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between the Hamiltonian ODEs and Hamilton–Jacobi PDEs, and give an
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tion. We also discuss stochastic formulations of several classical problems in
symplectic geometry.
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1. Introduction

Hamiltonian systems of ordinary differential equations appear in celestial me-
chanics to describe the motion of planets. They are also used in statistical
mechanics to model the dynamics of particles in a fluid, gas or many other
microscopic models. It was known to Liouville that the flow of a Hamiltonian
system preserves the volume. Poincaré observed that the Hamiltonian flows are
symplectic; they preserve certain symplectic area of two dimensional surfaces.
Various symplectic rigidity phenomena offer ways to take advantage of the
symplecticity of Hamiltonian flows.

Writing q and p for the position and momentum coordinates respectively, a
Hamiltonian function H(q, p) represents the total energy associated with the pair
(q, p). We regard a Hamiltonian system associated with H completely integrable
if there exists a symplectic change of coordinates (q, p) 7→ (Q, P), such that our
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Hamiltonian system in new coordinates is still Hamiltonian system that is now
associated with a Hamiltonian function H(P). For completely integrable systems
the coordinates of P = P(q, p) are conserved and the set of (q, p) at which
P(q, p) takes a fixed vector is an invariant set for the flow of our system. These
invariant sets are homeomorphic to tori in many classical examples of completely
integrable systems. According to Kolmogorov–Arnold–Moser (KAM) theory,
many of the invariant tori survive when a completely integrable system is slightly
perturbed. Aubry–Mather theory constructs a family of invariant sets provided
that the Hamiltonian function is convex in the momentum variable. These
invariant sets lie on the graph of the gradient of certain scalar-valued functions.
A. Fathi [10] uses viscosity solutions of the Hamilton–Jacobi PDE associated
with the Hamiltonian function H to construct Aubry–Mather invariant measures;
see also [3]. Recently there have been several interesting works to understand
the connection between Aubry–Mather theory and symplectic topology. The
hope is to use tools from symplectic topology to construct interesting invariant
sets/measures for Hamiltonian systems associated with nonconvex Hamiltonian
functions.

Most of the aforementioned works on Hamiltonian systems are done when the
Hamiltonian function is defined on the cotangent bundle of a compact manifold.
A prime example is when p, q ∈ Rd , with H periodic in q-variable, so that we
may regard H as a function that is defined on T ∗Td

= Td
×Rd . To go beyond

the periodic case, we may take a Hamiltonian function that is quasiperiodic
with respect to q . In fact there is a probabilistic generalization of quasiperiodic
condition by selecting H randomly according to a probability measure P that
is invariant with respect to spatial shifts: τa H(q, p)= H(q + a, p). As it turns
out the Hamiltonian H can be obtained from H by a scaling limit that is called
homogenization.

In these notes we will explore the connection between Hamilton–Jacobi PDE,
homogenization, Hamiltonian ODE and symplectic topology.

1A. Hamiltonian ODE. In Euclidean setting a Hamiltonian system associated
with a C2 Hamiltonian function H : R2d

→ R is the ODE

ẋ = X H (x) := J∇H(x), (1-1)
where

J :=
[

0 I
−I 0

]
,

with I denoting the d × d identity matrix. Writing x = (q, p) with q, p ∈ Rd ,
the system (1-1) means

q̇ = Hp(q, p), ṗ =−Hq(q, p).
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We write φH
t (x) for the flow of the vector field X H . Poincaré discovered that

the form
(φH

t )
∗(αam)−αam,

is exact for αam = p · dq . As a consequence (φH
t )
∗(αm)= αm, where

αm := dαam =
d∑

i=1

dpi ∧ dqi .

This means that if A(x, t)= (dφH
t )x , then

αm(A(x, t)v, A(x, t)w)= αm(v,w) or A(x, t)∗ J A(x, t)= J.

More generally, we can define Hamiltonian vector fields on any symplectic
manifold. By a symplectic manifold we mean a pair (M, ω) with M a smooth
manifold, and ω a nondegenerate closed 2-form on M . Given a smooth function
H : M→R, we define the vector field X H = Xω

H as the unique vector field such
that

iX Hω =−d H.

In particular, LX Hω = 0, which implies the following identity for its flow

(φH
t )
∗ω = ω.

When ω = αm, and M = R2d , we have Xαm
H = J∇H .

Given a vector field X on a manifold M , we write ψ X
t for its flow. Given C1

scalar-valued function f : M→ R, we define its Lie derivative with respect to
X by

LX f (x)= d
dt f (ψt(x))

∣∣
t=0 = (d f )x(X (x)). (1-2)

More generally, if u(x, t)= f (ψt(x)), then

ut = LX u.

where ut denotes the partial derivative of u with respect to t . From this, we learn
that a function f ∈ C1(M;R) is conserved along the flow of X if and only if
LX f = 0. In the case of a Hamiltonian vector field X = X H , the Lie derivative
LX f is the Poisson bracket of H and f :

{H, f } := LX H f = (d f )(X H )=−ω(X f , X H )= ω(X H , X f ).

1B. Completely integrable systems. We may call a Hamiltonian ODE com-
pletely integrable if we have a sufficiently explicit formula for its solutions. One
strategy to achieve this is by finding enough conservation laws. As it turns out, a
Hamiltonian system on a manifold M is completely integrable if it has d many
independent conservation laws that do not interact with each other. Note that if
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f1, . . . , fk : M→ R are C2 functions such that {H, fi } = 0, i = 1, . . . , k, then
the set

MP = {x ∈ M : ( f1(x), . . . , fk(x))= P},

is invariant for the flow

x ∈ MP =⇒ φt(x) ∈ MP .

We recall a classical result of Liouville and Arnold; see for example [2].

Theorem 1.1. Assume that there are C2 functions f1, . . . , fd : M→R such that
the following conditions hold:

• {H, fi } = { fi , f j } = 0 for all i and j .

• For P ∈ Rd , the corresponding set MP is compact.

• For each x ∈ MP , the vectors X f1(x), . . . , X fd (x) are linearly independent.

Then each such MP is homeomorphic to a d-dimensional torus. Moreover, the
motion of X H on MP is conjugate to a linear motion. In other words, there exists
a symplectic diffeomorphism 9 : Td

×Rd
→ M such that 9−1

◦φH
t ◦9 is the

flow of a Hamiltonian ODE for which the Hamiltonian function is independent of
position.

Remark 1.2. (i) For an example, assume that M = T ∗Td
= Td

× Rd , and
consider a Hamiltonian function H that is independent of q. If we think of a
torus as [0, 1]d with 0= 1, then the motion is given by x(t)= x + tv (mod 1),
for some vector v =∇H(p) ∈ Rd . Depending on the vector v, we may have a
periodic or quasiperiodic orbit. (The latter means that the closure of the orbit is
a k-dimensional linear subtorus for some k > 1.)

(ii) The set MP is an example of a Lagrangian submanifold. This means that
dim MP = d and ω �MP= 0. The latter follows from

ω(X fi , X f j )= { fi , f j } = 0,

and the independence of {X fi (x)}
d
i=1, for every x ∈ MP .

(iii) When f1 = H , let us present a sketch of the proof of the Arnold–Liouville
theorem. If we define φt : M→ M, t = (t1, . . . , td) ∈ Rd by

φt(x)= φ
f1

t1 ◦ · · · ◦φ
fd

td ,

then φt(MP)⊆ MP . On the other hand, if we pick some point a ∈ MP and set
ϕ(t)= φt(a), then ϕ : Rd

→ MP , and the set

0 = {t ∈ Rd
: ϕ(t)= ϕ(0)= a},
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is a subgroup of (Rd ,+). Indeed the compactness of MP and the linear indepen-
dence of {X fi (x)}

d
i=1 imply that the subgroup 0 is discrete. That is, there are

vectors v1, . . . , vd , such that

0 = {n1v1+ · · ·+ ndvd : n1, . . . , nd ∈ Z}.

Hence the quotient Rd/0 is a torus and the map ϕ yields a homeomorphism
ϕ̂ : Rd/0→ MP . Moreover, assuming that f1 = H , then φH

s is conjugate to
the map (t1, . . . , td) 7→ (t1+ s, . . . , td). If we use the basis (v1, . . . , vd) for Rd ,
we can then show that φH

s is conjugate to a linear motion. Writing Q for the
coordinates of Rd/0 ≡ Td , we have a homeomorphism 9 P

= ϕ̂ : Td
→ MP .

As we vary P , we obtain a map

9 : T ∗Td
= Td

×Rd
→ M.

We think of 9(Q, P)= x as a parametrization of M . Setting H(P)= H(x)=
H(9(Q, P)), for x ∈MP , we obtain a new Hamiltonian function H : T ∗Td

→R

that is independent of Q. The motion of φ̂t(Q(0), P(0)) := (Q(t), P(t)) may
be defined by

φ̂t :=9
−1
◦φH

t ◦9.

We already know that Q(t) is a linear motion and that P(t) = P(0). We may
regard this motion as a solution to the Hamiltonian ODE

Q̇ =∇H(P), Ṗ = 0.

In summary, we have seen that for a completely integrable Hamiltonian ODE,
we can find a change of coordinates that turns our system to a linear motion.
That is, there exists a diffeomorphism 9 such that

φH
t =9

−1
◦φH

t ◦9, H = H ◦9, (1-3)

for a Hamiltonian function H that is independent of position. Recall that both φH
t

and φH
t are symplectic. It is no surprise that the change of coordinates map 9

is also symplectic. As the following proposition indicates, a symplectic change
of coordinates always transforms a Hamiltonian system to another Hamiltonian
system.

Proposition 1.3. Let (M, ω) and (M ′, ω′) be two symplectic manifolds and
assume that9 :M ′→M is a diffeomorphism such that9∗ω=ω′. Let H :M→R

be a Hamiltonian function on M , and let φH
t be the flow of Xω

H . Then

φ̂t :=9
−1
◦φH

t ◦9,

is the flow of the vector field Xω′

H
for H = H ◦9.

We refer to [13; 19; 24] for an introduction to symplectic geometry.
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1C. Kolmogorov–Arnold–Moser (KAM) theory. We may take a small perturba-
tion of a completely integrable system and wonder whether or not some of the in-
variant tori persist. It turns out that for a small perturbation, an invariant torus per-
sists if the action variable ∇H(P) is sufficiently irrational; see for example [32].

Theorem 1.4. Assume that H : Td
×Rd

→ R is of the form

H ε(q, p)= H 0(p)+ εK (q, p),

with det D2 H0 6= 0 and K real analytic. Then for every τ, γ > 0, there exists
ε0 = ε0(τ, γ ) > 0 such that if ∇H 0(p) satisfies a Diophantine condition of the
form

n ∈ Zd
\ {0} =⇒ |n · ∇H 0(p)| ≥ γ |n|−τ ,

then the vector field X H ε has a quasiperiodic orbit of velocity ∇H 0(p), whenever
|ε| ≤ ε0.

Remark 1.5. It is worth mentioning that if we set

D(γ, τ )= {v ∈ Rd
: |v · n| ≥ γ |n|−τ for all n ∈ Zd

\ {0}},

then the set D(τ )=∪γ>0 D(γ, τ ) is of full measure whenever τ > d−1. This is
because, the complement of D(γ, τ ), restricted to a bounded set, has a volume
of order O(γ |n|−τ−1), and ∑

n 6=0

|k|−τ−1 <∞,

if and only if τ + 1> d.

1D. Generating function. Note that a Hamiltonian vector field is very special
as it is fully determined by a scalar-valued function, namely its Hamiltonian
function. As it turns out, the symplectic maps are also locally determined by
scalar-valued functions known as generating functions. To explain this, take an
αm-symplectic map ψ(q, p)= (Q, P), and observe that since ψ∗αm = αm, we
can find a scalar-valued function S such that

p · dq − P · d Q = d S. (1-4)

Normally we think of S as a function of (q, p) or (Q, P). However, it is more
convenient to think of S as a function of other pairs. For example under some
nondegeneracy assumption (for example if Q p(q, p) is invertible so that we
can locally solve Q(q, p) = Q implicitly for p = p(q, Q)), we may regard
S = S(q, Q) as a function of the pair (q, Q). Under such circumstances, (1-4)
implies

Sq(q,Q)= p, −SQ(q,Q)= P, ψ(q, Sq(q,Q))= (Q,−SQ(q,Q)). (1-5)
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The scalar-valued functions S is an example of a generating function for the
symplectic map ψ . Since there are other type of generating functions that we
may consider for a symplectic map, let us refer to S as a generating function of
type I (in short GFI).

Alternatively, we may set W = p ·q− S, and regard W as a function of (Q, p)
so that (1-4) means

Wp(Q, p)= q, WQ(Q, p)= P, ψ(Wp(Q, p), p)= (Q,WQ(Q, p)).

The function W is another example of a generating function for the symplectic
map ψ and we will refer to it as a generating function of type II (in short GFII).
Another popular choice for a generating function is W ′ =W ′(q, P) that will be
referred to as a generating function of type III (in short GFIII).

If ψ is the change of coordinates transformation of a completely integrable
system, we have

H(P)= H(q, p)= H(q,W ′q(q, P)).

This means that for each fixed P , the function q 7→W ′(q, P) is a solution to a
Hamilton–Jacobi equation (HJE) associated with H . Thinking of Td

×Rd , as
T ∗Td , we interpret W ′q(q, P) as a 1-form on the torus for each P . If we write
W ′(q, P)= q · P +wP(q) and assume that wP

: Td
→ R, is periodic, then our

HJE reads as
H(q, P + (dwP)q)= H(P). (1-6)

We think of αP
= P + dwP as a closed 1-form that belongs to the cohomology

class of the constant (closed) form P .

1E. Weak KAM theory. In the classical KAM theory, we consider a small per-
turbation of a nondegenerate Hamiltonian function H0(p) that depends on p only.
We have learned that the majority of the invariant tori of unperturbed systems
persist for a sufficiently small perturbation. However some invariant tori could
be destroyed after a small perturbation. In fact Arnold constructed an example
of a perturbed integrable system, in which chaotic orbits — resulting from the
breaking of unperturbed KAM tori — coexist with the invariant tori of KAM
theorem. This phenomenon is known as Arnold diffusion. A natural question
is whether or not we can construct a family of invariant sets (MP : P ∈ Rd) for
perturbed systems that come from the invariant tori of the unperturbed system
and still carry some of their features. Aubry and Mather constructed such family
for the so-called twist maps (these maps are the analog of Hamiltonian systems
when d = 1 and time is discrete). The generalization of Aubry–Mather invariant
sets to higher dimensions was achieved by Mather, Mañé and Fathi. They prove
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the existence of interesting invariant (action-minimizing) sets, which generalize
KAM tori, and which continue to exist even after KAM tori disappearance.

Aubry–Mather theory replaces the condition of being close to an integrable
Hamiltonian with the Tonelli condition. We say that a Hamiltonian function
H : Td

×Rd
→ R is Tonelli, if the following conditions are true:

• H(q, p) is C2, and the matrix Hpp(q, p) is positive definite for every (q, p).

• |p|−1 H(q, p)→∞ as |p| →∞, uniformly in q .

According to Aubry–Mather and Mather–Mane–Fathi theory, for each P , there
exists a constant H(P), a Lipschitz function wP

: Td
→ R, and an invariant

measure µP for φH such that:
• The function wP solves the HJE (1-6) in a suitable weak sense.

• The support of the measure µP is a subset of

MP = {(q, P + (dwP)q) : q ∈ Td
}.

Note that we only require the function wP to be Lipschitz and not everywhere
differentiable. This is because the HJE (1-6) does no possess classical solutions
in general. One remedy for this is to consider certain generalized solutions. In
fact if we consider the so called viscosity solutions, then (1-6) always has at least
one Lipschitz solution for each P . This was established by Lions, Papanicolaou
and Varadhan [17] in 1987. We then modify the definition of MP with

MP = {(q, P + (dwP)q) : q ∈ Td , wP differentiable at q}. (1-7)

1F. From torus to general closed manifolds. We may replace the torus with any
sufficiently smooth manifold M in weak KAM theory. Now our Hamiltonian
function H is a C2 function on the cotangent bundle T ∗M . The manifold T ∗M
carries a standard symplectic form ω = dλ with λ defined as

λ(q,p)(a)= pq((dπ)(q,p)a),

where π : T ∗M → M is the projection π(q, p) = q to the base point, and its
derivative (dπ)(q,p) : T(q,p)T ∗M→ Tq M projects onto tangent vectors. Recall
that in the case of a torus, we know that the (1-6) has at least one solution by [17].
This existence result has been extended to arbitrary closed manifold and convex
Hamiltonian by Albert Fathi [10].

Theorem 1.6. Let M be a smooth closed manifold and assume that H :T ∗M→R

is a Tonelli Hamiltonian. Then for every closed form α, there exists a unique
constant H(α), and a Lipschitz function w : M→ R such that w satisfies

H(q, αq + (dw)q)= H(α), (1-8)

in viscosity sense.
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Because of the uniqueness of H , it is clear that if we add an exact form to α,
the value of H does not change. Abusing the notation slightly, we may define H
on the space H 1(M) of the cohomology classes of 1-forms and write H([α]) in
place of H(α). Alternatively, for each P ∈ H 1(M), we may fix a representative
αP in class P and search for a Lipschitz wP

:M→R such that αP
= αP

+dwP .
Even when we fix the representative, the function wP may not be unique. Given
a choice of wP , we define an invariant set M ′ by

M ′ = {(q, αP
q + (dw

P)q) : q ∈ M, wP
{ differentiable at q}. (1-9)

1G. From torus to stochastic Hamiltonian and homogenization. Weak KAM
theory à la Fathi employs the HJE (1-6) in order to construct interesting invariant
measures for the corresponding Hamiltonian ODE. It turns out that HJE can
be used to model certain deterministic and stochastic growths. More precisely,
imagine that we have an interface that separates different phases and this interface
is represented by a graph of function u( · , t) : Rd

→ R at time t . Suppose that
the growth rate of this interface depends on the position q , and the inclination of
the interface uq . Mathematically speaking, u satisfies a HJE of the form

ut + H(q, uq(q, t))= 0, (1-10)

for a Hamiltonian function H : R2d
→ R. We think of (1-10) as the microscopic

equation describing the evolution of the interface. If a large parameter n represents
the ratio between the macro and micro scales, then

un(q, t)= n−1u(nq, nt),

is the corresponding macroscopic height above that macro position q at the macro
time t . We observe that un now solves

un
t + H n(q, un

q(q, t))= 0, (1-11)
where

H n(q, p)= (γn H)(q, p) := H(nq, p).

A homogenization occurs if the limit

α(q, t)= lim
n→∞

un(q, t),

exists whenever the limit

g(q) := lim
n→∞

un(q, 0),

exists. As it turns out, in many examples of interest, the limit α satisfies a simpler
HJE of the form {

αt + H(αq)= 0,
α(q, 0)= g(q).

(1-12)
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In fact we may use (1-6) to guess that when H is periodic in q, then H that
appears in (1-12) coincides with H that appears in (1-6). This is because if wP

is a periodic function that satisfies (1-6), and we choose u(q, 0)= P ·q+wP(q)
as the initial condition for (1-10), then u(q, t)= P · q − t H(P)+wP(q), and

α(q, t)= lim
n→∞

un(q, t)= P · q − t H(P),

which solves (1-12).
We may wonder whether a weak KAM theory can be achieved for H :R2d

→R

that is not necessarily periodic. Let us denote by H the set of all C1 Hamiltonian
functions H : R2d

→ R. For homogenization question, there are two relevant
group actions on H, namely the spacial translation and scaling. More precisely
we set

τa H(q, p)= H(q + a, p), γn H(q, p)= H(nq, p),

for a ∈ Rd and n ∈ R+. We certainly have

τa ◦ τb = τa+b, γm ◦ γn = γmn.

We are interested to know for what Hamiltonian H ∈ H we have weak KAM
theory and homogenization. Let us make a comment on bounded continuous
functions K of the position variable. For K : Rd

→ R, we define the translation
operator τa K (q)= K (q + a) as before. We note that if a function K is periodic
in q , then the set

{τa K : a ∈ Rd
},

is homeomorphic to a d-dimensional torus. More generally, let us take a function
K̂ : TN

→ R, and a N × d matrix A. We then set K (q)= K̂ (Aq), which is an
example of a quasiperiodic function. In fact the closure of the set

0(K ) := {τa K : a ∈ Rd
},

with respect to the uniform topology is

0(K̂ ) := {K̂ ( · + b) : b ∈ RN
},

if the following condition holds:

n ∈ ZN
\ {0} =⇒ n A 6= 0.

In general a bounded continuous function K : Rd
→ R is called almost periodic

if the set 0(K ) is precompact in Cb(R
d) with respect to the uniform topology.
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We regard the group {τa : a ∈ Rd
} as a d-dimensional dynamical system

on H. A probability measure P on H is translation invariant and ergodic if the
following conditions are met:

• For every Borel set A⊂H, and a ∈ Rd , we have P(τaA)= P(A).

• If a Borel set A is invariant i.e., τaA=A for all a ∈Rd , then P(A) ∈ {0, 1}.

We may wonder whether or not the weak KAM theory or homogenization are
applicable to generic Hamiltonian functions in the support of an invariant ergodic
measure. The hope is that Birkhoff ergodic theorem would make up for the lack
of compactness that has played an essential role when we considered a cotangent
bundle of a compact manifold in Section 1F.

1H. Variational techniques. Homogenization questions and the existence of
interesting invariant measures are closely related to the existence of special orbits
of the Hamiltonian ODEs. Such existence questions also play central role in
several recent developments in symplectic topology. (A prime example is Floer
homology that was formulated by Floer in order to prove Arnold’s conjecture.)
Hamilton discovered a variational description for the solutions of Hamiltonian
systems. More specifically, we may reduce the existence of special orbits of
(1-1) to the existence of a critical point of a suitable action functional. To explain
this, let us assume that (M, ω) is a symplectic manifold with ω = dλ. We also
write 0T for the space of C1 functions x : [0, T ] → T ∗M . Given a Hamiltonian
function H : T ∗M ×[0, T ] → R, we define A=AH : GT → R by

A(γ )=AT
H (γ ) :=

ˆ T

0
[λγ (t)(γ̇ (t))− H(γ (t), t)] dt. (1-13)

The form λH
= λ−H dt is known as the Poincaré–Cartan form. We note that if

we regard dλH
= ω+dt ∧d H as a form on T ∗M×R, and X H = (X H , 1), then

i X̂ H
dλH
= iX Hω+ d H = 0.

Moreover, if we take a variation of a path with fixed end points, for example

w : [0, T ]× [0, δ] → T ∗M, (t, θ) 7→ w(t, θ),

with

w(t, 0)= γ (t), w(0, θ)= w(0, 0),

w(T, θ)= w(T, 0), wθ (t, 0)= v(t),
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then

−
d

dθ

ˆ
w( · ,θ)

λ
∣∣
θ=0 = lim

h→0
h−1

[ˆ
w( · ,0)

λ−

ˆ
w( · ,h)

λ

]
= lim

h→0
h−1
ˆ
w([0,T ]×[0,h])

ω

= lim
h→0

h−1
ˆ h

0

ˆ T

0
ωw(wt , wθ ) dt dθ

=

ˆ T

0
ωγ (γ̇ , v) dt.

(Note that the orientation of w must be compatible with γ = w( · , 0) for Stokes
theorem to apply.) This in turn implies

d
dθ

AT
H (w( · , θ))

∣∣
θ=0 =−

ˆ T

0
(iγ̇ω+ d H)γ (v) dt

=−

ˆ T

0
(iγ̇−X H (γ )ω)γ (v) dt. (1-14)

Hence, if we restrict A to the set of curves with the same end points, then its
critical points are the orbits of X H . In fact the critical values of A solve the
corresponding Hamilton–Jacobi PDE. To explain this, first we argue that the
action functional can be used to produce generating functions for φH

T . Indeed if
we define λT

H : T
∗M→ R, by

λT
H (x)=AH (η

x
T ), where ηx

T (t)= φ
H
t (x) for t ∈ [0, T ], (1-15)

then λT
H is a generating function for φH

T .

Proposition 1.7. For every T ≥ 0 and any Hamiltonian H , we have

dλT
H = (φ

H
T )
∗λ− λ. (1-16)

Proof. Set

A(x)=
ˆ
ηx

T

λ, B(x)=
ˆ T

0
H(ηx

T (t), t) dt.

Take any (τ (θ) : 0 ≤ θ ≤ δ) with τ(0)= x and τ̇ (0)= v ∈ Tx M . Set y(t, θ)=
φH
−t(τ (θ)),

2h = {y(t, θ) : 0≤ t ≤ T, 0≤ θ ≤ h},
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and use Stokes’ theorem to assert that for h ∈ (0, δ),

h−1
ˆ h

0

ˆ T

0
ωy(yt , yθ )dt dθ = h−1

ˆ
2h

dλ

= h−1
[ˆ

ητ(0)
λ−

ˆ
ητ(h)

λ+

ˆ
ϕ◦τ( ·)

λ−

ˆ
τ( ·)

λ

]
,

h−1
ˆ h

0

ˆ T

0
(iX Hω)y(yθ )dt dθ = h−1

[ˆ
ητ(0)

λ−

ˆ
ητ(h)

λ+

ˆ
τ( ·)

(ϕ∗λ−λ)

]
,

where ϕ = φH
T . Sending h→ 0 yields

−(d B)x(v)=−(d A)x(v)+ (ϕ∗λ− λ)x(v).

This is exactly (1-16). �

Let us assume that M=R2d , ω=αm, and that H is a C2 Hamiltonian function
with D2 H uniformly bounded. With the aid of Proposition 1.7 we may define a
GFI of φH

t by

S(q(t), t; q) :=
ˆ t

0
[p(s) · q̇(s)− H(q(s), p(s), s)] ds, (1-17)

where (q(s), p(s))= φH
s (q(0), p(0)). Hence

φH
t (q,−Sq(Q, t; q))= (Q, SQ(Q, t; q)),

q(0)= q,

q(t)= Q,

p(t)= SQ(Q, t; q).

Differentiating both sides of (1-17) with respect to t yields

St(Q, t; q)+ SQ(Q, t; q) · q̇ = p(t) · q̇(t)− H(q(t), p(t), t).

As a result,
St(Q, t; q)+ H(Q, SQ(Q, t; q), t)= 0. (1-18)

Similarly if we set W = S+q · p, and regard W (Q, t; p) as a function of (Q, p),
then

W (q(t), t; p(0))= p(0) · q(0)+
ˆ t

0
[p(s) · q̇(s)− H(q(s), p(s), s)] ds.

Differentiating both sides with respect to t yields

Wt(q(t), t; p(0))+WQ(q(t), t; p(0)) · q̇(t)= p(t) · q̇(t)− H(q(t), p(t), t).



310 FRAYDOUN REZAKHANLOU

This yields
Wt(Q, t; p)+ H(Q,WQ(Q, t; p), t)= 0, (1-19)

because WQ(q(t), t; p(0))= p(t).

Remark 1.8. (i) In particular, if H is 1-periodic in t , T = 1, and we define A
on the space of 1-periodic paths (loops), then the critical points of A correspond
to the periodic orbits of X H . Floer uses the gradient flow equation

ws =−∂A(w), (1-20)

to prove the existence of periodic orbits by showing that

lim
s→∞

w( · , s),

exists. Here the gradient is defined with respect to the L2 inner product, which
guarantees that (1-20) is an elliptic (in fact Cauchy–Riemann type) PDE. One
may use the elliptic regularity of the solutions to obtain the compactness of path
w in a suitable Sobolev space.

(ii) When H is a Tonelli Hamiltonian, it is more convenient to work with an action
functional that is expressed in terms of the Legendre transform of H . To explain
this, let us assume that there exists a C2 function L : T M → R, L = L(q, v),
that is convex in the velocity v, and that the transformation L : T M→ T ∗M ,

L(q, v)= (q, Lv(q, v)), (1-21)

is a C1 diffeomorphism with

p = Lv(q, v) if and only if v = Hp(q, p).

(Here we identify (Tq M)∗∗ with Tq M .) The Lagrangian function L and the
Hamiltonian function H are related to each other by Legendre transform

L(q, v)= sup
p∈T ∗q M

(p(v)− H(q, p)), H(q, p)= sup
v∈Tq M

(p(v)− L(q, v)).

Moreover
H ◦ L(q, v)= Lv(q, v)(v)− L(q, v).

Given a C1 path α : [0, T ] → M , we may define,

L(α) :=
ˆ T

0
L(α, α̇) dt.

Note that if x(t)= φH
t (a) is a solution of (1-1), then

λx(ẋ)− H(x)= pq((dπ)x(ẋ))− H(q, p)= pq(q̇)− H(q, p)= L(q, q̇).
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Hence

A(x( · ))=
ˆ T

0
(λx(ẋ)− H(x)) dt =

ˆ T

0
L(q, q̇) dt = L(q( · )).

By a classical work of Tonelli, we have the following results:

• If we regard the action functional L as a function on paths α : [0, T ] → M
with specified endpoints, then L has a minimizer q( · ). As a consequence,
this minimizer is a critical point of L, and satisfies the Euler–Lagrange
equation

d
dt

Lv(q, q̇)= Lq(q, q̇). (1-22)

• The corresponding path x(t)= L(q(t), q̇(t)) satisfies equation (1-1).

1I. Discrete models. Any symplectic map ψ from a symplectic manifold to
itself serves as an example of a discrete analog of a Hamiltonian flow. We will
be mainly interested in those symplectic diffeomorphisms for which a global
generating function exists. For example, we may assume that a generating
function of the first kind exists, i.e., (1-5) holds for some S(q, Q) (with a slight
abuse of notation we use the letter S for our generating function as in Section 1D).
In the Euclidean setting, we may write S(q, Q) =: L(q, Q − q). If L(q, v) is
bounded below and has a superlinear growth at infinity in the velocity variable v,
we call the corresponding map ψ a twist map and the corresponding dynamical
model is a generalization of the Frenkel–Kontorova model. Given a sequence
q = (q0, q1, . . . , qn), we define its action by

A(q)=
n∑

i=1

S(qi−1, qi )=

n∑
i=1

L(qi−1, qi − qi−1).

The critical points of A correspond to the orbits of ψ . As we will see in Section 2,
we may use the minimizers of A to construct interesting orbits of ψ .

We may also consider a generating function W (Q, p)= Q · p−w(Q, p) of
type III so that

ψ(Q−wp(Q, p), p)= (Q, p−wQ(Q, p)).

In other words,

Q = q +wp(Q, p), P = p−wQ(Q, p),

which should be regarded as a discrete analog of a Hamiltonian ODE, with the
function w playing the role of the Hamiltonian function.
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Example 1.9 (standard map). Consider the Hamiltonian function H(q, p) =
1
2 |p|

2
+ V (q) for a C2 potential function V : Td

→ R. The corresponding
Hamiltonian equations are

q̇ = p, ṗ =−∇V (q).

For a discrete version of these equations, we consider a map ψ(q, p)= (Q, P)
with

P = p−∇V (q), Q = q + P.

This corresponds to a symplectic map associated with the generating function

S(q, Q)= 1
2 |Q− q|2− V (q).

2. Twist maps and their generalizations

The origin of the twist maps goes back to Poincaré’s work on area-preserving
maps on annulus that he encountered in his work on 3-body problem of celestial
mechanics. Before embarking on studying twist maps, we give an overview of
circle diffeomorphisms and their rotation numbers.

Definition 2.1. (i) Regarding S1 as the interval [0, 1] with 0 = 1, let f :
bS1
→ S1 be an orientation preserving homeomorphism. Its lift F = `( f )

is an increasing map F : R→ R such that f (x) = F(x) (mod 1), and F
can be written as F(x)= x +G(x), for a 1-periodic function G : R→ R.
We may also regard G as a map on the circle: g : bS1

→ R, g(x)= G(x)
for x ∈ [0, 1).

(ii) We define π : R→ S1 by π(x) = e2π i x . For f and F as in (i), we define
its rotation number

ρ(F)= lim
n→∞

n−1 Fn(x), ρ( f )= π(ρ(F)). (2-1)

(iii) Given ρ ∈ [0, 1), we write rρ for a rotation of the circle through the angle
ρ. Its lift Rρ is given by Rρ(x)= x + ρ.

(iv) We write D(τ ) for the set of numbers that satisfy a Diophantine condition
of type τ . More precisely, ρ ∈ D(τ ) if and only if there exists a positive
constant c such that for every r, s ∈ Z,∣∣∣∣ρ− r

s

∣∣∣∣≥ c
|s|τ

.

Theorem 2.2 (Poincaré). Let f : bS1
→ S1 be an orientation preserving homeo-

morphism and write F for its lift. Then the following statements are true:
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(i) The rotation number always exists and is independent of x.

(ii) f has a fixed point if and only if ρ( f )= 0.

(iii) ±ρ(F) > 0 if and only if ±(F(x)− x) > 0.

(iv) Let (r, s) be a pair of coprime positive integers. Then f has a (r, s)-periodic
orbit (this means that F s(x) = F(x) + r for F = `( f )), if and only if
ρ( f )= r/s.

(v) If ρ( f ) /∈Q, then the set �∞(x) of the limit points of the sequence { f n(x) :
n ∈ N} is independent of x , and is either S1 or nowhere dense.

Proof. We only prove (i) and refer to [14] for the proof of the other parts.
By induction, we can readily show that if F(x) = x + g(x) for a periodic

function g, then Fn(x) = x +Gn(x) for a periodic function Gn that is simply
given by

Gn(x)=
n−1∑
i=0

G(F i (x))=
n−1∑
i=0

g( f i (x)). (2-2)

Since Fn is increasing, we learn that if 0≤ y ≤ x < 1, then

x +Gn(x)= Fn(x)≥ Fn(y)= y+Gn(y) or Gn(y)−Gn(x)≤ x − y < 1.

From this and 1-periodicity of Gn we deduce that Gn(y)−Gn(x) < 1 for all x
and y. Hence

Gm+n(x)= Gm(x)+Gn(Fm(x))≤ Gm(x)+Gn(x)+ 1.

This means that the sequence {an =Gn(x)} is almost subadditive (more precisely,
the sequence {an + 1} is subadditive). From this we deduce

ρ(x)= lim
n→∞

n−1Gn(x)= lim
n→∞

n−1(Fn(x)− x)= lim
n→∞

n−1 Fn(x),

exists. From the last equality we learn that the limit ρ is nondecreasing, whereas
the first equality implies that ρ is 1-periodic. This is possible only if ρ(x) is a
constant function. �

Theorem 2.3. Let f and F be as in Theorem 2.2:

(i) (Denjoy) If f ∈C1 with f ′ a function of bounded variation, and ρ = ρ( f ) /∈
Q, then there exists a homeomorphism h such that f = h−1

◦ rρ ◦ h.

(ii) (Herman [12]) If f ∈ C2+α with α ∈ [0, 1), and ρ(F) ∈ D(τ ) for some
τ > 2, then h in part (i) is in C1+α . (See Definition 2.1(iv) for the definition
of D(τ ).)
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Remark 2.4. (i) Let us write H , F , and Rρ(x) = x + ρ, for the lifts of the
maps h, f and rρ , respectively. Since the Lebesgue measure is invariant for Rρ ,
and F ◦ H−1

= H−1
◦ Rρ , we learn that for any 1-periodic continuous function

ζ : R→ R, ˆ
ζ ◦ F d H =

ˆ
ζ d H.

In other words, the measure µ with µ[0, x]= H(x) is invariant for f . Hence part
(ii) is equivalent to the statement that if f ∈ C2+α, then the dynamical system
associated with f is (uniquely) ergodic with an invariant measure that has a Cα

density with respect to Lebesgue measure.

(ii) In terms of the invariant measure, the rotation number can be express as

ρ( f )=
ˆ

g dµ,

by (2-1), (2-2) and the ergodic theorem.

(iii) Define F to be the set of continuous increasing functions F : R→ R such
that

sup
x
|F(x)− x |<∞.

Write F(x)= x +G(x), and define a translation operator that translates G:

(τa F)(x)= F(x + a)− a = x +G(x + a).

Let P be a τ -invariant ergodic probability measure on F . Then one can show
that there exists a constant ρ(P) such that

lim
n→∞

n−1 Fn(x)= ρ(P),

for P-almost all choices of F .

We next study cylinder maps.

Definition 2.5. (i) Let ϕ : bS1
× [−1, 1] → S1

× [−1, 1], be an orientation
preserving homeomorphism. Its lift `(ϕ)=8 : R×[−1, 1] → R×[−1, 1]
is a homeomorphism such that

ϕ(x)=8(x) (mod 1),

and 8 can be written as 8(q, p) = (q, 0) + 9(q, p), for a continuous
9 : R×[−1, 1] → R×[−1, 1], that is 1-periodic function in q-variable.

(ii) An orientation-preserving diffeomorphism ϕ : bS1
×[−1, 1]→S1

×[−1, 1]
is called a twist map if the following conditions are met:

(a) ϕ (or equivalently its lift 8) is area-preserving.
(b) If we define 8± by (8±(q),±1)=8(q,±1), then ±(8±(x)− x) > 0.

Equivalently, ±ρ(8±) > 0.
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Our main result about twist maps is the following:

Theorem 2.6 (Poincaré and Birkhoff). Any twist map has at least two fixed
points.

Poincaré established Theorem 2.6 provided that ϕ has a global generating
function. Such a generating function exists if ϕ is a monotone twist map. To
explain Poincare’s argument, let us formulate a condition on8= `(ϕ) that would
guarantee the existence of a global generating function S(q, Q) for 8.

Definition 2.7. A C1 area-preserving map ϕ or its lift 8(q, p) = (Q(q, p),
P(q, p)) is called positive twist if Q p(q, p) > 0 for all (q, p). We say ϕ is
negative twist if ϕ−1 is a positive twist. We say that ϕ is a monotone twist, if ϕ
either positive or negative twist.

Proposition 2.8. Let8 be a monotone twist map. Then there exists a C2 function
S :U → R with

U = {(q, q ′) : Q(q,−1)≤ q ′ ≤ Q(q,+1)}

such that
8(q,−Sq(q, Q))= (Q, SQ(q, Q)).

Moreover
S(q + 1, Q+ 1)= S(q, Q), Sq Q < 0. (2-3)

Proof. The image of the line segment {q}× [−1, 1] under 8 is a curve γ with
parametrization γ (p)= (Q(q, p), P(q, p)). By the monotonicity, the relation
Q(q, p) = Q can be inverted to yield p = p(q, Q) which is increasing in Q.
The set γ ([−1, 1]) can be viewed as a graph of the function

Q 7→ P(q, p(q, Q))

with Q ∈ [Q(q,−1), Q(q,+1)]. The antiderivative of this function yields
S(q, Q). This can be geometrically described as the area of the region1 between
the curve γ ([−1, 1]), the line P =−1, and the vertical line {q}× [−1, 1]. We
now apply 8−1 on this region. The line segment {Q} × [−1, 1] is mapped to
a curve γ̂ ([−1, 1]) which coincides with a graph of a function q 7→ p(q, Q).
Since 8 is area preserving the area of 8−1(1) is S(q, Q). From this we deduce
that SQ =−p. Here we have used the fact that 8−1 is a (negative) twist map;
indeed if we write 8−1(Q, P)= (q̂(Q, P), p̂(Q, P)), then

(8−1)′ =

[
q̂Q q̂P

p̂Q p̂P

]
=

[
Qq Q p

Pq Pp

]−1

=

[
Pp −Q p

−Pq Qq

]
which implies that q̂P =−Q p < 0.
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The periodicity (2-3) is an immediate consequence of8(q+1, p)=8(q, p)+
(1, 0);

8({q + 1}× [−1, 1])=8({q}× [−1, 1])+ (1, 0).

As for the second assertion in (2-3), recall that p(q, Q) is increasing in Q. Hence

Sq Q =−pQ < 0. �

We now show how the existence of a generating function can be used to prove
the existence of fixed points.

Proof of Theorem 2.6 for a monotone twist map. Define L(q) = S(q, q). We
first argue that a critical point of L corresponds to a fixed point of 8. Indeed,
if L ′(q0) = 0, then Sq(q0, q0)+ SQ(q0, q0) = 0. Since 8(q0,−Sq(q0, q0)) =

(q0, SQ(q0, q0)), we deduce that 8(q0, y0)= (q0, y0) for y0
=−Sq(q0, q0)=

SQ(q0, q0). On the other hand, by (2-3), we have that L(q + 1)= L(q). Either
L is identically constant which yields a continuum of fixed points for 8, or L is
not constant. In the latter case, L has at least two distinct critical points, namely
a maximizer and minimizer. These yield two distinct critical points of φ. �

See for example [19] for a proof of Theorem 2.6 for general twist maps.
To see Poincaré–Birkhoff’s theorem within a larger context, we interpret it in

the following way: since 0 ∈ (ρ(8−), ρ(8+)), then ϕ has at least two orbits in
the interior of the cylinder that are associated with 0 rotation number, namely
fixed points. In fact an analogous result is true for periodic orbits that is in the
same spirit as Theorem 1.1(iv).

Theorem 2.9 (Birkhoff). Let ϕ : bS1
× [−1, 1] → S1

× [−1, 1], be an area
and orientation preserving C1-diffeomorphism. If r/s ∈ (ρ(8−), ρ(8+)) is a
rational number with r and s coprime, then ϕ has at least two (r, s)-periodic
orbits in the interior of S1

×[−1, 1].

We may wonder whether a similar strategy as in the proof of Theorem 2.6
can be used to prove Theorem 2.9 when ϕ is a monotone area-preserving map.
Indeed if 8 is a monotone twist map, then we can associate with it a variational
principle which is the discrete analog of the principle of least action, as can be
seen in the following proposition.

Proposition 2.10. Let 8 be a monotone twist map with generating function S.
Fix an integer n ≥ 2:

(i) Given q and Q ∈ R, define

L(q1, q2, . . . , qn−1; q, Q)=
n−1∑
j=0

S(q j , q j+1),
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with q0 = q , and qn = Q. Then (q1, q2, . . . , qn−1) is a critical point of
L( · ; q, Q) if and only if there exist p0, p1, . . . , pn such that 8(q j , p j )=

(q j+1, p j+1) for j = 0, 1, 2, . . . , n− 1.

(ii) Given a positive integer r , define

K (q0, q1, . . . , qn−1)= S(qn−1, q0+ r)+
n−2∑
j=0

S(q j , q j+1).

Then (q0, q1, . . . , qn−1) is a critical point of K if and only if there exist
p0, p1, p2, . . . , pn such that8(q j , p j )= (q j+1, p j+1) for j = 0, . . . , n−1,
with qn = q0+ r .

Proof. We only prove (ii) because (i) can be proved by a verbatim argument.
Let (q0, . . . , qn−1) be a critical point and set qn = q0 + r . We also set p j =

−Sq(q j , q j+1). The result follows because if Pj = SQ(q j , q j+1), then

Kq j = p j − Pj−1, 8(q j , p j )= (q j+1, Pj ),

for j = 0, 1, 2, . . . , n− 1. �

As we mentioned earlier, Theorem 2.9 for monotone twist maps can be
established with the aid of Proposition 2.10. See, for example, [14] or [11] for a
reference.

Remark 2.11. Naturally we are led to the following question: Can we find
an orbit of ϕ associated with such ρ ∈ (ρ(8−), ρ(8+))? The answer to this
question is affirmative and this is the subject of the Aubry–Mather theorem. For
any irrational ρ ∈ (ρ(8−), ρ(8+)), There exists an invariant set on the cylinder
that in some sense has the rotation number ρ. This invariant set q-projects onto
either a Cantor-like subset of S1 or the whole S1. The invariant set lies on a
graph of a Lipschitz function defined on S1. These invariant sets are known as
Aubry–Mather sets.

Arnold formulated an influential conjecture that is a vast generalization of
Theorem 2.6 to higher dimensions. Given a Hamiltonian function H :M×R→R

on a closed symplectic manifold (M, ω), we may wonder whether or not the
corresponding Hamiltonian vector field X H = Xω

H has T -periodic orbits for a
given period T . Arnold’s conjecture offers a nontrivial lower bounds on the
number of such periodic orbits. To convince that such a question is natural
and important, let us examine this question when the Hamiltonian function is
time-independent first. We note that for the autonomous X H we can even find
rest points (or constant orbits) and there is a one-one correspondence between
the constant orbits of X H and the critical points of H . We can appeal to the
following classical theories in algebraic topology to obtain sharp universal lower
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bounds on the number of critical points of a smooth function on M where M is
a smooth closed manifold. Let us write Crit(H) for the set of critical points of
H : M→ R:

(i) According to Lusternik–Schnirelmann (LS) theorem,

]Crit(H)≥ c`(M), (2-4)

where c`(M) denotes the cuplength of M .

(ii) According to Morse theory, for a Morse function H ,

]Crit(H)≥
∑

k

βk(M), (2-5)

where βk(M) denotes the k-th Betti’s number of M .

According to Arnold’s conjecture, the analogs of (2-4) and (2-5) should be
true for the nonautonomous Hamiltonian functions provided that we count 1-
periodic orbits of X H in place of constant orbits. For the sake of comparison, we
may regard (2-4) and (2-5) as a lower bound on the number of 0-periodic orbits
when H is 0-periodic in t . In Arnold’s conjecture, we replace 0-periodicity with
1-periodicity. Note that if H is 1-periodic in time, then φH

t+1(x)= φ
H
t (x) for all

t if and only if φH
1 (x)= x . To this end, we define

Fix(H) := {x ∈ M : φH
1 (x)= x} =: Fix(φH

1 ). (2-6)

Arnold’s conjecture. Let (M, ω) be a closed symplectic manifold and let H :
M×[0,∞)→R be a smooth Hamiltonian function that is 1-periodic in the time
variable. Then

] Fix(H)≥ c`(M). (2-7)

Moreover, if ϕ := φH
1 is nondegenerate in the sense that det(dϕ− id)x 6= 0 for

every x ∈ Fix(ϕ), then
] Fix(H)≥

∑
k

βk(M). (2-8)

We now describe a strategy for tackling Arnold’s conjecture under some addi-
tional conditions on M : We may establish the Arnold’s conjecture by studying
the set of critical points of AH : G → R, where 0 is the space of 1-periodic
x : bS1

→ M and

AH (x( · ))=
ˆ
w

ω−

ˆ
S1

H(x(t), t) dt. (2-9)

where w : bD→ M is any extension of x : bS1
→ M to the unit disc D. Note

that the right-hand side of (2-9) would be independent of the extension w if
the symplectic form ω is aspherical i.e.,

´
f (S2)

ω = 0 for every smooth map
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f : bS2
→ M . We may try to apply LS and Morse theory to the functional AH

in order to get lower bounds on ]Fi x(H). Of course we cannot apply either
Morse theorem (2-5) or LS theorem (2-4) to AH directly because 0 is neither
compact nor finite-dimensional. However in the case of a torus or the cotangent
bundle of a torus (namely M = Td

×Rd), we may reduce the dimension to a
finite (possibly very large) number by using generalized generating functions;
see [11] for example. In fact, one can show that φH

t has a type II or III generating
function (as we discussed in Section 1H and 1I) provided that t is sufficiently
small. We then use the group property of the flow to write

ϕ = φH
1 = ψ1 ◦ · · · ◦ψN ,

where each ψi has a generating function. This can be used to build a generalized
generating function for ϕ à la Chaperon [7]. We may establish Arnold’s conjec-
ture with the aid of generalized generating functions in some cases. Arnold’s
conjecture was established by Conley and Zehnder when M = T2d .

Theorem 2.12. Assume that ϕ = φH
1 , for a smooth Hamiltonian function H :

T2d
×R→ R such that H(x, t + 1)= H(x, t) for every (x, t) ∈ T2d

×R. Then
ϕ has at least 2d + 1 fixed points.

We first prove Theorem 2.12, when the map φ has a global generating function.
Before embarking on this, we make some observations and state some definitions.

For our purposes, it is more convenient to think of the Hamiltonian function
as a function H : R2d

×R→ R that is 1-periodic in all the coordinates of (x, t).
(With a slight abuse of notion, this Hamiltonian function is also denoted by H .)
The flow of this Hamiltonian function is denoted by 8H

t : R
2d
→ R2d . Note that

8 :=8H
1 is a lift of ϕ of Theorem 2.12.

Definition 2.13. (i) Let us write H=H(R2d) for the space of C2 Hamiltonian
functions H : R2d

×R→ R. For each a = (b, c) ∈ Rd
×Rd , we define

(τb H)(q, p, t)= H(q + b, p, t),

(ηc H)(q, p, t)= H(q, p+ c, t),

(θa H)(q, p, t)= H(q + b, p+ c, t).

(ii) We write C1 for the set of C1 maps 8 :R2d
→R2d . We set F(8)=8− id ,

where id denotes the identity map. We write S for the set of symplectic
diffeomorphism 8 : R2d

→ R2d and set S̃ = F(S). For a ∈ R2d , the
translation operators θa : R

2d
→ R2d and θa, θ

′
a : cC1

→ C1 are defined by

θa(x)= x + a, θa F = F ◦ θa, θ ′a = F−1
◦ θa ◦F,
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for x ∈ R2d and F ∈ C1. Note that for 8 ∈ C1,

(θ ′a8)(x)= (θ−a ◦8 ◦ θa)(x)=8(x + a)− a.

(iii) Let 8 be a symplectic diffeomorphsim with

8(q, p)= (Q(q, p), P(q, p)).

We say that 8 is exact if for every p ∈ Rd , the map q 7→ Q(q, p) is a
diffeomorphism of Rd . We write q̂(Q, p) for the inverse:

Q(q, p)= Q⇔ q = q̂(Q, p).

We also set P̂(Q, p)= P(q(Q, p), p), and

8̂(Q, p)= (q̂(Q, p), P̂(Q, p)), 8̃(Q, p)= (P̂(Q, p), q̂(Q, p)).

Proposition 2.14. (i) We have F(θ ′a8)= θaF(8), and

φθa H
= θ−a ◦φ

H
◦ θa = θ

′

aφ
H . (2-10)

In particular, if H is 1-periodic, i.e., θn H = H , for all n ∈Z2d , and8=φH
1 ,

then F(8) is also 1-periodic.

(ii) For every exact 8, and a ∈ Rd , we have

θ̂ ′a8= θ
′

a8̂.

In particular, if F(8) is 1-periodic, then so is F(8̂).

(iii) Assume that 8 ∈ S is exact. Then there exists a C2 function W : R2d
→ R

such that 8̃=∇W .

(iv) If F(8) is 1-periodic, withˆ
T2d

F(8)(x) dx = 0,

then
W (Q, p)= Q · p−w(Q, p),

for a function w that is 1-periodic.

Proof. (i) The proof of F(θ ′a8)= θaF(8) is straightforward and is omitted. The
claim (2-10) is an immediate consequence of the fact that if y( · ) is an orbit of
Xθa H , then x( · )= θ−a y( · )= y( · )− a is an orbit of X H .

(ii) Fix a = (b, c) ∈ R2d . Let us define

8a(q, p) := (θ ′a8)(q, p)= (Qa(q, p), Pa(q, p)),

8̂a(Q, p) = (q̂a(Q, p), P̂a(Q, p)).
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We certainly have

Q(q + b, p+ c)− b = Qa(q, p)= Q⇔ q̂a(Q, p)= q,

Q(q + b, p+ c)= Q+ b⇔ q̂(Q+ b, p+ c)= q + b.

Hence q̂a(Q, p)= q̂(Q+ b, p+ c)− b. On the other hand

P̂a(Q, p)= Pa(q̂a(Q, p), p)

= P(q̂a(Q, p)+ b, p+ c)− c

= P(q̂(Q+ b, p+ c), p+ c)− c

= P̂(Q+ b, p+ c)− c,

as desired.

(iii) Since 8 is symplectic, we have

d(P̂ · d Q+ q̂dp)= d(P̂ · d Q+ d(p · q̂)− p · dq̂)

= d(P̂ · d Q− p · dq̂)

= d(P · d Q− p · dq)

= 0.

Hence, there exists a function W =W (Q, p) such that

dW = P̂ · d Q+ q̂ · dp.

As a result, ∇W = 8̃.

(iv) Define

Ĝ := F(8̂), w(Q, p) := Q · p−W (Q, p), ∇̂w := (wp, wQ).

We certainly

(Q, p)+ Ĝ(Q, p)=∇W (Q, p)

= (Wp(Q, p),WQ(Q, p))

= (Q−wp(Q, p), p−wQ(Q, p))

= (Q, p)−∇̂w(Q, p).

In summary, ∇̂w =−G. By (ii) we know that Ĝ is a 1-periodic function. We
wish to show that w is also a 1-periodic function. For this, it suffices to show

ˆ
[0,1]2d

∇̂w(y) dy =−
ˆ
[0,1]2d

Ĝ(y) dy = 0.
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(Here y = (Q, p).) To verify this, observe that if

A := (B,C) :=
ˆ
[0,1]2d

Ĝ(y) dy, B,C ∈ Rd ,

then there exists a C2 periodic function v(Q, p) such that Ĝ− A =−∇̂v, or

P̂(Q, p)= C + p− vQ(Q, p), q̂ = B+ Q− vp(Q, p).

On the other hand, by assumption,

0=
ˆ
[0,1]2d

G(q, p) dq dp

=

ˆ
[0,1]2d

(Q(q, p)− q, P(q, p)− p) dq dp

=

ˆ
[0,1]2d

(Q− q̂(Q, p), P̂(Q, p)− p) det(q̂Q(Q, p)) d Q dp

=

ˆ
[0,1]2d

(vp(Q, p)− B,C − vQ(Q, p)) det(I − vQp(Q, p)) d Q dp

= (−B,C)+
ˆ
[0,1]2d

J∇v(Q, p) det(I − vQp(Q, p)) d Q dp,

where I denotes the (2d)× (2d) identity matrix. We are done if we can showˆ
[0,1]2d

∇v(Q, p) det(I − vQp(Q, p)) d Q dp = 0. (2-11)

The proof of this is left as an exercise. �

Exercise. Verify (2-11).

With the aid of Proposition 2.14, we can establish Theorem 2.12 when 8 (the
lift of ϕ) is exact in the sense of Definition 2.13(iii). The proof can be carried
out in exactly the same way that we proved Theorem 2.6 for monotone twist
maps. To go beyond exact maps, we first express8=81

H as a finite composition
of exact maps and use their generating functions to construct a (generalized)
generating function of type II for 8.

Proposition 2.15. Let 8i , i = 1, . . . , k, be k exact symplectic diffeomorphisms
with generating functions W i (Q, p)=Q·p−wi (Q, p), i=1, . . . , k, respectively.
Let 8=8k ◦ · · · ◦81:

(i) With p0 = p, qk = Q, and ξ = (q1, p1, . . . , qk−1, pk−1), define

W (Q, p; ξ)=
k∑

i=1

W i (qi , pi−1)−

k−1∑
i=1

qi · pi =: Q · p+w(Q, p; ξ).
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Then

Wξ (Q, p; ξ)= 0=⇒8(Wp(Q, p; ξ), p)= (Q,WQ(Q, p; ξ)). (2-12)

In particular, if the full derivative ∇W of W with respect to its arguments
Q, p and ξ vanishes at some point (α, α, ξ), then (α, α) is a fixed point
of 8.

(ii) Given x = (x0, . . . , xk−1), x0 = (q0, p0), . . . , xk−1 = (qk−1, pk−1), define

Ak(x)=
k∑

i=1

W i (qi , pi−1)−

k∑
i=1

qi · pi ,

with x0 = xk = (qk, pk). (In other words, Ak is defined for k-periodic
sequences.) Then any critical point x of Ak yields an orbit 8i (xi−1) =

xi , i = 1, . . . , k. In particular x0 = xk is a fixed point of 8.

Proof. (i) If we write q̂i−1 = W i
p(qi , pi−1), and p̂i = W i

Q(qi , pi−1), then
8i (q̂i−1, pi−1)= (qi , p̂i ). On the other hand, for i = 1, . . . , k− 1,

Wqi (Q, p; ξ)= p̂i − pi , Wpi (Q, p; ξ)= q̂i − qi ,

Wp(Q, p; ξ)=W 1
p(q1, p)= q̂0, WQ(Q, p; ξ)=W k

Q(Q, pk).

From this, we can readily deduce (2-12).

(ii) As in part (i),

Ak
qi
(x)= p̂i − pi , Ak

pi
(x)= q̂i − qi ,

Ak
qk
(x)= p̂k − pk, Ak

p0
(x)= q̂0− q0

for i = 1, . . . , k − 1. Hence at a critical point we have 8i (xi−1) = xi for
i = 1, . . . , k. This completes the proof. �

Remark 2.16. Note that Ak can be written as

Ak(x)=
k∑

i=1

(pi−1 · (qi − qi−1)−w
i (qi , pi−1)),

which is a discrete variant of (1-17).

Proof of Theorem 2.12 (sketch). For some sufficiently large k, we can find exact
symplectic diffeomorphisms 8i , i = 1, . . . , k, such that 8=8k ◦ · · · ◦81. In
Proposition 2.15(ii), we found a one-to-one correspondence between a fixed
point x0 of 8, and a critical point x = (x0, . . . , xk−1) of Ak . Observe that
from Proposition 2.14(iv) we know that w1, . . . , wk are periodic. Let us write
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Ak
=Ak

0−w, where

Ak
0(x)=

k∑
i=1

pi−1 · (qi − qi−1), w(x)=
k∑

i=1

wi (qi , pi−1).

To ease the notation, let us write zi = xi−xi−1= (q ′i , p′i ), and z= (z1, . . . , zk−1).
Since xk = x0, we may rewrite Ak

0 as

Ak
0(x)=

k∑
i=1

(pi−1− p0) · (qi − qi−1)=

k∑
i=1

(p′i−1+ · · ·+ p′1) · q
′

i ,

Ak
0(x)=−

k∑
i=1

(pi − pi−1) · qi =−

k∑
i=1

(pi − pi−1) · (qi − q0)

=−

k∑
i=1

(q ′i + · · ·+ q ′1) · p
′

i .

Using this, we can express Ak
0(x) as 2−1 B z · z, for a matrix B = [Bi j ]

k−1
i, j=1, with

each Bi j a (2d)× (2d) matrix. We may express B as

B =
[

0 C
−D 0

]
,

with both C and D invertible. Hence B is nonsingular. Since for each m ∈ Z2d ,

Ak(x0+m, . . . , xk−1+m)=Ak(x0, . . . , xk−1),

we can write
Ak(x)= 1

2 B z · z+ ŵ(x0, z),

for a bounded C2 function ŵ(x0, z) that is periodic in x0. Let us y= (x0, z), and
B( y) for Ak(x) in these new coordinates. Observe that B : T2d

×R2d(k−1)
→ R

is a bounded perturbation of a nondegenerate quadratic function z 7→ 2−1 B z · z.
We may study the set of critical points of B by analyzing the corresponding
gradient flow ẏ =−∇B( y). Equivalently,

ż = B z+ ŵz(x0, z), ẋ0 = ŵx0(x0, z). (2-13)

If we write ψt( y) for the flow of (2-13), and X for the set y such that the
corresponding orbit (ψt( y) : t ∈ R) is bounded, then X inherits the topology
of T2d . To explain this, observe that X = T2d

×{0}, when ŵ= 0. In general, the
projection map (x0, z) 7→ x0 from X to T2d induces an injective map from the
Cech homology of T2d to the Cech homology of X . This allows us to deduce
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that (2-13) has at least 2d + 1 many constant solution; we refer to [13] for more
details. �

Remark 2.17. (i) The full proof of Theorem 2.12 as we sketched above can
be found in [19]. A similar proof has been used in [13] by studying critical
points of the operator AH of (1-13) directly.

(ii) A variant of Theorems 2.6 and 2.12 can be proved when the periodicity of
8− id is replaced with almost periodicity, or even when 8− id is selected
randomly according to a translation invariant probability measure; see [20;
21] for more details.

Exercises. (i) Let b : R→ R be a positive 1-periodic function and write φt for
the flow of the ODE ẋ = b(x). Find the rotation number of this ODE by
evaluating the following limit:

lim
t→∞

t−1(φt(x)− x).

Also, find a strictly increasing function K : R→ R such that

K ◦φt ◦ K−1,

is a translation.

(ii) Define τab(x) = b(x + a), and write B for the set of uniformly positive
Lipschitz function b : R→ R. Let P be a τ -invariant ergodic probability
measure on B. For each b, write φt(x; b) for the flow of the ODE ẋ = b(x).
Show that P-almost surely, the limit

lim
t→∞

t−1(φt(x; b)− x),

exists for every x . Evaluate this limit.

3. Discrete type Hamilton–Jacobi equation

In Section 2 we learned how the critical points of the action functional yield the
orbits of the corresponding dynamical system. In this chapter we focus on the
critical values of the action functional. We also examine how the stochasticity
can play a role. We may choose the generating function randomly according to
a probability law, or add some noise to the dynamics.

3A. Frenkel–Kontorova model. Imagine that we have a sequence of symplectic
maps (8i : i ∈ N) such that each 8i has a type I generating function Si (q, Q),
so that

8i (q, Si
q(q, Q))= (Q,−Si

Q(q, Q)).
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We may define a dynamical system with orbits (x0, x1, . . . , xn, . . . );

xi+1 =8i+1(xi ) or xn =8n ◦ · · · ◦81(x0).

If 8i =8 is independent of i , then we have an autonomous dynamical system
with xn = 8

n(x0). Under some type of nondegeneracy assumptions on the
generating functions, we may regard our system as a second order dynamical
system in q components. By this we mean that if (xn : n = 0, 1, . . . ) is an orbit
with xi = (qi , pi ), then (qn : n = 0, 1, . . . ) is an orbit of the dynamical system
with the rule qn = Fn(qn−2, qn−1), where Fn is implicitly defined by

Sn−1
Q (qn−2, qn−1)+ Sn

q (qn−1, qn)= 0. (3-1)

Moreover, given q and Q, we can find an orbit (q0, . . . , qn), with q0= q, qn = Q,
if and only if (q1, . . . , qn−1) is a critical point of

Sn(q1, . . . , qn−1; q, Q)=
n∑

i=1

Si (qi−1, qi ).

For the construction of invariant measures, we may consider the following
variation: given a continuous function g : Rd

→ R, consider

Sn(q0, q1, . . . , qn−1; g; Q)= g(q0)+Sn(q1, . . . , qn−1; q0, Q).

Given q and Q, a critical point of Sn(q0, q1, . . . , qn−1; g; Q) yields an orbit
(x0, . . . , xn) of our dynamical system with the properties

p0 =−S1
q(q0, q1)=∇g(q0), pn = Sn

Q(qn−1, Q).

As we mentioned in Section 2, it is more convenient to write Si (q, Q) =
L i (q, Q − q). Because of some of the examples we have in mind, it is quite
natural to assume that

lim inf
|v|→∞

inf
q
|v|−1L i (q, v)=∞. (3-2)

Note that this condition is satisfied for a standard map associated with L(q, v)=
|v|2/2− V (q), for a bounded C1 function V . Assuming (3-2) is valid for each
Si , we define two operators

(Ti g)(Q)= inf
q
(g(q)+ Si (q, Q)), (T̂i g)(q)= sup

Q
(g(Q)− Si (q, Q)), (3-3)

on the space 3 of Lipschitz functions g : Rd
→ R. Note that if S(q, Q) is a

generating function for 8, then S′(q, Q)=−S(Q, q) is a generating function
for 8−1. We will see later that Ti g ∈3 when g ∈3. Observe

un(Q) := (Tn ◦ · · · ◦ T1)(g)(Q)= inf
q0,...,qn−1

(g(q0)+Sn(q1, . . . , qn−1; q0, Q)).
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We regard
un = Tn(un−1), u0 = g,

as a discrete variant of the (time inhomogeneous) HJE, where g is the initial
data. Similarly,

u−n = T̂n(u1−n), û0 = g,

is a discrete HJE with final condition u0 = g. In particular, when Si
= S is

independent of i , we simply have un = T n(g), and un = T̂ n(g), where

u(Q) := (T g)(Q)= inf
q
(g(q)+ S(q, Q)),

û(q) := (T̂ g)(q)= sup
Q
(g(Q)− S(q, Q)).

(3-4)

If we assume that L(q, v)= S(q, q + v) has a superlinear growth at infinity,
then the inf in (3-4) can be replace with min.

Assumption 3.1. There exists constants c0, c1 and δ > 0, α > 1 such that

inf
q

L(q, v)≥ δ|v|α − c0, sup
q

L(q, 0)≤ c1,

sup
q

sup
|v|≤`

|L(q + z, v)− L(q, v)| ≤ c2(`)|z|.
(3-5)

Proposition 3.2. Assume that (3-5) holds and that |g(q ′)− g(q)| ≤ `|q ′−q| for
all q, q ′. Then

(T g)(Q)= min
q:|Q−q|≤`′

(g(q)+ S(q, Q)), (3-6)

|u(Q′)− u(Q)| ≤ `′′|Q′− Q|, (3-7)

for `′ = c0+ c1+ (δ
−1(`+ 1))1/(α−1) and `′′ = `+ c2(`

′).

Proof. Observe

g(q)+ S(q, Q)≥ g(Q)− `|Q− q| + δ|Q− q|α − c0.

Hence
g(Q)+ S(Q, Q)≤ g(q)+ S(q, Q),

if c0 + c1 ≤ δ|v|
α
− `|v|, for v = Q − q. Then note that δ|v|α − `|v| ≥ |v| if

|v| ≥ (δ−1(`+ 1))1/(α−1). This implies (3-6).
If u(Q) = g(q) + L(q, Q − q) for some Q with |Q − q| ≤ `′, then for

q ′ = q + Q′− Q,

u(Q′)≤ g(q ′)+ L(q ′, Q− q)

≤ g(q)+ L(q, Q− q)+ `|Q′− Q| + c2(`
′)|Q′− Q|

= u(Q)+ (`+ c2(`
′))|Q′− Q|,

which proves (3-7). �
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We now describe some plausible applications of the operators T and T̂ for
finding invariant sets for the dynamical system associated with the transformation
8. Recall that by Proposition 3.2, for each Q, there exists a point q such that

u(Q) := (T g)(Q)= g(q)+ S(q, Q).

Let us write q = q(Q) for a minimizer in (3-4), which could be multivalued. If
g is differentiable at q, then we have ∇g(q)+ Sq(q, Q) = 0, and if we write
A(q, Q)= g(q)+ S(q, Q), then Aq(q, Q)= 0 when q = q(Q). For now let us
assume that the function q( · ) is single-valued and differentiable at Q. Under
such assumptions, u is differentiable at Q, and

∇u(Q)= Aq(q, Q)∇q(Q)+ AQ(q, Q)= SQ(q, Q).

As a result,
8(q, g(q))= (Q,∇u(Q)). (3-8)

This suggests that if U solves the discrete Hamilton–Jacobi equation T (U )=
U + c for a constant c (or equivalently ∇T (U ) = ∇U at any differentiability
point of U ), then the set

Gr(U )= {(q,∇U (q)) :U differentiable at q},

may serve as an invariant set for 8. We will discuss the relevance of the equation
T (U )=U+c and T̂ (U )=U+c′ to the question of homogenization in Section 5.

3B. Type II generating function. If we consider a symplectic map with a type II
generating function W (Q, p)= Q · p−w(Q, p), then a candidate for the action
is

A(q, p; Q)= A(x; Q)= g(q)+W (Q, p)−q · p= g(q)+(Q−q)· p−w(Q, p).

Let us assume that both g and w are differentiable functions. Given Q, at any
critical point x = (q, p) of A we have

0= Aq(q, p; Q)=∇g(q)− p, 0= Ap(q, p; Q)=Wp(Q, p)− q.

Imagine that we can find a function x( · ) such that Ax(x(Q); Q) = 0. If the
function x( · ) is differentiable at some α, then u(Q) := A(x(Q); Q) is also
differentiable at α, and

∇u(α)= Ax(x(α);α)(∇x)(α)+WQ(Q, α)=WQ(α, α),

where x(α)= (α, α). From this and8(Wp(α, α), α)= (α,WQ(α, α))we deduce

8(α,∇g(α))= (α,∇u(α)).
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In the case of type I generating function, we simply take the minimum of the
action when L is bounded below (see (3-4)). This is no longer the case for type II
generating function. For example if 8 is a lift of a symplectic map on the torus,
then w is periodic and A is a periodic perturbation of the quadratic function
A0(x; Q);= (Q− q) · p. Since 0, the only critical point of A0 is a saddle point,
the best we can hope for is that given Q, the function A( · ; Q) has a saddle point
which is of the same type as the type 0 is for A0( · ; Q). Now imagine that we
come up with a universal way of selecting a critical value of A no matter what g
is. This critical value yields an operator

V(g)(Q)= A(x(Q); Q),

where x(Q) is our selected critical point. A solution to the equation V(U )=U+c,
for a constant c, may be used to construct invariant sets of the map 8.

More generally, assume that 8=8k ◦ · · · ◦81 and each 8i has a generating
function W i (qi , pi−1) = qi · pi−1 −w

i (qi , pi−1). Then 8 has a (generalized)
generating function of the form

W (qk, p0; ξ)=W (qk, p0; q1, p1, . . . , qk−1, pk−1)

= q1 · p0+

k∑
i=2

pi−1 · (qi − qi−1)−

k∑
i=1

wi (pi−1, qi ).

Recall that by (2-12),

Wξ (qk, p0; ξ)= 0=⇒8(Wp0(qk, p0; ξ), p0)= (qk,Wqk (qk, p0; ξ))

Given an initial data g, we set

A(ξ ′; qk)= A(q1, p1, . . . , qk−1, pk−1; qk)

= g(q0)− p0 · q0+W (qk, p0; ξ)

= g(q0)+

k∑
i=1

(pi−1 · (qi − qi−1)−w
i (pi−1, qi )),

where ξ ′ = (q0, p0, ξ). To study the orbits of the map 8, we may search for
a function ξ ′(qk) such that Aξ ′(ξ ′(qk); qk) = 0 for every qk . Setting uk(qk) =

A(qk; ξ
′(qk)), we have

p0 =∇g(q0), 8(q0, p0)= (qk,∇uk(qk)),

provided that g is differentiable at q0, and ξ ′ is differentiable at qk . In Section 4,
we will address the question of selecting the critical point ξ ′.
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3C. Gibbs measures. There is a viscous variant of the discrete HJE that is related
to the orbits (or rather realizations) of a Markov chain. Given S : M ×M→ R,
recall the action function Sn of Section 3A Instead of minimizing Sn , we define
a probability measure on Mn−1 that favors states qn

= (q1, . . . , qn−1) of lower
energy Sn . This measure depends on a positive parameter β > 0 that represents
the inverse temperature. More precisely, we define a Gibbs measure Pn( · ) =

Pn( · ; q, Q;β) on Mn−1 as

P(dqn)= Zn(q, Q)−1 exp(−βSn(qn
; q, Q))

n−1∏
i=1

ν(dqi ),

where ν(dq) is a finite reference measure (for example a volume form associated
with a metric when M is a Riemannian manifold), and Z is the normalizing
constant:

Zn(q, Q)=
ˆ

Mn−1
exp(−βSn(qn

; q, Q))
n−1∏
i=1

ν(dqi ).

This constant is finite if for example

sup
a,b∈M

ˆ
M

exp(−βSi (a, q)−βSi+1(q, b)) ν(dq) <∞

for every i . For simplicity, let us assume that Si
= S for all i . Now, if we attempt

to normalize our measure inductively, we need to calculate

Z(qn−2, Q) :=
ˆ

M
exp(−βS(qn−2, qn−1)−βS(qn−1, Q)) ν(dqn−1),

which depends on qn−2. Dividing the integrand by Z(qn−2, Q) would alter S.
To avoid this, observe that if we replace S(q, Q) with S(q, Q)+ u(Q)− u(q),
then the corresponding Gibbs measure would not be affected (it only changes
the normalizing constant). Motivated by this, we define

Rβ(h)(g)(Q)=
ˆ

M
e−βS(q,Q)h(Q) ν(d Q),

R∗β(h)(g)(Q)=
ˆ

M
e−βS(q,Q)h(q) ν(dq).

The operator R∗β is the adjoint of Rβ with respect to the inner product

〈h, k〉 =
ˆ

M
hk dν.
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The celebrated Krein–Rutman theorem (an infinite-dimensional generalization of
Perron–Frobenius theorem) offers a way of modifying S so that we can normalize
our measure inductively.

For simplicity, let us assume that M is a compact metric space.

Theorem 3.3. The largest eigenvalue λ′β = eβλβ of Rβ is positive and λ′β satisfies
λ′β ≥ |λ

′
| for any other eigenvalue λ′. Moreover λ′β is simple, and there exist

functions uβ, u∗β : M→ R such that

Rβ(eβuβ )= eβλβeβuβ , R∗β(e
−βu∗β )= eβλβe−βu∗β .

See, for example, [16] for a proof of Theorem 3.3 and the Krein–Rutman
theorem. Motivated by Theorem 3.3, we set

Ŝ(q, Q) := S(q, Q)− (uβ(Q)− uβ(q))+ λβ,

p(q, d Q) := p(q, Q) ν(d Q) := exp(−β Ŝ(q, Q)) ν(d Q).

By Theorem 3.3, the kernel p(q, d Q) is a probability measure for each q . Using
this kernel, we may define a Markov chain q = (q0, q1, . . . , qn, . . . ) such that

Pq(qn ∈ A | q0, . . . , qn−1)=

ˆ
A

p(qn−1, dqn), q0 = q,

for every measurable set A ⊆ M . Here Pq is a probability measure on the set of
sequences q with q0 = q . Hence

Pq(q1 ∈ A1, . . . , qn ∈ An)=

ˆ
A1

· · ·

ˆ
An

n∏
i=1

p(qi−1, dqi )

=

ˆ
A1

· · ·

ˆ
An

exp
(
−

n∑
i=1

β Ŝ(qi−1, qi )

) n∏
i=1

ν(dqi ).

Writing P
q
n(dq1, . . . , dqn) for the n-dimensional marginal of Pq , we deduce

Pn(dq1, . . . , dqn−1; q, Q)= Pq
n(dq1, . . . , dqn | qn = Q).

Also, if we define
T̂β(g)= β−1 logRβ(eβg),

then
un = T̂β(un−1),

is a discrete analog of viscous HJE. Note that we always have T̂β(g)≤ T̂ (g). In
fact

lim
β→∞

T̂β(g)= T̂ (g),



332 FRAYDOUN REZAKHANLOU

if for example ν(U ) > 0 for every nonempty open subset U of M : If

Uδ(q)= {Q ∈ M : g(Q)− S(q, Q)≥ T̂ (q)− δ},

for q ∈ M , and δ > 0, then Uδ(q) is a nonempty open set, and

T̂β(g)(q)≥ T̂ (g)(q)− δ+β−1 log ν(Uδ(q))→ T̂ (g)(q)− δ,

as β→∞.
In the same vein, we set

Tβ(g)=−β−1 logR∗β(e
−βg),

so that
u−n = Tβ(u1−n),

is a discrete analog of backward viscous HJE. Also

lim
β→∞

Tβ(g)= T (g). (3-9)

We note
T̂ (uβ)= uβ + λβ, T (u∗β)= u∗β − λβ,

which is the analog of (3-7). Moreover, the eigenfunctions eβuβ , and e−βu∗β , can
be used to find an invariant measure for our Markov chain. For this, observe that
if we look for an invariant measure of the form dµ= Z−1eh dν, the function h
must satisfy

eh(Q)
=

ˆ
eh(q) p(q, Q) ν(dq)= eβ(uβ (Q)−λβ )R∗β(e

h−βuβ )(Q),

which holds, if we choose h so that eh−βuβ = e−βu∗β . Hence for an invariant
measure, we may choose a measure of the form

µ(dq)= Z−1eβ(uβ−u∗β )(q) dq,

where Z is the normalizing constant.
As (3-9) indicates, the zero-temperature limit of our Gibbs measure P is

associated with the Frenkel–Kontorova model of Section 3A. We refer to Anan-
tharaman [1] for some deep results regarding the type of limiting measure we
obtain as β→∞.

4. Variational and viscosity solutions

In Section 1H we learned that critical points of the action functional AH are
the orbits of the Hamiltonian ODE associated with the Hamiltonian function H .
This was used in Section 2 to prove the existence of periodic orbits. We also
argued that the critical values of AH yield solutions to HJE associated with the
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Hamiltonian function H . Though our derivations of the HJEs (1-18) and (1-19)
were rather formal. For example, the derivation of (1-18), requires the existence a
global C1 generating function which is hardly the case. In this section, we focus
on the HJE and try to figure out how generalized solutions can be constructed.
Insisting on constructing a solution as a critical value of the action AH would
lead to the notion of variational solutions to HJEs. However, HJE also appears
as a model of stochastic growth. Statistical mechanical considerations suggest
an alternative strategy for constructing solutions: We may add a small viscous
term to the HJE to guarantee the existence of a global solution, and then send the
viscosity to 0. This yields the notion of viscosity solutions. Surprisingly viscosity
solutions may differ from variational solutions when the Hamiltonian function is
not convex in the momentum variables. As we saw in Sections 1E–1F, solutions
to HJE may be used to construct invariant measures for the corresponding
Hamiltonian ODE. This has been the case for Tonelli Hamiltonians. For such
Hamiltonians viscosity solutions coincide with variational solutions. One may
hope to use variational solutions to come up with an analog of weak KAM
theory for nonconvex Hamiltonian. Viterbo’s work [31] settles the question of
homogenization for such Hamiltonian functions.

4A. Variational solutions. Let 8 : R2d
→ R2d be a symplectic map with a

generating function W (Q, p)= Q · p−w(Q, p). In Section 3B we learned that
if g is a C1 function, and

A(q0, p0, . . . , qn−1, pn−1; qn; g)= g(q0)+

k∑
i=1

(pi−1 ·(qi−qi−1)−w(qi , pi−1)),

then a critical point of A yields an orbit xi = (qi , pi ) = 8
i (x0), i = 1, . . . , n,

with x0 = (q0, p0), and p0 =∇g(q0). Motivated by this, let us define

Wn(x0)=

n∑
i=1

(pi−1 · (qi − qi−1)−w(qi , pi−1)),

where xi =8
i (x0) for i = 1, . . . , n. In other words, Wn(x0) denotes the action

at time n of an orbit that starts from x0. We then set

Fn(g)= {(Q, g(q)+Wn(q,∇g(q))) : q ∈ Rd ,8n(q,∇g(q))

= (Q, P) for some P ∈ Rd
}.

We may extend the definition of Fn to Lipschitz g. Recall that 3 denotes the set
of Lipschitz functions g : Rd

→ R.
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Definition 4.1. (i) Given g ∈3, we write ∂̂g(q) for the set of vectors p such
that there exists a sequence qk for which the following conditions hold:

∇g(qk) exists and q = lim
k→∞

qk, p = lim
k→∞
∇g(qk).

The convex hull of the set ∂̂g(q) is denoted by ∂g(q).

(ii) Given g ∈3, we set

Fn(g)={(qn,g(q0)+Wn(q0, p0)) :q0∈Rd , p0∈∂g(q0),8
n(q0, p0)= (qn, pn)}.

(iii) By a variational solution associated with 8, we mean a collection of opera-
tors Vn = Vwn : L→3, n ∈ N with the following properties:
• Vn(g+ c)= Vn(g)+ c for each n and every constant c ∈ R.
• For g, g′ ∈3 with g ≤ g′, we have Vn(g)≤ Vn(g′).
• For every g ∈3, and n ∈ N,

{(q,Vn(g)(q)) : q ∈ Rd
} ⊆ Fn(g).

In the same fashion, variational solutions of the HJE (1-10) are defined. For
this, let us assume that H :R2d

→R is a C2 Hamiltonian function such that D2 H
is uniformly bounded. For this H , the corresponding flow 8H is well-defined.
Recall that for γ : [0, t] → R2d , with γ (s)= (q(s), p(s)), the action is defined
by

At(γ )=AH
t (γ )=

ˆ t

0
[p · q̇ − H(γ )] ds.

Definition 4.2. (i) We set φH
[0,t](a) for the restriction of the flow φH

s (a) to
the interval [0, t]. Given a ∈ R2d , we define

AH
t (a)=AH

t (φ
H
[0,t](a)).

(ii) Given a Lipschitz function g, we set

Ft(g)

={(q(t),g(q0)+AH
t (q0, p0)) : q0 ∈Rd , p0 ∈ ∂g(q0),φ

H
t (q0, p0)= (q(t), p(t))}.

(iii) By a variational solution of (1-10), we mean a collection of operators
Vt = VH

t : L→3, t ∈ [0,∞) with the following properties:
• V0 is identity, and Vt(g+ c)= Vt(g)+ c for each t and every constant

c ∈ R.
• For g, g′ ∈3 with g ≤ g′, we have Vt(g)≤ Vt(g′).
• For every g ∈3, and t ∈ [0,∞),

{(q,Vt(g)(q)) : q ∈ Rd
} ⊆ Ft(g).
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When H is independent of q , then

φH
t (q, p)= (q + t∇H(p), p), AH

t (q, p)= t (p · ∇H(p)− H(p)).

As a result, Ft can simply be described as

Ft(g)={(q+t∇H(p), g(q)+t (p·∇H(p)−H(p))) :q ∈Rd , p∈∂g(q)}

= {(Q, g(q)+ p · (Q− q)− t H(p))

: Q ∈ Rd , Q− q = t∇H(p), p ∈ ∂g(q)}

= {(Q, At(x; Q; g)) : Q ∈ Rd , 0 ∈ ∂x At(x; Q; g)}, (4-1)

where At(q, p; Q; g)= At(x; Q; g)= g(q)+ p · (Q− q)− t H(p).
Before examining some examples in dimension one, we define a type of

discontinuity of uq that will be relevant as we compare variational solutions with
viscosity solutions.

Definition 4.3. Let H : R→ R be a continuous function. We say that a pair of
momenta (p−, p+) satisfies the Oleinik condition with respect to H , if either
p− > p+, and the graph of the restriction of H to [p+, p−] is above the chord
connecting (p−, H(p−)) to (p+, H(p+)), or p− < p+, and the graph of the
restriction of H to [p−, p+] is below the chord connecting (p−, H(p−)) to
(p+, H(p+)).

Example 4.4. Assume d = 1 and the Hamiltonian function H is independent of
q , and that the initial condition is given by g(q)= p−q11(q ≤ 0)+ p+q11(q ≥ 0).
Set

α(p−, p+) :=
H(p+)− H(p−)

p+− p−
, v± := H ′(p±).

As we will see in this example,

u(q, t)= (p−q − t H(p−))1(q ≤ tα)+ (p+q − t H(p+))1(q ≥ tα), (4-2)

provided that (p−, p+) satisfies the Oleinik condition with respect to H . The
solution (4-2) is an example of a shock wave. Our expression for the shock
speed α is the celebrated Rankine–Hugoniot formula. On the other hand, if H is
concave, then the initial condition g results in solution that is an example of a
rarefaction wave. The details of our claims follow.

Set K (p)= pH ′(p)− H(p). Recall

Ft(g)= {(q + t H ′(p), g(q)+ t K (p)) : q ∈ R, p ∈ ∂g(q)}.
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For example, if with p− > p+, then Ft(g)= F−t ∪F0
t ∪F

+
t , where

F−t = {(q + t H ′(p−), p−q + t K (p−)) : q ≤ 0}

= {(q, p−q − t H(p−)) : q ≤ tv−},

F+t = {(q + t H ′(p+), p+q + t K (p+)) : q ≥ 0}

= {(q, p+q − t H(p+)) : q ≥ tv+},

F0
t = {(t H ′(p), t K (p)) : p ∈ [p+, p−]}.

Note
F±t = tF±1 =: tF

±, F0
t = tF0

1 =: tF
0.

Hence we only need to determine F · = F ·1. To analyze F · further, we examine
several cases:

(i) Assume that H is strictly convex, or equivalently H ′ is increasing. We then
set L = K ◦ (H ′)−1, which is simply the Legendre transform of H . Moreover
v− > v+, and

F0
= {(v, L(v)) : v ∈ [v+, v−]}.

Note that F± are lines that intersect at the point (α, α) where α= p±α−H(p±).
Clearly the only continuous function u( · ) such that the graph of u is a subset of
F(g) is

u(q)= (p−q − H(p−))1(q ≤ α)+ (p+q − H(p+))1(q ≥ α).

This yields the solution u(q, 1) = u(q) when t = 1. For general t we simply
have (4-2). Observe that g = min{g−, g+}, with g±(q) = qp±, and Vt(g) =
min{Vt(g−), (g+)}. This strong form of monotonicity is true for any pair of
initial data g±, and is a consequence of the convexity of H .

(ii) If H is strictly concave, then H ′ is decreasing. As before, we set L =
K ◦ (H ′)−1, which is now concave. It may be defined by

L(v)= min
p∈[p+,p−]

(vp− H(p)).

Moreover, v− < v+, and

F0
= {(v, L(v)) : v ∈ [v−, v+]}.

In fact Ft(g) is the graph of a function û( · , t) that is given by

u(q, t)= (p−q − t H(p−))1(q ≤ tv−)+ (p+q − t H(p+))1(q ≥ tv+)

+t L(q)1(tv− ≤ q ≤ tv+).

What we have is an example of a rarefaction wave.
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(iii) We now relax the convexity assumption of part (i) to the Oleinik condition.
More precisely, we assume that the graph of H : [p+, p−] → R lies below the
chord connecting (p+, H(p+)) to (p−, H(p−)). We claim that under Oleinik
condition, the only possible u with its graph subset of F1(g)= F(g), is given
by (4-2). For this, it suffices to show that no point of F0 can reach the set below
the graph of u. Indeed by Oleinik condition

H(p)− H(p+)
p− p+

≤ α =
H(p+)− H(p−)

p+− p−
≤

H(p−)− H(p)
p−− p

,

for every p ∈ [p+, p−]. Hence

α ≤ q =⇒
H(p)− H(p+)

p− p+
≤ q =⇒ p+q − H(p+)≤ pq − H(p),

α ≥ q =⇒
H(p−)− H(p)

p−− p
≥ q =⇒ p−q − H(p−)≤ pq − H(p).

As a result, we must have

u(q)≤ min
p∈[p+,p−]

(pq − H(p)),

for every q. This means that the set F0 lies above the graph of u. On the other
hand, if for some point (H ′(p), pH ′(p)−H(p)) lies on the graph of û for some
p ∈ [p+, p−], then either

α ≤ q = H ′(p)=
H(p)− H(p+)

p− p+
or α ≥ q = H ′(p)=

H(p−)− H(p)
p−− p

.

By Oleinik condition, we must have α = q , which implies that the only possible
intersection point between the graph of u and F0 is the corner point of the graph
of u. This completes the proof of our claim.

(iv) Assume that H(p+)= H(p−)= H ′(p−)= 0, H ′(p+) < 0, and H(p) < 0
for every p ∈ (p+, p−). We also assume that there exists p0 ∈ (p+, p−), such
that H is convex in [p+, p0], and that H is concave in the interval [p0, p−].
Clearly the Oleinik condition is satisfied. We note that F− ends at the origin,
F+ passes through the origin, and F0 has two concave and convex pieces that
are tangent to F− and F+ respectively. The shock location is the origin, and
u(q, t)= g(q) for all t ≥ 0.

As Example 4.4 indicates, we may have a simple formula for the variational
solution when H is convex in momentum variable. Note that the action can be
expressed in terms of the Lagrangian because when ẋ = J∇H(x) for x = (q, p),
then

p · q̇ − H(q, p)= L(q, q̇).
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In fact in this case the variational solution is given by the Lax–Oleinik formula;
see [27; 28] for reference.

Theorem 4.5. For a Tonelli Hamiltonian function H , we have

VH
t (g)(Q)= inf{g(q(0))+

ˆ t

0
L(q, q̇) ds : q( · ) ∈ C1

[0, t], q(t)= Q}. (4-3)

In particular if H is convex and independent of q , we may use (4-3) and (4-1)
to write

VH
t (g)(Q)= inf

q

(
g(q)− t L

(
Q− q

t

))
= inf

q
sup

p
(g(q)+ p · (Q− q)− t H(p))

= inf
q

sup
p

At(q, p; Q; g). (4-4)

This formula is not surprising; after all we are looking for a critical value of
At( · ; Q; g), which is a concave function in p. So it is natural to try a simple
minimax critical value that happens to be finite when H is convex.

In fact if we set t = 1, then the role of q and p are of the same flavor. Because
of this, we may wonder whether or not we have a simple formula for a variational
solution when, for example g is concave. This is indeed the case as the following
result confirms; see for example [27].

Theorem 4.6. Assume that H is independent of q and has a superlinear growth
as |p| →∞, and g is Lipschitz and concave. Then

VH
t (g)(Q)= inf

p
sup

q
(g(q)+ p · (Q− q)− t H(p)). (4-5)

The identity (4-5) is known as Hopf’s formula and can be rewritten as

VH
t (g)(Q)= inf

p
(p · Q− g†(p)− t H(p))= (g + t H)†(Q), (4-6)

where we have used † for the Legendre transform:

g†(p)= inf
q
(p · q − g(q)).

Note that (g+ t H)† is always well-defined and concave, even when H is not
concave. If g is convex instead, then (4-5) and (4-6) change to

VH
t (g)(Q)= sup

p
inf
q
(g(q)+ p · (Q− q)− t H(p))= (g∗+ t H)∗(Q), (4-7)

where we have used ∗ for the other Legendre transform:

g∗(p)= sup
q
(p · q − g(q)).
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Example 4.7. (i) If the graph of H over [p+, p−] consists of a collection of
concave and convex pieces, then the set F0 is a union of the graphs of the
Legendre transforms of such pieces. However, when g(q) = min{p−q, p+q}
with p+ < p−, then g is concave, and the corresponding function u depends
only the concave hull of the restriction of H to [p+, p−]. Indeed from (4-6),
and the elementary fact that g†(p)=−∞1(p /∈ [p+, p−]), we deduce

u(q, 1)= u(q)= min
p∈[p+,p−]

(pq − H(p))= min
p∈[p+,p−]

(pq − Ĥ(p)),

where Ĥ denotes the concave hull of the restriction of H to [p+, p−]. Note that
the graph of H is below the chord connecting (p+, H(p+)) to (p−, H(p−)), if
and only if the concave hull of the restriction of H to [p+, p−] is this cord. If
this is the case, then the Oleinik condition is satisfied, and we have a shock.The
solution is simply given by

u(q)= min
p∈[p+,p−]

(pq − H(p))=min{p−q − H(p−), p+q − H(p+)},

as in (4-2). In general the graph of u can have pieces that lie on F0. In order to
have a feel for how complex u could be, imagine that there are points p1, p2, p3

with p+ < p1 < p2 < p3 < p− such that Ĥ = H in the set [p1, p2] ∪ [p3, p−],
and Ĥ 6= H in its complement. Then the graph of u would have two pieces of
F0 associated with the intervals [p1, p2] and [p3, p−]. More precisely we may
express the graph of u as F1 ∪ F2 ∪ F3 ∪ F4, where F1 = F−, F4 ⊂ F+, and

F2 = {(H ′(p), K (p)) : p ∈ [p3, p−]}, F3 = {(H ′(p), K (p)) : p ∈ [p1, p2]},

where K (p) = pH ′(p)− H(p). The momentum u′ = uq consists of two rar-
efaction waves associated with F2 and F3 that are separated by a shock. The
rarefaction F3 is separated from F4 by a shock.

(ii) Let us now assume that p− < p+. Then g is convex and we may apply (4-7)
to assert

u(Q, 1)= u(Q)= max
p∈[p−,p+]

(pQ− H(p))= max
p∈[p−,p+]

(pQ− H̃(p)),

where H̃ denotes the convex hull of H . In particular if the graph of the restriction
of H to [p−, p+] is above the chord connecting (p−, H(p−)) to (p+, H(p+)),
then H(p±)= H̃(p±), and

u(q, t)=max{qp+− H(p+), qp−− H(p−)}.

In other words, the Oleinik condition is satisfied and we have a shock disconti-
nuity.
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4B. Viscosity solutions. We start with the definition of upper and lower deriva-
tives:

Definition 4.8. Given a function u : Rk
→ R, we write ∂u(z) for the set of

vectors a ∈ Rk such that

lim sup
h→0

|h|−1(u(z+ h)− u(z)− a · h)≤ 0.

Equivalently, a ∈ ∂u(z) if and only if there exists a C1 function ϕ :Rk
→R such

that ϕ(a)= u(a), ∇ϕ(z)= a, and u ≤ ϕ. Similarly, a ∈ ∂u(z) if and only if

lim inf
h→0
|h|−1(u(z+ h)− u(z)− a · h)≥ 0.

Equivalently, a ∈ ∂u(z) if and only if there exists a C1 function ϕ :Rk
→R such

that ϕ(a)= u(a), ∇ϕ(z)= a, and u ≥ ϕ.

Remark 4.9. (i) Assume that u : Rk
→ R is continuous and there exists a C1

surface 0 of codimension one such that u is C1 on Rk
\0. Near 0, we write u±

for the restriction of u on each side of 0. We assume that u± are C1 functions
up to the boundary points on 0. Pick a point on 0. We wish to determine ∂u(a)
in terms of ∇u±(a). Assume that v ∈ ∂u(a) 6= ∅. Let us write Ta0 for the
tangent fiber at a to 0, Pa for the orthogonal projection onto Ta0, and νa for the
unit normal vector at a that points from −-side (on which u− is defined) to the
+-side (on which u+ is defined). First take a smooth path γ : (−δ, δ)→ 0 with
γ (0)= a, γ̇ (0)= τ . Using v ∈ ∂u(a), and(

d
dt

u ◦ γ
)
(0)=∇u±(a) · τ,

we deduce that ∇u±(a) ·τ ≤ v ·τ . This also being also true for −τ ∈ Ta0 implies
that ∇u±(a) · τ = v · τ . Hence ∇u+(a)−∇u−(a) is orthogonal to Ta0. This is
not surprising and follows from the continuity of u; since u+ = u− on 0, the
τ -directional derivative of u+ and u− coincide whenever τ ∈ Ta0. Now if we
vary a in the direction of νa or −νa , we deduce

∇u+(a) · νa ≤ v · νa, ∇u−(a) · (−νa)≤ v · (−νa).

Equivalently,
∇u+(a) · νa ≤ v · νa ≤ ∇u−(a) · νa.

Hence, if ∂u(a) 6=∅, then Pa∇u+(a)= Pa∇u−(a), ∇u+(a) · νa ≤∇u−(a) · νa ,
and

∂u(a)= {Pa∇u±(a)+ rνa : r ∈ [∇u+(a) · νa,∇u−(a) · νa]}.
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Likewise, if ∂u(a) 6=∅, then Pa∇u+(a)= Pa∇u−(a), ∇u+(a)·νa≥∇u−(a)·νa ,
and

∂u(a)= {Pa∇u±(a)+ rνa : r ∈ [∇u−(a) · νa,∇u+(a) · νa]}.

In summary, we always have Pa∇u+(a)= Pa∇u−(a), and there are three possi-
bilities:

∇u+(a) · ν =∇u−(a) · ν =⇒ ∂u(a)= ∂u(a)= {∇u±(a)},

∇u+(a) · ν < ∇u−(a) · ν =⇒ ∂u(a) 6=∅, ∂u(a)=∅,

∇u+(a) · ν > ∇u−(a) · ν =⇒ ∂u(a)=∅, ∂u(a) 6=∅.

(ii) Let u : Rk
→ R be a Lipschitz function. Even though the function u is

differentiable at almost all points, it is plausible that ∂u(a)∪ ∂u(a)=∅ at some
point a ∈ Rk (as an example, consider u(x1, x2) = |x1| − |x2|, and a = (0, 0)).
This would not be the case if u is semiconvex/concave. First observe that if for
example u is convex, then

∂u(a)= {p ∈ Rk
: u(z)− u(a)− p · (z− a)≥ 0 for all z ∈ Rk

},

which is always nonempty. We say a function u is semiconvex, if w(z) =
u(z)+ `|z|2 is convex for some `≥ 0. For such a function

∂u(a)= {p− 2`a : p ∈ ∂w(a)},

which is also nonempty. In fact one can show that for a semiconvex function,
we always have

∂u(a)= ∂u(a),

where ∂u was defined in Definition 4.1(i); see, for example, Cannarsa and
Sinestrari [6] for a proof.

(iii) We can always approximate any Lipschitz function u : Rk
→ R by semicon-

vex/concave functions. For example, given δ > 0, set

uδ(z)= sup
y
(u(y)− δ−1

|z− y|2).

Then one can show that uδ is always semiconvex, and

u(z)≤ uδ(z)≤ u(z)+ sup
r>0
(`r − δ−1r2)= u(z)+ 4−1`2δ,

where ` is the Lipschitz constant of u. On the other hand if the supremum is
achieved at yδ(z), then for p = 2δ−1(yδ(z)− z), we have

p ∈ ∂̂uδ(z)⊆ ∂uδ(z), p ∈ ∂u(yδ(z)).
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We must have |p| ≤ ` because for every a with |a| = 1, and y = yδ(z),

−`≤ δ−1(u(y+ δa)− u(y))≤ p · a.

In particular, |yδ(z)− z| = O(δ), which means that near each z, we can find y
such that ∂u(y) 6= ∅. In fact, it is well-known that there exists a one-to-one
correspondence between the set of all maximizers yδ(z), and the set ∂̂uδ(z); see,
for example, [6]. As a result,⋃

z

∂̂uδ(z)⊆
⋃

y

∂u(y).

Definition 4.10. We say a uniformly continuous function u : Rd
× [0,∞)→

R is a viscosity solution of (1-10) if every (p, r) ∈ ∂u(q, t), t > 0 satisfies
r + H(q, p)≤ 0, and every (p, r) ∈ ∂u(q, t), t > 0 satisfies r + H(q, p)≥ 0.

Remark 4.11. (i) The theory of viscosity solutions offers a satisfactory notion
of solution for (1-10) for two major reasons:

• Under some natural and mild conditions on H , and for a given Lipschitz
function g : Rd

→ R, there exists a unique viscosity solution to (1-10)
that satisfies the initial condition g(q)= u(q, 0). This allows us to define
an operator SH

t g(q) := u(q, t) that enjoys the semigroup property SH
t+s =

SH
t ◦ SH

s ; see [8] for the proof of uniqueness. Later in Section 4E, we use
game theory to construct viscosity solutions.

• Many stochastic interfaces in statistical mechanics can be described macro-
scopically by viscosity solutions of suitable HJEs; see for example [25; 22].

(ii) When H is convex in the momentum variable, then any semiconcave weak
solution is also a viscosity solution. Simply because ∂u(z) is the convex hull of
∂̂u(z), and the set

A(q) := {(p, r) : r + H(q, p)≤ 0},

is convex.

Exercise. Assume that d = 1 and u is a (continuous) viscosity solution of (1-10).
Let U be an open set in R× (0,∞) and assume that u is C1 in U \0, where

0 = {(a(t), t)) : t ∈ (t0, t1)} ⊂U,

with a : (t0, t1)→ R a C1 function. Assume that u = u+ and u−, on the right
and left side of 0 in U and both u± solve (1-10) classically. Use Remark 4.9 to
show the following:

• ȧ(t)= H [u+q (a(t), t), u−q (a(t), t)].

• The pair (u−q (a(t), t), u+q (a(t), t)) satisfies the Oleinink condition for every
t ∈ (t1, t2).
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4C. Viscosity solution versus variational solution. In Example 4.4(i), (iii),
(iv), and Example 4.7, we have variational solutions for which uq has shock
discontinuities. In all these examples, the jump discontinuity of uq satisfies
an Oleinik condition. However it is known that in general Oleinik condition
could be violated for a variational solution. Several explicit examples have
been discovered for such a violation. The following recent example is due to
V. Roos [27]. This example is constructed by performing a small perturbation to
our Example 4.4(iv).

Theorem 4.12. Assume d = 1, H ∈ C2 is independent of q, and that H ′′ is
uniformly bounded. Assume that p+ < p−, H(p+)= H(p−)= H ′(p−)= 0>
H ′′(p−), and H(p) < 0 for every p ∈ (p+, p−). Let f ∈ C2 be a Lipschitz,
strictly convex function such that f ′′ is uniformly bounded, and f (0)= f ′(0)= 0.
Assume that the initial condition g is of the form

g(q)= p−q1(q ≤ 0)+ (p+q + f (q))1(q ≥ 0).

Then there exist t0 > 0 and a continuous function q : [0, t0) → R such that
q(0)= 0, and for every t ∈ [0, t0), there exists a point q(t) > 0 such that for every
variational solution u, the function uq(q, t) is discontinuous at q(t). Moreover
the Oleinik condition is violated at q(t).

Proof. Step 1 As before, Ft(g)= F+t ∪F0
t ∪F

−
t , where

F+t =: tGt = {t (q + H ′(g′(tq)), t−1g(tq)+ K (g′(tq))) : q ≥ 0},

F−t = F− = {(q, qp−) : q ≤ 0},

F0
t = tF0

= {t (H ′(p), K (p)) : p ∈ [p+, p−]}.

Note that the sets F− and F0 are independent of f and coincide with what we
had in Example 4.4(iv). Let us write

F+ = {(q, qp+− H(p+)) : q ≥ H ′(p+)} = {(q, qp+) : q ≥ H ′(p+)},

which is what we get when f = 0 and t = 1.
We now examine the set F+t . We claim that for t ∈ (0, t0), with

t0 = [sup
p
|H ′′(p)| sup

q
| f ′′(q)|]−1, (4-8)

the set F+t is a graph of a convex function that is above tF+, and is tangent to
tF+ at its end point. For convexity, observe that if

a(q)= q + H ′(g′(tq)), b(q)= t−1g(tq)+ K (g′(tq)),
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then a′(q)= 1+ t H ′′(g′(tq))g′′(tq)= 1+ t H ′′(g′(tq)) f ′′(tq) > 0, and

b′(q)= g′(tq)+ tg′(tq)H ′′(g′(tq))g′′(tq)= g′(tq)a′(tq).

Hence the slope of F+t at the point t (a(q), b(q)) is g′(tq). Since both a′ and g′

are increasing, F+t is convex. At q = 0 the slope is p+, which means that the
line tF+ is tangent to F+t at its end point t (a(0), b(0)), hence it lies above this
line.

Step 2 For small δ > 0, the set

F̂0
t := tF̂0

:= {t (H ′(p), K (p)) : p ∈ [p−− δ, p−]} ⊂ F0
t ,

is a graph of concave function that starts from the origin and lies below a line of
slope p− that passes through the origin. We claim that the set F+t will intersect
F̂0

t at some point t (a(q t), b(q t)), q t > 0, for small and positive t . To see this,
let us compare the set Gt with F̂0. The set Gt is above F+ and tangent to F+ at
its end point. Moreover, since

g′(tq)= p++ f ′(tq)= p++ o(1), t−1g(tq)= qp++ t−1 f (tq),

we have that G+t →F+ as t→ 0. This guarantees that the sets Gt and F̂0 intersect
at a some point (a(q t), b(q t)) near the origin for small t > 0, as desired.

Step 3 The intersection point of the sets F+t and F̂0
t represents a corner of the

variational solution u(q, t) at q = q(t) := ta(q t). The left and right derivatives of
u( · , t) at q(t), are given by the slope of F0

t and F+t at the point t (a(q t), b(q t)).
The right derivative is given by p̃+ := g′(tq t) as we showed in step 1. To
calculate the left derivative, take p̃− ∈ [p−− δ, p−], such that H ′( p̃−)= a(q t).
We then have

b(q t)= K ( p̃−)= p̃−H ′( p̃−)− H( p̃−),

and the tangent vector to F̂0
t at (a(q t), b(q t)) is (H ′′( p̃−), p̃−H ′′( p̃−)), which

has a slope p̃−. It remains to show that the Oleinik condition is violated for the
left and right momenta p̃− and p̃+.

Final step For small t , we have p̃− = p−+o(1), p̃+ = p++o(1). So p̃− > p̃+.
By H ′( p̃−)= a(q t)= q t

+ H ′(g′(tq t)), we know that H ′( p̃+)= H ′( p̃−)− q t .
Hence,

p̃−H ′( p̃−)− H( p̃−)= b(q t)= t−1g(tq t)+ p̃+H ′( p̃+)− H( p̃+)

= t−1g(tq t)− p̃+q t
+ p̃+H ′( p̃−)− H( p̃+).
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Equivalently,

( p̃−− p̃+)H ′( p̃−)+ H( p̃+)− H( p̃−)= t−1(g(tq t)− g′(tq t)tq t)

= t−1( f (tq t)− f ′(tq t)tq t)

=: t−1ϕ(tq t).

We note that ϕ(0)= 0 and ϕ′(q) < 0 for q > 0 by convexity of f . As a result,

( p̃−− p̃+)H ′( p̃−) < H( p̃−)− H( p̃+). (4-9)

This violates the Oleinik condition because p̃+ < p̃−. �

Since, at every discontinuity point (q, t) of ûq , the Oleinik condition is always
satisfied by the pair (ûq(q−, t), ûq(q+, t)), where û is a viscosity solution (see
the exercise at the end of Section 4B), we deduce that the variational solution of
Theorem 4.12 is not a viscosity solution. In Example 4.13 below, we make some
additional assumptions on H , so that we can find a rather precise description for
the viscosity solution û for small t , with H and g as in Theorem 4.12. This would
allow us to show that the jump discontinuity of ûq occurs at a point q̂(t) such that
q(t) < q̂(t) for small positive t . Moreover, u(q, t) > û(q, t) for q ∈ (0, q̂(t)),
and small positive t . The details follow.

Example 4.13. Let H and g be as in Theorem 4.12. Additionally, assume that
H is concave near p−, and for some δ, δ1, δ2 > 0,

{p ∈ [p+, p−] : H(p) ∈ [−δ, 0]} = [p+, p++ δ1] ∪ [p−− δ2, p−].

Choose δ− ∈ (0, δ2], δ
+
∈ (0, δ1] such that for each p ∈ [p+, p+ + δ+], there

exists a unique ψ(p) ∈ [p−− δ−, p−] such that ψ(p+)= p−, and

H(p)− H(ψ(p))= H ′(ψ(p))(p−ψ(p)). (4-10)

Let us write û for the viscosity solution with the initial condition g. We claim
that û( · , t) has a corner at some q̂(t) with the following properties: q̂(0)= 0,
and for small t > 0,

q̂ ′(t)= H ′( p̂−(t)), p̂−(t)= ψ( p̂+(t)), (4-11)

where p̂±(t)= ûq(q̂(t), t) represent the left and right values of ûq at q̂(t). We
now express p̂+(t) in terms of q̂(t), so that the ODE (4-11) can be solved uniquely
for the initial condition q̂(0)= 0. For this, let us write h : [ p̂+,∞)→[0,∞) for
(g′)−1, so that h(p+)= 0. Note if for some q, we have q̂(t)= q + t H ′(g′(q)),
then p̂+(t)= g′(q). Equivalently,

q̂(t)= h(ρ)+ t H ′(ρ), p̂+(t)= ρ.
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Let us write `(q, t) for the inverse of ρ 7→ h(ρ)+ t H ′(ρ), that is increasing and
well-defined for small t . This gives us the formula

p̂+(t)= `(q̂(t), t),

which allows us to express p̂−(t) as a function of q̂(t). The function `(q, t)
can be expressed as ` = wq , where w solves the HJE with initial condition
g(q), q ≥ 0, and our formula for ` is compatible with (4-7). In particular

`t + H ′(`)`q = 0.

We note that q̂ ′(0)= 0 but q̂ ′(t) > 0 for t > 0 and small because H ′(p−(t)) > 0.
On the other hand,

p′
+
(t)= `t(q̂(t), t)+ `q(q̂(t), t)q̂ ′(t)= `q(q̂(t), t)(H ′( p̂−(t))− H ′( p̂+(t))).

Since `q > 0, H ′( p̂−(t)) > 0, H ′( p̂+(t)) < 0, we deduce that p̂+(t) is increasing
as a function of t . Since ψ is decreasing, we learn that p̂−(t) is decreasing. On
the other hand,

q̂ ′′(t)= H ′′(p−(t))p′
−
(t) > 0,

for small t . This means that q̂ is convex. This is how the viscosity solution for
short times look like:

• For Q ≥ q̂(t) we have û(Q, t)= g(h(ρ))+ t K (ρ), where ρ = `(Q, t).

• For Q ≤ 0, we have û(Q, t)= p−Q.

• For Q ∈ [0, q̂(t)], we first set Q(s, t) = q̂(s) + (t − s)H ′( p̂−(s)), for
s ≤ t . We note that Qs = (t − s)H ′′( p̂−(s)) p̂′−(s) > 0, so that s 7→ Q(s, t)
is increasing with Q(0, t) = 0, Q(t, t) = q̂(t). Its inverse is denoted by
s(Q, t), and û(Q, t)= û(q̂(s), s)+ (t − s)H ′( p̂−(s)), for s = s(Q, t).

What we have constructed is a viscosity solution because it solves HJE outside
the set {(q̂(t), t) : t ∈ [0, δ)} for small δ, and on this set the Oleinik condition
is satisfied. It also coincides with g initially. So û must be the unique viscosity
solution.

For comparison, let us write u for the variational solution which has a corner
at q(t) with the left and right momenta at q(t) given by p̃±(t) as we discussed
in the proof of Theorem 4.12. Indeed by (4-10) and (4-9),

H( p̂+(t))− H( p̂−(t))− H ′( p̂−(t))( p̂+(t)− p̂−(t))= 0,

H( p̃+(t))− H( p̃−(t))− H ′( p̃−(t))( p̃+(t)− p̃−(t)) < 0,
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for t > 0. In comparison,

p̂−(t)= ψ( p̂+(t)),

p̃−(t) > ψ
(

p̃+(t)
)
,

q̂ ′(t)= H ′( p̂−(t))= H ′(ψ( p̂+(t))),

q ′(t)= H [ p̃+(t), p̃−(t)]< H ′(ψ( p̃+(t))).

To the left and right of the discontinuity curve, both uq and ûq are classical
solutions that can be determined by the method of characteristics. Hence

p̂+(t)= `(q̂(t), t), p̃+(t)= `(q(t), t).

Hence,

q̂ ′(t)= H ′(ψ(`(q̂(t), t))), q ′(t) < H ′(ψ(`(q(t), t))).

From this and q(0) = q̂(0) = 0, we deduce that q̂(t) < q(t) for small t > 0.
Note that u(q, t)= û(q, t) for q /∈ (0, q̂(t)). We claim that û(q, t) < u(q, t) if
q ∈ (0, q̂(t)), and t is small. As a preparation, we t show that if ρ = uq and
ρ̂ = ûq , then ρ̂(q, t) < ρ(q, t) for q ∈ (0, q̂(t)). To verify this, we first consider
the case q ∈ (q(t), q̂(t)). For small t , ρ(q, t) = ρ(q0, 0) = g′(q0) for some q0

that is close to 0. Hence ρ(q, t) is close to p+. However, since such q is on the
left side of the jump discontinuity for ρ̂, we have ρ̂(q, t) is close to ρ−, which
is strictly larger than ρ+. This implies that ρ̂(q, t) < ρ(q, t) for small t , and
q ∈ (q(t), q̂(t)). In the same fashion we can treat the case q ∈ (0, q(t)).

We are now ready to show that û(q, t) < u(q, t) if q ∈ (0, q̂(t)), and t is small.
Indeed for q ∈ (0, q̂(t)),

u(q, t)= u(q̂(t), t)−
ˆ q̂(t)

q
ρ(a, t) da

= û(q̂(t), t)−
ˆ q(t)

q
ρ(a, t) da

> û(q̂(t), t)−
ˆ q̂(t)

q
ρ̂(a, t) da

= û(q, t),

as desired.

As we have seen in the proof of Theorem 4.12, we can easily calculate a
solution for small times if the second derivative of the initial data is uniformly
bounded.
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Proposition 4.14. Assume that D2 H and D2g are uniformly bounded, and g is
C1 and Lipschitz. Write u and û for variational and viscosity solution with initial
condition g. Then there exists t0 > 0 (with t0 depending only on the uniform
bounds on D2 H and D2g) such that for t ∈ [0, t0], we have

u(Q, t)= û(Q, t)= g(q(0))+
ˆ t

0
[p · q̇ − H(q, p)] ds,

where (q(s), p(s))= φs(q(0),∇g(q(0))) is the unique Hamiltonian orbit such
that q(t)= Q.

The proof of Proposition 4.14 is rather straightforward and is carried out by
showing that the map a 7→ q(a, t) is a homeomorphism for small t , where q(a, t)
is the q-component of φt(a,∇g(a)); see [3] for details.

We saw in Example 4.13 that for the initial condition of Theorem 4.12, the
variational solution dominates the viscosity solution. This indeed is always true
as the following result of Bernard [4] confirms.

Theorem 4.15. Assume that D2 H is uniformly bounded and g is Lipschitz. We
also assume that g ∈ C2, and that there exists a constant c0 such that D2g(q)≤
c0 I for every q ∈ Rd (or more generally, g is semiconcave). Write û and u for
viscosity and variational solution with initial condition g. Then there exists t1> 0
(with t1 depending only on c0 and the bound on D2 H ) such that the following
statements are true for t ∈ [0, t1]:

(i) û(q, t)≤ u(q, t).

(ii) u(q, t)= inf{z : (q, z) ∈ Ft(g)}.

4D. Variational selectors. We now give a recipe for the construction of vari-
ational solutions in the discrete setting. A similar construction can be give for
the continuous setting. We write 3 for the set of Lipschitz functions, and 3r for
the set of g ∈ 3 such that |g(q)− g(q ′)| ≤ r |q − q ′|. Recall that a variational
solution un(Q) is a critical value of

A(xn; Q; g)= g(q0)+

n∑
i=1

[pi−1 · (qi − qi−1)−w(pi−1, qi )],

where qn=Q, and xn= (x0, . . . , xn−1), with xi = (qi , pi )∈R2d . We assume that
w :R2d

→R is a C1 and Lipschitz function. We may write A= `+ f , where ` is
a quadratic function and f is a Lipschitz function. Writing xn = x = (q, p) ∈Rk

for k = 2nd, then

`(x)= 1
2 Bx · x =

n−1∑
i=1

pi−1 · (qi − qi−1)− pn−1 · qn−1,
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where B is a matrix of the form

B =
[

0 D
Dt 0

]
,

where D is a matrix which has −1 on its main diagonal, 1 right below the main
diagonal, and 0 elsewhere. As a result, ` is a nondegenerate quadratic form.
Because of the very form of A, we make the following definition.

Definition 4.16. (i) We write Qk for the set of nondegenerate quadratic func-
tions ` :Rk

→R. In other words, `(x)= 1
2 Bx ·x for a nonsingular symmetric

matrix B. We write �k(`; r) for the set of functions F : Rk
→ R such that

F = `+ f for some f ∈3r . We write

Q=
∞⋃

k=1

Qk, �k =

∞⋃
r=1

⋃
`∈Qk

�k(`; r), �=

∞⋃
k=1

�k .

(ii) We call C : O→ R a variational selector if it satisfies the following condi-
tions:
(1) If F ∈� and F ∈ C1, then C(F)= F(α), for some α with ∇F(α)= 0.
(2) If f1, f2 ∈3, with f1 ≤ f2, and ` ∈Q, then C(`+ f1)≤ C(`+ f2).
(3) C(F + c)= C(F)+ c, for every F ∈� and c ∈ R.
(4) If F ∈� is bounded below, then C(F)=min F .
(5) If ψ : Rk

→ Rk is a Lipschitz smooth diffeomorphism, and F ∈ �k ,
then C(F)= C(F ◦ψ).

(6) If F ∈�k , `′ ∈Qk′ , and F ′(x, y)= F(x)+ `′(y), then C(F ′)= C(F).
Once a variational selector is known, then we can use it to construct a varia-

tional solution by setting

Vn(g)(Q)= C(A( · ; Q; g)). (4-12)

As we mentioned before we use Lusternik–Schnirelmann (LS) theory to
construct a selector; see for example [5] for more details. Before we give a
precise recipe for C, we make some remarks:

Proposition 4.17. (i) If F ∈�k(`; r), with F = `+ f , `(x)= 2−1 Bx · x , and
∇F(α)= 0, then

|α| ≤ rδ(`)−1, where δ(`)= inf
|x |=1
|Bx |.

(ii) If `+ f = `′+ f ′, for f, f ′ ∈3, `, `′ ∈Qk , then `= `′, and f = f ′.

Proof. (i) At a critical point α we have Bα =−∇ f (α), which implies

δ(`)|α| ≤ |Bα| = |∇ f (α)| ≤ r,

as desired.
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(iii) If `+ f = `′+ f ′, then `′′ = f ′′, where `′′ = `′− `, f ′′ = f − f ′. Since
f ′′ is Lipschitz, then `′′ = 0. In fact if `′′(x)= B ′′x · x , and v is an eigenvector
of B ′′ associated with eigenvalue λ, then ϕ(t)= λ|v|2t2 must be Lipschitz in t ,
which is impossible unless λ|v|2 = 0. �

LS theory is normally applied to continuous maps F : M→ R, for a compact
manifold M . In our case the nondegeneracy of quadratic function ` makes up
for the lack of compactness. A standard way to find a critical value of F is by
designing a collection F of subsets of Rk such that

c(F,F)= inf
A∈F

sup
A

F,

is a critical value of F . This is guaranteed if the collection F satisfies the
following property:

A ∈ F, t > 0=⇒ ϕF
t (A) ∈ F,

where ϕF
t denotes the flow of the vector field−∇F . To have a universal collection

F that works for all F , we assume two properties for F :

(1) If A ∈ F , and ϕ is a homeomorphism, then ϕ(A) ∈ F .

(2) If A ∈ F , and A ⊂ B, then B ∈ F .

Note that the second property is harmless and can always be assumed because
of the infimum over subsets of A ∈ F in the definition of c. Its raison d’être is
the following alternative expression for c(F,F):

c(F,F)= inf
A∈F

sup
A

F = inf
r∈R
{r : Mr (F) ∈ F}, (4-13)

where
Mr (F)= {x : F(x) < r}.

Indeed if we write c and α for the left and right-hand sides of the second equality
in (4-13), then for any a > c, we can find A ∈ F such that supA F < a, which
means that A ⊆ Ma(F). This in turn implies that Ma(F) ∈ F , which leads to
α ≤ c. In the same fashion, we can verify c ≤ α.

It remains to design a family F such that (1) and (2) hold, and c(F,F) is
finite. Once such a family is found, we set C(F)= c(F,F). In view of (4-13),
and property (1), we my choose F the collection of sets with certain degree
of topological complexity, so that c(F,F) is the first r for which the sublevel
set Mr (F) reaches such complexity. We now describe the LS strategy. Write
�0

k(`, r0) for the set of F ∈ �k(`, r0) such that F(0) = 0. Let us consider
F ∈�0

k(`, r0), and set c0 = r0δ(`)
−1, c1 = r0c0, so that

∇F(α)= 0=⇒ |α| ≤ c0 =⇒ |F(α)| ≤ c1,
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by Proposition 4.17(i). Note that ` has a single critical point at the origin.
Hence for a < 0< b, the set Mb(`) is topologically more complex than Ma(`).
Since F is a Lipschitz perturbation of `, and all critical values of F are in the
interval [−c1, c1], we expect Mc1(F) to be topologically more complex than
M−c1(F). We wish to design a collection F that captures such complexity.
Relative cohomology classes allow us to measure such complexities.

Definition 4.18. Given two open sets A ⊂ B, we write 3 j (B, A) for the set
of closed j forms α in B such that the restriction of α to the set A is exact.
We write α ∼ β for two forms in 3 j (B, A) such that β − α is exact in B. We
write H j (B, A) for the set of equivalent classes and H∗(B, A) for the union of
H j (B, A), j = 0, 1, . . . .

For example, for a < 0< b, one can show that H∗(Mb(`),Ma(`)) is the same
as H∗(D, ∂D), where D is a disc in Rr− , with r− denoting the number of the
negative eigenvalues of B. In fact the set M−c1(F) is homeomorphic to M−c1(`),
and we may define

C(F)= inf{r :H∗(Mr (F),M−c1(F)) 6=0}= sup{r :H∗(Mr (F),M−c1(F))=0}.

Remark 4.19. More generally, we may take any α ∈ H∗(Mb(`),Ma(`)), and
set

C(F;α)= inf{r : the restriction of α to Mr (F) is not exact}

= sup{r : the restriction of α to Mr (F) is exact}.

We refer to [5] for more details.

4E. Game theory. We now offer a way of constructing viscosity solutions via
game theory that in spirit is close to our construction of variational solutions
in Section 4D When H(q, p) is convex in the momentum variable, then the
variational solution is also a viscosity solution and (4-3) offers a control theo-
retical representation of the solution; see [6] for a thorough discussion on the
applications of (4-3). When H is not convex in the momentum, a minimax type
variational description does the job.

For our purposes, it is more convenient to solve the final value problem{
ut + H(q, uq)= 0, t < T,
u(q, T )= g(q).

(4-14)

We assume that H is of the following form

H(q, p)= inf
z∈Z

Ĥ(q, p; z)= inf
z∈Z

sup
v

(p · v− L̂(q, v; z)),

where Z is some measure space, Ĥ(q, p; z) is convex in p for each z ∈ Z , and
we writing L̂(q, v; z) for its Legendre transform in the p-variable. We assume
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that there exist constants η0 > 1, δ0 > 0, and a0 such that

L̂(q, v; z)≥ L0(v) := δ0|v|
η0 − a0, sup

|v′|≤1
L̂(q, v′; z)≤ a0,

lim
δ→0

sup
z′∈Z

sup
|x |≤1

sup
|x−x ′|≤δ

|Ĥ(x ′; z′)− Ĥ(x; z′)| = 0,

sup
z′∈Z

sup
q ′

sup
|p′|≤`
|Ĥp(q ′, p′; z′)|<∞,

(4-15)

for all q, v ∈ Rd , z ∈ Z , and ` > 0.

Definition 4.20. We write V (t, T ) for the set of bounded measurable maps
v : [t, T ] → Rd , and Z(t, T ) for the set of measurable maps z : [t, T ] → Z .
We write 1(t, T ) for the set of strategies. By a strategy, we mean a map
α : Z(t, T )→V (t, T ) such that if t< s≤T , and z= z′ on [t, s], then α[z]=α[z′]
on [t, s].

We are now ready to offer a solution to (4-14). For t ≤ T , set

u(q, t)= ST
t (g)(q)

= sup
α∈1(t,T )

inf
z∈Z(t,T )

[
g(q(T ))−

ˆ T

t
L̂(q(θ), q̇(θ); z(θ)) dθ

]
, (4-16)

where q( · )= q( · ; t, q, α[z]) is uniquely specified by the requirements q(t)= q ,
and q̇ = α[z] =: v. In other words, for θ ∈ [t, T ],

q(θ)= q +
ˆ θ

t
α[z](θ ′) dθ ′.

Note that we may write q̇(θ)= Ĥp(q(θ), p(θ); z(θ)), where

p(θ)= L̂v(q(θ), α[z](θ); z(θ)).

In terms of p( · ), we have

L̂(q(θ), q̇(θ); z(θ))= p(θ) · q̇(θ)− Ĥ(q(θ), p(θ); z(θ)).

When H is not convex in p, the relationship v= Hp(q, p) is no longer invertible
in p for a given q . However, if we specify z, then we can invert p 7→ Ĥp(q, p; z).
The role of the path q( · ) is the same as the characteristic. The optimal path still
solves the Hamiltonian ODE locally, but it is allowed to have corners when we
switch from one label z to another.

Theorem 4.21. The function u as in (4-16) is a viscosity solution of (4-14).

The main ingredient for the proof of Theorem 4.21 is the following dynamic
programming optimality condition:
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Theorem 4.22. For s ∈ [t, T ], we have

ST
t (g)(q)= sup

α∈1(t,s)
inf

z∈Z(t,s)

[
ST

s (g)(q(s))−
ˆ s

t
L̂(q(θ), q̇(θ); z(θ))dθ

]
. (4-17)

Proof. Fix q. We write u(q, t) and u′(q, t) for the left and right hand sides of
(4-17) respectively. We carry out the proof in two steps.

First we pick c < u′(q, t) and show that c < u(q, t). Observe that since
c < u′(q, t), there exists β ∈1[t, s] such that for all y ∈ Z(t, s), we have

c < ST
s (g)(q(s))−

ˆ s

t
L̂(q(θ), q̇(θ); y(θ)) dθ,

with q(θ)= q+
´ θ

t β[y](θ
′) dθ ′, for θ ∈ [t, s]. Now given a = q(s), we can find

γa ∈1(s, T ) such that for every w ∈ Z(s, T ), we have

c<g(ρ(T ))−
ˆ T

s
L̂(ρ(θ), ρ̇(θ);w(θ))dθ−

ˆ s

t
L̂(q(θ), q̇(θ); y(θ))dθ, (4-18)

where

ρ(θ)=q(s)+
ˆ θ

s
γq(s)[w](θ

′) dθ ′=q+
ˆ s

t
β[y](θ ′) dθ ′+

ˆ θ

s
γq(s)[w](θ

′) dθ ′,

for θ ∈ [s, T ]. We now construct α ∈1(t, T ) as follows: Given z ∈ Z(t, T ), we
set

α̂[z](θ)=
{
β[z �[t,s]](θ), θ ∈ [t, s],
γq(s)[z �[s,T ]](θ), θ ∈ (s, T ],

where q(s)= q +
´ s

t β[z �[t,s]](θ) dθ . More generally, we define q( · ), as

q(θ)= q +
ˆ θ

t
α̂[z](θ ′) dθ ′,

for θ ∈ [t, T ]. Observe that (4-18) means

c < g(q(T ))−
ˆ T

t
L̂(q(θ), q̇(θ); z(θ)) dθ ≤ u(q, t),

for every z ∈ Z(t, T ). This completes the proof of u′ ≤ u.
We now turn to the proof of u ≤ u′. Pick c< u(q, t), and choose α̂ ∈1(t, T )

such that for every z ∈ Z(t, T )

c < g(q(T ))−
ˆ T

t
L̂(q(θ), q̇(θ); z(θ)) dθ

= g(q(T ))−
ˆ T

s
L̂(q(θ), q̇(θ); z(θ)) dθ −

ˆ s

t
L̂(q(θ), q̇(θ); z(θ)) dθ,
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where q(θ)= q +
´ θ

t α̂[z](θ
′) dθ ′, for θ ∈ [t, T ]. We then define β ∈1(t, s) as

follows: for every y ∈ Z(t, s), we have β[y] = α[y′], where y′ ∈ Z(t, T ), is any
extension of y. For this β, we wish to show that for every y ∈ Z(t, s),

c < ST
s (g)(q(s))−

ˆ s

t
L̂(q(θ), q̇(θ); z(θ)) dθ,

where q(θ)= q +
´ θ

t β[y](θ
′) dθ ′ for θ ∈ [t, s]. Given y ∈ Z(t, s), we need to

come up with a family of strategies γa ∈1(s, T ) such that for every w ∈ Z(s, T ),
we have

c < g(ρ(T ))−
ˆ T

s
L̂(ρ(θ), ρ̇(θ);w(θ)) dθ −

ˆ s

t
L̂(q(θ), q̇(θ); y(θ)) dθ,

where

ρ(θ)= q(s)+
ˆ θ

s
γq(s)[w](θ

′) dθ ′.

This is achieved by setting

γq(s)[w] = α[y⊕w],

where

(y⊕w)(θ)=
{

y(θ), θ ∈ [t, s],
w(θ), θ ∈ [s, T ].

�

As our next step we show that we can always restrict α in (4-16) to those with
bounded range:

Proposition 4.23. If g ∈3r , then the supremum in (4-16) can be restricted to
those α such that

M(α) := sup
z∈Z(t,T )

M(α, z)

:= sup
z∈Z(t,T )

[
1

T − t

ˆ T

t
|α[z](θ)|η0 dθ

]1/η0

≤ C0, (4-19)

where

C0 = C0(r, δ0, η0, a0)= 2a0+

(
r + 1
δ0

)1/(η0−1)

.

Proof. Assume that g ∈3r . Write

A(q;α, z( · )) := g(q(T ))−
ˆ T

t
L̂(q(θ), q̇(θ); z(θ)) dθ,
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with q( · ) as in (4-16). From g ∈3r , and (4-15),

A(q;α, z( ·))≤ g(q)+r
∣∣∣∣ˆ T

t
α[z]dθ

∣∣∣∣+a0(T−t)−δ0(T−t)M(α, z)η0

≤ g(q)+r(T−t)M(α, z)+a0(T−t)−δ0(T−t)M(α, z)η0 . (4-20)

On the other hand,

A(q; 0, z( · ))= g(q)−
ˆ T

t
L̂(q, 0; z(θ)) dθ ≥ g(q)− a0(T − t),

by (4-15). In (4-16), we may ignore those α such that

inf
z∈Z(t,T )

A(q;α, z( · )) < g(q)− a0(T − t). (4-21)

Using (4-20), the inequality (4-21) would be, if that for some z( · ) ∈ Z(t, T ),
we have

r(T − t)M(α, z)+ a0(T − t)− δ0(T − t)M(α, z)η0 <−a0(T − t)

Equivalently,
δ0 M(α, z)η0 − r M(α, z)− 2a0 > 0.

This inequality is valid if

M(α, z) > C0 := 2a0+

(
r + 1
δ0

)1/(η0−1)

.

In summary, we may ignore those α such that

sup
z∈Z(t,T )

M(α, z) > C0.

We are done. �

With the aid of (4-19), we can show the regularity of u = St(g).

Theorem 4.24. Assume that g ∈3r . Then the following statements are true:

(i) The value of u(q, t)= (ST
t g)(q) depends only on the restriction of g to the

set
BC0(T−t)(q) := {q ′ : |q ′− q| ≤ C0(T − t)}.

(ii) The value of u(q, t)= (ST
t g)(q) depends only on the restriction of Ĥ to the

set

BC0(T−t)(q)×Rd
× Z = {(q ′, p, z) ∈ R2d

× Z : |q ′− q| ≤ C0(T − t)}.
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(iii) We have

−a0(T − t)≤ u(q, t)− g(q)≤ C1(T − t), (4-22)

where C1 = C1(r) = a0 + c1rη1 , for constants η1 = η0/(η0 − 1), and
c1 = c1(δ0, η0).

(iv) Assume that s ∈ [t, T ]. Then

−a0(s− t)≤ u(q, t)− u(q, s)≤ C1(s− t). (4-23)

(v) For every t < T , and q, q ′ ∈ Rd , we have

|u(q ′, t)− u(q, t)| ≤ (C1+ a0+ r)|q ′− q|. (4-24)

Proof. (i) The dependence of u on the final data is of the form g(q(T )) with

|q(T )− q| =
∣∣∣∣ˆ T

t
α[z]dθ

∣∣∣∣≤ C0(T − t),

by(4-19).

(ii) The spatial dependence of L̂ is q(θ) with θ ∈ [t, T ]. We are done because
|q(θ)− q| ≤ C0(T − t) by (4-19).

(iii) By choosing the strategy α = 0 in the definition of u, and using (4-15) we
get

u(q, t)≥ g(q)− a0(T − t).

On the other hand, by g ∈3r and (4-15),

u(q, t)≤ g(q)+ sup
α∈1(t,T )

inf
z∈Z(t,T )

[
r |q(T )− q| −

ˆ T

t
L0(q̇(θ)) dθ

]
≤ g(q)+ sup

α∈1(t,T )
inf

z∈Z(t,T )

[
r |q(T )− q| − (T − t)L0

(
q(T )− q(t)

T − t

)]
= g(q)+ sup

Q

[
r |Q− q| − (T − t)L0

(
Q− q
T − t

)]
= g(q)+ (T − t) sup

a≥0
[ra− δ0aη0 + a0]

= g(q)+ (T − t)[a0+ c1rη1],

as desired.

(iv) Set δ = s− t . From (4-17) and since L̂ does not depend on time,

u(q, t)= (ST
s−δg)(q)= (S

T−δ
s−δ (S

T
T−δg))(q)= (S

T
s (S

T
T−δg))(q).
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From this, u(q, s)= ST
s g(q), and the contraction of the operator ST

s ,

inf(ST
T−δg− g)≤ u(q, t)− u(q, s)≤ sup(ST

T−δg− g).

This and (4-22) yield (4-23).

(v) First we assume that |q − q ′| ≥ T − t . We then use (4-22) to write

u(q ′, t)− u(q, t)≤ (C1+ a0)(T − t)+ g(q ′)− g(q)

≤ (C1+ a0)(T − t)+ r |q ′− q|

≤ (C1+ a0+ r)|q ′− q|.
Hence

|q ′− q| ≥ T − t =⇒ |u(q ′, t)− u(q, t)| ≤ (C1+ a0+ r)|q ′− q|. (4-25)

On the other hand, when ρ := |q−q ′|< T − t , we use (4-17) and (4-21) to write

u(q, t)

= sup
α∈1(t,t+ρ)

inf
z∈Z(t,t+ρ)

[
u(q(t+ρ), t+ρ)−

ˆ t+ρ

t
L̂(q(θ), q̇(θ); z(θ))dθ

]
≥ sup
α∈1(t,t+ρ)

inf
z∈Z(t,t+ρ)

[
u(q(t+ρ), t)−

ˆ t+ρ

t
L̂(q(θ), q̇(θ); z(θ))dθ

]
−C1ρ.

Pick a vector e and choose the constant strategy α[z] = e to assert

u(q, t)≥ inf
z∈Z(t,t+ρ)

[
u(q + ρe, t)−

ˆ t+ρ

t
L̂(q + θe, e; z(θ)) dθ

]
−C1ρ

≥ u(q + ρe, t)− (C1+ a0)ρ.

We now choose e = (q ′− q)/|q ′− q| to conclude

u(q, t)− u(q ′, t)≥−(C1+ a0)ρ,

which yields

|q ′− q| ≤ T − t =⇒ |u(q ′, t)− u(q, t)| ≤ (C1+ a0)|q ′− q|.

This and (4-25) yield (4-24). �

Proof of Theorem 4.21. Fix (q0, t0), and assume that φ ∈ C1 with

u(q0, t0)= φ(q0, t0), u ≤ φ, p0 = φq(q0, t0), r0 = φt(q0, t0). (4-26)

Pick δ > 0, and write 1′(t0, t0+ δ) for the set of α ∈1(t0, t0+ δ) such that

M(α) := sup
z∈Z(t0,t0+δ)

[
δ−1
ˆ t0+δ

t0
|α[z](θ)|η0 dθ

]1/η0

≤ C0.



358 FRAYDOUN REZAKHANLOU

By Theorem 4.22, and (4-19),

u(q0, t0)

= sup
α∈1′(t0,t0+δ)

inf
z∈Z(t0,t0+δ)

[
u(q(t0+δ), t0+δ)−

ˆ t0+δ

t0
L̂(q(θ), q̇(θ); z(θ))dθ

]
,

where q(θ)= q0+
´ θ

t0
α[z](θ) dθ . To ease the notation, we write 1′δ and Zδ for

1′(t0, t0+ δ) and Z(t0, t0+ δ). From this and our assumption (4-26) we deduce

0≤ sup
α∈1′δ

inf
z∈Zδ

[
φ(q(t0+ δ), t0+ δ)−φ(q0, t0)−

ˆ t0+δ

t0
L̂(q(θ), q̇(θ); z(θ)) dθ

]

= sup
α∈1′δ

inf
z∈Zδ

[ˆ t0+δ

t0
(φt(q(θ), θ)+q̇(θ)·φq(q(θ), θ)− L̂(q(θ), q̇(θ); z(θ))) dθ

]

≤ sup
α∈1′δ

inf
z∈Zδ

[ˆ t0+δ

t0
(φt(q(θ), θ)+ Ĥ(q(θ), φq(q(θ), θ); z(θ))) dθ

]

≤ sup
α∈1′δ

inf
z∈Z

[
2
ˆ t0+δ

t0
(φt(q(θ), θ)+ Ĥ(q(θ), φq(q(θ), θ); z)) dθ

]
, (4-27)

where, for the last inequality, we take the infimum over constant paths in
Z(t0, t0+ δ). On the other hand, since M(α)≤ C0, for θ ∈ [t0, t0+ δ],

|q(θ)− q0| ≤

ˆ θ

t0
|α[z](θ ′)| dθ ′ ≤

ˆ t0+δ

t0
|α[z](θ)| dθ ≤ δM(α)≤ C0δ, (4-28)

where we used the Hölder’s inequality for the third inequality.
From this and the continuity of Ĥ as in (4-15),

φt(q(θ), θ)+Ĥ(q(θ), φq(q(θ), θ); z)≤φt(q0, t0)+Ĥ(q0, φq(q0, t0); z)+c1(δ),

for a constant c1(δ) such that c1(δ)→ 0 as δ→ 0. This and (4-27) imply

0≤ δ sup
α∈1′δ

inf
z∈Z
[φt(q0, t0)+ Ĥ(q0, φq(q0, t0); z)+ c1(δ)]

= δ inf
z∈Z
[r0+ Ĥ(q0, p0; z)+ c1(δ)]

= δ[r0+ H(q0, p0)+ c1(δ)].

We divide both sides by δ and send δ→ 0 to arrive at 0 ≤ r0+ H(q0, p0), as
desired. (Note that since we are solving a backward HJE, this is the correct
inequality.)

We next assume that φ ∈ C1 is Lipschitz with

u(q0, t0)= φ(q0, t0), u ≥ φ, p0 = φq(q0, t0), r0 = φt(q0, t0).
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After a repetition of what we did above, we now have

0≥ sup
α∈1′δ

inf
z∈Zδ

[ˆ t0+δ

t0

(
φt(q(θ), θ)+ q̇(θ) ·φq(q(θ), θ)

−L̂(q(θ), q̇(θ); z(θ))
)

dθ
]
. (4-29)

We now make a selection for α. In principle, we wish to solve the ODE

q̇(θ)= v(q(θ), θ; z(θ)) := Ĥp(q(θ), φq(q(θ), θ); z(θ)), q(t)= q,

for a given z( · ) ∈ Z(t, T ), and use the solution to define

α[z](θ)= v(q(θ), θ; z(θ)).

Choosing such a strategy in (4-29) allows us to deduce

0≥ inf
z∈Zδ

[ˆ t0+δ

t0

(
φt(q(θ), θ)+ Ĥ(q(θ), φq(q(θ), θ); z(θ))

)
dθ
]

≥

ˆ t0+δ

t0

(
φt(q(θ), θ)+ H(q(θ), φq(q(θ), θ))

)
dθ.

Again using (4-15) and (4-28) we know

φt(q(θ), θ)+ H(q(θ), φq(q(θ), θ))≥ r0+ H(q0, p0)− c1(δ),

for some constant c1(δ) satisfying c1(δ)→ 0 if δ→ 0. As a result,

0≥ δ[r0+ H(q0, p0)+ c1(δ)].

We divide both sides by δ and send δ→ 0 to arrive at 0 ≥ r0+ H(q0, p0), as
desired. �

Remark 4.25. Theorem 4.21 was established by Evans and Souganidis [9] for
more general games. For our presentation we have chosen a game that is more
in line with our definition of variational solutions. In fact, [9] assumes that the
analog of the set Z is bounded. Under such an assumption the bound on M(α)
becomes trivial and Proposition 4.23 is no longer needed. Though, the results of
[9] are applicable only for bounded Hamiltonian functions.

5. Homogenization

In Section 1G, we discussed the homogenization phenomenon and its connection
to weak KAM theory. In this section we explore the question of homogeniza-
tion more closely. Several approaches have been developed to establish the
homogenization for HJEs and their viscous variants that we now review:
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(1) The earliest homogenization for HJE was carried out in Lions, Papanicolaou
and Varadhan [17] when the Hamiltonian function is periodic in position variable.
This is achieved by solving (1-6) for wP , for every P ∈Rd . Regarding the graph
of a solution to HJE as an evolving interface separating different phases, the
graph of P +∇wP , is a realization of an invariant measure associated with the
inclination P . Fathi [10] extends [17] from Td

×Rd to the cotangent bundles of
compact manifolds provided that the Hamiltonian function is Tonelli.

(2) The homogenization for the variational solutions in the periodic setting (i.e.,
when M = Td

×Rd) has been established by Viterbo [31]. The homogenized
Hamiltonian function H (see (1-12)) that Viterbo obtains for the variational
solutions differs from what Lions et al. [17] obtains in the viscosity setting.
Viterbo uses his homogenized Hamiltonian function to address questions in
symplectic geometry.

(3) For Tonelli Hamiltonians, Lax–Oleinik formula (4-3) allowed Souganidis
[29] and Rezakhanlou and Tarver [26] to establish the homogenization when the
Hamiltonian function is selected according to a shift invariant probability measure.
The evolution of the interface (which is the graph of a random height function)
is a classical example of a stochastic growth model; see, for example, [25]. The
homogenization in this case (as many other stochastic growth models) can be
shown with the aid of the subadditive ergodic theorem; see [29] and [26].

(4) Homogenization for a viscous HJE with H(x, p)=|p|2+V (q) for a potential
function V is equivalent to the large deviation principle (LDP) for a Brownian
motion with killing; see for example Sznitman [30]. This suggests using LDP
ideas (see for example [23]) to establish homogenization; see [15].

(5) A probability measure on the space Hamiltonians yields a probability measure
on the set of semigroup associated with the corresponding HJEs. Homogenization
question can be formulated as a dynamical system problem for a group of
transformations that are defined on the set of HJ semigroups. This approach was
initiated in [22].

For the rest of this section, we explain the approaches (3) and (4) for the
Frenkel–Kontorova (FK) model of Section 3A (for the part of our presentation,
we follow [18]).

Let us write L for the set of maps S : Rd
× Rd

→ R such that the map
L(q, v)= S(q, q + v) satisfies Assumption 3.1. We equip L with the topology
of L∞loc that is metrizable. For the question of homogenization, we define an
operator that turns a microscopic height function g : Rd

→ R to a macroscopic
height function. Its inverse does the opposite:

(0ng)(q)= n−1g(nq), (0−1
n g)(q)= (0n−1 g)(q)= ng(n−1q).



HAMILTONIAN ODE, HOMOGENIZATION, AND SYMPLECTIC TOPOLOGY 361

We think of g as an initial macroscopic height function. Its growth is governed
microscopically by the operators T or T̂ of (3-3). The macroscopic height
function after one macroscopic time step (which is n microscopic time steps) is
given by un = uS

n := T̃ S
n g, where the operator T̃ S

n is defined as

T̃ S
n := 0n ◦ (T̂S)

n
◦0−1

n .

A homogenization occurs if the limit

T (g) := lim
n→∞

uS
n , (5-1)

exists for every Lipschitz function g. In the stochastic setting, we wish to establish
the homogenization for almost all choices of S with respect to a probability
measure that is defined on the set L. This probability measure is assumed to be
translation invariant and ergodic with respect to a natural notion of translation
that will be defined shortly.

We may write

uS
n (q)= sup

q1,...,qn

[g(n−1qn)− n−1(S(nq, q1)+ S(q1, q2)+ · · ·+ S(qn−1, qn))]

= sup
Q
[g(Q)− n−1Sn(nq, nQ)], (5-2)

where

Sn(q, Q)= inf
q1,...,qn−1

(S(q, q1)+ S(q1, q2)+ · · ·+ S(qn−1, Q)).

To display the dependence of Sn on the generating function S, let us write
Sn(q, Q; S) for Sn(q, Q). We also define the translations (in position variable q)
as

τa S(q, Q)= S(q + a, Q+ a)= L(q + a, Q− q), τag(q)= g(q + a).

Observe

T̃ τa S
n = τa ◦ T̃ S

n ◦ τ−a or τa(T̃ S
n g)= T̃ τa S

n (τag). (5-3)

We are now ready to formulate our stochastic homogenization question.

Homogenization problem. Let P be a probability measure on the set L that is
invariant with respect to the translation group {τa : a ∈ Rd

}. Show that the limit
(5-1) exists almost surely with respect P. Study the properties of the limit T in
terms of the underlying measure P.

Recall that our probability measure P is concentrated on the set of S(q, Q)=
L(q, Q−q) with L satisfying (3-1). This brings us two useful properties for the
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sequence un

uS
n (q)= sup

|Q−q|≤`(r)
[g(Q)− n−1Sn(nq, nQ)], (5-4)

lim
δ→0

sup
S∈L

sup
|q|≤c

sup
n
|uS

n (q + δ)− uS
n (q; S)| = 0, (5-5)

for every c > 0. The proofs of these properties are similar to the proofs of
Theorem 4.24(i) and(v), and are omitted. From (5-5) we can readily deduce the
compactness of the sequence un is L∞loc. For the rest of this section, we describe
two strategies that can be employed to prove the existence of a pointwise limit
for the sequence uS

n .
If we set Kn(Q; S)= Sn(0, Q; S), we then have

Sn(q, Q; S)= Kn(Q− q; τq S),

and the following subadditivity of Kn:

Km+n(Q+ Q′; S)≤ Km(Q; S)+ Kn(Q′; τQ S).

As a consequence

Km+n((m+ n)Q; S)≤ Km(m Q; S)+ Kn(nQ; τm Q S).

This subadditivity can be used to establish the homogenization with the aid of
the subadditive ergodic theorem; we refer to [29; 26] for more details. More
precisely, the subadditive ergodic theorem can guarantee the large n limit of
n−1Kn(nQ; S) exists almost surely. The disadvantage of this approach is that it
does not offer much information about the limit.

We now turn to approach (4) This approach is based on the following intuition
that we partially discussed in Section 3: If for some C1 Lipschitz function U ,
and a constant c, we have T̂ (U ) = U + c, then 8(q,∇U (q)) = (Q,∇U (Q)),
for the corresponding symplectic map 8. Relationship between q and Q = F(q)
is that Q is a critical point of A(Q; q)=U (Q)−S(q, Q). So, F(q) is implicitly
given by

∇U (F(q))= SQ(q, F(q)). (5-6)

For such a function U , the set Gr(U ) is invariant for 8. Moreover, the q-
component of the flow associated with the restriction of 8 to the set Gr(U ) can
be fully determined in terms of the function F :Rd

→Rd . In fact in approach (1),
we show that such solutions U exist. If we can show that for each P ∈ Rd , there
exists a solution U =U P such that U (q)= P ·q+ o(|q|), as |q| →∞, then we
are in a position to establish our homogenization as in [17]. However, in general
a solution U P may not exist for every P in the stochastic setting. Nonetheless
the intuition behind such (equilibrium-like) solutions would allow us to design a
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strategy that consists of three steps; this should be compared with ideas coming
from LDP [23].

Step 1 (lower bound) To simplify our presentation, we first assume that the
function L(q, v)= S(q, q + v) is 1-periodic in q. Motivated by (5-6), we pick
any continuous function f : Td

→ Td , and write F : Rd
→ Rd for its lift. In

particular, we can write F(q)= q+G(q), with G a periodic function. We select
qi = F i (q0) with q0 = a in (5-1). Note

n−1qn = n−1
n−1∑
i=0

G(F i (q0)),

n−1∑
i=0

S(qi , qi+1)=

n−1∑
i=0

SF (F i (q0)),

where SF (q) = S(q, F(q)) = L(q,G(q)) =: LG(q), which is also periodic.
Recall that we only need to study wn(S)= un(0). As a result un(0) is close to
un(n−1a). We certainly have

un(n−1a)≥ g
(

n−1a+ n−1
n−1∑
i=0

G(F i (a))
)
− n−1

n−1∑
i=0

SG(F i (a)). (5-7)

We wish to find the limit of the right-hand side of (5-7). Since both G and SF

are periodic, we may regard them as functions that are defined on the torus;
with a slight abuse of notation, we write G, SF

: Td
→ R, so that we can write

G ◦ F i
= G ◦ f i , and SF

◦ F i
= SF

◦ f i . Now if we pick any ergodic invariant
measure for f , then we have

lim
n→∞

n−1
n−1∑
i=0

G(F i (a))=
ˆ

G dµ,

lim
n→∞

n−1
n−1∑
i=0

SF (F i (a))=
ˆ

LG dµ,

(5-8)

for µ almost all choices of a. From this we obtain

lim inf
n→∞

un(0)= lim inf
n→∞

un(n−1a)≥ g
(ˆ

G dµ
)
−

ˆ
LG dµ.

This being true for any such pair (F, µ), we deduce

lim inf
n→∞

un(0)≥ sup
(F,µ)∈M

[
g
(ˆ

G dµ
)
−

ˆ
SF dµ

]
= sup

v

[g(v)− L̂(v)],

where M is the set of pairs (F, µ) such that µ is an ergodic invariant measure
for the corresponding map f , and

L̂(v)= inf
(F,µ)∈M

{ˆ
S(q, F(q))µ(dq) :

ˆ
(F(q)− q) µ(dq)= v

}
. (5-9)
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Using (5-2), it is not hard to replace 0 with any q ∈ Rd to obtain

lim inf
n→∞

un(q)≥ sup
(F,µ)∈M

[
g
(ˆ

G dµ
)
−

ˆ
SF dµ

]
= sup

v

[g(q + v)− L̂(v)]. (5-10)

In the stochastic setting, we have a probability measure P on L that is τ
invariant and ergodic. Here we equip L with the topology of local uniform
convergence and P is a Radon measure with respect to this topology. We take
any bounded continuous function G : cL→ Rd . Out of this, we define a map
F( · ; S) : Rd

→ Rd , by

F(q; S)= q +G(τq S).

We then use the sequence qn = Fn(a), to obtain a lower bound. Indeed, if we set

T = TG : cL→ L, T (S)= τG(S)S, LG(S)= S(0,G(S)),

then

qn = Fn(a)=
n−1∑
i=0

G(T i (τa S)),
n−1∑
i=0

S(qi , qi+1)=

n−1∑
i=0

LG(T i (τa S)),

To apply the ergodic theorem, we pick any T -invariant ergodic measure µ so
that (5-8) is true. Moreover, if µ is absolutely continuous with respect to P, then
we also have (5-10), provided that the supremum is taken over pairs (G, µ) such
that µ is TG ergodic and invariant, and µ� P.

Step 2 (upper bound) Let us assume that the initial condition is of the form
gp(q)= q · p for some p ∈Rd . Let us write U for the set of continuous functions
w : Rd

→ R, such that
lim
|q|→∞

|q|−1w(q)= 0.

We then define

H(p;w)= sup
q,Q
(w(Q)−w(q)+ p · (Q− q)− S(q, Q)).

For any w ∈ U , we use (5-4) to produce an upper bound for the large n limit of
un as follows:

un(q)= T S
n gp(q)

≤ sup
|Q−q|≤`(|p|)

[gp(Q)− (Q− q) · p− n−1(w(nQ)−w(nq))] + H(p;w)

= q · p+ H(p;w).
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As a result,

lim sup
n→∞

un(q)≤ q · p+ inf
w∈U

H(p;w)=: q · p+H(p)= sup
v

[gp(q+v)− L(v)],

where α is the Legendre transform of H .
When H is periodic in q , we have a candidate for what the minimizing w ∈ U

is namely, the solution w = w p of (1-6). Writing U0 for the set of continuous
1-periodic functions, we may write

H(p)= inf
w∈U0

H(p;w).

The point is that a more restrictive infimum in the definition of H makes it easier
when we try to match our upper bound with our lower bound in step 1. We can
also be more selective in the stochastic setting by choosing the type of w that
have τ -stationary gradient; for example see [15] for more details.

Step 3 (L̂=α) To establish homogenization, it remains to show that the upper and
lower limits of Steps 1 and 2 coincide. This may be achieved by an introduction
of a Lagrange multiplier, and an application of minimax principle. We explain
this in the periodic case. Also, we simplify our presentation by replacing the
set M with a larger set M′. The set M′ is the set of pairs (F, µ) such that µ is
an invariant measure for the corresponding map f (we dropped the ergodicity
requirement so that our choice of Lagrange multiplier simplifies). We also set

L̂ ′(v)= inf
(F,µ)∈M′

{ˆ
S(q, F(q))µ(dq) :

ˆ
(F(q)− q) µ(dq)= v

}
,

which is what we get as we replace M with M′ in (5-9). If we write Ĥ ′ for the
Legendre transform of L̂ ′;

Ĥ(p) := sup
v

(p · v− L̂(v)),

then we can show that Ĥ ′ = H :

Ĥ ′(p)= sup
(F,µ)∈M′

(ˆ (
(F(q)− q) · p− S(q, F(q))

)
µ(dq)

)
= sup

F
sup
µ

inf
w∈U0

(ˆ (
(F(q)− q) · p− S(q, F(q))

)
µ(dq)

+

ˆ (
w(F(q))−w(q)

)
µ(dq)

)
= inf
w∈U0

sup
F

sup
µ

(ˆ (
(F(q)− q) · p− S(q, F(q))

)
µ(dq)

+

ˆ
(w(F(q))−w(q)) µ(dq)

)
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= inf
w∈U0

sup
F

sup
q

(
(F(q)− q) · p− S(q, F(q))+w(F(q))−w(q)

)
= inf
w∈U0

sup
Q

sup
q

(
(Q− q) · p− S(q, Q)+w(Q)−w(q)

)
= H(p).
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