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Some recent developments in Arnold diffusion
CHONG-QING CHENG AND JINXIN XUE

This survey paper grows out of the lecture notes of the nine-hour lectures
that the authors delivered in the special semester on Hamiltonian dynamics at
MSRI in the fall of 2018. It can be considered as an introduction to our work
on Arnold diffusion.

1. Introduction

In the Hamiltonian formalism of the classical mechanics, a smooth Hamiltonian
function H on a symplectic manifold (M, ω) is given, and defines a vector field
X through ω( · , X)= d H . The main problem is to study the dynamics, which
is the long time behavior, of the solution of the differential equation x ′ = X (x),
x ∈ M , determined by the vector field X . The dynamics of a Hamiltonian
system in general can be very complicated and deny analytical approaches. From
dynamical perspectives, the most well-understood class of Hamiltonian systems
is integrable systems. The classical Liouville–Arnold theorem states as follows.

Theorem 1.1 (Liouville–Arnold). Let H1 = H : M2n
→ R be a Hamiltonian

and suppose there are H2, . . . , Hn : M→ R satisfying:

(a) {Hi , H j } ≡ 0, for all i, j = 1, . . . , n.

(b) The level set Ma := {(q, p) ∈ M | Hi (q, p)= ai , i = 1, . . . , n} is compact.

(c) At each point of Ma, the n vectors DHi , i = 1, . . . , n are linearly indepen-
dent.

Then:

(1) Ma is diffeomorphic to Tn
= Rn/Zn and is invariant under the Hamiltonian

flow of each Hi .

(2) Ma is a Lagrangian submanifold, i.e., for any u, v ∈ Tx Ma,∀x ∈ Ma, we
have ω(u, v)= 0.
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(3) In a neighborhood U of Ma, there is a symplectic transform8(q, p)= (θ, I )
such that

8(U )= Tn
× (−δ, δ)n

for some δ > 0.

(4) In the new coordinates, each Ki := Hi ◦8
−1 is a function of I only so the

Hamiltonian equation is

θ̇ = ωi (I ) :=
∂Ki

∂ I
, İ = 0.

Integrable systems are also important in algebraic geometry, representation the-
ory, etc; see Hitchin [27]. For the purpose of studying dynamics of Hamiltonian
systems, the Liouville–Arnold theorem gives a good description of the dynamics
of integrable systems. Each regular level set Ma is an invariant torus under the
Hamiltonian flow and the dynamics on it is linear flow. However, integrable
systems are very rare. In nature, a system always undergoes some internal
or external perturbations. Therefore the next interesting and natural class of
Hamiltonian systems is nearly integrable systems which are small perturbations
of integrable systems. This class of systems models many interesting natural
phenomena including in particular the Newtonian N -body problem. It turns out
that this class of systems has rich dynamics and also approachable to a large
extent by analytic tools. From the Liouville–Arnold theorem, we see that the
natural phase space for studying nearly integrable systems is the symplectic
manifold T ∗Tn or its subsets endowed with the standard symplectic structure.
We will call a system of the following form a nearly integrable system

H(x, y)= h(y)+ εP(x, y), (x, y) ∈ Tn
×Rn

= T ∗Tn (1-1)

which gives rise to the Hamiltonian equation{
ẋ = ∂yh(y)+ ε∂y P(x, y),
ẏ =−ε∂x P(x, y).

(1-2)

The natural regularity assumption on H is Cr , r ≥ 2 including∞ and ω (meaning
analytic).

The celebrated Kolmogorov–Arnold–Moser theorem says that under certain
isoenergetic nondegeneracy condition, when ε is sufficiently small, most volume
of the phase space is occupied by invariant Lagrangian tori, each of which carries
irrational flow with Diophantine frequency. Systems with n = 1 are integrable,
so are well understood by Liouville–Arnold theorem. For systems with n = 2,
the KAM theorem gives lots of disjoint two-dimensional tori separating the
three dimensional level set, so each orbit is either on a invariant torus or trapped
between two nearby tori. We may use the oscillation of the action variable y
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along an orbit as a measurement of the instability of the system. In both the
cases n = 1 and n = 2, we see that the oscillation of y along each orbit is small
(o(1) as ε→ 0) so we think the systems as being stable. However, the cases of
n ≥ 3 is drastically different. The KAM tori are n-dimensional invariant sets
of codimension n− 1 > 1 on each energy level set, so the complement of the
union of the KAM tori is connected (there may be other Lagrangian tori which
are not given by the KAM theorem). This leaves room for the possibility of
having orbits wandering in the complements of these tori. Moreover, Arnold
constructed an example in which one action variable can indeed oscillate as far
as possible. Thus Arnold proposed the following conjecture.

Conjecture [2; 4]. For any two points y′ and y′′ on the connected level hyper-
surface of h in the action space there exist orbits of (1-2) connecting an arbitrary
small neighborhood of the torus y = y′ with an arbitrary small neighborhood of
the torus y = y′′, provided that ε 6= 0 is sufficiently small and P is generic.

The statement can be found in [2; 4], as well as in the book [5] in Problems
1963-1, 1966-3, 1994-33 etc. We make the following remarks concerning the
statement of the conjecture.

Remark 1.2. (1) In some circumstances the statement of Arnold talks about
only “general” or “typical” systems without specifying the regularity of the
Hamiltonian; see [2]. In [4], Arnold considered generic analytic Hamiltoni-
ans. The KAM theory applies to both analytic Hamiltonians and smooth
(Cr , r large or∞) Hamiltonians. However, when talking about genericity
in differential topology and Riemannian geometry, the C∞ category is the
one used since it allows to construct bump functions and partition of unity.
So for this conjecture, the analytic category and the smooth category are
essentially different.

(2) The genericity as in this conjecture is not the usual Baire second category,
since the smallness parameter ε may depend on the perturbation P . We will
introduce a cusp-residual genericity similar to Mather [35].

(3) In [4] Arnold also talked about generic unperturbed part h. In particular,
he mentioned Lorentzian type mechanical systems as the first step to study
the conjecture for nonconvex h. Our variational method applies only to the
convex case i.e., D2h is positive definite, which includes already lots of
physical models, since mechanical systems (kinetic energy plus potential
energy) have positive definite kinetic energy part.

The conjecture is in essence asking for an understanding of the global dynamics
in the complement of the KAM tori, where the dynamics is expected to be very
chaotic but is very resistant to analysis. A related problem called standard map
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conjecture states that the system

(x, y) 7→ (x + y+ k sin x, y+ k sin x)

has positive Lyapunov exponent for a positive Lebesgue measure set for all or
some parameter k ∈ R. The conjecture expect that the complement of the KAM
curves are nonuniformly hyperbolic in the sense of Pesin theory. Having an orbit
with wandering action variable is a way to measure the instability. It was foreseen
by Arnold [4] that the major difficulty is caused by the double resonance, where
the system can be reduced to a nonperturbative mechanical system.

We next state our main result as follows, which is an answer to the above
conjecture in the smooth category for convex systems and in the sense of cusp-
residual genericity. In the main body of the survey, we will sketch the main
ingredients of our proof in a series of papers [16; 9; 8; 10; 11]. Readers are
also referred to [14; 15; 6; 18; 19; 37; 7; 35; 28; 24; 32; 37] for other relevant
work. Denote by S1 the unit sphere in Cr (T ∗Tn) (or Cr (Tn)) with r ∈ [7,∞],
we have:

Theorem 1.3. Given any small δ > 0, and finitely many small balls Bδ(yi )⊂ Rn ,
where yi ∈ h−1(E) with E >min h(y), there exists a residual set C⊂S1 such
that the following holds for the system (1-1). For each P ∈ C there exists an
εP > 0, such that there is a residual set of ε in (0, εP), the Hamiltonian flow
admits orbits visiting the balls Bδ(yi ) in any prescribed order.

The paper is organized as follows. In the main body of the paper, we explain
Arnold diffusion in a priori unstable systems and the proof of Theorem 1.3 in
the case of n = 3. We postpone the general n > 3 case to Appendix C due
to its technicality. Though a bit technical, Appendix C may still serve as a
road-map of our paper [11] for readers who want to understand the detailed
proof. In Section 2, we explain Arnold’s example. In Section 3, we explain the
variational method using the pendulum and Arnold’s example. We also provide
our mechanism of changing cohomology classes. In Section 4, we explain the
main difficulties in the proof of Arnold diffusion for a priori unstable systems
and how to overcome them. In Section 5, we derive the resonant normal form.
Section 6 is the important section, which is about mechanical systems with two
degrees of freedom. In Section 7, we explain how to construct diffusing orbit
in systems with three degrees of freedom, in particular how to overcome the
main difficulty of the strong double resonance. In Section 8, we briefly discuss
the issue of genericity. Finally, we have three appendices. In Appendix A, we
provide the basic concepts in Mather theory and in Appendix B, we provide the
theorem of normally hyperbolic invariant manifolds. In Appendix C, we explain
how to construct diffusing orbit in systems of arbitrary degrees of freedom.
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2. Arnold’s example

2A. The pendulum. The mathematical pendulum is prominent in the study of
Arnold diffusion. The Hamiltonian is

H0(x, y)= 1
2 y2
+ (cos 2πx − 1), (x, y) ∈ T ∗T.

First, as a system of one degree of freedom, the Liouville–Arnold theorem can
be applied to the regular values of H . Thus the phase space dynamics is further
determined by the critical values of H .

Near the fixed points O = (0, 0), the Hamiltonian can be linearized as y2/2−
(2πx)2/2. The linearized Hamiltonian equation is{

ẋ = y,
ẏ = 4π2x,

so the fixed point is hyperbolic. Let O be the hyperbolic fixed point and φt , t ∈R,
be the flow generated by the Hamiltonian vector field, we define the stable (W s)

and unstable (W u) manifolds of the fixed point O as

W s(O)= {z ∈ T ∗T | φt(z)→ O, as t→+∞},

W u(O)= {z ∈ T ∗T | φt(z)→ O, as t→−∞}.

For the pendulum, we see that W s(O) coincides with W u(O) consisting of two en-
tire homoclinic orbits denoted by {(x0(t),±y0(t)), t ∈R}with (x0(t),±y0(t))→
(0, 0) as t→±∞.

It was discovered by Poincaré that the stable and unstable manifold will split
(i.e., will not coincide) if a generic time-periodic perturbation is added. Let us
consider the perturbed Hamiltonian

Hε(x, y, t)= 1
2 y2
+ (cos 2πx − 1)+ εH1(x, y, t), (x, y) ∈ T ∗T,

where H1(x, y, t) = H1(x, y, t + 1) and ∂x H1(0, 0, t) = ∂y H1(0, 0, t) = 0 for
all (x, y, t) ∈ T ∗T×T. The latter assumption on H1 implies that O remains a
fixed point for the perturbed system Hε. In this case, the Hamiltonian equation is
time-dependent, so its solution is not an R-action on T ∗T. Instead, we consider
the time-1 map denoted by φ1

ε , whose iterations give rise to a Z-action on T ∗T,
due to the 1-periodic dependence on t of H1. We redefine the stable and unstable
manifolds as

W s
ε (O)= {z ∈ T ∗T | φn

ε (z)→ O, as n→+∞},

W u
ε (O)= {z ∈ T ∗T | φn

ε (z)→ O, as n→−∞}.

The splitting of W s
ε (O) and W u

ε (O) is one of the main mechanisms responsible
for the nonintegrability of the perturbed system. The general method of measuring
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the separatrix splitting to the first order is the Melnikov function

M(α)=

ˆ
R

{H0, H1}(x0(t), y0(t), t +α) dt,

{H0, H1} = ∂x H0 · ∂y H1− ∂y H0 · ∂x H1.

(2-1)

2B. Arnold’s example. Arnold in [1] constructed the following example for
which he first discovered the phenomena called now Arnold diffusion

H(θ, I, x, y, t)

=
I 2

2
+

y2

2
+ ε(cos(2πx)− 1)(1+µ(cos(2πθ)+ sin(2π t))), (2-2)

where (θ, I ; x, y; t) ∈ T ∗T1
× T ∗T1

×T. It is proved in [1] that

Theorem 2.1 (Arnold). In the system (2-2), for any given A < B, ε > 0, there is
an orbit {(θ(t), I (t), x(t), y(t))} of the system and time t1 < t2 with I (t1) ≤ A
and I (t2)≥ B, provided µ > 0 is small enough.

We first consider the case of µ = 0. The resulting system has two degrees
of freedom. Away from the set {y2/2+ ε(cos(2πx)− 1) = 0}, the system is
integrable in the Liouville–Arnold sense.

The product of the hyperbolic fixed point O = (0, 0) of the system H0 and
the phase space of the subsystem H̃ = I 2/2 gives rise to the following cylinder
in the product space T ∗T2

C = {(θ, I, x, y)= (θ, I, 0, 0), I ∈ R, θ ∈ T1
}.

Each circle C(I ) := {I = const, θ ∈ T, x = 0, y = 0} in the cylinder is invariant
under the Hamiltonian flow of H0. When restricted to C, the resulting Hamiltonian
system is given by the integrable Hamiltonian H̃ = I 2/2. The frequency ω along
C has the form (I, 0) (item (4) of Theorem 1.1), so the cylinder on which the
Liouville–Arnold theorem does not apply has resonant frequency, i.e., for all
integer vector k ∈ Z2 of the form (0, ∗), we have ω · k = 0. Each circle C(I ) also
has stable and unstable manifolds denoted by W u,s

I .
When the time-dependent perturbation is turned on, using the Melnikov func-

tion (2-1) in the previous subsection, it can be verified that the stable W s
I and

unstable manifolds W u
I of C(I ) intersect transversely for all I . Therefore the

transversality implies that W u
I intersects W s

I ′ transversely if I and I ′ is sufficiently
close. Then orbits can be found to shadow a sequence of W u/s chain to have
large oscillation of I . We refer readers to [25] for a shadowing lemma developed
recently. It is important to point out that the particularly chosen perturbation in
Arnold’s example gives a vanishing perturbation to the Hamiltonian vector field
on the cylinder C, so that the dynamics on C remains unperturbed. It is not the
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case for a generic perturbation, which constitutes the main difficulty for a priori
unstable systems.

3. The variational method

In this section, we briefly introduce the variational method after Mather [33; 34]
and Mañé [31]. Formal definitions of the objects in this theory are summarized
in the appendix. Here we only illustrate some of the key points using mainly the
pendulum.

3A. Variational methods in terms of rotator and pendulum. Let L : T Tn
→ R

be a Tonelli Lagrangian system. Let η be a closed 1-form with cohomology
class [η] = c ∈ H 1(Tn,R). We take infimum among all the invariant probability
measures µ supported on T Tn

−α(c) := inf
µ

ˆ
L(x, ẋ)− η dµ.

We define Mather set as M̃(c) := ∪ suppµ where the union is taken over all the
measures attaining the above infimum.

Let us first give an illuminating example. In the pendulum the hyperbolic fixed
point O = (0, 0) the Hamiltonian is linearized as H0 =

1
2 y2
− (2π)2x2, so after

Legendre transform, the corresponding Lagrangian is L0 =
1
2 ẋ2
+ (1/(2π)2)x2.

The probability measure minimizing the action infµ
´

L0 dµ is easily seen to be
the Dirac-δ supported at O . So we see the link

Minimal measure (Dirac-δ)
↔ Nondegenerate global maximum of the Hamiltonian

→ Hyperbolic fixed point.

This is a guiding principle for us to locate the Mather set with hyperbolicity for
nearly integrable systems.

In the example of the mathematical pendulum, the Mather set M̃(c) is sup-
ported on the hyperbolic fixed point when c = 0 and there are orbits homoclinic
to the hyperbolic fixed point. In variational methods, we introduce the Aubry
set and Mañé set to capture the homoclinic orbits and heteroclinic orbits. The
Aubry set Ã(c) is the lift to T ∗Tn of the following projected Aubry set

A(c)= {x ∈ Tn
| hc(x, x)= 0},

where

hc(x, y) := lim inf
t→∞

inf
γ

ˆ t

0
L(γ (s), γ̇ (s))− η+α(c) ds
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and γ : [0, t] → Tn is a C1 curve with γ (0) = x and γ (t) = y, x, y ∈ Tn . On
A(c), we can introduce an equivalence relation: x ∼ y if hc(x, y)= 0. Then we
get the quotient A(c) called the Aubry class.

Denoting by φt
: T Tn

→ T Tn , t ∈R, the Lagrangian flow, we can again define
the stable and unstable sets analogous to that in hyperbolic dynamics so we can
introduce

W u
c = {z ∈ T Tn

| φt z→ Ã(c), t→−∞},

W s
c = {z ∈ T Tn

| φt z→ Ã(c), t→+∞}.

Here we use the notations W u,s
c , though the Aubry set Ã(c)may not be hyperbolic.

In case when the Aubry class consists of a single point, these sets are defined
as graphs of the gradients of the backward/forward weak KAM solutions u−c and
u+c :T

n
→R respectively, which are known to be unique up to an additive constant.

We call the difference Bc(x)= u−c (x)−u+c (x) the barrier function, whose critical
points correspond to the intersection of W u

c and W s
c . If z = (x, y) ∈ W u

c ∩W s
c

and x is a global minimal point of Bc, then by definition φt(z) approaches M̃(c)
in both the future and the past, such an orbit is a prototypical orbit in the Mañé
set Ñ (c). The barrier function is in general only known to be Lipschitz, however,
it has the remarkable property of being differentiable at its global minimal points.
We refer readers to the appendix for formal definitions of the Mather set M̃(c),
Aubry set Ã(c), Mañé set Ñ (c) and weak KAM solutions u±c and their basic
properties. We also refer readers to [13] for how to realize these objects in the
pendulum.

We next explain the effect of changing cohomology class. In Liouville–
Arnold theorem, the action variable I is constructed by integrating the Liouville
1-form pdq along a basis of the first homology group H1(Ma,Z). In variational
methods, the changing of the cohomological class has the effect of selecting
the corresponding action variable for integrable systems hence selecting the
Lagrangian torus. Let H(I ) : T ∗Tn

→ R be a convex integrable Hamiltonian
independent of the angular variable θ ∈ Tn . The corresponding Lagrangian is
denoted by L(θ̇). We next show how to find the minimizer of the variational
problem infµ

´
L(θ̇)− η dµ with [η] = c ∈ H 1(Tn,Z) ∈ Rn . For simplicity, we

take η = cdθ , so the minimization problem is solved by Legendre transform as

−α(c) := inf
θ̇∈Rn

L(θ̇)− c · θ̇ =−H(c).

The infimum is attained as the point θ̇ = ∂c H(c) and c= ∂θ̇ L(θ̇)= I . So we see
that for integrable systems the cohomology class c agrees with the action variable
I , the Mather set is the corresponding invariant torus {θ̇ = ∂c H(c)}×Tn

⊂ T Tn .
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3B. Arnold’s example in the variational language. Recall that in Arnold’s
example, orbits are found to shadow different circles C(I )s. Each circle can be
realized as the Aubry set with cohomology class c= (I, 0)∈ H 1(T2,R). Thus in
variational terms, Arnold diffusing orbit corresponds to orbits shadowing different
Aubry sets Ã(c)s. To find orbit shadowing Aubry sets with different cohomology
classes, we have the following variational version of Arnold’s mechanism of
constructing diffusing orbit using the intersection of the stable and unstable
manifolds.

Theorem 3.1 (Type-h orbit). Let 0 : [0, 1] → H 1(M,R) be a continuous curve.
Suppose there exist a certain finite covering π̌ : M̌ → M , two open domains
N1, N2⊂ M̌ with d(N1, N2)> 0, and for each s ∈ [0, 1], there exist a codimenion
one disk Ds and small numbers δs, δ

′
s > 0 such that:

(1) The projected Aubry sets satisfy A(0(s))∩ N1 6=∅, A(0(s))∩ N2 6=∅ and
A(0(s ′))∩ (N1 ∪ N2) 6=∅ for each |s ′− s|< δs .

(2) π̌N (0(s), M̌)|Ds\(A(0(s)) + δ′s) is nonempty and totally disconnected,
where the +δ′s notation means a δ′s neighborhood.

Then there exists an orbit dγ ⊂ T ∗M such that α(γ ) ⊂ Ã(0(0)) and ω(γ ) ⊂
Ã(0(1)).

We call orbits in the theorem type-h, standing for heteroclinic. Bernard [6]
introduced a similar variational mechanism called forcing relations. The way the
theorem applies to Arnold’s example is as follows. We treat the x-variable in (2-2)
as being defined on R/(2(2πZ)), in other words, we lift the pendulum component
to the double covering space of T ∗T. Thus, the Aubry set for each cohomology
class c = (I, 0) has two copies and the second assumption is satisfied due to the
transversal intersection of the stable manifold of one component of the Aubry
set and the unstable manifold of the other component, for each cohomology
class (I, 0), hence the theorem applies to Arnold’s example. This advantage
of the lifting procedure here is that it produces orbits in the Mañé set but not
in the Aubry set. The last point is subtle, and we refer readers to [13] for the
description of Mañé set and Aubry set in the pendulum example.

Summarizing the above, we have the following dictionary:

hyperbolic objects variational objects

hyperbolic set Aubry set
stable/unstable manifold graph of differential of weak KAM

intersection of stable/unstable manifolds critical point of the barrier function
homo- or hetero-clinic orbits Mañé set\Mather set

Arnold’s orbit shadowing different C(I )s type-h orbit
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The main advantage of the variational methods is that the existence of the
variational objects such as Mather sets, Aubry sets and Mañé sets are always
assured. Without requiring good regularities of the variational objects, diffusing
orbits can still be constructed.

This dictionary goes far beyond Arnold’s example and a priori unstable
systems. In the next subsection, we will introduce a new way of changing
cohomology classes, which will be used crucially in the proof of Arnold diffusion
in a priori stable systems, in addition to Arnold’s mechanism.

3C. Type-c orbit. In this section, we introduce the second way of finding orbits
shadowing Aubry sets with different cohomology classes, which we call type-c,
standing for cohomology equivalence. The basic idea is that the cohomology
class can be changed in the orthogonal complement of the homology of a section
of the Mañé set. This mechanism first appeared in [34] proved in [14] for
nonautonomous systems. The version for autonomous systems that we are going
to give here was first established in [29; 30]; see Section 3.1 of [8].

We suppose that there exists6c nondegenerately embedded (n−1)-dimensional
torus on Tn given by an embedding ϕ: Tn−1

→Tn with 6c = ϕ(T
n−1) the image

of ϕ, and the induced map ϕ∗: H1(T
n−1,Z) ↪→ H1(T

n,Z) is an injection. We
can simply choose 6c in the nonautonomous setting to be the configuration space
with {t = 0}.

Let C⊂ H 1(Tn,R) be a connected set. For each class c ∈ C, we assume that
there exists a nondegenerate embedded (n− 1)-dimensional torus 6c ⊂ Tn such
that each c-semistatic curve γ transversally intersects 6c. Let

Vc =
⋂
U

{iU∗H1(U,R) :U is a neighborhood of N (c)∩6c in Tn
},

here iU : U → M denotes inclusion map. Denote by V⊥c the annihilator of Vc,
i.e., if c′ ∈ H 1(Tn,R), then c′ ∈ V⊥c if and only if 〈c′, h〉 = 0 for all h ∈ Vc.
Clearly,

V⊥c =
⋃
U

{ker i∗U :U is a neighborhood of N (c)∩6c in Tn
}.

Note that there exists a neighborhood U of N (c)∩6c such that Vc= iU∗H1(U,R)

and V⊥c = ker i∗U .

Definition 3.2 (c-equivalence). We say that c, c′ ∈ H 1(M,R) are c-equivalent
if there exists a continuous curve 0: [0, 1] → C such that 0(0)= c, 0(1)= c′,
α(0(s)) keeps constant for all s ∈ [0, 1], and for each s0 ∈ [0, 1] there exists
ε > 0 such that 0(s)−0(s0) ∈ V⊥0(s0)

whenever s ∈ [0, 1] and |s− s0|< ε.
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Theorem 3.3 (Type-c orbit). Suppose that two cohomology classes c and c′ are
c-equivalent, then there exists an orbit whose α-limit set is in Ã(c) and ω-limit
set is Ã(c′), and vice versa.

Proof. We only prove the case when |c− c′| is sufficiently small. The details
of changing c in the large scale (global connecting orbits) can be found in
Section 5 of [14]. We first denote by U c a small neighborhood of N (c)∩6c.
We next modify the Lagrangian Lc := L(γ, γ̇ )−〈c, γ̇ 〉 to Lc+ηρ := L(γ, γ̇ )−
〈c+ ηρ(t), γ̇ 〉 where η is a de Rham closed one-form with cohomology class
[η] = c′− c whose support lies in U c and ρ(t) ∈ C∞ satisfies ρ(t)= 0 for t ≤ 0
and ρ(t) = 1 for t ≥ ε for ε small. Such a closed one-form exists following
from the definition of the c-equivalence, c− c′ ⊥ H1(N (c)|6,R). The free time
global minimizer (defined as the semistatic curves, see appendix) of the action´

Lc+ηρ dt is taken over all the curves with endpoints in M̃(c) and M̃(c′). First
it is known that the minimizer stays close to the Mañé set Ñ (c) if |c− c′| is
small enough so it also passes through U . The proof of this fact is the same
as that of the upper-semicontinuity of the Mañé set; see Section 2 of [14]. We
claims that the minimizer satisfies the Euler–Lagrange equation. As we know,
adding a closed 1-form to the Lagrangian does not change the E-L equation. If
we keep track of the orbit, before entering U , the Lagrangian is Lc. In U , since
suppη ∩U = ∅, the Lagrangian is still Lc. When the orbit gets outside of U ,
for ε small enough, the Lagrangian is now actually Lc′ . In all the cases, the E-L
equation is the same as that of L so we have constructed an orbit dγ . Since
orbits in Ñ (c) \M̃(c) does not recur, as t→∞, the orbit dγ stays in a region
where the cohomology class is η(c′) hence the ω-limit set is Ã(c′) and similarly,
the α-limit set is Ã(c). �

4. a priori unstable systems

We now explain the main difficulty of constructing diffusing orbit in the so-called
a priori unstable system, which are generalizations of Arnold’s example but
maintaining the structure of normally hyperbolic invariant cylinder (NHIC). We
refer readers to the appendix for the definition of normally hyperbolic invariant
manifold (NHIM) and a theorem on its persistence under perturbations. A
prototypical form of the a priori unstable system is

H =
I 2

2
+

y2

2
+ (cos(2πx)− 1)+ εP(θ, I, x, y, t), (4-1)

where (θ, I, x, y, t) ∈ T ∗T2
× T1. This kind of system appears as the single

resonance normal form (see Section 5 below), thus the following problem is the
first step towards the conjecture of Arnold diffusion.
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For Cr -generic P with 2 ≤ r ≤ ∞ and for any A < B, the system (4-1)
admits an orbit {(θ(t), I (t), x(t), y(t)), t ∈R} and t1, t2 such that I (t1)≤ A and
I (t2)≥ B provided ε is sufficiently small.

The problem is solved by different authors using different methods. In this
section, we briefly explain the main difficulties and the solution of Cheng and
Yan [14; 15].

First, note that when ε = 0, the system admits a NHIC given by

C = {x = y = 0, (θ, I ) ∈ T×R}.

In order to apply the theorem of NHIM, we first replace the perturbation εP by
εχ P where χ : T ∗T2

→ R such that χ = 1 for |I |< R and |y|< 10, and χ = 0
for |I | > R + 1 and |y| > 11 for some large R with R > max{|A|, |B|}. Our
orbit will stay within the region where χ = 1 so it is also an orbit of the original
system. For the perturbed system, we shall consider the time-1 map denoted by
φ1
ε : T

∗T2
→ T ∗T2. By the theorem of NHIM so we get a NHIC Cε close to C

and is invariant under φ1
ε . Restricted to Cε, the map φ1

ε is a twist map, so we can
then apply KAM theorem to get that for ε small enough, there are uncountably
many invariant circles on Cε that are homologically nontrivial. In general there
are also other homologically nontrivial invariant circles that are not given by the
KAM theorem.

Here comes the first main difficulty. The distances between two neighboring
circles may be of order

√
ε. However, the size of separatrix splitting is only of

order ε. This means that Arnold’s mechanism of utilizing the intersection of
stable and unstable manifolds fails to find orbit crossing the

√
ε-gaps. This is

called the “big gap” problem.
The way to overcome this problem is to invoke the cohomology equivalence

mechanism in Section 3C. The reason is that for each c ∈ H 1(T2,R) such that
Ñ (c) lies in the gap, the Mañé set is contractible so Definition 3.2 is verified. Now
the general strategy is to apply the c-equivalence mechanism whenever there is a
big gap and to apply Arnold’s mechanism (variationally type-h orbit) whenever
nearby invariant circles are close enough to have transversely intersecting stable
and unstable manifolds.

Here comes the second main difficulty. There are uncountably many invariant
circles for which we want their stable and unstable manifolds to intersect trans-
versely in order to implement Arnold’s mechanism. It is easy to add a perturbation
to create the intersection for one such circle. However, it is not allowed to add
uncountably many perturbations for the consideration of genericity.

The key to this problem is the following regularity result, which holds for nearly
integrable twist maps on T ∗T1 or equivalently nearly integrable Hamiltonian
systems of one and a half degrees of freedom.
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Figure 1. Phase space dynamics of the mechanism in [14; 15].

Theorem 4.1. Let H : T ∗T× T→ R be a time-dependent nearly integrable
Tonelli Hamiltonian system and u±c : T→ R, c ∈ H 1(T,R) be its weak KAM
solutions. Then for all c, c′ in a bounded subset of H 1(T,R) and such that M̃(c)
and M̃(c′) are invariant circles, there is a uniform constant C such that

‖u±c ( · )− u±c′ ( · )‖C0 ≤ C‖c− c′‖1/2.

A similar regularity result holds for the barrier function of the full system.
We thus see that the set S of all weak KAM solutions corresponding to invariant
circles on Cε is a set of finite box dimension in C0(T2,R). We have seen in
Section 3A that the intersection of the stable and unstable manifolds can be
interpreted as the minimal point of the barrier function. Thus we need the barrier
function to be nonconstant outside Cε. Note that a C0 function f : T→ R being
constant on an interval J ⊂ T is of infinite codimension. Since S has finite box
dimension, it is easy to find an arbitrarily small ũ such that the entire set ũ+S
avoids the infinite codimensional space of functions that are constants over some
sets of the form T× J , where J ⊂ T is an interval. In this way, we thus have
verified assumption (2) of Theorem 3.1 and can facilitate Arnold’s mechanism.
We refer readers to [14; 15] for details of this argument. We finally emphasize
that the regularity of the weak KAM solutions of the form 4.1 is the essential
ingredient in the proof of the genericity.

We finally remark on the literature. The use of box dimension to the genericity
problem goes back to Moeckel [36] in which the author studied the iteration of a
pair of twist maps where the regularity problem is straightforward. The regularity
result Theorem 4.1, its generalization to the full system and the genericity
argument for a priori unstable systems first appeared in [14; 15]. Bernard [6]
gave a different mechanism for constructing diffusing orbit using only Arnold’s
mechanism designed for the variational objects, without a genericity argument.
The regularity result adapted to the mechanism of [6] was given in [38].



88 CHONG-QING CHENG AND JINXIN XUE

5. The normal form

When applied to nearly integrable systems, the variational method is greatly
enhanced by the normal form theory. The basic objects such as Mather sets,
Aubry sets and Mañé sets are invariant under symplectomorphisms. In the normal
form theory, we will apply a symplectic transformation to reduce the Hamiltonian
to a normal form to reveal the rotator-pendulum structure. We have seen from
Arnold’s example that the rotator-pendulum structure is intimately related to
the appearance of resonances. The normal form theory reveals this link in this
section.

5A. Homogenization. For nearly integrable systems of the form (1-1), the nat-
ural scale to work with is

√
ε in the space of action variables. In this section,

we introduce a procedure called homogenization used to blow up a O(
√
ε)

ball in the space of action variables to the unit size. The main outcome of the
homogenization procedure is a mechanical system with a fast drift and a small
perturbation.

Consider an autonomous Hamiltonian H defined on T ∗Tn . Picking a point
y? ∈ Rn , we introduce the homogenization operator

H : y− y? :=
√
εY, H(x, y)= εH(x, Y ), (5-1)

where Y, τ,H are the homogenized action variable and Hamiltonian respec-
tively. We will simultaneously rescale the time t to the new time τ = t

√
ε, The

Hamiltonian (1-1) becomes

H(x, Y )= h(y?)
ε
+

1
√
ε
〈ω?, Y 〉+ 1

2〈AY, Y 〉+V(x)+P(x,
√
εY ), (5-2)

where:

(1) h(y?)
ε
+

1
√
ε
〈ω?, Y 〉+ 1

2〈AY, Y 〉 is the first three terms of the Taylor expansion
of h(y) around y?.

(2) ω? = ∂h
∂y (y

?).

(3) A= ∂2h
∂y2 (y?) is a positive definite constant matrix.

(4) V(x) = P(x, y?) is the constant term in the Taylor expansion of P(x, y)
with respect to the variable y.

(5) P(x,
√
εY ) consists of all the remaining terms and we have the estimate

‖P‖Cr = O(
√
ε) if ‖Y‖< C .

5B. Normal form. We next state a normal form proposition for the homogenized
system. Simply put, the normal form deduces the rotator+pendulum structure
from a resonance.
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Definition 5.1. A frequency vector ω ∈Rn
\{0} is said to be resonant if we have

〈ω, ki 〉 = 0 for some linearly independent k1, . . . , km ∈ Zn
\ {0}, 1≤m ≤ n− 1.

The number m is called the multiplicity of the resonance. We call ω a complete
resonance if m = n − 1, in which case ω is a nonzero multiple of a rational
vector.

Proposition 5.2 [11, Proposition 3.10]. For any δ>0, there exists ε0 such that for
all ε < ε0 the following holds. Suppose ω? ∈Rn admits m independent resonance
relations 〈ki , ω

?
〉 = 0 with |ki | ≤ δ

−1/2, i = 1, . . . ,m, and |〈k, ω?〉| > ε1/3 for
any |k| ≤ δ−1/2 and k /∈ spanZ{k1, . . . ,km}. Then there exists a symplectic
transformation φ, which is oε(1) close to identity in the Cr−2 norm in the domain
{|Y | ≤ 1}, such that the Hamiltonian system (5-2) is transformed to the following

H◦φ(x,Y )

=
1
ε
h(y?)+ 1

√
ε
〈ω?,Y 〉+1

2〈AY,Y 〉+V (〈k1, x〉, . . . , 〈km, x〉)+δR(x,Y ), (5-3)

where:

(1) V consists of all the Fourier modes of V in spanZ{k1, . . . ,km}.

(2) The remainder δR(x, Y )= RI (x)+
√
εRI I (x, Y ), where δRI consists of all

the Fourier modes in V with |k|> δ−1/2.

(3) If the perturbation P in (1-1) satisfies ‖P(x, y)‖Cr ≤ 1, then the norms of
V,RI ,RI I satisfy ‖V ‖Cr , ‖RI‖Cr−2, ‖RI I (x, Y )‖Cr−2 ≤ 1.

Sketch of proof. We sketch an argument to give the main idea of the proof and
refer readers to [11]. We consider the pullback of H by the time-1 map φ1√

εF
of another Hamiltonian

√
εF to be determined. Then we get by the definition

of the Poisson bracket
( d

dt |t=0H(φ
t√
εF )
)
:= {H,

√
εF} = ∂H

∂x
∂
√
εF
∂y −

∂H
∂y

∂
√
εF
∂x and

Taylor expansion that

H◦φ1√
εF =H+{H,

√
εF}+ε

ˆ 1

0
(1−t){{H,F},F}◦φt

F dt

=
1
ε
h(y?)+ 1

√
ε
〈ω?,Y 〉+1

2〈AY,Y 〉+V(x)+〈ω?,∂x F〉+O(ε1/3). (5-4)

We next decompose V(x)= V + Ṽ where V consists of all the Fourier modes
of V in spanZ{k1, . . . ,km}, and Ṽ consists of the rest. We further decompose
Ṽ = Ṽ1 + Ṽ2 where Ṽ1 consists of those Fourier modes with |k| ≤ δ−1/2 and
Ṽ2 consists of the rest. Note that Ṽ2 has Cr−2 norm less than δ by the decay
of Fourier coefficients. Then we can solve the equation Ṽ1 + 〈ω

?, ∂x F〉 = 0
by taking Fourier expansion and using the assumption |〈k, ω?〉|> ε1/3 for any
k ∈ Zn with |k| ≤ δ−1/2 and k /∈ spanZ{k1, . . . , km}. We thus obtain the normal
form. �
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Once we have the normal form, we can then find a matrix M ∈ SL(n,Z)

whose first m rows are k1, . . . ,km such that Mω? has 0 first m entries. Thus,
after a linear symplectic transformations (x, Y ) 7→ (M−1x,M t Y ), the potential
V is a function of x1, . . . , xm . This allows us to reduce the normal form to a
“pendulum+rotator” structure as in Arnold’s example.

5C. The pendulum+rotator structure near resonance. For example, we con-
sider the following Hamiltonian

H(x, y)= 1
2‖y‖

2
+ εP(x), (x, y) ∈ T ∗Tn.

We remark that we have chosen the kinetic energy part of the form 1
2‖y‖

2 to
simplify the discussion. A general kinetic energy of the form 1

2〈AY, Y 〉 will
create some new difficulty in separating the rotator and the pendulum. We have
developed systematic tools (shear transformation and undo-shear etc) in [11]
to deal with this issue. We avoid this complication by restricting ourselves to
the simple example and refer interested readers to [11] for more details in the
general case.

Suppose y?= (0, ω̂?) where ω̂? ∈Rn−m is Diophantine. Then the Hamiltonian
has the following normal form up to an additive constant

H(x, Y )= 1
√
ε
〈ω̂?, Ŷ 〉+ 1

2‖Ŷ‖
2
+

1
2‖Ỹ‖

2
+ V (x̃)+ δR(x, Y ), (5-5)

where we use notation x = (x̃, x̂) and Y = (Ỹ , Ŷ ), where ˜ means the first m
variables and ˆ means the last n − m variables. This Hamiltonian system is
split naturally into a product system if we discard the δR term. The subsystem
Ĥ(x̂, Ŷ )= 1

√
ε
〈ω̂?, Ŷ 〉+ 1

2‖Ŷ‖
2 is integrable and can be considered as a rotator.

Suppose V has a nondegenerate global maximum at 0 so the subsystem

H̃(x̃, Ỹ )= 1
2‖Ỹ‖

2
+ V (x̃) (5-6)

has a hyperbolic fixed point (0, 0). The Hamiltonian H now has the form of
“pendulum+rotator” structure as in Arnold’s example. In particular, single reso-
nance normal form gives rise to an a priori unstable system of the form (4-1)
(the pendulum subsystem has one degree of freedom).

We warn the readers that the normal form becomes singular as ε→ 0, which
is reflected in the term 1

√
ε
〈ω?, Y 〉 in (5-3) implying that the dynamics on the

NHIC is fast rotating ( ˙̂x = O(ε−1/2) in example (5-5)). This presents a technical
difficulty in the proof. The way we solve the problem is to notice that its
contribution to the variational equation disappears since ω? is a constant, hence
it has no contribution to the differential of the time-1 map of the Hamiltonian
system! This fact enables us to perform the graph transform as in [21; 26] to
obtain a version of the theorem of NHIM in this setting, with which we turn on
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the coupling δR in (5-5) (recall that in Theorem B.2, the assumptions are made on
the differential of the map f : M→ M but not on the vector field generating the
flow). Details of the statement and the proof can be found in Appendix E of [11].

6. Mechanical systems with two degrees of freedom

In this section, we study the dynamics of a mechanical system of two degrees of
freedom of the following form where A is positive definite

G(x, Y )= 1
2〈AY, Y 〉+ V (x), (x, Y ) ∈ T ∗T2. (6-1)

This system appears naturally in the double resonance normal form. We will
see in the next section that such a system is inevitable in constructing diffusing
orbits for system (1-1) with n = 3.

This system is hard to analyze in general due to its nonperturbative nature.
However, the two-dimensionality enables us to obtain enough information on the
structure of Mather sets and Mañé sets so that diffusing orbit can be constructed
passing through the double resonance.

6A. Two degrees of freedom: positive energy levels. We have the following
theorem describing Mather sets of rational rotation vectors.

Theorem 6.1 [16, Theorem 2.1]. Given a Tonelli Hamiltonian H : T ∗T2
→ R

and a class g ∈ H1(T
2,Z) and a closed interval [ν−, ν+] with ν+>ν−> 0, there

exists an open-dense set V⊂ Cr (T2,R)/R with r ≥ 5 such that for each V ∈V
normalized by max V = 0, it holds simultaneously for all ν ∈ [ν−, ν+] that the
Mather set Mνg for H +V consists of hyperbolic periodic orbits. Indeed, except
for finitely many ν j , the Mather set consists of two hyperbolic periodic orbits,
for all other ν ∈ [ν−, ν+] it consists of exactly one hyperbolic periodic orbit.

For each fixed positive energy level, the existence of periodic orbits as the
Mather set and its generic uniqueness were known in the Aubry–Mather theory
for twist maps. However, it is highly nontrivial to show that these periodic orbits
form smooth families and the finiteness of the bifurcations when varying energy
levels. This theorem completely describes the structure of the Mather set with
rotation vectors along a rational ray in the frequency space. These Mather sets
constitute a NHIC. At the bifurcation values ν j , the two components of the
Mather sets are connected by heteroclinic orbits in the Mañé set. When the
system is perturbed by a time-periodic perturbation, again we have a system of a
priori unstable type.

6B. Two degrees of freedom: the zeroth energy level. We next study the zero
frequency case. This was done in [8]. Instead of studying the dynamics in the
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Figure 2. Channel connected to a vertex of ∂F0.

Figure 3. Channel connected to an edge of ∂F0.

frequency space, we switch to the space of cohomology classes. This passage
has the effect of blowing up singularities.

We denote F0 = α
−1
G (0) and call it the flat, which is a convex set and by ∂F0

the boundary of F0. A simple example is the product of two identical pendulums
whose F0 is a square. We next introduce

∂∗F0 = {c ∈ ∂F0 :M(c)\{x = 0} 6=∅}.

The set ∂∗F0 can be nonempty. An example of a system with ∂∗F0 6= ∅ was
given in Section 2 of [9]. When ∂∗F0 6=∅ happens, then ∂F0 has infinitely many
edges; see [39].

We next introduce a subset Gm,c ⊂ H1(T
2,Z) be a subset that g ∈ Gm,c if

there is a minimal homoclinic orbit (γ, γ̇ ) in Ã(c) with [γ ] = g. Given an edge
Ei , we define Gm,Ei = Gm,c for each c ∈ int Ei since all classes in int Ei share the
same Aubry set.

The following theorem was proved in [8].

Theorem 6.2. Let F0 = α
−1
G (minαG) be a two dimensional flat, and M(c0) be a

singleton for c0 ∈ int F0. Let Ei denote an edge of F0 (not a point), then:

(1) Either Ei ∩ ∂
∗F0 =∅ or Ei ⊂ ∂

∗F0.

(2) If Ei ∩ ∂
∗F0 =∅, then Gm,Ei contains exactly one element, if Ei ⊂ ∂

∗F0, all
curves in M(Ei )\{0} have the same rotation vector.
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(3) If c ∈ ∂Ei and c /∈ ∂∗F0 then Gm,c contains exactly two elements.

(4) If Ei , E j ⊂ ∂
∗F0, then either Ei = E j , or Ei and E j are disjoint.

(5) If Ei ⊂ ∂
∗F0, M(c)=M(c′) holds for c ∈ ∂Ei and c′ ∈ intEi .

(6) If µc is an ergodic c-minimal measure for c ∈ ∂∗F0 and ω(µc) is irrational,
then the class c is an extremal point of F0.

(7) If c ∈ ∂F0\∂
∗F0 and Ã(c) consists of the fixed point and one homoclinic

orbit (γ, γ̇ ) only, then c is located in the interior of certain edge Ei .

(8) Each edge in ∂F0\∂
∗F0 is joined by two edges in ∂F0\∂

∗F0.

The result is summarized in the following dictionary. For each cohomology
class c in the right column, the corresponding Aubry set Ã(c) is in the left
column:

phase space H 1(T2,R)

hyperbolic fixed point convex disk int F0

homoclinic or periodic orbit edge of F0

two homoclinic orbits vertex of F0

homology class of homoclinic orbits ⊥ edge
NHIC foliated by periodic orbits channel connected to F0

To relate this dictionary to Theorem 6.1, we see that the NHIC foliated by periodic
orbits given in Theorem 6.1 gives the channel in the last row of the dictionary.
We may let the energy level to approach zero. The fact that there is no infinite
bifurcation in this limiting procedure is proved in the following Theorem 6.4. In
the limit, the Mather set may remain a periodic orbit or degenerate to a homoclinic
orbit as in the second line of the dictionary (see Figure 2) or degenerate to two
homoclinic orbits as in the third line of the dictionary (see Figure 3). The purpose
of a careful study of the structure of ∂F0 and its dynamical correspondence is to
understand the dynamics on small positive energy levels, as we shall talk about
in the next subsection.

6C. Dynamics around the strong double resonance. It is shown in [8] that for
all c ∈ ∂F0, the projected Mañé set N (c) (the projection of Ñ (c) from T ∗T2

to T2) does not cover the two torus.

Theorem 6.3 [8, Theorem 3.1]. Consider the Hamiltonian G of the type (6-1).
There exists a residual set in Cr (T2)/R, r ≥ 2 such that for each V in the set
normalized by max V = 0, and for each c ∈ ∂F0, the Mañé set N (c) does not
cover the whole configuration space, i.e., N (c)( T2 for all c ∈ ∂F0. Moreover,
the upper-semicontinuity of N (c) with respect to c implies that there is a 1 =
1(V ) > 0 such that the same conclusion holds for all c ∈ α−1

G ([0,1]).
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Figure 4. Turning around strong double resonance.

This theorem can be understood as that along the circle ∂F0, the dynamics is
similar to that of the Birkhoff instability region of the twist map where there is no
invariant circles. However, the facts that the dynamics on the zero energy level
of G cannot be written as a twist map, the destruction of N (c) for all c ∈ ∂F0

and the nonperturbative nature of the system G make the result highly nontrivial.
We refer readers to [8] for details.

The theorem implies that any two cohomology classes c, c′ ∈ ∂(α−1
0 (E)), E ∈

[0,1], are equivalent which gives rise to an orbit shadowing Mather sets M̃(c)
and M̃(c′); see Theorem 3.3. When viewed in the frequency space, this implies
in particular that for any two rational rays starting from 0, there is an orbit
shadowing Mather sets with rotation vectors lying on the two rays.

In general, it seems not easy to see the dynamical picture of orbits constructed
here in the phase space. On very small energy levels when two channels are
close, it seems natural that orbit shadows heteroclinics between periodic orbits
on two channels, but the dynamics seems much richer when ∂∗F0 6=∅. We also
remark that the number 1 here is obtained by the upper-semicontinuity of the
Mañé set, hence does not admit an estimate, but it is certainly independent of ε.
The numerical experiment of [23] seems to indicate that for dynamics around
double resonance should mostly follow the mechanism here.

6D. Cylinders with a hole. The phase space picture of the dynamics near dou-
ble resonance was studied by many authors. The idea is that the NHICs in
Theorem 6.1 can reach the zero energy level and even extend slightly to the
negative energy levels. On the zero energy level, the Poincaré return map takes
infinitely long time to return. This makes it hard to verify the smoothness of the
cylinder near the zero energy level. The classical theorem of normally hyperbolic
invariant manifold does not apply since the cylinder here is constructed from
periodic orbits but not perturbed from a known cylinder, while the theorem
of normally hyperbolic invariant manifold is a theorem about the persistence
of center manifolds under perturbations. The problem of the C1 regularity of
the cylinders was addressed in [17]. We state the main result of [17] in the
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general setting.

H(x, y)= 1
2〈Ay, y〉+ V (x), z = (x, y) ∈ Tn

×Rn, (6-2)

where the matrix A is positive definite and the smooth potential V attains its
maximum at a unique point x0 ∈ Tn . In this case, z0 = (x0, 0) is a fixed point
of the Hamiltonian flow 8t

H and there exist some orbits homoclinic to the fixed
point known after the work of Bolotin. Be aware that the system admits a
symmetry s : (x, y)→ (x,−y), we see that if z+(t)= (x+(t), y+(t)) is an orbit,
z−(t) = sz+(t) = (x+(−t),−y+(−t)) is also an orbit. Hence, nonshrinkable
homoclinic orbits emerge paired.

To formulate our result, by a translation of variables x→ x − x0 and V →
V − V (x0) we assume x0 = 0, V (0)= 0. We study k pairs of homoclinic orbits
{z±1 (t), . . . , z±k (t)} and denote by 0±i the closure of {z±i (t) | t ∈ R}. A periodic
orbit z+(t) is said to shadow the orbits {z+1 (t), . . . , z+k (t)} if the period admits
a partition [0, T ] = [0, t1] ∪ [t1, t2] ∪ · · · ∪ [tk−1, T ] such that z+(t)|[ti−1,ti ] falls
into a small neighborhood of z+i (t). In this case, its s-symmetric counterpart
z−(t)= sz+(t) shadows the orbits {z−k (t), . . . , z−1 (t)}.

The case of k = 1 will be studied in the original phase space Tn
×Rn . To

study the case k ≥ 2, we work in the covering spaces πh: Rn
×Rn

→ Tn
h ×Rn

and πh : T
n
h ×Rn

→ Tn
×Rn , where Tn

h = {(x1, x2, . . . , xn) ∈ Rn
: xi mod hi ∈

N\0}. To decide the class h = (h1, . . . , hn), we let z̄1(t) be the lift of z+1 (t)
to R2n such that limt→−∞ z̄1(t) = 0, then choose a lift z̄2(t) of z+2 (t) with
limt→−∞ z̄2(t) = limt→∞ z̄1(t). In the way, we get successively a lift z̄i (t) of
z+i (t) for each i and define h to be the integer vector limt→∞ z̄k(t). Let 0 be
the closure of

{
∪i≤k z̄i (t)) | t ∈ R

}
, then we construct a shift σ0 as follows. We

define z̄′1(t)⊂ σ0 to be the lift of z+1 (t) such that limt→−∞ z̄′1(t)= limt→∞ z̄k(t).
Other z̄′i (t), i = 2, . . . , k, is successively constructed. Let σ0 be the closure of{
∪i z̄′i (t)) | t ∈ R

}
. We make the following assumption:

For k pairs of homoclinic orbits {z±1 (t), . . . , z±k (t)}, there exists
a nonnegative integer ` and a covering space πh: Rn

×Rn
→

Tn
h × Rn such that πh(0 ∪ σ0 ∪ · · · ∪ σ

`0) is a closed curve
without self-intersection.

(H)

Theorem 6.4. Under certain genericity assumptions including (H) (see [17,
Theorem 1.1]) there exists a continuation of periodic orbits from the homoclinic
orbits {z±1 (t), . . . , z±k (t)}. More precisely, some E0 > 0 exists such that:

(1) For any E ∈ (0, E0], on the energy level E there exist unique periodic
orbit z+E (t) and its s-symmetric orbit z−E (t)= sz+E (t) shadowing the orbits
{z+1 (t), . . . , z+k (t)} and {z−k (t), . . . , z−1 (t)} respectively. The set {z±E (t) | t ∈
R} depending on E approaches ∪i0

±

i in Hausdorff metric as E ↓ 0.
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Figure 5. Cylinder with a hole.

(2) For any E ∈ [−E0, 0) there exists a unique periodic orbit zE,i shadowing
the orbits {z+i (t), z−i (t)} for i = 1, . . . , k. As a set depending on E , {zE,i (t) |
t ∈ R} approaches 0+i ∪0

−

i in Hausdorff metric as E ↑ 0.

Let 5 = 5+ ∪1≤i≤k (5
−

i ∪ 0
+

i ∪ 0
−

i ) where 5+ = ∪E>0(∪t z+E (t) ∪ z−E (t))
and 5−i = ∪E<0 ∪t zE,i (t). For k = 1, it makes up a C1-NHIC with one hole.
For k ≥ 2, each connected component in the pull-back π−1

h 5 of 5 to Tn
h ×Rn is

a C1-NHIC with (`+ 1)k holes. The homoclinic orbits are contained inside of
the manifold.

In [17], to which readers are referred to, the authors give two more mechanisms
of crossing the double resonance utilizing the geometric structure of cylinders
with a hole. Compared to the first mechanism of turning around double resonance
using c-equivalence, in this mechanism using cylinders with holes, orbits has to
cross zero energy level hence we expect that the orbit should be much slower
than that in the first mechanism hence is less likely. This is an interesting subject
for future study.

7. Systems with three degrees of freedom

In this section, we give an overview of the proof of Theorem 1.3 in the case of
n = 3.

7A. Design resonance paths and separate single and double resonances. We
first show how to apply the homogenization and normal form to design resonance
paths along which we construct diffusing orbit. We consider the case of three
degrees of freedom for simplicity. Let ε = 0 in (1-1), now the frequency vector
ω(y) := Dh(y) : R3

→ R3 has range defined on a sphere when h is restricted to
an energy level E > min h. For any integer vector k ∈ Z3

\ {0}, the resonance
condition 〈k, ω(y)〉 = 0 defines a circle on the sphere. Given two balls on the
sphere, one can connect them by some of the resonant circles (in general at
least 2). Along each resonance circle Sk := {〈k, ω(y)〉 = 0, h(y) = E}, we
show that the perturbation P( · , y) : T3

→ R, y ∈ Sk generically has a unique
nondegenerate global max, up to finitely many bifurcation points where there
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are two nondegenerate global max (see Proposition 8.1 below for a version of
this type of parametric transversality result). As we have explained in Section 5,
we will cover such resonant circles by balls of radius 3

√
ε centered at y? ∈ Sk,

and perform the homogenization in each ball. The global max of P( · , y?) gives
rise to a hyperbolic fixed point in a pendulum-like subsystem as we have seen
in Section 5C. In particular, the normal hyperbolicity is uniform for all the
homogenized systems around Sk due to the uniform nondegeneracy of the global
max of P( · , y), y ∈ Sk. The uniform normal hyperbolicity gives a bound d0

of the maximal allowable C1-norm of the perturbation so that the theorem of
NHIM is valid. Note that this d0 is independent of ε but depends only on P .

Let δ be a small number but independent of ε and apply the normal form
Proposition 5.2 and we consider only finitely many integer vectors of lengths
less than δ−1/2. Along Sk, there might be a second resonance, i.e., there is k′

with |k′|< δ−1/2 linearly independent of k such that 〈ω(y∗), k′〉 = 〈ω(y∗), k〉 =
0, y∗ ∈ Sk. For each such point y∗, outside of its O(ε1/3)-neighborhood, we
can apply Proposition 5.2 with single resonance (m = 1), and within such an
O(ε1/3)-neighborhood, we apply Proposition 5.2 with double resonance (m = 2).
In the former case, the problem is essentially reduced to the a priori unstable
case after some highly nontrivial work (recall example (5-5) with m = 1). In
the latter case, the potential V (〈k, x〉, 〈k′, x〉) in (5-3) can be decomposed into
V (〈k, x〉)+ Ṽ (〈k, x〉, 〈k′, x〉), where Ṽ depends on 〈k′, x〉 nontrivially and its
C2 norm is estimated as C |k′|−(r−2) for fixed k and P ∈ Cr . When ‖Ṽ ‖C2 < d0,
we can still apply the theorem of NHIM by treating Ṽ as a perturbation so
we call this case weak double resonance and treat it in a similar manner as a
single resonance. Then the remaining case ‖Ṽ ‖C2 ≥ d0 is called strong double
resonance. Note that there are only finitely many of them, whose number is
independent of ε, δ. The O(ε1/3)-neighborhood of a strong double resonance
can be further divided into the O(ε1/2)-neighborhood and the region outside the
O(ε1/2)-neighborhood. The former case is reduced to the setting of Section 6 as
we will see in the next subsection. The latter case is the regime of transiting from
single to double resonance regimes. It can be treated as the high energy level sets
in the system (6-1) and in the normal form Proposition 5.2, the frequency ω?/

√
ε

goes from O(ε−1/6) to O(1). It is shown in [8] that the cylinder in Theorem 6.1
in the high energy level regime consists of a single piece, without bifurcation
and the normal hyperbolicity is uniform, so this transiting regime can also be
treated as a system of a priori unstable type. In the following, we focus on the
strong double resonances.

7B. The double resonance. In a 3
√
ε ball centered at a double resonance, we

apply the homogenization and the normal form followed by a linear symplectic
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transform to get the following Hamiltonian at double resonance

H(x, Y )= ω3√
ε
Y3+

1
2〈AY, Y 〉+ V (x1, x2)+ δR(x, Y ),

(x; Y )= (x1, x2, x3; Y1, Y2, Y3).

We perform a standard energetic reduction (fixing an energy level and solve for
Ydouble := (ω3/

√
ε)Y3 as the new Hamiltonian and its conjugate τ = (

√
ε/ω3)x3

as the new time) to get

Ydouble=
1
2〈ÃỸ , Ỹ 〉+V (x̃)+δR̃

(
x̃,
ω3τ
√
ε
, Ỹ
)
, (x̃; Ỹ )= (x1, x2; Y1, Y2) (7-1)

where Ã is obtained from A by removing the third row and column, which are
absorbed in δR̃ during the reduction. We thus arrive at a system that is a small
time-dependent perturbation of the nonperturbative mechanical system G of two
degrees of freedom. Note that the τ -dependence in δR̃ is fast oscillating as ε→ 0.
This singular behavior does not invalidate the theorem of NHIM since it does not
enter the estimate of the differential of the time-1 map for the similar reason to
the discussion near the end of Section 5. We again refer readers to Appendix E
of [11] for this point. We remark that Arnold [4] already identified this as the
main difficulty for Arnold diffusion.

Let us now see how the action variable changes if a diffusion orbit is to be
constructed. Suppose we want to move y along the resonant circles determined
by

S1 := {〈ω(y),k1〉 = 0} and S2 := {〈ω(y),k2〉 = 0}.

For simplicity we assume k1 = (0, 1, 0) and k2 = (1, 0, 0) hence along S1

the frequency has the form ω(y) = (ω1(y), 0, ω3(y)) and along S2 we have
ω(y)= (0, ω2(y), ω3(y)). When two resonances occur simultaneously we have
ω(y)= (0, 0, ω3(y)). Along the resonant circle S1, we apply the normal form
Proposition 5.2 with m = 1, then by the argument following Proposition 5.2, we
reduce the problem to an a priori unstable system in Section 4 so that we can
move y freely on the resonant circle S1 provided there is no second resonance.
When the second resonance appears, in a neighborhood of S1 ∩ S2 we apply
Proposition 5.2 with m = 2 to yield the normal form (7-1) after the energetic
reduction. The energetic reduction treats the third angular variable x3 as the new
time, hence for the system (7-1), the frequency vector is obtained by removing
the third entry from ω(y). So along S1 the reduced frequency vector has the
form ωa := (a, 0), a ∈ R and along S2 it has the form ωb := (0, b), b ∈ R, and
the double resonance corresponds to the frequency vector (0, 0). To cross the
strong double resonance S1 ∩ S2, we have to construct orbit moving along ωa

close to (0, 0) then along ωb.
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Equipped with the knowledge in Section 6 on the mechanical system G of
two degrees of freedom, we are ready to construct diffusing orbits moving
around the double resonance. We interpret the frequency ωa or ωb as the rotation
vector of a Mather set, which is the velocity averaged against the minimizing
measure. Theorem 6.1 enables us to move the frequencies along ωa and ωb

using the mechanism of a priori unstable systems up to a small neighborhood of
0. Next, we apply Theorem 6.3 and the c-equivalence mechanism to find orbit
shadowing Mather sets with rotation vectors on the frequency segments ωa and
ωb. Therefore we overcome the difficulty of strong double resonance and global
diffusing orbits are constructed in the case of n = 3.

8. The genericty

The genericity of the perturbations is a central issue and is closely related to
the dynamics. For a priori unstable systems, we have outlined the genericity
argument in Section 4, which is also applicable to a priori stable systems in
the regime of single resonances and transition from single to double resonances,
where the problem is essentially reduced to a priori unstable systems after some
work, though highly nontrivial. Near double resonance, the genericity of the
perturbations are given in Theorem 6.1 and 6.3. In Theorem 6.1, the genericity
originates from the following parametric transversality result; see [16].

Proposition 8.1. Let Fs :T
1
→R, s∈[0, 1] be a family of Cr , r>4 functions that

is Lipschitz in s. Then there is an open and dense subset R of Cr (T) such that for
each V ∈R, the function Fs+V admits a unique nondegenerate global minimum
for all but finitely many parameters s1, . . . , sn for which Fsi + V, i = 1, . . . , n
admits two nondegenerate global minimums.

The genericity in Theorem 6.3 is achieved by only finitely many perturbations
in the proof. Since the proof is a bit involved, we refer readers to [9] for details.

Note that in the main terms of the normal form (5-3) as well as the system
(6-1), the system is of the form of mechanical systems (kinetic energy+potential
energy). In particular, the potential part depends only on the angular variables.
That is why we consider only Mañé perturbations (perturbations depending only
on angular variables) in the statements of Theorem 6.1 and 6.3, which are the
only allowed perturbations.

In the statement of Theorem 1.3, the perturbation P can either depend on all
variables or simply Mañé. To achieve the genericity of Mañé perturbation, one
of the main difficulties is to do it for a priori unstable systems, considering that
Theorem 6.1 and 6.3 are stated for Mañé perturbations. Indeed, this is exactly
the content of Section 4.2 of [9], where we refer interested readers.
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Appendix A: Preliminary Hamiltonian dynamics

In this section, we give some preliminaries on Hamiltonian dynamics.

Definition A.1 (Tonelli Lagrangian). Let M be a closed manifold. A C2-function
L: T M × T → R is called a Tonelli Lagrangian if it satisfies the following
conditions:

(1) Positive definiteness: for each (x, t) ∈ M ×T, the Lagrangian function is
C2 strictly convex in velocity, i.e., the Hessian ∂ẋ ẋ L is positive definite.

(2) Super-linear growth: we assume that L has fiber-wise superlinear growth:
for each (x, t) ∈ M ×T, we have L/‖ẋ‖→∞ as ‖ẋ‖→∞.

(3) Completeness: all solutions of the Euler–Lagrange equation are well defined
for the whole t ∈ R.

We have the following remarks:

• (Euler–Lagrange equation) Given a Lagrangian L , its Lagrangian flow is
solved from the Euler–Lagrange equation d

dt
∂L
∂ ẋ −

∂L
∂x = 0; see [3, Chapter 3].

• (autonomous, nonautonomous, twist maps) We say that L is autonomous if
it does not depend on t , otherwise it is called nonautonomous. A nonau-
tonomous system L : T Tn

×T→ R will be said to have n+ 1
2 degrees of

freedom. When n = 1, a Tonelli Lagrangian of 1.5 degrees of freedom has
time-1 map defined on T T.

• (Tonelli Hamiltonian) A Hamiltonian H : T ∗M ×T→ R is called Tonelli,
if it is the Legendre transform of a Tonelli Lagrangian, i.e.,

H(x, y, t)=max
ẋ
〈y, ẋ〉− L(x, ẋ, t).

For instance, any mechanical Hamiltonian of the form H(x, y)= 1
2‖y‖

2
+

V (x), (x, y) ∈ T ∗Tn is Tonelli, since it is the Legendre transform of
L(x, ẋ)= 1

2‖ẋ‖
2
− V (x), (x, ẋ) ∈ T Tn .

• (energetic reduction) Given an autonomous Hamiltonian H : T ∗Tn
→ R,

denoting x = (x̂, xn) ∈ Tn−1
×T, y = (ŷ, yn) ∈ U (⊂ Rn−1

×R) where U
is a bounded domain, if we know ∂H

∂yn
6= 0, then we can apply the implicit

function theorem to the Hamiltonian H(x̂, xn, ŷ, yn)= E restricted to the
constant energy level E , to solve for yn = yn(x̂, xn, ŷ). Now yn can be
considered as a nonautonomous Hamiltonian of n− 1

2 degrees of freedom
with angular variables x̂ , action variables ŷ and xn as the time variable; see
[3, Section 45, Chapter 9].
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Appendix B: The theorem of normally hyperbolic invariant manifolds

In this section we give the version of normally hyperbolic invariant manifold
theorem that we used in the proof of our main theorem. The standard references
are [26; 22]. Readers are also referred to [20]. There are some subtleties of
applying the theorem in the proof concerning the fast oscillatory nature in the
nonresonant degrees of freedom. Readers can find more details in the appendix
of [11].

Definition B.1 (NHIM). Let N ⊂ M be a submanifold (maybe noncompact)
invariant under f , f (N )= N . We say that N is a normally hyperbolic invariant
manifold if there exist a constant C > 0, rates 0< λ < µ−1 < 1 and an invariant
(under D f ) splitting for every x ∈ N

Tx M = E s(x)⊕ Eu(x)⊕ Tx N

in such a way that

v ∈ E s(x)⇔ |D f n(x)v| ≤ Cλn
|v|, n ≥ 0,

v ∈ Eu(x)⇔ |D f n(x)v| ≤ Cλ|n||v|, n ≤ 0,

v ∈ Tx N ⇔ |D f n(x)v| ≤ Cµn
|v|, n ∈ Z.

Here the Riemannian metric |·| can be any prescribed one, which may change
the constant C but not λ,µ.

Theorem B.2. Suppose N is a NHIM under the Cr , r > 1, diffeomorphism
f : M → M. Denote ` = min{r, |ln λ|/|lnµ|}. Then for any Cr fε that is
sufficiently close to f in the C1 norm:

(1) There exists a NHIM Nε that is a C` graph over N.

(2) (Invariant splitting) There exists a splitting for x ∈ Nε

Tx M = Eu
ε (x)⊕ E s

ε(x)⊕ Tx Nε (B-1)

invariant under the map fε . The bundle Eu,s
ε (x) is C`−1 in x.

(3) There exist C` stable and unstable manifolds W s(Nε) and W u(Nε) that are
invariant under f and are tangent to E s

ε ⊕T Nε and Eu
ε ⊕T Nε respectively.

(4) The stable and unstable manifolds W u,s(Nε) are fibered by the correspond-
ing stable and unstable leaves W u,s

x,ε :

W u(Nε)= ∪x∈NεW
u
x,ε, W s(Nε)= ∪x∈NεW

s
x,ε .

(5) The maps x 7→W u,s
x,ε are C`− j when W u,s

x,ε is given C j topology.

(6) If f and fε are Hamiltonian and dim E s
= dim Eu , then Nε is symplectic

and the map fε restricted to Nε is also Hamiltonian [20].
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Appendix C: Systems of arbitrary degrees of freedom

In this appendix, we illustrate how to construct diffusing orbit in the general
n > 3 case. The main difficulty is that it is not avoidable to study the dynamics
around the complete resonance where the system is reduced to a mechanical
system of (n− 1) degrees of freedom, which is in general nonperturbative. The
high dimensional and nonperturbative nature of the problem creates serious
difficulties in general. For example, for a nonperturbative mechanical system of
(n− 1) degrees of freedom, Mather sets with rational rotation vectors may not
be periodic orbits and when they are periodic they are not necessarily hyperbolic.
So the theory in Section 6 cannot be recovered in this case. However, it turns out
that close to codimension 1 and 2 KAM tori, we can find a connected set where
perturbative techniques can be applied to reduce the problem to a multiscale
system such that in each scale we have only single or double resonances. In this
way, the methods in the previous sections can be applied to construct diffusing
orbits. The general strategy is as follows:

(1) Try to find NHIC homeomorphic to T ∗T×T to apply the method of a priori
unstable system (4-1).

(2) Apply the mechanism of c-equivalence when there is a strong double reso-
nance.

(3) Introduce new ideas to cross resonances of higher multiplicity.

In case (1), we require the NHIC to be homeomorphic to T ∗T instead of T ∗Tk ,
k > 1, mainly because the regularity Theorem 4.1 is only established in the case
of T ∗T.

C1. Choosing the frequency path. We describe an algorithm to choose the
frequency lines along which the diffusion orbits are constructed.

The diffusing orbit will be constructed along some resonant path in order to
utilize the resonant normal form. We design a procedure to construct a frequency
path with special hierarchy structure. In the first step we start with a frequency
segment of the form

ωa = ρa

(
a,

p2

q2
ω∗2,

p3

q3
ω∗2, ω̂

∗

n−3

)
∈ Rn, (C-1)

where (ω∗2, ω̂
∗

n−3)= (ω
∗

2, ω
∗

4, ω
∗

5, . . . , ω
∗
n)∈Rn−2 is a Diophantine vector in Rn−2,

and a lies in an interval, p2/q2, p3/q3 ∈ Q irreducible. For all a, the vector
ωa admits a resonant integer vector k1 = (0, q2 p3,−q3 p2, 0, . . . , 0). After a
linear transform by a matrix in SL(n,Z), we get ω̌a = ρa(a, 0, p

qω
∗

2, ω̂
∗

n−3) ∈Rn .
We want to show that a can be moved arbitrarily. More precisely, for any a′,
a′′ ∈ R and δ sufficiently small, there is an orbit (x(t), y(t)), t ∈ [t ′, t ′′], such
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that ω(y(t))|[t ′,t ′′] lies in a δ neighborhood of ωa, a ∈ [a′, a′′]. The frequency ω̌a

has at most two resonance relations, one of which is always (0, 1, 0, . . . , 0), so
the normal form Proposition 5.2 with either m = 1 or m = 2 applies.

We first consider region where Proposition 5.2 with m= 1 applies. In this case
the function V in (5-3) is defined on T1. Similar to Section 3A and the example
after the statement of Proposition 5.2, we see that the system admits a NHIC
homeomorphic to T ∗Tn−1 corresponding to the global max of V . In the case of
m = 2, the function V is defined on T2. We can then separate a subsystem of the
form (6-1), similar to the example after Proposition 5.2, and apply Theorem 6.1
to it to find a NHIC, which gives rise to a NHIC homeomorphic to T ∗Tn−1 for
the full system slightly away from the strong double resonance.

To proceed, we need the following observations:

(1) The Hamiltonian system restricted to the NHIC is still Hamiltonian with
one less degree of freedom.

(2) The hyperbolicity of the NHIC is determined by the nondegeneracy of the
global max of the potential V .

(3) The remainder δR can be made as small as we wish.

(4) The normal form Proposition 5.2 with m = 1 or 2 holds in a neighborhood
U of the frequency segment ωa . The size of the neighborhood depends
on δ.

Using (2) and (3), we choose δ so small that the perturbation δR does not
destroy the NHIC constructed above. We then fix δ to proceed to the next step.
Using (1), we obtain a Hamiltonian system restricted to the NHIC which is
still nearly integrable has n− 1 degrees of freedom. Item (4) implies that the
restricted Hamiltonian has frequencies (or rotation vectors of Mather sets, more
precisely) in a neighborhood of ρa

(
a, p

qω
∗

2, ω̂
∗

n−3

)
∈ Rn−1 which is obtained

from ω̌a by removing the zero entry corresponding to the normal to the NHIC.
So we can modify in the neighborhood U the first component ω∗4 of the vector
ω̂∗n−3 to a rational multiple of ω∗2 , so that the new frequency segment denoted by
ω̄a =

(
a, p

qω
∗

2,
p4
q4
ω∗2, ω̂

∗

n−4

)
has a similar structure as ωa so we can repeat the

above procedure. Note that the rational p4
q4

necessarily has large denominator
depending on δ. In the original system the means that we modify the frequency
segment ωa to ω′a = ρa

(
a, p2

q2
ω∗2,

p3
q3
ω∗2,

p4
q4
ω∗2, ω̂

∗

n−4

)
hence introduces a second

resonant integer vector k2 such that 〈k2, ω
′
a〉 = 0 for all a. We have |k2| � |k1|

(more precisely, as δ→ 0, we have |k1| fixed but |k2| →∞) and moreover, the
two vectors are not determined at once, instead, after k1 is determined and δ is
fixed, we can then determine k2 by choosing p4/q4.
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After n− 3 steps, the above algorithm gives a final frequency segment of the
form

ω]a = ρ
]
a

(
a,

p2

q2
,

p3

q3
, . . . ,

pn

qn

)
∈ Rn

with a special hierarchy structure: for fixed pi/qi , we then choose pi+1/qi+1

sufficiently close to a Diophantine number ω∗i+1/ω
∗

2 . We choose pi+1/qi+1 so
close to ω∗i+1/ω

∗

2 that the resonance integer vector ki has a large norm and the
Fourier modes5ki P are so small that it does not destroy the NHIC obtained in the
previous step applying the theorem of NHIM. Now the frequency vector ω]a has
at least n−2 resonant integer vectors ki , i = 1, 2, . . . , n−2 with |ki |� |ki+1| for
all a in an interval. For some a, there might be another resonant vector k′′ whose
length is comparable to one of ki . We note that the vectors ki , i = 1, . . . , n− 2
are not determined at once, instead, we determine ki+1 after ki is fixed.

Suppose we finish moving a and want to move the second component of the
frequency vector. The idea is to send a close to a Diophantine number that is
much closer than |pn/qn −ω

∗
n/ω
∗

2| and start moving p2/q2 applying the above
algorithm.

Carrying out the above procedure, we get the existence of NHICs outside a
small neighborhood of the complete resonance. With the presence of the NHICs,
we can consider the system as an a priori unstable system and construct diffusing
orbit. We thus have the following statement (except part (3)(c) to be explained
in the next subsection).

Theorem C.1 [11, Theorem 2.9]. Let the Hamiltonian system H = h + εP ∈
Cr (T ∗Tn,R), 7≤ r ≤∞, be as in (1-1) restricted to the energy level E >min h.
For any %> 0, and any M open balls B1, . . . ,BM of radius % centered on h−1(E),
there exist some ε0 > 0 and an open-dense set R⊂S1, such that for each P ∈R
there exist εP and a residual set RP ⊂ (0,min{εP , ε0}) such that for all ε ∈ RP

the following hold:

(1) There exists a continuous frequency path ω(t) with ∂β(ω(t)) ∈ α−1(E), t ∈
[1,M] satisfying:
(a) (∂h)−1(ω(i))∩ Bi 6=∅, i = 1, 2, . . . ,M.
(b) Each point ω(t) is resonant with multiplicity at least n− 2. There are

finitely many marked points on ω(t) denoted by ω1, . . . , ωm , where m
is independent of ε, that are resonant with multiplicity n− 1.

(2) On the energy level E there are finitely many disjoint Cr normally hyperbolic
invariant cylinders homeomorphic to T ∗T×T.

(3) For each ωi , i = 1, . . . ,m, there exists λi > 0 such that:
(a) The Mather sets of rotation vectors ω(t) with |ω(t)−ωi | ≥ λi

√
ε for

all i = 1, 2, . . . ,m, lie in the NHICs.
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(b) Any continuous curve lying in the interior of {∂β(ω(t)) | |ω(t)−ωi | ≥

λi
√
ε} ⊂ α−1(E) satisfies Theorem 3.1.

(c) The two neighboring connected components {∂β(ω(t)) | |ω(t)−ωi | ≥

λi
√
ε} ⊂ α−1(E) near ∂β(ωi ) are c-equivalent.

Remark C.2. Each marked point corresponds to a strong double resonance point
appearing at some step of the reduction of order where there is a resonant integer
vector k′′ whose length is comparable to some ki . We avoid getting too close to
the double resonance. The reason is that the NHIC, if it exists, has only C1+α

smoothness where α > 0 can be close to 0 since |ln λ/ lnµ| can be close to one
in Theorem B.2 near the strong double resonant point. The regularity is too low
to perform further reduction of order.

C2. Crossing the complete resonance. In the previous subsection, we have
shown how to construct NHICs away from complete resonances. In this sec-
tion, we show how to cross the complete resonance hence prove part (3)(c) in
Theorem C.1. Similar to the case of n = 3, the complete resonance causes
essential difficulty to construct diffusing orbit in the higher dimensional case.

The normal form near the complete resonance. Applying Proposition 5.2 repeat-
edly, we derive the following Hamiltonian normal form at the complete resonant
frequency ω]a; see Section 7.5 of [11]. After a linear transform in SL(n,Z), we
transform ω

]
a to (0, . . . , 0, ωn)

Hn−1 =
1
√
ε
ωnYn +

1
2〈An−1Y, Y 〉+

n−1∑
i=2

δi Vi (x1, . . . , xi )+ δn R(x, Y ),

where (x, Y )∈ T ∗Tn , Vi ∈Cr , and R ∈Cr−2. The Hamiltonian has the following
properties which originate from the hierarchy structure in the choice of the
frequency line in the previous section:

(1) δi+1 � δi , δ2 = 1, and we have the freedom to choose δi+1 as small as
we wish once δi Vi is fixed, and Vi+1 depends on δi+1 but ‖Vi+1‖Cr is
uniformly bounded as δi+1 → 0. The number δi+1 is chosen so that the
δi+1-perturbation does not destroy the NHIC constructed in the previous
step whose normal hyperbolicity depends on δi .

(2) The positive definite matrix An−1 depends on δi in the following way: the first
i×i block depends only on δ2, . . . , δi but does not depend on δi+1, . . . , δn−1

for i = 2, . . . , n−1. Such dependence on δi appears due to our introduction
of the linear symplectic map after applying the normal form.
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We next perform a standard energetic reduction to solve for Yn(x, xn, y) as
the solution of the equation

Hn−1(x, xn, y, Yn(x, xn, y))= E∗ >minαHn−1

to arrive at the normal form which is a nonautonomous system with n + 1/2
degrees of freedom

Yδ := −Yn
ωn√
ε
=

1
2〈Ay, y〉+

n−1∑
j=2

δi Vi (x1, . . . , xi )+ δn R̃
(
x, τ
√
ε
, y
)
, (C-2)

where we update the notation x = (x1, . . . , xn−1), y = (Y1, . . . , Yn−1), and A
denotes an (n−1)×(n−1)matrix obtained by removing the last row and column
in An−1.

In these coordinates, one case of crossing the complete resonance is to move
the frequency a(1, 0, . . . , 0) ∈ Rn−1 from some positive a to some negative a
along an orbit with the obstruction being the zero frequency.

The algorithm of constructing diffusing orbit crossing the complete resonance.
For simplicity, we consider the case n = 4 and assume A = Id3. The general
case is more complicated and we refer readers to Section 6 of [11] for details.
We also discard the term δ4 R̃ in Yδ since it is useless in our argument of passing
complete resonance.

Step 1 The cohomology space picture. We get the Hamiltonian

Yδ = 1
2‖y‖

2
+ V (x1, x2)+ δV3(x1, x2, x3), (x, y) ∈ T ∗T3. (C-3)

We first study the picture of F0 = α
−1
Yδ (0) in H 1(T3,R). This has the shape of

a big pizza (see Figure 6): O(1) in the c1, c2 direction and very tiny O(
√
δ)

in the c3 direction where c = (c1, c2, c3) ∈ H 1(T3,R), since the hyperbolicity
of the hyperbolic fixed point is weak in the x3, y3 component. Each NHIC
(homeomorphic to T ∗T1) provided by Theorem C.1 corresponds in H 1(T3,R)

to an open set that we call a channel connected to F0. The correspondence is
in the following sense. Each NHIC consists of hyperbolic periodic orbits in
the Mather sets with rotation vectors lying in the frequency line (a, 0, 0), a ∈
R \ {0} and the channels are the images of the frequency line under the map
∂β : H1(T

3,R)→ H 1(T3,R). One case of crossing the complete resonance is to
find an orbit shadowing Mather sets with rotation vectors (a, 0, 0) and (−a, 0, 0),
a 6= 0. Note that the picture of the pizza and channels is centrally symmetric
since the system Yδ is reversible (invariant under the change y → −y). Our
goal is to move the cohomology class c from one channel to another, hence by
symmetry c→−c. We have the following algorithm.
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Step 2 a priori unstable dynamics and center-straightening. The NHIC pro-
vided by Theorem C.1 is obtained in the following way. First, since the subsystem
G= 1

2(y
2
1 + y2

2)+ V (x1, x2) has two degrees of freedom, we apply Theorem 6.1
to get a NHIC foliated by action minimizing periodic orbits in the homology
class g = (1, 0) ∈ H1(T

2,Z). Moreover, action-angle coordinates (θ, I ) on the
cylinder can be introduced to reduce the subsystem to a system h̃(I ) of one
degree of freedom restricted to the NHIC. This reduces the Hamiltonian Yδ to
the form

Y δ = h̃(I )+ 1
2 y2

3 + δZ(θ, I, x3), (θ, I, x3, y3) ∈ T ∗T1
×R2,

to which we can apply Theorem 6.1 again to get a NHIC foliated by action
minimizing periodic orbits in the homology class g = (1, 0) ∈ H1(T

2,Z). This
gives the NHIC in Theorem C.1. Recovering the δ4 R̃ perturbation, diffusing
orbits can be constructed moving along the NHIC (channel in H 1(T3,R)) up
to a oδ4→0(1)-neighborhood of the pizza using the method of a priori unstable
systems.

Step 3 The cohomology equivalence. As a result of the previous step, we have
arrived at a neighborhood of the pizza where the cohomology class c= (c1, c2, c3)

satisfies αG(c1, c2) ∈ (0,1) and c3 close to zero; see Theorem 6.3 for the
definition of 1. We now view the system Yδ as a small perturbation of the
subsystem G. By Theorem 6.3 and the upper-semicontinuity of the Mañé set, for
small enough δ, the Mañé set Ñ (c) when projected to T2(3 (x1, x2)) does not
cover T2. We apply the c-equivalence mechanism (Theorem 3.3) to get that the
cohomology class (c1, c2, c3) is c-equivalent to (−c1,−c2, c3).

Step 4 The ladder climbing. Here comes an intrinsic problem due to the high
dimensionality. The two channels are centrally symmetric due to the reversibility
of the mechanical system. Namely, the projection of the two channels to the
c3 coordinate axis, may not overlap. So for c = (c1, c2, c3) in one channel, the
point (−c1,−c2, c3) does not lie in the opposite channel. We have to find a way
to change c3 to −c3. The idea is to notice that restricting the system Yδ to the
NHIC (homeomorphic to T ∗T2) obtained by applying Theorem 6.1 to G, we get
Y δ . The center manifold which is the phase space of Y δ , has stable and unstable
manifolds hence we are in a situation similar to Arnold’s example. Restricted to
an energy level of the system Yδ, the energy of the subsystem Y δ is also fixed,
so we get a curve αY δ (c)=const in H 1(T2,R). Along this curve, we can move
c3 significantly by Arnold’s mechanism, so we send

(−c1,−c2, c3)→ (−c1,−c2,−c3).
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Figure 6. Turning around complete resonance: channel (NHIC), c-
equivalence, and ladder.

To see the last mechanism clearly, we modify Arnold’s Hamiltonian slightly
to yield

H =
y2

1

2
+

y2
2

2
+

y2
3

2
+ (cos x3− 1)(1+ ε(cos x1+ sin x2)).

In this system, for each E > 0 there exists diffusing orbit along which (y1, y2)

moves arbitrarily on the circle {y2
1 + y2

2 = 2E}. In our case, the system Yδ plays
the role of H here and the subsystem Y δ plays the role of 1

2(y
2
1 + y2

2) which lies
on the NHIM {x3 = y3 = 0}.

As in the case of a priori unstable systems, we need a regularity result similar
to Theorem 4.1 to show that the barrier functions Bc(x) of the system Y δ for
αY δ (c) =constant can be parametrized into a Hölder family. This is proved
in [12].

We complete the sketch of the proof here and refer interested readers to [11]
for more details.
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