − H(p))=min{p−q − H(p−), p+q − H(p+)},

as in (4-2). In general the graph of u can have pieces that lie on F0. In order to
have a feel for how complex u could be, imagine that there are points p1, p2, p3

with p+ < p1 < p2 < p3 < p− such that Ĥ = H in the set [p1, p2] ∪ [p3, p−],
and Ĥ 6= H in its complement. Then the graph of u would have two pieces of
F0 associated with the intervals [p1, p2] and [p3, p−]. More precisely we may
express the graph of u as F1 ∪ F2 ∪ F3 ∪ F4, where F1 = F−, F4 ⊂ F+, and

F2 = {(H ′(p), K (p)) : p ∈ [p3, p−]}, F3 = {(H ′(p), K (p)) : p ∈ [p1, p2]},

where K (p) = pH ′(p)− H(p). The momentum u′ = uq consists of two rar-
efaction waves associated with F2 and F3 that are separated by a shock. The
rarefaction F3 is separated from F4 by a shock.

(ii) Let us now assume that p− < p+. Then g is convex and we may apply (4-7)
to assert

u(Q, 1)= u(Q)= max
p∈[p−,p+]

(pQ− H(p))= max
p∈[p−,p+]

(pQ− H̃(p)),

where H̃ denotes the convex hull of H . In particular if the graph of the restriction
of H to [p−, p+] is above the chord connecting (p−, H(p−)) to (p+, H(p+)),
then H(p±)= H̃(p±), and

u(q, t)=max{qp+− H(p+), qp−− H(p−)}.

In other words, the Oleinik condition is satisfied and we have a shock disconti-
nuity.
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4B. Viscosity solutions. We start with the definition of upper and lower deriva-
tives:

Definition 4.8. Given a function u : Rk
→ R, we write ∂u(z) for the set of

vectors a ∈ Rk such that

lim sup
h→0

|h|−1(u(z+ h)− u(z)− a · h)≤ 0.

Equivalently, a ∈ ∂u(z) if and only if there exists a C1 function ϕ :Rk
→R such

that ϕ(a)= u(a), ∇ϕ(z)= a, and u ≤ ϕ. Similarly, a ∈ ∂u(z) if and only if

lim inf
h→0
|h|−1(u(z+ h)− u(z)− a · h)≥ 0.

Equivalently, a ∈ ∂u(z) if and only if there exists a C1 function ϕ :Rk
→R such

that ϕ(a)= u(a), ∇ϕ(z)= a, and u ≥ ϕ.

Remark 4.9. (i) Assume that u : Rk
→ R is continuous and there exists a C1

surface 0 of codimension one such that u is C1 on Rk
\0. Near 0, we write u±

for the restriction of u on each side of 0. We assume that u± are C1 functions
up to the boundary points on 0. Pick a point on 0. We wish to determine ∂u(a)
in terms of ∇u±(a). Assume that v ∈ ∂u(a) 6= ∅. Let us write Ta0 for the
tangent fiber at a to 0, Pa for the orthogonal projection onto Ta0, and νa for the
unit normal vector at a that points from −-side (on which u− is defined) to the
+-side (on which u+ is defined). First take a smooth path γ : (−δ, δ)→ 0 with
γ (0)= a, γ̇ (0)= τ . Using v ∈ ∂u(a), and(

d
dt

u ◦ γ
)
(0)=∇u±(a) · τ,

we deduce that ∇u±(a) ·τ ≤ v ·τ . This also being also true for −τ ∈ Ta0 implies
that ∇u±(a) · τ = v · τ . Hence ∇u+(a)−∇u−(a) is orthogonal to Ta0. This is
not surprising and follows from the continuity of u; since u+ = u− on 0, the
τ -directional derivative of u+ and u− coincide whenever τ ∈ Ta0. Now if we
vary a in the direction of νa or −νa , we deduce

∇u+(a) · νa ≤ v · νa, ∇u−(a) · (−νa)≤ v · (−νa).

Equivalently,
∇u+(a) · νa ≤ v · νa ≤ ∇u−(a) · νa.

Hence, if ∂u(a) 6=∅, then Pa∇u+(a)= Pa∇u−(a), ∇u+(a) · νa ≤∇u−(a) · νa ,
and

∂u(a)= {Pa∇u±(a)+ rνa : r ∈ [∇u+(a) · νa,∇u−(a) · νa]}.
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Likewise, if ∂u(a) 6=∅, then Pa∇u+(a)= Pa∇u−(a), ∇u+(a)·νa≥∇u−(a)·νa ,
and

∂u(a)= {Pa∇u±(a)+ rνa : r ∈ [∇u−(a) · νa,∇u+(a) · νa]}.

In summary, we always have Pa∇u+(a)= Pa∇u−(a), and there are three possi-
bilities:

∇u+(a) · ν =∇u−(a) · ν =⇒ ∂u(a)= ∂u(a)= {∇u±(a)},

∇u+(a) · ν < ∇u−(a) · ν =⇒ ∂u(a) 6=∅, ∂u(a)=∅,

∇u+(a) · ν > ∇u−(a) · ν =⇒ ∂u(a)=∅, ∂u(a) 6=∅.

(ii) Let u : Rk
→ R be a Lipschitz function. Even though the function u is

differentiable at almost all points, it is plausible that ∂u(a)∪ ∂u(a)=∅ at some
point a ∈ Rk (as an example, consider u(x1, x2) = |x1| − |x2|, and a = (0, 0)).
This would not be the case if u is semiconvex/concave. First observe that if for
example u is convex, then

∂u(a)= {p ∈ Rk
: u(z)− u(a)− p · (z− a)≥ 0 for all z ∈ Rk

},

which is always nonempty. We say a function u is semiconvex, if w(z) =
u(z)+ `|z|2 is convex for some `≥ 0. For such a function

∂u(a)= {p− 2`a : p ∈ ∂w(a)},

which is also nonempty. In fact one can show that for a semiconvex function,
we always have

∂u(a)= ∂u(a),

where ∂u was defined in Definition 4.1(i); see, for example, Cannarsa and
Sinestrari [6] for a proof.

(iii) We can always approximate any Lipschitz function u : Rk
→ R by semicon-

vex/concave functions. For example, given δ > 0, set

uδ(z)= sup
y
(u(y)− δ−1

|z− y|2).

Then one can show that uδ is always semiconvex, and

u(z)≤ uδ(z)≤ u(z)+ sup
r>0
(`r − δ−1r2)= u(z)+ 4−1`2δ,

where ` is the Lipschitz constant of u. On the other hand if the supremum is
achieved at yδ(z), then for p = 2δ−1(yδ(z)− z), we have

p ∈ ∂̂uδ(z)⊆ ∂uδ(z), p ∈ ∂u(yδ(z)).
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We must have |p| ≤ ` because for every a with |a| = 1, and y = yδ(z),

−`≤ δ−1(u(y+ δa)− u(y))≤ p · a.

In particular, |yδ(z)− z| = O(δ), which means that near each z, we can find y
such that ∂u(y) 6= ∅. In fact, it is well-known that there exists a one-to-one
correspondence between the set of all maximizers yδ(z), and the set ∂̂uδ(z); see,
for example, [6]. As a result,⋃

z

∂̂uδ(z)⊆
⋃

y

∂u(y).

Definition 4.10. We say a uniformly continuous function u : Rd
× [0,∞)→

R is a viscosity solution of (1-10) if every (p, r) ∈ ∂u(q, t), t > 0 satisfies
r + H(q, p)≤ 0, and every (p, r) ∈ ∂u(q, t), t > 0 satisfies r + H(q, p)≥ 0.

Remark 4.11. (i) The theory of viscosity solutions offers a satisfactory notion
of solution for (1-10) for two major reasons:

• Under some natural and mild conditions on H , and for a given Lipschitz
function g : Rd

→ R, there exists a unique viscosity solution to (1-10)
that satisfies the initial condition g(q)= u(q, 0). This allows us to define
an operator SH

t g(q) := u(q, t) that enjoys the semigroup property SH
t+s =

SH
t ◦ SH

s ; see [8] for the proof of uniqueness. Later in Section 4E, we use
game theory to construct viscosity solutions.

• Many stochastic interfaces in statistical mechanics can be described macro-
scopically by viscosity solutions of suitable HJEs; see for example [25; 22].

(ii) When H is convex in the momentum variable, then any semiconcave weak
solution is also a viscosity solution. Simply because ∂u(z) is the convex hull of
∂̂u(z), and the set

A(q) := {(p, r) : r + H(q, p)≤ 0},

is convex.

Exercise. Assume that d = 1 and u is a (continuous) viscosity solution of (1-10).
Let U be an open set in R× (0,∞) and assume that u is C1 in U \0, where

0 = {(a(t), t)) : t ∈ (t0, t1)} ⊂U,

with a : (t0, t1)→ R a C1 function. Assume that u = u+ and u−, on the right
and left side of 0 in U and both u± solve (1-10) classically. Use Remark 4.9 to
show the following:

• ȧ(t)= H [u+q (a(t), t), u−q (a(t), t)].

• The pair (u−q (a(t), t), u+q (a(t), t)) satisfies the Oleinink condition for every
t ∈ (t1, t2).
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4C. Viscosity solution versus variational solution. In Example 4.4(i), (iii),
(iv), and Example 4.7, we have variational solutions for which uq has shock
discontinuities. In all these examples, the jump discontinuity of uq satisfies
an Oleinik condition. However it is known that in general Oleinik condition
could be violated for a variational solution. Several explicit examples have
been discovered for such a violation. The following recent example is due to
V. Roos [27]. This example is constructed by performing a small perturbation to
our Example 4.4(iv).

Theorem 4.12. Assume d = 1, H ∈ C2 is independent of q , and that H ′′ is
uniformly bounded. Assume that p+ < p−, H(p+)= H(p−)= H ′(p−)= 0>
H ′′(p−), and H(p) < 0 for every p ∈ (p+, p−). Let f ∈ C2 be a Lipschitz,
strictly convex function such that f ′′ is uniformly bounded, and f (0)= f ′(0)= 0.
Assume that the initial condition g is of the form

g(q)= p−q1(q ≤ 0)+ (p+q + f (q))1(q ≥ 0).

Then there exist t0 > 0 and a continuous function q : [0, t0) → R such that
q(0)= 0, and for every t ∈ [0, t0), there exists a point q(t) > 0 such that for every
variational solution u, the function uq(q, t) is discontinuous at q(t). Moreover
the Oleinik condition is violated at q(t).

Proof. Step 1 As before, Ft(g)= F+t ∪F0
t ∪F

−
t , where

F+t =: tGt = {t (q + H ′(g′(tq)), t−1g(tq)+ K (g′(tq))) : q ≥ 0},

F−t = F− = {(q, qp−) : q ≤ 0},

F0
t = tF0

= {t (H ′(p), K (p)) : p ∈ [p+, p−]}.

Note that the sets F− and F0 are independent of f and coincide with what we
had in Example 4.4(iv). Let us write

F+ = {(q, qp+− H(p+)) : q ≥ H ′(p+)} = {(q, qp+) : q ≥ H ′(p+)},

which is what we get when f = 0 and t = 1.
We now examine the set F+t . We claim that for t ∈ (0, t0), with

t0 = [sup
p
|H ′′(p)| sup

q
| f ′′(q)|]−1, (4-8)

the set F+t is a graph of a convex function that is above tF+, and is tangent to
tF+ at its end point. For convexity, observe that if

a(q)= q + H ′(g′(tq)), b(q)= t−1g(tq)+ K (g′(tq)),
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then a′(q)= 1+ t H ′′(g′(tq))g′′(tq)= 1+ t H ′′(g′(tq)) f ′′(tq) > 0, and

b′(q)= g′(tq)+ tg′(tq)H ′′(g′(tq))g′′(tq)= g′(tq)a′(tq).

Hence the slope of F+t at the point t (a(q), b(q)) is g′(tq). Since both a′ and g′

are increasing, F+t is convex. At q = 0 the slope is p+, which means that the
line tF+ is tangent to F+t at its end point t (a(0), b(0)), hence it lies above this
line.

Step 2 For small δ > 0, the set

F̂0
t := tF̂0

:= {t (H ′(p), K (p)) : p ∈ [p−− δ, p−]} ⊂ F0
t ,

is a graph of concave function that starts from the origin and lies below a line of
slope p− that passes through the origin. We claim that the set F+t will intersect
F̂0

t at some point t (a(q t), b(q t)), q t > 0, for small and positive t . To see this,
let us compare the set Gt with F̂0. The set Gt is above F+ and tangent to F+ at
its end point. Moreover, since

g′(tq)= p++ f ′(tq)= p++ o(1), t−1g(tq)= qp++ t−1 f (tq),

we have that G+t →F+ as t→ 0. This guarantees that the sets Gt and F̂0 intersect
at a some point (a(q t), b(q t)) near the origin for small t > 0, as desired.

Step 3 The intersection point of the sets F+t and F̂0
t represents a corner of the

variational solution u(q, t) at q = q(t) := ta(q t). The left and right derivatives of
u( · , t) at q(t), are given by the slope of F0

t and F+t at the point t (a(q t), b(q t)).
The right derivative is given by p̃+ := g′(tq t) as we showed in step 1. To
calculate the left derivative, take p̃− ∈ [p−− δ, p−], such that H ′( p̃−)= a(q t).
We then have

b(q t)= K ( p̃−)= p̃−H ′( p̃−)− H( p̃−),

and the tangent vector to F̂0
t at (a(q t), b(q t)) is (H ′′( p̃−), p̃−H ′′( p̃−)), which

has a slope p̃−. It remains to show that the Oleinik condition is violated for the
left and right momenta p̃− and p̃+.

Final step For small t , we have p̃− = p−+o(1), p̃+ = p++o(1). So p̃− > p̃+.
By H ′( p̃−)= a(q t)= q t

+ H ′(g′(tq t)), we know that H ′( p̃+)= H ′( p̃−)− q t .
Hence,

p̃−H ′( p̃−)− H( p̃−)= b(q t)= t−1g(tq t)+ p̃+H ′( p̃+)− H( p̃+)

= t−1g(tq t)− p̃+q t
+ p̃+H ′( p̃−)− H( p̃+).
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Equivalently,

( p̃−− p̃+)H ′( p̃−)+ H( p̃+)− H( p̃−)= t−1(g(tq t)− g′(tq t)tq t)

= t−1( f (tq t)− f ′(tq t)tq t)

=: t−1ϕ(tq t).

We note that ϕ(0)= 0 and ϕ′(q) < 0 for q > 0 by convexity of f . As a result,

( p̃−− p̃+)H ′( p̃−) < H( p̃−)− H( p̃+). (4-9)

This violates the Oleinik condition because p̃+ < p̃−. �

Since, at every discontinuity point (q, t) of ûq , the Oleinik condition is always
satisfied by the pair (ûq(q−, t), ûq(q+, t)), where û is a viscosity solution (see
the exercise at the end of Section 4B), we deduce that the variational solution of
Theorem 4.12 is not a viscosity solution. In Example 4.13 below, we make some
additional assumptions on H , so that we can find a rather precise description for
the viscosity solution û for small t , with H and g as in Theorem 4.12. This would
allow us to show that the jump discontinuity of ûq occurs at a point q̂(t) such that
q(t) < q̂(t) for small positive t . Moreover, u(q, t) > û(q, t) for q ∈ (0, q̂(t)),
and small positive t . The details follow.

Example 4.13. Let H and g be as in Theorem 4.12. Additionally, assume that
H is concave near p−, and for some δ, δ1, δ2 > 0,

{p ∈ [p+, p−] : H(p) ∈ [−δ, 0]} = [p+, p++ δ1] ∪ [p−− δ2, p−].

Choose δ− ∈ (0, δ2], δ
+
∈ (0, δ1] such that for each p ∈ [p+, p+ + δ+], there

exists a unique ψ(p) ∈ [p−− δ−, p−] such that ψ(p+)= p−, and

H(p)− H(ψ(p))= H ′(ψ(p))(p−ψ(p)). (4-10)

Let us write û for the viscosity solution with the initial condition g. We claim
that û( · , t) has a corner at some q̂(t) with the following properties: q̂(0)= 0,
and for small t > 0,

q̂ ′(t)= H ′( p̂−(t)), p̂−(t)= ψ( p̂+(t)), (4-11)

where p̂±(t)= ûq(q̂(t), t) represent the left and right values of ûq at q̂(t). We
now express p̂+(t) in terms of q̂(t), so that the ODE (4-11) can be solved uniquely
for the initial condition q̂(0)= 0. For this, let us write h : [ p̂+,∞)→[0,∞) for
(g′)−1, so that h(p+)= 0. Note if for some q, we have q̂(t)= q + t H ′(g′(q)),
then p̂+(t)= g′(q). Equivalently,

q̂(t)= h(ρ)+ t H ′(ρ), p̂+(t)= ρ.
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Let us write `(q, t) for the inverse of ρ 7→ h(ρ)+ t H ′(ρ), that is increasing and
well-defined for small t . This gives us the formula

p̂+(t)= `(q̂(t), t),

which allows us to express p̂−(t) as a function of q̂(t). The function `(q, t)
can be expressed as ` = wq , where w solves the HJE with initial condition
g(q), q ≥ 0, and our formula for ` is compatible with (4-7). In particular

`t + H ′(`)`q = 0.

We note that q̂ ′(0)= 0 but q̂ ′(t) > 0 for t > 0 and small because H ′(p−(t)) > 0.
On the other hand,

p′
+
(t)= `t(q̂(t), t)+ `q(q̂(t), t)q̂ ′(t)= `q(q̂(t), t)(H ′( p̂−(t))− H ′( p̂+(t))).

Since `q > 0, H ′( p̂−(t)) > 0, H ′( p̂+(t)) < 0, we deduce that p̂+(t) is increasing
as a function of t . Since ψ is decreasing, we learn that p̂−(t) is decreasing. On
the other hand,

q̂ ′′(t)= H ′′(p−(t))p′
−
(t) > 0,

for small t . This means that q̂ is convex. This is how the viscosity solution for
short times look like:

• For Q ≥ q̂(t) we have û(Q, t)= g(h(ρ))+ t K (ρ), where ρ = `(Q, t).

• For Q ≤ 0, we have û(Q, t)= p−Q.

• For Q ∈ [0, q̂(t)], we first set Q(s, t) = q̂(s) + (t − s)H ′( p̂−(s)), for
s ≤ t . We note that Qs = (t − s)H ′′( p̂−(s)) p̂′−(s) > 0, so that s 7→ Q(s, t)
is increasing with Q(0, t) = 0, Q(t, t) = q̂(t). Its inverse is denoted by
s(Q, t), and û(Q, t)= û(q̂(s), s)+ (t − s)H ′( p̂−(s)), for s = s(Q, t).

What we have constructed is a viscosity solution because it solves HJE outside
the set {(q̂(t), t) : t ∈ [0, δ)} for small δ, and on this set the Oleinik condition
is satisfied. It also coincides with g initially. So û must be the unique viscosity
solution.

For comparison, let us write u for the variational solution which has a corner
at q(t) with the left and right momenta at q(t) given by p̃±(t) as we discussed
in the proof of Theorem 4.12. Indeed by (4-10) and (4-9),

H( p̂+(t))− H( p̂−(t))− H ′( p̂−(t))( p̂+(t)− p̂−(t))= 0,

H( p̃+(t))− H( p̃−(t))− H ′( p̃−(t))( p̃+(t)− p̃−(t)) < 0,
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for t > 0. In comparison,

p̂−(t)= ψ( p̂+(t)),

p̃−(t) > ψ
(

p̃+(t)
)
,

q̂ ′(t)= H ′( p̂−(t))= H ′(ψ( p̂+(t))),

q ′(t)= H [ p̃+(t), p̃−(t)]< H ′(ψ( p̃+(t))).

To the left and right of the discontinuity curve, both uq and ûq are classical
solutions that can be determined by the method of characteristics. Hence

p̂+(t)= `(q̂(t), t), p̃+(t)= `(q(t), t).

Hence,

q̂ ′(t)= H ′(ψ(`(q̂(t), t))), q ′(t) < H ′(ψ(`(q(t), t))).

From this and q(0) = q̂(0) = 0, we deduce that q̂(t) < q(t) for small t > 0.
Note that u(q, t)= û(q, t) for q /∈ (0, q̂(t)). We claim that û(q, t) < u(q, t) if
q ∈ (0, q̂(t)), and t is small. As a preparation, we t show that if ρ = uq and
ρ̂ = ûq , then ρ̂(q, t) < ρ(q, t) for q ∈ (0, q̂(t)). To verify this, we first consider
the case q ∈ (q(t), q̂(t)). For small t , ρ(q, t) = ρ(q0, 0) = g′(q0) for some q0

that is close to 0. Hence ρ(q, t) is close to p+. However, since such q is on the
left side of the jump discontinuity for ρ̂, we have ρ̂(q, t) is close to ρ−, which
is strictly larger than ρ+. This implies that ρ̂(q, t) < ρ(q, t) for small t , and
q ∈ (q(t), q̂(t)). In the same fashion we can treat the case q ∈ (0, q(t)).

We are now ready to show that û(q, t) < u(q, t) if q ∈ (0, q̂(t)), and t is small.
Indeed for q ∈ (0, q̂(t)),

u(q, t)= u(q̂(t), t)−
ˆ q̂(t)

q
ρ(a, t) da

= û(q̂(t), t)−
ˆ q(t)

q
ρ(a, t) da

> û(q̂(t), t)−
ˆ q̂(t)

q
ρ̂(a, t) da

= û(q, t),

as desired.

As we have seen in the proof of Theorem 4.12, we can easily calculate a
solution for small times if the second derivative of the initial data is uniformly
bounded.
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Proposition 4.14. Assume that D2 H and D2g are uniformly bounded, and g is
C1 and Lipschitz. Write u and û for variational and viscosity solution with initial
condition g. Then there exists t0 > 0 (with t0 depending only on the uniform
bounds on D2 H and D2g) such that for t ∈ [0, t0], we have

u(Q, t)= û(Q, t)= g(q(0))+
ˆ t

0
[p · q̇ − H(q, p)] ds,

where (q(s), p(s))= φs(q(0),∇g(q(0))) is the unique Hamiltonian orbit such
that q(t)= Q.

The proof of Proposition 4.14 is rather straightforward and is carried out by
showing that the map a 7→ q(a, t) is a homeomorphism for small t , where q(a, t)
is the q-component of φt(a,∇g(a)); see [3] for details.

We saw in Example 4.13 that for the initial condition of Theorem 4.12, the
variational solution dominates the viscosity solution. This indeed is always true
as the following result of Bernard [4] confirms.

Theorem 4.15. Assume that D2 H is uniformly bounded and g is Lipschitz. We
also assume that g ∈ C2, and that there exists a constant c0 such that D2g(q)≤
c0 I for every q ∈ Rd (or more generally, g is semiconcave). Write û and u for
viscosity and variational solution with initial condition g. Then there exists t1> 0
(with t1 depending only on c0 and the bound on D2 H ) such that the following
statements are true for t ∈ [0, t1]:

(i) û(q, t)≤ u(q, t).

(ii) u(q, t)= inf{z : (q, z) ∈ Ft(g)}.

4D. Variational selectors. We now give a recipe for the construction of vari-
ational solutions in the discrete setting. A similar construction can be give for
the continuous setting. We write 3 for the set of Lipschitz functions, and 3r for
the set of g ∈ 3 such that |g(q)− g(q ′)| ≤ r |q − q ′|. Recall that a variational
solution un(Q) is a critical value of

A(xn; Q; g)= g(q0)+

n∑
i=1

[pi−1 · (qi − qi−1)−w(pi−1, qi )],

where qn=Q, and xn= (x0, . . . , xn−1), with xi = (qi , pi )∈R2d . We assume that
w :R2d

→R is a C1 and Lipschitz function. We may write A= `+ f , where ` is
a quadratic function and f is a Lipschitz function. Writing xn = x = (q, p) ∈Rk

for k = 2nd, then

`(x)= 1
2 Bx · x =

n−1∑
i=1

pi−1 · (qi − qi−1)− pn−1 · qn−1,
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where B is a matrix of the form

B =
[

0 D
Dt 0

]
,

where D is a matrix which has −1 on its main diagonal, 1 right below the main
diagonal, and 0 elsewhere. As a result, ` is a nondegenerate quadratic form.
Because of the very form of A, we make the following definition.

Definition 4.16. (i) We write Qk for the set of nondegenerate quadratic func-
tions ` :Rk

→R. In other words, `(x)= 1
2 Bx ·x for a nonsingular symmetric

matrix B. We write �k(`; r) for the set of functions F : Rk
→ R such that

F = `+ f for some f ∈3r . We write

Q=
∞⋃

k=1

Qk, �k =

∞⋃
r=1

⋃
`∈Qk

�k(`; r), �=

∞⋃
k=1

�k .

(ii) We call C : O→ R a variational selector if it satisfies the following condi-
tions:
(1) If F ∈� and F ∈ C1, then C(F)= F(α), for some α with ∇F(α)= 0.
(2) If f1, f2 ∈3, with f1 ≤ f2, and ` ∈Q, then C(`+ f1)≤ C(`+ f2).
(3) C(F + c)= C(F)+ c, for every F ∈� and c ∈ R.
(4) If F ∈� is bounded below, then C(F)=min F .
(5) If ψ : Rk

→ Rk is a Lipschitz smooth diffeomorphism, and F ∈ �k ,
then C(F)= C(F ◦ψ).

(6) If F ∈�k , `′ ∈Qk′ , and F ′(x, y)= F(x)+ `′(y), then C(F ′)= C(F).
Once a variational selector is known, then we can use it to construct a varia-

tional solution by setting

Vn(g)(Q)= C(A( · ; Q; g)). (4-12)

As we mentioned before we use Lusternik–Schnirelmann (LS) theory to
construct a selector; see for example [5] for more details. Before we give a
precise recipe for C, we make some remarks:

Proposition 4.17. (i) If F ∈�k(`; r), with F = `+ f , `(x)= 2−1 Bx · x , and
∇F(α)= 0, then

|α| ≤ rδ(`)−1, where δ(`)= inf
|x |=1
|Bx |.

(ii) If `+ f = `′+ f ′, for f, f ′ ∈3, `, `′ ∈Qk , then `= `′, and f = f ′.

Proof. (i) At a critical point α we have Bα =−∇ f (α), which implies

δ(`)|α| ≤ |Bα| = |∇ f (α)| ≤ r,

as desired.
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(iii) If `+ f = `′+ f ′, then `′′ = f ′′, where `′′ = `′− `, f ′′ = f − f ′. Since
f ′′ is Lipschitz, then `′′ = 0. In fact if `′′(x)= B ′′x · x , and v is an eigenvector
of B ′′ associated with eigenvalue λ, then ϕ(t)= λ|v|2t2 must be Lipschitz in t ,
which is impossible unless λ|v|2 = 0. �

LS theory is normally applied to continuous maps F : M→ R, for a compact
manifold M . In our case the nondegeneracy of quadratic function ` makes up
for the lack of compactness. A standard way to find a critical value of F is by
designing a collection F of subsets of Rk such that

c(F,F)= inf
A∈F

sup
A

F,

is a critical value of F . This is guaranteed if the collection F satisfies the
following property:

A ∈ F, t > 0=⇒ ϕF
t (A) ∈ F,

where ϕF
t denotes the flow of the vector field−∇F . To have a universal collection

F that works for all F , we assume two properties for F :

(1) If A ∈ F , and ϕ is a homeomorphism, then ϕ(A) ∈ F .

(2) If A ∈ F , and A ⊂ B, then B ∈ F .

Note that the second property is harmless and can always be assumed because
of the infimum over subsets of A ∈ F in the definition of c. Its raison d’être is
the following alternative expression for c(F,F):

c(F,F)= inf
A∈F

sup
A

F = inf
r∈R
{r : Mr (F) ∈ F}, (4-13)

where
Mr (F)= {x : F(x) < r}.

Indeed if we write c and α for the left and right-hand sides of the second equality
in (4-13), then for any a > c, we can find A ∈ F such that supA F < a, which
means that A ⊆ Ma(F). This in turn implies that Ma(F) ∈ F , which leads to
α ≤ c. In the same fashion, we can verify c ≤ α.

It remains to design a family F such that (1) and (2) hold, and c(F,F) is
finite. Once such a family is found, we set C(F)= c(F,F). In view of (4-13),
and property (1), we my choose F the collection of sets with certain degree
of topological complexity, so that c(F,F) is the first r for which the sublevel
set Mr (F) reaches such complexity. We now describe the LS strategy. Write
�0

k(`, r0) for the set of F ∈ �k(`, r0) such that F(0) = 0. Let us consider
F ∈�0

k(`, r0), and set c0 = r0δ(`)
−1, c1 = r0c0, so that

∇F(α)= 0=⇒ |α| ≤ c0 =⇒ |F(α)| ≤ c1,
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by Proposition 4.17(i). Note that ` has a single critical point at the origin.
Hence for a < 0< b, the set Mb(`) is topologically more complex than Ma(`).
Since F is a Lipschitz perturbation of `, and all critical values of F are in the
interval [−c1, c1], we expect Mc1(F) to be topologically more complex than
M−c1(F). We wish to design a collection F that captures such complexity.
Relative cohomology classes allow us to measure such complexities.

Definition 4.18. Given two open sets A ⊂ B, we write 3 j (B, A) for the set
of closed j forms α in B such that the restriction of α to the set A is exact.
We write α ∼ β for two forms in 3 j (B, A) such that β − α is exact in B. We
write H j (B, A) for the set of equivalent classes and H∗(B, A) for the union of
H j (B, A), j = 0, 1, . . . .

For example, for a < 0< b, one can show that H∗(Mb(`),Ma(`)) is the same
as H∗(D, ∂D), where D is a disc in Rr− , with r− denoting the number of the
negative eigenvalues of B. In fact the set M−c1(F) is homeomorphic to M−c1(`),
and we may define

C(F)= inf{r :H∗(Mr (F),M−c1(F)) 6=0}= sup{r :H∗(Mr (F),M−c1(F))=0}.

Remark 4.19. More generally, we may take any α ∈ H∗(Mb(`),Ma(`)), and
set

C(F;α)= inf{r : the restriction of α to Mr (F) is not exact}

= sup{r : the restriction of α to Mr (F) is exact}.

We refer to [5] for more details.

4E. Game theory. We now offer a way of constructing viscosity solutions via
game theory that in spirit is close to our construction of variational solutions
in Section 4D When H(q, p) is convex in the momentum variable, then the
variational solution is also a viscosity solution and (4-3) offers a control theo-
retical representation of the solution; see [6] for a thorough discussion on the
applications of (4-3). When H is not convex in the momentum, a minimax type
variational description does the job.

For our purposes, it is more convenient to solve the final value problem{
ut + H(q, uq)= 0, t < T,
u(q, T )= g(q).

(4-14)

We assume that H is of the following form

H(q, p)= inf
z∈Z

Ĥ(q, p; z)= inf
z∈Z

sup
v

(p · v− L̂(q, v; z)),

where Z is some measure space, Ĥ(q, p; z) is convex in p for each z ∈ Z , and
we writing L̂(q, v; z) for its Legendre transform in the p-variable. We assume
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that there exist constants η0 > 1, δ0 > 0, and a0 such that

L̂(q, v; z)≥ L0(v) := δ0|v|
η0 − a0, sup

|v′|≤1
L̂(q, v′; z)≤ a0,

lim
δ→0

sup
z′∈Z

sup
|x |≤1

sup
|x−x ′|≤δ

|Ĥ(x ′; z′)− Ĥ(x; z′)| = 0,

sup
z′∈Z

sup
q ′

sup
|p′|≤`
|Ĥp(q ′, p′; z′)|<∞,

(4-15)

for all q, v ∈ Rd , z ∈ Z , and ` > 0.

Definition 4.20. We write V (t, T ) for the set of bounded measurable maps
v : [t, T ] → Rd , and Z(t, T ) for the set of measurable maps z : [t, T ] → Z .
We write 1(t, T ) for the set of strategies. By a strategy, we mean a map
α : Z(t, T )→V (t, T ) such that if t< s≤T , and z= z′ on [t, s], then α[z]=α[z′]
on [t, s].

We are now ready to offer a solution to (4-14). For t ≤ T , set

u(q, t)= ST
t (g)(q)

= sup
α∈1(t,T )

inf
z∈Z(t,T )

[
g(q(T ))−

ˆ T

t
L̂(q(θ), q̇(θ); z(θ)) dθ

]
, (4-16)

where q( · )= q( · ; t, q, α[z]) is uniquely specified by the requirements q(t)= q ,
and q̇ = α[z] =: v. In other words, for θ ∈ [t, T ],

q(θ)= q +
ˆ θ

t
α[z](θ ′) dθ ′.

Note that we may write q̇(θ)= Ĥp(q(θ), p(θ); z(θ)), where

p(θ)= L̂v(q(θ), α[z](θ); z(θ)).

In terms of p( · ), we have

L̂(q(θ), q̇(θ); z(θ))= p(θ) · q̇(θ)− Ĥ(q(θ), p(θ); z(θ)).

When H is not convex in p, the relationship v= Hp(q, p) is no longer invertible
in p for a given q . However, if we specify z, then we can invert p 7→ Ĥp(q, p; z).
The role of the path q( · ) is the same as the characteristic. The optimal path still
solves the Hamiltonian ODE locally, but it is allowed to have corners when we
switch from one label z to another.

Theorem 4.21. The function u as in (4-16) is a viscosity solution of (4-14).

The main ingredient for the proof of Theorem 4.21 is the following dynamic
programming optimality condition:
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Theorem 4.22. For s ∈ [t, T ], we have

ST
t (g)(q)= sup

α∈1(t,s)
inf

z∈Z(t,s)

[
ST

s (g)(q(s))−
ˆ s

t
L̂(q(θ), q̇(θ); z(θ))dθ

]
. (4-17)

Proof. Fix q. We write u(q, t) and u′(q, t) for the left and right hand sides of
(4-17) respectively. We carry out the proof in two steps.

First we pick c < u′(q, t) and show that c < u(q, t). Observe that since
c < u′(q, t), there exists β ∈1[t, s] such that for all y ∈ Z(t, s), we have

c < ST
s (g)(q(s))−

ˆ s

t
L̂(q(θ), q̇(θ); y(θ)) dθ,

with q(θ)= q+
´ θ

t β[y](θ
′) dθ ′, for θ ∈ [t, s]. Now given a = q(s), we can find

γa ∈1(s, T ) such that for every w ∈ Z(s, T ), we have

c<g(ρ(T ))−
ˆ T

s
L̂(ρ(θ), ρ̇(θ);w(θ))dθ−

ˆ s

t
L̂(q(θ), q̇(θ); y(θ))dθ, (4-18)

where

ρ(θ)=q(s)+
ˆ θ

s
γq(s)[w](θ

′) dθ ′=q+
ˆ s

t
β[y](θ ′) dθ ′+

ˆ θ

s
γq(s)[w](θ

′) dθ ′,

for θ ∈ [s, T ]. We now construct α ∈1(t, T ) as follows: Given z ∈ Z(t, T ), we
set

α̂[z](θ)=
{
β[z �[t,s]](θ), θ ∈ [t, s],
γq(s)[z �[s,T ]](θ), θ ∈ (s, T ],

where q(s)= q +
´ s

t β[z �[t,s]](θ) dθ . More generally, we define q( · ), as

q(θ)= q +
ˆ θ

t
α̂[z](θ ′) dθ ′,

for θ ∈ [t, T ]. Observe that (4-18) means

c < g(q(T ))−
ˆ T

t
L̂(q(θ), q̇(θ); z(θ)) dθ ≤ u(q, t),

for every z ∈ Z(t, T ). This completes the proof of u′ ≤ u.
We now turn to the proof of u ≤ u′. Pick c< u(q, t), and choose α̂ ∈1(t, T )

such that for every z ∈ Z(t, T )

c < g(q(T ))−
ˆ T

t
L̂(q(θ), q̇(θ); z(θ)) dθ

= g(q(T ))−
ˆ T

s
L̂(q(θ), q̇(θ); z(θ)) dθ −

ˆ s

t
L̂(q(θ), q̇(θ); z(θ)) dθ,
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where q(θ)= q +
´ θ

t α̂[z](θ
′) dθ ′, for θ ∈ [t, T ]. We then define β ∈1(t, s) as

follows: for every y ∈ Z(t, s), we have β[y] = α[y′], where y′ ∈ Z(t, T ), is any
extension of y. For this β, we wish to show that for every y ∈ Z(t, s),

c < ST
s (g)(q(s))−

ˆ s

t
L̂(q(θ), q̇(θ); z(θ)) dθ,

where q(θ)= q +
´ θ

t β[y](θ
′) dθ ′ for θ ∈ [t, s]. Given y ∈ Z(t, s), we need to

come up with a family of strategies γa ∈1(s, T ) such that for every w ∈ Z(s, T ),
we have

c < g(ρ(T ))−
ˆ T

s
L̂(ρ(θ), ρ̇(θ);w(θ)) dθ −

ˆ s

t
L̂(q(θ), q̇(θ); y(θ)) dθ,

where

ρ(θ)= q(s)+
ˆ θ

s
γq(s)[w](θ

′) dθ ′.

This is achieved by setting

γq(s)[w] = α[y⊕w],

where

(y⊕w)(θ)=
{

y(θ), θ ∈ [t, s],
w(θ), θ ∈ [s, T ].

�

As our next step we show that we can always restrict α in (4-16) to those with
bounded range:

Proposition 4.23. If g ∈3r , then the supremum in (4-16) can be restricted to
those α such that

M(α) := sup
z∈Z(t,T )

M(α, z)

:= sup
z∈Z(t,T )

[
1

T − t

ˆ T

t
|α[z](θ)|η0 dθ

]1/η0

≤ C0, (4-19)

where

C0 = C0(r, δ0, η0, a0)= 2a0+

(
r + 1
δ0

)1/(η0−1)

.

Proof. Assume that g ∈3r . Write

A(q;α, z( · )) := g(q(T ))−
ˆ T

t
L̂(q(θ), q̇(θ); z(θ)) dθ,
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with q( · ) as in (4-16). From g ∈3r , and (4-15),

A(q;α, z( ·))≤ g(q)+r
∣∣∣∣ˆ T

t
α[z]dθ

∣∣∣∣+a0(T−t)−δ0(T−t)M(α, z)η0

≤ g(q)+r(T−t)M(α, z)+a0(T−t)−δ0(T−t)M(α, z)η0 . (4-20)

On the other hand,

A(q; 0, z( · ))= g(q)−
ˆ T

t
L̂(q, 0; z(θ)) dθ ≥ g(q)− a0(T − t),

by (4-15). In (4-16), we may ignore those α such that

inf
z∈Z(t,T )

A(q;α, z( · )) < g(q)− a0(T − t). (4-21)

Using (4-20), the inequality (4-21) would be, if that for some z( · ) ∈ Z(t, T ),
we have

r(T − t)M(α, z)+ a0(T − t)− δ0(T − t)M(α, z)η0 <−a0(T − t)

Equivalently,
δ0 M(α, z)η0 − r M(α, z)− 2a0 > 0.

This inequality is valid if

M(α, z) > C0 := 2a0+

(
r + 1
δ0

)1/(η0−1)

.

In summary, we may ignore those α such that

sup
z∈Z(t,T )

M(α, z) > C0.

We are done. �

With the aid of (4-19), we can show the regularity of u = St(g).

Theorem 4.24. Assume that g ∈3r . Then the following statements are true:

(i) The value of u(q, t)= (ST
t g)(q) depends only on the restriction of g to the

set
BC0(T−t)(q) := {q ′ : |q ′− q| ≤ C0(T − t)}.

(ii) The value of u(q, t)= (ST
t g)(q) depends only on the restriction of Ĥ to the

set

BC0(T−t)(q)×Rd
× Z = {(q ′, p, z) ∈ R2d

× Z : |q ′− q| ≤ C0(T − t)}.
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(iii) We have

−a0(T − t)≤ u(q, t)− g(q)≤ C1(T − t), (4-22)

where C1 = C1(r) = a0 + c1rη1 , for constants η1 = η0/(η0 − 1), and
c1 = c1(δ0, η0).

(iv) Assume that s ∈ [t, T ]. Then

−a0(s− t)≤ u(q, t)− u(q, s)≤ C1(s− t). (4-23)

(v) For every t < T , and q, q ′ ∈ Rd , we have

|u(q ′, t)− u(q, t)| ≤ (C1+ a0+ r)|q ′− q|. (4-24)

Proof. (i) The dependence of u on the final data is of the form g(q(T )) with

|q(T )− q| =
∣∣∣∣ˆ T

t
α[z]dθ

∣∣∣∣≤ C0(T − t),

by(4-19).

(ii) The spatial dependence of L̂ is q(θ) with θ ∈ [t, T ]. We are done because
|q(θ)− q| ≤ C0(T − t) by (4-19).

(iii) By choosing the strategy α = 0 in the definition of u, and using (4-15) we
get

u(q, t)≥ g(q)− a0(T − t).

On the other hand, by g ∈3r and (4-15),

u(q, t)≤ g(q)+ sup
α∈1(t,T )

inf
z∈Z(t,T )

[
r |q(T )− q| −

ˆ T

t
L0(q̇(θ)) dθ

]
≤ g(q)+ sup

α∈1(t,T )
inf

z∈Z(t,T )

[
r |q(T )− q| − (T − t)L0

(
q(T )− q(t)

T − t

)]
= g(q)+ sup

Q

[
r |Q− q| − (T − t)L0

(
Q− q
T − t

)]
= g(q)+ (T − t) sup

a≥0
[ra− δ0aη0 + a0]

= g(q)+ (T − t)[a0+ c1rη1],

as desired.

(iv) Set δ = s− t . From (4-17) and since L̂ does not depend on time,

u(q, t)= (ST
s−δg)(q)= (S

T−δ
s−δ (S

T
T−δg))(q)= (S

T
s (S

T
T−δg))(q).
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From this, u(q, s)= ST
s g(q), and the contraction of the operator ST

s ,

inf(ST
T−δg− g)≤ u(q, t)− u(q, s)≤ sup(ST

T−δg− g).

This and (4-22) yield (4-23).

(v) First we assume that |q − q ′| ≥ T − t . We then use (4-22) to write

u(q ′, t)− u(q, t)≤ (C1+ a0)(T − t)+ g(q ′)− g(q)

≤ (C1+ a0)(T − t)+ r |q ′− q|

≤ (C1+ a0+ r)|q ′− q|.
Hence

|q ′− q| ≥ T − t =⇒ |u(q ′, t)− u(q, t)| ≤ (C1+ a0+ r)|q ′− q|. (4-25)

On the other hand, when ρ := |q−q ′|< T − t , we use (4-17) and (4-21) to write

u(q, t)

= sup
α∈1(t,t+ρ)

inf
z∈Z(t,t+ρ)

[
u(q(t+ρ), t+ρ)−

ˆ t+ρ

t
L̂(q(θ), q̇(θ); z(θ))dθ

]
≥ sup
α∈1(t,t+ρ)

inf
z∈Z(t,t+ρ)

[
u(q(t+ρ), t)−

ˆ t+ρ

t
L̂(q(θ), q̇(θ); z(θ))dθ

]
−C1ρ.

Pick a vector e and choose the constant strategy α[z] = e to assert

u(q, t)≥ inf
z∈Z(t,t+ρ)

[
u(q + ρe, t)−

ˆ t+ρ

t
L̂(q + θe, e; z(θ)) dθ

]
−C1ρ

≥ u(q + ρe, t)− (C1+ a0)ρ.

We now choose e = (q ′− q)/|q ′− q| to conclude

u(q, t)− u(q ′, t)≥−(C1+ a0)ρ,

which yields

|q ′− q| ≤ T − t =⇒ |u(q ′, t)− u(q, t)| ≤ (C1+ a0)|q ′− q|.

This and (4-25) yield (4-24). �

Proof of Theorem 4.21. Fix (q0, t0), and assume that φ ∈ C1 with

u(q0, t0)= φ(q0, t0), u ≤ φ, p0 = φq(q0, t0), r0 = φt(q0, t0). (4-26)

Pick δ > 0, and write 1′(t0, t0+ δ) for the set of α ∈1(t0, t0+ δ) such that

M(α) := sup
z∈Z(t0,t0+δ)

[
δ−1
ˆ t0+δ

t0
|α[z](θ)|η0 dθ

]1/η0

≤ C0.
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By Theorem 4.22, and (4-19),

u(q0, t0)

= sup
α∈1′(t0,t0+δ)

inf
z∈Z(t0,t0+δ)

[
u(q(t0+δ), t0+δ)−

ˆ t0+δ

t0
L̂(q(θ), q̇(θ); z(θ))dθ

]
,

where q(θ)= q0+
´ θ

t0
α[z](θ) dθ . To ease the notation, we write 1′δ and Zδ for

1′(t0, t0+ δ) and Z(t0, t0+ δ). From this and our assumption (4-26) we deduce

0≤ sup
α∈1′δ

inf
z∈Zδ

[
φ(q(t0+ δ), t0+ δ)−φ(q0, t0)−

ˆ t0+δ

t0
L̂(q(θ), q̇(θ); z(θ)) dθ

]

= sup
α∈1′δ

inf
z∈Zδ

[ˆ t0+δ

t0
(φt(q(θ), θ)+q̇(θ)·φq(q(θ), θ)− L̂(q(θ), q̇(θ); z(θ))) dθ

]

≤ sup
α∈1′δ

inf
z∈Zδ

[ˆ t0+δ

t0
(φt(q(θ), θ)+ Ĥ(q(θ), φq(q(θ), θ); z(θ))) dθ

]

≤ sup
α∈1′δ

inf
z∈Z

[
2
ˆ t0+δ

t0
(φt(q(θ), θ)+ Ĥ(q(θ), φq(q(θ), θ); z)) dθ

]
, (4-27)

where, for the last inequality, we take the infimum over constant paths in
Z(t0, t0+ δ). On the other hand, since M(α)≤ C0, for θ ∈ [t0, t0+ δ],

|q(θ)− q0| ≤

ˆ θ

t0
|α[z](θ ′)| dθ ′ ≤

ˆ t0+δ

t0
|α[z](θ)| dθ ≤ δM(α)≤ C0δ, (4-28)

where we used the Hölder’s inequality for the third inequality.
From this and the continuity of Ĥ as in (4-15),

φt(q(θ), θ)+Ĥ(q(θ), φq(q(θ), θ); z)≤φt(q0, t0)+Ĥ(q0, φq(q0, t0); z)+c1(δ),

for a constant c1(δ) such that c1(δ)→ 0 as δ→ 0. This and (4-27) imply

0≤ δ sup
α∈1′δ

inf
z∈Z
[φt(q0, t0)+ Ĥ(q0, φq(q0, t0); z)+ c1(δ)]

= δ inf
z∈Z
[r0+ Ĥ(q0, p0; z)+ c1(δ)]

= δ[r0+ H(q0, p0)+ c1(δ)].

We divide both sides by δ and send δ→ 0 to arrive at 0 ≤ r0+ H(q0, p0), as
desired. (Note that since we are solving a backward HJE, this is the correct
inequality.)

We next assume that φ ∈ C1 is Lipschitz with

u(q0, t0)= φ(q0, t0), u ≥ φ, p0 = φq(q0, t0), r0 = φt(q0, t0).
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After a repetition of what we did above, we now have

0≥ sup
α∈1′δ

inf
z∈Zδ

[ˆ t0+δ

t0

(
φt(q(θ), θ)+ q̇(θ) ·φq(q(θ), θ)

−L̂(q(θ), q̇(θ); z(θ))
)

dθ
]
. (4-29)

We now make a selection for α. In principle, we wish to solve the ODE

q̇(θ)= v(q(θ), θ; z(θ)) := Ĥp(q(θ), φq(q(θ), θ); z(θ)), q(t)= q,

for a given z( · ) ∈ Z(t, T ), and use the solution to define

α[z](θ)= v(q(θ), θ; z(θ)).

Choosing such a strategy in (4-29) allows us to deduce

0≥ inf
z∈Zδ

[ˆ t0+δ

t0

(
φt(q(θ), θ)+ Ĥ(q(θ), φq(q(θ), θ); z(θ))

)
dθ
]

≥

ˆ t0+δ

t0

(
φt(q(θ), θ)+ H(q(θ), φq(q(θ), θ))

)
dθ.

Again using (4-15) and (4-28) we know

φt(q(θ), θ)+ H(q(θ), φq(q(θ), θ))≥ r0+ H(q0, p0)− c1(δ),

for some constant c1(δ) satisfying c1(δ)→ 0 if δ→ 0. As a result,

0≥ δ[r0+ H(q0, p0)+ c1(δ)].

We divide both sides by δ and send δ→ 0 to arrive at 0 ≥ r0+ H(q0, p0), as
desired. �

Remark 4.25. Theorem 4.21 was established by Evans and Souganidis [9] for
more general games. For our presentation we have chosen a game that is more
in line with our definition of variational solutions. In fact, [9] assumes that the
analog of the set Z is bounded. Under such an assumption the bound on M(α)
becomes trivial and Proposition 4.23 is no longer needed. Though, the results of
[9] are applicable only for bounded Hamiltonian functions.

5. Homogenization

In Section 1G, we discussed the homogenization phenomenon and its connection
to weak KAM theory. In this section we explore the question of homogeniza-
tion more closely. Several approaches have been developed to establish the
homogenization for HJEs and their viscous variants that we now review:
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(1) The earliest homogenization for HJE was carried out in Lions, Papanicolaou
and Varadhan [17] when the Hamiltonian function is periodic in position variable.
This is achieved by solving (1-6) for wP , for every P ∈Rd . Regarding the graph
of a solution to HJE as an evolving interface separating different phases, the
graph of P +∇wP , is a realization of an invariant measure associated with the
inclination P . Fathi [10] extends [17] from Td

×Rd to the cotangent bundles of
compact manifolds provided that the Hamiltonian function is Tonelli.

(2) The homogenization for the variational solutions in the periodic setting (i.e.,
when M = Td

×Rd) has been established by Viterbo [31]. The homogenized
Hamiltonian function H (see (1-12)) that Viterbo obtains for the variational
solutions differs from what Lions et al. [17] obtains in the viscosity setting.
Viterbo uses his homogenized Hamiltonian function to address questions in
symplectic geometry.

(3) For Tonelli Hamiltonians, Lax–Oleinik formula (4-3) allowed Souganidis
[29] and Rezakhanlou and Tarver [26] to establish the homogenization when the
Hamiltonian function is selected according to a shift invariant probability measure.
The evolution of the interface (which is the graph of a random height function)
is a classical example of a stochastic growth model; see, for example, [25]. The
homogenization in this case (as many other stochastic growth models) can be
shown with the aid of the subadditive ergodic theorem; see [29] and [26].

(4) Homogenization for a viscous HJE with H(x, p)=|p|2+V (q) for a potential
function V is equivalent to the large deviation principle (LDP) for a Brownian
motion with killing; see for example Sznitman [30]. This suggests using LDP
ideas (see for example [23]) to establish homogenization; see [15].

(5) A probability measure on the space Hamiltonians yields a probability measure
on the set of semigroup associated with the corresponding HJEs. Homogenization
question can be formulated as a dynamical system problem for a group of
transformations that are defined on the set of HJ semigroups. This approach was
initiated in [22].

For the rest of this section, we explain the approaches (3) and (4) for the
Frenkel–Kontorova (FK) model of Section 3A (for the part of our presentation,
we follow [18]).

Let us write L for the set of maps S : Rd
× Rd

→ R such that the map
L(q, v)= S(q, q + v) satisfies Assumption 3.1. We equip L with the topology
of L∞loc that is metrizable. For the question of homogenization, we define an
operator that turns a microscopic height function g : Rd

→ R to a macroscopic
height function. Its inverse does the opposite:

(0ng)(q)= n−1g(nq), (0−1
n g)(q)= (0n−1 g)(q)= ng(n−1q).
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We think of g as an initial macroscopic height function. Its growth is governed
microscopically by the operators T or T̂ of (3-3). The macroscopic height
function after one macroscopic time step (which is n microscopic time steps) is
given by un = uS

n := T̃ S
n g, where the operator T̃ S

n is defined as

T̃ S
n := 0n ◦ (T̂S)

n
◦0−1

n .

A homogenization occurs if the limit

T (g) := lim
n→∞

uS
n , (5-1)

exists for every Lipschitz function g. In the stochastic setting, we wish to establish
the homogenization for almost all choices of S with respect to a probability
measure that is defined on the set L. This probability measure is assumed to be
translation invariant and ergodic with respect to a natural notion of translation
that will be defined shortly.

We may write

uS
n (q)= sup

q1,...,qn

[g(n−1qn)− n−1(S(nq, q1)+ S(q1, q2)+ · · ·+ S(qn−1, qn))]

= sup
Q
[g(Q)− n−1Sn(nq, nQ)], (5-2)

where

Sn(q, Q)= inf
q1,...,qn−1

(S(q, q1)+ S(q1, q2)+ · · ·+ S(qn−1, Q)).

To display the dependence of Sn on the generating function S, let us write
Sn(q, Q; S) for Sn(q, Q). We also define the translations (in position variable q)
as

τa S(q, Q)= S(q + a, Q+ a)= L(q + a, Q− q), τag(q)= g(q + a).

Observe

T̃ τa S
n = τa ◦ T̃ S

n ◦ τ−a or τa(T̃ S
n g)= T̃ τa S

n (τag). (5-3)

We are now ready to formulate our stochastic homogenization question.

Homogenization problem. Let P be a probability measure on the set L that is
invariant with respect to the translation group {τa : a ∈ Rd

}. Show that the limit
(5-1) exists almost surely with respect P. Study the properties of the limit T in
terms of the underlying measure P.

Recall that our probability measure P is concentrated on the set of S(q, Q)=
L(q, Q−q) with L satisfying (3-1). This brings us two useful properties for the
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sequence un

uS
n (q)= sup

|Q−q|≤`(r)
[g(Q)− n−1Sn(nq, nQ)], (5-4)

lim
δ→0

sup
S∈L

sup
|q|≤c

sup
n
|uS

n (q + δ)− uS
n (q; S)| = 0, (5-5)

for every c > 0. The proofs of these properties are similar to the proofs of
Theorem 4.24(i) and(v), and are omitted. From (5-5) we can readily deduce the
compactness of the sequence un is L∞loc. For the rest of this section, we describe
two strategies that can be employed to prove the existence of a pointwise limit
for the sequence uS

n .
If we set Kn(Q; S)= Sn(0, Q; S), we then have

Sn(q, Q; S)= Kn(Q− q; τq S),

and the following subadditivity of Kn:

Km+n(Q+ Q′; S)≤ Km(Q; S)+ Kn(Q′; τQ S).

As a consequence

Km+n((m+ n)Q; S)≤ Km(m Q; S)+ Kn(nQ; τm Q S).

This subadditivity can be used to establish the homogenization with the aid of
the subadditive ergodic theorem; we refer to [29; 26] for more details. More
precisely, the subadditive ergodic theorem can guarantee the large n limit of
n−1Kn(nQ; S) exists almost surely. The disadvantage of this approach is that it
does not offer much information about the limit.

We now turn to approach (4) This approach is based on the following intuition
that we partially discussed in Section 3: If for some C1 Lipschitz function U ,
and a constant c, we have T̂ (U ) = U + c, then 8(q,∇U (q)) = (Q,∇U (Q)),
for the corresponding symplectic map 8. Relationship between q and Q = F(q)
is that Q is a critical point of A(Q; q)=U (Q)−S(q, Q). So, F(q) is implicitly
given by

∇U (F(q))= SQ(q, F(q)). (5-6)

For such a function U , the set Gr(U ) is invariant for 8. Moreover, the q-
component of the flow associated with the restriction of 8 to the set Gr(U ) can
be fully determined in terms of the function F :Rd

→Rd . In fact in approach (1),
we show that such solutions U exist. If we can show that for each P ∈ Rd , there
exists a solution U =U P such that U (q)= P ·q+ o(|q|), as |q| →∞, then we
are in a position to establish our homogenization as in [17]. However, in general
a solution U P may not exist for every P in the stochastic setting. Nonetheless
the intuition behind such (equilibrium-like) solutions would allow us to design a
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strategy that consists of three steps; this should be compared with ideas coming
from LDP [23].

Step 1 (lower bound) To simplify our presentation, we first assume that the
function L(q, v)= S(q, q + v) is 1-periodic in q. Motivated by (5-6), we pick
any continuous function f : Td

→ Td , and write F : Rd
→ Rd for its lift. In

particular, we can write F(q)= q+G(q), with G a periodic function. We select
qi = F i (q0) with q0 = a in (5-1). Note

n−1qn = n−1
n−1∑
i=0

G(F i (q0)),

n−1∑
i=0

S(qi , qi+1)=

n−1∑
i=0

SF (F i (q0)),

where SF (q) = S(q, F(q)) = L(q,G(q)) =: LG(q), which is also periodic.
Recall that we only need to study wn(S)= un(0). As a result un(0) is close to
un(n−1a). We certainly have

un(n−1a)≥ g
(

n−1a+ n−1
n−1∑
i=0

G(F i (a))
)
− n−1

n−1∑
i=0

SG(F i (a)). (5-7)

We wish to find the limit of the right-hand side of (5-7). Since both G and SF

are periodic, we may regard them as functions that are defined on the torus;
with a slight abuse of notation, we write G, SF

: Td
→ R, so that we can write

G ◦ F i
= G ◦ f i , and SF

◦ F i
= SF

◦ f i . Now if we pick any ergodic invariant
measure for f , then we have

lim
n→∞

n−1
n−1∑
i=0

G(F i (a))=
ˆ

G dµ,

lim
n→∞

n−1
n−1∑
i=0

SF (F i (a))=
ˆ

LG dµ,

(5-8)

for µ almost all choices of a. From this we obtain

lim inf
n→∞

un(0)= lim inf
n→∞

un(n−1a)≥ g
(ˆ

G dµ
)
−

ˆ
LG dµ.

This being true for any such pair (F, µ), we deduce

lim inf
n→∞

un(0)≥ sup
(F,µ)∈M

[
g
(ˆ

G dµ
)
−

ˆ
SF dµ

]
= sup

v

[g(v)− L̂(v)],

where M is the set of pairs (F, µ) such that µ is an ergodic invariant measure
for the corresponding map f , and

L̂(v)= inf
(F,µ)∈M

{ˆ
S(q, F(q))µ(dq) :

ˆ
(F(q)− q) µ(dq)= v

}
. (5-9)
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Using (5-2), it is not hard to replace 0 with any q ∈ Rd to obtain

lim inf
n→∞

un(q)≥ sup
(F,µ)∈M

[
g
(ˆ

G dµ
)
−

ˆ
SF dµ

]
= sup

v

[g(q + v)− L̂(v)]. (5-10)

In the stochastic setting, we have a probability measure P on L that is τ
invariant and ergodic. Here we equip L with the topology of local uniform
convergence and P is a Radon measure with respect to this topology. We take
any bounded continuous function G : cL→ Rd . Out of this, we define a map
F( · ; S) : Rd

→ Rd , by

F(q; S)= q +G(τq S).

We then use the sequence qn = Fn(a), to obtain a lower bound. Indeed, if we set

T = TG : cL→ L, T (S)= τG(S)S, LG(S)= S(0,G(S)),

then

qn = Fn(a)=
n−1∑
i=0

G(T i (τa S)),
n−1∑
i=0

S(qi , qi+1)=

n−1∑
i=0

LG(T i (τa S)),

To apply the ergodic theorem, we pick any T -invariant ergodic measure µ so
that (5-8) is true. Moreover, if µ is absolutely continuous with respect to P, then
we also have (5-10), provided that the supremum is taken over pairs (G, µ) such
that µ is TG ergodic and invariant, and µ� P.

Step 2 (upper bound) Let us assume that the initial condition is of the form
gp(q)= q · p for some p ∈Rd . Let us write U for the set of continuous functions
w : Rd

→ R, such that
lim
|q|→∞

|q|−1w(q)= 0.

We then define

H(p;w)= sup
q,Q
(w(Q)−w(q)+ p · (Q− q)− S(q, Q)).

For any w ∈ U , we use (5-4) to produce an upper bound for the large n limit of
un as follows:

un(q)= T S
n gp(q)

≤ sup
|Q−q|≤`(|p|)

[gp(Q)− (Q− q) · p− n−1(w(nQ)−w(nq))] + H(p;w)

= q · p+ H(p;w).
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As a result,

lim sup
n→∞

un(q)≤ q · p+ inf
w∈U

H(p;w)=: q · p+H(p)= sup
v

[gp(q+v)− L(v)],

where α is the Legendre transform of H .
When H is periodic in q , we have a candidate for what the minimizing w ∈ U

is namely, the solution w = w p of (1-6). Writing U0 for the set of continuous
1-periodic functions, we may write

H(p)= inf
w∈U0

H(p;w).

The point is that a more restrictive infimum in the definition of H makes it easier
when we try to match our upper bound with our lower bound in step 1. We can
also be more selective in the stochastic setting by choosing the type of w that
have τ -stationary gradient; for example see [15] for more details.

Step 3 (L̂=α) To establish homogenization, it remains to show that the upper and
lower limits of Steps 1 and 2 coincide. This may be achieved by an introduction
of a Lagrange multiplier, and an application of minimax principle. We explain
this in the periodic case. Also, we simplify our presentation by replacing the
set M with a larger set M′. The set M′ is the set of pairs (F, µ) such that µ is
an invariant measure for the corresponding map f (we dropped the ergodicity
requirement so that our choice of Lagrange multiplier simplifies). We also set

L̂ ′(v)= inf
(F,µ)∈M′

{ˆ
S(q, F(q))µ(dq) :

ˆ
(F(q)− q) µ(dq)= v

}
,

which is what we get as we replace M with M′ in (5-9). If we write Ĥ ′ for the
Legendre transform of L̂ ′;

Ĥ(p) := sup
v

(p · v− L̂(v)),

then we can show that Ĥ ′ = H :

Ĥ ′(p)= sup
(F,µ)∈M′

(ˆ (
(F(q)− q) · p− S(q, F(q))

)
µ(dq)

)
= sup

F
sup
µ

inf
w∈U0

(ˆ (
(F(q)− q) · p− S(q, F(q))

)
µ(dq)

+

ˆ (
w(F(q))−w(q)

)
µ(dq)

)
= inf
w∈U0

sup
F

sup
µ

(ˆ (
(F(q)− q) · p− S(q, F(q))

)
µ(dq)

+

ˆ
(w(F(q))−w(q)) µ(dq)

)
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= inf
w∈U0

sup
F

sup
q

(
(F(q)− q) · p− S(q, F(q))+w(F(q))−w(q)

)
= inf
w∈U0

sup
Q

sup
q

(
(Q− q) · p− S(q, Q)+w(Q)−w(q)

)
= H(p).
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