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Holonomy and vortex structures
in quantum hydrodynamics

MICHAEL S. FOSKETT AND CESARE TRONCI

We consider a new geometric approach to Madelung’s quantum hydrodynam-
ics (QHD) based on the theory of gauge connections. Our treatment comprises
a constant curvature thereby endowing QHD with intrinsic nonzero holonomy.
In the hydrodynamic context, this leads to a fluid velocity which no longer is
constrained to be irrotational and allows instead for vortex filaments solutions.
After exploiting the Rasetti–Regge method to couple the Schrödinger equation
to vortex filament dynamics, the latter is then considered as a source of
geometric phase in the context of Born–Oppenheimer molecular dynamics.
Similarly, we consider the Pauli equation for the motion of spin particles in
electromagnetic fields and we exploit its underlying hydrodynamic picture to
include vortex dynamics.
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1. Introduction

1.1. The role of geometric phases. In his seminal work [5], Berry discovered
that after undergoing an adiabatic cyclic evolution, a quantum system attains an
additional phase factor independent of the dynamics and depending solely on
the geometry of the evolution, since referred to as Berry’s phase. This discovery
opened up an entire field of study of the more general concept of geometric phase
which has since been found to comprise the underlying mechanism behind a wide
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variety of physical phenomena, in both the classical and quantum domains. A key
example of each is the Pancharatnam phase in classical optics, [72], which has
been experimentally verified using experiments involving laser interferometry
[6] and the celebrated Aharonov–Bohm effect of quantum mechanics, discovered
in 1959 [3] and experimentally verified in the late 1980s [94], which was given
a geometric phase interpretation in [5]. One particular discipline which has
benefited greatly from the understanding of geometric phase is quantum chemistry,
in which the separation of the molecular wavefunction into nuclear and electronic
components gives rise to geometric phase effects in an array of phenomena [67],
perhaps most famously including the Jahn–Teller effect [49; 59]. To this day
there is extensive research into the role of the geometric phase in quantum
systems and in particular the application to molecular dynamics in quantum
chemistry [1; 2; 33; 67; 78; 80; 81; 82].

Originally considered by Simon [87], the geometric interpretation of Berry’s
phase hinges on the gauge theory of principal bundles. The latter serves as
a unifying mathematical framework so that the geometric phase identifies the
holonomy associated to the choice of connection on the bundle. In this picture
one considers a base manifold M with fibers isomorphic to a Lie group G which
can be put together in such a way to create a globally nontrivial topology. The
external parameters provide the coordinates on the base space, whilst the fibers are
given simply by the U (1) phase factor (not the phase itself!) of the wavefunction.
Then, when one considers an adiabatic cyclic evolution of the external parameters,
forming a closed loop in the base manifold, the corresponding curve in the U (1)-
bundle (specified uniquely by a choice of connection) need not form a closed
loop, with the extent of the failure to do so called the holonomy or Berry phase.
This geometric picture on a principal bundle serves as the setting for all such
geometric phase effects, with the base and fibers given by the problem under
consideration. As mentioned before, holonomy manifests also in many classical
systems, for example that discovered by Hannay [37], with perhaps the most
famous physical example being the Foucault pendulum [86]. Such classical
examples have led to much further study of these ideas, for example using
reduction theory and geometric mechanics [63] as well as applications to the
n-body problem [58] and guiding center motion [57].

Recently, a gauge theoretical description of quantum hydrodynamics in terms
of connections has been suggested [88], using the Madelung transform [60; 61]
to write the wavefunction in exponential form of an amplitude-phase product,
ψ =Rei h̄−1 S . This change of variables has the well-known effect of transforming
the Schrödinger equation into a hydrodynamical system upon defining a fluid
velocity through the relation v = m−1

∇S. Whilst the hydrodynamic picture of
quantum mechanics dates back to Madelung [60; 61], it was Takabayasi [90;
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92] who first realized that the circulation of the fluid velocity
¸
v · dx must be

quantized to ensure that the total wavefunction is single-valued, a fact which was
later rediscovered by Wallstrom [98]. As shown in [88], the Madelung transform
naturally allows one to consider a principal U (1)-bundle over R associated to
the phase of the wavefunction. In this picture, the quantization condition of the
circulation is in fact another example of holonomy, now corresponding to the
connection dS. More specifically, as the curvature of the connection vanishes
everywhere except at those points for which S is not single-valued, this is in fact
a type of monodromy, with the exact value depending on the winding number of
the loop surrounding the singularity.

Here we consider an alternative approach to holonomy in QHD, using the Euler–
Poincaré framework [45] to introduce a nonflat differentiable U (1) connection
whose constant curvature can be set as an initial condition. This results in
holonomy with trivial monodromy as well as corresponding to a nonzero vorticity
in the hydrodynamic setting. The key feature of this new approach to QHD is that
it allows us to include geometric phase effects without entertaining double-valued
functions or singular connections. Indeed, while the latter are still allowed as
special cases, thereby leading to quantum vortex structures [90; 93; 92; 8; 9],
here we shall apply the present construction to incorporate also nonquantized
hydrodynamic vortex filaments, which are then coupled to the equations of
quantum hydrodynamics. In this way, we provide an alternative approach to
capture geometric Berry phases in the Born–Oppenheimer approximation or
in the Aharonov–Bohm effect. We then consider the applications of this new
approach to adiabatic molecular dynamics as well as extend the approach to
include particles with spin by considering the Pauli equation. Motivated by the
latter we then present the framework for introducing our connection in nonabelian
systems.

The remainder of this introduction is devoted to presenting a more detailed
exposition of the necessary background material and mathematical formalism to
set the scene within which we present our results. Section 1.2 commences by out-
lining the necessary geometric structures of quantum mechanics used throughout
this paper, including the Dirac–Frenkel variational principle and Hamiltonian
structure of quantum mechanics, before switching to the hydrodynamic picture by
introducing the Madelung transform and demonstrating the Lie–Poisson structure
of QHD by using momentum map techniques. Section 1.3 presents the geometric
interpretation of Wallstrom’s quantization condition in terms of the holonomy of
the multivalued phase connection. Finally, we conclude the Introduction with
an outline of the rest of the paper in Section 1.4, presenting a summary of the
results in each subsequent section.
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1.2. Hamiltonian approach to quantum hydrodynamics. In this section we
provide the conventional geometric setting for quantum mechanics and its hy-
drodynamic formulation. As customary in the standard quantum mechanics of
pure states, we consider a vector ψ(t) ∈ H in a Hilbert space H. Then, the
Schrödinger equation i h̄ψ̇ = Ĥψ [85] can be derived from the Dirac–Frenkel
(DF) variational principle [26]

0= δ
ˆ t2

t1
〈ψ, i h̄ψ̇ − Ĥψ〉 dt , (1-1)

where the bracket 〈ψ1, ψ2〉 denotes the real part of the Hermitian inner product
〈ψ1|ψ2〉. For the case of square-integrable wavefunctions H = L2(R3), we
have 〈ψ1|ψ2〉 =

´
ψ∗1ψ2 d3x . The variational principle (1-1) can be generalized

upon suitable redefinition of the total energy h(ψ), which in the standard case
considered here is simply given as the expectation of the Hamiltonian operator
Ĥ , that is h(ψ) = 〈ψ |Ĥψ〉. In fact, the Schrödinger equation also admits
a canonical Hamiltonian structure. For an arbitrary Hamiltonian h(ψ), the
generalized Schrödinger equation reads

∂ψ

∂t
=−

i
2h̄
δh
δψ
=: Xh(ψ), (1-2)

in which Xh is the corresponding Hamiltonian vector field. It can be checked
that h(ψ) = 〈ψ |Ĥψ〉 recovers the standard Schrödinger evolution. Then, the
Hamiltonian structure arises from the symplectic form

�(ψ1, ψ2)= 2h̄ Im 〈ψ1|ψ2〉 (1-3)

on H. It can then be readily verified that the corresponding Poisson bracket
returns (1-2) upon considering the relation ḟ = �(X f , Xh). In the standard
interpretation of quantum mechanics, H= L2(R3) and the wavefunction identifies
the probability density D = |ψ |2 which evolves according to

∂D
∂t
=

2
h̄

Im(ψ∗ Ĥψ). (1-4)

In the case of spin-less particles, the Hamiltonian operator Ĥ is constructed
out of the canonical observables Q̂ = x and P̂ = −i h̄∇ satisfying [Q̂i , P̂j ] =

i h̄δi j , so that Ĥ = Ĥ(Q̂, P̂). As we shall now show, for the particular case of
the physical Hamiltonian Ĥ = P̂2/2m + V (Q̂), an equivalent hydrodynamic
formulation of the theory emerges by rewriting the wavefunction in its polar
form (Madelung transform) ψ(x, t)=

√
D(x, t)ei S(x,t)/h̄ . Upon performing the



HOLONOMY AND VORTEX STRUCTURES IN QUANTUM HYDRODYNAMICS 177

appropriate substitutions in the DF variational principle (1-1), the latter becomes

0= δ
ˆ t2

t1

ˆ
D
(
∂t S+

|∇S|2

2m
+

h̄2

8m
|∇D|2

D2 + V
)

d3x dt , (1-5)

leading to

∂t D+ div
D∇S

m
= 0, (1-6)

∂t S+
|∇S|2

2m
−

h̄2

2m
1
√

D
√

D
+ V = 0 . (1-7)

The first equation is clearly the continuity equation for the probability density
D = |ψ |2. The second equation resembles the Hamilton–Jacobi equation of
classical mechanics, albeit with an additional term, often referred to as the
quantum potential

VQ := −
h̄2

2m
1
√

D
√

D
. (1-8)

Madelung’s insight was to recognize that, written in terms of the variables (D, S),
the equation for conservation of probability takes the form of a fluid continuity
equation for a fluid velocity field v := m−1

∇S. Then, upon taking the gradient
of the quantum Hamilton–Jacobi equation, both equations can be rewritten in
terms of the new variables (D, v) and one obtains the hydrodynamical system

∂t D+ div (Dv)= 0, (1-9)

m(∂t + v · ∇)v =−∇(VQ + V ), (1-10)

corresponding to the standard Eulerian form of hydrodynamic equations of
motion, from here on referred to as the quantum hydrodynamic (QHD) equations.
It is important to notice that as v is a potential flow, the vorticity ω := ∇ × v of
the flow is identically zero unless there are points where S is multiple-valued.

These quantum hydrodynamic equations were the starting point for several
further interpretations of quantum mechanics, most notably Bohmian mechanics
[10], inspired by earlier works of de Broglie [20], in which one considers a phys-
ical particle that is guided by the quantum fluid. Whilst we do not consider the
implications of such theories here, we remark that trajectory-based descriptions
of quantum mechanics have been used to simulate a wide variety of physical
processes [100] and the use of a QHD approach continues to be an active area
of research, particularly in the field of quantum chemistry [47]. More recently
the geometric approach to QHD was extended to comprise hybrid quantum-
classical dynamics [30]. With this in mind we shall consider the application of
the fundamental ideas presented in this paper to quantum chemistry in Section 3.
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We now turn our attention to the geometric structure underlying QHD [25;
27; 51]. It has long been known that the map ψ 7→ (m Dv, D) =: (µ, D) is a
momentum map for the natural symplectic action of the semidirect-product group
Diff(R3)sF(R3,U (1)) on the representation space L2(R3)'Den1/2(R3). Here,
Diff(R3) denotes diffeomorphisms of physical space, F(R3,U (1)) denotes the
space of U (1)-valued scalar functions, while Den1/2(R3) denotes the space of
half-densities on physical space [4]. Then, as described in [27; 25], it can be
shown that, for the case of the physical Hamiltonian operator, the total energy
h(ψ)= Re

´
ψ∗ Ĥψ d3x can be expressed as a functional of these momentum

map variables (µ, D) to read

h(µ, D)=
ˆ (
|µ|2

2m D
+

h̄2

8m
|∇D|2

D
+ DV (x)

)
d3x . (1-11)

This process of expressing a Hamiltonian functional in terms of momentum
map variables is known as Guillemin–Sternberg collectivization [36] and it
leads to a Lie–Poisson system which in this case is defined on the dual of the
semidirect-product Lie algebra X(R3)sF(R3), where X(R3) denotes vector
fields on physical space while F(R3) stands for scalar functions. More explicitly,
the Lie–Poisson bracket arising from the Madelung momentum map is as follows:

{ f, g}(µ, D)=
ˆ
µ ·

((
δg
δµ
· ∇

)
δ f
δµ
−

(
δ f
δµ
· ∇

)
δg
δµ

)
d3x

+

ˆ
D
((

δg
δµ
· ∇

)
δ f
δD
−

(
δ f
δµ
· ∇

)
δg
δD

)
d3x , (1-12)

which coincides with the Lie–Poisson structure for standard barotropic fluid
dynamics [46]. A vector calculus exercise [27] shows that Hamilton’s equations
ḟ = { f, h} recover the hydrodynamic equations (1-9)–(1-10).

Despite its deep geometric footing, this construction invokes a Lie–Poisson
reduction process [46; 62] involving the existence of smooth invertible Lagrangian
fluid paths η∈Diff(R3), so that η̇(x0, t)= δh/δµ|x=η(x0,t). Thus, this description
assumes that the phase S is single-valued thereby leading to zero circulation and
vorticity. In other words, this geometric formulation of QHD does not capture
holonomy. As we shall see in the remainder of this paper, holonomy can still
be restored by purely geometric arguments which however involve a different
perspective from the one treated here.

1.3. Multi-valued phases in quantum hydrodynamics. Having previously inves-
tigated the geometry of QHD in terms of momentum maps [25], the rest of this
paper focuses on an alternative geometric interpretation of QHD in terms of gauge
connections. To see their role in QHD, we notice that whilst the equations of
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motion (1-9), (1-10) had been known since the early days of quantum mechanics,
in 1994 Wallstrom [98] demonstrated that the requirement that the wavefunction
be single-valued does not actually imply that the QHD equations are equivalent
to the Schrödinger equation i h̄∂tψ =−(h̄2/2m)1ψ + Vψ , unless one has the
following additional condition on the phase of the wavefunction˛

c0

∇S · dx = 2π h̄n , (1-13)

around any closed loop c0 : [0, 1]→R3 and for n∈Z. This condition, equivalently
asserting that the circulation of the fluid flow 0 =

¸
c0
v · dx is quantized, is

originally due to Takabayasi [90], and arises due to the fact that S can be
considered a multivalued function, by which we mean that the replacement

S(x)→ S(x)+ 2π h̄n (1-14)

leaves the wavefunction invariant. Then, the condition (1-13) is nontrivial, that is
n 6= 0, whenever the curve c0 encloses regions in which S is multivalued, which
itself occurs only at points where the wavefunction vanishes (nodes) [35; 39].
This can easily be seen by inverting the Madelung transform so that

S =−i h̄ ln
ψ

|ψ |
= h̄

(
arctan

Reψ
Imψ

+ nπ
)
, (1-15)

where n ∈Z arises from the multivalued nature of the inverse tangent function. In
the hydrodynamic context, examples of this are given by the presence of vortices,
a topic which has been studied extensively [8; 9; 90; 93; 92] and which we will
turn our attention to in Section 2.4.

In fact, the condition (1-13) can be interpreted geometrically as in [88] by
considering the 1-form ∇S · dx = dS as a connection on a U (1)-bundle over R3.
This is explained as follows. Firstly, in writing ψ =

√
Dei S/h̄ , we effectively

make the decomposition C= R+×U (1). We then consider the principal U (1)-
bundle over R3, where the object i h̄−1dS can be considered as a u(1)-valued
connection 1-form. Furthermore, it can be shown that the exponential of the
loop integral in (1-13) is indeed an element of the holonomy group of this
bundle. See Chapter II in the standard reference [53] for details on holonomy
and principal bundles and [86; 23; 15; 99; 14] for their appearance in mechanical
systems. As the curvature of the connection vanishes everywhere except at
those points where S is multivalued, the quantization of the circulation can be
explained geometrically, simply as the presence of the winding number through
monodromy. Following the discovery of the Berry phase [5] and its geometric
interpretation due to Simon [87], this concept connecting geometric phases and
holonomy via monodromy has been found to arise in a wide variety of situations
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in quantum mechanics, ranging from QHD to the Aharonov–Bohm effect, and
molecular dynamics. In this paper, we shall present a new alternative approach
to QHD that features holonomy without monodromy by introducing a nonflat
connection.

1.4. Outline of paper. Section 2 presents the key idea of this paper, providing an
alternative framework for understanding holonomy in QHD. Starting with 2.1, we
introduce a different method of writing the wavefunction as an amplitude-phase
product, allowing us to introduce a phase connection and write the Lagrangian
in terms of this new dynamical variable. In deriving the equations of motion, we
allow for this connection to possess nontrivial curvature resulting in new terms
in phase equation. In Section 2.2 we move to the fluid picture and show how
these new terms give rise to a nontrivial circulation theorem and demonstrate that
this connection carries nontrivial holonomy without monodromy. In Section 2.3
we reconstruct the Schrödinger equation from the QHD system and see how the
nontrivial curvature of the connection appears through minimal coupling, whilst
Section 2.4 demonstrates how the nonzero vorticity can sustain solutions corre-
sponding to vortex filaments and presents a coupled system of vortex dynamics
within the Schrödinger equation.

In Section 3 we consider the application of these techniques to the Born–
Oppenheimer factorization of the molecular wavefunction in adiabatic quantum
chemistry. We begin in Section 3.1 by presenting the standard approach used in
the literature and derive the QHD version of the equations of motion from the
standard exponential polar form applied to the nuclear factor. This section also
presents a summary of the key simplifications often used in the nuclear equation
to aid simulations. In Section 3.2 we simply apply the formalism developed in
Section 2 to the Born–Oppenheimer system and comment on how these novel
features may provide alternative viewpoints on key problems, which in the usual
case arise due to the multivalued nature of the objects in question. We conclude
the section by considering a modified approach which couples a classical nuclear
trajectory to a hydrodynamic vortex, incorporating geometric phase effects.

In Section 4 we apply our treatment to exact factorization (EF) systems, in
which one considers a wavefunction with additional parametric dependence. We
commence in Section 4.1 by considering the time-dependent generalization of the
Born–Oppenheimer ansatz, to which the name EF was given in [1], and apply our
treatment to this system whilst also demonstrating its variational and Hamiltonian
structures. In Section 4.2, we consider the exact factorization in the special case
in which the “electronic factor” is given by a two-level system, thus leading us
to introduce the spin density vector and accordingly specialize the geometric
structures. Finally, as a particular case, we consider the exact factorization of the
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Pauli spinor in Section 4.3 and show that this treatment endows the hydrodynamic
form of the Pauli equation with our additional holonomy. This section concludes
with the coupling of the Pauli equation to vortex filament dynamics.

The method of deriving the QHD phase connection implies that it has vanishing
curvature. In Section 5 we show this explicitly and continue to show that in fact
any gauge connection (corresponding to any arbitrary Lie group G) introduced
in this way must have zero curvature. In this more general (nonabelian) case,
we also demonstrate how, for mechanical systems that give rise to connections
through this approach, this zero curvature relation can be relaxed at the level
of the Lagrangian, instead with the connection allowed to possess constant
curvature as an initial condition, exactly as in the abelian case of QHD presented
in Section 2.

2. Phase factors in quantum hydrodynamics

Having reviewed the standard approach to quantum hydrodynamics, including the
interpretation of the quantized circulation condition as monodromy on a principal
bundle, in this section we present an alternative approach in which nontrivial
holonomy is built-in as an initial condition through a new dynamical connection.
The point of departure is that, since the exponential map in U (1) is not one-to-
one, we are motivated to look at phase factors as elementary objects rather than
expressing them as exponentials of Lie algebra elements in u(1)= iR. As we
shall see, this simple step eventually leads to a new method for incorporating
holonomy in quantum hydrodynamics.

2.1. Hamiltonian approach to connection dynamics. Instead of using the stan-
dard polar decomposition of the wavefunction, we begin by writing

ψ(x, t)=
√

D(x, t) θ(x, t), with θ ∈ F(R3,U (1)). (2-1)

By writing explicitly the U (1) factor θ we avoid using the exponential map,
which is not injective and works only with single-valued functions. Furthermore,
this expression for the wavefunction has the advantage of making the (gauge) Lie
group U (1) appear explicitly, allowing us to use the tools of geometric mechanics
[62]. The relation θ∗ = θ−1 allows us to write the Dirac–Frenkel variational
principle (1-5) as

0= δ
ˆ t2

t1

ˆ (
i h̄ Dθ−1∂tθ −

h̄2

2m

(∣∣∇√D
∣∣2+ D|∇θ |2

)
− DV

)
d3x dt . (2-2)

Now, we let the phase factor θ(x, t) evolve according to the standard U (1) action:

θ(x, t)=2(x, t)θ0(x), with 2 ∈ F(R3,U (1)). (2-3)
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In turn, this allows us to rewrite the time derivative as

∂tθ = (∂t22
−1)θ := ξθ , where ξ ∈ F(R3, u(1)), (2-4)

so that ξ(x, t) is a purely imaginary function. We can further evaluate terms
involving the gradient of θ by introducing a connection ν thus:

∇θ =∇2θ0+2∇θ0 =∇22
−1θ −2ν0θ0

=−(−∇22−1
+ ν0)θ =: −νθ, (2-5)

where we have ν0 :=−∇θ0/θ0 and ν= ν ·dx ∈ u(1)⊗�1(R3), the factor�1(R3)

being the space of differential one-forms on R3. Such approaches to introducing
gauge connections have been used in the geometric mechanics literature before,
for example in the study of liquid crystal dynamics [28; 29; 31; 32; 42; 95].
Indeed, we present the general formulation for gauge connections in continuum
mechanical systems in Section 5.

Remark 2.1 (trivial and nontrivial connections). As discussed in the next section,
the gauge connection introduced in this way must have zero curvature. This is
shown by taking the curl of the relation ∇θ = −νθ . In the present approach,
we are exploiting this zero curvature case in order to have a final form of the
QHD Lagrangian. Once variations have been taken in Hamilton’s principle, the
equations will be allowed to hold also in the case of nonzero curvature. This is
a common technique used in geometric mechanics to derive new Lagrangians,
for example used in [16] to generalize the Dirac–Frenkel Lagrangian to include
mixed state dynamics as well as in the study complex fluids [31; 32; 42]. Within
the theory of quantum dynamics, a similar approach was also used by Dirac in

In terms of our newly introduced ξ and ν, our variational principle reads

0= δ
ˆ t2

t1

ˆ (
i h̄ Dξ −

h̄2

2m

(
D|ν|2+

∣∣∇√D
∣∣2)− DV

)
d3x dt , (2-6)

where we have set |ν|2 = ν∗ · ν. At this stage noting that both ξ and ν are purely
imaginary, we define their real counterparts

ξ̄ := i h̄ξ , ν̄ := i h̄ν , (2-7)

so that we can rewrite the variational principle (2-6) as

0= δ
ˆ t2

t1

ˆ
D
(
ξ̄ −
|ν̄|2

2m
−

h̄2

8m
|∇D|2

D2 −V
)

d3x dt =: δ
ˆ t2

t1
`(ξ̄ , ν̄, D) dt . (2-8)
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After computing (δξ̄ , δν̄) = (∂t η̄,−∇η̄) with arbitrary η̄ := i h̄δ22−1, taking
variations with arbitrary δD yields the following general equations of motion:

∂t

(
δ`

δξ̄

)
− div

δ`

δν̄
= 0, ∂t ν̄+∇ ξ̄ = 0,

δ`

δD
= 0 . (2-9)

More specifically, the first equation leads to the continuity equation

∂t D+ div(m−1 Dν̄)= 0, (2-10)

in which we notice how ν̃ := m−1ν̄ plays the role of a fluid velocity. Next, the
third equality in (2-9) becomes

ξ̄ =
|ν̄|2

2m
+ VQ + V , (2-11)

where we recall the quantum potential (1-8). Then, the second in (2-9) leads to

∂t ν̄+∇

(
|ν̄|2

2m
+ VQ + V

)
= 0, (2-12)

which formally coincides with the gradient of (1-7).

Remark 2.2 (Lie–Poisson structure I). The new QHD equations (2-10) and (2-12)
comprise a Lie–Poisson bracket on the dual of the semidirect-product Lie algebra
F(R3)s�1(R3). Specifically, the Lie–Poisson bracket for equations (2-10)–
(2-12) reads

{ f, h} =
ˆ (

δh
δν̄
· ∇

δ f
δD
−
δ f
δν̄
· ∇

δh
δD

)
d3x , (2-13)

while the Hamiltonian is

h(D, ν̄)=
ˆ

D
(
|ν̄|2

2m
+

h̄2

8m
|∇D|2

D2 + V
)

d3x .

The bracket (2-13) arises from a Lie–Poisson reduction on the semidirect-product
group F(R3,U (1)) s�1(R3, u(1)). Here, �1(R3, u(1)) denotes the space of
differential one-forms with values in u(1) ' iR, while the semidirect-product
structure is defined by the affine gauge action ν 7→ ν +2−1

∇2, where 2 ∈
F(R3,U (1)) and ν ∈ �1(R3, u(1)). For further details on this type of affine
Lie–Poisson reduction, see [28; 42].

Before continuing we specify the three different manifestations of the U (1)
connection we use in this paper. Firstly, we introduced the u(1)-valued connection
ν via the relation ∇θ =: −νθ . Then, its real counterpart ν̄ was introduced
via ν̄ := i h̄ν ∈ �1(R3), which, for θ = ei S/h̄ , coincides with ∇S. Finally, in
anticipation of the next section, we define ν̃ ∈�1(R3) by performing a further
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division by the mass, ν̃ := i h̄m−1ν = m−1ν̄. This, corresponding to m−1
∇S in

the standard approach, will serve as the fluid velocity in the QHD picture.
Note how the usual exponential form θ = ei S/h̄ in (2-1) returns ξ̄ = −∂t S

and ν̄ = ∇S, thus transforming equation (2-11) into the standard phase equation
(quantum Hamilton–Jacobi equation) (1-7) of QHD. However, in our approach ν̄
is allowed to have nontrivial curvature, as can be seen from the curl of (2-12):

∂t(∇ × ν̄)= 0 . (2-14)

This relation demonstrates explicitly how, in view of Remark 2.1, the curvature
of the connection ν̄ need not be trivial (unlike ordinary QHD) but is instead
preserved in time. This is one of the main upshots of the present approach. We
will develop this observation in the next section.

2.2. Hydrodynamic equations and curvature. In order to reconcile the new
QHD equations with the Madelung–Bohm construction, this section discusses
the hydrodynamic form of (2-10)–(2-12) in terms of the velocity-like variable ν̃.
As already seen, the continuity equation is naturally rewritten in terms of ν̃ as

∂t D+ div(Dν̃)= 0 . (2-15)

Next, we multiply (2-12) by m−1 and expand the gradient to obtain the hydro-
dynamic-type equation

m(∂t + ν̃ · ∇)ν̃ =−ν̃× (∇ × ν̄)−∇(V + VQ). (2-16)

This equation again clearly demonstrates the importance of not utilizing the
exponential form of the phase as we now have the additional Lorentz-force
term −ν̃× (∇ × ν̄), which is absent in the equation (1-10) of standard quantum
hydrodynamics. Indeed, one sees that this additional term vanishes exactly when
ν̃ is a pure gradient. In the Bohmian interpretation, the Lagrangian fluid paths
(aka Bohmian trajectories) are introduced via the relation η̇(x, t)= ν̃(η(x, t), t),
so that Bohmian trajectories obey the Lagrangian path equation

mη̈ =−η̇×∇ × ν̄−∇x(V + VQ)|x=η(x,t). (2-17)

We observe that a nonzero curvature modifies the usual equation of Bohmian
trajectories by the emergence of a Lorentz-force term. Notice that this term
persists in the semiclassical limit typically obtained by ignoring the quantum
potential contributions.

We continue by writing the fluid equation in terms of the Lie derivative and the
sharp isomorphism induced by the Euclidean metric in the fluid kinetic energy
term in (2-8). We have

m(∂t + £ν̃])ν̃ =−ν̃
]
× (∇ × ν̄)+ 1

2 m∇|ν̃|2−∇(V + VQ). (2-18)
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Then, we obtain Kelvin’s circulation theorem in the form

0=
d
dt

˛
c(t)
ν̃ · dx+

1
m

˛
c(t)
ν̃]× (∇ × ν̄) · dx =

d
dt

˛
c0

ν̃ · dx. (2-19)

Here, c(t) is a loop moving with the fluid velocity ν̃] such that c(0)= c0 and the
last equality follows directly from (2-14). In terms of the geometry of principal
bundles, the last equality tells us that the holonomy of the connection ν must
be constant in time. Since no singularities are involved and ν is assumed to be
differentiable, the last equality in (2-19) is an example of nontrivial holonomy
with trivial monodromy.

We conclude this section with a short comment on helicity conservation. By
taking the dot product of the second equation in (2-9) with ∇ × ν̃,

∂t(ν̃ · ∇ × ν̃)=−m−1 div(ξ∇ × ν̃),

so that hydrodynamic helicity is preserved in time:

d
dt

ˆ
ν̃ · (∇ × ν̃) d3x = 0 . (2-20)

Now that the hydrodynamic Bohmian interpretation has been discussed, it is
not yet clear how this construction is actually related to the original Schrödinger
equation of quantum mechanics. This is the topic of the next section.

2.3. Schrödinger equation with holonomy. In this section, we discuss the rela-
tion between the new QHD framework given by equations (2-10)–(2-12) and the
original Schrödinger equation. As a preliminary step, we consider the Helmholtz
decomposition of ν̄, that is,

ν̄(x, t)=∇s(x, t)+ h̄∇ ×β(x), (2-21)

where β is a constant function to ensure (2-14). Also, we have added the factor h̄
and fixed the Coulomb gauge divβ=0 for later convenience. Notice that although
s appears exactly in the place that S would in the standard Madelung transform
from Section 1.2, here we have used the lowercase letter to emphasize that in this
case we consider s as a single-valued function. The relation (2-21) is reminiscent
of similar expressions for the Bohmian velocity ν̃ already appearing in [12],
although in the latter case these were motivated by stochastic augmentations of
standard quantum theory. One can verify that upon substituting (2-21) into the
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equations of motion (2-9) and (2-10), the latter become

∂t s+
|∇s+ h̄∇ ×β|2

2m
+ V + VQ = 0, (2-22)

∂t D+ div
(

D
∇s+ h̄∇ ×β

m

)
= 0 (2-23)

Here, we have discarded numerical integration factors in the first equation. We
recognize that these correspond to the standard Madelung equations for a free
elementary charge in a magnetic field h̄1β.

We will further characterize the Helmholtz decomposition (2-21) of the con-
nection ν in terms of its defining relation (2-5). In particular, after constructing
the Lagrangian (2-8), ν is then only defined as the solution of ∂tν = −∇ξ in
(2-9). Combining the latter with ∂tθ = ξθ leads to ∂t(ν + θ

−1
∇θ) = 0 so that

direct integration yields

ν =−
∇θ

θ
+ i3(x), (2-24)

for a constant real function 3(x). An immediate calculation then shows that
∇ × (∇θ/θ)= 0. Then, upon moving to the real-valued variables (2-7), direct
comparison to (2-21) yields

∇s =−i h̄
∇θ

θ
, ∇ ×β =−3 . (2-25)

Now that we have characterized the additional terms due to the presence
of nonzero curvature in the Madelung equations, we can use the expressions
above to reconstruct the quantum Schrödinger equation. As we shall see, this
coincides with the equation for ψ =

√
Deis/h̄ , as it arises from the new Madelung

equations (2-22)–(2-23). Introducing R =
√

D in (2-1), we compute

i h̄∂tψ = i h̄(∂t R θ + R ∂tθ)

=

[
−

i h̄
m

(
∇R
R
· ν̄

)
−

i h̄
2m

div ν̄+
|ν̄|2

2m
+ VQ

]
ψ + Vψ , (2-26)

having used the continuity equation in (2-10) to find ∂t R and (2-4) with (2-7)
and (2-11) to find ∂tθ .

We must still manipulate the kinetic energy term to express everything in
terms of ψ . Before continuing we notice that (2-1) leads to

∇ψ = (R−1
∇R+ θ−1

∇θ)ψ, (2-27)

so that, since θ−1
∇θ is purely imaginary,

∇R
R
=

Re(ψ∗∇ψ)
|ψ |2

,
∇θ

θ
=

i Im(ψ∗∇ψ)
|ψ |2

. (2-28)
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Using (2-24) now leads to ν̄ = h̄ Im(ψ∗∇ψ)/|ψ |2− h̄3, so that the right-hand
side of (2-26) can be entirely written in terms of ψ . As shown in Appendix A,
lengthy calculations yield[
−

i h̄
m
∇R
R
· ν̄−

i h̄
2m

div ν̄+
|ν̄|2

2m
+ VQ

]
ψ=−

h̄2

2m
1ψ+

i h̄2

m
3·∇ψ+

h̄2

2m
|3|2ψ.

Putting everything back together we obtain the Schrödinger equation associated
to the modified Madelung equations (2-22)–(2-23):

i h̄∂tψ =

[
(−i h̄∇ − h̄3)2

2m
+ V

]
ψ . (2-29)

Notice how h̄3, corresponding to the constant curvature part of our U (1) con-
nection, appears in the place of a magnetic vector potential in the Schrödinger
equation in which h̄ plays the role of a coupling constant. The quantity h̄3 has
been called the internal vector potential in quantum chemistry [89] and its role
is to incorporate holonomic effects in quantum dynamics. A static version of
equation (2-29) also appeared in Dirac’s work on singular electromagnetic fields
[24].

Remark 2.3 (Lie–Poisson structure II). Going back to Madelung hydrodynamics,
we notice that the introduction of the vector potential 3 leads to writing the
hydrodynamic equation (2-16) in the form

m(∂t + ν̃ · ∇)ν̃ = h̄ν̃×∇ ×3−∇(V + VQ).

In turn, upon recalling the density variable D = R2 and by introducing the
momentum variable µ= m Dν̃+ h̄ D3, the equation above possesses the alter-
native Hamiltonian structure (in addition to (2-13)) given by the hydrodynamic
Lie–Poisson bracket (1-12), although the Hamiltonian (1-11) is now modified to

h(µ, D)=
ˆ (
|µ− h̄ D3|2

2m D
+

h̄2

8m
|∇D|2

D
+ DV (x)

)
d3x .

At this point topological defects may be incorporated by allowing 3 in (2-29)
to satisfy ˛

c0

3 · dx = 2πn; (2-30)

in this case, the present construction reduces to the standard approach to multival-
ued wavefunctions in condensed matter theory; see, e.g., [52]. In the variational
framework, the velocity field ν̃ = δh/δµ (introduced by the reduced Legendre
transform [62]) becomes the fundamental variable, the resulting hydrodynamic
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Lagrangian being

`(ν̃, D)=
ˆ (

1
2

m D|ν̃|2+ h̄ Dν̃ ·3−
h̄2

8m
|∇D|2

D
− DV

)
d3x . (2-31)

Thus, the treatment in this paper may accommodate both geometric and topolog-
ical features depending on the explicit expression of 3.

Motivated by the appearance of the phase connection as a minimal coupling
term in the Schrödinger equation (2-29), it may be useful to include the effect
of an external magnetic field on the quantum system within this new QHD
framework. Then, in the case of a spinless unit charge, the Schrödinger equation
with holonomy reads

i h̄∂tψ =

[
(−i h̄∇ − (h̄3+ A))2

2m
+ V

]
ψ . (2-32)

In this instance3 and A are formally equivalent U (1) gauge connections. Setting
3= 0 in the Hamiltonian operator of (2-32) yields the Aharonov–Bohm Hamil-
tonian, in which case again the magnetic potential has a topological singularity.
However, despite the apparent equivalence between 3 and A, they are related to
essentially different features: while the holonomy associated to A is associated
to the properties of the external magnetic field, the holonomy associated to
3 is intrinsically related to the evolution of the quantum state ψ itself. This
specific difference is particularly manifest in the case of two spinless unit charges
moving within an external magnetic field. Indeed, in that case the 2-particle
wavefunction ψ(x1, x2, t) leads to defining 3(x1, x2) and A(x) on different
spaces, thereby revealing their essentially different nature. At present, we do not
know if this difference plays any role in the two-particle Aharonov–Bohm effect
[84], although we plan to develop this aspect in future work.

2.4. Schrödinger equation with hydrodynamic vortices. In this section, we
show how the present setting can be used to capture the presence of vortices in
quantum hydrodynamics. While the presence of topological vortex singularities
in quantum mechanics has been known since the early days, this problem was
considered in the context of the Madelung–Bohm formulation by Takabayasi
[90; 93; 92] and later by Białynicki-Birula [8; 9]. In the hydrodynamic context,
the vorticity two-form ω is the differential of the Eulerian velocity field so that
in our case ω := ∇ × ν̃. Then, upon using (2-24), one has

ω(x)=−
h̄
m
∇ ×3(x). (2-33)

In this section we wish to introduce the presence of hydrodynamic vortices in
Schrödinger quantum mechanics. To this purpose, we consider a hydrodynamic
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vortex filament of the form

ω(x)= 0

ˆ
Rσ δ(x− R(σ )) dσ , (2-34)

where R(σ ) is the curve specifying the filament, σ is a parametrization of the
curve, Rσ := ∂R/∂σ , and the number 0 is the vortex strength and the expression
0 = 2nπ h̄/m recovers the particular case of quantized vortices [92]. For the
quantization of three-dimensional vortex filaments, we refer the reader to [34].
Here, in order to avoid problems with boundary conditions, we consider the
simple case of vortex rings. Then, inverting the curl operator in (2-33) by using
the Biot–Savart law [83] yields

3(x)=
m
h̄
∇ ×1−1ω =

m0
h̄
∇ ×

ˆ
Rσ G(x− R) dσ , (2-35)

where G(x − y) = −|x − y|−1/(4π) is the convolution kernel for the inverse
Laplace operator 1−1 and we have made use of (2-34). Thus, the Schrödinger
equation (2-29) becomes

i h̄∂tψ =
1

2m

(
−i h̄∇ +m0∇ ×

ˆ
Rσ G(x− R) dσ

)2

ψ + Vψ , (2-36)

where the vortex position appears explicitly. In what follows, we will set 0 = 1
for simplicity without affecting the general treatment.

Since in the present treatment the vorticity is constant, including the motion
of the vortex filament in this description requires the addition of extra features.
In quantum mechanics, the dynamics of hydrodynamic vortices has been given a
Hamiltonian formulation by Rasetti and Regge [76] and it was later developed
in [43; 54; 55; 73; 74; 97]. Then, one can think of exploiting the Rasetti–Regge
approach to let the quantum vortex move while interacting with the quantum
state obeying (2-36). At the level of Hamilton’s variational principle, this method
leads to the following modification of the Dirac–Frenkel Lagrangian in (1-1):

L(R, ∂t R, ψ, ∂tψ)

=
1
3

ˆ
∂t R·R×Rσ dσ

+Re
ˆ

i h̄ψ∗∂tψ−ψ
∗

[
1

2m

(
−i h̄∇+m∇×

ˆ
Rσ G(x−R) dσ

)2

+V
]
ψ d3x ,

(2-37)

where the expression ψ∗[ . . . ]ψ on the last row identifies the Hamiltonian func-
tional h(R, ψ) satisfying Rσ ·δh/δR= 0 (valid for any Hamiltonian of the form
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h = h(ω) [44]) and

Rσ ×
(

Rσ ×
∂R
∂t
−
δh
δR

)
= 0 .

Then, one finds

δh
δR
=−

m
h̄

Rσ ×
δh
δ3

∣∣∣∣
x=R
= h̄ Rσ ×P

(
Im(ψ∗∇ψ)− |ψ |23

)∣∣
x=R ,

where P = Id−∇1−1 div is the Leray projection on the divergence-free part.
The coupled system reads

∂t R = h̄P
(
Im(ψ∗∇ψ)− |ψ |23

)∣∣
x=R + κRσ , (2-38)

i h̄∂tψ =
1

2m
(−i h̄∇ − h̄3)2ψ + Vψ . (2-39)

where 3 is given as in (2-35) and κ is an arbitrary quantity. We also have that
in the presence of vortex filaments the holonomy around a fixed loop c0 can be
expressed as

−h̄
˛

c0

3 · dx = m
ˆ

S0

ˆ
dσ δ(x− R(σ )) Rσ · dS, (2-40)

via Stokes’ theorem, where S0 is a surface whose boundary defines the loop
∂S0 =: c0.

The idea of vortices in quantum mechanics has potentially interesting applica-
tions in the field of quantum chemistry. For example, in the Born–Oppenheimer
approximation, the curvature of the Berry connection is given by a delta function
at the point of conical intersections [50]. Once more, as conical intersections are
topological singularities, the vortex structures generated by a singular Berry con-
nection are quantized. After reviewing the general setting of adiabatic molecular
dynamics, the next section shows how the construction in this paper can be used
to deal with geometric phases in the Born–Oppenheimer approximation.

3. Born–Oppenheimer molecular dynamics

Motivated by the importance of geometric phase effects in quantum chemistry
[14; 33; 50; 80; 81; 82], this section applies the formalism outlined in Section 2
to the field of adiabatic molecular dynamics.

We start our discussion by considering the starting point for all quantum chem-
istry methods, the Born–Oppenheimer ansatz for the molecular wavefunction.
As explained in [22; 65], for example, the molecular wavefunction 9({r}, {x}, t)
for a system composed of N nuclei with coordinates ri and n electrons with
coordinates xa is factorized in terms of a nuclear wavefunction �({r}, t) and a
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time-independent electronic function φ({x}; {r}) depending parametrically on
the nuclear coordinates {r}i=1...N . In the simple case of a single electron and
nucleus, we have 9(r, x, t)=�(r, t)φ(x; r), so that the normalizations of 9
and � enforce

´
|φ(x; r)|2 d3x = 1. Equivalently, upon making use of Dirac’s

notation, we denote |φ(r)〉 := φ(x; r) and write

9(t)=�(r, t) |φ(r)〉 . (3-1)

The partial normalization condition becomes ‖φ(r)‖2 := 〈φ(r)|φ(r)〉 = 1 and
the Hamiltonian operator for the system reads Ĥ =−h̄2 M−11/2 + Ĥe. Here,
M is the nuclear mass and all derivatives are over the nuclear coordinate r . In
addition we have that the electronic state is the fundamental eigenstate of the
electronic Hamiltonian Ĥe, so that Ĥe |φ(r)〉 = E(r) |φ(r)〉. The motivation for
this ansatz comes from the separation of molecular motion into fast and slow
dynamics due to the large mass difference between the electron and nucleus, the
idea for which goes back to the original work of Born and Oppenheimer [18].

3.1. Variational approach to adiabatic molecular dynamics. After applying
the factorization ansatz (3-1) and following some further manipulation involving
integration by parts, the total energy h = Re

´
〈9|Ĥ9〉 d3r of the system reads

h(�)=
ˆ (

�∗
(−i h̄∇ +A)2

2M
�+ |�|2ε(φ,∇φ)

)
d3r , (3-2)

in which we have introduced the Berry connection [5]

A(r) := 〈φ | −i h̄∇φ〉 ∈�1(R3), (3-3)

and defined the effective electronic potential

ε(φ,∇φ) := E +
h̄2

2M
‖∇φ‖2−

|A|2

2M
. (3-4)

Here, we have used the eigenvalue equation of Ĥe, while the last two terms
correspond to the trace of the so-called quantum geometric tensor; see [75]
for details. The appearance of the Berry connection is a typical feature of the
Born–Oppenheimer method, which is well-known to involve nontrivial Berry
phase effects [15; 68; 67]. In order to write the nuclear equation of motion, we
use the Dirac–Frenkel Lagrangian L =

´
i h̄�∗∂t� d3r − h(�) and move to a

hydrodynamical description. In the standard approach, one writes the nuclear
function in the polar form �(r, t)=

√
D(r, t)ei S(r,t)/h̄ . Then, the previous DF

Lagrangian becomes

L(D, S, ∂t S)=
ˆ

D
(
∂t S+

|∇S+A|2

2M
+

h̄2

8M
|∇D|2

D2 + ε(φ,∇φ)

)
d3r . (3-5)
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We notice that the Born–Oppenheimer system is formally equivalent to stan-
dard quantum mechanics in the presence of an external electromagnetic field.
Indeed, the Berry connection A plays the role of the magnetic vector potential
and one has a scalar potential in the form of ε. Hence, the standard interpretation
is to think of the nuclei evolving in an effective magnetic field generated by
the electronic motion. In what follows, we shall adopt Madelung’s hydrody-
namic picture although an alternative approach using Gaussian wavepackets
[56; 38] is reported in Appendix B. Here, we proceed by applying Hamilton’s
principle δ

´ t2
t1

L dt = 0 for arbitrary variations δD and δS, which returns the
Euler–Lagrange equations

∂D
∂t
+ div

(
D
∇S+A

M

)
= 0,

∂S
∂t
+
|∇S+A|2

2M
+ VQ + ε = 0, (3-6)

as usual understood as a quantum Hamilton–Jacobi equation for the nuclear phase
and a continuity equation for the nuclear density |�|2 = D. Next, we follow the
standard approach by introducing v = M−1

∇S. Finally, we write the Madelung
equations in hydrodynamic form in terms of the velocity u := v+M−1A:

∂t D+ div (Du)= 0, M(∂t + u · ∇)u =−u×B−∇(ε+ VQ), (3-7)

where B := ∇ ×A. Notice how in this frame a Lorentz force becomes apparent.
The last equations above capture the nuclear motion completely; however, in

the quantum chemistry literature there are a variety of further specializations
that can be made to the nuclear equation of motion, all aiming to alleviate
computational difficulty. In the remainder of this section we summarize most of
them by considering their subsequent effects on the nuclear fluid equation.

(1) Second order coupling: In the quantum chemistry literature it is often the
case that the second order coupling term, 〈φ|1φ〉, is neglected on the grounds
that it has a negligible effect on the nuclear dynamics [96; 64]. As can be verified
directly upon expanding the real part, one has ‖∇φ‖2 = −Re 〈φ|1φ〉; hence
such an approximation transforms equation (3-4) to

ε(φ,∇φ) := E −
|A|2

2M
,

At this stage, one is left with the Lorentz force acting on the nuclei as well as
the potential given by the sum of the new effective electronic energy and nuclear
quantum potential.

(2) Real electronic eigenstate: Next, we make the assumption that the electronic
eigenstate φ(r) is real-valued, which is valid when the electronic Hamiltonian is
nondegenerate [19; 96]. The immediate consequence of the reality of φ is that



HOLONOMY AND VORTEX STRUCTURES IN QUANTUM HYDRODYNAMICS 193

the Berry connection A := 〈φ| − i h̄∇φ〉 vanishes since the electronic phase is
spatially constant. In this case the nuclear fluid equation becomes

(∂t + u · ∇)u =−M−1
∇(E + VQ). (3-8)

Clearly we still have the nuclear quantum potential as well as the potential energy
surface capturing electron-nuclear coupling.

(3) Quantum potential: As detailed in [25], the quantum potential can also
cause difficulties in numerical simulations. If we also consider neglecting the
quantum potential term VQ , the nuclear hydrodynamic equation can be written
in its simplest form:

(∂t + u · ∇)u =−M−1
∇E . (3-9)

The quantum potential is usually neglected by taking the singular weak limit
h̄2
→ 0 of the Lagrangian (3-5). Then, upon considering the single particle

solution D(r, t)= δ(r − q(t)), the nuclear equation is equivalent to Newton’s
second law M q̈ =−∇E for a conservative force.

It is only after this extreme level of approximation, neglecting all quantum
terms (involving h̄), that one obtains a classical equation of motion for the nuclei,
in which one considers the picture of a nucleus evolving on a single potential
energy surface [22; 96].

Whilst in this section we have considered adiabatic dynamics in the hy-
drodynamic picture via the Madelung transform, one can also proceed with
an alternative approach in which the nuclear wavefunction is modeled by a
frozen Gaussian wavepacket. This idea is presented in Appendix B, where we
demonstrate how employing Gaussian coherent states within the variational
principle (3-5) provides an alternative approach to regularizing the singularities
that are known to arise in Born–Oppenheimer systems.

3.2. Holonomy, conical intersections, and vortex structures. In the context of
the Born–Oppenheimer approximation, our approach to holonomy can be applied
by writing the nuclear wavefunction as in (2-1) while leaving the electronic
wavefunction unchanged. For a real-valued electronic wavefunction, the Berry
connection then vanishes and the Madelung equations (3-6) are replaced by

∂t D+ div(Dν̃)= 0, (3-10)

M(∂t + ν̃ · ∇)ν̃ = h̄ν̃×∇ ×3−∇
(

E +
h̄2

2M
‖∇φ‖2+ VQ

)
. (3-11)

We notice that in the case when the gauge potential 3 is singular, these equations
correspond to those appearing in the Mead–Truhlar method of adiabatic molecular
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dynamics [68]. This is a method to deal with the geometric phase arising from
double-valued electronic wavefunctions produced by the presence of conical
intersections [50; 67; 21]. This is called the molecular Aharonov–Bohm effect
[66]. As double-valued wavefunctions pose relevant computational difficulties,
the Mead–Truhlar method performs a gauge transformation to move the presence
of singularities from the wavefunction to the Berry connection.

To illustrate the setting, we first consider the electronic eigenvalue problem

Ĥe |φn(r)〉 = En(r) |φn(r)〉 (3-12)

and in particular the possibility that the first two separate eigenvalues (known
as potential energy surfaces in the chemistry literature) intersect for a given
nuclear configuration r0, that is E0(r0)= E1(r0). In the previous sections, the
fundamental eigenvalue E0 was simply denoted by E . It is well-known that
such intersections of the energy surfaces often form the shape of a double cone
and are therefore referred to as conical intersections in the quantum chemistry
literature. The nontrivial Berry phase that arises in such situations corresponds
to the fact that the real electronic wavefunction |φ0(r)〉 (previously denoted
simply by |φ(r)〉) is double-valued around the point of degeneracy. The Mead–
Truhlar method exploits the invariance of the electronic eigenvalue problem
under the gauge transformation |φ(r)〉 7→ |φ′(r)〉 = eiζ(r)/h̄

|φ(r)〉 , thereby
redefining the Berry connection according to A 7→A′ =A+∇ζ . Specifically,
one selects ζ such that the phase eiζ/h̄ exactly compensates the double-valuedness
of |φ〉 resulting in the new electronic state |φ′〉 being single-valued [50; 67] and
thus avoiding the need to deal with double-valued functions. However, since
A= 0 (because |φ〉 is real) and eiζ/h̄ must be multivalued, such a transformation
has the cost that the corresponding vector potential A′ = ∇ζ is singular at
the point of the conical intersection. Then, after replacing |φ〉 → |φ′〉, one
obtains equations (3-10)–(3-11) in the case ν̃ = M−1

∇S and h̄3=∇ζ , so that
the problem under consideration becomes equivalent to the Aharonov–Bohm
problem, whence the name “molecular Aharonov–Bohm effect”.

While conical intersections are essentially topological defects, the physical
consistency of these singularities has been recently questioned by Gross and
collaborators [70; 78]. In their work, it is argued that the emergence of these
topological structures is intrinsically associated to the particular type of adiabatic
model arising from the Born–Oppenheimer factorization ansatz. Indeed, the
results in [70; 78] and following papers show that these type of singularities are
absolutely absent in the exact case of nonadiabatic dynamics. This leads to the
question of whether alternative approaches to adiabatic dynamics can be obtained
in order to avoid dealing with conical intersections. Notice that the absence of
these defects does not imply the absence of a geometric phase. Indeed, as the
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Berry connection is not generally vanishing in nonadiabatic dynamics, this leads
to nontrivial holonomy which in turn does not arise from topological singularities.
In this context, a gauge connection associated to hydrodynamic vortices as in
Section 2.4 may be representative of an alternative molecular geometric effect
in which the geometric phase depends on the integration loop. In this case,
one could drop the quantum potential in (3-11) and select the particle solution
D(r, t)= δ(r − q(t)) in (3-10).

However, due to (2-33) and (2-34), this approach would produce a δ-like
Lorentz force in the nuclear trajectory equation, thereby leading to major diffi-
culties.

The latter may be overcome by finding appropriate closures at the level
of Hamilton’s principle. For example, one could use Gaussian wavepackets
as presented in Appendix B. However, here we adopt a method inspired by
previous work in plasma physics [40] and geophysical fluid dynamics [41].
Let us start with the hydrodynamic Lagrangian, of the type (2-31), underlying
equations (3-10)–(3-11):

`(D, ν̃)=
ˆ

D
(
M |ν̃|2/2+ h̄ν̃ ·3− VQ − ε

)
d3r.

Here, the Eulerian variables D(r, t) and ν̃(r, t) are related to the Lagrangian
fluid path η(r, t) (Bohmian trajectory) by the relations η̇(r, t)= ν̃(η(r, t), t) and
D(η(r, t), t) d3η(r, t) = D0(r) d3r . If we now restrict the Bohmian trajectory
to be of the type η(r, t) = r + q(t), we have ν̃(r, t) = q̇(t) and D(r, t) =
D0(r − q(t)). Since in this case

´
DVQ d3r = const., the Lagrangian `(D, ν̃)

then becomes

L(q, q̇)=
M
2
|q̇|2+

ˆ
D0(r − q)

[
h̄q̇ ·3(r)− ε(r)

]
d3r . (3-13)

Here, D0 is typically a Gaussian distribution and we recall that we are considering
the case of a real electronic wavefunction, so that A= 0 in the definition of ε
(3-4). Then, one obtains the Euler–Lagrange equation

M q̈ = h̄q̇×∇ ×
ˆ

D0(r − q)3(r) d3r −∇
ˆ
ε(r)D0(r − q) d3r , (3-14)

where 3 is given as in (2-35). (This method was recently applied to the Jahn–
Teller problem by one of us in [77], where it was shown to recover some recent
results obtained from exact nonadiabatic treatments [79].) We see that the nuclear
density acts as a convolution kernel regularizing both the connection 3 and the
potential energy surface appearing in ε. For example, this method could be used
to regularize topological singularities arising from conical intersections. Then,
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the geometric phase and the regularized potential energy surface read

−h̄
˛

c0

ˆ
d3r ′ D0(r ′− r)3(r ′) · dr and

ˆ
d3r ′ D0(r ′− r)E(r ′).

Also, in the present context, the self-consistent vortex evolution may be in-
cluded upon constructing a Rasetti–Regge type Lagrangian by the replacement
L(q, q̇)→ L(q, q̇)+ 1

3

´
∂t R·R×Rσ dσ , similarly to the approach in Section 2.4.

In this case, the vortex evolution equation reads ∂t R = M D0(R− q)q̇+ κRσ .

4. Exact wavefunction factorization

4.1. Nonadiabatic molecular dynamics. While the Born–Oppenheimer approxi-
mation has been very successful in the modeling of adiabatic molecular dynamics,
many processes in both chemistry and physics involve quantum electronic transi-
tions. In this case, the Born–Oppenheimer approximation breaks down so that
nonadiabatic processes require a new modeling framework. In this context, the
molecular wavefunction 9(r, x, t) in (3-1) is expanded in the basis provided by
the spectral problem (3-12) so that the resulting series expansion is known as
Born–Huang expansion [17]. While this expansion is the basis for several ab initio
methods in nonadiabatic molecular dynamics, an alternative picture, originally
due to Hunter [48], has recently been revived by Gross and collaborators [1]. In
this alternative picture, the exact solution of the molecular Schrödinger equation
is written by allowing the electronic wavefunction in (3-1) to depend explicitly
on time, that is

9(t)=�(r, t) |φ(r, t)〉 . (4-1)

Going back to von Neumann [71], this type of wavefunction factorization also
represents the typical approach to Pauli’s equation for charged particle dynamics
in electromagnetic fields [91]. In this context, the electronic coordinates are
replaced by the spin degree of freedom while the nuclear coordinates are replaced
by the particle position coordinate. In more generality, the exact factorization
picture is applicable in a variety of multi-body problems in physics and chemistry.
In this section, we investigate the role of holonomy in the exact factorization
picture. Then, when the holonomy arises from a delta-like curvature, we shall
present how the quantum hydrodynamics with spin is modified by the presence of
vortex filaments. Before moving on to the Pauli equation, here we shall present
the general hydrodynamic equations arising from the exact factorization (4-1).

The typical Hamiltonian for the total system is written as

Ĥtot =−
h̄2

2M
1+ Ĥ(r) (4-2)

so that, after rearrangement, replacing (4-1) in the Dirac–Frenkel Lagrangian
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L = Re
´
〈9|(i h̄∂t − Ĥtot)9〉 d3r leads to the exact factorization Lagrangian

L = Re
ˆ

i h̄
(
�∗∂t�+ |�|

2
〈φ|∂tφ〉

)
d3r

−

ˆ (
1

2M
�∗(−i h̄∇ +A)2�+ |�|2

(
〈φ|Ĥφ〉+

h̄2

2M
‖∇φ‖2−

|A|2

2M

))
d3r ,

(4-3)

where the second line identifies (minus) the expression of the total energy and
we recall (3-3). Notice that we have not enforced the partial normalization
condition ‖φ(r)‖2= 1 in the variational principle, although this condition can be
verified to hold a posteriori after taking variations. When dealing with molecular
problems, |φ〉 = φ(x, t; r) is a time-dependent electronic wavefunction [1] and
Ĥ(r) is the electronic Hamiltonian in (3-12) from Born–Oppenheimer theory.
On the other hand, if we deal with 1

2 -spin degrees of freedom, |φ〉 = |φ(r, t)〉 is
a two-component complex vector parametrized by the coordinate r , while Ĥ(r)
is of the form Ĥ(r)= a(r)+ b(r) · σ̂ and σ̂ denotes the array of Pauli matrices
σ̂ = (σ̂x , σ̂y, σ̂z).

At this point, the standard approach to QHD requires replacing the polar form
of � in (4-3). If instead we adopt the method developed in Section 2 and write �
as in (2-1), we obtain the following hydrodynamic Lagrangian of Euler–Poincaré
type [45]:

`(D, ξ̄ , ν̄, |φ〉)=
ˆ

D
(
ξ̄ −
|ν̄+A|2

2M
−

h̄2

8M
|∇D|2

D2 +8

+〈φ|Ĥφ〉−
h̄2

2M
‖∇φ‖2+

|A|2

2M

)
d3r , (4-4)

where 8(r) := 〈φ|i h̄∂tφ〉. At this stage one can compute the corresponding
equations of motion.

Upon introducing the hydrodynamic velocity v and the matrix density ρ̃,

v(r, t)= M−1(ν̄+A) and ρ̃(r, t)= D|φ〉〈φ|, (4-5)

we obtain the hydrodynamic equations in the form

∂t D+ div(Dv)= 0, (4-6)

M D(∂t + v · ∇)v

= h̄ Dv×∇ ×3+ D∇VQ −〈ρ̃|∇ Ĥ〉−
h̄2

2M
∂ j
(
D−1
〈∇ρ̃|∂ j ρ̃〉

)
, (4-7)

i h̄(∂t ρ̃+ div(ρ̃v))=
[

Ĥ −
h̄2

2M
div(D−1

∇ρ̃), ρ̃

]
. (4-8)
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Here, we have used the notation

〈A(r)|B(r)〉 = Tr(A(r)† B(r)),

where Tr denotes the matrix trace.
Interestingly, as shown in [25] for an equivalent variant of these equations, this

system can also be derived via the standard Euler–Poincaré variational principle
for hydrodynamics (as presented earlier in Section 1.2) in which the Eulerian
quantities D(r, t) and v(r, t) are related to the Lagrangian (Bohmian) trajectory
η(r, t) by the relations

η̇(r, t)= v(η(r, t), t) and D(η(r, t), t) d3η(r, t)= D0(r) d3r.

In this instance, as seen before, equations (4-6)–(4-8) correspond to a Lagrangian
of the type as given by (2-31), here written as

`(v, D, 4, ρ̃)

=

ˆ (
1
2

M D|v|2+ h̄ Dv ·3+
h̄2

8M
|∇D|2

D
+〈ρ̃, i h̄4− Ĥ〉−

h̄2

4M
‖∇ρ̃‖2

D

)
d3r ,

(4-9)

in which 4(r, t) is defined by the Schrödinger equation

∂tU (r, t)=4(η(r, t), t)U (r, t)

for the propagator U (r, t)with ρ̃(η(r, t), t) d3η(r, t)=U (r, t)ρ̃0(r)U †(r, t) d3r .
Then, applying Hamilton’s principle by combining the variations

δD =− div(Dw), δv = ∂tw+ (v · ∇)w− (w · ∇)v , (4-10)

δρ̃ = [ϒ, ρ̃] − div(ρ̃w), δ4= ∂tϒ + [ϒ,4] −w · ∇4+ v · ∇ϒ , (4-11)

with the auxiliary equations ∂t D + div(Dv) = 0 and ∂t ρ̃ + div(ρ̃v) = [4, ρ̃]
returns equations (4-6)–(4-8). Here, w and ϒ are both arbitrary and vanish at
the endpoints. In the special case when 3 = 0, a detailed presentation of this
approach can be found in [25].

Remark 4.1 (semidirect product Lie–Poisson structure). Upon defining m :=
M Dv+ h̄ D3, equations (4-6)–(4-8) acquire the following Poisson structure:

{ f, g}(m, D, ρ̃)=
ˆ

m ·
(
δg
δm
· ∇

δ f
δm
−
δ f
δm
· ∇

δg
δm

)
d3r

−

ˆ
D
(
δ f
δm
·∇

δg
δD
−
δg
δm
·∇
δ f
δD

)
d3r

−

ˆ 〈
ρ̃,

i
h̄

[
δ f
δρ̃
,
δg
δρ̃

]
+
δ f
δm
·∇
δg
δρ̃
−
δg
δm
·∇
δ f
δρ̃

〉
d3r , (4-12)
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which is accompanied by the Hamiltonian functional

h(m, D, ρ̃)

=

ˆ (
|m− h̄ D3|2

2M D
−

h̄2

8M
|∇D|2

D
+〈ρ̃, Ĥ〉+

h̄2

4M
‖∇ρ̃‖2

D

)
d3r . (4-13)

We remark here that the change of variables ρ̃→ i h̄ρ̃ takes the bracket (4-12)
into a Lie–Poisson bracket on the dual of the semidirect-product Lie algebra
X(R3)s

(
F(R3)⊕ F(R3, u(He))

)
.

4.2. Exact factorization for electronic two-level systems. Instead of treating
infinite-dimensional two-particle systems, the remainder of this paper studies the
case in which the electronic state is represented by a two-level system, so that

ρ̃(r, t)=
D(r, t)

2

(
1+

2
h̄

s(r, t) · σ̂
)
=:

1
2

(
D(r, t)1+

2
h̄

s̃(r, t) · σ̂
)
,

where s is the spin vector as described in [7; 13; 11; 91], given by s= h̄ 〈φ|σ̂φ〉 /2
and satisfying |s|2 = h̄2/4, and 1 is the 2× 2 identity operator. In addition, the
Hamiltonian operator reads Ĥ = a(r)1 + b(r) · σ̂ . Under these changes of
variables, equations (4-6)–(4-8) become

∂t D+ div(Dv)= 0, (4-14)

M D(∂t + v · ∇)v

= h̄ Dv×∇×3− D∇a− 2
h̄
∇b · s̃+M−1∂ j (s̃ · ∇(D−1∂ j s̃)), (4-15)

h̄M(∂t s̃+ div(v s̃))= s̃×
(
h̄ div(D−1

∇ s̃)− 2Mb
)
. (4-16)

For example, in the case of the spin-boson model, one has a(r) = Mω2r2/2
and b(r)= (D, 0,C · r)/2, where C and D are time-independent and spatially
constant.

Then, equations (4-14)–(4-16) possess the Euler–Poincaré Lagrangian

`(v, D,4, s̃)

=

ˆ (
1
2

M D|v|2+ D(h̄v ·3− a)+ s̃ ·
(
4−

2
h̄

b
)
−
|∇ s̃|2

2M D

)
d3r , (4-17)

where4=−i4·σ/2, having used the Lie algebra isomorphism (su(2), [ · , · ])∼=
(R3 , · × · ) [62], with the variations (4-10) as well as

δ s̃ =ϒ × s̃− div(w s̃), δ4= ∂tϒ +ϒ ×4−w · ∇4+ v · ∇ϒ .

Here, ϒ(r, t) is arbitrary and vanishing at the endpoints. We notice that in
using the variable s̃ := Ds, the quantum potential term has been absorbed in the
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Lagrangian and correspondingly no longer appears explicitly in the hydrodynamic
equation of motion (4-15).

Analogously, in the case of electronic two-level systems, the Lie–Poisson
bracket (4-12) becomes

{ f, g}(m, D, s̃)=
ˆ

m ·
(
δg
δm
· ∇

δ f
δm
−
δ f
δm
· ∇

δg
δm

)
d3r

−

ˆ
D
(
δ f
δm
· ∇

δg
δD
−
δg
δm
· ∇

δ f
δD

)
d3r

−

ˆ
s̃ ·
(
δ f
δ s̃
×
δg
δ s̃
+
δ f
δm
· ∇
δg
δ s̃
−
δg
δm
· ∇
δ f
δ s̃

)
d3r . (4-18)

This is accompanied by the Hamiltonian

h(D,m, s̃)=
ˆ (
|m− h̄ D3|2

2M D
+
|∇ s̃|2

2M D
+

2
h̄

b · s̃+ Da
)

d3r , (4-19)

where we recall the definition m := M Dv+ h̄ D3.

4.3. The Pauli equation with hydrodynamic vortices. Having considered a spin-
less particle in a magnetic field in Section 2.3, here we broaden our treatment to
include particles with spin. To do so, one must consider the Pauli equation which
captures the interaction of the particle’s spin with an external electromagnetic
field. Firstly, to describe a spin-1

2 particle (of charge q = 1, mass M), one
considers the two-component spinor wavefunction

9(r)=
(
91(r)
92(r)

)
, (4-20)

where now 9 ∈ L2(R3)⊗C2 and is normalized such that
´
9†9 d3r = 1. Then,

the dynamics are given by the Pauli equation which amounts to the Schrödinger
equation i h̄∂t9 = Ĥtot9 with the Hamiltonian operator

Ĥtot =
(−i h̄∇ − A)2

2M
−

h̄
2M

B · σ̂ + V 1, (4-21)

in which A(r) is the constant magnetic potential, B := ∇ × A is the magnetic
field and V (r) is a scalar potential.

In order to proceed with the method proposed in the previous section, we follow
the idea outlined in [88; 13; 11] and decompose the spinor wavefunction into the
form 9 =

√
D(r, t)θ(r, t) |φ(r, t)〉 (here we use the Dirac notation convention

for the “electronic factor”), in which φ satisfies the partial normalization condition
〈φ(r)|φ(r)〉=:‖φ(r)‖2=1. Clearly, we are in the situation described in Sections
4.1 and 4.2 so that, upon absorbing the additional external magnetic field, the
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fluid velocity (4-5) now reads

v = M−1(ν̄+A− A), (4-22)

and one can immediately specialize the results from the previous section, so that
the Lagrangian (4-17) becomes

`(v, D,4, s̃)

=

ˆ (
1
2

M D|v|2+ Dv · (h̄3+ A)− DV + s̃ · (4+M−1 B)−
|∇ s̃|2

2M D

)
d3r .

(4-23)

In turn, this produces the equations of motion

∂t D+div(Dv)= 0, (4-24)

M D(∂t+v ·∇)v

= h̄ Dv×∇×3−D∇V+M−1
∇B · s̃+M−1∂ j (s̃·∇(D−1∂ j s̃)), (4-25)

M(∂t s̃+div(v s̃))= s̃×
(

div(D−1
∇ s̃)+B

)
. (4-26)

In the special case of 3= 0, this agrees with the results of [91] upon changing
variables back to s = s̃/D. In more generality, the corresponding circulation
theorem for a loop c(t) moving with the fluid velocity v reads

d
dt

˛
c(t)
(Mv+h̄3+A)·dr =

d
dt

˛
c(t)

A·dr

=−
1

M D

˛
c(t)

(
∇ s̃·(B+div(D−1

∇ s̃))
)
·dr , (4-27)

which, as in [25], gives an expression for the time evolution of the Berry phase,
here governed by the external magnetic field and spin degrees of freedom.

Remark 4.2 (Mermin–Ho relation and Takabayasi vector). In general, the circu-
lation around a fixed loop c0 (with a surface S0 such that its boundary defines
the loop ∂S0 =: c0) reads
˛

c0

v · dr =
ˆ

S0

∇ × v · dS= M−1
ˆ

S0

(
h̄
2

T − h̄∇ ×3− B
)
· dS, (4-28)

where T := εi jkni∇n j × ∇nk and n := 2s/h̄ is the Bloch vector field. The
relation ∇ ×A= h̄T/2 underlying (4-28) first appeared in Takabayasi’s work
[91] in 1955, hence later motivating the name Takabayasi vector [7], and can
more explicitly be written in components as

Tc = εi jkεabcni (∂an j )(∂bnk)= 2iεabc
(
〈∂bφ|∂aφ〉− 〈∂aφ|∂bφ〉

)
=

2
h̄
Bc , (4-29)
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relying on the definition ni = 〈φ|σiφ〉 = φ
∗
a (σi )abφb and the property

εi jk(σi )ab(σ j )cd(σk)e f = 2i(δa f δcbδed − δadδc f δeb).

Despite Takabayasi’s work, the equality 2h̄−1
∇×A= εi jkni∇n j ×∇nk is more

commonly known as the Mermin–Ho relation [69] after its appearance in the
context of superfluids two decades later. For applications of the Mermin–Ho
relation in the more general context of complex fluids, see also [42].

In [93], Takabayasi pointed out the existence of vortex structures in spin
hydrodynamics starting from the analysis of the Pauli equation and his work
was later revived in [7], where it was extended to comprise the relativistic
Weyl equation. Motivated by these old works and proceeding in analogy with
the previous sections, here we shall discuss the Rasetti–Regge dynamics of
hydrodynamic vortices upon extending the arguments in Section 2.4. To do so,
we write the Rasetti–Regge hydrodynamic Lagrangian

¯̀(R, ∂t R, v, D,4, s̃)= 1
3

ˆ
∂t R · R× Rσ dσ + `(v, R, D,4, s̃), (4-30)

where ` is obtained upon replacing (2-35) in (4-23). The resulting vortex equation
of motion is ∂t R=M(Dv)r=R+κRσ (where as before κ is an arbitrary quantity),
complemented by the hydrodynamic form of the Pauli equations (4-24)–(4-26),
in which again 3 is written in terms of the vortex filament according to (2-35).

Remark 4.3 (Pauli equation with hydrodynamic vortices). Naturally, this con-
struction can also be applied to the full Pauli spinor 9(r, t), in which case one
writes the Rasetti–Regge Dirac–Frenkel Lagrangian

L(R, ∂t R, 9, ∂t9)

=
1
3

ˆ
∂t R · R× Rσ dσ

+Re
ˆ (

i h̄9†∂t9 −9
†
[
(−i h̄∇ − (h̄3+ A))2

2M
−

h̄
2M

B · σ̂ + V
]
9

)
d3r ,

(4-31)

so that the coupled system reads

∂t R = h̄P
(
Im(9†

∇9)− |9|2(3+ h̄−1 A)
)∣∣

r=R + κRσ , (4-32)

i h̄∂t9 =
1

2M
(−i h̄∇ − (h̄3+ A))29 −

h̄
2M

B · σ̂ 9 + V 9. (4-33)

Upon expanding 9 in terms of the exact factorization and recalling the definition
of the velocity (4-22), we see the agreement in the vortex equations. Upon
performing a long calculation similar to Appendix A, one can also reconstruct
the Pauli equation given here from the hydrodynamic equations (4-24)–(4-26).
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5. Nonabelian generalizations

As mentioned in Remark 2.1, the QHD gauge connection ν from Section 2 was
introduced by following an approach that invokes zero curvature, i.e., ∇× ν = 0,
although this relation was later relaxed to comprise a nonzero initial curvature. In
this section, motivated by the appearance of the differential of the spin vector ∇s
appearing in the previous sections, we shall include the possibility of nonabelian
groups, therefore extending our treatment to a whole class of models employing
the general relation ∇n =−γ n, where n ∈F(R3,M) is an order parameter field
and γ is a gauge connection corresponding to an arbitrary gauge group F(R3,G),
where G acts on M . Nevertheless, even though the relation ∇n = −γ n again
implies zero curvature, the equations resulting from Hamilton’s principle still
allow for a more general nontrivial connection whose curvature again arises as
an initial condition.

To begin, we consider the previous treatment of QHD. We consider a U (1)
connection defined by ∇θ =−νθ , (2-5), and see that this definition immediately
implies that the connection has zero curvature. Indeed, one has 0= ∇ ×∇θ =
−∇ × (νθ)=−(∇ × ν)θ , so that ∇ × ν = 0.

Now we consider the more general case of an order parameter n ∈ F(R3,M)
(where at this point M is an arbitrary manifold) whose evolution is given by an
element g of the Lie group F(R3,G),

n(x, t)= g(x, t)n0(x). (5-1)

Then, one can construct a gauge connection γ from the gradient of n as follows:

∇n =∇gn0+ g∇n0

=∇g g−1n− gγ0n0

=−(−∇g g−1
+ gγ0g−1)n =: −γ n , (5-2)

and we have ∇n =−γ n. Here, we show that such a relation must mean that the
connection is trivial, i.e., has zero curvature: �i j =∂iγj−∂jγi+[γi , γj ]. Writing
our defining relation in terms of differential forms as dn =−γ n, we compute

0= d2n =−d(γ j n dx j )

=−
(
(∂[iγ j])n+ γ[ j (∂i]n)

)
dx i
∧ dx j

=−(∂[iγ j]− γ[ jγi])n dx i
∧ dx j

=−
1
2(∂iγ j − ∂ jγi + γiγ j − γ jγi )n dx i

∧ dx j

=−
1
2�i j n dx i

∧ dx j

=−�n , (5-3)
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where the square brackets denote index antisymmetrization. At this point, we
observe that since γ := −∇g g−1

+ gγ0g−1, then

�= g�0g−1

and it follows that 0 = �0n0. Thus, we end up in a situation in which either
�0 = 0 thus rendering � = dγ γ = 0 for all time, or n0 belongs to the kernel
of �0, a statement that we cannot impose in general. As a specific example
of this relation, reconsider the material involving the spin vector in Section 4.
There, the order parameter is the spin vector s ∈ F(R3,R3) which evolves under
the action of the rotation group G = SO(3) so that g = R(x, t) and the above
formula specialize to

s(x, t)= R(x, t)s0(x), (5-4)

∇s =−γ̂ s =−γ × s , (5-5)

0= �̂s =�× s , (5-6)

having used the Lie algebra isomorphism (hat map)

(so(3), [ · , · ])∼= (R3, · × · ).

Despite this result, we now turn our attention to the particular step in which
the gauge connection is introduced in the Lagrangian of a field theory. As an
example, consider a Lagrangian of general type

`= `(n, ṅ,∇n),

where n ∈ F(R3,M). For example, in the case of the Ericksen–Leslie theory
of liquid crystal nematodynamics, we have M = S2 [31; 32]. According to the
previous discussion one can let n evolve under local rotations g ∈ F(R3,G),
so that n(t) = g(t)n0. This leads to introducing a gauge connection such that
∇n =−γ n. In turn, the latter relation can be used to obtain a new Lagrangian
of the form ` = `(n, ξ, γ ), where ξ := ġg−1. Then, the Hamilton’s principle
associated to this new Lagrangian produces a more general set of equations in
which γ is allowed to have a nonzero curvature (constant if the gauge group
is abelian), as it appears by taking the covariant differential dγ = d+ γ of the
evolution equation ∂tγ + dξ = [ξ, γ ] thereby producing ∂t� = [ξ,�]. Notice
that, while one has (∂t − ξ)(dn+ γ n)= 0, allowing for a nontrivial connection
enforces the presence of an M-valued one-form φ(t) = g(t)φ0 ∈ �

1(R3,M)
such that dn(t)+γ (t)n(t)= φ(t) 6= 0. This observation (basically amounting to
∇n0 6= −γ0n0) offers a general method for constructing defect theories whose
defect topology does not depend on time. This is precisely the approach that we
followed in Section 2 and applied in the following sections.
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6. Conclusions

This paper has introduced a new method for introducing holonomy in quantum
hydrodynamics. Upon focusing on single-valued phase-factors rather than multi-
valued phases, we have shown how a constant nonzero curvature can be naturally
included to incorporate a nontrivial geometric phase in Madelung’s equations.
Also, it was shown how this method corresponds to simply applying minimal
coupling at the level of Schrödinger’s equation. In turn, this new picture led to
the possibility of dealing with vortex singularities in the hydrodynamic vorticity.
While topological singularities may be captured by the present treatment, our
attention focused on vortex filaments of hydrodynamic type. By using the
Rasetti–Regge framework, coupled equations were presented for the evolution
of a Schrödinger wavefunction interacting with a hydrodynamic vortex filament.

As a first application of our approach, we considered the Born–Oppenheimer
approximation in adiabatic molecular dynamics. After reviewing the variational
setting of adiabatic dynamics, we presented the standard approach along with a
modified approach presented in Appendix B and exploiting Gaussian wavepackets.
Remarkably, in the latter approach, conical intersections are filtered by the
Gaussian convolution kernel so that the nuclear motion occurs on a smoothed
electron energy surface in agreement with the recent proposal by Gross and
collaborators [70; 78]. A similar approach was then used on the variational
side to incorporate vortex singularities in the Born–Oppenheimer approximation
so that nuclei interact with a hydrodynamic vortex incorporating molecular
geometric phase effects.

Last, the treatment was extended to the exact factorization of wavefunctions
depending on more than one set of coordinates. Recently revived within the chem-
ical physics community, this method has been widely used in the literature on the
Pauli equation for a spin particle in an electromagnetic field. After reviewing the
theory in both its variational and Hamiltonian variants, we specialized to consider
the case of electronic two-level systems thereby studying the dynamics of the
spin density vector. Finally, motivated by previous work by Takabayasi, we used
this setting to include vortex filament dynamics in the quantum hydrodynamics
with spin.

Appendix A. Schrödinger reconstruction calculation

This appendix presents the explicit calculations that reconstruct the Schrödinger
equation from the QHD equations in Section 2. We begin with the expansion

i h̄∂tψ = i h̄(∂t R θ + R ∂tθ).
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Then, we find ∂t R from (2-10) as

∂t R =−∇R ·
ν̄

m
−

R
2m

div ν̄ .

Next, using (2-9) and (2-11), we can also compute ∂tθ and obtain

∂tθ =−
i
h̄

(
|ν̄|2

2m
+ V + VQ

)
θ .

Hence, at this stage the Schrödinger equation reads

i h̄∂tψ =

[
−

i h̄
m

(
∇R
R
· ν̄

)
−

i h̄
2m

div ν̄+
|ν̄|2

2m
+ VQ

]
ψ + Vψ .

Clearly, we must manipulate the kinetic term to get back to ψ . To do so, we
recall the relations

∇R
R
=

Re(ψ∗∇ψ)
|ψ |2

, ν̄ =
h̄ Im(ψ∗∇ψ)
|ψ |2

− h̄3,

VQ =−
h̄2

2m

(
|∇R|2

R2 + div
∇R
R

)
,

and compute term by term. Firstly,

−
i h̄
m

(
∇R
R
· ν̄

)
=−

i h̄2

m
Re(ψ∗∇ψ) · Im(ψ∗∇ψ)

|ψ |2 |ψ |2
+

i h̄2

m
Re(ψ∗∇ψ)
|ψ |2

·3 .

Secondly,

−
i h̄
2m

div ν̄

=−
i h̄2

2m

(
∇((ψ∗ψ)−1) · Im(ψ∗∇ψ)+��

��
���

�: 0
Im(∇ψ∗ · ∇ψ)
|ψ |2

+
Im(ψ∗1ψ)
|ψ |2

)
=−

i h̄2

2m

(
−(ψ∗ψ)−2(∇ψ∗ψ +ψ∗∇ψ) · Im(ψ∗∇ψ)+

Im(ψ∗1ψ)
|ψ |2

)
=−

i h̄2

2m
Im(ψ∗1ψ)
|ψ |2

+
i h̄2

m
Re(ψ∗∇ψ) · Im(ψ∗∇ψ)

|ψ |2 |ψ |2
,

where in the second line we have used that 3 = −∇ × β so that its gradient
vanishes. Thirdly,

|ν̄|2

2m
=

h̄2

2m
Im(ψ∗∇ψ) · Im(ψ∗∇ψ)

|ψ |2 |ψ |2
−

h̄2

m
Im(ψ∗∇ψ)
|ψ |2

·3+
h̄2

2m
|3|2 .
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Finally, letting K = Re(ψ∗∇ψ) to lighten notation,

VQ =−
h̄2

2m

(
K · K
|ψ |2 |ψ |2

+
Re(∇ψ∗ · ∇ψ)
|ψ |2

+
Re(ψ∗1ψ)
|ψ |2

+∇((ψ∗ψ)−1) · K
)

=−
h̄2

2m

(
K · K
|ψ |2 |ψ |2

+
|∇ψ |2

|ψ |2
+

Re(ψ∗1ψ)
|ψ |2

− 2
K · K
|ψ |2 |ψ |2

)
=−

h̄2

2m

(
−

K · K
|ψ |2 |ψ |2

+
|∇ψ |2

|ψ |2
+

Re(ψ∗1ψ)
|ψ |2

)
.

All together the kinetic term reads

−
i h̄
m

(
∇R
R
· ν̄

)
−

i h̄
2m

div ν̄+
|ν̄|2

2m
+ VQ

=−
h̄2

2m

(
Re(ψ∗1ψ)
|ψ |2

+
i Im(ψ∗1ψ)
|ψ |2

)
+

i h̄2

m

(
Re(ψ∗∇ψ)
|ψ |2

+
i Im(ψ∗∇ψ)
|ψ |2

)
·3+

h̄2

2m
|3|2

+
h̄2

2m
Re(ψ∗∇ψ) ·Re(ψ∗∇ψ)

|ψ |2 |ψ |2

+
h̄2

2m
Im(ψ∗∇ψ) · Im(ψ∗∇ψ)

|ψ |2 |ψ |2
−

h̄2

2m
|∇ψ |2

|ψ |2
,

at which point we rewrite the following terms:

h̄2

2m
Re(ψ∗∇ψ) ·Re(ψ∗∇ψ)

|ψ |2 |ψ |2
+

h̄2

2m
Im(ψ∗∇ψ) · Im(ψ∗∇ψ)

|ψ |2 |ψ |2
=

h̄2

2m
|ψ∗∇ψ |2

|ψ |2 |ψ |2

=
h̄2

2m
|∇ψ |2

|ψ |2
,

and after cancellations one is left with

−
i h̄
m

(
∇R
R
· ν̄

)
−

i h̄
2m

div ν̄+
|ν̄|2

2m
+VQ =−

h̄2

2m
1ψ

ψ
+

i h̄2

m
∇ψ

ψ
·3+

h̄2

2m
|3|2 .

Multiplying by ψ and factorizing returns the desired result.

Appendix B. Adiabatic dynamics with Gaussian wavepackets

Whilst the main focus of this paper revolves around employing hydrodynamic
descriptions of quantum mechanics, in this appendix we approach the adiabatic
problem in quantum chemistry through the use of frozen Gaussian wavepackets
at the level of the variational principle.

In line with the adiabatic separation of nuclei and electrons, we model the
nuclear wavefunction �(r, t) via a Gaussian wavepacket, which corresponds to
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the following replacements in the standard Madelung transform �=
√

Dei S/h̄ :

D(r, t)= D0(r − q(t)), S(r, t)= p(t) · (r − q(t)/2), (B-1)

where D0 is a Gaussian of constant width (frozen). This implies that ∇S = p so
that the Born–Oppenheimer total energy, corresponding to the Lagrangian (3-5),
reads

h =
ˆ

D0(r − q)
(
| p+A|2

2M
+

h̄2

8M
|∇D0(r − q)|2

D0(r − q)2
+ ε(φ,∇φ)

)
d3r

=

ˆ
D0(r − q)

(
| p+A|2

2M
+ ε(φ,∇φ)

)
d3r + const, (B-2)

where we have noticed that the quantum potential term collapses to an irrelevant
constant. At this stage, we invoke the commonly used approximation neglecting
the second order coupling h̄2

‖∇φ‖2/(2M) in (3-4) so that upon expanding the
effective potential the total energy is

h =
| p|2

2M
+M−1 p ·A + E , (B-3)

where we have defined

A(q)=
ˆ

D0(r − q)A(r) d3r , E(q)=
ˆ

D0(r − q)E(r) d3r .

Then, upon performing the Legendre transform M q̇ = p+A(q), one obtains

L(q, q̇)=
M
2
|q̇|2− q̇ ·A(q)− ε̄(q), (B-4)

where we have defined

ε̄(q) := E(q)−
1

2M

∣∣A(q)∣∣2 .
Since both the energy surface and the Berry connection are smoothened by a
Gaussian convolution filter, we notice that the resulting equation of motion

M q̈ =−q̇×∇q ×A(q)−∇q ε̄(q)

is entirely regularized so that conical singularities are smoothened by the Gaussian
convolution.
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