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Viscosity solutions of the Hamilton–Jacobi
equation on a noncompact manifold

ALBERT FATHI

We study the continuous viscosity solutions of the evolutionary Hamilton–
Jacobi equation

∂tU (t, x)+ H(x, ∂xU (t, x))= 0,

on [0,+∞[ × M , where H is a Tonelli Hamiltonian on the noncompact
manifold M . We establish that all such solutions are given by the Lax–Oleinik
formula. Moreover, we show that a finite everywhere Lax–Oleinik evolution
is necessarily continuous and a viscosity solution on ]0,+∞[×M .

The goal is also to provide a convenient reference for the evolutionary
Hamilton–Jacobi equation for Tonelli Hamiltonians on noncompact manifolds.

1. Introduction

This work was started in February 2017 in Rome, following a conversation with
Piermarco Cannarsa, Andrea Davini, Antonio Siconolfi and Afonso Sorrentino.
We discussed the problem of the Lax–Oleinik evolution û (see Definition 8.2)
of a continuous function u on a noncompact manifold. Although on a compact
manifold, it was known that the Lax–Oleinik evolution of a continuous function
is always locally concave and a solution of the Hamilton–Jacobi equation in
evolution form, at that moment, the situation on a noncompact manifold was
not clear, even assuming the continuity of the Lax–Oleinik evolution. The main
problem was that it was not clear that the inf in Definition 8.2 of û was attained.
After about a month, to my astonishment, I realized that no condition beyond
finiteness was necessary; see Theorem 1.1.

This brought back the problem of uniqueness of a solution of the Hamilton–
Jacobi equation in evolution form given an initial condition. In May 2016 in
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Shanghai, Kaizhi Wang, Lin Wang and Jun Yan, while discussing [11], brought to
my attention that, contrary to my belief, the uniqueness of a continuous solution
of the Hamilton–Jacobi equation in evolution form given an initial condition on a
noncompact manifold was not known at that time (and therefore the Lax–Oleinik
formula could not be established) unless the solution was uniformly continuous.
The best results on this problem were those contained, for example, in Hitoshi
Ishii’s lecture notes [10], on whose methods this present work heavily relies. The
difficulty here is that the maximum principle could not be applied directly, since
it requires some compactness. In 2018 and 2019, I was able to show directly the
Lax–Oleinik formula for arbitrary continuous solutions (see Theorem 1.2) and
therefore I obtained the uniqueness as a consequence.

Beyond the new results mentioned above, the goal of this work is to provide a
convenient reference for the evolutionary Hamilton–Jacobi equation

∂tU + H(x, ∂xU )= 0

for a Tonelli Hamiltonian H on a possibly noncompact manifold, thus extending
the results of the survey [7].

We will assume that the reader is familiar with [7], which is well adapted
to our manifold setting. Other classic treatments of viscosity solutions of the
Hamilton–Jacobi equation are [2; 1].

We consider a connected manifold M endowed with a complete Riemannian
metric. We will denote by ‖·‖x the induced norm on either Tx M or T ∗x M , the
fibers above x of the tangent TM or cotangent T ∗M bundle of M . We will denote
by d the Riemannian distance on M obtained from the Riemannian metric. It
might be useful to recall that, due to the completeness of the Riemannian metric,
bounded sets for d are relatively compact. Therefore the distance d is also
complete.

We endow R× M,R× M × M , and M × M with the product Riemannian
metrics, and Riemannian distances, where the Riemannian metric on R is the
usual one.

Throughout the paper H : T ∗M→R will denote a continuous function which
we will call the Hamiltonian.

We will study (continuous) viscosity subsolutions, supersolutions and solutions
of the evolutionary Hamilton–Jacobi equation

∂tU (t, x)+ H(x, ∂xU (t, x))= 0, (1-1)

on a subset of R×M .
In fact, the main results of this work will be proved for Tonelli Hamiltonians

(Definition 3.1). The statements use the (negative) Lax–Oleinik semigroup T−t ,
t ≥ 0 (see Definition 8.1).
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The main results are given in the next two theorems.

Theorem 1.1. Assume u :M→[−∞,∞] is a function such that its Lax–Oleinik
evolution û : [0,+∞[× M → [−∞,+∞], (t, x) 7→ T−t u(x) is finite at some
point (T, X), with T > 0 and X ∈ M. Then the function û is continuous and
even locally semiconcave on ]0, T [×M. Moreover, the function û is a viscosity
solution of the evolutionary Hamilton–Jacobi equation (1-1) on ]0, T [×M.

Note that we do not assume any continuity property on u. As we already said
the result above is surprising, even when u is continuous.

Theorem 1.2. Suppose H : T ∗M→R is a Tonelli Hamiltonian. Assume that, for
some T > 0 the function U : ]0, T [×M→ R is a continuous viscosity solution
of the evolutionary Hamilton–Jacobi equation (1-1). Define u : M→ [−∞,∞]
by

u(x)= lim inf
t→0

U (t, x).

Then U = û on ]0, T [×M→R, where û : [0,+∞[×M→[−∞,+∞], (t, x) 7→
T−t u(x) is the Lax–Oleinik evolution of u.

Obviously, Theorem 1.2 implies that continuous viscosity solutions of the
evolutionary Hamilton–Jacobi equation (1-1) satisfy the Lax–Oleinik formula
and also the uniqueness given a continuous boundary condition on {0}×M .

Remark 1.3. (1) Discussions in June 2019 in Rome, with A. Davini, Hitoshi
Ishii and Antonio Siconolfi pointed to the fact that the results above hold true
even if H is not C2, but still satisfies the other Tonelli conditions see 3.1.

(2) The method of this work does not allow to extend the results to the case
when H is time-dependent. For example, the proof of Proposition 2.2 is not
adaptable to the time-dependent case.

2. Approximation by Lipschitz subsolutions

We will assume in this section that H : T ∗M → R is a continuous function,
which we will call the Hamiltonian. Our goal is to show that we can approximate
locally continuous viscosity subsolutions of the evolutionary Hamilton–Jacobi
equation (1-1) with U defined on an open subset of R×M by Lipschitz viscosity
subsolutions, under a coercivity condition on H .

These results are well-known when M is the Euclidean space (see Hitoshi
Ishii’s lectures [10] for example), but the arguments in [10] can easily be adapted
to the manifold setting as we now proceed to do.
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2.1. Sup-convolution in one variable. The usefulness of sup-convolution to
improve regularity of viscosity subsolutions is already well established. As said
above, our treatment in this section follows closely [10] which dealt with the
Euclidean space case.

Let u : V →R, be a continuous function, where V is an open subset of R×M .
Assume K ⊂ V is compact subset. By continuity of u and compactness of K ,
we can find an open subset O1 ⊂ V , with K ⊂ O1, such that

m = supO1
|u|<+∞. (2-1)

Again by compactness of K , we can find δ>0 and an open neighborhood O2⊂O1

of K , with compact closure Ō2 ⊂ O1, and such that [t − δ, t + δ] × {x} ⊂ O1,
for every (t, x) ∈ Ō2.

For ε > 0, we define uε : Ō2→ R by

uε(t, x)= max
s∈[−δ,+δ]

u(t + s, x)−
s2

ε
. (2-2)

Note that uε is continuous by continuity of u and compactness of [−δ,+δ].
We summarize the properties of uε in the following proposition.

Proposition 2.1. (1) For every ε > 0, we have uε ≥ u.

(2) For every 0< ε < ε′, we have uε < uε′ .

(3) If (t, x)∈ Ō2, and sε ∈[−δ,+δ] is such that uε(t, x)=u(t+sε, x)−(sε)2/ε,
then |sε | ≤

√
2εm, where m is given by (2-1).

(4) For every (t, x) ∈ Ō2, we have uε(t, x) → u(t, x), when ε → 0. The
convergence is uniform on Ō2.

(5) If
√

2εm < δ, for each (t, x), (t ′, x) ∈ Ō2, with |t − t ′| < δ −
√

2εm, we
have

|uε(t ′, x)− uε(t, x)| ≤
2
√

2εm+ |t − t ′|
ε

|t − t ′| ≤

√
2εm+ δ
ε

|t − t ′|.

Moreover, if
√

2εm < δ, for every x ∈ M , the map t 7→ uε(t, x) is Lipschitz
on every connected component of O2 ∩ {x} × R with Lipschitz constant
≤ 2
√

2m/ε.

Proof. Parts (1) and (2) are obvious. For part (3), we notice that

uε(t, x)= u(t + sε, x)− (sε)2/ε ≥ u(t, x).

Therefore

(sε)2/ε ≤ u(t + sε, x)− u(t, x)≤ 2 supO1
|u| = 2m.
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For part (4), note that by part (3), we have

sup
(x,t)∈Ō2

|uε(t, x)−u(t, x)|≤ sup
{
|u(t+s, x)−u(t, x)|

∣∣ (t, x)∈ Ō2, |s|≤
√

2εm
}
.

By compactness of Ō2 and continuity of u, the right hand side of the inequality
above tends uniformly on Ō2 to 0 as ε→ 0.

For (5), we choose sε such that uε(t, x)= u(t + sε, x)− (sε)2/ε. By (3), we
have |sε | ≤

√
2εm. Therefore, we get

|sε + t − t ′| ≤ |sε | + |t − t ′| ≤
√

2εm+ δ−
√

2εm = δ.

Therefore, by the definition of uε , we obtain

uε(t ′, x)≥ u(t ′+ (sε+ t− t ′), x)−
(sε + t − t ′)2

ε
= u(t+ sε, x)−

(sε + t − t ′)2

ε
.

Subtracting this inequality from the equality uε(t, x) = u(t + sε, x)− (sε)2/ε
yields

uε(t, x)− uε(t ′, x)≤
(sε + t − t ′)2

ε
−
(sε)2

ε

=
(2sε + t − t ′)(t − t ′)

ε

≤
2|sε | + |t − t ′|

ε
|t − t ′|

≤
2
√

2εm+ |t − t ′|
ε

|t − t ′|,

where we used |sε | ≤
√

2εm, for the last inequality. By symmetry, we obtain

|uε(t ′, x)− uε(t, x)| ≤

√
2εm+ |t − t ′|

ε
|t − t ′|. (2-3)

Assume t, t ′, x are such that [t, t ′]× {x} ⊂ O2. For every η ∈ ]0, δ−
√

2εm[,
we can pick a monotone sequence t = t0, t1, . . . , tn = t ′, with |ti+1− ti | ≤ η, by
applying (2-3) for ti , ti+1 instead of t, t ′, and adding the inequalities, we obtain

|uε(t ′, x)− uε(t, x)| ≤
2
√

2εm+ η
ε

|t − t ′|.

We can then let η→ 0, to conclude that

|uε(t ′, x)− uε(t, x)| ≤
2
√

2εm
ε
|t − t ′|. �

Proposition 2.2. Let H : T ∗M → R be a continuous Hamiltonian. Suppose
u : V → R is a continuous function, defined on the open subset V ⊂ R× M ,
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which is a viscosity subsolution on V of the evolutionary Hamilton–Jacobi
equation (1-1).

Then, for every compact subset K ⊂ V , we can find a sequence of continuous
functions ûn : K → R such that ûn→ u uniformly on K and, for all n except a
finite number, the function ûn is a viscosity subsolution on the interior K̊ of K ,
not only of the evolutionary Hamilton–Jacobi equation (1-1), but also of

|∂t u(t, x)| + H(x, ∂x u(t, x))= C
√

n, (2-4)

for some C <+∞ independent of n. In particular, if H is coercive above each
compact subset of M , then each ûn is locally Lipschitz on K̊ .

Proof. We choose O1,m, δ, and O2 ⊃ K like it is done above in the beginning
of Proposition 2.1. We set ûn = u1/n : O2→ R, where u1/n is defined by (2-2)
with ε = 1/n. Hence

ûn(t, x)= min
s∈[−δ,+δ]

u(x,+s)− ns2.

By part (4) of Proposition 2.1, we get the uniform convergence of ûn to u.
We pick an integer n0 such that

√
2m/n0<δ. We now check the fact that ûn is

a viscosity subsolution of both Hamilton–Jacobi equations on O2, for all n ≥ n0.
Assume (t0, x0) ∈ O2, and that ϕ : V →R is C1 is such that ûn ≤ ϕ with equality
at (t0, x0). Since

√
2m/n ≤

√
2m/n0 < δ, by Proposition 2.1(5), we know that

t 7→ ûn(x,t) is locally Lipschitz with local Lipschitz constant ≤ 2
√

2mn. This
implies

|∂tϕ(t0, x0)| ≤ 2
√

2mn. (2-5)

We now choose sn ∈ [−δ,+δ] such that

u(t0+ sn, x0)− ns2
n = ûn(t0, x0)= ϕ(t0, x0).

For s small enough and y close to x0, we have (t0+ s, y) ∈ O2. Therefore, since
sn ∈ [−δ,+δ], by the definition of ûn , for s small enough and y close to x0,
we get

u(t0+ s+ sn, y)− ns2
n ≤ ûn(t0+ s, y)≤ ϕ(t0+ s, y).

Subtracting from this inequality the equality u(t0 + sn, x0)− ns2
n = ϕ(t0, x0),

we get

u(y, t0+ s+ sn)− u(t0+ sn, x0)≤ ϕ(t0+ s, y)−ϕ(t0, x0).

Since u is a viscosity subsolution on O1 3 (t0+ sn, x0), of (1-1), we must have

∂tϕ(t0, x0)+ H(x0, ∂xϕ(t0, x0))≤ 0. (2-6)
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Therefore ûn is a viscosity subsolution of (1-1). Using the inequalities (2-5)
and (2-6), we also obtain

|∂tϕ(t0, x0)| + H(x0, ∂xϕ(t0, x0))≤ 4
√

2mn.

Therefore ûn is a viscosity solution of (2-4) with C = 4
√

2m. �

Corollary 2.3. Let H : T ∗M→ R be a continuous Hamiltonian that is coercive
above each compact subset of M and convex in the momentum p; i.e., for each
x ∈ M , the map T ∗x M → R, p 7→ H(x, p) is convex. Let u : V → R be a
continuous functions defined on the open subset V ⊂ R×M which is a viscosity
subsolution of the evolutionary Hamilton–Jacobi equation (1-1).

For every open set V ′ ⊂ V whose closure V̄ ′ is compact and contained in V ,
we can approximate uniformly u on V ′ by a C∞ subsolution of the evolutionary
Hamilton–Jacobi equation (1-1).

Proof. By Proposition 2.2 above, we can make a first approximation by a
subsolution u1 : V ′→ R of (1-1) that is locally Lipschitz on V ′. The function
u2 : V ′ → R, (t, x)→ u1(t, x)− εt is therefore a locally Lipschitz viscosity
subsolution of

∂tv+ H(x, ∂xv)=−ε.

Note also that the variable t is bounded on the compact subset V̄ ′ of R× M .
Therefore, by choosing appropriately ε, we can assume u2 uniformly as close to
u1 as we wish. We can now consider the Hamiltonian H̄ : T ∗(R×M) defined by

H̄(t, s, x, p)= s+ H(x, p),

where we use the identification T ∗(R×M)= T ∗R×T ∗M =R×R×T ∗M . The
function u2 is a locally Lipschitz viscosity subsolution of

H̄(t, x, d(t,x)v(t, x))=−ε.

The Hamiltonian H̄ is convex in the momentum (s, p). We can now invoke
[7, Theorem 10.6, page 1219] to approximate uniformly u2 on V ′ by a C∞

viscosity subsolution u3 : V ′→ R of

H̄(t, x, d(t,x)vu(t, x))= 0.

This means that u3 is both a uniform approximation of u and a viscosity subso-
lution of the evolutionary Hamilton–Jacobi equation (1-1). �

Corollary 2.4. Let H : T ∗M→ R be a continuous Hamiltonian that is coercive
above each compact subset of M and convex in the momentum p; i.e., for each
x ∈ M , the map T ∗x M → R, p 7→ H(x, p) is convex. If u1 : V → R and
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u2 : V → R are continuous functions defined on the open subset V ⊂ R× M
which are viscosity subsolutions of

∂tv+ H(x, ∂xv)= 0, (2-7)

then u =min(u1, u2) is also a viscosity subsolution on V of (2-7).

Proof. Since H is convex, the corollary is well known when u1 and u2 are locally
Lipschitz. In fact, since u1 and u2 are locally Lipschitz, they are differentiable
almost everywhere and satisfy for almost every (t, x) ∈ V , the inequalities

∂t u1(t, x)+ H(x, ∂x u1(t, x))≤ 0 and ∂t u2(t, x)+ H(x, ∂x u2(t, x))≤ 0.

But the subset D ⊂ V where the three locally Lipschitz functions u, u1, u2 are
differentiable is of full measure and, for every (t, x)∈ D, we have either d(t,x)u=
d(t,x)u1 or d(t,x)u = d(t,x)u2. Therefore, ∂t u(t, x)+ H(x, ∂x u(t, x))= 0 almost
everywhere on V . Since the Hamiltonian H̄(t, x, s, p)= s+ H(x, p) is convex
in (t, p) by [7, Theorem 10.2, page 1217], we conclude that u = min(u1, u2)

is also a viscosity subsolution on V of (2-7), when both u1 and u2 are locally
Lipschitz.

The result for general continuous functions follows from this locally Lipschitz
case and the stability of viscosity solutions (see [7, Theorem 6.1, page 1209],
for example) using the approximation result obtained in Proposition 2.2. �

Corollary 2.5. Let H : T ∗M→ R be a continuous Hamiltonian that is coercive
above each compact subset of M and convex in the momentum p; i.e., for each
x ∈ M , the map T ∗x M → R, p 7→ H(x, p) is convex. Suppose the family of
functions ui : V → M, i ∈ I , where V ⊂R×M is an open subset, is such that its
infimum u = infi∈I ui is continuous and everywhere finite on V . If each ui , i ∈ I
is a viscosity subsolution (resp. solution) of the evolutionary Hamilton–Jacobi

∂tv+ H(x, ∂xv)= 0. (2-8)

on V , then u is also a viscosity subsolution (resp. solution) of the evolutionary
Hamilton–Jacobi (2-8) on V .

Proof. Since the space of continuous functions C(V,R) endowed with the
compact-open topology is metric and separable, we can find a sequence (in)n∈N,
with in ∈ I , such that the sequence (uin )n∈N is dense in the subset {ui | i ∈ I } ⊂
C(V,R) for the compact open topology. Therefore

u = inf
i∈I

ui = inf
n∈N

uin .

For m ∈ N, let us define Um : V → R by

Um = min
0≤n≤m

uin .
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If each ui , i ∈ I is a viscosity subsolution of (2-8) on V , Corollary 2.4 implies
that each Um is also a subsolution of (2-8) on V . Note that Um is nonincreasing
in m and Um ↘ u. Since we are assuming that u is finite and continuous on V ,
by Dini’s theorem, the nonincreasing convergence Um ↘ u is uniform on every
compact subset of V . Therefore by the stability theorem for viscosity solutions,
the function u is a viscosity solution of (1-1) on V .

If each ui , i ∈ I is a viscosity solution of (2-8) on V , then u = infi∈I ui is a
supersolution of (2-8) on V ; see for example [7, Proposition 8.1, page 1213]. �

2.2. Maximum principle.

Theorem 2.6 (maximum principle). Let H : T ∗M→ R be a Hamiltonian that
is continuous, coercive above each compact subset of M and convex in the
momentum p. For a < b ∈ R and K ⊂ M a compact subset, if the continuous
functions u, v : [a, b]×K→R are respectively a subsolution and a supersolution
of the evolutionary Hamilton–Jacobi equation (1-1) on ]a, b[ × K̊ then the
maximum of u−v on [a, b]×K is achieved on [a, b]×∂K ∪{a}×K . Therefore

max
[a,b]×K

u− v = max
[a,b]×∂K∪{a}×K

u− v.

Proof. It is not difficult to see that by the approximation result of Proposition 2.2,
we can assume u locally Lipschitz in K̊ × ]a, b[. As usual, for ε, δ > 0, we
introduce the function uε,δ : [a, b[× K → R by

uε,δ(t, x)= u(t, x)− ε(t − a)−
δ

b− t
.

Note that uε,δ ≤ u and that uε,δ(t, x)→−∞ as t→ b, uniformly in x ∈ K . Since
t 7→ −ε(t−a)− δ/(b− t) is C1, with derivative t 7→ −ε− δ/(b− t)2 ≤−ε, the
function uε,δ is a viscosity subsolution of

∂t uε,δ + H(x, ∂x uε,δ)=−ε, (2-9)

on ]a, b[× K̊ . Therefore by the doubling of variables argument (see [7, Theorem
7.1, page 1210], for example), using that uε,δ is locally Lipschitz on ]a, b[× K̊ ,
we conclude that uε,δ − v cannot have a local maximum in ]a, b[ × K̊ . Since
uε,δ(t, x)→−∞ as t→ b, the function uε,δ − v attains its maximum at a point
in [a, b[× ∂K ∪ {a}× K . Using that uε,δ ≤ u, we obtain

uε,δ − v ≤ max
[a,b]×∂K∪{a}×K

u− v

on K ×[a, b[. Letting δ, ε→ 0, we obtain u− v ≤max[a,b]×∂K∪{a}×K u− v on
K ×[a, b[. Continuity of both u and v yields

max
K×[a,b]

u− v ≤ max
[a,b]×∂K∪{a}×K

u− v. �
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For viscosity solutions, we obtain:

Corollary 2.7. Let H : T ∗M→R, (x, p) 7→ H(x, p) Hamiltonian that is contin-
uous, coercive above each compact subset of M and convex in the momentum p.
For a < b ∈ R and K ⊂ M a compact subset, assume that the two continuous
functions u, v : [a, b] × K → R are viscosity solutions of the evolutionary
Hamilton–Jacobi equation (1-1) on ]a, b[× K̊ . If u= v on [a, b]×∂K ∪{a}×K ,
then u = v on [a, b]× K .

3. Tonelli Hamiltonians and their Lagrangians

Definition 3.1. A Tonelli Hamiltonian H on the complete Riemannian manifold
(M, g) is a function H : T ∗M→ R satisfying the following conditions:

(1∗) The function H is C2.

(2∗) (uniform superlinearity) For every K ≥ 0, we have

C∗(K )= sup
(x,p)∈T ∗M

K‖p‖x − H(x, p) <∞.

(3∗) (uniform boundedness in the fibers) For every R ≥ 0, we have

A∗(R)= sup{H(x, p) | ‖p‖ ≤ R}<+∞.

(4∗) (C2 strict convexity in the fibers) For every (x, p) ∈ T ∗M , the second
derivative along the fibers, ∂2 H/∂p2(x, p), is (strictly) positive definite.

Note that both A∗ and C∗ are nondecreasing functions, and that (2*) implies

∀(x, p) ∈ T ∗M, H(x, p)≥ K‖p‖−C∗(K ).

If M is compact, the third condition is automatically satisfied, and the second
condition is equivalent to

H(x, p)
‖p‖x

→+∞ as ‖p‖x →+∞.

We thus recover the usual definition of a Tonelli Hamiltonian in the case of M
compact.

We note that the uniform superlinearity implies that a Tonelli Hamiltonian is
coercive.

We should emphasize that, in the noncompact case, the Tonelli condition
depends on the choice of the complete Riemannian metric on M .

Example 3.2. (1) The easiest example of a Tonelli Hamiltonian is H0 :T ∗M→R

defined by
H0(x, p)= 1

2‖p‖2x .
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In fact, in this case,

A∗0(R)= sup {H0(x, p) | ‖p‖x ≤ R} = 1
2 R2,

C∗0 (K )= sup
(x,p)∈T ∗M

K‖p‖x − H0(x, p)= sup
(x,p)∈T ∗M

K‖p‖x −
1
2‖p‖2x =

1
2 K 2.

(2) Let V : M→ R be a C2 function and let X : M→ TM be a C2 vector field
on M . We define the Hamiltonian HX,V : T ∗M→ R by

HX,V (x, p)= 1
2‖p‖2x + p(X (x))+ V (x).

For every x ∈ M , we have

sup
p∈T ∗x M
‖p‖x=R

HX,V (x, p)= 1
2 R2
+ R‖X (x)‖x + V (x).

Therefore
A∗X,V (R)=

1
2 R2
+ sup

x∈M
(R‖X (x)‖x + V (x)).

In particular, we get

A∗X,V (0)= sup
x∈M

V (x) and sup
x∈M
‖X (x)‖x + inf

x∈M
V (x)≤ A∗X,V (1).

For every x ∈ M , we have

sup
p∈T ∗x M
‖p‖x=R

K‖p‖x − HX,V (x, p)= sup
p∈T ∗x M
‖p‖x=R

K‖p‖x −
1
2‖p‖2x − p(X (x))− V (x)

= K R− 1
2 R2
+ R‖X (x)‖x − V (x).

Therefore, for every x ∈ M , we have

sup
p∈T ∗x M

K‖p‖x − HX,V (x, p)= 1
2(K +‖X (x)‖x)

2
− V (x),

and

C∗X,V (K )= sup
x∈M

K‖p‖x − HX,V (x, p)= sup
x∈M

1
2(K +‖X (x)‖

2
x)− V (x).

In particular, we get −infx∈M V (x) ≤ C∗X,V (0). Therefore, the Hamiltonian
HX,V is Tonelli if and only if ‖V ‖∞ = supx∈M |V (x)| < +∞ and ‖X‖∞ =
supx∈M‖X (x)‖x <+∞.

In the sequel, we will assume that H : T ∗M→ R is a Tonelli Hamiltonian on
the complete Riemannian manifold M . We now need to introduce the (Tonelli)
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Lagrangian L : TM→ R associated to the Hamiltonian H . It is defined by the
Fenchel formula

L(x, v)= sup
p∈T ∗x M

p(v)− H(x, p) (3-1)

Since H is Tonelli, note that the sup in the definition of L is achieved at the
unique point p ∈ T ∗x M , where v = ∂p H(x, p).

Moreover, from the Fenchel formula (3-1) above, we obtain the Fenchel
inequality

p(v)≤ L(x, v)+ H(x, p) for all x ∈ M, v ∈ Tx M, p ∈ T ∗x M , (3-2)

with equality if and only if v = ∂p H(x, p).
This Lagrangian L is everywhere finite, and enjoys the same properties as H

(see [9], for example):

(1) The Lagrangian L is at least C2. In fact, it is as smooth as H .

(2) (uniform superlinearity) For every K ≥ 0, we have

C(K )= sup
(x,v)∈TM

K‖v‖x − L(x, v) <∞. (3-3)

(3) (uniform boundedness in the fibers) For every R ≥ 0, we have

A(R)= sup{L(x, v) | ‖v‖ ≤ R}<+∞. (3-4)

(4) (C2 strict convexity in the fibers) For every (x, v) ∈ TM , the second
derivative along the fibers, ∂2L/∂v2(x, v), is (strictly) positive definite.

Again (2) implies

∀(x, v) ∈ TM, L(x, v)≥ K‖v‖−C(K ). (3-5)

A Tonelli Lagrangian on the complete Riemannian manifold (M, g) is a
function L : TM → R which satisfies condition (1) to (4) above. As is well-
known, we can define a Hamiltonian H : T ∗M→R by the same Fenchel formula

H(x, p)= sup
v∈Tx M

p(v)− L(x, v).

Again the supremum above is attained precisely when p = ∂vL(x, v). This H is
a Tonelli Hamiltonian whose associated Lagrangian is precisely L .

Example 3.3. We give the Lagrangians of the Hamiltonians in Example 3.2.

(1) The Lagrangian L0 : TM→ R associated to the Tonelli Hamiltonian H0 :

T ∗M→ R is
L0(x, v)=

1
2
‖v‖2x ,

and A0(R)= R2/2,C0(K )= K 2/2.
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(2) The Lagrangian L X,V : TM → R associated to the Hamiltonian HX,V :

T ∗M→ R is

L X,V (x, v)= 1
2‖v− X (x)‖2x −V (x)= 1

2‖v‖
2
x −〈v, X (x)〉+ 1

2‖X (x)‖
2
x −V (x).

For every x ∈ M , we have

sup
v∈Tx M
‖v‖x=R

L X,V (x, v)= 1
2 R2
+ R‖X (x)‖x +

1
2‖X (x)‖

2
x − V (x)

=
1
2(R+‖X (x)‖x)

2
− V (x).

Therefore
AX,V (R)≤ 1

2(R+‖X‖∞)
2
− inf

x∈M
V (x).

A similar computation gives

CX,V (K )= 1
2 K 2
+ sup

x∈M
(K‖X (x)‖x + V (x))

≤
1
2 K 2
+ K‖X‖∞+ sup

x∈M
V (x).

4. Action, minimizers, Euler–Lagrange flow

Again in the sequel, we fix a Tonelli Hamiltonian H : T ∗M→R on the complete
Riemannian manifold (M, g) and we will denote by L : TM→ R its associated
Tonelli Lagrangian.

We need to use the calculus of variations for Lagrangians: minimizers, ex-
tremals, Euler–Lagrange equation and flow. An introduction to these concepts can
be found in [3; 5; 6], for example. We recall certain notions for the convenience
of the reader and to fix notation.

Definition 4.1 (length, action). Let γ : [a, b] → M be an absolutely continuous
curve.

• Its Riemannian length `g(γ ) is

`g(γ )=

∫ b

a
‖γ̇ (s)‖γ (s) ds.

• Its action L(γ ) (for L) is

L(γ )=

∫ b

a
L(γ (s), γ̇ (s)) ds.

Note that since L is bounded below by−C(0) the integral above makes always
sense (it can be +∞). In fact, since L +C(0)≥ 0, we set∫ b

a
L(γ (s), γ̇ (s)) ds =−C(0)(b− a)+

∫ b

a
L(γ (s), γ̇ (s)) +C(0)ds.
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From the definition of the distance d on the Riemannian manifold (M, g), we
also have

d(x, y)= inf
γ
`g(γ ),

where the inf is taken over all absolutely continuous curves γ : [a, b] → M with
γ (a)= x , γ (b)= y.

Here are some basic estimates relating action of curves to their length.

Lemma 4.2. Let γ : [a, b] → M be an absolutely continuous curve. For every
K ∈ [0,∞[, we have

L(γ )≥ K`g(γ )−C(K )(b− a)≥ K d(γ (a)γ (b))−C(K )(b− a) (4-1)

and

d(γ (a), γ (b))≤ `g(γ )≤
L(γ )+C(K )(b− a)

K
. (4-2)

In particular, for every ε > 0, we have

d(γ (a), γ (b))≤ `g(γ )≤ εL(γ )+ εC(1/ε)(b− a). (4-3)

Proof. We use the inequality (3-5), to obtain

L(γ (s), γ̇ (s))≥ K‖γ̇ (s)‖γ (s)−C(K ),

from which it follows by integration that

L(γ )≥ K`g(γ )−C(K )(b− a).

Both inequalities (4-1) and (4-2) follow easily. Moreover, inequality (4-3) follows
from (4-2) with K = 1/ε. �

The estimates above yield a modulus of continuity for curves with bounded
Lagrangian. Recall that a modulus of continuity is a nondecreasing function
η : [0,+∞[→ [0,+∞[ that is continuous at 0 and satisfies η(0)= 0.

Lemma 4.3. For every finite K , T ≥ 0, we can find a modulus of continuity
ηK ,T : [0,+∞[ → [0,+∞[ such that, for every absolutely continuous curve
γ : [a, b] → M , with b− a ≤ T and L(γ )≤ K , we have

d(γ (t ′), γ (t))≤ `g(γ |[t, t ′])≤ ηK ,T (|t ′− t |) for all t, t ′ ∈ [a, b].

Proof. Since L ≥−C(0), for any curve γ : [a, b] → M , and all a ≤ t ≤ t ′ ≤ b,
we obtain

−C(0)(t−a)+L(γ |[t, t ′])−C(0)(b−t ′)≤ L(γ |[0, t])+L(γ |[t, t ′])+L(γ |[t ′,b])

= L(γ ).
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Therefore

L(γ |[t, t ′])≤ L(γ )−C(0)(b− t ′)−C(0)(t − a)≤ L(γ )+ |C(0)|(b− a).

Hence, by (4-3) of Lemma 4.2, if L(γ )≤ K and b− a ≤ T , for every ε > 0, we
get

d(γ (t ′), γ (t))≤ `g(γ |[t, t ′])≤ ε(K + |C(0)|T )+ εC(1/ε)(t ′− t).

It is not difficult to see that we can take modulus of continuity the function ηK ,T

defined by
ηK ,T (s)= inf

ε>0
ε(K + |C(0)|T )+ ε|C(1/ε)|s. �

Once action is defined, the notion of minimizer can be introduced.

Definition 4.4 (minimizer). A minimizer (for L) is a curve γ : [a, b] → M such
that

L(δ)=

∫ b

a
L(δ(s), δ̇(s)) ds ≥ L(γ )=

∫ b

a
L(γ (s), γ̇ (s)) ds,

for every absolutely continuous curve δ : [a, b] → M such that δ(a)= γ (a) and
δ(b)= γ (b).

It is not difficult to show that the restriction to any subinterval [c, d] ⊂ [a, b]
of a minimizer γ : [a, b] → M is itself a minimizer.

Examples 4.5. (1) If L0 : TM → R is given by L0(x, v) = 1
2‖v‖

2
x , then γ :

[a, b] → M is a minimizer if and only if γ is a geodesic of M with `g(γ ) =

d(γ (a), γ (b)). Such a minimizer satisfies

L(γ )=
d(γ (a), γ (b))2

2(b− a)
.

(2) (Mañé Lagrangian) Let X be a C2 vector field on the complete Riemannian
manifold M . Define the Lagrangian L X : TM→ R by

L(x, v)= 1
2‖v− X (x)‖2x .

This Lagrangian is Tonelli. Since L ≥ 0, the solution curves of the vector field
X are minimizers. In fact, they are the only minimizers for L X with zero action.

(3) For a real number p ≥ 4, if L p : TM→ R is given by L p(x, v)= 1
2‖v‖

2
x +

1
p‖v‖

p
x , then L is a Tonelli Lagrangian. We note that Lagrangian L̃ p : TM→ R

defined by L̃ p(x, v)= 1
p‖v‖

p
x is not Tonelli since ∂2

v2 L(x, 0) is identically 0 for
every x ∈ M . If γ : [a, b] → M is a curve, we have

L(γ )=

∫ b

a

1
2‖γ̇ (s)‖

2
γ +

1
p‖γ̇ (s)‖

p
γ ds.
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Since the functions t 7→ t2 and t 7→ t p are strictly convex, Jensen’s inequality
implies

L(γ )

b− a
≥

1
2

(
1

b− a

∫ b

a
‖γ̇ (s)‖γ (s) ds

)2

+
1
p

(
1

b− a

∫ b

a
‖γ̇ (s)‖γ (s) ds

)p

≥
1
2

(
d(γ (a), γ (b))

b− a

)2

+
1
p

(
d(γ (a), γ (b))

b− a

)p

,

with equality if and only if ‖γ̇ (s)‖γ (s) identically equals d(γ (a), γ (b))/(b− a).
Hence, the curve γ is a minimizer if and only if it is a length minimizing geodesic
of M . Therefore the action of a minimizer γ : [a, b] → M is given by

L(γ )=
d(γ (a), γ (b))2

2(b− a)
+

d(γ (a), γ (b))p

p(b− a)p−1 . �

Minimizers play a crucial role. Like all minima of a function, minimizers
must be critical points for the action functional L. These critical points are called
extremals.

More precisely, an extremal (for L) is a curve γ : [a, b] → M such that the
derivative Dγ L|Eγ at γ vanishes, with

Eγ = {δ : [a, b] → M | δ(a)= γ (a), δ(b)= γ (b)}.

By the classical calculus of variations, the curve γ is an extremal if and only if
it satisfies the Euler–Lagrange equation, given in local coordinates by

d
dt

(
∂L
∂v
(γ (t), γ̇ (t))

)
=
∂L
∂x
(γ (t), γ̇ (t)). (4-4)

This last ODE (4-4) defines a second order ODE on M . Therefore there exists a
flow ϕt on TM , called the Euler–Lagrange flow, such that γ : [a, b] → M is an
extremal if and only if its speed curve s 7→ (γ (t), γ̇ (t)) is an orbit of ϕt . Moreover,
for any (x, v)∈TM , the projected curve γx,v(t)=πϕt(x, v), where π :TM→M
is the canonical projection, is an extremal with (γx,v(t), γ̇x,v(t)) = ϕt(x, v).
Hence, if two extremals have the same position and speed at a time t , then they
coincide on their common interval of definition.

We now state Tonelli’s theorem; see [3; 5; 6] for a proof.

Theorem 4.6 (Tonelli). Suppose L : TM → R is a Tonelli Lagrangian on the
complete Riemannian manifold M. For every t > 0 and every x, y ∈ M , there
exists an absolutely continuous curve γ : [0, t] → M , with γ (0)= x, γ (t)= y
which is a minimizer.

Any minimizer is as smooth as L and is a solution of the Euler–Lagrange
equation.
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There is a fundamental relation between the Euler–Lagrange flow for the
Lagrangian L : TM→R and the Hamiltonian flow of the associated Hamiltonian
H : T ∗M→ R of L . Recall that L is obtained from H by (3-1). As we already
observed, it is also true, in the Tonelli case, that H can be obtained in the same
way from L

H(x, p)= sup
v∈Tx M

p(v)− L(x, v). (4-5)

Again, since L is Tonelli, the supremum in the definition of H(x, p) is attained
at the unique v ∈ Tx M such that p = ∂vL(x, v). In particular, we have

H (x, ∂vL(x, v))= ∂vL(x, v)(v)− L(x, v).

Recall that the Hamiltonian flow of H is the flow ϕ∗t on T ∗M obtained from the
ODE on T ∗M given in local coordinates by

ẋ =
∂H
∂p
, ṗ =−

∂H
∂x
.

The Hamiltonian H is invariant under the flow ϕ∗t .
In fact the flow ϕt on TM and ϕ∗t on T ∗M are conjugated by the Legendre

transformation L : TM→ T ∗M given by

L(x, x)= (x, ∂vL(x, v)).

In particular, the function H ◦ L in invariant by the Euler–Lagrange flow.
Expressed in the variables (x, v), it is called the energy of the Lagrangian.

Definition 4.7. The energy E : TM → R of the Lagrangian L : TM → R is
defined by

E(x, v)= H ◦L(x, v)
= H(x, ∂vL(x, v))

= supu∈Tx M〈∂vL(x, v), u〉− L(x, u)

= ∂vL(x, v)(v)− L(x, v). (4-6)

As said above, E is constant along any orbit of the Euler–Lagrange flow.

Definition 4.8. Let γ : [a, b] → M be an extremal of L . Its energy E(γ (s),
γ̇ (s)), s ∈ [a, b], is constant along its speed curve. Therefore, we can define the
energy E(γ ) for the extremal γ : [a, b]→ M by E(γ )= E(γ (s), γ̇ (s)), for any
s ∈ [a, b].

We will give later estimates for speeds of extremals. We first define the
minimal action to join x to y in time t .
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Definition 4.9 (minimal action ht ). For x, y ∈ M and t > 0, we define the
minimal action ht(x, y) to join x to y in time t by

ht(x, y)= inf
γ

∫ t

0
L(γ (s)γ̇ (s)) ds,

where the infimum is taken over all absolutely continuous curves γ : [0, t]→ M ,
with γ (0)= x and γ (t)= y.

We will also set h0(x, x)= 0 and h0(x, y)=+∞, for x 6= y. These last two
definitions are the natural ones in view of Lemma 4.11.

It is useful to introduce the function H : [0,+∞[×M ×M→ R defined by

H(t, x, y)= ht(x, y).

Since L is bounded from below by−C(0), we obtain that H(t, x, y)=ht(x, y)
is always finite, for t > 0.

By Tonelli’s theorem (Theorem 4.6), for t > 0, the infimum in the definition of
ht is always attained. We can also use the definition of ht to give a characterization
of minimizers:

Proposition 4.10. For any x, y ∈ M and every t > 0, we can find an absolutely
continuous curve γ : [0, t] → M , with γ (0)= x, γ (t)= y and

ht(x, y)= L(γ )= inf
γ

∫ t

0
L(γ (s)γ̇ (s)) ds.

Any such curve is a minimizer. Moreover, an absolutely continuous curve δ :
[a, b] → M is a minimizer if and only if

hb−a(δ(a), δ(b))=
∫ b

a
L(δ(s), δ̇(s)) ds.

A first estimate of ht(x, y) is given by the next lemma.

Lemma 4.11. For every t > 0, every x, y ∈ M and every K ≥ 0, we have

−C(K )t + K d(x, y)≤ ht(x, y)≤ t A(d(x, y)/t). (4-7)

In particular, we have −C(0)t ≤ ht(x, y), ht(x, x)≤ A(0)t , and hd(x,y)(x, y)≤
A(1)d(x, y).

Proof. A minimizing geodesic γx,y : [0, t] → M joining x to y has length
`g(γx,y) = d(x, y) and a speed of constant norm. But integrating the speed
yields the length; hence

‖δ̇(s)‖δ(s) = d(x, y)/t for s ∈ [a, b].
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By the uniform boundedness of L in the fibers (inequality (3-4)), we thus get

L(γx,y(s), γ̇x,y(s))≤ A (d(x, y)/t) for every s ∈ [a, b],

and again by integration

L(γ )≤ t A
(

d(x, y)
t

)
.

Therefore, we also obtain second inequality in (4-7).
For the first inequality of (4-7), we now observe that, by inequality (4-1) of

Lemma 4.2, for any absolutely continuous curve γ : [0, t] → M , with γ (0)= x
and γ (t)= y, we have

K d(x, y)−C(K )t ≤ L(γ ).

Taking the infimum of the above inequality over all such curves γ yields the
desired inequality. �

Examples 4.12. We estimate the function ht for some examples.

(1) If L0 : TM → R is given by L0(x, v) = 1
2‖v‖

2
x , from Example 4.5(1), we

obtain

ht(x, y)=
d(x, y)2

2t
.

(2) For a real number p ≥ 4, if L p : TM→ R is given by L p(x, v)= 1
2‖v‖

2
x +

1
p‖v‖

p
x , from of Example 4.5(1), we obtain

ht(x, y)=
d(x, y)2

2t
+

d(x, y)p

pt p−1 .

(3) If L X,V : TM→ R is given by

L X,V (x, p)= 1
2‖v− X (x)‖2x−V (x)= 1

2‖v‖
2
x−〈v, X (x)〉+ 1

2‖X (x)‖
2
x−V (x),

where V : M → R is a C2 function and X is a C2 vector field on M . From
Example 3.3(2), we know that

AX,V (R)≤ 1
2(R+‖X‖∞)

2
− inf

x∈M
V (x).

Therefore by Lemma 4.11, we get

ht(x, y)≤
(d(x, y)+ t‖X‖∞)2

2t
− t inf

x∈M
V (x).

Again by Example 3.3(2), we know that

CX,V (K )≤ 1
2 K 2
+ K‖X‖∞+ sup

x∈M
V (x).
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Therefore by inequality (4-1) of Lemma 4.2, we have

ht(x, y)≥ K d(x, y)− 1
2 t K 2

− t K‖X‖∞− t sup
x∈M

V (x).

Since this is true for every K ≥ 0, taking the supremum over all K ≥ 0 yields

ht(x, y)≥


−t supx∈M V (x) if d(x, y)≤ t‖X‖∞,

(d(x, y)− t‖X‖∞)2

2t
− t supx∈M V (x) otherwise.

We now give some more properties of ht(x, y).

Proposition 4.13. (1) For every t, t ′ > 0 and every x, y ∈ M , we have

ht+t ′(x, y)= inf
z∈M

ht(x, z)+ ht ′(y, z),

and this infimum is attained.

(2) If γ : [a, b] → M is a minimizer, for every a′, b′ ∈ [0, t], with a′ < b′, we
have

hb′−a′(γ (a′), γ (b′))=
∫ b′

a′
L(γ (s), γ̇ (s)) ds.

(3) If γ : [a, b] → M is a minimizer, we have

hb−a(γ (a), γ (b))≥ K`g(γ )−C(K )(b− a)

≥ K d(γ (a), γ (b))−C(K )(b− a) (4-8)

and

d(γ (a), γ (b))≤ `g(γ )≤
hb−a(γ (a), γ (b))+C(K )(b− a)

K
. (4-9)

In particular, for every ε > 0,

d(γ (a), γ (b))≤ `g(γ )≤ εhb−a(γ (a), γ (b))+ εC(1/ε)(b− a). (4-10)

Proof. Part (1) follows from the following facts:

• If γ : [0, t + t ′] → M ,

L(γ )= L(γ |[0, t])+ L(γ |[t, t + t ′]).

• If γ1 : [0, t] → M and γ2 : [0, t ′] → M are curves with γ1(t) = γ2(0), the
concatenation γ2 ∗ γ1 : [0, t + t ′] → M , defined by

γ2 ∗ γ1(s)=
{
γ1(s) for 0≤ s ≤ t ,
γ2(s− t) for t ≤ s ≤ t + t ′,

is a curve joining γ1(0) to γ2(t ′)whose action L(γ2∗γ1) equals L(γ1)+L(γ2).
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Part (2) follows from Proposition 4.10, since we already observed (after
Definition 4.4) that γ |[a′, b′] is also a minimizer.

Parts (3) and (4) follow from inequalities (4-1), (4-2) and (4-3) in Lemma 4.2
and Proposition 4.10. �

To estimate the speed of extremals, we start with two lemmas, providing first
an estimate of the partial derivative of L with respect to v, and then of the energy
(Lemma 4.15).

Lemma 4.14. For every K ≥ 0 and every (x, v) ∈ TM , we have

‖∂vL(x, v)‖x ≤ A(‖v‖x + 1)+C(0),

‖∂vL(x, v)‖x‖v‖x ≥ K‖v‖x −C(K )− A(0).

Therefore D(R)→+∞ as R→+∞, where D : [0,+∞[ → [0,+∞[ is the
function defined by

D(R)= inf
{
‖∂vL(x, v)‖x

∣∣ v ∈ Tx M, ‖v‖x ≥ R
}
.

The function D is nondecreasing and D(0)= 0. Moreover, we have

‖∂vL(x, v)‖x ≥ D(‖v‖x),

for every (x, v) ∈ TM.

Proof. By convexity of L(x, v) in v, we have

L(x, v+ u)− L(x, v)≥ ∂vL(x, v)(u). (4-11)

taking the sup over u with ‖u‖x ≤ 1, we obtain

‖∂vL(x, v)‖x ≤ max
‖u‖x≤1

L(x, v+ u)− L(x, v).

But we know that L ≥ −C(0) and max‖u‖x≤1 L(x, v + u) ≤ A(‖v‖x + 1), by
inequality (3-4). Therefore we get

‖∂vL(x, v)‖x ≤ A(‖v‖x + 1)+C(0).

Setting u =−v in (4-11), we obtain

L(x, 0)− L(x, v)≥−∂vL(x, v)(v),

from which we get

‖∂vL(x, v)‖x‖v‖x ≥ ∂vL(x, v)(v)

≥ L(x, v)− L(x, 0)

≥ K‖v‖x −C(K )− A(0),
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where we again used (3-4) and (3-5).
The function D is obviously nondecreasing. We then note that

D(0)= inf
(x,v)∈TM

‖∂vL(x, v)‖ ≥ 0.

Since L is superlinear in v, for every x ∈ M , the function L(x, · ) achieves a
minimum on Tx M , at which ∂vL(x, · ) vanishes. Therefore D(0)= 0.

We now show that D(R)→+∞ as R→+∞. Since D is nondecreasing
limR→+∞ D(R) exists in R∪ {+∞}.

Given K ≥ 0, for any v ∈ Tx M , with ‖v‖x ≥ R, we have

‖∂vL(x, v)‖x ≥ K −
C(K )+ A(0)
‖v‖x

≥ K −
|C(K )+ A(0)|

R
.

Therefore D(R) ≥ K − |C(K )+ A(0)|/R, and limR→+∞ D(R) ≥ K . Since
K ≥ 0 is arbitrary, we indeed get limR→+∞ D(R)=+∞. �

Lemma 4.15. We have

A(2‖v‖x)+ 2C(0)≥ E(x, v)≥ ‖∂vL(x, v)‖x − A(1).

Therefore E(x, v) ≥ D(‖v‖x)− A(1), where D is the nondecreasing function
defined in Lemma 4.14.

Proof. We use again the convexity of L expressed by (4-11), with u = v to obtain

L(x, 2v)− L(x, v)≥ ∂vL(x, v)(v).

Subtracting L(x, v) from both sides, we get

L(x, 2v)− 2L(x, v)≥ ∂vL(x, v)(v)− L(x, v)= E(x, v).

Since L(x, v)≥−C(0) and L(x, 2v)≤ A(2‖v‖x), we obtain

E(x, v)≤ A(2‖v‖x)+ 2C(0).

Since E(x, v)= supu∈Tx M ∂vL(x, v)(u)− L(x, u), we have

E(x, v)≥ sup
‖u‖x≤1

∂vL(x, v)(u)− L(x, u).

This last inequality, together with L(x, u) ≤ A(1), valid for ‖u‖x ≤ 1, yields
E(x, v)≥ ‖∂vL(x, v)‖x − A(1). �

We now give the estimate on the speed of an extremal. It uses the preservation
of energy along a solution of the Euler–Lagrange equation.
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Proposition 4.16. Suppose L : TM→ R is a given Tonelli Lagrangian. There
exists a nondecreasing function η : [0,+∞[→[0,+∞[ such that for every curve
γ : [a, b] → M which satisfies the Euler–Lagrange equation, we have

sup
t∈[a,b]

‖γ̇ (t)‖γ (t)≤ η
(

inf
t∈[a,b]

‖γ̇ (t)‖γ (t)
)
.

Therefore
sup

t∈[a,b]
‖γ̇ (t)‖γ (t)≤ η[`g(γ )/(b− a)].

Proof. Consider the nondecreasing function D introduced in Lemma 4.14. Since
D(0)= 0, we can introduce a nondecreasing function ζ defined on [0,+∞[ by

ζ(ρ)= sup{R ≥ 0 | D(R)≤ ρ}.

Since D(R)→+∞ as R→+∞, the function ζ is finite everywhere. We also
have ζ(D(R))≥ R, since ζ(D(R))= sup{R′ | D(R′)≤ D(R)}.

Consider now a solution γ : [a, b] → M of the Euler–Lagrange equation.
Define smin, smax ∈ [a, b] by

‖γ̇ (smin)‖γ (smin)= inf
t∈[a,b]

‖γ̇ (t)‖γ (t),

‖γ̇ (smax)‖γ (smax)= sup
t∈[a,b]

‖γ̇ (t)‖γ (t).

By Lemma 4.15, we get

A(2‖γ̇ (smin)‖γ (smin))+ 2C(0)≥ E[γ (smin), γ̇ (smin)]

and
E[γ (smax), γ̇ (smax)] ≥ D

(
‖γ̇ (smax)‖γ (smax)

)
− A(1).

We have E[γ (smin), γ̇ (smin)] = E (γ (smax), γ̇ (smax)), by the conservation of
energy. Therefore

A(2‖γ̇ (smin)‖γ (smin))+ 2C(0)+ A(1)≥ D
(
‖γ̇ (smax)‖γ (smax)

)
.

Since ζ is nondecreasing and ζ(D(R))≥ R, we obtain

ζ
(

A(2‖γ̇ (smin)‖γ (smin))+ 2C(0)+ A(1)
)
≥ ‖γ̇ (smax)‖γ (smax).

To finish the proof of the first inequality of the proposition, it suffices to define
the nondecreasing everywhere finite function η : [0,+∞[→[0,+∞[ by η(R)=
ζ(A(2R)+ 2C(0)+ A(1)).

The second inequality follows from the nondecreasing character of η and

(b− a) min
s∈[a,b]

‖γ̇ (s)‖γ (s) ≤
∫ b

a
‖γ̇ (s)‖γ (s) ds = `g(γ ). �



134 ALBERT FATHI

Corollary 4.17. If L : TM → R is a given Tonelli Lagrangian, we can find
nondecreasing functions η̄, η̃ : [0,+∞[ → [0,+∞[ such that any minimizer
γ : [a, b] → M satisfies

sup
t∈[a,b]

‖γ̇ (t)‖γ (t)≤ η̄
(

hb−a(γ (a), γ (b))
b− a

)
and

sup
t∈[a,b]

‖γ̇ (t)‖γ (t)≤ η̃
(

d(γ (a), γ (b))
b− a

)
.

Proof. By (4-9), we have

`g(γ )≤ hb−a(γ (a), γ (b))+C(1)(b− a).

Therefore, using the function η from Proposition 4.16, since a minimizer satisfies
the Euler–Lagrange equation, we obtain

sup
t∈[a,b]

‖γ̇ (t)‖γ (t)≤ η
(

C(1)+
hb−a(γ (a), γ (b))

b− a

)
.

This finishes the proof of the first inequality, with η̄(s)= η(s+C(1)).
To prove the second one, we recall, from (4-7) in Lemma 4.11, that

hb−a(γ (a), γ (b))
b− a

≤ A
(

d(γ (a), γ (b))
b− a

)
.

Therefore

sup
t∈[a,b]

‖γ̇ (t)‖γ (t)≤ η̄
(

A
(

d(γ (a), γ (b))
b− a

))
.

The function t 7→ η̃(t)= η̄ ◦ A(t) is finite everywhere and nondecreasing. �

For a subset S ⊂ M , recall that its diameter diam S, for the Riemannian
distance d on M , is defined by

diam S = sup{d(x, y) | x, y ∈ S}.

The next result, a straightforward consequence of Corollary 4.17, provides us
with the criterion for compactness of a set of minimizers.

Proposition 4.18. Suppose S⊂M , with diam S finite, and t0 > 0. Any minimizer
γ : [a, b] → M such that γ (a), γ (b) ∈ S and b− a ≥ t0 satisfies

sup
t∈[a,b]

‖γ̇ (t)‖γ (s) ≤ η̃(diam S/t0),

where η̃ is the nondecreasing everywhere finite function from Corollary 4.17.
Therefore, the set of minimizers γ : [a, b] → M such that γ (a), γ (b) ∈ S and
b− a ≥ t0 is equi-Lipschitz.
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An important property of ht(x, y), namely its local semiconcavity in (x, y),
is proved in [8, Theorem B.19, page 50]. It is not difficult, using the proof of
Theorem B.19 in [8], to show that H(t, x, y) is locally semiconcave in (t, x, y)
on ]0,+∞[×M ×M .

Proposition 4.19. The function H is locally semiconcave on ]0,+∞[×M ×M.
Moreover, for every compact subset C ⊂ M ×M , and every t0 > 0, the family of
functions ht : C→ R, t ≥ t0 is equi-semiconcave.

Another useful reference on semiconcavity and the Hamilton–Jacobi equation
is [4].

Example 4.20. If L0 : TM→ R is given by L0(x, v)= 1
2‖v‖

2
x , from part (1) of

Example 4.12, we obtain

H(t, x, y)=
d(x, y)2

2t
.

Therefore, from the previous proposition we obtain that d2 is locally semiconcave
on M × M . Moreover, since s 7→

√
s is C∞ on ]0,+∞[, we obtain that d is

locally semiconcave on M × M \1M , where 1M = {(x, x) | x ∈ M} is the
diagonal in M ×M .

Since H is locally semiconcave, it is locally Lipschitz. Therefore, it has a
derivative almost everywhere in ]0,+∞[×M ×M . We proceed to express this
derivative.

We need to use the notion of upper and lower differentials (called also upper
and lower derivatives)–see [2; 1; 4; 6; 7] for more details on this notion and its
relationship with viscosity solutions.

Notation 4.21. If w : N → R is a function on the manifold N and n ∈ N , the
set of upper-differentials (resp. lower-differentials) of w at N is denoted by
D+w(n)⊂ T ∗n N (resp. D−w(n)⊂ T ∗n N ).

Proposition 4.22. Since H is locally semiconcave on ]0,+∞[× M × M , for
every (t, x, y) ∈ ]0,+∞[×M ×M the set of superderivatives D+H(t, x, y)⊂
T ∗(t,x,y)(]0,+∞[×M ×M = R× T ∗x M × T ∗y M is not empty. If γ : [0, t] → M
is a minimizer, with γ (0)= x and γ (t)= y, we have

(−E(γ ),−∂vL(γ (0), γ̇ (0)), ∂vL(γ (t), γ̇ (t))) ∈ D+H(t, x, y),

where E(γ )= E(γ (s), γ̇ (s)), s ∈ [0, t] is the energy of the minimizer γ .
In particular, we have

−E(γ ) ∈ D+t H(t, x, y),

−∂vL(γ (0), γ̇ (0)) ∈ D+x H(t, x, y),

∂vL(γ (t), γ̇ (t)) ∈ D+y H(t, x, y).

(4-12)
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The proof that (−∂vL(γ (0), γ̇ (0)), ∂vL(γ (t), γ̇ (t)))∈ D+ht(x, y) is given in
[8, Theorem B.20, page 53]. We leave it to the reader to check the superderivative
in t .

Corollary 4.23. For (t, x, y)∈]0,+∞[×M×M , the function H is differentiable
at (t, x, y) ∈ ]0,+∞[× M × M if and only if there exists a unique minimizer
γ : [0, t] → M , with γ (0)= x and γ (t)= y.

Moreover, for each (t, x, y) ∈ ]0,+∞[×M ×M , the set of superderivatives
D+H(t, x, y) is the convex hull of the set of covectors(

−E(γ ),−∂vL(γ (0), γ̇ (0)), ∂vL(γ (t), γ̇ (t))
)
,

where γ : [0, t] → M is an arbitrary minimizer with γ (0)= x and γ (t)= y.

Proof. If H is differentiable at (t, x, y) ∈ ]0,+∞[×M×M and γ : [0, t]→ M
is a minimizer, with γ (0) = x and γ (t) = y, then, by Proposition 4.22 above
∂yH(t, x, y) = ∂vL(γ (t), γ̇ (t)), since L is strictly convex the speed γ̇ (t) is
completely determined by ∂yH(t, x, y). Therefore, since a minimizer satisfies the
Euler–Lagrange equation, the curve γ is completely determined by ∂yH(t, x, y).

This proves half of the first statement of the corollary. To prove the second
part, we recall that D+H(t, x, y) is the convex hull of ∂H(t, x, y) where any
point in ∂H(t, x, y) is a limit of a sequence of derivatives DH(ti , xi , yi ), where
(ti , xi , yi ) → (t, x, y) as i → ∞, and H is differentiable at each (ti , xi , yi ).
By Proposition 4.22, the derivative DH(ti , xi , yi ) is given by a minimizer γi :

[0, ti ] → M with γ (0) = xi and γ (ti ) = y. If η̃ is the nondecreasing finite
everywhere function obtained in Corollary 4.17, we have

‖γ̇i (s)‖γi (s) ≤ η̃

(
d(γ (0), γ (ti ))

ti

)
for all s ∈ [0, ti ].

Since (ti , xi , yi )→ (t, x, y), with t > 0, we have supi d(γ (0), γ (ti ))/ti <+∞.
Let C be the value of this supremum. We see that the norm of the speed
‖γ̇i (s)‖γi (s) is bounded by η̃(C), independently of i and s ∈ [0, ti ]. Extracting a
subsequence if necessary, we can assume that (γi (0), γ̇i (0)) converges to some
(x, v) with v ∈ Tx M . If we call γ the solution of the Euler–Lagrange equation
with (γ (0), γ̇ (0))= (x, v), we obtain that γ : [0, t] → M is a minimizer, with
γ (0)= x and γ (t)= y. But we have

DH(ti , xi , yi )=
(
−E(γi ),−∂vL(γi (0), γ̇i (0)), ∂vL(γi (t), γ̇(ti ))

)
,

which tends to
(
−E(γ ),−∂vL(γ (0), γ̇ (0)), ∂vL(γ (t), γ̇ (t))

)
. This proves the

last part of the corollary.
To finish the proof of the corollary, it suffices to show that if there is a unique

minimizer γ : [0, t] → M , with γ (0)= x and γ (t)= y, then H is differentiable
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at (t, x, y). By what we just proved, this uniqueness condition implies that
D+H(t, x, y) = ∂H(t, x, y) is reduced to one point. Since H is semiconcave,
this implies that H is differentiable at (t, x, y). �

Corollary 4.24. For (t, x, y) ∈ ]0,+∞[×M ×M , the following statements are
equivalent:

(i) The function H is differentiable at (t, x, y).

(ii) The partial derivative ∂xH(t, x, y) exists.

(iii) The partial derivative ∂yH(t, x, y) exists.

(iv) There exists a unique minimizer γ : [0, t]→M , with γ (0)= x and γ (t)= y.

If any one of these statements is true, we have

∂tH(t, x, y)=−E(γ ),

∂xH(t, x, y)=−∂vL(γ (0), γ̇ (0)),

∂yH(t, x, y)= ∂vL(γ (t), γ̇ (t))),

(4-13)

where γ : [0, t] → M is the unique minimizer with γ (0)= x and γ (t)= y.

Proof. Of course (i) implies (ii) and (iii). From Corollary 4.23, statements
(i) and (iv) are equivalent. To finish proving that (i), (ii), (iii) and (iv) are all
equivalent, it remains to show that (ii) or (iii) imply (iv). We will show that (ii)
implies (iv). In fact, if ∂xH(t, x, y) exists and γ : [0, t] → M is a minimizer
with γ (0) = x and γ (t) = y, by equality (4-12) of Proposition 4.22, we have
∂xH(t, x, y)=−∂vL(γ (0), γ̇ (0)). Therefore not only the position at time 0 of
γ is unique, but also its speed γ̇ (0) is unique. Since such a minimizer γ satisfies
Euler–Lagrange, we conclude that γ is unique.

The last part of the corollary follows from (4-12). �

Corollary 4.25. We can find a nondecreasing everywhere finite function θ :
[0,+∞[→[0,+∞[ such that at every point (t, x, y)∈]0,+∞[×M×M , where
the derivative DH(t, x, y) exists, it is bounded in norm by θ(H(t, x, y)/t).

Proof. We first estimate ∂xH(t, x, y). By Proposition 4.22, if γ : [0, t]→ M is a
minimizer, with γ (0)= x and γ (t)= y, we have ∂xH(t, x, y)= ∂vL(γ (0), γ̇ (0)).
Therefore by Lemma 4.15, we get

‖∂xH(t, x, y)‖x ≤ A(‖γ̇ (0)‖γ (0)+ 1)+C(0).

Combining with Corollary 4.17, since L(γ )=H(t, x, y), we obtain

‖∂xH(t, x, y)‖x ≤ A(η̄[H(t, x, y)/t] + 1)+C(0).

Therefore if we define the nondecreasing function θ1 : [0,+∞[→ [0,+∞[ by

θ1(R)=max (0, A(η̄[R] + 1)+C(0)) ,
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we obtain
‖∂xH(t, x, y)‖x ≤ θ1(H(t, x, y)/t).

In the same way, we obtain

‖∂yH(t, x, y)‖x ≤ θ1(H(t, x, y)/t).

To estimate ∂tH(t, x, y)=−E(γ (s), γ̇ (s)), we use Lemma 4.15 and Corollary
4.17:

|∂tH(t, x, y)| = |E(γ (0), γ̇ (0))|

≤max
(

A(1), A(2‖γ̇ (0)‖γ (0))+ 2C(0)
)

≤max
(

A(1), A(2η̄[H(t, x, y)/t])+ 2C(0)
)
.

Hence, if we define the nondecreasing function θ2 : [0,+∞[→ [0,+∞[ by

θ2(R)=max
(
0, A(1), A(2η̄[R])+ 2C(0))

)
,

we obtain
|∂tH(t, x, y)| ≤ θ2(H(t, x, y)/t).

Therefore

‖DH(t, x, y)‖2(t,x,y) ≤ 2θ1(H(t, x, y)/t)2+ θ2(H(t, x, y)/t)2.

Since the functions θ1 and θ2 are both finite everywhere, nonnegative and nonde-
creasing, so is the function θ defined by

θ(R)=
√

2θ1(R)2+ θ2(R)2.

This function satisfies the inequality ‖DH(t, x, y)‖(t,x,y) ≤ θ(H(t, x, y)/t). �

Proposition 4.26. If we fix y ∈ M , the function Hy : ]0,+∞[×M , defined by

Hy(t, x)=H(t, y, x)= ht(y, x),

is a viscosity solution of

∂tHy + H(y, ∂yHy)= 0.

Proof. From Proposition 4.19, we know that Hy is locally semiconcave. There-
fore, since the Hamiltonian H is convex in p, it suffices to check the evolutionary
Hamilton–Jacobi equation at every point (t, x) where Hy is differentiable. If
(t, x) is such a point and γ : [0, t]→ M is a minimizer with γ (0)= y, γ (t)= x ,
by Corollary 4.24, we have

∂xHy(t, x)= ∂xH(t, y, x)= ∂vL(γ (t), γ̇ (t))

∂tHy(t, x)= ∂tH(t, y, x)=−E(γ (t), γ̇ (t))=−H(γ (t), ∂vL(γ (t), γ̇ (t))).
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Therefore

∂tHy(t, x)+ H(y, ∂yHy(t, x))

=−H(γ (t), ∂vL(γ (t), γ̇ (t)))+ H(γ (t), ∂vL(γ (t), γ̇ (t)))

= 0. �

5. Action and viscosity (sub)solutions

Again in the sequel, we fix a Tonelli Hamiltonian H : T ∗M→R on the complete
Riemannian manifold (M, g) and we will denote by L : TM→ R its associated
Tonelli Lagrangian.

A first relation between action and viscosity subsolution is given in the next
Proposition 5.5. To state it, it is convenient to recall the notion of evolution
domination by a Lagrangian introduced in [7, Definition 14.2, page 1232].

To do it in an appropriate way, we first recall that for a curve γ : I → M ,
where I is an interval in R, the graph Graph(γ )⊂ R×M of γ is

Graph(γ )= {(t, γ (t)) | t ∈ I }.

Definition 5.1 (evolution domination by a Lagrangian). We will say that the
function U : S→ [−∞,+∞], where S ⊂ R×M is evolution-dominated by L
on S, if, for every absolutely continuous curve γ : [a, b] → M with a < b ∈ R

and Graph(γ )⊂ S whose action L(γ )=
∫ b

a L(γ (s), γ̇ (s)) ds is finite, we have

U (b, γ (b))≤U (a, γ (a))+
∫ b

a
L(γ (s), γ̇ (s)) ds. (5-1)

We will say that such a U : S→ [−∞,+∞] is strongly evolution-dominated
by L on S, if for every (t, x), (t ′, x ′) ∈ S, with t < t ′, it satisfies the stronger
condition

U (t ′, x ′)≤U (t, x)+ ht ′−t(x, x ′). (5-2)

Remark 5.2. (1) If U (a, γ (a)) is finite, the inequality (5-1) is equivalent to

U (b, γ (b))−U (a, γ (a))≤ L(γ )=

∫ b

a
L(γ (s), γ̇ (s)) dt.

(2) If S ⊂ R×M is of the form S = I ×M , where I is an interval in R, then
U : I×M→[−∞,+∞] is evolution-dominated by L if and only if it is strongly
evolution-dominated by L .

Proposition 5.3. Let U : S→ [−∞,+∞] be evolution-dominated by L on the
subset S ⊂ R×M.
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(1) Assume γ : [a, b] → M is an absolutely continuous function curve, with
Graph(γ )⊂ S, whose action is finite. If U (t0, γ (t0))<+∞ (resp. U (t0, γ (t0))>
−∞), then U (t, γ (t)) < +∞ for t ∈ [t0, b] (resp. U (t, γ (t)) > −∞ for t ∈
[a, t0]).

(2) Let S ⊂×R→ M be such that S = I ×W , where I is an interval in R and
W ⊂ M is open and connected. If for some (x0, t0) ∈ I ×M we have U (x0, t0) <
+∞ (resp. U (x0, t0) >−∞) then U <+∞ everywhere on (I ∩ ]t0,+∞[)×W
(resp. U >−∞ everywhere on (I ∩ ]−∞, t0[)×W ).

(3) If U : S → [−∞,+∞] is strongly evolution-dominated by L on S and,
for some (x0, t0) ∈ S, we have U (x0, t0) < +∞ (resp. U (x0, t0) > −∞) then
U < +∞ everywhere on S ∩ (]t0,+∞[× M) (resp. U > −∞ everywhere on
S ∩ (]−∞, t0[×M)).

Proof. For part (1) we note that the evolution domination of U by L on S, for
t ∈ ]t0, b], we get

U (t, γ (t))≤U (t0, γ (t0))+
∫ t0

t
L(γ (s), γ̇ (s)) ds.

Since
∫ t0

t L(γ (s), γ̇ (s)) ds is finite, the inequality U (t0, γ (t0)) < +∞ implies
U (t, γ (t)) <+∞ for t ∈ ]t0, b].

For part (2), since W is open and connected in the manifold M , given t > t0
and x ∈, we can find a smooth curve γ : [t0, t] → W with γ (t0) = x0 and
γ (t) = x . Since L is continuous and γ is C1, the action L(γ ) of γ is finite.
Moreover Graph(γ ) ⊂ I × W , the evolution domination condition implies
U (t, x)≤U (t0, x0)+ L(γ ) <+∞.

For part (3), it suffices to observe that, for (t, x) ∈ S ∩ (]t0,+∞[ × M),
we have |ht−t0(x0, x)| < +∞ and the strong L domination implies U (t, x) ≤
U (t0, x0)+ ht−t0(x0, x). �

Proposition 5.4. Suppose U :O→R is finite-valued and evolution-dominated by
L on the open subset O ⊂R×M. Then U is locally bounded on O. The function
U is locally strongly evolution-dominated by L; that is, for every (t0, x0) ∈ O
there exists a neighborhood V ⊂ O of (t0, x0) such that the restriction U |V is
strongly evolution-dominated by L on V .

Proof. Fix a compact neighborhood of the form [t0−2δ, t0+2δ]× B̄(x0, 3r)⊂ O
of (t0, x0) ∈ O . For any x ∈ B̄(x0, 2r) and t ∈ [t0− δ, t0+ δ], the minimizing
geodesic γx0,x : [t0− 2δ, t] → M joining x0 to x is contained in B̄(x0, 2r) and,
by Lemma 4.11, its action L(γx0,x) is less than(

t − (t0− 2δ)
)

A
(

d(x0, x)
t − (t0− 2δ)

)
≤ 3δA

(
2r
δ

)
.



VISCOSITY SOLUTIONS OF THE HAMILTON–JACOBI EQUATION 141

Since the function is evolution-dominated by L on O ⊃ [t0 − 2δ, t0 + 2δ] ×
B̄(x0, 3r), we obtain

U (t, x)≤U (t0− 2δ, x0)+ L(γx0,x)≤U (t0− 2δ, x0)+ 3δA(2r/δ).

This shows that U is bounded above on the compact neighborhood of (t0, x0)

given by [t0− δ, t0+ δ]× B̄(x0, 2r). In the same way the minimizing geodesic
γx,x0 : [t, t0+ 2δ] → M joining x to x0 is contained in B̄(x0, 2r) and has action
L(γx,x0) less than (t0+2δ− t)A(d(x, x0)/(t0+2δ− t))≤ 3δA(2r/δ). Therefore

U (t0+ 2δ, x0)≤U (t, x)+ 3δA(2r/δ),

which implies that U is bounded below on [t0− δ, t0+ δ]× B̄(x0, 2r). We then
set

K = 2 sup
{
|U (t, x)|

∣∣ (t, x) ∈ [t0− δ, t0+ δ]× B̄(x0, 2r)
}
<+∞.

Fix (t, x), (t ′, x ′) ∈ [t0− δ, t0+ δ]× B̄(x0, 2r), with t ′ < t .
We obviously get

U (t ′, x ′)−U (t, x)≤ K ≤ ht ′−t(x, x ′) for ht ′−t(x, x ′)≥ K . (5-3)

If ht ′−t(x, x ′)≤ K , pick a minimizer γ : [t, t ′] → M , with γ (t)= x, γ (t ′)= x ′

and ht ′−t(x, x ′)= L(γ )≤ K , since |t ′− t | ≤ 2δ, from Lemma 4.3, we obtain

`g(γ |[t, t ′])≤ ηK ,2δ(|t ′− t |),

where ηK ,2δ : [0,+∞[→ [0,+∞[ is a modulus of continuity; i.e., the function
ηK ,2δ is continuous at 0 and ηK ,2δ(0) = 0. Therefore, we can find ε > 0, with
ε < δ, such that ηK ,2δ(s)≤ r for all s ≤ 2ε. Hence, if we further assume that

(t, x), (t ′, x ′) ∈ [t0− ε, t0+ ε]× B̄(x0, r),

we obtain `g(γ |[t, t ′]) ≤ r and γ ([t, t ′]) ⊂ B̄(x0, 2r). Since the graph of γ is
contained in [t0− δ, t0+ δ]× B̄(x0, 2r)⊂ O and U is evolution-dominated by
L on O , we get

U (t ′, x ′)−U (t, x)≤ ht ′−t(x, x ′).

Together with (5-3), this shows that U is strongly evolution-dominated by L on
[t0− ε, t0+ ε]× B̄(x0, r). �

The reader will notice that the proof of the next proposition, giving the con-
nection between evolution domination and viscosity subsolution, is very similar
to the (standard) proof of Proposition 14.3 in [7], once we have Corollary 2.3.
We provide a complete proof for the reader’s convenience.
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Proposition 5.5. Let H be a Tonelli Hamiltonian on the complete Riemannian
manifold M. Suppose U : O→ R is a continuous function defined on the open
subset O. Then U is a viscosity subsolution of

∂tU + H(x, ∂xU )= 0, (5-4)

on O if and only if it is evolution-dominated by L on O.

Proof. Assume that U is a viscosity subsolution of (5-4). We prove that

U (b, γ (b))−U (a, γ (a))≤
∫ b

a
L(γ (s), γ̇ (s)) dt, (5-5)

holds for an absolutely continuous curve γ : [a, b] → M , with Graph(γ )⊂ O .
If U is smooth, the Fenchel inequality (3-2) between L and H yields

∂xU (t, x)(v)≤ L(x, v)+ H(x, ∂xU (t, x)) for all v ∈ Tx M .

Since the viscosity subsolution U of (5-4) is smooth on O , we have

∂tU (t, x)+ H (x, ∂xU (t, x))≤ 0 everywhere on O .

We combine the two inequalities to obtain

∂tU (t, x)+∂xU (t, x)(v)≤ L(x, v) for all (t, x, v) with (t, x) ∈ O, v ∈ Tx M .

Therefore, since Graph(γ )⊂ O and γ is absolutely continuous, we obtain

∂tU (t, γ (t))+ ∂xU (t, γ (t))(γ̇ (t))≤ L(γ (t), γ̇ (t)) for almost all s ∈ [a, b].

By integration, this proves the desired inequality.
For U just continuous, since γ ([a, b]) is a compact subset, we can use

Corollary 2.3 to reduce, by an approximation argument, this continuous case to
the smooth case.

Let us now assume that U satisfies (5-5) for every absolutely continuous curve
γ : [a, b] → M , with Graph(γ )⊂ O . To prove that U is a viscosity subsolution
of (5-4), consider a C1 function 8 : O→ R, with 8≥U and 8(t, x)=U (t, x),
for some (t, x) ∈ O . If v ∈ Tx M , let γ : [t − 1, t] → M be a smooth curve with
γ (t) = x and γ̇ (t) = v. Since γ is continuous and O is open for ε > 0 small
enough, we have Graph(γ |[t − ε, t])⊂ O . Using 8≥U and inequality (5-5),
we get

8(t, γ (t))−8(t − ε, γ (t − ε))≤U (t, γ (t))−U (t − ε, γ (t − ε))

≤

∫ t

t−ε
L(γ (s), γ̇ (s)) dt.
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Dividing by ε and letting ε→ 0 yields

∂t8(t, x)+ ∂x8(t, x)[v] ≤ L(x, v),

or equivalently

∂t8(t, x)+ ∂x8(t, x)[v] − L(x, v)≤ 0.

Taking the supremum over all v ∈ Tx M , we obtain

∂t8(t, x)+ H(x, ∂x8(t, x))≤ 0. �

6. A construction of viscosity solutions

Again in the sequel, we fix a Tonelli Hamiltonian H : T ∗M→R on the complete
Riemannian manifold (M, g) and we will denote by L : TM→ R its associated
Tonelli Lagrangian.

We will give a rather general way to obtain viscosity solutions on open subsets
of R×M of the Hamilton–Jacobi equation (1-1).

We start with a nonempty subset K ⊂ R×M . Besides being nonempty, we
do not impose any other property on K . We set

tK ,inf = inf{t | (t, x) ∈ K },

We consider a function U : K→[−∞,+∞[. We do not assume U continuous
or even measurable; the only restriction (for convenience) is that U does not take
the value +∞. See Remark 6.1(1), however. We can define the function Û on
]tK ,inf,+∞[×M→ [−∞,+∞[ by

Û (t, x)= inf{U (t̃, x̃)+ ht−t̃(x̃, x) | (t̃, x̃) ∈ K and t̃ ≤ t}. (6-1)

Note that this definition makes sense for t > tK ,inf, since for such a t the set
{t̃ | (t̃, x̃) ∈ K and t̃ ≤ t} is not empty.

Remark 6.1. (1) Suppose that we have a function U : K →[−∞,+∞], which
may assume the value +∞. If U is not identically +∞, define K f as

K f = {(t, x) |U (t, x) 6= +∞}.

Then K f is not empty and U f =U |K f never takes the value +∞. We can then
define Û f : ]tinf(K f ),+∞[×M→ [−∞,+∞[ as above by

Û f (t, x)= inf{U (t̃, x̃)+ ht−t̃(x̃, x) | (t̃, x̃) ∈ K f and t̃ ≤ t}.

If tK ,inf = tK f ,inf or equivalently

tK ,inf = inf{t | (t, x) ∈ K and U (t, x) 6= +∞}, (6-2)



144 ALBERT FATHI

then we have

Û f (t, x)= Û (t, x)= inf{U (t̃, x̃)+ ht−t̃(x̃, x) | (t̃, x̃) ∈ K and t̃ ≤ t}.

(2) A special case of the construction above is the Lax–Oleinik evolution; see
Definition 8.2 and Remark 8.4(3) below.

Theorem 6.2. Let U : K → [−∞,+∞[ be a function defined on the subset
K ⊂ R×M.

Define the function Û on ]tinf,K ,+∞[×M→ [−∞,+∞[ by

Û (t, x)= inf{U (t̃, x̃)+ ht−t̃(x̃, x) | (t̃, x̃) ∈ K and t̃ ≤ t}, (6-3)

where tK ,inf= inf{t | (t, x)∈K }. This function Û , is strongly evolution-dominated
by L on ]tinf,K ,+∞[×M. Moreover, if Û (T, X) is finite for some X ∈ M and
some T ∈ ]tK ,inf,+∞[, then the function Û is

(i) finite everywhere on ]tK ,inf, T [×M ;

(ii) bounded on every compact subset of ]tinf,K , T [×M ;

(iii) continuous, locally semiconcave on ]tK ,inf, T [×M \ K̄ ;

(iv) a viscosity solution of the evolutionary Hamilton–Jacobi (1-1) on

]tK ,inf, T [×M \ K̄ .

Proof. To prove the strong evolution domination, note that for (t, x), (t ′, x ′) ∈
]tinf,K ,+∞[× M , with t ′ < t , if t̃ ≤ t ′, then t̃ ≤ t . Therefore, for (t̃, x̃) ∈ K ,
with t̃ ≤ t ′, from (6-1), we get

Û (t, x)≤U (t̃, x̃)+ ht−t̃(x̃, x)≤U (t̃, x̃)+ ht ′−t̃(x̃, x ′)+ ht−t ′(x ′, x).

Again from (6-1), taking the inf over all (t̃, x̃) ∈ K , with t̃ ≤ t ′, we obtain

Û (t, x)≤ Û (t ′, x ′)+ ht−t ′(x ′, x),

which means that Û is strongly evolution-dominated by L on ]tinf,K ,+∞[×M .
For the rest of the proof, we assume that Û (T, X) is finite for some X ∈ M

and T ∈ ]tK ,inf,+∞[.
Property (i) is a consequence of (ii). We now prove (ii). Let C be a nonempty

compact subset of ]tinf,K , T [ × M . By the strong L evolution domination on
]tK ,inf, T [×M , we have

Û (T, X)≤ Û (t, x)+ hT−t(x, X) for t ∈ ]tinf,K , T [.

Since (t, x) 7→ hT−t(x, X) is finite and continuous on ]t̃, T [×M , which implies
that it is bounded from above on the compact subset C⊂]t̃, T [×M . We conclude
that Û is bounded from below on C .
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It remains to show that Û is bounded from above on C . By compactness of C ,
we have tinf,C = inf{t | (t, x) ∈ C}> tinf,K . In particular, we can find (t̃, x̃) ∈ K
with tinf,C > t̃ ≥ tinf,K . From (6-1)

Û (t, x)≤U (t̃, x̃)+ ht−t̃(x̃, x) for t > t̃ .

Note that we are assuming that U does not take the value +∞, hence U (t̃, x̃) <
+∞. Since C is a compact set contained in ]t̃, T [×M and (t, x) 7→ ht−t̃(x̃, x)
is finite and continuous on ]t̃,+∞[× M , this function (t, x) 7→ ht−t̃(x̃, x) is
bounded on the compact set C . Hence Û (t, x) is bounded from above on C .

To prove (iii) and (iv), we first prove a lemma.

Lemma 6.3. Under the hypothesis of Theorem 6.2, suppose that Û (T, X) is
finite for some X ∈ M and T ∈ ]tK ,inf,+∞[. Assume that δ > 0 and (t0, x0) ∈

]tinf,K , T [×M are such that

[t0− δ, t0+ δ]× B̄(x0, δ)⊂ ]tinf,K , T [×M \ K̄ .

We can find ε > 0, with 2ε < δ, such that, for all (t, x)∈ [t0−ε, t0+ε]× B̄(x0, ε),
we have

Û (t, x)= inf{Û (t ′, x ′)+ ht−t ′(x ′, x) | (t ′, x ′) ∈ [t0− δ, t0− 2ε]× B̄(x0, δ)}.

Proof. For all ε > 0, with 2ε < δ, the inequality

Û (t, x)≤ inf{Û (t ′, x ′)+ ht−t ′(x ′, x) | (t ′, x ′) ∈ [t0− δ, t0− 2ε]× B̄(x0, δ)}

follows from the just established strong L domination of Û . Therefore, it
suffices to show that, we can find ε > 0, with 2ε < δ, such that, for all (t, x) ∈
[t0− ε, t0+ ε]× B̄(x0, ε) and all η ∈ ]0, 1], we have

inf{Û (t ′, x ′)+ht−t ′(x ′, x) | (t ′, x ′) ∈ [t0− δ, t0−2ε]× B̄(x0, δ)} ≤ Û (t, x)+η.

From the already established part (ii), the function Û is bounded on the
compact subset [t0− δ, t0+ δ]× B̄(x0, δ) of ]tinf,K , T [×M \ K̄ . Therefore

A = 1+ 2 sup{|Û (t, x)| | [t0− δ, t0+ δ]× B̄(x0, δ)}<+∞. (6-4)

Denote by ηA,2δ the continuity modulus provided by Lemma 4.3. Hence, for
every absolutely continuous curve γ : [a, b]→M , with b−a≤ 2δ and L(γ )≤ A,
we have

d(γ (t ′), γ (t))≤ `g(γ |[t, t ′])≤ ηA,2δ(|t ′− t |) for all t, t ′ ∈ [a, b]. (6-5)

Since ηA,2δ is a modulus of continuity, we can pick ε > 0, with 3ε < δ such that

ηA,2δ(α) < δ/3 for 0≤ α ≤ 3ε. (6-6)
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Fix now (t, x) ∈∈ [t0− ε, t0+ ε]× B̄(x0, ε) and η ∈ ]0, 1]. By the definition of
Û , (6-1), we can find (t̃, x̃) ∈ K such that

U (t̃, x̃)+ ht−t̃(x̃, x)≤ Û (t, x)+ η. (6-7)

Pick a minimizer γ : [t̃, t]→M , with γ (t̃)= x̃ and γ (t)= x . Since (t̃, γ (t̃))∈ K ,
which is disjoint from [t0 − δ, t0 + δ] × B̄(x0, δ), and (t, γ (t)) ∈ [t0 − ε, t0 +
ε]× B̄(x0, ε)⊂ ]t0− δ, t0+ δ[× B̊(x0, δ), we can find s ∈ ]t̃, t[ with (s, γ (s)) ∈
∂
(
[t0− δ, t0+ δ]× B̄(x0, δ)

)
. We have

t0− δ ≤ s ≤ t ≤ t0+ ε < t0+ δ and γ (s) ∈ B̄(x0, δ). (6-8)

Since γ is a minimizer and γ (t̃)= x̃, γ (t)= x , we have

ht−t̃(x̃, x)= ht−t̃(γ (t̃), γ (t))

= hs−t̃(γ (t̃), γ (s))+ ht−s(γ (s), γ (t))

= hs−t̃(x̃, γ (s))+ ht−s(γ (s), x),

which, by (6-7), implies

U (t̃, x̃)+ hs−t̃(x̃, γ (s))+ ht−s(γ (s), γ (t))≤ Û (t, x)+ η.

But, again by the definition (6-1) of Û , we have

Û (s, γ (s))≤U (t̃, x̃)+ hs−t̃(x̃, γ (s)).

Combining the last two inequalities, we obtain

Û (s, γ (s))+ ht−s(γ (s), γ (t))≤ Û (t, x)+ η, (6-9)

Claim We have s ≤ t0− 2ε.

From this claim, we can finish the proof of the Lemma.
In fact, combining the claim and (6-8), we have (s, γ (s)) ∈ [t0− δ, t0−2ε]×

B̄(x0, δ). Therefore, using (6-9), we obtain

inf
{
Û (t ′, x ′)+ ht−t ′(x ′, γ (t)) | (t ′, x ′) ∈ [t0− δ, t0− 2ε]× B̄(x0, δ)

}
≤ Û (s, γ (s))+ ht−s(γ (s), γ (t))

≤ Û (t, x)+ η.

It remains to prove the claim. Since (s, γ (s)) ∈ ∂
(
[t0− δ, t0+ δ]× B̄(x0, δ)

)
and s < t0 + δ, either s = t0 − δ or γ (s) ∈ ∂ B̄(x0, δ). In the first case, we
get s = t0 − δ < t − 2ε and the claim holds. In the second case, we have
d(x0, γ (s))= δ. But γ (t)= y ∈ B̄(x0, ε), hence, using 3ε < δ, we get

d(γ (t), γ (s))≥ δ− ε > δ/3.
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We now observe that (6-9) implies

L(γ |[s, t])= ht−s(γ (s), γ (t))≤ Û (t, x)−Û (s, γ (s))+η≤ A<+∞, (6-10)

since η≤ 1, both (t, x), (s, γ (s)) are in [t0− δ, t0+ δ]× B̄(x0, δ) and A is given
by (6-4). Furthermore, we have s < t and s, t ∈ [t0 − δ, t0 + δ], which yields
0< t − s ≤ 2δ. Therefore, by the property (6-5) defining ηA,2δ, we get

d(γ (t), γ (s))≤ ηA,2δ(t − s).

Since d(γ (t), γ (s)) > δ/3, it follows from by the definition of ε, (6-6), that
t − s > 3ε, which implies

s < t − 3ε ≤ (t0+ ε)− 3ε = t0− 2ε. �

End of the proof of Theorem 6.2. To prove (iii) and (iv), we fix (t0, x0) in the
open subset ]tK ,inf, T [×M \ K̄ , we then pick δ > 0 such that

[t0− δ, t0+ δ]× B̄(x0, δ)⊂ ]tinf,K , T [×M \ K̄ .

By Lemma 6.3, we can find ε > 0 such that

Û (t, x)= inf{Û (t ′, x ′)+ ht−t ′(x ′, x) | (t ′, x ′) ∈ [t0− δ, t0− 2ε]× B̄(x0, δ)},

(6-11)
for all (t, x) ∈ [t0− ε, t0+ ε]× B̄(x0, ε). The map

[(t, x), (t ′, x ′)] 7→ (t − t ′, x ′, x)

is smooth and takes values in ]0,+∞[×M ×M on the compact set(
[t0− ε, t0+ ε]× B̄(x0, ε)

)
×
(
[t0− δ, t0− 2ε]× B̄(x0, δ)

)
.

Since, by Proposition 4.19, the map (s, x ′, x) 7→ hs(x ′, x) is locally semicon-
cave on ]0,+∞[ × M × M , we conclude that [(t, x), (t ′, x ′)] 7→ ht−t ′(x ′, x)
is locally semiconcave on a neighborhood of

(
[t0− ε, t0+ ε]× B̄(x0, ε)

)
×(

[t0− δ, t0− 2ε]× B̄(x0, δ)
)
. Hence, since [t0−δ, t0−2ε]× B̄(x0, δ) is compact,

we conclude that the family of maps

(t, x) 7→ ht−t ′(x ′, x), (t ′, x ′) ∈ [t0− δ, t0− 2ε]× B̄(x0, δ)

is uniformly locally semiconcave on a neighborhood of the compact set [t0− ε,
t0 + ε] × B̄(x0, ε); see [8, Appendix A]. Therefore, so is the family (t, x) 7→
Û (t ′, x ′)+ ht−t ′(x ′, x), (t ′, x ′) ∈ [t0− δ, t0− 2ε]× B̄(x0, δ), which by equality
(6-11) implies that the finite function Û is locally semiconcave (and therefore
continuous) on a neighborhood [t0− δ, t0+ δ] × B̄(x0, r). See [8, Proposition
A.16, p. 34–35].
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We then observe that by Proposition 4.26, since H does not depend on the
time t , for each (t ′, x ′) ∈ [t0 − δ, t0 − 2ε] × B̄(x0, δ), the function (t, x) 7→
Û (t ′, x ′) + ht−t ′(x ′, x) is a viscosity solution of the evolutionary Hamilton–
Jacobi (1-1) on ]t0− 2ε,+∞[×M . Since we already now that Û is finite and
continuous on a neighborhood of [t0−ε, t0+ε]× B̄(x0, ε), by Corollary 2.5 and
equality (6-11), we conclude that Û is a viscosity solution of the evolutionary
Hamilton–Jacobi (1-1) on a neighborhood of [t0− ε, t0+ ε]× B̄(x0, ε). �

Proposition 6.4. Assume C ⊂ M is a closed subset and a < b ∈ R. Suppose
U : [a, b] × C → R is continuous and strongly evolution-dominated by L on
[a, b]×C. Set K = {a}×C ∪[a, b]×∂C ⊂R×M. Call Û the function defined
on ]a,+∞[×M by (6-1) using the restriction U |K :

Û (t, x)= inf{U (t ′, x ′)+ht−t ′(x ′, x) | (t ′, x ′)∈ K , t ′< t} for t > a and x ∈ M.
(6-12)

The function ˆ̂U : [a, b]×C→ R defined by

ˆ̂U (t, x)=
{

U (a, x) for t = a and x ∈ C ,
Û (t, x) for t > a and x ∈ C ,

is continuous, strongly evolution-dominated by L and ≥U on [a, b] ×C , with
ˆ̂U |K = Û |K .

Moreover, this function ˆ̂U is a locally semiconcave viscosity solution of the
evolutionary on Hamilton–Jacobi (1-1) on ]a, b[× C̊.

Proof. We first note that the inequality Û ≥ U on ]a,+∞[×M follows from
the definition of Û and the strongly L evolution domination of U on [a, b]×C .
This obviously implies that ˆ̂U ≥U on [a, b]×C .

Since, by Theorem 6.2, the function Û is strongly L evolution-dominated on
]a,+∞[×M , we obtain that ˆ̂U is strongly L evolution-dominated on ]a, b]×C .
From the definition of Û , we conclude that ˆ̂U is strongly L evolution-dominated
on [a, b]×C .

Since by Theorem 6.2, the function Û is continuous on ]a,+∞[×M \ K̄ ⊃
]a, b]×C̊ . We have to show continuity at every point of K ={a}×C∪[a, b]×∂C .
Let us start with continuity at (a, x) with x ∈ C . Using that ˆ̂U ≥U is strongly
L evolution-dominated on [a, b]×C , we get

U (t, y)≤ ˆ̂U (t, y)≤ ˆ̂U (a, y)+ ht−a(y, y)≤U (a, y)+ (t − a)A(0).

By continuity of U , we obtain the continuity of ˆ̂U at every point of {a}×C . It
remains to show that ˆ̂U is continuous at (t0, x0), with a < t0 ≤ b and x0 ∈ ∂C .
We will show at the same time that ˆ̂U (t0, x0)= Û (t0, x0). Fix t ′ ∈ ]a, t0[. Since
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ˆ̂U = Û ≥U on ]a, b]×C , for all (t, x) ∈ ]t ′, b]×C , we have

U (t, x)≤ ˆ̂U (t, x)= Û (t, x)≤U (t ′, x0)+ ht−t ′(x0, x), (6-13)

where the last inequality follows from the definition of Û , since t ′ < t and
(t ′, x0) ∈ ]a, t0[× ∂C ⊂ K . If we apply this inequality with (t, x)= (t0, x0), we
obtain

U (t0, x0)≤
ˆ̂U (t0, x0)≤U (t ′, x0)+ ht0−t ′(x0, x0)≤U (t ′, x0)+ A(0)(t0− t ′).

If we let t ′ → t0, by continuity of U , this last inequality yields ˆ̂U (t0, x0) =

U (t0, x0).
If, in equality (6-13), we keep t ′ ∈ ]a, t0[ fixed and we let (t, x)→ (t0, x0),

by continuity of U and h, we obtain

U (t0, x0)≤ lim inf
(t,x)→(t0,x0)

ˆ̂U (t, x)≤ lim sup
(t,x)→(t0,x0)

ˆ̂U (t, x)

≤U (t ′, x0)+ ht−t ′(x0, x0)≤U (t ′, x0)+ A(0)(t − t ′).

Letting again t ′ → t0, we conclude that lim(t,x)→(t0,x0)
ˆ̂U (t, x) = U (t0, x0) =

ˆ̂U (t0, x0). Therefore we finished both the proof of the continuity of ˆ̂U = Û , and
the equality ˆ̂U |K =U |K .

The fact that ˆ̂U is a locally semiconcave viscosity solution of the evolutionary
Hamilton–Jacobi equation (1-1) on ]a, b[× C̊ follows also from Theorem 6.2,
since ˆ̂U = Û on ]a, b[× C̊ . �

Theorem 6.5. Suppose O ⊂ R × M is an open subset. If U : O → R is a
continuous viscosity solution of the evolutionary Hamilton–Jacobi equation (1-1)
on O , then it is locally semiconcave.

Moreover, for every (t, x) ∈ O , we can find (t ′, x ′) ∈ O , with t ′ < t , such that

U (t, x)=U (t ′, x ′)+ ht−t ′(x ′, x).

Proof. Fix (t0, x0)∈O . Since U is a viscosity solution on O , from Proposition 5.5
we obtain that U is dominated by L on O . By Proposition 5.4, we can find a
neighborhood V of (t0, x0) in O on which U is strongly dominated by L . Without
loss of generality, we can assume that V = [t0− η, t0+ η]× B̄(x0, η)⊂ O , for
some η > 0. We set K= {t0− η}× B̄(x0, η)∪ [t0− η, t0+ η]× ∂ B̄(x0, η).

By Proposition 6.4, the function ˆ̂U : [t0− η, t0+ η]× B̄(x0, r)→ R defined
by

ˆ̂U (t, x)=


U (t, x) if t = a and x ∈ B̄(x0, η),

inf{U (t ′, x ′)+ ht−t ′(x ′, x) | (t ′, x ′) ∈ K, t ′ < t}
if t > a and x ∈ B̄(x0, η),
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is continuous, is a locally semiconcave viscosity solution of the evolutionary
on Hamilton–Jacobi (1-1) on ]t0 − η, t0 + η[ × B̊(x0, r) and satisfies ˆ̂U = U
on K = {t0 − η} × B̄(x0, η) ∪ [t0 − η, t0 + η] × ∂ B̄(x0, η). Since ˆ̂U = U on
K={t0−η}× B̄(x0, η)∪[t0−η, t0+η]×∂ B̄(x0, η), Corollary 2.7 of the maximum
principle implies ˆ̂U =U on [t0− η, t0+ η]× B̄(x0, r). But, by Proposition 6.4,
the function ˆ̂U is locally semiconcave on ]t0−η, t0+η[× B̊(x0, η). This proves
the first part of the theorem.

To prove the remaining part of the theorem, we use the equality ˆ̂U = U on
[t0− η, t0+ η] × B̄(x0, r) and the definition of ˆ̂U to find a sequence (t ′n, x ′n) ∈
K= {t0− η}× B̄(x0, η)∪ [t0− η, t0+ η]× ∂ B̄(x0, η), with t ′n < t0, such that

U (t0, x0)≤U (t ′n, x ′n)+ ht0−t ′n (x
′

n, x0)→U (t0, x0) as n→+∞. (6-14)

Since K is compact, extracting if necessary, we can assume that (t ′n, x ′n) →
(t ′, x ′) ∈ K and

U (t ′n, x ′n)+ ht0−t ′n (x
′

n, x0)≤U (t0, x0)+ 1.

By continuity of U and convergence of (t ′n, x ′n), we have

m = supn U (t0, x0)−U (t ′n, x ′n)+ 1<+∞.

Therefore

ht−t ′n (x
′

n, x)≤ m for all n.

Using the left side of the inequality (4-7) in Lemma 4.11, we obtain

−C(K )(t0− t ′n)+ K d(x0, x ′n)≤ ht0−t ′n (x
′

n, x0)≤ m for all n and all K ≥ 0.

Taking the limit as n→+∞ and reshuffling, we get

K d(x0, x ′)≤ C(K )(t0− t ′)+m for all K ≥ 0.

We now claim that t ′ < t0. We already know that t ′ ≤ t0, since t ′n < t0, for all n.
Suppose then by contradiction that t ′ = t0. The inequality above then implies

K d(x0, x ′)≤ m for all K ≥ 0.

From m < +∞, we conclude x0 = x ′. Hence (t ′, x ′) = (t0, x0). This is a
contradiction, since (t ′, x ′)∈K={t0−η}× B̄(x0, η)∪[t0−η, t0+η]×∂ B̄(x0, η).
Now that we know that t ′ < t0, using the continuity of (s, x, y) 7→ hs(x, y) for
(s, x, y) ∈]0,+∞[×M ×M we can pass to the limit in (6-14) to obtain

U (t0, x0)=U (t ′, x ′)+ ht0−t ′(x ′, x0). �
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7. Calibrated curves, backward characteristics and differentiability

We again fix a Tonelli Hamiltonian H : T ∗M→ R on the complete Riemannian
manifold (M, g) and denote its associated Tonelli Lagrangian by L : TM→ R.

Definition 7.1 (calibrated curve). Let U : S→[−∞,+∞] be a function defined
on the subset S ⊂ R× M . A curve γ : [a, b] → M is said to be U -calibrated
for the Lagrangian L if it is an absolutely continuous curve, with Graph(γ )⊂ S,
whose action L(γ )=

∫ b
a L(γ (s), γ̇ (s)) ds is finite and

U (b, γ (b))=U (a, γ (a))+ L(γ )=U (a, γ (a))+
∫ b

a
L(γ (s), γ̇ (s)) ds.

Remark 7.2. (1) For such a U -calibrated curve γ : [a, b]→ M , since its action
is finite, if either U (a, γ (a)) or U (b, γ (b)) is infinite they are both equal and
infinite.

(2) It is not difficult to check that the property of being calibrated is stable
by concatenations of curves; i.e., if γ1 : [a, b] → M and γ2 : [b, c] → M are
U -calibrated, with γ1(b) = γ2(b), then so is the concatenation γ = γ1 ∗ γ2 :

[a, c] → M , defined by

γ (t)=
{
γ1(t) for t ∈ [a, b],
γ2(t) for t ∈ [b, c].

(3) More generally, a curve γ : [a, b] → M is said to be piecewise calibrated
if we can find a finite sequence a = t0 < t1 < · · · < t` = b such that each
restriction γ |[ti , ti+1], i = 0, . . . , `− 1 is U -calibrated. Of course, by part (2),
any piecewise U -calibrated is U -calibrated.

(4) Suppose u : O→ R is a function defined on the subset O ⊂ M and c ∈ R.
If we define U : R× O→ R by

U (t, x)= u(x)− ct,

it not difficult to see that the absolutely continuous curve γ : [a, b] → M is
U -calibrated if and only if γ ([a, b])⊂ O and

u(γ (b))− u(γ (b)=
∫ b

a
L(γ (s), γ̇ (s))+ c ds;

i.e., the curve γ is (u, L , c)-calibrated as defined, for example, in [6].

Definition 7.3 (local backward characteristic). Let U : S→ [−∞,+∞] be a
function defined on the subset S ⊂ R×M . A local backward U -characteristic
ending at (t, x) ∈ S is a U -calibrated curve γ : [t − ε, t] → M , with ε > 0 and
γ (t)= x .
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More generally, a curve γ : [a, t] → M is called a local backward U -
characteristic if it is a local backward U -characteristic ending at (t, γ (t)) ∈ S.

Theorem 6.5 obviously implies the following one:

Theorem 7.4. Suppose O ⊂ ]0,+∞[×M is an open subset. If U : O→ R is a
continuous viscosity solution of the evolutionary Hamilton–Jacobi equation (1-1)
on O , then for every (t, x) ∈ O , we can find a local backward U-characteristic
ending at (t, x).

In fact, the notion of U -calibrated curve, or of local backward U -characteristic
is useful when U is evolution-dominated as can be seen from Proposition 7.5
below, whose proof is quite similar to the case of stationary solutions of the
Hamilton–Jacobi equation. Again the proof is given for the reader convenience.
Notice that no continuity assumption has to be made on the function U which is
evolution-dominated by L . Note also that by Proposition 5.5, we can apply this
proposition when U : O→ R is continuous and a viscosity subsolution of the
evolutionary Hamilton–Jacobi equation (1-1) on the open subset O ⊂ R×M .

Proposition 7.5. Suppose that the function U : S→ [−∞,+∞] is evolution-
dominated by L on S ⊂ R×M and γ : [a, b] → M is a U-calibrated curve.

(1) One of the following statements holds.
• U (t, γ (t))=+∞ for every t ∈ [a, b].
• U (t, γ (t))=−∞ for every t ∈ [a, b].
• |U (t, γ (t))|<+∞ for every t ∈ [a, b].

(2) For any subinterval [a′, b′] ⊂ [a, b], the restriction γ |[a′, b′] is also U-
calibrated.

(3) If S is an open subset of R×M and |U (t, γ (t))| is not identically +∞, the
curve γ : [a, b] → M is a local minimizer of the action and, therefore, an
extremal of L.

Proof. Note that the action of γ is finite (as required in Definition 7.1). To
prove (1), assume for example U (t0, γ (t0)) = +∞ for some t0 ∈ [a, b], then
by Proposition 5.3, we must have U (t, γ (t))=+∞, for t ∈ [a, t0[. Therefore
U (a, γ (a))=+∞. Since γ is U -calibrated, we also obtain U (b, γ (b))=+∞.
Hence U (t, γ (t))=+∞ everywhere on [a, b[, again by Proposition 5.3. The case
U (t0, γ (t0))=−∞ for some t0 ∈ [a, b] is similar and leads to U (t, γ (t))=−∞
everywhere on [a, b].

To prove (2) we first observe that, since L is bounded from below, the action
L(γ |[a′, b′]) is also finite for any subinterval [a′, b′] ⊂ [a, b]. In the case where
U is identically either +∞ or −∞, this implies the U -calibration of γ |[a′, b′],
for [a′, b′] ⊂ [a, b]. By 1), it remains to consider the case |U (t, γ (t))|<+∞,
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for every t ∈ [a, b]. In that case, from the Definition 5.1 of evolution domination,
we obtain

U (a′, γ (a′))−U (a, γ (a))≤
∫ a′

a
L(γ (s), γ̇ (s)) dt,

U (b′, γ (b′))−U (a′, γ (a′))≤
∫ b′

a′
L(γ (s), γ̇ (s)) dt,

U (b, γ (b))−U (b′, γ (b′))≤
∫ b

b′
L(γ (s), γ̇ (s)) dt,

But if we add the three inequalities above we obtain

U (b, γ (b)−U (a, γ (a))≤
∫ b

a
L(γ (s), γ̇ (s)) dt,

which is an equality. Therefore all three inequalities are equalities.
To prove (3), we observe that, when S is an open subset of R×M , any curve

δ : [a, b] → M close enough to γ (in the C0 topology) has a graph Graph(δ)
which is also included in S. If δ(a)= γ (a) and δ(b)= γ (b), the U -calibration
of γ and the Definition 5.1 of evolution domination yield

U (b, γ (b))−U (a, γ (a))≤
∫ b

a
L(δ(s), δ̇(s)) dt,

for any absolutely continuous curve δ : [a, b] → M , with δ(a) = γ (a) and
δ(b)= γ (b). But, since γ is U -calibrated, by the definition of calibration, the left
side of the inequality is

∫ b
a L(γ (s), γ̇ (s)) dt . This proves the local minimization

property. By Tonelli’s theorem such a local minimizer is as smooth as L (or H )
and is an extremal of L . �

Theorem 7.6. Suppose O ⊂ R × M is an open subset. If U : O → R is a
continuous viscosity solution of the evolutionary on Hamilton–Jacobi (1-1) on O ,
then for every (t, x)∈ O , we can find a U-characteristic extremal γ : ]a, t]→ M
ending at (t, x) and such that either a = −∞ or γ extends to a continuous
extremal γ : [a, t] → M , with (a, γ (a)) ∈ ∂O.

By Theorem 6.5, we can find a U -calibrated curve γ : [t − ε, t] → O , with
γ (t)= x . But this curve γ is an extremal for the Lagrangian L . Therefore, we
can extend γ to an extremal γ : ]−∞,+∞[→ M . Hence Theorem 7.6 follows
from the next lemma.

Lemma 7.7. Suppose O ⊂ ]0,+∞[×M is an open subset. If U : O→ R is a
continuous viscosity solution of the evolutionary Hamilton–Jacobi equation (1-1)
on O. Assume that the curve γ : ]−∞,+∞[→ M is an extremal for L that is



154 ALBERT FATHI

U-calibrated on an interval [t − ε, t] for some ε > 0, then γ is U-calibrated on
the maximal interval ]a, t] such that Graph(γ |]a, t])⊂ O.

Proof. Consider the maximal interval ]a, t] such that Graph(γ |]a, t]) ⊂ O .
Define b as the infimum of the s ∈ ]a, t] such that γ : [s, t] is U -calibrated.
We have b ≤ t − ε. Suppose that b > a, then (b, γ (b)) ∈ O , and by continuity
of U , the restriction γ |[b, t] is U -calibrated. By Theorem 7.4, there exists
a U -calibrated curve γ̃ : [b − η, b] → M , with η > 0 and γ̃ (b) = γ (b). By
Remark 7.2(2), the concatenation γ̃ ?γ : [b−η, t]→ M is also U -calibrated. By
Proposition 7.5(3), this U -calibrated curve γ̃ ? γ is also an extremal for L . Since
γ̃ ? γ = γ on [t − ε, t], with t − ε < t , we must have γ̃ ? γ = γ on [b− η, t].
This implies that γ |[b− η, t] is U -calibrated, which contradicts the definition
of b. �

Theorem 7.8 (Lax–Oleinik). A continuous function U : [0, T [ ×M→ R that
is a viscosity solution of the evolutionary Hamilton–Jacobi equation (1-1) on
]0, T [×M satisfies the Lax–Oleinik formula

U (t, x)= inf
y∈M

U (0, y)+ ht(y, x),

for all t > 0, x ∈ M. The infimum is achieved for all t > 0, x ∈ M.

Proof. Since U is a viscosity solution of the evolutionary Hamilton–Jacobi
equation (1-1) on ]0, T [×M , by Proposition 5.5, it is evolution-dominated by
L on ]0, T [×M . From Remark 5.2(2), it follows that U is strongly evolution-
dominated by L on ]0, T [ ×M . By continuity of U on [0, T [ ×M , we easily
obtain that U is strongly evolution-dominated by L on [0, T [×M . Therefore,
we have

U (t, x)≤ inf
y∈M

U (0, y)+ ht(y, x),

for all t > 0, x ∈ M . To finish the proof of the first part of the theorem, it
suffices to show that, for a given (t, x) ∈ ]0, T [×M , there exists a U -calibrated
curve γ : [0, t] → M , with γ (t) = x . Since, for a curve γ : ]a, b] → M such
that Graph(γ )⊂ ]0, T [ ×M , we must have a ≥ 0 and b < T , by Theorem 7.6
applied to the open set ]0, T [×M , we can find an extremal γ : [a, t] → M that
is U -calibrated on ]a, t] with γ (t)= x and (a, γ (a)) ∈ ∂]0, T [×M = {0}×M .
Hence a = 0, and the extremal γ : [0, t] → M is U calibrated by continuity
of U . �

Corollary 7.9. Suppose U, V : [0, T [ ×M→ R are two continuous functions
that are viscosity solutions of the evolutionary Hamilton–Jacobi equation (1-1)
on ]0, T [×M. If U ≤ V on {0}×M , then U ≤ V everywhere on [0, T [×M.

In particular, if U = V on {0}×M , then U = V everywhere on [0, T [×M.
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8. The Lax–Oleinik semigroup and the Lax–Oleinik evolution

Definition 8.1. If u : M → [−∞,+∞] is a function and t > 0, the function
T−t u : M→ [−∞,+∞] is defined by

T−t u(x)= inf
y∈M

u(y)+ ht(y, x).

We also set T−0 u = u. The (negative) Lax–Oleinik semigroup is T−t , t ≥ 0.

Definition 8.2 (Lax–Oleinik evolution). If u : M→[−∞,+∞], we will denote
by û : [0,+∞[×M→ [−∞,+∞] the function defined, for t > 0, by

û(t, x)= T−t u(x)= inf
y∈M

u(y)+ ht(y, x)

and by û(0, x)= u(x).
The function û is called the (negative) Lax–Oleinik evolution of u. We note

that û <+∞ on ]0,+∞[×M , if u is not identically +∞.

Proposition 8.3. For any function u : M→ [−∞,+∞], its Lax–Oleinik evolu-
tion û : [0,+∞[×M→ [−∞,+∞] is strongly evolution-dominated by L on
[0,+∞[×M.

Proof. This follows easily from the definition of û and Proposition 4.13(1). �

Remark 8.4. (1) If u is not identically +∞, then û(t, x) < +∞ for all t in
]0,+∞[ and x in M .

(2) If u(x0) = −∞ for some x0 ∈ M , then û(t, x) = −∞ for all t in ]0,+∞[
and x in M .

(3) If u is not identically +∞, then the set Fu = {x ∈ M | u(x) 6= +∞} is not
empty. If we set K ={0}×Fu and define U :K→[−∞,+∞[ by U (0, x)=u(x),
for all (0, x) ∈ K , then tK ,inf = 0 and Û = û on ]0,+∞[×M , where Û is given
(see (6-1)) by

Û (t, x)= inf{U (t̃, x̃)+ ht−t̃(x̃, x) | (t̃, x̃) ∈ K and t̃ ≤ t}

= inf{u(x̃)+ ht(x̃, x) | x̃ ∈ Fu}.

In particular, all the results given in Section 6 for functions of the type Û hold
for Lax–Oleinik evolutions.

Theorem 8.5. Assume u : M → [−∞,+∞] is such that û(T, X) is finite for
some (T, X)∈ ]0,+∞[×M. Then û is finite, locally semiconcave and a viscosity
solution of the evolutionary Hamilton–Jacobi equation

∂t û+ H(x, ∂x û)= 0,

on ]0, T [×M.
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Proof. As explained above, this now follows from Theorem 6.2. �

Examples 8.6. We give some examples of Lax–Oleinik evolution.

(1) For any Tonelli Lagrangian L : TM→ R, we know that ht(y, x)≥−C(0)t .
Therefore û(t, x)≥ infM u−C(0)t . This implies that û is finite everywhere, on
]0,+∞[× M , for any function u : M →]−∞,+∞[ which is bounded from
below and not identically equal to +∞.

(2) For any Tonelli Lagrangian L : TM→ R, if M is compact, we know that
−C(0)t≤ht(y, x)≤ A(diam M/t). Since, for any function u :M→[−∞,+∞],
we have

û(t, x)= inf
y∈M

u(y)+ ht(y, x),

we obtain
−C(0)t + inf

M
u ≤ û(t, x)≤ A(diam M/t)+ inf

M
u.

Hence, for a compact manifold û is finite everywhere on ]0,+∞[×M if and
only if u is bounded from below and not identically +∞. Therefore, for compact
M , the class of functions u for which û is finite on ]0,+∞[×M does not depend
on M .

(3) If A ⊂ M , we define 4A : M→ {0,+∞}

4A(x)=
{

0 if x ∈ A,
∞ otherwise.

Note that 4M is identically 0, and 4∅ is identically +∞. Moreover, the function
4A is not identically +∞ if A 6=∅.

For a given Tonelli Lagrangian L : TM → R, and A 6= ∅, we obtain, from
(1), that 4̂A is finite everywhere on ]0,+∞[×M , with

4̂A(t, x)= inf
y∈A

ht(y, x).

(4) If M =Rn with the Euclidean metric, we consider the Lagrangian L0(x, v)=
1
2‖v‖

2, where ‖·‖ is the usual Euclidean metric. We know from Example 4.12(1)
that ht(x, y)= ‖y− x‖2/2t . For α, β > 0, consider the function uα,β : M→ R

defined by
uα,β(x)=−α‖x‖β .

Its Lax–Oleinik evolution is given by

ûα,β(t, x)= inf
y∈Rn
−α‖y‖β +

‖y− x‖2

2t

=
‖x‖2

2t
+ inf

y∈Rn

(
‖y‖2

2t
−α‖y‖β +

〈y, x〉
t

)
.
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Therefore

(i) If β > 2 then ûα,β is identically −∞.

(ii) If β < 2 then ûα,β is finite everywhere.

(iii) If β = 2, for (t, x) ∈ M , we have

ûα,2(t, x) is


finite if t < α/2,

0 if (t, x)= (α/2, 0),

−∞ otherwise.

(5) If M=Rn with the Euclidean metric, for a real number p≥4, we consider the
Lagrangian L p(x, v)= 1

2‖v‖
2
+

1
p‖v‖

p, where ‖·‖ is the usual Euclidean metric.
We know from Example 4.12(2) that ht(x, y)= ‖y− x‖2/2t+‖y− x‖p/pt p−1.
Therefore if, for β > 0, we consider the function

uβ(x)=−‖x‖β .

In this case, we have

ûβ(t, x)= inf
y∈M
−‖y‖β +‖y− x‖2/2t +‖y− x‖p/pt p−1

;

hence ûβ is finite everywhere if β < p and is equal −∞ everywhere for β > p.
It follows that, for a noncompact manifold M , the class of functions u for

which û is finite depends on the Lagrangian.

Some of the well-known properties of the Lax–Oleinik semigroup (T−t )t≥0

(see [6]) are given in the following proposition.

Proposition 8.7. (1) (semigroup property) For every t, t ≥ 0, we have T−t+t ′ =

T−t ◦ T−t ′ . In particular, for every t, t ′ ≥ 0 and x, y ∈ M ,

T−t u(x)≤ u(x)+ ht(x, x)≤ u(x)+ A(0)t,

T−t+t ′u(x)≤ T−t ′ u(y)+ ht(y, x),

T−t+t ′u(x)≤ T−t ′ u(x)+ ht(x, x)≤ T−t ′ u(x)+ A(0)t.

(2) For every u : M → [−∞,+∞], and every c ∈ R, we have T−t (u + c) =
T−t (u)+ c, for every t ≥ 0.

(3) For every u, v : M→ [−∞,+∞] with u ≤ v everywhere, we have T−t u ≤
T−t v, for every t ≥ 0.

(4) For every u, v : M→ R, we have

−‖u− v‖∞+ T−t v ≤ T−t u ≤ T−t v+‖u− v‖∞,

for every t ≥ 0.



158 ALBERT FATHI

Here is a further observation on the Lax–Oleinik evolution.

Definition 8.8 (lower semicontinuous regularization). If u : M→ [−∞,+∞],
we define its lower semicontinuous regularization u− : M→ [−∞,+∞] by

u−(x)= lim inf
y→x

u(y)= sup
V

inf
y∈V

u(y),

where the supremum is taken over all neighborhoods V of x . The function u− is
the largest lower semicontinuous function which is ≤ u.

Proposition 8.9. For every function u : M→ [−∞,+∞], we have û = û− on
]0,+∞[×M.

Proof. Since u− ≤ u, we have û− ≤ û. To prove the converse inequality, it
suffices to show that for (t, x, y) ∈ ]0,+∞[×M ×M , we have

u−(y)+ ht(y, x)≥ inf
z∈M

u(z)+ ht(z, x)= û(x).

By definition of u−(y), we can find a sequence yn→ y such that u(yn)→ u−(y).
Since ht( · , x) is continuous we obtain

u−(y)+ ht(y, x)= lim
n→+∞

u(yn)+ ht(yn, x)≥ inf
z∈M

u(z)+ ht(z, x). �

We will now consider the Lax–Oleinik evolution of Lipschitz functions.
We start with a lemma connecting the Lipschitz property with the action and

the Lax–Oleinik semigroup.

Lemma 8.10. (1) For a function u :M→R, and a constant c∈R, the following
two conditions are equivalent:
• u(x)− u(y)≤ hs(y, x)+ cs, for all s > 0 and x, y ∈ M.
• u ≤ T−s u+ cs, for all s ≥ 0.

(2) If a function u : M → R, for some c ∈ M satisfies u ≤ T−s u + cs, for all
s ≥ 0, then so does T−t u for all t ≥ 0.

(3) If the function u : M → R is globally Lipschitz function, with Lipschitz
constant ≤ λ, then u ≤ T−t u + C(λ)t , for all t ≥ 0, where C( · ) is the
function defined in (3-3).

(4) If , for some c ∈ R, the function v : M→ R satisfies v ≤ T−t v+ ct , for all
t > 0 and x, y ∈ M , then v is Lipschitz, with Lipschitz constant ≤ A(1)+ c,
where A( · ) is the function defined in (3-4)

Proof. To prove (1), we note that the condition u(x)− u(y) ≤ hs(y, x)+ cs is
equivalent to u(x)≤ u(y)+ hs(y, x)+ cs. Therefore the two conditions in part
(1) are equivalent since T−s u(x)= infy∈M u(y)+ hs(y, x).

Part (2) follows easily from parts (1), (2) and (3) of Proposition 8.7.
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To prove (3), using (4-9), we note that

u(x)− u(y)≤ λd(x, y)≤ hs(y, x)+C(λ)s.

To prove (4), we note that hd(x,y)(x, y)≤ A(1)d(x, y) by Lemma 4.11. Hence

v(y)− v(x)≤ hd(x,y)(x, y)+ cd(x, y)≤ [A(1)+ c]d(x, y).

By symmetry, we conclude that the Lipschitz constant of v is ≤ A(1)+ c. �

We recall that a function u : M → R is said to be evolution-dominated by
L + c if it satisfies the equivalent properties of Lemma 8.10(1).

Proposition 8.11. The Lax–Oleinik evolution û of any (globally) Lipschitz func-
tion u : M→ R is finite everywhere on [0,+∞[×M.

Moreover, for every constant λ ∈ [0,+∞[, we can find a constant 3 such that
û has Lipschitz constant ≤3 as soon as u has Lipschitz constant ≤ λ.

Proof. Assume that u : M→ R has Lipschitz constant ≤ λ. By Lemma 8.10(3)
we have

u(x)≤ Tsu(x)+C(λ)s,

for all s ≥ 0. This implies that û is finite everywhere.
Lemma 8.10(2) yields

T−t u(x)≤ T−s T−t u(x)+C(λ)s, (8-1)

for all t, s ∈ [0,+∞[, and x ∈M . Therefore, by Lemma 8.10(4), the Lax–Oleinik
evolution has a Lipschitz constant in x which is ≤ A(1)+C(λ).

To compute the Lipschitz constant in t , we note that, by the semigroup property,
we have

T−t+su(x)≤ T−t u(x)+ hs(x, x)≤ T−t u(x)+ A(0)s.

Combining this last equality with (8-1), we get

−C(λ)s ≤ T−t+su(x)− T−t u(x)≤ A(0)s.

It follows that the Lipschitz constant in t of û is ≤ max
(
|A(0)|, |C(λ)|

)
. This

finishes the proof of the existence of the constant 3. �

We next extend the results obtained above to uniformly continuous function.

Corollary 8.12. The Lax–Oleinik evolution û : [0,+∞[×M→R of a uniformly
continuous function u : M→ R is finite everywhere and uniformly continuous.

Proof. By Lemma A.1 in the Appendix, there is a sequence of Lipschitz functions
un : M→ R such that ‖u− un‖∞→ 0 as n→+∞. By Proposition 8.7(4), for
every t ≥ 0, and every n ≥ 0, we have

−‖u− un‖∞+ T−t un ≤ T−t u ≤ T−t un +‖u− un‖∞.
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Therefore û is finite everywhere and ‖û−ûn‖∞≤‖u−un‖∞→0 as n→+∞. By
Proposition 8.11, each function ûn is Lipschitz. Therefore, again by Lemma A.1,
the uniform limit û of the Lipschitz functions ûn is uniformly continuous. �

We then consider the case when u is Lipschitz in the large; see Definition A.2.

Corollary 8.13. For any finite constant K ≥ 0, we can find a finite constant κ
such that any function u : M→ R Lipschitz in the large with constant K has a
Lax–Oleinik evolution û : [0,+∞[× M → R, which is finite everywhere and
Lipschitz in the large with constant κ on [0,+∞[×M→ R.

Proof. By Proposition A.4, we can find a Lipschitz function ϕ : X → R, with
Lipschitz constant K , such that ‖u−ϕ‖∞ = supx∈M |u(x)−ϕ(x)| ≤ K/2.

From Proposition 8.11, the Lax–Oleinik evolution ϕ̂ is Lipschitz with a Lip-
schitz constant ≤ 3(K ), where 3(K ) depends only on K . As in the proof of
Corollary 8.12, by Proposition 8.7(4), we have

‖û− ϕ̂‖∞ ≤ ‖u−ϕ‖∞ ≤ K/2.

We can now apply again Proposition A.4 of the Appendix, to conclude that
û : [0,+∞[ × M → R is finite everywhere and Lipschitz in the large with
constant κ =max(3(K ), K ) on [0,+∞[×M→ R. �

Of course, in Corollary 8.13 the Lax–Oleinik evolution û of the Lipschitz
in the large function u : M → R is, as for all Lax–Oleinik evolutions, locally
Lipschitz on ]0,+∞[×M , since it is everywhere finite on ]0,+∞[×M . We
will show in Theorem 9.5 that û is globally Lipschitz on [t0,+∞[×M , for every
t0 > 0.

Our goal now is the case to give properties of û near {0}×M when u is just
continuous or merely lower semicontinuous.

We start with a remark.

Remark 8.14. Suppose that U : [0,+∞[×M→ [−∞,+∞]. Denote by U∗

the restriction of U to ]0,+∞[×M . If x ∈ M , we can define

lim inf
(t,y)→(0,x)

U (t, y), lim inf
(t,y)→(0,x)

U∗(t, y) and lim inf
y→x

U (0, y),

where in the first case we take (t, y)→ (0, x) with t ≥ 0 and y ∈ M ; in the case
of U∗ we take (t, y)→ (0, x) with t > 0 and y ∈ M ; and in the last case y→ x
with y ∈ M .

Of course we have

lim inf
(t,y)→(0,x)

U (t, y)≤ lim inf
(t,y)→(0,x)

U∗(t, y),

lim inf
(t,y)→(0,x)

U (t, y)≤ lim inf
y→x

U (0, y).
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Since for any sequence (ti , yi )→ (0, x), with ti ≥ 0 and yi ∈ M , either ti = 0
for infinitely many i , or ti > 0 for infinitely many i , we conclude

lim inf
(t,y)→(0,x)

U (t, y)=min
(

lim inf
(t,y)→(0,x)

U∗(t, y), lim inf
y→x

U (0, y)
)
. (8-2)

Theorem 8.15. Let L :TM→R be a Tonelli Lagrangian. If u :M→[−∞,+∞]
is a lower semicontinuous function such that its Lax–Oleinik evolution û :
[0,+∞[×M, (t, x) 7→ T−t u(x) is finite at some (T, X) ∈ ]0,+∞[×M , then it
satisfies the following properties:

(i) For every x ∈ M , we have

lim inf
(t,y)→(0,x)

û(t, y)= lim inf
(t,y)→(0,x)

û∗(t, y)= u(x).

Therefore the function û is lower semicontinuous on [0, T [×M.

(ii) For every x ∈ M , we have

lim sup
(t,y)→(0,x)

û(t, y)= lim sup
y→x

u(y).

Therefore, if u is continuous on M then û is continuous on [0, T [×M.

(iii) For every x ∈ M , both limits limt→0 û(t, x)= limt→0 û∗(t, x) exist and

lim
t→0

û(t, x)= lim
t→0

û∗(t, x)= u(x).

For every x ∈ M , the function t 7→ û(t, x)+ A(0)t is nondecreasing in t.

Proof. We first note that from Proposition 8.7(1), we have

û(t, y)≤ u(y)+ A(0)t. (8-3)

This obviously implies the equality in (ii). By the lower semicontinuity of u, this
also implies

lim inf
(t,y)→(0,x)

û∗(t, y)≤ u(x).

Therefore, from (8-2), we conclude that

lim inf
(t,y)→(0,x)

û(t, y)= lim inf
(t,y)→(0,x)

û∗(t, y).

To finish the proof of (i), it remains to show that

`= lim inf
(t,y)→(0,x)

û∗(t, y)≥ u(x).

If `=+∞, there is nothing to prove. Therefore we assume that ` <+∞. We
then choose a sequence (ti , yi )→ (0, x), with ti > 0 such that

lim
i→+∞

û(ti , yi )= `.
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We now note, again by Proposition 8.7(1), that for all (t, y), (t ′, y′)∈ [0,+∞[×
M , with t ′ < t , we have

û(t, y)≤ û(t ′, y′)+ ht−t ′(y′, y). (8-4)

In particular, we get

û(t, y)≥ û(T, X)+ hT−t(y, X), (8-5)

for all (t, y) ∈ [0, T [×M . We then use

û(ti , yi )= inf
z∈M

u(z)+ hti (z, yi )

to find a sequence zi ∈ M such that

û(ti , yi )≤ u(zi )+ hti (zi , yi )→ `.

From (4-7), we know that hti (z, yi ) ≥ −C(0)ti → 0. Therefore, if zi admits x
as an accumulation point of the sequence zi , from the lower semicontinuity of u,
we would obtain

`= lim
i→+∞

u(zi )+ hti (z, yi )≥ lim inf
i→+∞

u(zi )≥ u(x).

It remains to consider the case when x is not an accumulation point of the
sequence zi . Therefore we can find ε > 0 such that

d(x, zi ) > ε for all i . (8-6)

Since yi → x , neglecting the first terms of the sequence, we can assume

d(x, yi ) < ε for all i . (8-7)

For every i , we can now find a minimizer γi : [0, ti ] → M , with γi (0)= zi and
γi (ti )= yi . From (8-6) and (8-7), we can find t ′i ∈ ]0, ti [ such that d(x, γi (t ′i ))= ε,
for all i . Since γi : [0, ti ] → M is a minimizer, with γi (0)= zi and γi (ti )= yi ,
we have

hti (zi , yi )= ht ′i (zi , γi (t ′i ))+ hti−t ′i (γi (t ′i ), yi ).

Therefore

u(zi )+ hti (zi , yi )= u(zi )+ ht ′i (zi , γi (t ′i ))+ hti−t ′i (γi (t ′i ), yi )

≥ û(t ′i , γi (t ′i ))+ hti−t ′i (γi (t ′i ), yi ).

Since the sequence γi (t ′i ) is contained in the compact ball B̄(x, ε) and ti→ 0< T ,
from (8-5), we get

infi û(t ′i , γi (t ′i ))= κ >−∞.
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Hence
u(zi )+ hti (zi , yi )≥ κ + hti−t ′i (γi (t ′i ), yi ),

which implies

`= lim
i→+∞

u(zi )+ hti (z, yi )≥ κ + lim
i→+∞

hti−t ′i (γi (t ′i ), yi ). (8-8)

For K > 0, we now use (4-8) and d(x, γi (t ′i ))= ε to obtain

hti−t ′i (γi (t ′i ), yi )≥ K d(γi (t ′i ), yi )−C(K )(ti − t ′i )

≥ K (ε− d(x, yi ))−C(K )(ti − t ′i ).

Since yi → x and 0< t ′i < ti → 0, we obtain

lim
i→+∞

hti−t ′i (γi (t ′i ), yi )≥ K ε.

Since ε > 0 and K > 0 is arbitrary, we get

lim
i→+∞

hti−t ′i (γi (t ′i ), yi )=+∞.

This contradicts (8-8), since ` <+∞ and κ >−∞. This finishes the proof of
the equality in (i). The last part of (i) follows from this equality and the already
observed continuity of û on the open subset ]0,+T [ × M ; see Theorem 8.5.
Note that this same continuity of û on ]0,+T [ ×M , together with (i) and the
inequality in (ii), yields also the last part of (ii).

To prove the equality in (iii), we first note, using (i), that

u(x)= lim inf
(t,y)→(0,x)

û(t, y)≤ lim inf
t→0

û(t, x)≤ lim inf
t→0

û∗(t, x).

Moreover, from (8-3), we have

û(t, x)≤ u(x)+ A(0)t,

which yields
lim sup

t→0
û∗(t, x)≤ lim sup

t→0
û(t, x)≤ u(x).

The above inequalities on the lim inf’s and lim sup’s imply the equality in (iii).
The last statement in (iii) follows from the third inequality in Proposition 8.7(1),
which yields

û(t + t ′, x)≤ û(t, x)+ A(0)t ′ for all t, t ′ ≥ 0. �

Corollary 8.16. Let u : M→ [−∞,+∞] be a lower semicontinuous function,
such that û(T, X) is finite for some (T, X) ∈ ]0,+∞[ × M. Then for every
(t, x) ∈ ]0, T [ × M , we can find a backward û-characteristic γ : [0, t] → M
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ending at (t, x). In particular, for every (t, x) ∈ ]0, T [×M , we can find y ∈ M
such that

û(t, x)= u(y)+ ht(y, x).

Proof. Fix (t, x) ∈ ]0, T [ × M . From Theorem 7.6, we can find an extremal
γ : [0, t]→M , with γ (t)= x , which is û-calibrated on ]0, t]; i.e., for all s ∈ ]0, t[,
we have

û(t, x)= û(s, γ (s))+
∫ t

s
L(γ (σ ), γ̇ (σ )) dσ. (8-9)

Since (s, γ (s))→ (0, γ (0)) as s→ 0, from part (i) of Theorem 8.15, we obtain
lim infs→0 û(s, γ (s)) ≥ u(γ (0))= û(0, γ (0)). Hence, if we let s→ 0 in (8-9),
we obtain

û(t, x)= lim inf
s→0

û(s, γ (s))+
∫ t

0
L(γ (σ ), γ̇ (σ )) dσ

≥ û(0, γ (0))+ ht(γ (0), x)≥ û(t, x).

Therefore all inequalities are equalities. Hence γ is û-calibrated on the closed
interval [0, t]. �

We conclude this section with a proof that all continuous viscosity solutions
of the evolutionary Hamilton–Jacobi equation on an open set ]0, T [ × M are
given by a Lax–Oleinik evolution of a unique lower semicontinuous function.

Theorem 8.17. Assume U : ]0, T [×M→ R, with T ∈ ]0,+∞] is a continuous
viscosity solution of the evolutionary Hamilton–Jacobi equation

∂tU + H(x, ∂xU )= 0,

on ]0, T [ × M. Then there exists a unique lower semicontinuous function u :
M→ [−∞,+∞] such that U = û on ]0, T [×M. In fact, we have

u(x)= lim inf
(t,y)→(0,x)

U (t, y)= lim
t→0

U (t, x).

Proof. If u exists, it follows from Theorem 8.15 that we must have

u(x)= lim inf
(t,y)→(0,x)

U (t, y)= lim
t→0

U (t, x).

This implies the uniqueness if u exists. To prove the existence, we define
u : M→ [−∞,+∞] by

u(x)= lim inf
(t,y)→(0,x)

U (t, y).

This function u is lower semicontinuous. We first show that û≤U on ]0, T [×M .
For this, we fix (t, x) ∈ ]0, T [×M . For any y ∈ M , by definition of u, we can



VISCOSITY SOLUTIONS OF THE HAMILTON–JACOBI EQUATION 165

find a sequence (ti , yi ) ∈ ]0, T [×M with

(ti , yi )→ (0, y) and U (ti , yi )→ u(y) as i→+∞.

Since U is a viscosity solution on ]0, T [ ×M , we know from Proposition 5.5
and Remark 5.2(2), that U is strongly evolution-dominated by L . Using that
ti → 0< t , for i large, we must have

U (t, x)≤U (ti , yi )+ ht−ti (yi , x).

If we let i→+∞, we obtain

U (t, x)≤ u(y)+ ht(y, x).

Since y ∈ M is arbitrary, we conclude that U ≤ û on ]0, T [×M .
It remains to show that û≤U on ]0, T [×M . The argument is almost identical

to the proof of last corollary. Fix (t, x) ∈ ]0, T [ ×M . From Theorem 7.6, we
can find an extremal γ : [0, t] → M , with γ (t) = x , which is U -calibrated on
]0, t]; i.e., for all s ∈ ]0, t[, we have

U (t, x)=U (s, γ (s))+
∫ t

s
L(γ (σ ), γ̇ (σ )) dσ. (8-10)

Since (s, γ (s)) → (0, γ (0)) as s → 0, from the definition of u, we obtain
lim infs→0 U (s, γ (s))≥ u(γ (0)). Hence, if we let s→ 0 in (8-10), we obtain

U (t, x)= lim inf
s→0

U (s, γ (s))+
∫ t

0
L(γ (σ ), γ̇ (σ )) dσ

≥ u(γ (0))+ ht(γ (0), x)≥ û(t, x). �

9. Differentiability properties of the Lax–Oleinik evolution

Theorem 9.1 (differentiability theorem). Assume that the function U : O→ R,
defined on the open subset O of R×M , is evolution-dominated by L. If the curve
γ : [a, b] → M , is U-calibrated for L , we have:

(i) If t ∈ ]a, b] then U is upper semicontinuous at (t, γ (t)) and

(−E(γ ), ∂vL(γ (t), γ̇ (t)) ∈ D+U (t, γ (t)).

(ii) If t ∈ [a, b[ then U is lower semicontinuous at (t, γ (t)) and

(−E(γ ), ∂vL(γ (t), γ̇ (t)) ∈ D−U (t, γ (t)).

(iii) For every t ∈ [a, b], if the function U is differentiable at (t, γ (t)), then

DU (t, γ (t))= (−E(γ ), ∂vL(γ (t), γ̇ (t)) ∈ T ∗(t,γ (t))R×M = R× T ∗γ (t)M.

(iv) If t ∈ ]a, b[, then U is indeed differentiable (hence continuous) at (t, γ (t)).
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Proof. To prove (i), fix t ∈ ]a, b]. By Proposition 5.4, there exists an open
subset O ′ ⊂ O , with (t, γ (t)) ∈ O ′, such that the restriction U |O ′ is strongly
evolution domination by L . By continuity of γ , we can then find [a′, b′] ⊂ [a, b],
with a′ < t ≤ b′, and (s, γ (s)) ∈ O ′, for all s ∈ [a′, b′]. The strong L evolution
domination of U |O ′ implies

U (s, x)−U (a′, γ (a′))≤ hs−a′(γ (a′), x)=H(s− a′, γ (a′), x), (9-1)

for every (s, x)∈O ′, with s> a′. Applying this inequality with (s, x)= (t, γ (t)),
and using that γ |[a′, t] is U -calibrated, we obtain∫ t

a′
L(γ (s), γ̇ (s))=U (t, γ (t))−U (a′, γ (a′))≤H(t − a′, γ (a′), γ (t)).

But
∫ t

a′ L(γ (s), γ̇ (s))≥H(t − a′, γ (a′), γ (t)). Therefore the inequality above
is an equality. Subtracting this equality from the inequality (9-1), we get

U (s, x)−U (t, γ (t)≤H(s− a′, γ (a′), x)−H(t − a′, γ (a′), γ (t)). (9-2)

Since H is continuous, we first obtain from this inequality (9-1) the upper
semicontinuity. Moreover, inequality (9-1) together with the equality case at
(t, γ (t)) implies

D+(t,x)H(t − c, γ (t), γ (c))⊂ D+U (t, γ (t)).

But by Proposition 4.22, we have

(−E(γ ), ∂vL(γ (t), γ̇ (t)) ∈ D+(t,x)H(t − c, γ (t), γ (c)).

The proof of (ii) is similar.
To prove (iii), we recall that if DU (t, γ (t)) exists then D+U (t, γ (t)) =

D−U (t, γ (t))= {DU (t, γ (t))}.
To prove (iv), observe that, for t ∈]a, b[, both D+U (t, γ (t) and D−U (t, γ (t))

are nonempty by (i) and (ii). This implies that U is differentiable at (t, x); see
for example [7, Proposition 3.3]. �

Corollary 9.2. Assume L : TM→ R is a Tonelli Lagrangian. Let U : [0, T [×
M→ R be evolution-dominated by L.

(i) If U is differentiable at (t, x), then there is at most one U-calibrated γ :
[c, d] → M , with t ∈ [c, d] and x = γ (t).

(ii) If γ1 : [c1, d1]→M and γ2 : [c2, d2]→M are U-calibrated curves such that
γ1(t)= γ2(t), with t ∈ [c1, d1]∩[c2, d2] and either t ∈ ]c1, d1[ or t ∈ ]c2, d2[,
then γ1 = γ2 on [c1, d1] ∩ [c2, d2].
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(iii) If γ1 : [0, c] → M and γ2 : [0, d] → M are two U-calibrated curves, with
c ≤ d such that γ1(t) = γ2(t), for some t ∈ [0, c], if γ1 and γ2 are not
identical on [0, c], then either t = 0 or t = c = d.

Proof. Part (i) follows from part (iii) of Theorem 9.1, since for any such minimizer
we have

∂xU (t, x)= ∂vL(γ (t), γ̇ (t))= ∂vL(x, γ̇ (t)),

which shows that not only the position of the extremal γ at time t is fixed (= x)
but so is its speed at time t .

Part (ii) follows from part (i). In fact, if either t ∈ ]c1, d1[ or t ∈ ]c2, d2[, then,
by part (iv) of Theorem 9.1, the function U is differentiable at (t, x).

To prove part (iii), we observe that part (ii) implies t ∈ {0, c} and t ∈ {0, d},
which implies either t = 0 or t = c = d . �

The next corollary follows from the previous one applied to backward U -
characteristics.

Corollary 9.3. Assume L : TM→ R is a Tonelli Lagrangian. Let

U : ]0, T [×M→ R

be evolution-dominated by L.

(i) If U is differentiable at (t, x) ∈ ]0, T [ × M , then there is at most one
backward U-characteristic γ : ]0, t] → M ending at (t, x).

(ii) If γ : ]0, a] → M is a backward U-characteristic, then U is differentiable
at every (t, γ (t)), with t ∈ ]0, a[.

Proposition 9.4. Let u : M→ [−∞,+∞] be a lower semicontinuous function
such that û(T, X) is finite for some (T, X) ∈ ]0,+∞[ × M. Then û is dif-
ferentiable at (t, x) ∈ ]0, T [ × M if and only if there is a unique backward
U-characteristic ending at (t, x). Moreover, the set of upper differentials
D+û(t, x) is equal to the convex hull of all covectors (−E(γ ), ∂vL(γ (t), γ̇ (t)),
with γ : [0, t] → M a backward û-characteristic ending at (t, x).

Proof. By Theorem 6.5, we already know that û is locally semiconcave. We first
show that for a backward û-characteristic γ : [0, t] → M ending at (t, x), we
have (−E(γ ), ∂vL(γ (t), γ̇ (t)) ∈ D+û(t, x).

Since γ is calibrating for û, it is a minimizer; therefore we have

H(t, γ (0), x)=
∫ t

0
L(γ (s), γ̇ (s)) ds,

and
û(t, x)= u(γ (0))+H(t, γ (0), x).
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By definition of û, we also have

û(t ′, x)≤ u(γ (0))+H(t ′, γ (0), x ′),

for all (t ′, x ′)∈ ]0,+∞[×M . This implies that D+(t,x)H(t, γ (0), x)⊂ D+û(t, x).
But by Proposition 4.22, we have (−E(γ ), ∂vL(γ (t), γ̇ (t))∈D+(t,x)H(t, γ (0), x).

The rest of the proof is similar to the proof of Corollary 4.23. �

We now apply the results above to Lipschitz in the large functions; see A.2
for the definition.

Theorem 9.5. Assume that L : TM → R is a Tonelli Lagrangian. For every
finite constant K , t0 > 0, we can find a constant λ < +∞ such that for any
u : M→ R Lipschitz in the large with constant K , its Lax–Oleinik evolution û
is finite everywhere and (globally) Lipschitz on [t0,+∞[× M , with Lipschitz
constant ≤ λ.

Proof. Since û = û− on ]0,+∞[×M , where u− is the lower semicontinuous
regularization of u and u− is Lipschitz in the large with the same constant
by Lemma A.3, without loss of generality, we can assume that u is lower
semicontinuous.

Since, from Corollary 8.13, the Lax–Oleinik evolution û is finite everywhere,
from Theorem 6.5, we obtain that it is locally semiconcave. Hence, the Lax–
Oleinik evolution û locally Lipschitz on ]0,+∞[ × M . Therefore, we need
to show that the norm of derivative of û is bounded almost everywhere, on
[t0,+∞[×M , by a constant that depends only on K and t0, but not on u.

From Corollary 8.16, for every (t, x) ∈ ]0,+∞[× M , we can find y ∈ M
such that

û(t, x)= u(y)+ ht(y, x)= u(y)+H(t, y, x). (9-3)
Since

H(t, y, x)= ht(y, x)≤ u(x)− u(y)+ A(0)t ≤ K + K d(x, y)+ A(0)t.

We now use the fact that 2K d(x, y)−C(2K )t ≤ ht(y, x) =H(t, y, x), to get
K d(x, y)≤ 1

2 [H(t, y, x)+C(2K )t]. Combining with the inequality above, we
obtain

H(t, y, x)≤ K + 1
2 [H(t, y, x)+C(2K )t] + A(0)t.

Since H(t, y, x)= ht(y, x), the inequality above is equivalent to

H(t, y, x)≤ 2K +C(2K )t + 2A(0)t.

Therefore, we get

H(t, y, x)
t

=
ht(y, x)

t
≤

2K
t
+C(2K )+2A(0)≤

2K
t0
+C(2K )+2A(0). (9-4)
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By its definition, the Lax–Oleinik evolution û is strongly evolution-dominated
by L , as before, we have

û(t ′, x ′)≤ u(y)+H(t ′, y, x ′) for all (t ′, x ′) ∈ ]0,+∞[×M .

Subtracting from this last inequality the equality (9-3), we obtain

û(t ′, x ′)− û(t, x)≤H(t ′, y, x ′)−H(t, y, x) for all (t ′, x ′) ∈ ]0,+∞[×M .

If û is differentiable at (t, x), since H is locally semiconcave, the inequality
above implies that (t ′, x ′) 7→H(t ′, y, x ′) is differentiable at (t, x), with

∂t û(t, x)= ∂tH(t, y, x) and ∂x û(t, x)= ∂xH(t, y, x).

By Corollary 4.24, this implies that H is differentiable at (t, y, x). But by
Corollary 4.25 and (9-4), the derivative DH(t, y, x) is bounded in norm by a
constant depending only on 2K t−1

0 +C(2K )+ 2A(0). Therefore, the same is
true for the derivative of û at (t, x). �

Appendix: Uniformly continuous and Lipschitz in the large functions

The following lemma is well-known.

Lemma A.1. Let N be a Riemannian manifold (not necessarily complete or
without boundary). Denote by d the distance on N associated to the Riemannian
metric. For any function u : M→ R, the following conditions are equivalent:

(1) The function u is uniformly continuous (with respect to d).

(2) For every ε > 0, we can find λε <+∞ such that

|u(x)− u(y)| ≤ ε+ λεd(y, x).

(3) There exists a sequence of Lipschitz (for d) functions un : M → R, n ∈ N

such that un→ u uniformly on M ; that is, the norm ‖u−un‖∞ approaches 0
as n→+∞.

Proof. The implication (3) =⇒ (1) is well-known.
We now prove (1) =⇒ (2). Since u is uniformly continuous, we can find α > 0

such that
d(x, y)≤ α =⇒ |u(y)− u(x)| ≤ ε.

For x, y ∈ N fixed, we can find n ∈ N such that nα ≤ d(x, y) < (n+ 1)α. By
definition of the Riemannian distance, we can find a curve γ : [0, `] → M ,
parametrized by arc-length and such that γ (0) = x, γ (`) = y, and d(x, y) ≤
` < (n + 1)α. We set xi = γ (iα), for i = 0, . . . , n, and xn+1 = y. Since
d(xi , xi+1)≤ `g(γ |[iα, (i + 1)α])= α, for i = 0, . . . , n− 1, and d(xn, xn+1)≤
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`g(γ |[nα, `]) = `− nα < α, we get |u(xi )− u(xi+1)| ≤ ε, for i = 0, . . . , n.
Using n ≤ d(x, y)/α, this yields

|u(x)− u(y)| =
∣∣∣∣ n∑

i=0
u(xi )− u(xi+1)

∣∣∣∣≤ n∑
i=0
|u(xi )− u(xi+1)|

≤ (n+ 1)ε ≤ ε+
ε

α
d(x, y).

This proves (2) with λε = ε/α.
It remains to prove (2) =⇒ (3). From (2), we get

u(x)− ε ≤ u(y)+ λεd(y, x).

Taking the infimum over y, we get

u(x)− ε ≤ inf
y∈M

u(y)+ λεd(y, x)≤ u(x).

The function uε : M → R defined by uε(x) = infy∈M u(y) + λεd(y, x) has
Lipschitz constant ≤ λε , and satisfies ‖uε − u‖∞ ≤ ε. �

We now recall the definition of Lipschitz in the large for a function, see [12,
Definition A.5].

Definition A.2. Let X be a metric space with distance d . A function u : X→ R

is said to be Lipschitz in the large if there exists a constant K <+∞ such that

|u(y)− u(x)| ≤ K + K d(x, y) for every x, y ∈ X . (A-1)

When the inequality above is satisfied, we say that u is Lipschitz in the large
with constant K .

Lemma A.3. Let X be a metric space with distance d. If u : X→ R is Lipschitz
in the large with constant K , its lower semicontinuous regularization u− is finite-
valued, Lipschitz in the large with the same constant K , and |u(x)−u−(x)| ≤ K ,
for every x ∈ X.

Proof. We can find a sequence xi→ x such that u(xi )→ u−(x). Taking the limit
in inequality (A-1), with y = xi , yields |u(x)− u−(x)| ≤ K . We can also find a
sequence yi → y such that u(yi )→ u−(y). Taking the limit in inequality (A-1),
with y = yi and x = xi , yields |u−(y)− u−(x)| ≤ K + K d(x, y). �

Proposition A.4. Let X be a metric space with distance d. For any function
u : X → R and any finite constant K ≥ 0, the following two statements are
equivalent:

• The function u is Lipschitz in the large with constant K .

• There exists a Lipschitz function ϕ : X→R, with Lipschitz constant K , such
that ‖u−ϕ‖∞ = supx∈M |u(x)−ϕ(x)| ≤ K/2.
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Proof. If u satisfies |u(y)− u(x)| ≤ K + K d(x, y), for every x, y ∈ X . We get
−K + u(y)≤ u(x)+ K d(x, y). If we define the function ϕ : X→ R by

ϕ(y)= inf
x∈M

u(x)+
K
2
+ K d(x, y),

we get −K/2+u(y)≤ ϕ(y)≤ u(y)+ K/2. Therefore ϕ is finite everywhere. It
is also Lipschitz with Lipschitz constant K <+∞, and ‖u−ϕ‖∞ ≤ K/2.

To prove the converse, assume ϕ : X → R has Lipschitz constant ≤ K , and
‖u−ϕ‖∞ ≤ K/2, we have

|u(y)− u(x)| ≤ |u(y)−ϕ(y)| + |ϕ(y)−ϕ(x)| + |ϕ(x)− u(x)|

≤
K
2
+ K d(x, y)+

K
2
= K + K d(x, y). �
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