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A symplectic approach to Arnold diffusion
problems

JEAN-PIERRE MARCO

The purpose of this text is to present a symplectic approach to Arnold diffusion
problems, that is, the existence of orbits of perturbed integrable systems along
which the action variables experience a drift whose length is independent
of the size of the perturbation. We chose to focus on the construction of
orbits drifting along “chains of cylinders”, taking for granted the existence of
the chains. We however give a rather complete description of these chains,
together with some elements on their symplectic features and some main ideas
to prove their existence. We adopt the setting introduced by John Mather to
prove the Arnold conjecture for perturbations of Tonelli Hamiltonians, which
we see as the good one to set out the various (and numerous) problems of the
construction, and give some ideas to show how the symplectic approach may
enable one to enlarge its scope.

1. Introduction

In this text we denote by An
=T ∗Tn the cotangent bundle of the torus Tn

=Rn/Zn ,
endowed with its angle-action coordinates (θ, r) and its usual exact-symplectic
structure.

1. The questions addressed in this paper originate in the famous Boltzmann
conjecture, rephrased in the modern mathematical language (following [54]) as:

For (almost) all proper Hamiltonian function H on a 2n-dimensional
symplectic manifold and (almost) all real value e, the associated Hamil-
tonian vector field is ergodic on each connected component of H−1(e).

Forgetting about the real scope of this conjecture — certainly limited to m-
body problems with very large m — it is well-known that the KAM theorem
yields counterexamples to the previous statement as soon as n ≥ 2. One can see
the following weaker quasiergodic conjecture by Poincaré and Ehrenfest as an
attempt to partially recover its possible dynamical applications:
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For (almost) all proper Hamiltonian function H on a symplectic mani-
fold and (almost) all real value e, the associated Hamiltonian vector
field admits an orbit which is dense in H−1(e).

It turns out that the Poincaré–Ehrenfest conjecture is false too: this is a
consequence of the KAM theorem if n = 2, while Herman proved (see [54]) that
it is false for n ≥ 3, at least on nonexact symplectic manifolds. He also asked
the simpler — but still open — question of the existence of a C∞ perturbation of
1
2‖r‖

2 on An with a dense orbit on some energy level.
A possible way to state a correct but even weaker question in the spirit of

the previous conjectures comes from [25], where Arnold introduced the first
example of an “unstable” family of Hamiltonian systems on A3, namely:

Hε(θ, r)= r1+
1
2(r

2
2 + r2

3 )+ ε(cos θ3− 1)+µ(ε)(cos θ3− 1)g(θ), (1)

where g is a suitably chosen trigonometric polynomial, ε > 0 is small enough
and µ(ε)� ε. The main result of Arnold is the existence of ε0 > 0 such that
for 0< ε < ε0, the system Hε admits an “unstable solution” γε(t)= (θ(t), r(t))
such that

r2(0) < 0, r2(Tε) > 1, (2)

for some (large) Tε. Orbits experiencing this type of behavior are said to be
diffusion orbits. In view of this result and the associated constructions, Arnold
conjectured (see [25]) that for “typical” systems of the form

Hε(θ, r)= h(r)+ ε f (θ, r, ε) (3)

on An , n ≥ 3, the projection in action of some orbits should visit any element of
a prescribed collection of arbitrary open sets intersecting a connected component
of a level set of h. One therefore gets an “asymptotic density” of the projection
of the orbit onto the action space when the size of the perturbation tends to 0.
Taking the variation of the angles into account, one can also produce examples
of perturbations of 1

2‖r‖
2 on the annulus A3 with orbits dense on subsets of

Hausdorff dimension 5 inside an energy level; see [32].

2. The Arnold conjecture is directly related to the existence or nonexistence of
particular invariant subsets acting as “barriers” inside an energy level. Assume
that X is a complete vector field on a manifold M . Given some open connected
subset O and a point x in M , consider the full orbit of O under the flow 8 of X :

O =8(R× O).

Hence O is the “accessibility domain” attached to O and its boundary ∂O =
Adh O \O is invariant under the flow 8. The existence of an orbit connecting O
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and x is equivalent to x and O being in the same connected component of the
complement of ∂O.

Understanding the structure of the boundaries of the domains of accessibility
is in general hopeless. However, in the discrete case of area-preserving twist
maps of the annulus X =T×[0, 1], Birkhoff’s theory gives a satisfactory answer
(see Appendix B). Consider a neighborhood O=T×[0, ε[ of the lower boundary
and assume that O ⊂ T×[0, 1[. Then by the standard trick of “filling the holes”
(see [48]), one proves that the boundary ∂O admits a connected component
which disconnects T× ]0, 1[ and is the graph of a Lipschitz map T→ [0, 1].
More generally, one proves in the same way the existence of orbits connecting
any neighborhoods of the lower and upper essential circles bounding a Birkhoff
zone: a first example of diffusion behavior.

In general, an area-preserving twist map of X has essential invariant circles in
T×]0, 1[ and do not admit diffusion orbits starting arbitrarily close to T×{0}
and ending arbitrarily close to T×{1}. A crucial idea was introduced by Moeckel
[48] and then by Le Calvez [41], who studied the diffusion properties of bisystems
of maps on the annulus.1 A bisystem is a pair of maps (ϕ0, ϕ1) : X ý, and one
defines an orbit of (ϕ0, ϕ1) as a sequence (xn)n∈N such that xn+1 = ϕi (xn), with
i = 0 or 1. It turns out that if ϕ0 is an area-preserving twist map of X =T×[0, 1]
and ϕ1 : X→ X is area-preserving, then a sufficient condition for the bisystem
(ϕ0, ϕ1) to admit an orbit connecting arbitrary neighborhoods of T× {0} and
T×{1} is that both maps do not admit any essential invariant circle in common,
apart from the boundary ones. The underlying idea, close to the setting of control
theory, is that the action of ϕ1 destroys the boundaries of accessibility of ϕ0; see
[42] for a study of diffusion bisystems of integrable Hamiltonian systems based
on this type of methods.

The previous ideas have been generalized by Koropecki and Nassiri [35; 36] to
the dynamics of bisystems of symplectic diffeomorphisms on compact surfaces,
which are proved to be generically transitive. We will go back to this work in
the last section of this text.

Our approach to constructing diffusion orbits for systems (3) on A3 is based
on the embedding of bisystems on subsets of A into the system generated by
Hε, restricted to some energy level. More precisely, the orbits of our bisystems
will only be pseudoorbits, which have the additional property to admit genuine
shadowing orbits of the Hamiltonian system. Moreover, the bisystems satisfy the
previous property of noncoincidence of invariant circles under mild nondegener-
acy conditions (which can be made rather explicit), which yields the existence
of diffusion pseudoorbits, and thus to diffusion orbits.

1Also called IFS.
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As an ubiquitous example, setting ε = 1 in (1) yields a class of systems
for which the unperturbed part no longer depends on the actions only, but still
remains completely integrable (with nondegenerate hyperbolicity). It has been
a challenging question to prove the existence of unstable solutions (2) for the
slightly more general class of systems

Gµ(θ, r)= r1+
1
2(r

2
2 + r2

3 )+ (cos θ3− 1)+µg(θ, r), (4)

where g belongs to a residual subset of a small enough ball in some appropriate
function space (finitely or infinitely differentiable, Gevrey, analytic). This setting
(with its natural generalizations) is now called the a priori unstable case of
Arnold diffusion. In [21] we set out a geometric framework to deal with such
systems, using the previous bisystem method; see also [8; 11; 12; 13; 15; 16;
19; 20; 22; 23; 24; 48; 53] amongst others for different approaches. Another
different and very promising direction has been introduced in a related context
by Nassiri and Pujals [49], where the notion of robust transitivity is used in place
of the sole existence of diffusing orbits.

3. To some extent, the a priori unstable geometric and dynamical features can
be recovered in the so-called a priori stable case (3). This problem leads one
first to analyze the hyperbolic structure of such systems (under nondegeneracy
conditions) in the complement of the set of Lagrangian invariant tori. Due to the
many technicalities involved in this geometric part of the study, in this text we
will take for granted the existence of a large family of compact 3-dimensional
hyperbolic invariant submanifolds (described in the next section), with a rich
homoclinic structure, which form “chains” contained in a regular energy level.
Given a finite family of open subsets intersecting a connected component of
a level h−1(e), there is an ε0 such that these chains exist for 0 < ε < ε0 and
connect these open sets.

The cylinders could be seen as the counterpart in the Baire category of the
Lagrangian tori. The latter form subsets whose complement has relative measure
tending to 0 when the size of the perturbation tends to 0, while our invariant
cylinders tend to form dense subsets of a given regular level; see [32] for an
example.

One main difficulty to recover the a priori unstable setting in a priori stable
perturbations is the essentially singular nature of the problem: no hyperbolicity
is present in the unperturbed system, so that the hyperbolicity constants of our
3-dimensional manifolds tend to 0 when ε→ 0, which makes their embedding
properties a very delicate matter. We will limit ourselves here to give a description
of the cylinders and chains and underline the various difficulties raised by their
construction, we refer to [5; 7; 44] for more.
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Once the chains are given, one can focus on the construction of diffusion orbits
drifting along them. We will describe quite extensively two simple but relevant
examples in this paper, which correspond to the two situations encountered
in the n = 3 setting: the case of doubly resonance cylinders (the so-called a
priori chaotic case) and the case of simple resonance cylinders (the singular a
priori unstable case). In both cases, our method is to reduce the problem to the
embedding of a bisystem of maps (or correspondences) on an annulus to which
one can apply the Moeckel’s method under mild nondegeneracy conditions. Then
a normally hyperbolic shadowing process using the area preservation and the
Poincaré recurrence theorem (as introduced and used in [15; 24]) will provide us
with the diffusion orbits connecting the initially given open sets.

4. Let us briefly describe our setting, beginning with the functional spaces. Fix
n ≥ 1. For 2≤ κ <+∞ and f ∈ Cκ(An) := Cκ(An,R) we let

‖ f ‖κ =
∑

k∈N2n,0≤|k|≤κ

‖∂k f ‖C0(An) ≤+∞

and we set Cκ
b (A

n)= { f ∈ Cκ(An) | ‖ f ‖κ <+∞}, so that Cκ
b (A

n) is a Banach
space. We consider systems on A3, of the form

H(θ, r)= h(r)+ f (θ, r), (5)

where h : R3
→ R is Cκ and the perturbation f ∈ Cκ

b (A
3) is small enough.

Even if our point of view here is essentially symplectic, we will adopt
the setting introduced by Mather for proving the Arnold conjecture by vari-
ational methods. A first restriction in [47] is that the unperturbed part h is a
Tonelli Hamiltonian, that is, strictly convex with superlinear growth at infinity
(lim‖r‖→+∞ h(r)/‖r‖ → +∞). We will limit here to Tonelli Hamiltonians
too, since convexity reveals itself to be necessary in our constructions in the
neighborhood of double resonance points, in order to get well-defined classical
systems as main parts of normal forms. However, the symplectic approach seems
to make it possible to relax the convexity assumptions, at least to some extent.

A natural expectation, already illustrated by (1), would be the existence of
diffusion orbits for all systems in “segments” in Cκ

b (A
3) originating at h, of the

form
{Hε(θ, r)= h(r)+ ε f (θ, r) | ε ∈ ]0, ε0[} (6)

where f is a fixed function, where of course the smallness threshold ε0 may
explicitly depend on f . However, it seems difficult to prove the existence
of diffusion over whole segments such as (6). To take this observation into
account, still following Mather, one uses a more global framework and introduce
“anisotropic balls” in which the diffusion phenomenon can be expected to occur
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Figure 1. A generalized ball.

generically. Let Sκ be the unit sphere in Cκ
b (A

3). Given ε0 : Sκ→ [0,+∞[ (a
“threshold function”), we define the associated ε0-ball:

Bκ(ε0) := {ε f | f ∈ Sκ , ε ∈ ]0, ε0( f )[}. (7)

Note also that if ε0 is lower-semicontinuous, the associated ball is open in
Cκ

b (A
3).

This yields the following version of the diffusion conjecture,2 to be compared
with [25].

Conjecture (diffusion conjecture in the convex setting). There is an integer
κ0 ≥ 2 such that for κ ≥ κ0, given a Cκ integrable Tonelli Hamiltonian h on A3,
an e>Min h and a finite family of open sets O1, . . . , Om which intersect h−1(e),
then there exists a lower semicontinuous function

ε0 : Sκ→ R+

with positive values on a dense open subset of Sκ such that for f in a dense open
subset of Bκ(ε0) the system

H(θ, r)= h(r)+ f (θ, r) (8)

admits an orbit which intersects each T3
× Oi .

The zeros of ε0 correspond to directions along which diffusion cannot occur.
Simple examples show that such directions exist in general: for instance if
h(r)= 1

2(r
2
1 +r2

2 +r2
3 ), the system Hε = h+ε f with f (θ)= sin θ3 is completely

integrable and does not admit diffusion orbits connecting open sets which are far
from the θ3 = 0 plane. In view of the shape of Bκ(ε0), a residual subset in such

2Mather’s formulation is indeed still more precise and involved.
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a ball is said to be cusp-residual and a property which holds on a cusp-residual
subset is said to be cusp-generic.

From our point of view, one main interest (amongst many others) of the Mather
setting comes from the possibility of proving first the existence of chains of
cylinders for perturbations in a small enough generalized ball, and then prove
that a new but arbitrarily small perturbation of any system in that ball yields the
existence of diffusion orbits drifting along the chain, so connecting the open sets.

We wish to mention that very important advances has been achieved towards
the proof of this conjecture, first by John Mather himself in his unfortunately
unpublished notes, and more recently by P. Bernard, C.-Q. Cheng, V. Kaloshin,
Ke Zhang and their collaborators; see [5; 7; 10; 33] and the many references
therein. The methods in these works are either purely variational, or based on the
weak KAM theory developed by A. Fathi; see [18]. Our methods in this text are
more geometric and use in a crucial way the symplectic features of the systems.

2. The cusp-generic hyperbolic structure

This section is devoted to the geometric part of our study. We limit ourselves to
a description of the main steps and refer to [44] for details and proofs.

2.1. Cylinders and chains. 1. Let us briefly describe the various objects in-
volved in our construction. We refer to [21] for precise definitions, which will
also be recalled in the next two sections. Let X be a C1 complete vector field on
a smooth manifold M , with flow 8. Let p be an integer ≥ 1:

• We say that C ⊂ M is a C p invariant cylinder with boundary for X if C is a
submanifold of M , C p-diffeomorphic to T2

× [0, 1], which is invariant under
the flow of X : 8t(C )= C for all t ∈ R.

• We denote by Y any realization of the two-sphere S2 minus three open discs
with nonintersecting closures, so that ∂Y is the union of three circles. We say
that C• ⊂ M is an invariant singular cylinder for X if C• is a C1 submanifold
of M , C1 diffeomorphic to T× Y and invariant under 8. The boundary of a
singular cylinder is the disjoint union of three tori.

Throughout this paper we will consider vector fields generated by Hamiltonian
functions H ∈ Cκ(A3), κ ≥ 2. The cylinders or singular cylinders will be
contained in regular levels of H .

2. The notion of normal hyperbolicity for submanifolds with boundary requires
some care. We refer to [9] for a general presentation, well-adapted to our setting
(see also Appendix A). It suffices here to say that the normally hyperbolic
invariant submanifolds we are dealing with here are invariant submanifolds
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1

Figure 2. Cylinder and singular cylinder.

with boundary contained in usual normally hyperbolic manifolds of the same
dimension (invariant for a new system slightly modified outside the submanifold
at hand). In particular, our normally hyperbolic cylinders and singular cylinders
admit well-defined 4-dimensional stable and unstable manifolds, contained in
their energy level.

3. In addition to the normal hyperbolicity, to reduce the dynamics inside the
cylinders to that of twist maps, we require that they admit global Poincaré
sections, diffeomorphic to T×[0, 1], whose associated Poincaré maps satisfy a
twist condition. Analogous (but slightly more involved) notions are required for
singular cylinders. The invariant tori contained in the cylinders which intersect
these global sections along essential circles will be called essential tori. Moreover,
in order to reduce the dynamics in the neighborhood of the cylinders to that of a
suitable bisystem, we require that they satisfy specific homoclinic conditions,
which yields the notion of admissible cylinders. Again, we refer to [21] for
a complete description of the previous conditions, the necessary ones will be
recalled in the following and illustrated by specific examples.

4. Finally, we will introduce various heteroclinic conditions to be satisfied
by pairs of cylinders in order for them to admit orbits drifting along both of
them. This yields the notion of admissible chains, that is, finite ordered families
(Ck)1≤k≤k∗ of admissible cylinders or singular cylinders, in which two consecutive
elements satisfy these heteroclinic conditions.

5. Our main statement regarding the existence of chains is the following one,
for which we refer to [44].

Statement I (usp-generic existence of admissible chains). There is an integer
κ0 ≥ 2 such that for κ ≥ κ0, given a Cκ integrable Tonelli Hamiltonian h on A3,
an e>Min h and a finite family of open sets O1, . . . , Om which intersect h−1(e),
then there exist a δ > 0 and a lower semicontinuous function

ε0 : Sκ→ R+
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with positive values on a dense open subset of Sκ such that for f in a dense open
subset of Bκ(ε0) the system

H(θ, r)= h(r)+ f (θ, r) (9)

admits an admissible chain of cylinders and singular cylinders, such that each
open set T3

× Ok contains the δ-neighborhood in A3 of some essential torus of
the chain.

The fact that the statement is true only for f in a dense open subset of Bκ(ε0)

and not for any f in Bκ(ε0) comes from the transversality conditions on the
heteroclinic connections required in the definition of a chain. Less stringent
conditions on a chain would be satisfied for all perturbations in Bκ(ε0).

6. One can be more precise and localize the previous chain. Since h is a Tonelli
Hamiltonian, one readily checks that ω := ∇h is a diffeomorphism from R3 onto
R3, and that the level set h−1(e) is diffeomorphic to S2. Given an indivisible
vector k ∈ Z3

\ {0}, set

0k = ω
−1(k⊥)∩ h−1(e),

where k⊥ is the plane orthogonal to k for the Euclidean structure of R3. Then
one checks that 0k is diffeomorphic to a circle, and that if k 6= k ′ then 0k

and 0k′ intersect at exactly two points (such intersection points are said to be
double resonance points). By projective density, it is possible to choose a family
k1, . . . , km−1 of indivisible and pairwise independent vectors of Z3 such that

• 0ki intersects Oi and Oi+1 for 1≤ i ≤ m− 1;

• for 2≤ i ≤ m− 1, 0ki−1 ∩0ki contains a point ai ∈ Oi .

Fix a1 ∈0k1∩O1 and am ∈0km−1∩Om . Fix an arbitrary orientation on each circle
0ki and let [ai , ai+1]0i be the segment of 0i bounded by ai and ai+1 according
to this orientation. Set finally

0 =
⋃

1≤i≤m−1

[ai , ai+1]0i .

We will prove that one can choose ε0 in Theorem I so that for f ∈B(ε0) the
projection to R3 of the admissible chain is located in a ρ( f )-tubular neighborhood
of 0, whose radius ρ( f ) tends to 0 when f → 0 in Cκ(A3).

2.2. Simple resonance cylinders. 1. In this section we assume for simplicity
and with no loss of generality that h(r)= 1

2(r
2
1 + r2

2 + r2
3 ), so that the frequency

vector is just ω(r)= r . We fix an energy e> 0 and consider the broken line 0
defined in the previous section. We will focus on a single arc 0 = 0ki for which
we can assume, up to a linear change, that ki = (0, 0, 1). Hence 0 is contained
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Figure 1: A “broken line” Γ of resonance arcs

1

Figure 3. A “broken line” 0 of resonance arcs.

in the great circle intersection of the plane r3 = 0 with the sphere h−1(e). The
double resonance points r0

= (r1, r2, 0) on 0 are those for which there exists
k̂ ∈ Z2

\ {0} such that k̂ · (r1, r2)= 0. The order of r0 is then the minimal norm
of such a vector k̂.

The proof of existence of cylinders whose projection in action lies along 0
relies on a suitable averaging of the perturbation, which necessitate to determine
the zones where averaging with respect to two fast angles yield a satisfactory
normal form. In the complement of these zones, where a single fast angle only is
available for averaging, another process is to be used to construct the cylinders.
However, the “main part” of the cylinders will come from the former process.

To make this effective, one writes the Fourier expansion of f in the form

f (θ, r)=
∑
k̂∈Z2

(∑
k3∈Z

[ f ]
(k̂,k3)

(r)e2iπk3θ3

)
e2iπ k̂θ̂ ,

where [ f ]k stands for the Fourier coefficient relative to k ∈ Z3. For K ∈ N, we
set

f>K (θ, r)=
∑
‖k̂‖>K

(∑
k3∈Z

[ f ]
(k̂,k3)

(r)e2iπk3θ3

)
e2iπ k̂θ̂ .

When f ∈Cκ with κ ≥ 6 and p ∈ {2, . . . , κ−4}, given a control parameter δ > 0
(which will be one main parameter in the whole construction), one proves the
existence of a cutoff Kδ such that

‖ f>Kδ
‖C p(A3) ≤ δ.

Up to a symplectic conjugacy, one can cancel the harmonics of order < K when
the homological equation

ω̂(r) · ∂θ̂ S(θ, r)= f (θ, r)− V (θ3, r)− f>K (θ, r).
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can be solved, where r ∈ 0 and

V (θ3, r)=
ˆ

T2
f (θ̂ , θ3, r)d θ̂ .

This yields the definition of a finite set D(δ) ⊂ 0 of strong double resonance
points relative to δ, namely, those r ∈ 0 for which there exist an integer vector
k̂ ∈ Z2

\ {0} with ‖k̂‖ ≤ Kδ such that

ω̂(r) · k̂ = 0.

Far enough from any strong double resonance point, averaging with respect to
the angles (θ1, θ2) yields a one-degree-of freedom (integrable) normal form +
remainder, which makes the geometry of the situation easy to analyze. This
becomes irrelevant in the neighborhood of the strong double resonance points,
where the main part of the normal form is a classical (nonintegrable) system
on T2.

2. More precisely, in the neighborhood of a (closed) segment S ⊂ 0 located at a
distance ρ of D(δ), averaging with respect to the angles (θ1, θ2) yields a close
to identity conjugacy 8ε such that, setting θ̂ = (θ1, θ2) and r̂ = (r1, r2)

Nε(θ, r)= Hε ◦8ε(θ, r)= h(r)+ εV (θ3, r̂)+ R(θ, r, ε) (10)

where R is small (depending on δ, ρ and ε) in some arbitrary C p topology
(p ∈ {2, . . . , κ−4} has to be chosen large enough, and so also κ , in particular to
apply the KAM theorem, see below).3 The truncated normal form

1
2(r

2
1 + r2

2 )+
[ 1

2r2
3 + εV (θ3, r̂)

]
(11)

is the skew-product of the unperturbed Hamiltonian 1
2(r

2
1 + r2

2 ) with a family of
“generalized pendulums”, functions of (θ3, r3) ∈ A and parametrized by r̂ . This
is indeed a one-parameter family since (r̂ , 0) belongs to the curve S.

Assume moreover that for (r̂ , 0) ∈ S the function V ( · , r̂) admits a single
and nondegenerate maximum at some point θ3(r̂), and, for simplicity, that
V (θ3(r̂))=0. Then Or̂= (θ3(r̂), 0) is a hyperbolic fixed point for the Hamiltonian
1
2r2

3 + εV (θ3; r̂) and one immediately gets a normally hyperbolic cylinder C at

3More precisely

N (θ, r)= H ◦8ε(θ, r)= h(r)+ εV (θ3, r)+ εW0(θ, r)+ εW1(θ, r)+ ε
2W2(θ, r),

where the functions W0 ∈ C p(A3), W1 ∈ Cκ−1(Wρ/4), W2 ∈ Cκ (Wρ/4) satisfy

‖W0‖C p(Wρ/4) ≤ δ, ‖W1‖C2(Wρ/4)
≤ c1ρ

−3
‖W2‖C2(Wρ/4)

≤ c2ρ
−6,

for suitable constants c1, c2 > 0, where ρ is the distance from the segment S to the closest strong
double resonance point.
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energy e for Nε by taking the product of the torus T2 of the fast angles θ̂ with
the curve

{Or̂ | (r̂ , 0) ∈ S}.

Note that C is diffeomorphic to T2
× [0, 1] and that its stable and unstable

manifolds are the unions for (r̂ , 0) ∈ S of the products of the stable and unstable
manifolds W±(Or̂ ) with the torus T2 of fast angles.

3. We have then to choose S far enough from D(δ) so that the remainder R is
small enough for the previous cylinder together with its boundary to persist in
the system Hε. This necessitates two steps:

• One first proves the existence of pseudoinvariant cylinders (that is, open
cylinders which are tangent to the Hamiltonian vector field) which have
transverse hyperbolic properties,4 but are not necessarily invariant under
the flow.

• One then proves the existence of two dimensional invariant tori inside the
previous pseudoinvariant cylinder, so that two of them bound an invariant
and genuinely normally hyperbolic cylinder.5

The main difficulty is to choose S not too far from D(δ), in such a way that
the cylinders one obtains with the previous construction can be compared with
those to be constructed below in the neighborhood of double resonance points.
The main point is to prove that pairs of KAM tori simultaneously belong to the
previous cylinders and those close to double resonance, so that one deduces that
they bound part of their intersection. This proves that the “double resonance”
cylinders continue the “simple resonance” ones.

This process necessitates a smallness condition of the remainder in the C p

topology with p≤2 for the normally hyperbolic persistence results of Appendix A
to apply,6 and an additional smallness condition in the C p topology with p large
enough to apply the KAM theorem and get invariant boundaries.

As a consequence, one has to make a careful choice of the parameter δ, and
to make the distance ρ depend on ε in a proper way; see [44] for these technical
details. The main problem is to chose this size so that the boundaries of the
cylinders C constructed above match those which will be proved to exist inside

4In this noninvariant setting, the hyperbolic properties can be defined by embedding the
manifold in an invariant one, after modification of the vector field. The resulting property depends
on this embedding, but we will be concerned only in invariant subsets of those manifolds, limited
by KAM tori, which makes our approach legitimate.

5This step is indeed one main difference with the other approaches to Arnold diffusion.
6I consider the results applied in this study as genuine persistence results, since one starts with

a normally hyperbolic manifold for the normal form, which is then perturbed by the remainder -on
which nothing but its size is known- and is proved to persist after perturbation.
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Figure 4. The arc 0 with the low-order double resonance and the
bifurcation points.

this neighborhood. Even if one could expect this size to be of the order of
√
ε

(which would be the optimal one), we find it efficient to use a more flexible scale
and work with εν-neighborhoods, with some constant ν < 1

2 which will be made
precise in the text. The cylinders along the simple resonance segments such as S
will be called s-cylinders, (where s stands for “pure simple resonance”).

This enables us to split 0 into “s-segments” which are bounded by the neigh-
borhoods of consecutive low order double resonance points (denoted by©• in the
following picture where the curved arc is projected onto a plane). Note that one
can assume without loss of generality that the extremal points of 0 are double
resonance points of low order.

4. The situation is in fact slightly more complicated, due to the possible generic
occurrence of bifurcation points for the two-phase averaged systems (11). These
are the parameters r̂ where the potential V ( · , r̂) admits two nondegenerate global
maxima instead of a single one (depicted by a × in the following figure). In
the neighborhood of these points two cylinders coexist, for which we prove
the existence of heteroclinic connections. We will not give more details here,
since this does not yield serious additional difficulties in the construction (the
arguments here are standard in transversality theory).

2.3. The generic hyperbolic structure of classical systems on A2. A classical
system on A2 is a Hamiltonian of the form

C(x, y)= 1
2 T (y)+U (x), (x, y) ∈ A2 (12)

where T is a positive definite quadratic form of R2 and U a Cκ potential function
on T2, where κ ≥ 2. In the sequel we require the potential U to admit a single
maximum at some x0, which is nondegenerate in the sense that the Hessian of
U at x0 is negative definite. Consequently, the lift of x0 to the zero section of
A2 is a hyperbolic fixed point which we denote by O . We set ē =Max U and
we say that ē is the critical energy for C .

Such systems appear, up to a nonsymplectic rescaling, in the neighborhood of
a double resonance point r0 of the initial system (8), as the main part of normal
forms. The aim of this section is to depict some relevant hyperbolic properties
of C , when T is fixed and U belongs to a dense open subset of Cκ(T2), κ large
enough.
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Figure 5. A singular 2-dimensional annulus.

1. Let π : A2
→ T2 be the canonical projection.

Definition 1. Let c ∈ H1(T
2,Z). Let I ⊂ R be an interval. An annulus for XC

realizing c and defined over I is a 2-dimensional submanifold A, contained in
C−1(I ) ⊂ A2, such that for each e ∈ I , A ∩ C−1(e) is the orbit of a periodic
solution γe of XC , which is hyperbolic in C−1(e) and such that the projection
π ◦γe on T2 belongs to c. We also require that the period of the orbits decreases
with the energy and that for each e ∈ I , the periodic orbit γe admits a homoclinic
orbit along which W±(γe) intersect transversely in C−1(e). Finally, we require
the existence of a finite partition I = I1 ∪ · · · ∪ In by consecutive intervals such
that the previous homoclinic orbit varies continuously for e ∈ Ii , 1≤ i ≤ n.

When I is compact, the annulus A is clearly normally hyperbolic in the usual
sense (the boundary causes no trouble in this simple setting). The stable and
unstable manifolds of A are well-defined, as the unions of those of the periodic
solutions γe. Moreover, A can be continued to an annulus defined over a slightly
larger interval I ′ ⊃ I .

2. Note that, due to the reversibility of C , the solutions of the vector field XC

occur in “opposite pairs,” whose time parametrizations are exchanged by the
symmetry t 7→−t . We introduce now the second definition to be used throughout
the whole paper.

Definition 2. Let c ∈ H1(T
2,Z) \ {0}. A singular annulus for XC realizing ±c

is a C1 compact invariant submanifold Y of A2, diffeomorphic to the sphere S2

minus three disjoint open discs with disjoint closures (so that ∂Y is the disjoint
union of three circles), such that there exist constants e∗ < ē < e∗ which satisfy:

• Y ∩ C−1(ē) is the union of the hyperbolic fixed point O and a pair of
opposite homoclinic orbits.

• Y ∩C−1(]ē, e∗]) admits two connected components Y+ and Y−, which are
annuli defined over the interval ]ē, e∗] and realizing c and −c respectively.

• Y0 = Y ∩C−1([e∗, ē[) is an annulus realizing the null class 0.
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A singular annulus, endowed with its induced dynamics, is essentially the
phase space of a simple pendulum from which an open neighborhood of the
elliptic fixed point has been removed.

3. We will finally need the following notion of chains of annuli for C ,7 from
which we will deduce the existence and properties of the chains of cylinders near
the double resonance points.

Definition 3. Let c ∈ H1(T
2,Z). We say that a family (Ii )1≤i≤i∗ of nontrivial

intervals, contained and closed in the energy interval ]ē,+∞[, is ordered when
Max Ii =Min Ii+1 for 1 ≤ i ≤ i∗− 1. A chain of annuli realizing c is a family
(Ai )1≤i≤i∗ of annuli realizing c, defined over an ordered family (Ii )1≤i≤i∗ , with
the additional property

W−(Ai )∩W+(Ai+1) 6=∅, W+(Ai )∩W−(Ai+1) 6=∅,

for 1≤ i ≤ i∗− 1, both intersections being transverse in their energy levels.

The last condition is equivalent to assuming that the boundary periodic orbits
of Ai and Ai+1 at energy e =Max Ii =Min Ii+1 admit transverse heteroclinic
orbits.8 Note that, following Definition 1, an annulus can itself be considered as a
chain, whose elements are the subannuli along which the homoclinic orbits vary
continuously. This slight ambiguity will cause no trouble in the construction.

4. We say that c ∈ H1(T
2,Z) \ {0} is primitive when the equality c = λc′ with

c′ ∈ H1(T
2,Z) implies λ = ±1. We denote by H1(T

2,Z) the set of primitive
homology classes, by d be the Hausdorff distance for compact subsets of R2 and
by 5 : A2

→ R2 the canonical projection.

Statement II (generic hyperbolic properties of classical systems). Let T be a
quadratic form on R2 and for κ ≥ 2, let U κ

0 ⊂ Cκ(T2) be the set of potentials
with a single and nondegenerate maximum. Then there is an integer κ0 ≥ 2 such
that if κ ≥ κ0, there exists a dense open subset

U (T )⊂ U κ
0 (13)

in Cκ(T2) such that for U ∈U (T ), the associated classical system C = 1
2 T +U

satisfies the following properties:

(1) For each c ∈ H1(T
2,Z) there exists a chain A(c)= (A0, . . . ,Am) of annuli

realizing c, defined over ordered intervals I0, . . . , Im , with

Im = [eP ,+∞[,

7we keep the same terminology as for the cylinders, with a slightly different sense here.
8But the previous formulation is more appropriate when hyperbolic continuations of the annuli

are involved.
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for a suitable constant eP which we call the Poincaré energy.

(2) Given two primitive classes c 6= c′, there is a σ ∈ {−1,+1} such that the
chains A(c)= (Ai )0≤i≤m and A(σc′)= (A′i )0≤i≤m′ satisfy

W−(A0)∩W+(A′0) 6=∅ and W−(A′0)∩W+(A0) 6=∅,

both heteroclinic intersections being transverse in A2.

(3) There exists a singular annulus Y which admits transverse heteroclinic
connections with the first annulus A0 of the chain A(c), for all c∈H1(T

2,Z).

(4) Under the canonical identification of H1(T
2,Z) with Z2 and for e > 0, let

us set, for a given primitive class c ∼ (c1, c2) ∈ Z2:

Yc(e)=

√
2ec√

c2
1+ c2

2

∈ R2

Let A(c)= (A0, . . . ,Am) be the associated chain and set γe = Am ∩C−1(e)
for e in [eP ,+∞[. Then

lim
e→+∞

d(5(γe), {Yc(e)})= 0.

We say that a chain with I0 and Im as in 1) is biasymptotic to ē :=Max U
and to +∞. We will not only consider chains formed by nonsingular annuli,
but also “generalized ones” in which we will allow a single annulus to be
singular. With this terminology, one can rephrase the content of 1) and 3) of
Statement II in the following concise way: for U ∈ U (T ) and for each pair of
classes c, c′ ∈ H1(T

2,Z), there exists a generalized chain:

Am↔ · · · ↔ A1↔ Y ↔ A′1↔ · · · ↔ A′m′

(where↔ stands for the heteroclinic connections) which is biasymptotic to +∞,
and realize c and c′ respectively.

In the x-plane, one therefore gets the following symbolic picture for the
projection of 6 generalized chains of annuli, where the annuli are represented by
fat segments, the singular annulus by a fat segment with a circle and the various
heteroclinic connections are represented by↔.

The projections of the annuli on the action space are in fact more complicated
than lines, they are rather 2-dimensional submanifolds with boundary, which
tend to a line when the energy grows to infinity.

2.4. Double resonance cylinders. The dynamical structure of Hamiltonian sys-
tems at double resonance points has been widely studied, not only in the above
mentioned works about Arnold diffusion, but also as an interesting problem per
se. A complete list of these works would be unrealistic, let us only mention the
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Figure 6. Projections in action of chains of annuli.

ones by G. Haller [27; 28] whose point of view is close to ours in the particular
case of the intersection of a strong and a weak resonance.

1. Our point now is to construct cylinders located inside the εν-neighborhoods
of the strong double resonance points, and prove that they match the s-cylinders.
Fix such a double resonance point r0 and assume (up to a linear change of
variables) that r0

= (
√

2e, 0, 0). Hence θ1 is the only fast angle with respect to
which the averaging can be performed. This yields a normal form

Nε(θ, r)= h(r)+ gε(θ, r)+ Rε(θ, r)

where

‖gε − ε[ f ]‖C p(T2×B(0,εν) ≤ ε
1+σ , ‖Rε‖C p(T3×B(0,εν) ≤ ε

`,

where σ > 0 and ` arbitrarily large. To derive this normal form in a quite flexible
way, we start from Pöschel’s normal form for analytic systems and apply an
analytic smoothing; see [3].

The dynamical study of this normal form requires some care. To simplify we
will assume here that

Nε(θ, r)= 1
2r2

1 +
[ 1

2(r
2
2 + r2

3 )+ εU (θ2, θ3)
]
+ R(θ, r, ε),

U (θ2, θ3):=

ˆ
T

f ((θ1, (θ2, θ3)), r0)dθ1,
(14)

where now the remainder R is extremely small (of order ε` with large `) in some
suitably chosen C p topology over a neighborhood of r0 of diameter εν .9

9The complete study requires a careful analysis of mixed terms which do not appear here and
whose size has to be taken into account.
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2. The main role in (14) is played by the ε-dependent classical system

Cε(θ, r̄)= 1
2(r

2
2 + r2

3 )+ εU (θ2, θ3), θ = (θ2, θ3), r̄ = (r2, r3).

To recover the unperturbed setting of Statement II, we perform the usual linear
rescaling r̄ =

√
εr̄ of the action variable only, which transforms Cε into

C(θ, r̄)= εCε(θ, r̄),

so that the dynamics is only changed by a time dilatation, while the geometry
is preserved. We assume that C satisfies the properties of Statement II. Let us
fix a finite number of primitive homology classes ck , 1≤ k ≤ k∗, and consider
the associated chains A(ck). Let ep(k) be the Poincaré energy of A(ck) and fix
E ≥maxk ep(k), so that, setting A(ck)= (A1(ck), . . . ,Amk (ck)) the annuli

A1(ck), . . . ,Amk−1(ck)

are contained in the sublevel C ≤ E , while the annulus Amk (ck) intersects that
level along the compact subannulus

Ãmk (ck)= Amk (ck)∩C
−1([ep(k), E]).

The previous coordinate change sends these annuli onto “homothetic” ones
(parametrized by ε), contained in the sublevel Cε ≤ εE . Forgetting about the
class ck , let us denote them by

A1(ε), . . . ,Amk−1(ε), Ãmk (ε). (15)

In addition, the singular annulus A• of C is sent onto a singular annulus A•(ε) of
Cε. The “length” of these annuli is of order

√
ε.

We can now analyze the ε-dependent truncated normal form

N ε(θ, r̄)= 1
2r2

1 +
[ 1

2(r
2
2 + r2

3 )+ εU (θ2, θ3)
]

(16)

on the energy level e. Let A(ε) be an element of the family (15). Since r1 is a first
integral of N ε, taking the product of A(ε) with the circle T of the angle θ1 gives
rise to a 3-dimensional (invariant and normally hyperbolic) cylinder C(A(ε))
contained in N−1

ε (e), the variable r1 being expressed (for ε small enough) as the
function of (θ, r̄) deduced from the energy relation

r1 = 2
√

e− e, e = Cε(θ, r̄), (θ, r̄) ∈ A(ε).

Similarly, the singular annulus A•(ε) gives rise to a normally hyperbolic invariant
singular cylinder C(A•(ε)) at energy e for N ε.

Since ω(r0)= (
√

2e, 0, 0), the tangent space to h−1(e) at r0 is the affine plane
r1 =
√

2e, so that one can see the variables (r2, r3) as natural coordinates on
h−1(e), and the localization of the previous invariant cylinders at energy e is
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Figure 7. Projections of chains of cylinders for (16).

well-described by their projection on the (r2, r3)-plane. As a consequence, the
arrangement of cylinders of N ε in a zone of diameter

√
εE around r0 is suitably

deduced from the arrangement of annuli in the sublevel C ≤ E , as shown in
Figure 7 (in projection on the (r2, r3)-plane).

Note finally that the (4-dimensional) stable and unstable manifolds of C(A(ε))
and C(A•(ε)) are the products of those of A(ε) and A•(ε) with the circle of θ1.
Consequently, the homoclinic and heteroclinic connections are the products of
those of the annuli of C with the circle of θ1. This is a degenerate situation which
generically gives rise to transverse intersections when the remainder R is taken
into account.

3. Once the invariant cylinders for the truncated normal form are properly
determined, it remains to show their persistence in the initial system. In a similar
way as for simple resonances, we take advantage of the smallness of R first
to use normal hyperbolic persistence and second to show the persistence of
the boundaries of the cylinders of N ε. This way we prove the existence in the
initial system of a family of invariant 3-dimensional cylinders, with homoclinic
and heteroclinic connections, located in an O(

√
ε) neighborhood of the double

resonance point r0. We call them d-cylinders.

4. So far we have described the global picture in the neighborhood of r0. We now
go back to our initial problem, which is to use (a subset of) the previous family
of d-cylinders to form a chain whose extremal elements match the s-cylinders
along the simple resonance 0. To do this, due to the fact that 0 ⊂ {r3 = 0}, we
only need to consider the d-cylinders located along the r2-axis in the previous
description. Therefore we focus on the chains of annuli of C which realize the
homology classes c= (±1, 0), whose projection lies along the r2-axis. Taking the
singular annulus into account and truncating the extremal annuli at the energy E ,
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Figure 8. A chain of cylinders along 0.

we get a generalized chain10

Ã−m↔ · · · ↔ A−1 ↔ Y ↔ A+1 ↔ · · · ↔ Ã+m,

which yields the chain of cylinders

C(Ã−m(ε))↔ · · · ↔ C(A−1 (ε))↔ C(Y(ε))↔ C(A+1 (ε))↔ · · · ↔ C(Ã+m(ε)).

Now a crucial observation is that both extremal cylinders C(Ã±m(ε)) can be
continued in a unique way over an O(εν)-neighborhood of r0, giving rise to
“longer” cylinders C̃±m , still lying along the resonant line 0. To compare these new
cylinders to the s-cylinders C± located on both sides of the double resonance
point, we prove that C̃+m and C̃−m both contain two (essential) KAM tori, which
are also contained in the s-cylinders C+ and C− respectively. By normally
hyperbolic uniqueness, this proves that the s-cylinders continue C̃±m outside the
εν-neighborhood and completes the picture: there is a chain of cylinders and
singular cylinders passing through the double resonance point and connecting
together the two s-cylinders C± in the εν gluing zone:

C−↔ · · · ↔ C(A−1 (ε))↔ C(Y(ε))↔ C(A+1 (ε))↔ · · · ↔ C+.

Applying this process for all strong double resonance points contained in 0
(and taking the bifurcations points between them into account), we construct a
chain C of hyperbolic cylinders and singular cylinders whose projection π(C) in
action satisfies dH (π(C), 0)→0 when ε→0 (where dH stands for the Hausdorff
distance in A3). This yields the following final picture for the arrangement of
cylinders along the arc 0.

5. This construction applies to each segment 0ki of the initial broken line. To
get a chain along the full broken line, we have to pass from one resonance arc to
another one through the double resonance point at their intersection. For doing
this, we use the full structure at this double resonance point and choose two
homology classes c1, c2 in H1(T

2,Z) which correspond to the simple resonances

10By symmetry of C , the numbers of annuli realizing ±c are equal.
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Figure 9. Transition between two arcs at a double resonance point.

arcs crossing at that point. In the same way as above, we get a chain of cylinders
(with one singular cylinder) whose projection is located along both resonance
arcs in an O(

√
ε) neighborhood of the double resonance point:

C(Ã−m1
(c1, ε))↔ · · ·

↔ C(A−1 (c1, ε))↔ C(Y(ε))↔ C(A+1 (c2, ε))↔

· · · ↔ C(Ã+m2
(c2, ε)).

Again, we prove that the extremal cylinders C(Ã−m1
(c1, ε)) and C(Ã−m2

(c2, ε))

admit continuations to an εν neighborhood of the double resonance point, and
that these continuations match the s-cylinders located on both sides of the
neighborhood along the simple resonance arcs.

2.5. Thresholds. The minimal regularity κ0≥2 is assumed to be large enough for
our subsequent (finite number of) applications of normally hyperbolic persistence,
genericity and KAM theorems to apply for κ ≥ κ0 in the various settings involved
in the construction. We fix a Tonelli integrable Hamiltonian h ∈ Cκ(R3) with
κ ≥ κ0 together with a broken line of simple resonance arcs as in Figure 3. We
outline the main steps of a proof of the existence of the lower semicontinuous
threshold function ε0 of Statement I. Without loss of generality, we can focus on
a single resonant arc 0 and assume that:

• 0 is a graph over the plane P ={r3= 0}, so that its equation reads r3= r∗3 (r̂)
with r̂ := (r1, r2) in 0̂ := πP(0).

• The frequency vector along 0 reads ω(r)= (ω1(r), ω2(r), 0).

By compactness and convexity, the spectrum of the normal Hessian of h along
0 is bounded from below by a positive constant.
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1. Conditions for the existence of simple resonance cylinders.

• For κ ≥ κ0, the Cκ one-parameter families of functions on T with parameter
in 0̂ which admit a single and nondegenerate maximum up to a finite number of
values of the parameter, for which there are exactly two nondegenerate maxima,
form an open and dense subset of Cκ(T× 0̂). The averaging operator f 7→ 〈 f 〉0 ,
where

〈 f (θ3; r̂)〉0 =
ˆ

T2
f (θ̂ , θ3, r̂ , r∗3 (r̂))d θ̂

is linear and surjective from Cκ(A3,R) to Cκ(T× 0̂), hence is an open mapping.
Therefore there is a dense open subset S1⊂ Sκ such that for f ∈ Sκ1 the averaged
potential 〈 f (θ3; r̂)〉0 admits a single and nondegenerate maximum θ∗3 (r̂) outside a
finite subset of bifurcation points in 0̂, where it admits exactly two nondegenerate
maximums.

Consequently, thanks to the remark on the normal Hessian of h along 0, over
closed intervals limited by bifurcation points the hyperbolicity constant of the
hyperbolic point O (̂r)= (θ∗3 (r̂), r

∗

3 (r̂)) is uniformly bounded from below.11

• Using to a suitable
√
ε rescaling, one proves (see [5] and early works by

Kaloshin) that, given f ∈ Sκ1 , the previous uniform bound yields the existence
of a finite number of double resonance points (di ) in 0 such that one gets (pseu-
doinvariant) simple resonance cylinders outside the union of εν-neighborhoods
of the fibers T3

×{di } in Hε(e). The choice of κ0 depends on the required value
of ν < 1

2 (see [44]) and this statement holds for and 0< ε < ε1( f ).

• For each f ∈ S1, there is an open neighborhood O( f ) of f in S1 such that
the set of double resonance points to be removed from the arc 0 do not depend
on the choice of the perturbation g ∈ O, and moreover the function ε1 can be
chosen so as to depend continuously on g in O.

This process provides us with a multivalued locally continuous threshold
function ε1 : Sκ1 → R∗+.

2. Conditions at a double resonance point. We fix now an open subset O ⊂ S1

over which the previous two properties (double resonant points and continuity of
ε1) are satisfied. It is enough to consider a single double resonance point r0

∈ 0,
and one can assume its frequency vector to have the form (ω1, 0, 0) with ω1 6= 0.
Set θ := (θ2, θ3) and for f ∈ O let

U (θ) := 〈 f 〉r0(θ)=

ˆ
T

f (θ1, θ, r0)dθ1

11This point is uniquely defined by continuity at the boundaries of the interval.
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be the averaged potential at r0. The (
√
ε-rescaled) main part of the averaged

system at r0 reads
C(θ, r̄)= 1

2 Q(r̄)+U (θ), (17)

where Q is a fixed quadratic form deduced from the Hessian of h at r0. We fix a
finite number of homology classes in H1(T

2) (one class in the case of a double
resonant point in Int0 and two classes in the case of a boundary point, according
to the fact that one wants to construct chains following 0 in the first case and
passing to another resonance arc in the second):

• Since the averaging operator 〈 〉r0 is an open mapping Cκ(A3)→ Cκ(T2),
provided that κ0 is large enough, there is a dense open subset O ′ ⊂ O such
that the classical system (17) satisfies the properties quoted in Statement II
relative to the previous homology classes. In particular, there is a chain of
annuli (with a single singular annulus) attached to the previous homology
class (in the case of an inner double resonance point) and to the pair of
classes (in the case of a boundary point).

• By (singular) normally hyperbolic persistence of the annuli, there is a
multivalued locally continuous function ε2 : O2→ R∗+ such that for 0 <
ε < ε2(g) < ε1(g) there exist chains of (pseudoinvariant) cylinders (with a
single singular cylinder) obtained by suspension relative to the fast angle,
and then perturbation, of the chains of annuli in the averaged system

Cε(θ, r̄)= 1
2 Q(r̄)+ ε〈g〉r0(θ).

• The Poincaré pseudoinvariant cylinders in these chains extend to an εν-
distance away from the double resonance.

This step (applied to each double resonance point in 0) provides us with a
cover (O j ) of S1 by open sets over which the function ε2 is continuous and is a
threshold for the existence of pseudoinvariant cylinders along 0, and along two
other resonant arcs in a small neighborhood of the boundary double resonance
points.

3. Conditions for the existence of KAM tori and invariant cylinders. We fix now
f in some O j . For 0 < ε < ε2( f ), the existence of a sufficiently large set of
2-dimensional unperturbed tori inside the pseudoinvariant cylinders (neglecting
the remainders of the various normal forms) is guaranteed by usual considerations
from Diophantine theory; see for instance [15]. After reducing the system (in
normal form) inside the pseudoinvariant cylinders to a two dimensional discrete
setting, one can apply a version of KAM theorem with vanishing torsion (which
reflects the singular nature of the perturbation), deduced from Herman’s work
(see [29; 30]), to show the existence of 2-dimensional invariant tori close to
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the “boundaries” of the pseudoinvariant cylinders. These tori therefore bound
genuinely invariant and normally hyperbolic tori. In the same way, one proves
the existence of invariant tori inside the matching zone at an εν distance of the
double resonance points, proving that the simple resonance cylinders and the
(suitably chosen) double resonance Poincaré cylinders continue one another. This
provides us with a new open cover of O and a multivalued threshold function
0< ε3 < ε2 which is continuous on each open set of the cover and is a threshold
for the existence of a family of compact invariant normally hyperbolic cylinders
and singular cylinders along the arc 0.

4. The lower-semicontinuous threshold ε0. At this point the initial open dense
set S1 is endowed with an open cover (Ui )i∈I together with a threshold function
ε3 which is positive and continuous on each Ui . For each i , we continue the
function (ε3)|Oi to Sκ by 0 on the closed set Sκ \Ui . The resulting continuation
ε
(i)
3 is therefore lower-semicontinuous on Sκ . Applying the previous process to

each arc in the initial broken line, one gets a final threshold

ε0 = Supi∈I ε
(i)
3 ,

which is lower-semicontinuous, positive on the dense open set S1 and such that
each element in the generalized ball Bκ(ε0) admits a family of compact normally
hyperbolic invariant cylinders along the broken line.

5. Connections. We will not address in detail here the question of homoclinic
and heteroclinic connections. New conditions to ensure the existence of trans-
verse heteroclinic connections between distinct consecutive cylinders come from
usual arguments from transversality theory, while the (topologically transverse)
homoclinic connections require more subtle arguments (see Section 5 and [44])
from dimension theory, which finally yield the admissible chains along which
the diffusion orbits can be proved to exist. Both type of connections require
adding arbitrarily small perturbations to the elements of the generalized ball
B(ε0) (which is legitimized by the fact that B(ε0) is open), which explains that
our admissible chains exist only for a dense open set of perturbations in B(ε0)

in our Statement I (openness being trivial by continuity).

2.6. Conclusion. To conclude this geometric description, we want to emphasize
that, while the geometric analysis is more complicated near double resonances
than along simple resonance arcs, the dynamical analysis along d-cylinders is by
far simpler than that along s-cylinders. Indeed, due to the existence of a global
transverse intersection of the stable and unstable manifolds of a 2-dimensional
annulus in the averaged classical system on T2, the stable and unstable manifolds
of the corresponding perturbed cylinder in the initial system at fixed energy
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intersect transversely along a two-dimensional homoclinic annulus. After a two-
dimensional reduction of the dynamics on a Poincaré section inside the cylinder
(see Section 5), this yields a bisystem of globally defined maps (the inner and
the homoclinic one) for which the existence of drifting orbits is easy to prove
(see the next section for a simplified model). By contrast, the stable and unstable
manifolds of an s-cylinder do coincide if the remainder of the normal form is
neglected. This makes the construction of homoclinic orbits more difficult: after
taking the remainder into account, they essentially come from the homoclinic
intersections of invariant tori contained inside the cylinder, which yields only
a locally defined homoclinic correspondence. In this case usual transversality
arguments do not apply, due to the uncountable number of objects to control.
Sections 4 and 5 below are devoted to this difficulty, in the general discrete case
in Section 4, which is then applied in a simplified model in Section 5.

3. Diffusion orbits in the a priori chaotic discrete setting

The purpose of this section is to exhibit a class of symplectic diffeomorphisms
of A2

= T ∗T2, for which diffusion properties can be detected with minimal
technicalities, which in addition are good models for the dynamics along double
resonance cylinders.

Our framework is a discrete version of the so-called “a priori chaotic” setting
developed in relation to Mather’s work on unbounded growth of energy for
nonautonomous perturbations of geodesic flows. This problem was investigated
by Bolotin and Treschev [8] and Delshams, De la Llave, Seara [16]; more
recently Gelfreich and Turaev systematically revisited this question in the analytic
category [19]. However some significant features of our systems are rather
different and make our approach both simpler and more general to some extent,
since they are far from any integrable ones.

The main feature of our diffeomorphisms g : A2 ý is the existence of a
normally hyperbolic annulus A (diffeomorphic to A) that admits a homoclinic
intersection which is itself diffeomorphic to an annulus. This yields the existence
of a natural bisystem on A , formed by the restriction of g to A together with
a homoclinic map defined everywhere on A . It is then easy to show that an
arbitrarily small perturbation of g puts this bisystem in a general position and
allows one to apply Moeckel’s theorem [48]. This yields the existence of drifting
pseudoorbits, which are in turn shadowed by genuine orbits, due to normally
hyperbolic shadowing properties.

3.1. The setting. We fix once and for all a closed interval I ⊂ [−1, 2] of R

which contains [0, 1] in its interior. We work in the space Dκ of Cκ symplectic
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diffeomorphisms of A2 with support contained in T2
× I 2, endowed with the

natural uniform Cκ metric dκ . The space (Dκ , dκ) is complete.
We first introduce a diffusion property for diffeomorphisms in Dκ together

with a specific class F κ
⊂ Dκ (uncoupled products), whose elements do not

satisfy this property and which we consider as “unperturbed systems”. Our main
result then proves the existence of a large subset of suitable Cκ perturbations of
f which admit the diffusion property.

1. Let us now give precise definitions, beginning with that of diffusion orbits.

Definition 4. Fix δ > 0 and set

U 0(δ)= {(θ, r) ∈ A2
| |r1|}< δ}, U 1(δ)= {(θ, r) ∈ A2

| |r1− 1|< δ}. (18)

Given a diffeomorphism g ∈ Dκ , we say that a finite orbit x0, . . . , xN of g is a
δ-diffusion orbit when x0 ∈ U 0 and xN ∈ U 1.

2. The elements f ∈F κ are Cκ symplectic diffeomorphisms of A2 and admit
the product form

f (θ, r)= ( f1(θ1, r1), f2(θ2, r2)), (θ, r) ∈ A2, (19)

where the diffeomorphisms fi : A ý satisfy some additional conditions:

• Conditions on f1. We denote by DD(τ ) the set of real numbers which are
Diophantine of exponent τ > 1. Given κ ≥ 1, we introduce the set F κ

1 of Cκ

symplectic diffeomorphisms f1 : A ý which satisfy the following conditions:

(C1) Supp f1 ⊂ T× I .

(C2) The circles 00
= T× {0} and 01

= T× {1} are invariant under f1, and
their rotation numbers ρ0, ρ1 are in DD(τ ) for some τ > 1.

To introduce the third condition we use the coordinate chart (θ1, r1) of A and
write

f1(θ1, r1)= (21(θ1, r1), R1(θ1, r1)). (20)

(C3) The restriction of f1 to the annulus T×[0, 1] uniformly tilts the vertical to
the right, that is, there is a c > 0 such that

∂21

∂r1
(θ1, r1)≥ c, ∀(θ1, r1) ∈ T×[0, 1]. (21)

Note that, due to (C1) and (C2), the annulus T × [0, 1] is invariant under
f1. The condition that the rotation numbers of the circles 0i are in DD(τ ) will
ensure their persistence under perturbation.

• Conditions on f2. We introduce the set F κ
2 of Cκ symplectic diffeomorphisms

f2 : A ý which satisfy the following conditions:
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Id

Id

r2

O2 P2

Figure 1: An unperturbed diffeomorphism

1

Figure 10. An unperturbed diffeomorphism.

(C4) Supp f2 ⊂ T× I .

(C5) The diffeomorphism f2 possesses a hyperbolic fixed point O2.

(C6) The point O2 admits a transverse homoclinic point P2.

We will denote by
λ(O2) > 1 (22)

the maximal eigenvalue of the derivative DO2 f2. Note that O2 and P2 are
contained in the support of f2.

3. We now define our set of “unperturbed” diffeomorphisms in order to guarantee
additional stability properties under perturbations.

Definition 5. We define F κ as the set of (symplectic) diffeomorphisms on A2

of the form (19), where f1 ∈F κ
1 and f2 ∈F κ

2 with

(Maxx∈A‖Tx f1‖)
κ < λ(O2). (23)

where ‖·‖ stands for the operator norm.

The domination condition (23) ensures that the invariant annulus A× {O2}

is uniformly normally hyperbolic for f , with persistence properties in the Cκ

topology and additional specific symplectic features.12

4. Given τ > 1, when κ is large enough, for any f ∈F κ there exists an arbitrarily
small δ > 0 such that f does not possess any δ-diffusion orbit: classical KAM
theorems in the finitely differentiable setting prove the existence of an essential
invariant circle 0 for f1 located in the zone r1 > 0 (one indeed gets an infinite
family of such circles), and the claim comes from the product structure of f .
However, we will prove that under generic and small enough perturbations, any
element of F κ gives rise to a diffeomorphism which admits diffusion orbits.
More precisely, our main result is the following.

12A weaker condition could be required, at the cost of a smoothing argument which would
obscure the description.
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Theorem 6. There is a κ0 such that, given f ∈F κ and δ > 0, then there is an
ε( f ) > 0 such that the subset of all diffeomorphisms g in Bκ( f, ε( f )) which
admit a δ-diffusion orbit is open in the C0 topology and dense in Bκ−1( f, ε( f )).

The existence of δ-diffusion orbits being clearly an open property in the C0

topology, we will therefore focus on the “density”. The loss of 1 derivative could
be avoided using a smoothing argument that we will not describe here.

5. As already mentioned in the introduction, the proof of Theorem 6 is based on
a method introduced by Moeckel in [48] to prove the existence of drifting orbits
for bisystems of maps τ0, τ1 on the annulus. If 0• and 0• are two disjoint graphs
of C1 functions T→ R, we denote by A[0•, 0•] ⊂ A the subannulus bounded
by their union.

Theorem A [48]. Let τ0, τ1 : A ý be C1 diffeomorphisms with compact support
in T× I , where τ0 is area-preserving and τ1 is exact symplectic. Assume that
there exist two disjoint τ0-invariant C1 graphs 0•, 0• in T× I and that τ0 is a
twist map in restriction to the annulus A := A[0•, 0•]. Let EssA(τi ) be the set of
essential τi -invariant circles contained in A. Assume that

EssA(τ0)∩Ess(τ1)=∅. (24)

Then for any connected neighborhoods U• and U • of 0• and 0• in A, with
τ1(0•)⊂U• and τ1(0

•)⊂U • the bisystem (τ0, τ1) admits an orbit with first point
in U• and last point in U •.

This in fact is a slight generalization of the theorem of [48], since the bound-
aries 0• and 0• are not assumed to be invariant under τ1.

The next result, based on the study of the Minkowski dimension of the sets
EssA(τ0) and Ess(τ1), will provide us with the necessary tool for proving the
density statement in Theorem 6.

Theorem B [48]. Fix an integer p ≥ 1. Let τ0, τ1 : A ý be C p area-preserving
diffeomorphisms with compact support in T× I . Assume that there exist two
disjoint τ0-invariant C1 graphs 0•, 0• in T× I , and that τ0 is a twist map in
restriction to A := A[0•, 0•]. Assume moreover that (τ0)|A has no essential in-
variant circle with rational rotation number. Then there exists a C∞ Hamiltonian
h :A→R with support in T× I , arbitrarily small in the C∞ topology, such that

EssA(τ0)∩Ess(8h
◦ τ1 ◦8

−h)=∅, (25)

where 8h stands for the time-one map of the Hamiltonian flow generated by h.

Note that assuming that the τi are area-preserving is equivalent to assuming
that they are exact-symplectic a property directly related to the constructions of
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our bisystems in the following. The proof of Theorem B is exactly the same as
in [48].

3.2. Proof of Theorem 6. Let us first informally describe the proof. The first
ingredient is the choice of ε small enough so that any g in Bκ( f, ε( f )) exhibits
some of the main dynamical features of f . In particular, we require that g admits
a normally hyperbolic invariant annulus Ag close to A×{O2} and a homoclinic
annulus Hg close to A×{P2}. We then consider two diffeomorphisms of Ag.

• The first one, ϕg, is nothing but the restriction of g to Ag. Thanks to the
domination condition (23) normally hyperbolic persistence proves that ϕg is Cκ

close to f1 (in suitable coordinates). In particular, the initial invariant circles
0i of f1 will persist and give rise to essential invariant circles 0i

g for ϕg, which
bound a compact annulus Ag ⊂ Ag.

• The definition of the second diffeomorphism — the homoclinic map ψg — is
based on the existence of a (full) homoclinic annulus Hg. The diffeomorphismψg

encodes the asymptotic properties of the associated homoclinic orbits of Ag. More
precisely, if x, y in Ag satisfy y =ψg(x), then there exists an orbit z−M , . . . , zN

of g, located in A2
\Ag, with z−M arbitrarily close to g−M(x)= ϕ−M

g (x) and zN

arbitrarily close to gN (y)= ϕN
g (y), where the integers N and M can be chosen

arbitrarily large.

A key observation (introduced in [24]) is that the Poincaré recurrence theorem
applies to ϕg on the compact annulus Ag and allows one to choose M and N
so that ϕ−M

g (x) and ϕN
g (y) are arbitrarily close to the initial points x and y

respectively.
Using Moeckel’s results, we prove that after a small perturbation of g the

bisystem (ϕg, ψg) admits “drifting orbits”, whose initial and final points are
arbitrarily close to the boundary circles of Ag.

Finally, in view of the definition of ϕg and the asymptotic properties of ψg, one
expects that the connecting orbits of the bisystem can be uniformly approximated
by genuine orbits of g. Here, for completeness, we prove that this is the case by
means of a normally hyperbolic shadowing lemma, whose idea is reminiscent of
[8; 17]. Our proof closely follows the (more general) one in [23].

3.2.1. The symplectic geometry of perturbed products. 1. Let us first examine
the dynamical features of a diffeomorphism f ∈F κ(τ ), which are immediately
deduced from the product form (19):

• The annulus A = A×{O2} is invariant under f and diffeomorphic to A. It is
moreover κ-normally hyperbolic, due to condition (23). The stable and unstable
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manifolds of A inherit the product structure of f :

W±(A )= A×W±(O2). (26)

These are hypersurfaces of A2 of class Cκ (since W±(O2) are Cκ ), and so are
coisotropic in A2. Their characteristic leaves are the 1-dimensional submanifolds

{x}×W±(O2), x ∈ A. (27)

which coincide with the stable and unstable manifolds of the points of A respec-
tively (this fact is general, see Appendix A). Let5± :W±(A )→A stand for the
characteristic projections, so that if (x, w) ∈W±(x), then 5±(x, w)= (x, O2).

• The manifolds W±(A ) intersect transversely in A2 along both A and the
homoclinic annulus

H = A×{P2}. (28)

Moreover, for each (x, O2) ∈A , the leaf W−((x, O2)) transversely intersect the
manifold W+(A ) at a unique point of H , namely

W−((x, O2))∩H = {(x, P2)}. (29)

One has a similar observation for the stable leaves. We denote by π± the
restrictions of 5± to the annulus H , so that

π± :H → A , π±(x, P2)= (x, O2), x ∈ A. (30)

• Clearly A and H are symplectic submanifolds of A2 and π± are symplectic
diffeomorphisms.

• There exists a pair of natural f -induced symplectic diffeomorphisms of A . The
first one is just the restriction ϕ = f|A , which here admits a natural identification
with f1. The second one is the map

ψ = π+ ◦ (π−)−1

which describes the homoclinic excursion of the orbits, we call it the homoclinic
map. Clearly ψ = Id here.

The manifolds W±(A ) do indeed admit a much larger intersection than A ∪H ,
but we neglect the other components which play no role in our construction.

The homoclinic map has been introduced in [14] and carefully studied in [17]
and subsequent papers by the same authors, under the name of scattering map.
We use this new terminology here to make a distinction between the homoclinic
maps (or correspondences) and the heteroclinic ones, which necessarily appear
when chains of cylinders are considered. While the ideas are very close, one
slight difference in our (complete) work is that we perform a systematic reduction
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of the homo-heteroclinic map to a two-dimensional object (in order to obtain a
two-dimensional bisystem), while the scattering map is usually used in a more
global higher dimensional setting.

2. The symplectic features of small enough perturbations of f are immedi-
ately deduced from the symplectic normally hyperbolic persistence theorem
(see Appendix A). Note in particular that even if the unperturbed annulus is
noncompact, the existence and uniqueness of the perturbed one is not difficult,
thanks to the compact-supported character of the perturbation.

Lemma 7. Let f = ( f1, f2) ∈F κ(τ ) be fixed. Then there exists ε( f ) > 0 such
that for each g in Bκ( f, ε( f )):

• There exists a (uniquely defined) symplectic normally hyperbolic g-invariant
annulus Ag of the form

Ag = {(x, ag(x)) | x ∈ A}, (31)

where ag is a Cκ function A→ B2(O2, α) ⊂ A such that ‖ag − O2‖Cκ (A)→ 0
when dκ(g, f )→ 0 (where α > 0 is a suitable constant).

• The manifolds W±(Ag) are coisotropic with characteristic foliations

(W±(z))z∈Ag ,

and the characteristic projections 5±g :W
±(Ag)→ Ag are Cκ−1.

• There exists a (uniquely defined) symplectic homoclinic annulus

Hg ⊂W+(Ag)∩W−(Ag),

of the form

Hg = {(x, hg(x)) | x ∈ A}, (32)

where hg is a Cκ function A→ B2(P2, α) ⊂ A such that ‖hg − P2‖Cκ (A)→ 0
when dκ(g, f )→ 0.

• The restrictions

π±g := (5
±

g )|Hg :Hg→ Ag (33)

are Cκ−1 symplectic diffeomorphisms.

• For each z ∈ Ag, the unstable manifold W−(z) intersects Hg at (π−g )
−1(z)

transversely in A2, with an analogous property for the stable manifold.



260 JEAN-PIERRE MARCO

3.2.2. The bisystem. We can now introduce our bisystem on Ag, assuming that
g ∈ Bκ( f, ε( f )). We first consider the restriction

ϕg : Ag ý, ϕg = g|Ag , (34)

which is a Cκ symplectic diffeomorphism for the induced structure on Ag. As
for our second map, we set

ψg : Ag ý, ψg = π
+

g ◦ (π
−

g )
−1. (35)

Therefore ψg is a Cκ−1 symplectic map. The next lemma (which is an appli-
cation of Moser’s isotopy argument) enables us to identify ϕg (and ψg) with a
diffeomorphism of the standard annulus A in a proper way.

Lemma 8. If ε( f ) is small enough and g ∈ Bκ( f, ε( f )), there exists a Cκ−1

symplectic embedding 8g of A, equipped with the standard form, into A2 such
that:

• 8g(A)= Ag.

• The diffeomorphism ϕ̂g = 8
−1
g ◦ ϕg ◦8g : A ý has support in T× I and

tends to f1 in the Cκ−1 uniform topology when dκ(g, f )→ 0.

• The diffeomorphism ψ̂g =8
−1
g ◦ψg ◦8g : A ý has support in T× I and

tends to Id in the Cκ−1 uniform topology when dκ(g, f )→ 0.

The following corollary is an immediate application of the previous lemma
and finitely differentiable KAM theory.

Corollary 9. There is an ε( f ) ∈]0, ε( f )] such that for each diffeomorphism
g ∈ Bκ( f, ε( f )) there exists a Cκ−1 symplectic embedding8g of A into Ag such
that the map ϕ̂g =8

−1
◦ϕg ◦8 admits two (disjoint) essential invariant circles

0• and 0• with rotation numbers ρ0 and ρ1 respectively (see (C2)), such that
0•→ 00 and 0•→ 01 in the C0 topology when dκ(g, f )→ 0. Moreover, the
map ϕ̂g uniformly tilts the vertical over the annulus Ag bounded by 0• and 0•.

3.2.3. The perturbative step. We fix now a diffeomorphism g ∈ Bκ( f, ε( f )),
where ε( f ) is defined in Corollary 9, and get rid of the ˆ in the previous corollary.
We want to prove the existence of a perturbed diffeomorphism g̃ ∈ Bκ( f, ε( f )),
arbitrarily close to g in the Cκ−1 topology, for which the associated bisystem
(ϕg̃, ψg̃) satisfies condition (24). We proceed in two steps: we first perturb g
so that ϕg has no rational essential circle, and we then perturb the resulting
diffeomorphism again (without perturbing ϕg) to ensure condition (24). We write
ε instead of ε( f ) in the following.

1. First perturbation of g: making ϕg admissible Let J be a closed interval
of R containing [0, 1] in its interior and contained in the interior of I . Taking
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into account that Ag is of class Cκ and invariant under g, by usual perturbation
techniques (see [50; 51]), there exists a Cκ diffeomorphism g∗ ∈ Bκ( f, ε),
arbitrarily close to g in the uniform Cκ topology, which satisfies:

• The invariant annulus Ag∗ coincides with Ag.

• All periodic points of ϕg∗ = g∗
|Ag∗

in T2
× J 2 are either hyperbolic or elliptic

with nondegenerate Birkhoff invariant.

• The stable and unstable manifolds of the periodic orbits intersect trans-
versely.

As a consequence, if κ is large enough to ensure the existence of invariant
curves surrounding each elliptic point, one easily proves that ϕg∗ cannot admit
an essential invariant circle with rational rotation number in the compact annulus
Ag∗ defined in Corollary 9.

2. Second perturbation of g: making ψg admissible In view of the last section,
replacing g with g∗, we can assume that g has no invariant circle in Ag with
rational rotation number. We want now to perturb g into a new diffeomorphism
g̃ such that

Ag̃ = Ag, Hg̃ =Hg, ϕg̃ = ϕg, EssAg (ϕg)∩Ess(ψg̃)=∅. (36)

We first analyze the composition of g with a diffeomorphism with support
localized in a small enough neighborhood of the annulus Hg.

Lemma 10. Let W±0 be the submanifolds (diffeomorphic to [0, 1] × A) of
W±(Ag) bounded by Ag and Hg. Let N be a neighborhood of Hg such that

dist(Ag,N ) > 0, g(W+0 )∩N =∅, g−1(W−0 )∩N =∅. (37)

Assume that χ is a diffeomorphism of A2 with support in N , which leaves the
annulus Hg invariant, and set g̃ = χ ◦ g. Then Ag̃ = Ag, Hg̃ =Hg and

ϕg̃ = ϕg, ψg̃ = ψg ◦ (π
−

g ◦χ ◦ (π
−

g )
−1). (38)

See [45] for a proof. We can now use Moeckel’s Theorem B in order to
produce our perturbation g̃.

Lemma 11. There exists a diffeomorphism g̃ ∈Dκ−1, arbitrarily close to g in the
Cκ−1 topology such that Ag̃ = Ag, ϕg̃ = ϕg and the maps τ0 = ϕg and τ1 = ψg̃

satisfy condition (24) of Theorem A.

Proof. By Theorem B there exists a C∞ Hamiltonian h :A→R arbitrarily close
to 0 such that ϕg and the modified diffeomorphism

8h
◦ψg ◦8

−h (39)
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satisfy (24). In view of Lemma 10, (38), let us introduce the perturbed diffeo-
morphism

ψpert = ψg ◦ [π
−

g ◦χ ◦ (π
−

g )
−1
] : A ý, (40)

where χ :Hg ý is a diffeomorphism we want to determine (and which we then
have to continue to a diffeomorphism χ defined in a neighborhood of Hg). We
want to choose χ in order to solve the equation

ψpert =8
h
◦ψg ◦8

−h . (41)

Straightforward computation yields

χ = (π−g )
−1
◦ψ−1

g ◦8
h
◦ψg ◦8

−h
◦π−g . (42)

Therefore χ is a Cκ−1 Hamiltonian diffeomorphism of the annulus Hg, with
compact support, which tends to Id in the Cκ−1 topology when dκ(g, f )→ 0.
As a consequence, there is a Cκ function ξ : R×Hg → R, with support in
]0, 1[×Hg such that

χ =8ξ :Hg ý, (43)

where 8ξ is the time-one map starting at 0 generated by ξ . Using the Moser
isotopy argument, one proves the existence of a Cκ−1 symplectic diffeomorphism

T : A× B2(0, α)→N , T (A× 0})=Hg, (44)

where N is a neighborhood of Hg in A2, α is a positive constant and the first
factor is endowed with the usual symplectic structure. Fix a C∞ bump function
η : B2(0, α) → R equal to 1 in a neighborhood of 0 and define a function
H : R×A× B2(0, α)→ R by

H(t, x1, x2)= η(x2)ξ(t, T (x1, 0)). (45)

Then clearly the time-one map χ = T ◦8H leaves Hg invariant, with χ|Hg = χ

and the support of χ is contained in N . Moreover, χ tends to the identity in the
Cκ−1 topology when h tends to 0 in the Cκ topology. Setting g̃ = χ ◦ g provides
us with the perturbed diffeomorphism we were looking for. �

3.2.4. Conclusion of the proof of Theorem 6. Fix f ∈F κ and δ > 0. We assume
that κ is large enough so that all the conclusions and identifications of the last
sections hold. Set

U• = {(θ1, r1) ∈ A | r1 ∈ ]−δ/4, δ/4[},

U •
= {(θ1, r1) ∈ A | r1 ∈ ]1− δ/4, 1+ δ/4[},

U• = {(θ, r) ∈ A2
| r1 ∈ ]−δ/2, δ/2[},

U •
= {(θ, r) ∈ A2

| r1 ∈ ]1− δ/2, 1+ δ/2[}.

(46)
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By Lemma 8 and Corollary 9, one can choose ε ∈ ]0, ε( f )[ small enough so that
for any diffeomorphism g ∈ B( f, ε), with the notation of Lemma 8, the invariant
circles 0• and 0• of ϕg satisfy

0• ⊂U•, ψ(0•)⊂U•, 0• ⊂U •, ψ(0•)⊂U •, (47)

and are such that moreover

8g(U•×{0})⊂ U•, 8g(U •
×{0})⊂ U •. (48)

We then proved the existence of a Cκ−1 diffeomorphism g̃∈ B( f, ε( f )) arbitrarily
close to g in the Cκ−1 topology, such that the bisystem (ϕg̃, ψg̃) associated with
g̃ satisfies (24). In particular, (ϕg̃, ψg̃) admits an orbit with first point in U• and
last point in U •.

The last step is to apply the normally hyperbolic shadowing lemma (see
Theorem 40 in Appendix C) (with δ/2 instead of δ) to the bisystem (ϕg̃, ψg̃).
The previous orbit produces an orbit of g̃ with first point in U 0 and last point in
U 1 (see Definition 4). This concludes the proof. �

4. The discrete setting for simple resonance annuli

Our objective now is to generalize the previous result to a (still discrete) case
which well-adapted to the diffusion properties of the dynamics along simple
resonance cylinders. The main difference with the previous model is that we have
to replace the globally defined homoclinic map by a correspondence formed by a
family of locally defined maps. We therefore have to introduce a local version of
the Moeckel noncoincidence condition and prove that it yields the existence of
drifting orbits for this type of bisystem: we require that each essential invariant
circle of g admits a splitting arc, that is, a C0 arc located below the invariant
circle and which is sent into the invariant circle by some locally defined maps
of the previous family. The question of the generic existence of such arcs for
relevant examples will necessitate specific symplectic ingredients and will be
examined in the next section — together with the definition of these examples.
This section is extracted from the joint work [21].

4.1. Special twist maps and splitting arcs. Given a < b, we set A= T×[a, b]
and for each c ∈ [a, b], we write 0(c) for T× {c}. Given a map f : A ý, we
denote by Ess( f ) its set of invariant essential circles.

1. We begin with the following definition for twist maps.

Definition 12. Here we say that an area-preserving twist map ϕ of A is special
if ϕ does not admit any essential invariant circle with rational rotation number.13

13Our definition in [21] is more stringent but we will not need it in the present setting.
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Figure 11. Positively and negatively tilted arcs.

Given an essential circle 0⊂T×]a, b[, 0− (resp. 0+) stands for the connected
component of A \0 located below 0 (resp. above 0) in A. In the following we
will crucially use the following result.

Lemma 13. Let ϕ be a special area-preserving twist map ϕ of A. Then any two
distinct elements of Ess(ϕ) are disjoint. Moreover, given an invariant essential
circle 0 ⊂ (A \0(a)), then either 0 is the upper boundary of a Birkhoff zone of
ϕ, or it is accumulated by a sequence of elements of Ess(ϕ) located in 0−.

See Appendix B for a proof.

2. We now list the necessary definitions and results for arcs. Given (u, v) ∈ R2,
let 6 (u, v) be the oriented angle of (u, v) in [0, 2π [. Let f : A ý be an area-
preserving twist map. Fix a circle 0 ∈ Ess( f ). An arc based on 0 is a C0

function γ : [0, 1] → A such that γ (0) ∈ 0 and γ (]0, 1]) ∈ 0+. We usually
denote by γ̃ the image γ ([0, 1]).

A C1 arc based on 0 with γ ′(s) 6= 0 for s ∈ [0, 1] is said to be positively tilted
(resp. negatively tilted) when 6 ((0, 1), γ ′(0)) ∈ ]0, π[ (resp. 6 ((0, 1), γ ′(0)) ∈
]−π, 0[) and when the continuous lift to R of s 7→ 6 ((0, 1), γ ′(s)) is positive
(resp. negative) over [0, 1].

Definition 14. Let ϕ : A ý be a twist map and let ψ = (ψi )i∈I be a correspon-
dence on A, where each ψi : Domψi → Imψi is a local homeomorphism of A.
Fix 0 ∈ Ess(ϕ), 0 ⊂ A \0(a):
• A splitting arc based at α for these data is an arc ζ of A whose projection

on 0(a) has length < 1
2 , for which

ζ(0)= α, ζ(]0, 1])⊂0−; ∃i ∈ I, ζ(]0, 1])⊂Domψi , ψi (ζ(]0, 1]))⊂0.

• A right splitting arc based at α= (θ, r) is a splitting arc ζ based at α, which
admits a derivative ζ ′(0)= (u, v) with u> 0, and such that π(ζ̃ )=[θ, θ+τ ]
with 0< τ < 1

2 .

• A left splitting arc based at α = (θ, r) is a splitting arc ζ based at α, which
admits a derivative ζ ′(0)= (u, v) with u< 0, and such that π(ζ̃ )=[θ−τ, θ]
with 0< τ < 1

2 .
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Figure 12. Splitting arcs.

Figure 13. Domain associated to a right splitting arc.

The length < 1
2 condition on an arc is there just to ensure the existence of a

natural order between the projections of points located in the neighborhood of it.
We will implicitly use this order in the following. One easy remark is that if ζ
is a right (resp. left) splitting arc, then (up to reparametrization) the restriction
ζ|[0,s] with 0< s ≤ 1 is also a right (resp. left) splitting arc, so that the previous
condition is not restrictive.

Given a point α = (θ0, r0) in A, we denote by

V−(α)= {(θ0, r) | r ∈ [a, r0]}

the vertical below α in A.

Definition 15. Let 0 ∈ Ess(ϕ), 0 ⊂ A \0(a), be the graph of the continuous
function γ : T→ [a, b] and α0 ∈ 0. Let ζ be a right splitting arc based on 0 at
α0 = ζ(0), let α∗ be a point in 0 such that

π(α0) < π(α∗) <Maxs∈[0,1] π(ζ(s)),

and let β∗ = ζ(s∗) be the point in V−(α∗)∩ ζ̃ with maximal r -coordinate. Let C
be the Jordan curve formed by the concatenation of the arcs ζ([0, s∗]), [β∗, α∗],
and [α∗, α0] ⊆ 0. We denote by D(ζ|[0,s∗]) the connected component of the
complement of C contained in 0−. We say that D(ζ|[0,s∗]) is a domain associated
with ζ . We define a domain associated with a left splitting arc similarly.
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The first obvious property of the domains defined above is the obvious fol-
lowing remark.

Lemma 16. For any x ∈ D(ζ ), the vertical V−(x) below x intersects ζ(]0, 1[).

The crucial property is the following.

Lemma 17. Consider an essential circle 0 ∈ Ess(ϕ̂) contained in A \ 0(a),
and a right (resp. left) splitting arc ζ based on 0. Consider an essential circle
0• ⊂ A such that ζ̃ is contained in the domain 0+

•
above 0•. Let D be a domain

associated to ζ . Let η be a negatively (resp. positively) tilted arc with η(0) ∈ 0•,
η(]0, 1])⊂ 0+

•
∩0−, and η(1) ∈ D. Then η(]0, 1[)∩ ζ(]0, 1]) 6=∅.

The proof is an immediate consequence of Lemmas 34 and 38.

4.2. Existence of pseudoorbits for bisystems of correspondences. We can now
state and prove a generalization of Moeckel’s theorem to bisystems of corre-
spondences on a two-dimensional annulus, which has to be seen as a Poincaré
section of a compact hyperbolic invariant cylinder. We prove the existence of
pseudoorbits “drifting from the bottom to the top of the annulus”. We do not
present here the more complete formalism of [21] which is adapted to the case
of pseudoorbits drifting along chains of heteroclinically connected annuli.

1. We first need to make the definition of an orbit of a polysystem more precise.
Let A be some set and consider a set f = { fi | i ∈ I } of locally defined maps fi :

Dom fi→ A. We say that a finite sequence (xn)0≤n≤n∗−1 of points of A is a finite
orbit of f , of length n∗≥ 1, when there exists a sequence ω= (in)0≤n≤n∗−1 ∈ I n∗

such that, for 0≤ n ≤ n∗− 1,

xn+1 = fin (xn),

and we write
xn∗ = f ω(x0).

We formally consider the point x0 as being the 0-length orbit of x0.
Given a subset B ⊂ A, we set

f ω(B)=
⋃

x∈Bω

f ω(x)

where Bω is the subset of B formed by the points x such that f ω(x) is well-
defined.

The full orbit of B ⊂ A under f is the subset of A formed by the union of all
f ω(B) for all sequences (of any length) ω (so that in particular B is contained
in its full orbit under f ).
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Figure 14. The setting of Theorem 19.

2. To deal with the notions of right and left splitting arcs in a similar way, we
will need the following result of symmetrization of a polysystem; see [21] for a
proof.

Lemma 18. Let A be a metric space endowed with a finite Borel measure,
positive on the nonempty open subsets of A. Let ϕ be a measure-preserving
homeomorphism of A and let (ψi )i∈I be a polysystem on A, where Domψi is
open and the map ψi : Domψi → Imψi is a homeomorphism, for all i ∈ I . Fix
a nonempty open subset V ⊂ A. Let U f and Ug be the full orbit of V under the
polysystems

f = (ϕ, ψ = (ψi )i∈I ) and g = (ϕ, ϕ−1, ψ = (ψi )i∈I )

respectively. Then U f is contained and dense in Ug.

3. The main result of this section is the following.

Theorem 19. Let ϕ : A ý be a special twist map and let ψ = (ψi )i∈I be a
correspondence on A. Assume that for each element 0 ∈ Ess(ϕ) there is a right
or left splitting arc based on 0. Fix 0 ∈ Ess(ϕ) \ {0(a), 0(b)} together with a
neighborhood V of 0(a) in A. Then given δ > 0, the full orbit of V under the
polysystem f = (ϕ, ψ = (ψi )i∈I ) intersects 0(b− δ)+.

Given ν > 0, we define a ν-ball of T×R as a subset B = Bθ × Br where Bθ
and Br are intervals of T and R respectively, such that

length Br > ν length Bθ . (49)

The center of B is (aθ , ar ), where aθ , ar are the mid-points of Bθ and Br . Given
a topological space E and A ⊂ B ⊂ E with A connected, CC(B, A) stands for
the connected component of B containing A.

Proof. We assume for example that ϕ tilts the vertical to the right, the other case
being exactly similar:

• We assume without loss of generality that V is open in A, and connected.
Let U be the full orbit of the open set V under the symmetrized polysystem
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g = (ϕ, ϕ−1, ψ = (ψi )i∈I ) on A. Note that ϕ(U ) = U and ψi (U ) ⊂ U . Set
Uc = CC(U, 0(a)). Then Uc is open and contains V , so ϕ(Uc)=Uc. Thanks to
Lemma 18, it is enough to prove that Uc intersects 0(b− δ)+.

Let us assume by contradiction that Uc is contained in 0(b− δ)−.

• Set O = A \Uc, so that O is open, contains 0(b), and O ∩ V =∅. Moreover,
since ϕ(Uc)=Uc,

ϕ(O)= A \ϕ(Uc)= A \Uc = O.

Then ϕ(CC(O, 0(b)))= CC(O, 0(b)) and so ϕ(CC(O, 0(b))= CC(O, 0(b)).
Let

U = A \CC(O, 0(b)),

so that U is open and ϕ(U )=U , and set finally

U = CC(U, 0(a)), (50)

hence U is open, connected and ϕ(U)= U . Moreover clearly

U ⊂ A \CC(O, 0(b)), (51)

and
Uc ⊂ U, (52)

since O = A \ Int(Uc) ⊂ A \ Uc, so CC(O, 0(b)) ⊂ A \ Uc and Uc ⊂ A \
CC(O, 0(b))=U , which proves our claim since 0(a)⊂Uc.

• Let us prove that 0 := FrU is a Lipschitz graph over T, invariant under ϕ, by
the Birkhoff theorem (see Appendix B). By local connectedness of A, one readily
proves that IntU = U , since U is a connected component of the complement
of the closure of an open set. Moreover ϕ(U)= U . Let now S be the quotient
of A by the identification of each boundary circle to one point, so that S is
homeomorphic to S2. Up to this quotient, U is a connected component of the
complement in S of a compact connected subset, so is homeomorphic to a disk.
Going back to the initial space A proves that U is homeomorphic to T×[0, 1[.
So by the Birkhoff theorem, 0 = ∂U is a Lipschitz graph over T, invariant under
ϕ; see [48] for more details.

• We now prove that 0 ⊂ Uc, and so 0 ⊆ Fr(Uc) = cl(Uc) \Uc. Assume that
x ∈0 is not in Uc, so that there exists a small ball B(x, ε) with B(x, ε)∩U c=∅.
Let z be some point on the vertical through x , located under 0 and inside
B(x, ε). Let us show that the semivertical σ over z in A is disjoint from Uc.
First 0 ∩ σ = {x}, since 0 is a graph, so that σ = [z, x] ∪ [x, ξ ], with ξ ∈ 0(b).
Clearly [z, x] ⊂ B(x, ε) so [z, x]∩Uc =∅, and ]x, ξ ]∩U =∅ since 0 = ∂U is
a graph. Since Uc ⊂ U , this proves that σ ∩U c =∅.
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As a consequence σ∪0(b) is a connected set which satisfies (σ∪0(b))∩Uc=

∅. Therefore
(σ ∪0(b))⊂ CC(O, 0(b))

and thus (σ ∪0(b))∩U =∅ by (51). This is a contradiction since x ∈ 0 ⊂ U .
Therefore 0 ⊂Uc.

• Since 0 is an invariant essential circle for the special twist map ϕ, there are
only two possibilities:

– 0 is the upper boundary of a Birkhoff zone.

– 0 is accumulated from below by essential invariant circles in the Hausdorff
topology.

We will prove that both possibilities yield a contradiction with the initial assump-
tion that Uc ∩0(b)=∅.

• Assume first that 0 is the upper boundary of a Birkhoff zone Z and let 0∗ be
the lower boundary of Z . Let ν be the Lipschitz constant of 0∗. Since 0∗ is a
graph and Uc is open, connected, contains V and Uc∩0 6=∅, then Uc∩0∗ 6=∅.
So there exists a ν-ball B ⊂Uc centered on 0∗.

We assumed that there exists a right or left splitting arc ζ based at some point
α of 0. Let D be its associated domain. By restricting ζ if necessary, one can
moreover assume without loss of generality that D⊂Z . We introduce the closed
connected set X = 0∪ ζ̃ , where ζ̃ = ζ([0, 1]), which disconnects the annulus A
since it contains 0.

Assume first that ζ is a right splitting arc. By Proposition 39, there exist
z0 ∈ B and n ∈ N such that zn := ϕ

n(z0) ∈ D. Then, by Lemma 17 there exists
a positively tilted arc based on 0∗ and ending at zn which does not intersect X .

By Lemma 35 there exists a negatively tilted arc γ with image in B based on
0∗ and ending at z0. Therefore, by Lemma 37, γn := f n

◦γ is a negatively tilted
arc based on 0∗ and ending at zn .

Assume that the image γ̃n does not intersect X , then by Lemma 38 the vertical
V−(zn) does not intersect X , which contradicts Lemma 16. Therefore γ̃n∩X 6=∅,
thus γ̃n ∩ ζ̃ 6=∅.

If now ζ is a left splitting arc, we use ϕ−1 instead of ϕ. This first yields a
z0 ∈ B such that z−n :=ϕ

−n(z0)∈ D, then a negatively tilted arc based on 0∗ and
ending at z−n which does not intersect X , and a positively tilted arc, still denoted
by γn , based on 0∗ and ending at z−n . As above, this proves that γ̃n ∩ ζ̃ 6=∅.

As a consequence, Uc ∩ ζ̃ 6=∅ since γ̃n ⊂Uc, and therefore there is a small
open ball B ⊂Uc centered on ζ(]0, 1]) and, by definition, an index i ∈ I such
that B ⊂ Domψi . Thus ψi (B) is an open set which intersects 0, and therefore
also Uc since 0 ⊂Uc. This proves that ψi (B)⊂Uc by connectedness, so that
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Uc contains points strictly above the circle 0. This is a contradiction with the
construction of 0 = FrU and the inclusion Uc ⊂ U , which ensures that all points
of Uc are located below 0.

• Assume now that 0 is accumulated from below by an increasing sequence
(0m)m≥1 of essential invariant circles for ϕ. Let ζ be a splitting arc based on 0.
Let Sm be the closed strip limited by 0m and 0m+1. For m large enough, Sm ∩ ζ̃

contains a C0 curve ` which intersects both 0m and 0m+1. Now 0 ⊂ Uc, so
that Uc ∩ Sm contains a C0 curve `′ which also intersects both 0m and 0m+1.
Therefore, by Lemma 36, there exists an integer n such that ϕn(Uc)∩ ` 6= ∅,
and so by invariance of Uc under ϕ, Uc ∩ ` 6= ∅. Since ` ⊂ ζ̃ ⊂ Domψi for
some i ∈ I , there exists a ball B⊂Uc centered on `⊂ ζ̃ and contained in Domψi .
This yields the same contradiction as in the previous paragraph. �

Slightly more involved assumptions and arguments show that the full orbit of V
intersects each pair of disjoint essential circles located in T×]a, b[, which enables
us in [21] to prove the existence of orbits drifting along chains of heteroclinically
connected annuli (and cylinders). We show in the next section how the present
result can be implemented in a model of a single s-resonance cylinder.

5. Diffusion orbits along simple resonance cylinders

In this section we introduce an example of a priori unstable perturbation of an
integrable Hamiltonian on the annulus A3, which admits a normally hyperbolic
3-dimensional cylinders with coinciding stable and unstable manifolds. To deal
with this degenerate situation, symplectic geometry reveals itself to be crucial at
two levels.

First, to prove the existence of homoclinic solutions for the essential invariant
tori located inside the cylinders. Then, to reduce the problem to a two-dimensional
setting and use the result of the previous section, we introduce a Poincaré
section (diffeomorphic to A) of the flow in the cylinder and we assume that
the unperturbed system induces a twist return map — not necessarily close to
any integrable one. The homoclinic intersections then enable us to construct a
homoclinic correspondence (a family of locally defined diffeomorphisms) on the
annulus, which breaks each essential invariant circle of the twist map (due to the
existence of a splitting arc).

The second crucial resort to symplectic geometry is to prove the genericity
of the existence of these splitting arcs. Our approach consist proving a general
result on the existence of homoclinic intersections, which would be violated if
some invariant circle would not admit a splitting arc.
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The results of this section give an account of a work joint work in progress
with L. Lazzarini, devoted to the complete description of a simple example
illustrating the methods of [43].

5.1. Setting and main result. We write θ = (θ0, θ1, θ2) and r = (r0, r1, r2) for
the angle and action variables in A3. We set θ̂ = (θ0, θ1), r̂ = (r0, r1).

1. Given an integer κ ≥ 2, we denote by G κ the affine subspace of Hamiltonians
on A3 of the form

G(θ, r)= r0+ g(θ0, θ1, θ2, r1, r2), (θ, r) ∈ A3, (53)

where g is of class Cκ and satisfies

‖g‖κ :=
κ∑

k=0

Supx∈A3‖Dk g(x)‖<+∞. (54)

We endow G κ with the uniform distance induced by the previous norm and we
denote by Bκ(G, r) the associated open ball centered at G ∈ G κ , with radius r .

2. We introduce a subset of G κ formed by the “unperturbed” Hamiltonians of
the form

F(θ, r)= F1(θ0, θ1, r0, r1)+ F2(θ2, r2),

F1(θ0, θ1, r0, r1)= r0+ f1(θ0, θ1, r1),
(55)

where the Hamiltonians Fi satisfy a set of additional conditions:

• Conditions on F1. The level F−1
1 (0) is a cylinder which admits the global

coordinates (θ0, θ1, r1). To set out our first conditions we focus on the dynamics
generated by F1 on F−1

1 (0) only. For each θ∗0 ∈ T, the surface

6θ
∗

0 = {θ0 = θ
∗

0 } ∩ F−1
1 (0)⊂ A2

is a global section for the restriction of X F1 to F−1
1 (0), since θ̇0 = 1. Moreover,

the standard Liouville form λ on A3 induces on 6θ
∗

0 the form r1dθ1, so that
(θ1, r1) are global exact-symplectic coordinates on 6θ

∗

0 . We denote by ϕθ
∗

0

the (exact-symplectic) Poincaré map induced on 6θ
∗

0 by the flow 8F1 . In the
coordinates chart (θ1, r1) we write

ϕθ
∗

0 (θ1, r1)= (2
θ∗0
1 (θ1, r1), R

θ∗0
1 (θ1, r1)). (56)

The maps ϕθ
∗

0 are clearly pairwise conjugated. We now list the conditions to be
satisfied by the Hamiltonians F1:



272 JEAN-PIERRE MARCO

(C1) For each θ∗0 ∈ T, the circles 0(0) = T× {0} and 0(1) = T× {1} in 6θ
∗

0

(relative the coordinates (θ1, r1)) are invariant under ϕθ
∗

0 , and their rotation
numbers ν0 and ν1 are Diophantine.14

(C2) There is a constant µ > 0 such that for all θ∗0 ∈ T,

∂2
θ∗0
1

∂r1
(θ1, r1)> µ

for all (θ1, r1) ∈ T×[0, 1].

By (C1), the 2-dimensional tori T (i)= T2
×{r1 = i} ⊂ F−1

1 (0) are invariant,
and they bound a compact invariant cylinder C ⊂ F−1

1 (0). Moreover, by (C2),
the map ϕθ

∗

0 induces is a twist map of 6θ
∗

0 ∩C = T×[0, 1], with twist constant
µ independent of θ∗0 .

• Conditions on F2. On the last factor A, endowed with the coordinates (θ2, r2),
we introduce the following conditions to be satisfied by the Hamiltonians F2.

(C3) The vector field X F2 possesses a hyperbolic fixed point O2, with F2(O2)=0.

(C4) The fixed point O2 admits a homoclinic orbit ζ for X F2 and there exists
an open interval I ⊂ R such that ζ transversely intersects σ =

{1
2

}
× I at

exactly one point, that we denote by P2. Moreover the map r2 7→ F2
( 1

2 , r2
)

is a diffeomorphism from I2 onto its image.

(C5) Let λO2 stand for the positive eigenvalue of TO2 X F2 . Then there is a p > 0
such that

λO2 > p[Maxx̂∈A2‖Tx̂ X F1‖]. (57)

In the sequel, we denote by F κ(p), or F κ for short, the set of Hamiltonians
F of the form (55) which satisfy conditions (C1)–(C5).15

Note in particular that when ε = 0, the Arnold Hamiltonian is in Fω, so that
our study extends Arnold’s one.

3. As in Section 3, it is not difficult to prove that given F ∈F κ(p) with p large
enough for the normally hyperbolic persistence to hold and κ ≥ κ0 large enough
for the KAM theorem to apply,16 there is a δ0 ∈ ]0, 1[ such that no orbit of X F

can intersect both zones {r1 <δ0} and {r1 > 1−δ0}. This motivates the following
definition.

Definition 20. Fix δ > 0. Given a Hamiltonian G ∈ G κ , we say that a solution
γ (t)= (θ(t), r(t)) of the system generated by G on A3 is a δ-diffusion solution

14These rotation numbers are independent of θ∗0 .
15The choice of µ is quite innocuous.
16Both values being dependent.
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Figure 15. An unperturbed system.

when it is defined on some interval [0, T ] and satisfies

r1(0) < δ, r1(T ) > 1− δ. (58)

The main result of this section is the following.

Theorem 21. There exist p> 0 and κ0 ≥ p such that for κ ≥ κ0 and F ∈F κ(p),
then for any δ ∈]0, 1[ there is an ε > 0 such that the set of Hamiltonians in the
ball Bκ(F, ε)⊂ G κ which admit a δ-diffusion solution is dense for the induced
Cκ topology and open for the C2 topology.

The existence of δ-diffusion solutions is clearly an open condition in the C1

topology for Hamiltonians of G κ . So the main task to prove Theorem 21 is
to ensure that the conditions introduced in [21], which yield the existence of
diffusion solutions and are encoded in the notion of “good cylinders” below (see
Theorem 31), are satisfied for a dense subset of Bκ(F, ε) in the Cκ topology.

5.2. Geometry and dynamics of the perturbed systems. The proof of the fol-
lowing lemma is a simple application of the normally hyperbolic persistence
theorem, the normally hyperbolic symplectic theorem of Appendix A and the
KAM theorem in the version of Herman [29].

Lemma 22. Fix κ ≥ κ0 ≥ p (large enough) and F ∈F κ(p). Let R = I0× I1 be
a fixed rectangle (with I1 ⊂ Int I1) in and fix ρ > 0. Then there is an ε0(F) > 0
such that for any Hamiltonian G ∈ Bκ(F, ε0(F)) the following properties are
satisfied:

(1) There exists a normally hyperbolic symplectic invariant annulus for XG , of
the form

AG = {(θ, r) ∈ A3
| (θ2, r2)= aG(θ̂ , r̂)} (59)

where aG : A
2
→ A is a C4 function whose image is contained in a small ball

centered at O2, which satisfies

‖aG − O2‖C p(T2×R)→ 0 when ‖G− F‖Cκ (A3)→ 0. (60)
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Moreover, AG admits (θ̂ , r̂) ∈ T2
×R2 as global coordinates (nonsymplectic in

general).

(2) The level G−1(0) intersects AG ∩ (T
2
× R) transversely in A3 and

CG :=AG ∩ (T
2
× R)∩G−1(0) (61)

is a 3-dimensional submanifold of A3, diffeomorphic to T2
×R, with coordinates

(θ0, θ1, r1). There is an open interval I1 ⊂ I1 containing [0, 1] such that the
domain (θ0, θ1, r1) ∈ T2

× I1 is well-defined in CG .

(3) For any θ∗0 ∈ T2, the surface

6
θ∗0
G = CG ∩ {θ0 = θ

∗

0 } (62)

is a global symplectic section of the Hamiltonian flow 8G restricted to CG , with
coordinates (θ1, r1) (nonsymplectic in general). The domain (θ1, r1) ∈ T× I1

is well-defined in6
θ∗0
G , for any θ∗0 ∈ T.

(4) For any θ∗0 , in the coordinates (θ1, r1), the Poincaré return map ϕ
θ∗0
G associ-

ated with 6
θ∗0
G converges to the map ϕ

θ∗0
F in the compact-open C p topology when

‖G− F‖Cκ → 0.

(5) For any θ∗0 , the map ϕ
θ∗0
G leaves invariant two (uniquely defined) essential

circles 0
θ∗0
G (0) and 0

θ∗0
G (1) in 6G , with rotation numbers ν0 and ν1 (see (C1)),

which moreover satisfy

0
θ∗0
G (0)⊂ {|r1|< ρ}, 0

θ∗0
G (1)⊂ {|1− r1|< ρ}. (63)

(6) For any θ∗0 , let Aθ
∗

0
G be the compact annulus bounded by 0

θ∗0
G (0) and 0

θ∗0
G (1)

inside6
θ∗0
G . Then the restriction of ϕ

θ∗0
G to Aθ

∗

0
G is a twist map, with twist constant≥

µ/2. We denote by Ess(ϕ
θ∗0
G ) the set of essential invariant circles of this restriction.

Each element of Ess(ϕ
θ∗0
G ) is a 2/µ-Lipschitz-continuous graph relative to the

coordinates (θ1, r1).

(7) Set ϕG := ϕ
0
G . For each 0 ∈ Ess(ϕG) we set T (0) = 8G(R× 0), so that

T (0) is a 2-dimensional invariant torus. We set

Tess(G)= {T (0) | 0 ∈ Ess(ϕG)}.

(8) For x ∈ AG , let W±(x) be the local invariant manifolds attached to x. Let
W±(CG) and W±(AG) be those attached to CG and AG (defined as the unions
of the previous ones). Then W±(AG) are coisotropic and their characteristic
foliations coincide with their foliations {W±(x) | x ∈}.

(9) For x ∈AG , W±(x) intersect transversely3=
{
θ2=

1
2

}
in A3 and for x ∈CG ,

W±(x) intersect transversely 1G in G−1(0). Both intersections are singletons.
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We set
A±G :=W±(AG)∩3, C±G :=W±(CG)∩1G,

The first intersection is transverse in A3, while the second one is transverse in
G−1(0).

(10) The annuli AG admits (θ̂ , r̂) as coordinates, while the cylinders CG) admit
(θ̂ , r1) as coordinates. Due to the particular choice of the section 3, the induced
Liouville form on A ±G reads

r0dθ0+ r1dθ1,

so that (θ̂ , r̂) are exact-symplectic coordinates.17

(11) We denote by 5±G : W±(AG) → AG the characteristic projections, by
π±G :A±G→AG the restrictions of 5±G to A±G and by j±G := (π

±

G )
−1
:AG→A±G .

The maps π±G and j±G are exact-symplectic and converge to π±F and j±F in the
compact-open C p−1 topology when ‖G− F‖κ→ 0. As a consequence, π±G ◦ j±G
converge to Id in the compact-open C p−1 topology.

We denote by CG the compact cylinder bounded in CG by T (0G(0)) and
T (0G(1)), so that

CG =8G(R× AG). (64)

In the following we will implicitly assume that κ0 and p are large enough for
the previous conclusions to hold true.

5.3. Homoclinic intersections. This section is devoted to the existence of homo-
clinic intersections for tori in Tess(G), where G is a small enough perturbation
of an element of F κ .

Proposition 23. Fix F ∈ F κ , κ ≥ κ0. Then there is a positive ε1(F) < ε0(F)
(where ε0(F) was defined in Lemma 22) such that for any G ∈ Bκ(F, ε1(F)),
and for any torus T ∈ Tess(G)

#(W−(T )∩W+(T )∩1G)≥ 3.

Under specific convexity assumptions on G, this could easily be deduced from
Fathi’s weak KAM theory, but we deal here with more general Hamiltonians and
we want a purely symplectic proof based on Lagrangian intersection arguments.
The main difficulty here is that the tori of Tess(G) are not smooth, so that we
need to generalize the standard notion of Lagrangian manifold. There are several
ways for doing this, see [1], here we adopt Herman’s one since our tori are
Lipschitz-continuous graphs. The Lagrangian character of such a graph amounts
to saying that the induced Liouville form is closed in the sense of distributions.

17This property will be crucial in the following.
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We will take advantage of the Lipschitzian character of the tori of at each step,
and since the proof is not completely standard, we will give all details for the
sake of completeness.

Here we only give a sketch of proof in the regular case. Assume that T is
smooth (at least C2) and, with the notation of Lemma 22, set

T± := j±G (T )⊂A±G ∩1G .

• We identify 1G with A2 by using the global symplectic chart (θ̂ , r̂) ∈ A2 of
1G . A simple application of the usual implicit function theorem proves that for
G close enough to F in G κ , the tori T± are graphs over the base T2.

• The torus T is clearly Lagrangian in AG (transport of an isotropic curve by the
Hamiltonian flow) and, since the maps j±G are exact-symplectic for the induced
structures on AG and A±G , the tori T± are Lagrangian in A±G . They are therefore
isotropic and contained in 1G , so T± are Lagrangian in 1G . As a consequence,

T± = α±(T2),

where α± : T2
→ A2 are closed 1-form on T2.

• By compactness, T+∩T− is nonempty if the form α=α+−α− is exact. Thus
all we need is to check that the class [α] ∈ H 1(T2,Z) vanishes on H1(T

2,Z).
This can be done by comparing the integrals of α± along two closed curves c1

and c2 in T2 generating H1(T
2,Z). But since the induced Liouville form ι∗λ

satisfies (α±)∗(ι∗λ)=α±, where ι is the inclusion1G ⊂A3, we may equivalently
compare the integrals of the ambient Liouville form λ along c±i = (ι ◦α

±)(ci ),
for i = 1, 2.

• The key observation is that the cycles c±i belong to A±G , and these two annuli are
exchanged by the exact symplectic map j+G ◦ ( j−G )

−1. This yields the equalities:

ˆ
c−i

λ=

ˆ
( j+G ◦( j−G )

−1)(c−i )
λ=

ˆ
c+i

λ,

where the first one comes from the exactness of j+G ◦ ( j−G )
−1 and the second one

from the fact that j+G and ( j−G )
−1 are close to the identity relative to the charts

(θ̂ , r̂) in their respective domains, so that ( j+G ◦ ( j−G )
−1)(c−i ) is homotopic to c+i

in T+.

• As a consequence [α] vanishes on H1(T
2,Z) and α is exact. This ends the

sketch of proof in the regular case.
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5.4. Generic properties of CG and W±(CG). 1. The following statement is the
continuous version of the one in Section 3.2.3. It is now based of the global flow-
box theorem (Appendix D), together with the methods introduced by Robinson
in [50; 51]; see also [29].

Proposition 24. For κ ≥ κ0, the subset of all Hamiltonians G in Bκ(F, ε1(F))
such that no circle in Ess(ϕG) has rational rotation number is a residual subset
of Bκ(F, ε1(F)).

2. The following result is also an application of the global flow-box theorem,
it is also a continuous version of the perturbative result used in the discrete
setting. Given G ∈ Bκ(F, ε1(F)), we examine the perturbations of the asymptotic
manifolds of CG and their characteristic foliations that come from the perturbation
of G.

Proposition 25. Fix G ∈ Bκ(F, ε1(F)). Then there exists a compact neighbor-
hood K of C−G ∪C+G in 1G , which satisfies

8G([−2, 2]× K )∩CG =∅, (65)

such that for any pair of C∞ Hamiltonian diffeomorphisms φ− :1G ý and φ+ :
1G ý with support in Int K , there exists a Cκ Hamiltonian G̃ ∈ Bκ(F, ε1(F))
which coincides with G outside a compact subset of 8G(]−1, 0[ × K ) ∪
8G(]0, 1[× K ), so that CG̃ = CG , which satisfies

φ−(C−G )= C−
G̃
, j−

G̃
= φ− ◦ j−G ,

φ+(C+G )= C+
G̃
, j+

G̃
= φ+ ◦ j+G .

(66)

Moreover one can choose G̃ so that ‖G̃−G‖κ→ 0 when φ± are generated by
Hamiltonians which tend to 0 in the C∞ topology.

3. Our first application of the previous result ensures the generic transversality
of the intersection C+G ∩C−G , it is based only on standard transversality arguments.

Proposition 26. The set G0 of hamiltonians G ∈ Bκ(F, ε1(F)) such that the
intersection C+G ∩ C−G is transverse in 1G in the neighborhood of C+G ∩ C−G is
open and dense in Bκ(F, ε1(F)).

The existence of homoclinic intersections hence immediately yields the fol-
lowing.

Corollary 27. There is a neighborhood O of C−G ∩C+G in 1G such that IG ∩O

is a 2-dimensional submanifold of 1G .
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Z

Figure 16. Intersection and singular curve.

5.5. Reduction to the 2-dimensional setting. The last corollary gives us now
the possibility to recover the two-dimensional discrete setting introduced in
Section 4.

1. The submanifold IG is an interesting example of intersection of two transverse
coisotropic submanifolds of a symplectic manifold. We were unable to find a
systematic study of the generic singularities of such intersections, so let us quote
here one remarkable genericity property. We first introduce the vector fields
along C±

G̃
defined by

X±G = XG − ( j±G )?XG (67)

One easily proves that they are tangent to the leaves of the characteristic foliations
of W±(CG).

We introduce the following sets:

• ZG = {x ∈IG | Tx W−(CG)∩ Tx W+(CG) is Lagrangian}.

• Z+G = {x ∈IG | X+G(x) ∈ Tx W−(CG)}.

• Z−G = {x ∈IG | X−G(x) ∈ Tx W+(CG)}.

Note that ZG is precisely the complement of the symplectic locus inside IG .
The striking fact is the following remark.

Lemma 28. The sets Z±G and ZG coincide, and the set G1 of Hamiltonians
G ∈ G0 such that ZG is a 1-dimensional submanifold of IG in the neighborhood
of C−G ∩C+G is open and dense in Bκ(F, ε1(F)).

The points of the singular locus ZG are precisely those where the characteristic
projections 5±G restricted to the intersection W+(CG)∩W−(CG) are not local
diffeomorphisms (by definitions of Z±G ). These points necessitate special care in
our construction, and we will forget about them in the following.
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2. Recall that
6G = CG ∩ {θ0 = 0}

is a two dimensional annulus, which contains two disjoint invariant circles 00(G)
and 01(G) bounding a compact invariant annulus AG . We therefore have a first
global return (twist) map ϕG at our disposal and we need to construct a homoclinic
correspondence to get the bisystem of Section 4. This correspondence would
ideally be obtained by transport of small pieces of the intersection IG on CG by
the characteristic projections, and then on 6G by the Hamiltonian flow inside
CG , which is not possible in the neighborhood of points of ZG . Let us introduce
the subset

4⊂I

of all homoclinic points corresponding to the essential invariant tori contained in
CG , and, for simplicity, assume that

4∩ ZG =∅.

By compactness, one can find a cover (Dα)α∈A of 4 by small discs contained in
I \ ZG , such that moreover, setting D± = π±(D)⊂ CG :

• There are C1 functions τ± : D±→ R such that 8τ
±

G (D±)⊂6G and 8τ
±

G
are C1 diffeomorphisms onto their images.

Definition 29 (homoclinic diffeomorphisms and correspondences). Given a small
disc D satisfying the previous constraint, we define the homoclinic diffeomor-
phism ψD attached to D by

ψD : DomψD→ ImψD

x 7→8τ
+

G ◦5
−
◦ (5+

|D)
−1
◦ (8τ

−

G )−1(x).
(68)

where

DomψD :=8
τ−

G (D−)⊂6G, ImψD :=8
τ−

G (D+)⊂6G .

We define a homoclinic correspondence for 6G as a family of homoclinic dif-
feomorphisms ψ = (ψα := ψDα

)α∈A attached to a cover (Dα)α∈A of 4 by small
discs in I \ ZG .

Note that we do not require the supports of the homoclinic diffeomorphisms
in a homoclinic correspondence to be pairwise disjoint. Given a homoclinic
correspondence ψ = (ψα)α∈A, we define the associated set X − of (negative)
transported homoclinic points as

X −
=

⋃
α∈A

ψα(4∩ Dα).
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Figure 17. A homoclinic diffeomorphism.

3. Good cylinders. We now come to our main definition and result; see [21].

Definition 30. We say that the compact invariant cylinder CG defined in (64) is
a good cylinder when the return map ϕG attached to the section AG is a simple
twist map, and when there exists a homoclinic correspondence ψG = (ψα)α∈A of
CG such that for any 0 ∈ Ess(ϕG) there exists a (right or left) splitting arc based
on 0 for the correspondence ψG .

Theorem 31. Fix F ∈ F κ , κ ≥ κ0. Then there is an ε(F) ∈]0, ε1(F)] such
that the set of Hamiltonians G in the ball Bκ(F, ε(F)) for which CG is a good
cylinder is dense in Bκ(F, ε).

The results of Section 4 (Theorem 19) immediately enables us to deduce
Theorem 21 from Theorem 31.

4. Idea of the proof of Theorem 31. The genericity results of Section 5.4 are
taken for granted. It therefore remains to show the following proposition, where,
given G, G̃ in G κ , we say that G̃ is G-admissible when G̃ coincides with G
outside a neighborhood of AG .

Proposition 32. Fix F ∈F κ with κ ≥ κ0 and G ∈ G1(F). Then for any α > 0,
there exists an admissible Hamiltonian G̃ ∈ G1(F) with

‖G̃−G‖κ < α (69)

such that CG̃ = CG is a good cylinder for G̃.

We require the admissibility condition to ensure that the inner map ϕG̃ and
ϕG coincide, and therefore admit the same set of essential invariant circles. To
prove Proposition 32, we have to find an arbitrarily small perturbation G̃ of G
such that each invariant circle of Ess(ϕG) admits a (right or left) splitting arc.
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Figure 18. Essential circles and homoclinic points for ϕG .
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Figure 19. Disjunction of the arcs.

The idea is essentially symplectic and is based on the existence of (trans-
ported) homoclinic points on each invariant circle of ϕĜ for each Ĝ in G1(F)
(by construction and Proposition 23).

We argue by contradiction. The main ingredient is the possibility to construct
an arbitrarily small and admissible perturbation Ĝ ∈ G1(F) of G whose set of
transported homoclinic points is totally disconnected.18 We then prove that
if ϕĜ admits an invariant circle 0 with no splitting arc, then it is possible to
perturb Ĝ another time — still inside G1(F)— to ensure that the new homoclinic
correspondence satisfies

ψ−1
α (0)∩0 =∅, ∀α ∈ A.

18This is done by local arguments of Minkowski dimension and a convergent sequence of
Hamiltonian perturbations of the homoclinic correspondence, of the same type as Moeckel’s ones.
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Consequently the circle 0 do not posses (transported) homoclinic points,
which contradicts Proposition 23. The disconnectedness of the set of homoclinic
points is used to produce local perturbations of the homoclinic correspondence
by composition with local Hamiltonian diffeomorphisms which increase the
action r in a very small neighborhood of each homoclinic point, and decrease
the action where the arcs a far from the circle 0. The proof will full details will
appear in the joint work with L. Lazzarini.

6. Broadening the scope

The previous presentation has to be seen as a first introduction to the geometric ap-
proach to Arnold diffusion, whose methods, results and scope can be improved on
by using recent developments in symplectic topology, two-dimensional dynamics
and control theory. We briefly discuss the first two points in this section.

6.1. Symplectic topology. We refer to [2] for a survey of the origins of the
questions in symplectic topology and to Gromov’s seminal paper [26], and
Laudenbach and Sikorav [38] for seminal results in Lagrangian intersection
problems. Here we will a similar result, in its most basic form proved by Lalonde
and Sikorav [37].

One main difficulty in the application of the methods presented in Section 5 to
the a priori stable case comes from the essentially singular perturbations involved
in this setting. The absence of hyperbolicity in the unperturbed system makes
the embedding of the cylinders very delicate, in the sense that they are graphs
of function whose C1 norm tends to infinity when the size of the perturbation
tends to 0. This makes in turn very difficult the detection of the graph properties
of the essential circles contained in these cylinders.19 This difficulty can be
overcome by a very careful analysis of the location of these objects (as in [33])
or by cutting the cylinders into smaller and smaller pieces (as in [44]). However
a way to get rid of the graph constraint in the proof of existence of Lagrangian
intersection would be much more satisfactory, and this is precisely the content
of another famous Arnold conjecture — which could perhaps have been inspired
by the present problem.

Let us recall one first result in the direction of the Arnold intersection con-
jecture. Let M and L be compact manifolds of the same dimension. Endow
T ∗M with its usual Liouville form λ and set �= dλ. Recall that an embedding
j : L→ T ∗M is said to be exact when j∗λ is an exact form. An embedded sub-
manifold of T ∗M is said to be exact when it is the image of an exact embedding.

19As is the also case for the usual invariant objects from weak KAM theory.
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Theorem [37]. Let L and L ′ be two exact submanifolds of T ∗Tn . Then L ∩ L ′ is
nonempty.

This enables us to some extent to relax the graph assumption for the essential
circles in the previous section. Indeed, given an essential smooth torus T con-
tained in the hyperbolic cylinder CG , without any torsion assumption on return
map, one can introduce a Weinstein tubular neighborhood N ∼ T ∗( j−(T )) of
the image j−G (T ) ⊂ 1G . Then, since j±

G̃
are exact-symplectic for the induced

Liouville form on A ±
G̃

, one can prove that j+(T ) is an exact submanifolds of
N (for the usual exact structure), hence the previous theorem proves that the
intersection j−(T ) ∩ j+(T ) is nonempty (where j−(T ) is identified with the
zero section of N ).

To conclude in the case of Lipschitz tori, it suffices to prove the existence
of two sequences (T±n )n∈N of tori of 1 with T+n ∩ T−n 6=∅ which converge to
j±
G̃
(T ) in the C0 topology. To see this, one can first perform a smoothing of

the initial torus T =8G̃(R×0) by symplectic plumbing of the transport of a
smoothed invariant circle 0, and then to perform a smoothing of j±

G̃
by means of

their generating Hamiltonians. We expect this strong result to enable us to give
simpler proofs of the existence of homoclinic orbits in the a priori stable case,
as well as to deal with a larger set of perturbations of the completely integrable
Hamiltonian h.

6.2. Two-dimensional dynamics without convexity. One can also expect new
results for diffusion without the convexity assumption on h, using the generic
transitivity result of [35; 36]. Let us give an example which mimics the a priori
chaotic setting of Section 3, without any twist condition. Let Dκ be the group
of Cκ symplectic diffeomorphisms of the product S = S1× S2, where (Si , ωi )

are compact symplectic smooth surfaces, equipped with the symplectic form
ω=ω1⊕ω2. Let F κ

⊂Dκ be the subset formed by the product diffeomorphisms
of the form

f (x1, x2)= ( f1(x1), f2(x2)), xi ∈ Si , (70)

satisfying the following conditions:

(C1) Both f1, f2 are symplectic.

(C2) f2 admits a hyperbolic fixed point O2.

(C3) The Lyapunov exponents of f2 at O2 dominate the Lyapunov exponents of
f1 on S1.

(C4) f2 has a transverse homoclinic point P2 for O2 in S2.

Then the following result (from a current joint work with M. Gidea) holds
true: there is a κ0 such that for κ ≥ κ0, for every f ∈F κ there exists an ε0 > 0
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(depending on f ) such that for every diffeomorphism g in a residual subset
Rκ( f, ε0) of the ball Bκ( f, ε0), there exists an orbit (xn

1 , xn
2 )n∈N of g such that

the projected sequence (xn
1 )n∈N is dense in S1.

An extension to this result to the discrete setting for a priori unstable systems
as in section IV is a very challenging question which has deep consequences for
diffusion for perturbations of nonconvex completely integrable Hamiltonians.

Appendix A. Normal hyperbolicity and symplectic geometry

We refer to [4; 9; 31] for general definitions an results on normal hyperbolicity.
Here we limit ourselves to a very simple class of systems which admit a normally
hyperbolic invariant (noncompact) submanifold, which serves us as a model
from which all other definitions and properties will be deduced.

1. The following statement is a simple version of the persistence theorem for
normally hyperbolic manifolds well-adapted to our setting, whose germ can be
found in [6]. We limit ourselves to the case of 1-dimensional stable and unstable
directions, which is the only one we have to deal with in this paper. We fix
an integer m ≥ 1 and endow Rm+2 with the coordinates (x, u, s), with x ∈ Rm ,
(u, s) ∈ R2.

Theorem (the normally hyperbolic persistence theorem). Fix m≥ 1 and consider
a vector field of class C1 V0 on Rm+2 of the form

V0(x, u, s)= (X (x, u, s), λu(x)u,−λs(x)s), (x, u, s) ∈ Rm+2. (71)

Assume moreover that there exists λ > 0 such that for x ∈ Rm :

λu(x)≥ λ, λs(x)≥ λ. (72)

Fix a constant R > 0 and set OR = {(x, u, s)∈Rm+2
| ‖(u, s)‖< R} and assume

that

‖∂x X‖C0(OR) < λ. (73)

Then there exist constants δ∗ > 0, c∗ > 0, C > 0, such that if Vr is a C1 vector
field on Rm+2 such that

‖Vr‖C1(Rm+2) ≤ δ∗, (74)

setting V = V0+ Vr , the following assertions hold:

• The maximal invariant set for V contained in OR is an m-dimensional manifold
A(V ) which admits the graph representation:

A(V )= {(x, u =U (x), s = S(x)) | x ∈ Rm
},
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where U and S are C1 maps Rm
→ R such that

‖(U, S)‖C0(Rm) ≤ c∗‖Vr‖C0 . (75)

• The maximal positively invariant set for V contained in OR is an (m + 1)-
dimensional manifold W+(A(V )) which admits the graph representation:

W+(A(V ))= {(x, u =U+(x, s), s) | x ∈ Rm, s ∈ ]−R, R[},

where U+ : Rm
×]−R, R[ → R is a C1 map such that

‖U+‖C0(Rm) ≤ c∗‖Vr‖C0 . (76)

• The maximal negatively invariant set for V contained in OR is an (m + 1)-
dimensional manifold W−(A(V )) which admits the graph representation:

W−(A(V ))= {(x, u, s = S−(x, u)) | x ∈ Rm, u ∈ ]−R, R[},

where S− : Rm
×]−R, R[ → R is a C1 map such that

‖S−‖C0(Rm) ≤ c∗‖Vr‖C0 . (77)

• The manifolds W±(A(V )) admit C0 foliations (W±(x))x∈A(V ) such that for
w ∈W±(x)

dist(8t(w),8t(x))≤ C exp(±λt), t ≥ 0. (78)

• If moreover V0 and Vr are assumed to be of class C p, p ≥ 1, and if

p‖∂x X‖C0(OR) < λ (79)

then the functions U , S, U+, S− are of class C p and there is a constant C p,
depending only on V0, such that U , S U+, S+ tend to 0 in the C p compact-open
topology when Vr tends to 0 in the C p topology.

• Assume moreover that the vector fields V0, Vr are L-periodic in x , where L is
a lattice in Rm . Then their flows and the manifolds A(V ) and W±(A(V )) pass
to the quotient (Rm/L)×R2

The last statement will be applied in the case where m = 2` and L = Z`×{0},
so that the quotient A(V ) is diffeomorphic to the annulus A`.

2. The following result describes the symplectic geometry of our system in the
case where V is a Hamiltonian vector field. We keep the notation of the previous
theorem.

Theorem (the symplectic normally hyperbolic theorem). Endow R2m+2 with
a symplectic form � such that there exists a constant C > 0 such that for all
z ∈ OR

|�(v,w)| ≤ C‖v‖‖w‖, ∀v,w ∈ Tz M. (80)
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Let H0 be a C2 Hamiltonian on R2m+2 whose Hamiltonian vector field V0 satisfies
(71) and (72), and consider a Hamiltonian H = H0+ P. Then if the vector field
V generated by H satisfies (73) and (74) the following properties hold:

• The manifold A(V ) is �-symplectic.

• The manifolds W±(A(V )) are coisotropic and the 1-dimensional stable
and unstable foliations (W±(x))x∈A(V ) coincide with the characteristic
foliations of W±(A(V )).

• If H is C p+1 and condition (79) is satisfied, then the manifolds A(V ),
W±(A(V )) are of class C p and the foliations (W±(x))x∈A(V ) are of class
C p−1.

Appendix B. A reminder on twist maps

We refer to the appendix of [29] and [40; 41] for more details and proofs about
the Birkhoff theory of twist maps. Let a < b be fixed. We set

A= T×[a, b], 0(a)= T×{a}, 0(b)= T×{b}.

The closure of a subset E ⊂ A will be indifferently denoted by cl E or E , and
its interior will be denoted by Int E . The set Fr E = cl E \ Int E is the frontier
of E . A disk is an open connected and simply connected subset of A.

Here we say that f : A→ A is a twist map when it is a C1 diffeomorphism,
preserves 0(a) and 0(b) and tilts the vertical, that is, f (θ, r)= (2, R) with

∂r2(θ, r) > 0 or ∂r2(θ, r) < 0, ∀(θ, r) ∈ A.

Then f tilts the vertical to the right in the former case and to the left in the
latter one. A continuous map f : A→ A is said to be area-preserving when it
leaves invariant a Radon measure which is positive on the open subsets of A. An
essential circle in A is a C0 curve which is homotopic to 0(a).

Theorem (Birkhoff). Let f : A→ A be an area-preserving twist map. Then
there exists ν > 0 such that any essential circle invariant under f is the graph of
some ν-Lipschitz function ` : T→ [a, b].

The second result from Birkhoff’s theory we need is the following.

Theorem (Birkhoff). Let f : A→ A be an area-preserving twist map. Assume
that U is an open subset of A homeomorphic to T×[0, 1[, with 0(a)⊂U , such
that f (U )⊂U and such that U is the interior of its closure. Then the frontier
Fr U is an invariant essential circle.

One easily deduces from the first Birkhoff theorem that the set Ess( f ) of
essential invariant circles of f , endowed with the Hausdorff topology, is compact.
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Given 0 ∈ Ess( f ) with 0 = Graph(`), we set

0+ = {(θ, r) ∈ A | r > `(θ)}, 0− = {(θ, r) ∈ A | r < `(θ)}. (81)

By the Poincaré theory, every 0 ∈ Ess( f ) admits a rotation number in T for f|0 .
One can choose a common lift to R for the rotation number of all circles, which
yields a function ρ : Ess( f )→ R. This function is continuous and increasing,
in the sense that if 0i = Graph `i , i = 1, 2 are invariant with `1 ≤ `2, then
ρ(`1)≤ ρ(`2). Moreover, ρ(`1) < ρ(`2) when `1 < `2.

Definition 33. Let f : A→ A be an area-preserving twist map of the annulus
A. Let `• and `• be two functions T→]a, b[ whose graphs 0(a) and 0• are in
Ess( f ). Then one says that the set

B = {(θ, r) | θ ∈ T, `•(θ)≤ r ≤ `•(θ)}

is a Birkhoff zone when that there is no element 0 = Graph ` ∈ Ess( f ) such that
`• ≤ `≤ `

• and ` 6= `•, ` 6= `•.

We now prove Lemma 13, which was used in Section 3

Proof of Lemma 13. The main property of a special twist map f , coming from the
fact that no element of Ess( f ) has rational rotation, is that two distinct elements
of Ess( f ) are disjoint; see [34], Section 13.2. As a consequence, the rotation
number ρ : Ess( f )→ R is a homeomorphism onto its image R = ρ(Ess( f )),
by compactness of Ess( f ). The boundaries of the Birkhoff zones are sent by ρ
on the boundaries of the maximal intervals in the complement Rot \ρ(Ess( f )),
where Rot= [ρ(0(a)), ρ(0(b))] is the rotation interval of f . Our claim easily
follows. �

We can now state a second easy lemma on special twist maps and domains
associated with right or left splitting arcs.

Lemma 34. Consider an essential circle 0 ∈ Ess(ϕ), 0 ⊂ A \ 0(a), and a
right (resp. left) splitting arc ζ based on 0, with domain D(ζ ). Consider an
essential circle 0(a)⊂ A such that ζ̃ is contained in the domain 0(a)+ above
0(a). Then for x ∈ D(ζ ) there exists a positively (resp. negatively) tilted arc γ
with γ (0) ∈ 0(a) and γ (1)= x , whose image does not intersect the union 0 ∪ ζ̃ .

The following easy result on negatively tilted arcs is used several times in our
constructions.

Lemma 35. Let 0 be an essential circle of A which is the graph of a ν-Lipshitz
function ` : T → [0, 1], and let B be a ν-ball centered on 0. Then for any
z ∈0+∩ B, there exists a negatively tilted arc based on 0 and ending at z, whose
image is contained in B.
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The proof of the following lemma is immediate.

Lemma 36. Let f : A→ A be an area-reserving twist map. Let 0± be two non-
intersecting essential invariant circles contained in A. Then for any continuous
curves C and C ′ which intersect both circles 0±, the positive orbit of C under f
intersects C ′.

We refer to [39] for the proofs of the following two results from Birkhoff’s
theory.

Lemma 37. Let f : A→ A be an area-preserving twist map and let 0 be an
essential invariant circle for f . The inverse image f −1

◦ γ of a positively tilted
arc γ based on 0 is a positively tilted arc based on 0. The direct image f ◦ γ of
a negatively tilted arc γ emanating from 0 is a negatively tilted arc based on 0.

Given a point x ∈ A, we define the lower vertical V−(x) as the vertical segment
joining a point of the lower boundary of A to x .

Lemma 38. Let f : A→ A be an area-preserving twist map. Let 0 ∈ Ess( f ).
Let X be a connected closed subset of A which disconnects the annulus A and
such that X ⊂0+. Let x ∈ A be such that there exists a positively tilted arc γ and
a negatively tilted arc η, both based on 0 and ending at x , such that the images
of γ and η do not intersect X. Then the vertical V−(x) does not intersect X.

The following strong connecting lemma appeared with a different proof in [22].

Proposition 39. Let f : A→ A be a (not necessarily special) area-preserving
twist map. Let 0(a) and 0• be the boundary components of some Birkhoff zone
of instability for f . Fix a pair of open sets V•, V • which intersect 0(a) and 0•

respectively, with moreover V• ⊂ (0•)−. Then there exist a point z ∈ V• and
an integer n ≥ 0 such that f n(z) ∈ V •. Moreover the integer n can be chosen
arbitrarily large.

Proof. Set

U =
⋃
n≥0

f n(0(a)− ∪ V•)= 0(a)− ∪
(⋃

n≥0

f n(V•)
)
,

so that U is a connected and f -invariant neighborhood of ∂•A, which satisfies

U ⊂ (0•)−.

Hence the frontier 0 := FrU of its associated filled subset is in Ess( f ) and
satisfies 0(a)≤ 0 ≤ 0•. Therefore 0 = 0(a) or 0 = 0•. The former equality is
impossible by construction, so 0 = 0•.

As a consequence, 0•⊂ FrU ⊂ Fr U , so there exists an integer n ≥ 0 such that

f n(V•)∩ V • 6=∅,
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which proves our claim. Finally, observe that by choosing arbitrarily small open
subsets W• ⊂ V•, W •

⊂ V • and applying the previous result to the pair W•, W •,
one can ensure that the integer n can be chosen arbitrarily large. �

Appendix C. Normally hyperbolic shadowing

For the convenience of the reader, we add a proof of the normally hyperbolic
shadowing lemma, whose main ingredient is the Poincaré recurrence theorem
and which closely follows [23; 24]. Let d stand for the product metric on A2.

Theorem 40. Fix f ∈F κ with κ so that the statements of the last section hold.
Fix g in Bκ( f, ε( f )) and fix an orbit x0, . . . , xn of the polysystem (ϕg, ψg) on Ag.
Then for any δ > 0 there is an orbit z0, . . . , zN of g in A2 such that d(z0, x0) < δ

and d(zN , xn) < δ. One can moreover choose z0 so that for each i ∈ {0, . . . , n},
there is an m(i) with

d(gm(i)(z0), xi ) < δ. (82)

Since ϕg has compact support and preserves the symplectic area on Ag, by the
Poincaré recurrence theorem almost every point of Ag is positively and negatively
recurrent for ϕg. In the following we use recurrent as a shorthand for positively
and negatively recurrent.

The other main tool of the proof is the following λ-lemma.

Lemma (normally hyperbolic inclination lemma). Fix f ∈F κ with κ so that
the statements of the last section hold, and fix g in B( f, ε( f )). Let ( jx)x∈Ag

be a continuous family of C1 parametrizations of the local unstable manifolds
attached to Ag, that is, a C0 map j :Ag×[−1, 1] →W−(Ag) such that, setting
jx = j (x, · ),

jx(0)= x, jx([−1, 1])⊂W−(x), (83)

and jx is C1. Then for any C1 submanifold 1 of A2 which intersects W+(Ag)

transversely in A2 at some point ξ ∈ W+(x), there exist a sequence (1n)n∈N

such that
ξ ∈1n ⊂1 ∀n ∈ N, (84)

and for n ∈ N, a C1 diffeomorphism `n : [−1, 1] → gn(1n) such that

lim
n→∞
‖`n − jgn(x)‖C0 = 0. (85)

We refer to [52] for a proof with detailed estimates in the compact setting,
which directly applies here thanks to our compactness assumption on the support
of g.

Proof of Theorem 40. We will write ϕ,ψ instead of ϕg, ψg. Fix an orbit
x0, . . . , xn of the polysystem (ϕ, ψ) on Ag and fix δ > 0. We fix a tubular
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neighborhood N of Ag in A2 such that N ∩W−(Ag) is invariant by g−1 and
for each z ∈N ∩W−(Ag) with z ∈W−(y)

d(g−1(z), g−1(y)) < d(z, y). (86)

Setting τ0 = ϕ and τ1 = ψ , by definition, there exists a sequence ω0, . . . , ωn−1

in {0, 1} such that, for 0≤ j ≤ n− 1,

x j+1 = τω j (x j ). (87)

Choose r > 0 small enough so that if D0 = Ag ∩ B(x0, r) and if

D j+1 = τω j (D j ) for 0≤ j ≤ n− 1, (88)

then D j ⊂ Ag ∩ B(x j , δ/2) for 0 ≤ j ≤ n (which is possible by continuity of
both maps τ j ).

We will prove the existence of an orbit (y j )1≤ j≤n of (τ0, τ1) associated with
the same sequence (ω j ), such that the point y j belongs to D j and is recurrent for
τ0 = ϕ, and the existence of a sequence of balls (B j )0≤ j≤n of A2 which satisfy
the following two properties:

(C j ) For 0 ≤ j ≤ n, B j is centered at some point z j ∈ W−(y j ) ∩ N and
B j ⊂ B(y j , δ/2).

(T j ) For 0≤ j ≤ n− 1, ∃m j > 0 such that gm j (B j )⊂ B j+1.

We will construct these objects backwards, by finite induction. It is enough
to prove that given some recurrent point y j+1 ∈ D j+1 together with a ball B j+1

satisfying (C j+1), one can find a recurrent point y j ∈ D j , a ball B j satisfying
(C j ) and a positive m j which satisfies (T j ).

3. Assume first that x j+1 = ϕ(x j ), so D j+1 = ϕ(D j ). By assumption, the
point y j+1 ∈ D j+1 is recurrent for ϕ, hence the point y j = ϕ

−1(y j+1) is in
D j and is recurrent for ϕ too. By (C j+1), the ball B j+1 is centered at some
z j+1 ∈W−(y j+1). By our assumption on W−(Ag)∩N and since g coincides
with ϕ on Ag, setting z j = g−1(z j+1),

d(z j , y j )= d(g−1(z j+1), g−1(y j+1)) < d(z j+1, y j+1) <
δ
2 . (89)

Therefore, by continuity of g, there exists a ball B j centered at z j and contained
in B(y j , δ/2) such that g(B j )⊂ B j+1.

4. Assume now that x j+1 = ψ(x j ), so that D j+1 = ψ(D j ). Let R j and R j+1

be the full-measure subsets of D j and D j+1 formed by the recurrent points
for ϕ. Since ψ is measure preserving, R j+1 ∩ψ(R j ) is a full measure subset
of D j+1. Therefore, there exists a recurrent point ȳ j ∈ R j such that ȳ j+1=ψ(ȳ j )

is recurrent, and so close to y j+1 that, by continuity of the unstable foliation,
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the leaf W−(ȳ j+1) intersects the ball B j+1. By definition of ψ and by the last
item in Lemma 7, the submanifold 1=W−(ȳ j ) intersects W+(Ag) transversely
in A2 at some point ξ ∈ W+(ȳ j+1). Apply the inclination lemma to 1 in the
neighborhood of ξ , together with the positive recurrence property of ȳ j+1: there
exists an arbitrarily large integer m′ such that gm′(1) intersects B j+1. Fix

z ∈ gm′(1)∩ B j+1, (90)

then
g−m′(z) ∈1⊂W−(ȳ j ). (91)

Now, by definition of W−(ȳ j ) and since ȳ j is negatively recurrent, there is an
(arbitrarily large) integer m′′ such that

d(g−m′′(g−m′(z)), g−m′′(ȳ j )) < δ/2 and g−m′′(ȳ j ) ∈ D j . (92)

Set y j = g−m′′(ȳ j ), so that y j is recurrent and the point z j = g−(m
′′
+m′)(z) ∈

W−(y j ) satisfies

d(y j , z j ) < δ/2 and g(m
′′
+m′)(z j )= z ∈ B j+1. (93)

Hence by continuity there exists a ball B j centered at z j such that conditions
(C j ) and (T j ) are satisfied.

5. As a consequence, there exists a sequence of integers (mi )1≤≤n such that for
1≤ i ≤ n

gmi ◦ · · · ◦ gm1(B0)⊂ Bi .

By construction, any z0 ∈ B0 satisfies our statement. �

Appendix D. A global Hamiltonian flow-box theorem

We refer to [46] for the necessary definitions and results in symplectic geometry.
The proof of the following global form of the Hamiltonian flow-box theorem is
immediate.

Lemma 41. Let (M2m, �) be a symplectic manifold with Poisson bracket { · , · },
and fix a Hamiltonian H ∈ C∞(M) with complete vector field X H .

• Let 3 be a codimension 1 submanifold of M , transverse to X H , such that there
exists an open interval I ⊂R with 0 ∈ I , for which the restriction of8H to I ×3
is an embedding. Set

D =8H (I ×3) (94)

and let T : D→ R be the transition time function defined by

8H (−T (x), x) ∈3, ∀x ∈ D . (95)
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Then T is C∞, {H, T } = 1 and 3= T−1(0), so XT is tangent to 3.

• Assume moreover that there exist an open interval J and e0 ∈ J such that,
setting

3e0 = H−1(e0)∩3,

the flow of XT is defined on J ×3e0 and satisfies

3=8T (J ×3e0). (96)

Then the form �e0 induced by � on 3e0 is symplectic, and the map

χ : (I × J )×3e0 → D

((t, e), x) 7→8H (t,8T (e− e0, x))
(97)

is a C∞ symplectic diffeomorphism on its image, where (I× J )×3e0 is equipped
with the form

(de∧ dt)⊕�e0 . (98)

Moreover

H ◦χ((t, e), x)= e, ∀(t, e, x) ∈ (I × J ×3e0), (99)

and
χ∗(X H )=

∂

∂t
. (100)
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