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Some remarks on the classical KAM theorem,
following Pöschel
ABED BOUNEMOURA

We propose a slight correction and a slight improvement on the main result
contained in “A lecture on Classical KAM Theorem” by J. Pöschel.

1. Introduction and results

The paper [5] contains a very nice exposition of the classical KAM theorem which
has been very influential. It is our purpose in this short and non-self-contained
note to add two remarks to this remarkable paper.

The first one concerns a technical mistake in the proof of the main abstract
statement Theorem A,1 which has been recently pointed out and corrected in the
PhD thesis [3]. Yet a correction of this mistake, following Pöschel arguments,
leads to a final statement which is both less elegant and quantitatively weaker.
We would like to explain how, by modifying slightly the arguments using ideas
due to Rüssmann (see for instance [7]), Theorem A of [5] can be proved without
any changes. The aforementioned modifications consist of replacing the crude
Fourier truncation by a more refined polynomial approximation, and then set an
iterative scheme with a linear,2 rather than super-linear, speed of convergence.

The second one concerns the application of Theorem A to an ε-perturbation of
a nondegenerate integrable Hamiltonian system. This gives persistence of a set
of positive measure of analytic invariant quasiperiodic tori with fixed diophantine
frequencies, such that each torus in this set is at a distance of order

√
ε to

its associated unperturbed invariant torus. By using a more adapted version of
Theorem A, we can actually show that the distance is of order ε/α, where α is the
constant of the Diophantine vector. This is not a new result, as this was already
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1The choices of h0 and K0, page 23 in [5], violate the condition h0 ≤ α(2K ν0 )
−1.

2We would like to quote here the paper [6]: “It has often been said that the rapid convergence
of the Newton iteration is necessary for compensating the influence of small divisors. But a deeper
analysis shows that this is not true. The Newton method compensates not only the influence of
small divisors but also many bad estimates veiling the true structure of the problems.”
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proved in [9] using a refinement of Kolmogorov approach (for an individual
torus).

So let us recall the main result of [5], keeping the same notations. For a given
domain �⊆Rn , consider a subset �α ⊆� of Diophantine vectors with constant
α > 0 and exponent τ ≥ n− 1. Given 0< r, s, h ≤ 1, define

Dr,s ={I | |I |< r}×{θ | |Im(θ)|< s}⊆Cn
×Cn, Oh={ω | |ω−�α|< h}⊆Cn

where | · | is the sup norm for vectors, and let | · |r,s,h the sup norm for functions
defined on Dr,s × Oh and | · |L the Lipschitz seminorm with respect to ω. Let
N (I, ω)= e(ω)+ω · I , which can be seen as a family Nω of linear integrable
Hamiltonian depending on parameters ω ∈ �; the family of embedding 80 :

Tn
×�→ Rn

× Tn defined by 80(θ, ω) = (0, θ) defines, for each ω ∈ �, a
Lagrangian torus invariant by the Hamiltonian flow of Nω and quasiperiodic of
frequency ω.

Theorem A. Let H = N + P. Suppose P is real-analytic on Dr,s × Oh with

|P|r,s,h ≤ γαrsν, αsν ≤ h (1-1)

where ν = τ + 1 and γ is a small constant depending only on n and τ . Then
there exist a Lipschitz map ϕ :�α→� and a Lipschitz family of real-analytic
Lagrangian embedding 8 : Tn

×�α→ Rn
×Tn that defines, for each ω ∈�α, a

Lagrangian torus invariant by the Hamiltonian flow of Hϕ(ω) and quasiperiodic
of frequency ω. Moreover, 8 is real-analytic on T∗ = {θ | |Im(θ)| < s/2} for
each ω and{

|W (8−80)|, αsν |W (8−80)|L ≤ c(αrsν)−1
|P|r,s,h,

|ϕ− Id|, αsν |ϕ− Id|L ≤ cr−1
|P|r,s,h,

(1-2)

uniformly on T∗×�α and�α respectively, where c is a large constant depending
only on n and τ , and W = Diag(r−1 Id, s−1 Id).

As expressed in (1-2), the map (8, ϕ) is Lipschitz regular with respect to
ω∈�α , and its Lipschitz norm (suitably weighted) is close to the one of (80, Id);
this is all what is needed to transfer the positive measure in parameter space
ω ∈ �α to a positive measure of quasiperiodic solutions in phase space. One
course one may ask whether (8, ϕ) is more regular with respect to ω ∈�α (since
�α is a closed set, smoothness has to be understood in the sense of Whitney).
In fact, the sketch of proof we will give below implies the following: given any
l ∈ [1,+∞[, provided (1-1) is replaced by

|P|r,s,h ≤ γ (l)αrsν

for some h > 0 and some γ (l) > 0, (8, ϕ) is of class C l with respect to ω: we
simply chose l = 1 in Theorem A to obtain Lipschitz regularity. However, as
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l→+∞, γ (l)→ 0 and thus we cannot conclude that (8, ϕ) is smooth. In order
to reach such a statement, one can replace the linear scheme of convergence
by the usual super-linear scheme (as described in [5] for instance) but then the
exponent ν in (1-1) has to be deteriorate: given any µ > ν, we have that (8, ϕ)
is smooth with respect to ω provided (1-1) is replaced by

|P|r,s,h ≤ γ (µ, ν)αrsµ

for some h > 0 and some γ (µ, ν) > 0: again γ (µ, ν)→ 0 as µ→ ν. Popov
(see [4]) showed that one can even go further and obtain some Gevrey smoothness
of (8, ϕ) under a stronger smallness condition; without going into these rather
technical issues, let us just say that (8, ϕ) can be shown to be Gevrey with
exponent 1+µ provided the polynomially small threshold sν in (1-2) is replace by
a super-exponentially small threshold of order exp(−c(1/s)a)with a=a(µ, ν)=
ν/(µ− ν). This is probably the best smoothness one can achieve in general.

Next we consider a small perturbation of a nondegenerate integrable Hamil-
tonian, that is a real-analytic Hamiltonian of the form

H(q, p)= h(p)+ f (q, p), | f | ≤ ε

where | f | is the sup norm on a proper complex domain. Introducing frequencies
as independent parameters as in [5], one can write H as in Theorem A with

P = P f + Ph, |P f | ≤ ε, |Ph| ≤ Mr2

where M is a bound on the Hessian of h. At that point, the best choice for r
seems to be r '

√
ε so that the size of P is of order ε and Theorem A can be

applied; yet with such a choice it is obvious that because of the estimates for ϕ
in (1-2), the distance between the perturbed and unperturbed torus will be of order
ε/r '

√
ε. Such an argument, used in [5], do not take into account the fact that

the term Ph is actually integrable and at least quadratic in I (that is, Ph(0, ω)= 0
and ∇I Ph(0, ω)= 0): this is an important point, as the size of Ph will effectively
enter into the conditions (1-1) but not in the estimates (1-2), simply because
Ph do not get involved in the approximation procedure nor contribute to the
linearized equations one need to solve at each step of the iteration. Then, taking
into account the estimate for Ph (which itself is a consequence of the fact that it
is at least quadratic in I ), the requirement

|P|. αrsν

is then obviously implied by the conditions

|P f |. αrsν, r . αsν

and thus we can state the following theorem (with a change of notations).
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Theorem B. Let H = N+ P+Q. Suppose P , Q are real-analytic on Dr,s×Oh ,
Q is integrable and at least quadratic in I with |Q|r,h ≤ Mr2 and

|P|r,s,h ≤ γαrsν, r ≤ δM−1αsν, αsν ≤ h (1-3)

where ν = τ + 1, γ and δ are small constants depending only on n and τ . Then
there exist a Lipschitz map ϕ :�α→� and a Lipschitz family of real-analytic
Lagrangian embedding 8 : Tn

×�α→ Rn
×Tn that defines, for each ω ∈�α, a

Lagrangian torus invariant by the Hamiltonian flow of Hϕ(ω) and quasiperiodic
of frequency ω. Moreover, the estimates (1-2) holds true.

We may now choose r as large as possible, namely r ' αsν , and obtain as
a consequence that the distance between perturbed and unperturbed torus is of
order ε(αsν)−1. As we already said, this fact was proved in [9]; alternatively, a
slight modification in the proof in [2] yields the same result.

2. Sketch of proof

In this section, we will sketch the proof of Theorems A and B; actually, we will
simply indicate the modifications with respect to [5] and we will use the same
convention for implicit constants depending only on n and τ .

Proposition 2.1. Let H = N + P , and suppose that |P|s,r,h ≤ ε with
ε ·<αη2rσ ν,
ε ·< hr,
h ≤ α(2K ν)−1, K =· σ−1 log(nη−2)

(2-1)

where 0< η < 1
8 and 0<σ < s

5 . Then there exists a real-analytic transformation

F = (8, ϕ) : Dηr,s−5σ × Oh/4→ Dr,s × Oh

such that H ◦F = N++ P+ with

|P+| ≤ 9η2ε (2-2)

and {
|W (8− Id)|, |W (D8− Id)W−1

|<·(αrσ ν)−1ε,

|φ− Id|, h|Dϕ− Id|L <· r−1ε,
(2-3)

uniformly on Dηr,s−5σ × Oh and Oh/4, with W = Diag(r−1 Id, σ−1 Id).

The above proposition is a variant of the KAM step of [5], which we already
used in [1]. The only difference is that in [5], instead of (2-1) the following
conditions are imposed 

ε ·<αηrσ ν,
ε ·< hr,
h ≤ α(2K ν)−1,

(2-4)



SOME REMARKS ON THE CLASSICAL KAM THEOREM, FOLLOWING PÖSCHEL 71

with a free parameter K ∈ N∗, leading to the following estimate

|P+|<·(ε(rσ ν)−1
+ η2
+ K ne−Kσ )ε. (2-5)

instead of (2-2). The last two terms in the estimate (2-5) comes from the
approximation of P by a Hamiltonian R which is affine in I and a trigonometric
polynomial in θ of degree K ; to obtain such an approximation, in [5] the author
simply truncates the Taylor expansion in I and the Fourier expansion in θ to
obtain the following approximation error

|P − R|s−σ,2ηr,h <·(η
2
+ K ne−Kσ ).

Yet we can use a more refined approximation result, which allows to get rid of
the factor K n in the above estimate. More precisely, we use Theorem 7.2 of [7]
(choosing, in the latter reference, β1 = · · · = βn =

1
2 and δ1/2

= 2η for δ ≤ 1
4 );

with the choice of K as in (2-1),3 this gives another approximation R̃ (which is
nothing but a weighted truncation, both in the Taylor and Fourier series, which
is affine in I and of degree bounded by K in θ ) and a simpler error

|P − R̃|s−σ,2ηr,h ≤ 8η2.

As for the first term in the estimate (2-5), it can be easily bounded by η2ε in view
of the first part of (2-1) which is stronger than the first part of (2-4) required
in [5].

Now, at variance with [5], we will use Proposition 2.1 in an iterative scheme
with a linear speed of convergence as η will be chosen to be a small but fixed
constant: for convenience, let us set

η = 10−14−ν, κ = 9η2.

Next, we define for i ∈ N,

σ0 = s/20, σi = 2−iσ0, s0 = s, si+1 = si − 5σi

so that si converges to s/2. Then, for Ki =· σ
−1
i log(nη2)=· σ−1

i , we set

hi = α(2K ν
i )
−1
= 2−iνh0, hi ·=ασ

ν
i

and the condition αsν ≤ h implies in particular than h0 ≤ h. Finally, we put

εi = κ
iε, ri = η

ir

and we verify that Proposition 2.1 can be applied infinitely many times: the
third condition of (2-1) holds true by definition, whereas the first two conditions

3There is a constant depending only on n that we left implicit in the definition of K , which
depends on the precise choice of norms for real and integer vectors, see [8] for instance.
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of (2-1) amount to εi ·<αriσ
ν
i which, in view of our choice of η, holds true for

all i ∈ N provided it holds true for i = 0; for i = 0 the condition is satisfied in
view of the threshold ε ≤ γαrsν . Once we can iterate Proposition 2.1 infinitely
many times, the convergence proof and the final estimates follow exactly as in
[5], since the sequences εi (hiri )

−1and εi (h2
i ri )
−1 decrease geometrically, again

by our choice of η. This concludes the sketch of proof.
To prove Theorem B, one needs the following variant of Proposition 2.1.

Proposition 2.2. Let H = N + P + Q, suppose that |P|s,r,h ≤ ε, |Q|r,h ≤ Mr2

with Q integrable and at least quadratic in I and
ε ·<αη2rσ ν,
r ·<M−1αη2σ ν,

ε ·< hr,
h ≤ α(2K ν)−1, K = nσ−1 log(η−2),

(2-6)

where 0< η < 1
4 and 0<σ < s

5 . Then there exists a real-analytic transformation

F = (8, ϕ) : Dηr,s−5σ × Oh/4→ Dr,s × Oh

such that H ◦F = N++ P++ Q with the estimates (2-2) and (2-3).

Let R̃ be the approximation of P; if { · , · } denotes the Poisson bracket and
[ · ] averaging over the angles, we solve the equation

{F, N } = R̃+ Q− [R̃+ Q]

which, since Q is integrable, is exactly the equation

{F, N } = R̃− [R̃]

that is solved in [5] (with, of course, R instead of R̃ as we explained above). This
justifies that the transformation in Proposition 2.2 is the same as in Proposition 2.1,
and in particular it satisfy the estimates (2-2). The only difference is that the
new Hamiltonian writes

H ◦F = N++ P++ Q, N+ = N + [R̃]

with

P+ =
ˆ 1

0
{(1− t)[R̃] + t R̃+ Q, F} ◦ X t

F dt + (P − R̃) ◦ X1
F .

As compared to [5], there is an extra term in P+ coming from Q, whose contri-
bution is easily bounded by the simple Poisson bracket

|{Q, F}|<·Mr(ασ ν)−1ε
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and, in view of the extra condition we imposed in (2-6), one can easily arrange
the estimate (2-3). This justifies Proposition 2.2, and the iteration leading to
Theorem B is exactly the same as the one leading to Theorem A.
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