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Impact Hamiltonian systems
and polygonal billiards

L. BECKER, S. ELLIOTT, B. FIRESTER, S. GONEN COHEN,
MICHAL PNUELI AND VERED ROM-KEDAR

The dynamics of a beam held on a horizontal frame by springs and bouncing
off a step is described by a separable two degrees of freedom Hamiltonian
system with impacts that respect, point wise, the separability symmetry. The
energy in each degree of freedom is preserved, and the motion along each
level set is conjugated, via action angle coordinates, to a geodesic flow on
a flat two-dimensional surface in the four dimensional phase space. Yet,
for a range of energies, these surfaces are not the simple Liouville–Arnold
tori — these are compact orientable surfaces of genus two, thus the motion
on them is not conjugated to simple rotations. Namely, even though energy
is not transferred between the two degrees of freedom, the impact system
is quasiintegrable and is not of the Liouville–Arnold type. In fact, for each
level set in this range, the motion is conjugated to the well studied and highly
nontrivial dynamics of directional motion in L-shaped billiards, where the
billiard area and shape as well as the direction of motion vary continuously
on isoenergetic level sets. Return maps to Poincaré section of the flow are
shown to be conjugated, on each level set, to interval exchange maps which
are computed, up to quadratures, in the general nonlinear case and explicitly
for the case of two linear oscillators bouncing off a step. It is established
that for any such oscillator-step system there exist step locations for which
some of the level sets exhibit motion which is neither periodic nor ergodic.
Changing the impact surface by introducing additional steps, staircases, strips
and blocks from which the particle is reflected, leads to isoenergy surfaces that
are foliated by families of genus k level set surfaces, where the number and
order of families of genus k depend on the energy.

1. Introduction

Quasiintegrable dynamics appear in nonconvex billiards with boundary consisting
of horizontal and vertical segments [3; 31; 32] and in nonconvex billiards created
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by segments belonging to confocal quadrics [7; 8; 13]. The resulting dynamics
are related to deep mathematical theories on interval exchange maps (IEM), on
directed motion on translation surfaces, on genericity of curves in the space
of affine lattices, on the Teichmüller geometry of moduli space and even on
some results in number theory; see [5; 13; 26]. We show that this fascinating
collection of interrelated mathematical fields are also related to the rich research
area of Hamiltonian impact systems (HIS). Thus, these theories are related to
a large variety of physically realizable models. We present this connection in
the simplest possible setting and in the discussion we comment on some future
synergetic directions.

In [7; 31] the two known integrable billiards in the plane, rectangles and el-
lipses, are modified by considering nonconvex boundaries consisting of segments
that respect the symmetries of the integrable billiard dynamics. The resulting
tables, nibbled rectangles [3] — domains defined by segments of horizontal
and vertical boundaries (the simplest nontrivial geometries are slitted rectangle
and L-shaped billiards, see, e.g., Figure 2) and nibbled ellipses [7; 8; 11; 13] —
domains defined by segments of confocal quadrics, display fascinating dynamical
properties. The nibbled rectangles are rational polygons and are thus analyzed
by constructing, by reflections along the horizontal and vertical segments, a flat
surface (possibly with singularities). Then, the directional billiard flow on the
nibbled rectangle is conjugated to the geodesic flow on the glued flat surface. The
genus of the flat surface is computable depending only on the number and type
of corners; see [3]. The return map to a transverse section of the surface is an
IEM, and thus, the dynamics on the flat surface and the properties of the IEM are
related. The dynamics on a given surface depend on the direction of motion. For a
flat torus, the dynamics satisfy the Veech dichotomy: depending on the direction,
either the motion is periodic or uniquely ergodic. The higher genus surfaces that
are produced by the nibbled rectangles do not necessarily satisfy this condition;
For the tables that do not produce lattice surfaces, there can be directions of
motion for which the dynamics are uniquely ergodic, directions of motion such
that a band of periodic trajectories coexists with a band of trajectories that are
dense on some set in the associated flat surface, and there can be also directions
which are ergodic but not uniquely ergodic. Characterizing the measure of these
sets of directions for a given billiard, the measure of parameters on which such
behavior occurs for a given family of billiards, and defining proper statistical
properties of the dynamics for such directions are delicate problems which are
under current study, see e.g., [3; 5; 11; 13; 16; 25].

In [7; 8; 11; 13] it was discovered that the above tools may be applied to
the study of the dynamics in nibbled ellipses. Since reflections from confocal
quadrics preserve the same integral of motion, for any fixed integral of motion
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a conjugacy to a directional motion on a glued flat surface is found, and, thus,
an IEM can be constructed. Notably, each constant of motion (namely, each
caustic) in a nibbled elliptic table defines a directional flow on a different flat
surface while the direction of motion is fixed [13]. Recently it was established
that under some conditions on the nibbled ellipse the family of directional flow
on the resulting surfaces corresponds to a generic curve in the corresponding
moduli space [11; 13]. We show here that a rich class of HIS produces families
of directional flow on flat surfaces, where both the direction and the geometry
of the surfaces vary piecewise smoothly. While the question of conditions for
genericity of the flow on isoenergetic surfaces remains open, the tools developed
in [11; 13] appear relevant; see [12].

The field of Hamiltonian impact systems (HIS), which corresponds to a smooth
conservative motion in a domain D with elastic impacts from its boundaries,
combines two types of dynamical systems — the nontrivial, possibly chaotic,
smooth motion associated with Hamiltonian flows [2], and, the dynamics resulting
from elastic impacts, which have been extensively studied mainly in the context
of billiards [19]. The combination of these two fields is natural from a modeling
point of view, as, in many systems, there is a smooth bounded interaction
component (e.g., attraction between atoms) and short range repulsion (e.g.,
atomic repulsion between atoms) giving rise to steep potentials that may be
approximated, as a singular perturbation, by elastic reflections [17; 19; 20; 22].
Analysis of nonintegrable HIS includes local analysis near periodic orbits of
the HIS [4; 9; 17], analysis near homoclinic orbits of the HIS [20], studies of
the impact dynamics in some adiabatic limits [14; 15], persistence of KAM tori
of motion along convex boundaries [30], and even establishment of hyperbolic
behavior for some specific type of systems of particles [27; 28].

A class of HIS systems which is amenable to analysis under various perturba-
tion is the Liouville integrable Hamiltonian impact systems (LIHIS) — these are
integrable Hamiltonian systems with impact surfaces which respect the integra-
bility symmetries and for which the motion on almost all level sets is rotational.

Definition 1.1. An HIS with compact level sets defined on a domain D belonging
to a smooth manifold with piecewise smooth boundary is a Liouville-integrable
HIS (LIHIS) if:

Resp F All the integrals of motion of the smooth Liouville-integrable Hamilton-
ian flow are preserved under impacts.

Resp θ The motion on any connected component of a regular level set, namely,
on components in the allowed region of motion on which the differentials
of the constants of motion are independent, is conjugated to a directed
motion on a torus.
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For smooth systems (hereafter, by smooth we mean C∞-functions as in
the Arnold–Liouville theorem, though, all results are probably correct also for
Cr , r > 2 potentials) the Resp θ condition follows from the Resp F condition
by the Arnold–Liouville theorem [1], and in some works HIS satisfying the
Resp F conditions are called integrable [27]. Examples for LIHIS are mechanical
separable Hamiltonians (i.e., H(q, p)=

∑N
i=1(p

2
i /(2m)+Vi (qi ))) with compact

level sets undergoing impacts from a perpendicular wall — an impact surface
which is an infinite N−1-dimensional plane in the configuration space with a
normal aligned along one of the qi axes; see [22; 23] for the N = 2 case.1 Then,
elastic impacts with the wall send pi →−pi , and both the Resp F and Resp θ
conditions are satisfied on regular level sets (as, in the (qi , pi ) plane one can
define action angle coordinates [14] and all other degrees of freedom are not
affected; see [23]). As argued in [23], it is expected that separable systems
with impact surfaces that consist of several such perpendicular walls are also
LIHIS (e.g., a billiard in a rectangular box). This class of LIHIS enriches the
number of integrable impact systems from merely two families for billiards
(ellipsoidal billiards [6] and rectangular boxes) to the huge class of all integrable
separable Hamiltonian systems with perpendicular walls (and possibly to other
integrable Hamiltonian systems with properly defined impact surfaces). Moreover
in [22; 23] it is establish that under some nondegeneracy assumptions on Vi ,
perturbations of such 2 degrees of freedom LIHIS by small smooth coupling
terms and/or small smooth deformation of the walls are amenable to perturbation
analysis (in particular to impact-KAM theory [22; 23]). The extension of these
ideas to HIS with quadratic potentials in elliptic billiards [10; 24] is yet to be
developed.

Now consider separable Hamiltonians impacting from surfaces in the configu-
ration space that are composed of several finite or semiinfinite planar plates, all
of which are perpendicular to one of the qi -axes. Then, elastic impacts are of the
same form, pi →−pi , so the Resp F condition is still satisfied. The HIS flow
resides on the intersection of the level set {(q, p) | Hi (qi , pi )= ei , i = 1, . . . , N }
with the billiard phase-space domain (i.e., with (q, p)∈D×Rn), and the boundary
created by the impact surfaces is glued according to the elastic impact rule. For
regular level sets of the smooth system these glued level sets are N dimensional
surfaces. Nonetheless, as shown next, in some cases the Resp θ condition is not
satisfied. We call such systems quasiintegrable HIS (QIHIS), as we show that
their dynamics is conjugated, on some of the level sets, to the directional motion
on quasiintegrable billiards.

1Separable systems means hereafter decoupled systems — product systems of N−1 degrees of
freedom mechanical Hamiltonians. The more general class of separable systems defined in [21] is
not analyzed here.
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Figure 1. A mechanical model for the Hamiltonian-step system (equa-
tions (1) and (3)). (a) A rigid beam is confined between rigid horizontal
and vertical springs hinged to supports that slide with no friction along
a frame. (b) Two aligned rigid steps are placed in front and on the back
of the frame, so when the beam hits these barriers an elastic impact
occurs.

To simplify the presentation we consider one of the simplest possible QIHIS:
two uncoupled oscillators that impact from a single right step in the configuration
space, see Figure 1 for a physical realization of such a system; a springy beam is
held on a horizontal frame and reflects from a step. The springs are connected
to slider blocks that slide with no friction along a rectangular frame of ducts,
and the step-walls, marked by a dotted line are out of the frame plane so that
the slider blocks slide freely under the step walls and do not collide with them.
The beam hits the step walls and bounces off them (always parallel to the out of
plane axis). The springs are rigid to bending (can extend only in one direction)
and are uncoupled. Thus, as the beam bounces off the step-walls elastically, it
retains its vertical and horizontal energies (e1, e2). Without the step, the system
is a classical integrable system — all orbits belonging to a given level set (e1, e2)

satisfy the Veech dichotomy: either all orbits are dense and cover the torus of
angle variables uniformly (equidistributed) or all orbits on this torus are closed.
This behavior also implies that the return map to a transverse section of this torus
is a rotation, and the rotation number on the prescribed level set determines which
of the two options occurs. We show that this basic property is changed in the
step-system. In particular, we identify a range of isoenergy level set surfaces that
are of genus two and thus the return maps to a transverse section on such surfaces
is, generally, a 5-IEM. This implies, for example, that an observable which
depends on the oscillators phases (e.g., observable depending on the location of
the beam) can have very delicate statistical properties [16; 25].

The paper is ordered as follows: in Section 2 we define the step-system
and state the main results: Theorem 2.2 which conjugates the step dynamics
to the quasiintegrable dynamics of directed motion on a compact orientable
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surfaces of genus two and to L-shaped billiards, Corllary 2.3 which concludes
that the energy surface has nontrivial foliation, Corllary 2.4 which concludes
that including additional steps, staircases, strips and rectangular scatterers can
be similarly analyzed, Theorem 2.5 which concludes that Poincaré return maps
of the Hamiltonian impact step flow are conjugated, on each level set, to an IEM
and Theorem 2.6 which summarizes the results for the case of linear oscillators
with impacts from a step. In Section 3 we prove our main results — that the
motion in this system, on each level set, is conjugated to either a billiard flow, in
a specific direction, on a rectangular domain, or to a billiard flow, in a specific
direction, on an L-shaped billiard. Moreover, we prove that beyond a prescribed
energy, the shape of the billiard on isoenergy surfaces changes from rectangular
to continuously varying L-shaped billiards, back to rectangular domain, namely,
that the topology of the invariant level set surfaces changes on isoenergy surfaces
from genus one surfaces to genus two surfaces and back to genus one surfaces. In
Section 4 we define and compute (up to quadratures) the corresponding Poincaré
return maps for the level-set dynamics (Theorems 4.1 and 4.2), thus proving
Theorem 2.5. Section 5 is devoted to establishing some specific properties of the
resulting IEM, in particular, showing that typically there are many isolated level
sets at which one of the intervals lengths vanishes. Section 6 applies these main
results to linear oscillators, where the IEM are explicitly found, thus proving
Theorem 2.6. We end with a discussion in which we list several natural extensions
of this work and some open problems.

2. The step-system: setup and main results

Consider an autonomous smooth separable Hamiltonian corresponding to a
particle motion in R2:

H = H1(q1, p1)+ H2(q2, p2)=
p2

1

2m
+ V1(q1)+

p2
2

2m
+ V2(q2) (1)

where we assume for simplicity of presentation that the potentials Vi (q) have
a single simple minimum and are concave — they monotonically increasing to
infinity as |q − qi,min| increases (other interesting cases will be studies else-
where). With no loss of generality, take the particle mass to be m = 1 and the
potentials minima to be at qi,min = 0 with Vi (0) = 0. For positive i-energies
ei = Hi (qi (t), pi (t)) > 0, i = 1, 2, the particle oscillates with frequencies
(ω1(e1), ω2(e2)) in the box [qmin

1 (e1), qmax
1 (e1)] × [qmin

2 (e2), qmax
2 (e2)] of the

configuration space, where qmin
i (ei ) and qmax

i (ei ) denote the minimal and maxi-
mal value of qi (t) on the level set ei (so Vi (qmin

i (ei ))= Vi (qmax
i (ei ))= ei ). Since

qi,min= 0, for all positive ei , qmin
i (ei )< 0< qmax

i (ei ) and the level sets are nested
d

dei
qmax

i (ei ) > 0, d
dei

qmin
i (ei ) < 0). Denote by (θi (t)=ωi (ei )t+θi (0), Ii (ei )) the
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action-angle coordinates of the 1 degrees of freedom Hamiltonian Hi (qi , pi )=

Hi (Ii ) (for one degrees of freedom systems with concave potential these always
exist and are unique up to a shift in the angle coordinate [2]). A mechanical
example of such a system is the beam held in a frame between two sets of
uncoupled springs hinged on sliding, frictionless blocks (see Figure 1). The
simplest case to consider is of linear oscillators (LO), namely, the case of quadratic
potentials:

V LO
i (qi )=

1
2ω

2
i q2

i , i = 1, 2. (2)

We formulate below the main results (Theorem 2.2, Corollaries 2.3 and 2.4 and
Theorem 2.5) for nonlinear oscillators and dedicate Theorem 2.6 and Section 6
to the LO case.

Now, introduce a step S in the configuration space (see Figure 1):

S = {(q1, q2) | q1 < qwall
1 and q2 < qwall

2 }, qwall
1 · qwall

2 6= 0, (3)

and assume the particle bounces off elastically from this step (we require, to
avoid degeneracies, that the step is located away from the two axes), yet see
[29] for a recent study on the quantized system that uses this singular case in an
essential way. At the right wall of the step (hereafter, the 1-boundary), where q1=

qwall
1 and q2 < qwall

2 , the horizontal momentum is switched (q1, q2, p1, p2)→

(q1, q2,−p1, p2) whereas at the step upper wall (the 2-boundary), where q1 <

qwall
1 and q2 = qwall

2 , the vertical momentum changes sign (q1, q2, p1, p2)→

(q1, q2, p1,−p2). When the particle hits the corner of the step the system is
not defined and the trajectory stops. The flow is discontinuous at impacts, is
smooth elsewhere, and the vertical and horizontal energies, ei , are conserved by
the impacts. We call this HIS the step system. Denote the step energies by

hstep
i = Vi (qwall

i ), hstep
= hstep

1 + hstep
2 , (4)

the step-family of level sets by:

Rc(h)={(e1,e2) |e1∈ (h
step
1 ,h−hstep

2 ),e2=h−e1}, defined for h>hstep, (5)

by Ti (ei )= 2π/ωi (ei ) the period of the smooth oscillators, by

2smooth
2 =2smooth

2 (e1, h)= 2π
T1(e1)

T2(h− e1)
(6)

the rotation number of θ2 on the level set (e1, e2 = h− e1), and by T̃i (ei ; qwall
i )

the period of the impact system when it is reflected from a wall at qi = qwall
i

(namely, T̃i (ei ; qwall
i )= 2

´ qmax
i (ei )

qwall
i

dq/(
√

2(ei − Vi (qi )))). Finally, let

θwall
i (ei ; qwall

i )= π
T̃i (ei ; qwall

i )

Ti (ei )
. (7)
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Figure 2. The directional flow on the L shaped billiard
L(π, π, θwall

1 (e1; qwall
1 ), θwall

2 (h− e1; qwall
2 )).

We will show later that by proper setting of the angle coordinate of the i th
oscillator, θwall

i (ei ; qwall
i ) is the angle variable phase at the wall (see Lemma 3.4).

Depending on the properties of Vi and on the sign of qwall
i , the functions

θwall
i (ei ; qwall

i ) may be monotone or not in ei (for the LO case they are monotone,
see below).

Definition 2.1. The step system is the two degrees of freedom HIS defined by
the smooth Hamiltonian of the mechanical form (1) defined on (q1, q2) ∈ R2

\ S,
with elastic reflections at the step S (equation (3)) boundaries. Each of the
potentials Vi (qi ) in (1) is smooth, has a single minimum at the origin and is
concave: qi V ′i (qi ) > 0 for all qi 6= 0.

Our main results are (see Figure 2) as follows.

Theorem 2.2. The step system is not Liouville-integrable HIS; For all h >
hstep, the flow on level sets belonging to the step family, Rc(h), is topologically
conjugate to the (ω1(e1), ω2(h− e1))- directional billiard flow on the L shaped
billiard L(π, π, θwall

1 (e1; qwall
1 ), θwall

2 (h − e1; qwall
2 )) whereas the step flow for

the isoenergy level sets belonging to the complement of Rc(h) is topologically
conjugate to a directional billiard flow on a rectangular billiard. For all h> hstep

both families have positive measure.

Corllary 2.3. For all h > hstep the foliation of the isoenergy surface to level sets
with increasing e1 value has two singularities at which the level sets topology
changes: at e1 = hstep

1 the topology changes from a genus one surface to a genus
two surface whereas at e1 = h− hstep

2 the topology changes back to a genus one
surface.

Corllary 2.4. By adding more steps, staircases, strips and rectangular barriers
it is possible to create impact systems with level sets with any given genus ≥ 1
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Figure 3. The return map geometry in configuration space.

and any number of disconnected components. The corresponding isoenergy
surfaces are foliated by a finite number of families of level sets with equigenus
and equinumber of components.

Theorem 2.5. The return map of the step system to the section 61 = {(q, p) |
p1 = 0, ṗ1 < 0} for each isoenergetic level set in Rc(h) is conjugated to an
interval exchange map of three intervals on a circle. Restricting the angle to a
natural fixed fundamental interval, for almost all level sets in Rc(h), the map
becomes a five-interval exchange map (5-IEM). The return map to the section
61 for isoenergy level sets in the complement to Rc(h) is a rotation on a circle,
namely a 2-IEM.

In Section 4, explicit formulae (up to quadratures) for the return map at the
isoenergy level sets (e1, h− e1) are derived (for concreteness we consider the
return map to 61 - the analogous computations for the return map to 62 amounts
to replacing 1↔ 2 in all definitions, and the same conclusions apply). These
computations show that the numerical properties of three functions of e1 (the
functions θwall

2 (h− e1),22(e1, h), χ2(e1, h) defined by equations (7), (23) and
(26)) determine the 5-IEM. In Section 5 we discuss some properties of these
functions and establish that there are isolated strongly resonant level sets at which
orbits of different periods coexist, level sets for which periodic and quasiperiodic
motion coexist, and, isolated level sets in Rc(h) at which the IEM reduces to a
rotation (at these values the level set surface is a lattice surface). We believe all
the other level sets have minimal dynamics and almost all of them have uniquely
ergodic dynamics. Proving this conjecture, namely the genericity of the isoenergy
curve of directional L-shaped billiard flows as in [11; 13], is beyond the scope
of this paper. The recent paper [12] implies such results for the case qwall

i < 0,
i = 1, 2.
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For the linear oscillator step system, the period of the smooth motion does
not depend on the energy, namely, Ti (ei )= 2π/wi , and qmax

i (ei )=−qmin
i (ei )=

√
2ei/ωi , hence all the functions which determine the dynamics are explicit:

hstep,LO
=

1
2(ω

2
1(q

wall
1 )2+ω2

2(q
wall
2 )2), (8)

θ
wall,LO
i (ei ; qwall

i )= arccos
ωi qwall

i
√

2ei
∈ (0, π), (9)

2LO
2 (e1)= 2

ω2

ω1
arccosω1qwall

1 /
√

2e1, (10)

χLO
2 (e1, h)=

ω2

ω1

(π − arccosω1qwall
1 /
√

2e1)

arccosω2qwall
2 /
√

2(h− e1)
. (11)

Theorem 2.6. For h > hstep,LO, the flow of the linear-oscillators-step system on
each level set in Rc(h) is topologically conjugated to the directional billiard flow
in the fixed direction (ω1, ω2) on the L-shaped billiard

L(π, π, θwall,LO
1 (e1; qwall

1 ), θ
wall,LO
2 (h− e1; qwall

2 )).

The L arms widths depend smoothly and monotonically on their arguments, and
are of opposite monotonicity if and only if qwall

1 qwall
2 > 0. The return map to the

section 61 is an IEM of the form (31) with

(θwall
2 ,22, χ2)= (θ

wall,LO
2 (h− e1; qwall

2 ),2LO
2 (e1), χ

LO
2 (e1, h))

of equations (9), (10) and (11).

The proof and other properties of the step LO are presented in Section 6.

3. The flow on level sets and the corresponding flat surfaces

In this section we prove Theorem 2.2. The main observation is that in terms
of the smooth action angle coordinates, for the proper range of energies (the
region Rc(h)), impacts from the step correspond to a rectangular hole in the
angle coordinates. Folding the torus according to the direction of motion in the
configuration space leads to the motion in an L-shaped billiard with prescribed
direction of motion and prescribed dimensions (up to quadratures). The rotational
motion in the complimentary regions to Rc(h) follows from realizing that in
these regions, for each level set, either there are no impacts at all or all impacts
occur with only one side of the step.

Proof of Theorem 2.2. We first divide the level sets to three different classes
according to the different types of impacts that may occur in each of them
(Lemmas 3.1–3.3). We then introduce the action-angle coordinates for the
smooth system, fold them to the proper billiard table (an L-shaped table for level
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Figure 4. (Color figure available online.) Impact-energy momentum
bifurcation diagram for the four relative positions of the step. The
region where motion is allowed and no impacts occur (gray), the region
where impacts occur at both sides of the step (blue) and the regions
where impacts occur only at the upper (green) or right (orange) sides
of the step are shown (see Lemmas 3.1–3.3).

sets in Rc(h) and a rectangular table for the other level sets), and establish that the
impacts from the step in the flow are mapped to impacts from the corresponding
boundaries of the billiard table.

Delineating the energy level sets according to the impacts character. In the next
few lemmas we detail how the collisions with the step depend on both the energy
in each direction and on the location of the step. This classification, which is
summarized by Figure 4 and its implications are shown in Figure 5, determines
to which billiard table the flow on the level set is conjugated. Let

R(h)= {(e1, e2) | e1,2 > 0, e1+ e2 = h}, (12)

denote the open segment of allowed level set energy values on the isoenergy
surface h (the white line in Figure 4) and by R(h) the corresponding closed
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Figure 5. The level sets projection to the configuration space (dashed
red box) for level sets in R1 (see Lemmas 3.1 and 3.2): (a) (top left) No
impacts, qwall

1,2 < 0, (e1, e2) ∈R1. (b) (top right) No impacts, qwall
1 >

0, qwall
2 < 0, (e1, e2)∈R1

∩R2. (c) (bottom left) Impacts only with the
2-boundary (upper boundary), qwall

1 > 0, qwall
2 < 0, (e1, e2) ∈R1

\R2.
(d) (bottom right) No motion for this level set, qwall

1 > 0, qwall
2 >

0, (e1, e2) ∈R1
∩R2.

interval. For all h > hstep, the isoenergy step-collision set, Rc(h), is an open
segment in the interior of R(h). Define the two isoenergy complementary closed
segments

Ri
(h)= {(e1, e2) | 06 ei 6min{h, hstep

i }, eī = h− ei }, (13)

(with interior open segments, Ri (h)), where, hereafter, we denote by ī the
complement degrees of freedom to i (namely 1̄ = 2, 2̄ = 1). Figure 4 shows
these sets in the energy-momentum diagram for different locations of the walls.

Lemma 3.1. All trajectories belonging to level sets in Ri (h) do not hit the i-
boundary. For 0< h < hstep, R(h)=R1(h)∪R2(h) and the segment R1

(h)∩
R2
(h) is nonempty. For all h > hstep, R(h)=R1

(h)∪Rc(h)∪R2
(h) and these

three segments are nonempty and disjoint.

Proof. Since the potentials are concave the level sets are nested. Level sets in
the interior of Ri (h) satisfy ei < hstep

i , hence, for all t , the trajectories satisfy:
qi (t; ei )∈ [qmin

i (ei ), qmax
i (ei )]⊂ (qmin

i (hstep
i ), qmax

i (hstep
i )). By definition, qwall

i ∈

{qmin
i (hstep

i ), qmax
i (hstep

i )} so such trajectories do not cross the line qi = qwall
i and

the step i th boundary cannot be impacted. The rest of the lemma follows from
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the definitions of R(h),R1,2(h),Rc(h), equations (5), (12) and (13); see also
Figure 4. �

Figure 5 demonstrates that in accordance with Lemma 3.1, level sets that
belong to R1(h) do not impact the 1-boundary (the right side of the step). Next
we establish when such level sets impact the 2-boundary (the upper side of the
step).

Lemma 3.2. If qwall
i < 0, trajectories associated with level sets in Ri (h) do not

hit the step. If qwall
i > 0, the dynamics in Ri (h) is further divided to the following

two cases:

For level sets in Ri (h)\Rī
(h): Trajectories hit the ī -boundary only, and the

impacts are transverse.

For level sets in R1(h)∩R2(h): Trajectories do not hit the step if qwall
ī

< 0 and
are not in the allowed region of motion if qwall

ī
> 0.

Proof. If (e1, e2) belong to Ri (h) then ei < hstep
i (see (13)). If additionally,

qwall
i < 0, then qmin

i (ei ) > qwall
i , so the oscillation in the i th direction do not

reach the wall, independently of the oscillation amplitude in the ī direction (see
Figure 5(a)).

If qwall
i > 0, then qmax

i (ei ) < qwall
i , so, while impacts cannot occur with the i

boundary, transverse impacts with the ī boundary occur wheneī > hstep
ī

, namely

when (e1, e2) ∈Ri (h)\Rī
(h) (see Figure 5(b)).

If qwall
i > 0 and eī < hstep

ī
, so (e1, e2) ∈R1(h)∩R2(h), the ī boundary cannot

be crossed. If, additionally, qwall
ī

< 0, then eī < hstep
ī

implies that qmin
ī
(eī ) > qwall

ī
and the oscillations are in the allowed region of motion and do not hit the step (see
Figure 5(c)), whereas if qwall

ī
> 0 then qmax

ī
(eī ) < qwall

ī
and the motion is “behind

the step” namely it is not in the allowed region of motion (see Figure 5(d)). �

Lemma 3.3. Each level set in the step collision set, Rc(h), includes trajecto-
ries which impact transversely the 1-boundary and trajectories which impact
transversely the 2-boundary.

Proof. Consider (e1, e2) ∈ Rc(h). Then, the projection of the level sets to the
configuration space include the step position, namely, qmin

i (ei )<qwall
i <qmax

i (ei ),
i = 1, 2. Denote hereafter the smooth Hamiltonian flow by ϕsmooth

t (z) where
z = (q1, q2, p1, p2). The open, one dimensional set of i.c.,

Z1={z |z=(qwall
1 ,q2,−

√
2(e1−hstep

1 ),±
√

2(e2−V2(q2))),q2∈(qmin
2 (e2),qwall

2 )}

is nonempty and belongs, by construction, to the level set (e1, e2). Its projection
to the configuration space belongs to the right, 1-boundary of the step. Hence,
for sufficiently small t , the set ϕ−t(Z1) is within the allowed region of motion,
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belongs to the level set (e1, e2)∈Rc(h), and consists of i.c., which impact at time t
the 1-boundary of the step transversely, with horizontal velocity−

√
2(e1− hstep

1 ).
Similarly, defining

Z2

=
{
z | z=

(
q1,qwall

2 ,±
√

2(e1−V1(q1)),−

√
2(e2−hstep

2 )
)
,q1∈ (qmin

1 (e1),qwall
1 )

}
,

the set ϕ−t(Z2) is within the allowed region of motion for sufficiently small t and
consists of i.c., belonging to the level set (e1, e2) ∈Rc(h) which impact at time
t the 2-boundary of the step transversely, with vertical velocity −

√
2(e2− hstep

2 ).
�

While, for most cases (“nonresonant”), each trajectory belonging to level
sets (e1, e2) ∈ Rc(h) hits both boundaries of the step many times, in some
resonant cases, it is possible to have families of trajectories belonging to level
sets (e1, e2) ∈ Rc(h) that hit only one of the step boundaries or even avoid
collisions (resonant trajectories belonging to the interval JK of (31) with K = 0,
see Section 4 for more details).

Action angle coordinates and transverse sections. The action angle coordinates
of the 1 degrees of freedom Hamiltonian, Hi (qi , pi ), (Ii , θi (t)=ωi (Ii )t+θi (0)),
are uniquely defined up to a shift in the angle. Since, by our assumptions,
Hi (Ii ) = ei is invertible, ei or Ii may be used to label level sets (to simplify
notation, we hereafter consider the frequencies as functions of the energies, ei ).
By the monotonicity of Vi (qi )|qi 6=0, for all energy surfaces h = e1+ e2 > 0, each
energy surface contains a family of invariant tori on which rotations occur, and
its boundary consists of the two invariant circles that correspond to the normal
modes — the oscillatory motion of only one oscillator with the other one at rest
(e1 = 0, e2 = h and e1 = h, e2 = 0).

For ei > 0, denote by 6i the three dimensional transverse section {pi = 0,
ṗi < 0}, and we set the phases of the action-angle coordinates to vanish on these
sections (so θi = 0 (mod 2π ) on 6i ):

6i : {(qi , qī , pi , pī ) | pi = 0, ṗi < 0} = {(θi , θī , Ii , Iī ) | θi = 0, Ii > 0}. (14)

By the symmetry of the mechanical Hamiltonian, with this choice of the phases,
pi (t) > 0 for θi (t) ∈ (−π, 0) mod 2π) and similarly pi (t) < 0 for θi (t) ∈
(0, π) mod 2π ), namely sign(pi (t))= sign(q̇i (t))=− sign(θi (t) mod 2π). For
pi which is bounded away from zero, the smooth flow is smoothly conjugate,
through the action angle transformation, to the directional motion on the flat
torus in the direction (ω1(e1), ω2(e2)). The directed motion on the torus is
conjugated, by standard folding, to the directed billiard motion on the square
(ψ1, ψ2) ∈ [−π, 0]×[−π, 0] (see Figure 6). For this specific folding and for the
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Figure 6. Folding the smooth flow to a billiard, the motion on a level
set is conjugated via action angle coordinated to the directional motion
on the angles-torus. The motion is conjugated to the directional billiard
motion on the left lower square. The direction of motion in this billiard
is in the same quadrant as the direction of motion in the configuration
space; see equation (15).

choice of the angle phase (14), the direction of time is preserved along trajectories
of the smooth flow and the billiard

sign(pi (t))= sign(q̇i (t))= sign(ψ̇i (t)) (15)

namely, the directed billiard in the square (hereafter called the ψ-billiard) and the
smooth flow on the level set (e1, e2) are topologically conjugated, see Figure 6.
By reflections and time reversal, the flow is also conjugated to the billiard on the
positive quadrant.

We use the same construction of conjugacy for the impact system. Let

6±i = {(q, p) | qi = qwall
i ,±pi > 0}, (16)

and let t6−i →6+i = Ti (ewall
i )− T̃i (ei ; qwall

i ), t6+i →6i
= t6i→6

−

i
=

1
2 T̃i (ei ; qwall

i )

denote the respective travel times between the sections.

Lemma 3.4. The sections 6±i are impacted/crossed transversely by the step-flow
if and only if ei > hstep

i . For all, i.c., belonging to a level set ei > hstep
i , with the

angle coordinate convention (14), the angle θi at the section 6−i is θwall
i (ei ):

θwall
i (ei ; qwall

i )= ωi (ei )t6i→6
−

i

= ωi (ei )

ˆ qmax
i (ei )

qwall
i

dq
√

2(ei − Vi (qi ))

= π
T̃i (ei ; qwall

i )

Ti (ei ; qwall
i )

, (17)
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and a reflection from the step at qwall
i sends the angle θwall

i (ei ; qwall
i ) to

2π − θwall
i (ei ; qwall

i )=−θwall
i (ei ; qwall

i ) mod 2π.

Proof. Since the level sets of Hi are nested, for ei < hstep
i the ei level set is

strictly interior to the hstep
i level set, and hence the sections 6±i are not reached

by the flow. Conversely, for ei > hstep
i , the sections 6±i are crossed by the

level set, and, by the mechanical form of the Hamiltonian Hi , on these sections
p2

i = 2(ei − V (qwall
i )) > 0 so they are crossed transversely. The formula for

θwall
i (ei ; qwall

i ) follows from the definition of action-angle coordinates and the
convention (14). By the symmetry pi→−pi of mechanical Hamiltonian function
it follows that the reflection from the step at qwall

i sends the wall angle coordinate
θwall

i to 2π − θwall
i (ei )=−θ

wall
i (ei ) mod 2π . �

Notice that, as summarized in Table 1,

lim
ei↘hstep

i

θwall
i (ei ; qwall

i )=

{
π for qwall

i < 0,
0 for qwall

i > 0.
(18)

and

lim
ei→∞

θwall
i (ei ; qwall

i )= θ
wall,∞
i , (19)

where, for symmetric potentials, θwall,∞
i =

π
2 .

Combining the classification of level sets according to their impacts with the
boundaries (Lemmas 3.1–3.3) with the action-angle representation of the flow
and the impacts on a given level set (Lemma 3.4), we establish the topological
conjugacy between the impact flow on a given level set and its corresponding
flat surface and billiard table. To this aim, it is convenient to define

θ̂wall
i (ei , eī ; q

wall
i , qwall

ī )

=


∅ if qwall

1,2 > 0∧ e1,2 < hstep
1,2

θwall
i (ei ; qwall

i ) if ei ≥ hstep
i ∧ (eī ≥ hstep

ī
∨ qwall

ī
> 0),

π otherwise.
(20)

By Lemmas 3.1–3.3,

θ̂wall
i (ei , eī ; q

wall
i , qwall

ī )= θwall
i (ei ; qwall

i )

for level sets for which impacts (transverse or tangent) with the i-boundary are
allowed,

θ̂wall
i (ei , eī ; q

wall
i , qwall

ī )=∅

for level sets that are not in the allowed region of motion, and

θ̂wall
i (ei , eī ; q

wall
i , qwall

ī )= π

for level sets in which impacts with the i-th boundary cannot occur.
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Rotational dynamics for level sets in Ri
(h).

Lemma 3.5. For level sets (e1, e2) in Ri
(h) the step-dynamics are smoothly

conjugate to the directional motion (ωi (ei ), ωī (eī )) on the torus

Ti (e1, e2)= {(θi , θī ) | θi ∈ [−π, π), θī ∈ [−θ̂
wall
ī , θ̂wall

ī )}, (21)

with θ̂ī defined by (20). This step-dynamics are also conjugated to the (±ωi (ei ),

±ωī (eī )) directional billiard motion on the rectangular billiard (ψi , ψī ) ∈

[−π, 0] × [−θ̂wall
ī
, 0]. In particular, the conjugation keeps the direction of

motion: the signs of ψ̇1,2 and the sign of q̇1,2 coincide.

Proof. By Lemma 3.2 the motion on level sets in Ri (h) is either: a) not defined
(so θ̂wall

ī
= ∅), b) corresponds to reflections only from the ī-boundary of the

step, or, c) the trajectory does not touch the step, so the motion occurs as in the
nonimpact case on the torus (21) with θ̂wall

ī
= π .

The three rows of conditions in the definition (20) of θ̂wall
ī

for ei < hstep
i

coincide with the conditions listed for cases a,b,c in Lemma 3.2, so, to complete
the proof we only need to show that case b) indeed corresponds to the rotation on
the clipped torus (21) with θ̂wall

ī
= θwall

ī
. Indeed, by the mechanical form of Hī , re-

flections only from the ī-boundary of the step imply that the corresponding angle
coordinate is restricted to the interval θī (t) ∈ [−θ

wall
ī
(eī ; q

wall
ī
), θwall

ī
(eī ; q

wall
ī
)],

where, by Lemma 3.4, the transverse impacts correspond to gluing the transverse
section 6±

ī
|Hī=eī

:

6−i |Hi=ei = {(θ, I ) | Ii = Ii (ei ), θi = θ
wall
i (ei )},

6+i |Hi=ei = {(θ, I ) | Ii = Ii (ei ), θi =−θ
wall
i (ei )}.

(22)

by identifying the angles θwall
ī
(eī ; q

wall
ī
) and−θwall

ī
(eī ; q

wall
ī
). Namely, we obtain

a directional motion on the torus (21), in the direction (ωi (ei ), ωī (eī )). By folding
to the rectangle (ψi , ψī ) ∈ [−π, 0] × [−θ̂wall

ī
, 0], the motion is conjugated to

the ψ-billiard in this rectangular billiard, and (15) holds for the impact flow as
well, proving the lemma for this case as well; see tables IIA, IIIIA, IIID, IIIID
of Figure 7. �

The flow in the region Rc(h) is conjugated to the L-shaped billiard flow.

Lemma 3.6. For level sets (e1, e2) in Rc(h) the step-dynamics are conjugate
to the directional motion (ω1(e1), ω2(e2)) on SW - the swiss-cross shaped
(θ1, θ2)-surface with vertical arms of width 2θwall

1 (e1) and length 2π , horizontal
arms of height 2θwall

2 (e2) and width 2π and the flat surface is achieved by
gluing of parallel opposite sides. This step-dynamics are also conjugate to
the (±ωi (ei ),±ωī (eī )) directional billiard motion on the L-shaped billiard
L(π, π, θwall

1 (e1; qwall
1 ), θwall

2 (h − e1; qwall
2 )). Reflecting the L-shaped billiard
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Figure 7. The isoenergy billiard geometry at the different step loca-
tions for h > hstep. The first and last rows present, respectively, the
rectangular billiards for level sets in R2(h) and R1(h). The second
and third rows present, respectively, the L-shaped billiards in Rc(h)
just below and just above the edges of the Rc(h) interval (so δ > 0 is
small).

with respect to the θ1-axis and the θ2-axis provides dynamics with conjugation
that keeps the direction of motion.

Proof. Recall that with the convention (14), qi (t; ei )>qwall
i if and only if the angle

coordinate of the smooth flow is in the interval (−θwall
i (ei ; qwall

i ), θwall
i (ei ; qwall

i )).
Hence, on a level set (e1, e2) ∈ Rc(h), the disallowed step region in the con-
figuration space is mapped by the smooth action-angle transformation to a
disallowed rectangular region in the angle variables: (θ1, θ2) ∈ Sθ(e1,e2) :=

[θwall
1 (e1; qwall

1 ), 2π − θwall
1 (e1; qwall

1 )] × [θwall
2 (e2; qwall

2 ), 2π − θwall
2 (e2; qwall

2 )]

all taken mod 2π . This rectangle cuts the four corners of the fundamental
domain creating a swiss-cross surface (see Figure 8). By Lemma 3.4, the re-
flection rule at impact, pi →−pi , translates to θwall

i → 2π − θwall
i . Hence, the

resulting flow under the step dynamics, expressed in the smooth action angle
coordinates, corresponds to setting the action values to constants, Ii (ei ), and
letting the angles (θ1, θ2) increase linearly at constant speeds (ω1(e1), ω2(e2))
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Figure 8. (Color figure available online.) The step return map, the
swiss-cross surface and the rotated L-shaped billiard geometry for level
sets in the step region, Rc(h). The gray areas correspond to the step
region in the angles space. The yellow outlines the boundary of SW,
the swiss-cross flat surface for which opposite parallel sides are glued.

on the torus [0, 2π ]×[0, 2π ], till the rectangle Sθ(e1,e2) is met. There, the gluing
condition θwall

i (ei ; qwall
i )→ 2π − θwall

i is applied. This is a directed flow on a
“torus with a rectangular hole” namely, a compact orientable surface of genus 2.
Equivalently, when shifting the torus center by (−π,−π), this is a directed flow
on a swiss-cross surface, see Figure 8. For all (e1, e2 = h − e1) ∈ Rc(h), the
dynamics under this gluing rule of the swiss-cross correspond to an unfolding
of a billiard motion in the B(e1)= L(π, π, θwall

1 (e1; qwall
1 ), θwall

2 (h− e1; qwall
2 ))-

shaped table [3; 32] in the directions (±ω1(e1),±ω2(h − e1)), where, as be-
fore, by the choice (14) of the angle phases, (15) holds on the L-shaped bil-
liard that is folded onto the low-left part of the swiss-cross; see Figures 8
and 9. Thus, we have shown that the dynamics on the isoenergetic level sets
in Rc(h) are conjugated to the family of α-directional flows on the family of
L-shaped billiards, B(h)= {α(e1)= ω2(h− e1)/ω1(e1), B(e1)}|e1∈Ic(h), where
Ic(h) := (hstep

1 , h− hstep
2 = hstep

1 + h− hstep). �

Finally, to complete the proof of Theorem 2.2, we notice that since the
directed flow on a genus-2 orientable compact surface is not conjugate to a
flow on a torus, and since by Lemma 3.6 the motion on the level sets (e1, h−e2)

for all e1 ∈ Ic(h) is conjugated to such a flow, the step system is not LIHIS.
The measure of the corresponding set is positive as the intersection of each
level set in Rc(h) with the allowed region of motion has positive area and
|Ic(h)| = h− hstep > 0. By Lemmas 3.5 the motion on the isoenergy level sets
(e1, h − e1) with e1 ∈ (0, hstep

1 ) ∪ (h − hstep
2 , h), the isoenergy complement to

Rc(h), is conjugate to the directed flow on a torus, and this complement also
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Figure 9. A simulation of the configuration space of the linear os-
cillators step system (left) with its corresponding matching L-shaped
billiard in the angle space (right). The turning points of the flow, where
pi = 0, are mapped to reflections from the outer square boundaries
and the elastic reflections of the flow from the step are mapped to the
billiard reflections from the step.

has positive measure since, for h > hstep, the intersection of these level sets with
the allowed region of motion is always of positive measure.

Each column of Figure 7 shows schematically the family of isoenergetic
billiard tables obtained for the indicated positions of the step. The directional
L-shaped billiard families, B(h), are shown in rows B and C and correspond to
level sets in Rc(h). The widths of the arms of L-shaped tables at the edges of the
segment Rc(h) (these depend on the signs of qwall

1,2 ) are listed in Table 1 — note
that they are distinct, namely, for all h> hstep, θwall

i (hstep
i ) 6= θwall

i (h−hstep
ī
). The

rectangular billiards shown in rows A and D correspond to level sets in R1(h)
and R2(h) respectively.

Lemma 3.4 in the above proof exposes the simple relation between reflections
from vertical and horizontal boundary segments and the corresponding gluing
rule in the angles variables. Corollaries 2.3 and 2.4 follow from this construction;
steps (two rays meeting at a 3π/2 corner) produce for sufficiently high individual
energies a single hole, a staircase in the configuration space creates at sufficiently
high individual energies a nibbled hole in the angles variables, a strip with handles
creates, for intermediate individual energies several disconnected components
and for sufficiently high individual energies two holes, and a rectangle creates for
sufficiently high individual energies four holes, see Figure 10 for a demonstration.
Thus, by constructing a nibbled scattering geometry which combines finite and
semiinfinite horizontal and vertical segments in the configuration space, the
number of holes and the number of connected components in the isoenergy
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qwall
1 qwall

2 θwall
1 (hstep

1 ) θwall
2 (hstep

2 )

< 0 < 0 π π

< 0 > 0 π 0
> 0 < 0 0 π

> 0 > 0 0 0

Table 1. The values of θwall
1,2 at the two edges of Rc(h). The values of

θwall
2 (h− hstep

1 ; q
wall
2 ) and θwall

1 (h− hstep
2 ; q

wall
1 ) vary accordingly with

h, with limiting values θwall,∞
i ∈ (0, π); see rows B and C of Figure 7.

�

�
−�

2q
2q

max

1qmax

1q

�2

�1

Figure 10. (Color figure available online.) For the indicated level set
(dashed line), a 2-step staircase (red), a strip with a handle (green) and a
block (blue) in the configuration space (left figure) create, respectively,
one, one and four holes in the angle-angle torus representation, and
divide the torus to two disconnected components (inside and outside
of the green frame). A slight increase in the vertical energy e2 (dotted
lines) makes the level set surface connected with two green holes.

level set surfaces can be manipulated. Moreover, constructing an impact energy-
momentum diagram [22; 23], such as Figure 4 for the one-step system, allows
to identify the critical energy values at which the topology of the energy surface
changes.

4. Return maps

Proof of Theorem 2.5. In Theorem 2.2 we proved that the step dynamics on
each isoenergy level set is conjugated, via the action angle transformation, to
the (ω1(e1), ω2(h− e1)) directional flow on a flat surface — a glued swiss-cross
for level sets in Rc(h) (Lemma 3.6) and a torus for level sets in the complement
to Rc(h) (Lemma 3.5). The transverse Poincaré section 61 of the step flow is
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conjugated to the transverse section θ1 = 0 on these surfaces via the action-angle
transformation (recall (14), and notice that the assumptions on the potentials
imply that ω1(e1) is bounded away from zero for any finite e1), so the return map
of the step flow to 61 is conjugated to the return map to 61 on the corresponding
flat surface. The return map to 61 on the flat surface is an interval exchange
map on a circle: for the swiss-cross a three-interval exchange map and for the
torus a rotation of a single interval; see, e.g., [32]. For a fixed fundamental
interval on this circle, the return map becomes, in general, a 5-IEM for the
swiss-cross case and a 2-IEM for the torus. Computations of the resulting IEMs
(see Theorem 4.2) show that the lengths of the intervals of the 5-IEMs and their
positions on the circle for isoenergy level sets change smoothly in the step region.
In particular, conditions for having a zero length interval are expressed as an
equation of smooth, nonconstant functions of e1 which are shown to vanish at
most at isolated e1 values in the interior of Rc(h).

Next, we calculate F(h)= {F = F(e1,h−e1)}e1∈[0,h], the isoenergetic family of
IEMs, for the 2-IEM case (Theorem 4.1) and for the 5-IEM case (Theorem 4.2)
thus completing the proof of Theorem 2.5. In Section 5 we explore some of the
properties of the 5-IEM family.

Let 22 denote the gain in the θ2 phase of the return map to 61 when the
motion is to the right of the step:

22 =22(e1, h; qwall
1,2 )

=
θ̂wall

1

π
2smooth

2

=

{
2π T̃1(e1; qwall

1 )/T2(h− e1) if θ̂wall
1 (e1, h; qwall

1,2 ) 6= π,

2smooth
2 (e1, h) if θ̂wall

1 (e1, h; qwall
1,2 )= π,

(23)

where θ̂wall
1 (e1, h; qwall

1,2 ) (see equation (20)) is the effective impact angle with
the side boundary of the step and 2smooth

2 (e1, h) (see equation (6)) is the rotation
in θ2 for nonimpacting trajectories. Notice that for all level sets on which motion
is defined 22 ≤2

smooth
2 . Let

2∗2(e1, h; qwall
1,2 )= 2θ̂wall

2

{
22

2θ̂wall
2

}
(24)

where {x} denotes hereafter the fractional part of the number x . We first establish
that in the complementary sets to Rc(h) the return map to 61 is the rotation (25).

Theorem 4.1. Under the same conditions of Theorem 2.2, for all isoenergy level
sets in R1(h)∪R2(h), the return map F(e1,h−e1) to the section61 is topologically
conjugated to a 22 rotation on the [−θ̂wall

2 , θ̂wall
2 ) circle:

θ2→ θ2+22(e1, h; qwall
1,2 ) mod 2θ̂wall

2 , (25)
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or, equivalently, to a 2-IEM on the interval [−θ̂wall
2 , θ̂wall

2 ] with intervals lengths
λA = 2θ̂wall

2 −2∗2, λB =2
∗

2.

Proof. By Lemma 3.5 the flow on level sets belonging to R1(h) is topologically
conjugated to the (ω1(e1), ω2(h−e1)) directional flow on the torus T1(e1, h−e1)

of equation (21). Notice that if the level set is in the disallowed region of R1(h),
then θ̂wall

2 = ∅, hence T1(e1, h− e1) = ∅, so the Theorem trivially holds. For
the nontrivial case, by (14), the transverse section 61 to the flow is mapped, for a
fixed level set, to the transverse section θ1= 0 of the corresponding torus. Hence,
to complete the proof we need to show that the return map to the section θ1= 0 of
the (ω1(e1), ω2(h−e1)) directional flow on T1(e1, e2) is the rotation (25). Indeed,
notice that for the level sets in R1(h) the effective impact angle is θ̂wall

1 = π

(when motion is allowed), so 22 =2
smooth
2 (e1, h)= 2πω2(h− e1)/ω1(e1) and

thus (25) coincides with the return map on the T1(e1, h−e1) torus. Similarly, by
Lemma 3.5, the flow on level sets belonging to R2(h) is topologically conjugated
to the (ω1(e1), ω2(h−e1)) directional flow on the rotated torus T2(e1, e2) of equa-
tion (21), namely on T2(e1, e2)= {(θ1, θ2) | θ1 ∈ [−θ̂

wall
1 , θ̂wall

1 ), θ2 ∈ [−π, π)}.

The return map to the section θ1 = 0 on this torus is a rotation of the θ2 angle
on the 2π circle by ω2(h− e1)2θ̂wall

1 /(ω1(e1)), which is exactly 22 (see (23)).
Finally, since θ̂wall

2 = π for the allowed level sets in R2(h), (25) is verified. �

Next, we establish that for level sets in Rc(h), the return map defines a three-
interval map on the circle, namely a 5-IEM on the fundamental segment arises.
Let

χ2(e1, h; qwall
1,2 )=

2smooth
2 −22

2θwall
2

=
T1(e1)− T̃1(e1; qwall

1 )

T̃2(h− e1; qwall
2 )

=
ω2(h− e1)

ω1(e1)

π − θwall
1 (e1; qwall

1 )

θwall
2 (h− e1; qwall

2 )
(26)

denote the ratio between the time spent above the step and the return time to the
upper step boundary. The integer part of χ2 corresponds to the minimal number
of impacts with the upper boundary of the step during this passage:

K2(e1, h; qwall
1,2 )= bχ2c. (27)

Theorem 4.2. Under the same conditions of Theorem 2.2, for all isoenergy
level sets in Rc(h), the return map F(e1,h−e1) to the section 61 is topologically
conjugated to a 3 interval IEM on the θ2 circle of the form

(JR, JK2, JK2+1)→22+ (JR, JK2+1, JK2) mod 2π, (28)
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where the lengths of the intervals are

(λJR , λJK2
, λJK2+1)= (2π − 2θwall

2 , 2θwall
2 (1−{χ2}), 2θwall

2 {χ2}), (29)

and the phase of the left boundary of JR is

θ L
JR
= θwall

2 −
1
222 (mod 2π). (30)

In the above formulae (θwall
2 = θwall

2 (h− e1; qwall
2 ),22, χ2) are defined by equa-

tions (7), (23) and (26), respectively, and the phase θ2 is set by (14). The return
time to61 for θ2∈ JR is T̃1 whereas for θ2∈ JK2∪ JK2+1 it is T1. Equivalently, the
dynamics for each level set is conjugated to the induced 5-IEM on the [−π, π)
interval of θ2 values. This 5-IEM is uniquely defined by equations (28)–(30), and
apart of isolated points of e1 values in Rc(h), all its 5 intervals are of positive
lengths.

Proof. By Lemma 3.6 the flow on level sets belonging to Rc(h) is topologically
conjugated to the (ω1(e1), ω2(h−e1)) directional flow on SW — the swiss-cross
surface defined by θwall

1 (e1; qwall
1 ) and θwall

2 (h − e1; qwall
2 ). In particular, the

section 61 of the return map is mapped by the action-angle conjugation to the
vertical center of SW, the 2π circle of θ2 phases (see Figure 8), so the return
map on SW and the step dynamics return map to 61 are smoothly conjugated.
While the return map can be computed from the SW geometry alone, we find it
convenient at times to consider the step dynamics.

We divide the θ2 circle to two subintervals: JR consisting of phases with
trajectories which hit the right boundary of the step (equivalently, the right
boundary of the vertical arm of SW) and return to 61, and JU consisting of
phases with trajectories which do not hit the right boundary (equivalently, enter
the horizontal arm of the SW), go above the step, possibly hitting the upper
boundary of the step (equivalently, the horizontal boundaries of the SW horizontal
arm), and then return to61 (see Figures 3 and 8 where the return map construction
to 61 in the configuration space and in the directional flow on the swiss-crossed
shaped polygon are shown). Hence, the length of JR is the length of the vertical
right boundary of the SW, λJR = 2π − 2θwall

2 = 2π(1− T̃2/T2) and λJU = 2θwall
2 .

The return time for trajectories belonging to JR is T̃1, the phase θ2 for these
trajectories increases at the constant speed ω2(h − e1), so, the interval JR is
rotated by 2(ω2(h− e1)/ω1(e1))θ

wall
1 , namely by 22 as defined in (23).

The return time for trajectories belonging to JU is T1. It is divided to the time
T̃1, where the trajectories are to the right of the step and to the time interval
T1(e1)− T̃1(e1; qwall

1 ) where the trajectories are above the step, possibly bouncing
off its upper boundary. During the T̃1 time segment the phase θ2 increases,
as before, by 22. During the T1(e1)− T̃1(e1; qwall

1 ) segment, the phase gain
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depends on the number of bounces. Denote the interval of θ2 values for which
trajectories hit the upper step k times by Jk . The function χ2 (see (26)) provides
the ratio between the time trajectories in JU spend above the step and the
return time of trajectories with energy e2 = h− e1 to the step upper boundary.
Hence, the number of bounces of the trajectories belonging to JU is either
K2 = bχ2c or K2+ 1, namely, JU = JK2 ∪ JK2+1. The phase gained during the
T1(e1)− T̃1(e1; qwall

1 ) segment by trajectories in Jk is 2(π − θwall
2 )k+ω2T̃2χ2 =

2(π−θwall
2 )k+2θwall

2 (bχ2c+{χ2})= 2πk+2θwall
2 (K2−k)+2θwall

2 {χ2}, hence,
applying this formula for k = K2 and for k = K2+ 1 we obtain

F(θ2)=


θ2+22 θ2 ∈ JR,

θ2+22+ 2θwall
2 {χ2}+ 2πK2 θ2 ∈ JK2,

θ2+22+ 2θwall
2 (−1+{χ2})+ 2π(K2+ 1) θ2 ∈ JK2+1,

(31)

where the intervals (JR, JK2, JK2+1), correspond, respectively, to phases with
trajectory segments which hit exactly once only the right side of the step (JR),
those which hit only the upper side of the step exactly K2 times (JK2) and those
hitting only the upper side exactly K2+ 1 times (JK2+1), where K = K2(e1, h);
see (26)–(27). Notice that χ2 is finite since T̃2 > 0 for level sets in the step region
(yet, χ2 diverges at the step-region boundary when qwall

2 > 0; see Table 2).
The order of these intervals on the circle is (JR, JK2, JK2+1); this follows from

the geometry of the swiss-crossed surface or from realizing that the right (resp.
left) most end point of JR corresponds to a trajectory which hits the corner with
positive (resp. negative) vertical velocity, hence, a small shift into the interval
JU will result in missing the step on the right side and hitting the upper part of
the step on the left side, see Figure 11.

Under the return map to 61 the two intervals JK2, JK2+1 switch their position
and JU and JR rotate by 22; This follows from formulae (31). Indeed, the
dividing trajectory between these two intervals is the trajectory that hits the
corner from the direction above the step (i.e., with p1 > 0, p2 < 0), and this
dividing trajectory is glued to the lower boundary of J ′R — since the return map
is piecewise orientation preserving this implies that JK2, JK2+1 must switch their
positions — see Figure 11. In summary, we proved equation (28). The lengths
of the intervals, λα of (29), follow either from the swiss-cross geometry, or,
equivalently, from formulae (31), or by considering the phases of the trajectories
which hit the step corner (see Figure 11):

λJK2+1 = 2π
T̃2

T2

{
T1− T̃1

T̃2

}
= 2θwall

2 {χ2}

λJK2
= 2π

T̃2

T2

(
1−

{
T1− T̃1

T̃2

})
= 2θwall

2 (1−{χ2})

(32)
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The form of the IEM on the circle is now fully determined by the rotation (23),
the permutation (28), and the lengths of the intervals (29).

To determine the 5-IEM on the fundamental interval [−π, π), we need to
identify how the circle-intervals and their images Jα, J ′α, are cut by the chosen
fundamental interval, here [−π, π). Let θ L ,R

Jα , θ
L ,R
J ′α
∈ [−π, π) denote the left and

right end points of the circle interval Jα, J ′α mod 2π . Namely, when θ L
Jα < θ

R
Jα

the circle interval Jα is not cut by the fundamental interval, so J ∗α = [θ
L
Jα , θ

R
Jα )⊂

[−π, π) whereas θ L
Jα > θ R

Jα means that Jα is split to two intervals, so: J ∗α =
J 1
α∪ J 2

α =[−π, θ
R
Jα )∪[θ

L
Jα , π), and the same convention is applied to the intervals

images. To obtain the 5-IEM, given an α such that θ L
Jα >θ

R
Jα we split that interval

to two at the phase π . Similarly, given an α such that θ L
J ′α
> θ R

J ′α
we split its

preimage, Jα at θ∗— the preimage of π. In the nondegenerate case (i.e., when
θ

L ,R
Jα , θ

L ,R
J ′α
6=−π, Jα ∈{JR, JK2, JK2+1}), exactly one of the intervals and exactly

one image of an interval is split, so, if additionally {χ2} 6= 0, we obtain a 5-IEM.
We identify below the JR interval end points and their images and demonstrate
that this completely determines the 5-IEM on [−π, π).

The left boundary of JR , θ L
JR

, is the phase of the trajectory which reaches the
corner from the right with negative vertical velocity, i.e., it is the phase on 61

which arrives to the corner (θwall
1 , θwall

2 ) in the swiss-cross (see Figure 11). Since
the time of passage from 61 to 6−1 is half of T̃1, and since the phases in JR are
rotated by the phase 22, we immediately obtain that

θ L
JR
= θ R

JK2+1
= θwall

2 −
1
222 (mod 2π),

θ L
J ′R
= θ R

J ′K2
= θwall

2 +
1
222 (mod 2π).

(33)

This information, together with the order of the intervals (28) and their lengths
(29) completely determines the 5 IEM. Indeed,

θ R
JR
= θ L

JK2
= θ L

JR
+ λJR (mod 2π), (34)

hence

θ L
J ′K2+1
= θ R

J ′R
= θ R

JR
+22 (mod 2π), (35)

and

θ R
JK2
= θ L

JK2+1
= θ L

JK2
+ λJK2

(mod 2π), (36)

so

θ L
J ′K2
= θ R

J ′K2+1
= θ L

J ′K2+1
+ λJK2+1 (mod 2π), (37)

and all the intervals’ and their images’ end points are thus determined by
χ2,22, θ

wall
2 (all depending on (e1, h) and on the parameters e.g., qwall

1,2 ). In
particular, the conditions under which one or more of the 5-intervals in [−π, π)
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qwall
1 qwall

2 χ2(h
step
1 ), χ2(h− hstep

2 ) 22(h
step
1 ),22(h− hstep

2 )

< 0 < 0 0, A(h−hstep
2 )

2π 2smooth
2 (hstep

1 , h), B(h− hstep
2 )

< 0 > 0 0,∞ 2smooth
2 (hstep

1 , h), B(h− hstep
2 )

> 0 < 0 2smooth
2 (hstep

1 ,h)

2θwall
2 (h−hstep

1 )
,

A(h−hstep
2 )

2π 0, B(h− hstep
2 )

> 0 > 0 2smooth
2 (hstep

1 ,h)

2θwall
2 (h−hstep

1 )
,∞ 0, B(h− hstep

2 )

Table 2. The values of χ2 and 22 at the two edges of Rc
(h), where

we use the shorthand notations

A(h− hstep
2 )=2smooth

2 (h− hstep
2 )

(
1− θwall

1 (h− hstep
2 )/π

)
,

B(h− hstep
2 )=2smooth

2 (h− hstep
2 )(θwall

1 (h− hstep
2 )/π).

has zero length can be explicitly formulated:

22(e1,h,qwall
1 )

=


2smooth(e1,h)−2K θwall

2 (h−e1,qwall
2 ) then λJK+1 = 0,

±2θwall
2 (h−e1,qwall

2 )+2π(1+2M) then −π ∈ {θ L ,R
JR
,θ

L ,R
J ′R
},

2θwall
2 (h−e1,qwall

2 )(1−2{χ2})+2π(1+2M) then −π ∈ {θ R
JK
,θ R

J ′K+1
},

(38)

where K ,M ∈ Z. To complete the proof, we need to show that these conditions
may be satisfied at most at isolated e1 values. To this aim, we first notice

Lemma 4.3. For level sets in the step region Rc, the functions χ2,22, θ
wall
2 of

e1 are pairwise independent, and, when 2smooth
2 is nonconstant, they are also

pairwise independent of 2smooth
2 .

Proof. The independence follows from the observation that the functions are
smooth nonconstant functions (see Tables 1 and 2) that depend nontrivially on
e1 through distinct parameters. For example, 22 = 22(e1, h, qwall

1 ) whereas
θwall

2 = θwall
2 (h − e1, qwall

2 ) and the dependence of these two functions on e1

through qwall
1,2 is nontrivial (i.e., it follows from equations (7) and (23) that

∂2θwall
2

∂qwall
2 ∂e1

=−
d

de1

ω2(h− e1)√
2(h− e1− V2(qwall

2 ))

and
∂222

∂qwall
1 ∂e1

=−
d

de1

2ω2(h− e1)√
2(e1− V1(qwall

1 ))
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hence, with, possibly, the exception of isolated e1 values, these derivatives do
not vanish for all level sets in Rc). Hence, if they were functionally dependent,
i.e., there was a G(θwall

2 ,22; h, qwall
1,2 )≡ 0 then

d
dqwall

2

G(θwall
2 ,22; h, qwall

1,2 )=
∂G
∂θwall

2

∂θwall
2

∂qwall
2

+
∂G
∂qwall

2

≡ 0

and hence

d2

de1dqwall
2

G(θwall
2 ,22; h, qwall

1,2 )=
∂G
∂θwall

2

∂2θwall
2

∂e1∂qwall
2

+
∂ dG

de1

∂θwall
2

∂θwall
2

∂qwall
2

+
∂ dG

de1

∂qwall
2

=
∂G
∂θwall

2

∂2θwall
2

∂e1∂qwall
2

= 0.

Since ∂2θwall
2 /(∂e1∂qwall

2 ) 6= 0 we conclude that ∂G/∂θwall
2 = 0, namely, there

is no such G with nontrivial dependence on both θwall
2 and 22). Similarly,

since χ2 = χ2(e1, h, qwall
1 , qwall

2 ), and similarly to the above calculations, the
dependence of χ2 on both qwall

1 and qwall
2 is nontrivial in e1, the pairs (χ2,22) and

(χ2, θ
wall
2 ) are functionally independent. Finally, since 2smooth

2 =2smooth
2 (e1, h),

by the same argument as above, provided ∂2smooth(e1, h)/∂e1 6= 0 apart of
isolated points, it is pairwise independent from each of the functions χ2,22, θ

wall
2 .
�

Now, we can show that (38) is satisfied at most at isolated e1 values. For the
first two possibilities, both sides of the equation are smooth functions of e1 with
the right hand side depending nontrivially on qwall

1 whereas the left hand side
depending nontrivially on qwall

2 . Hence, by the same arguments as in Lemma 4.3,
the right and left hand side are functionally independent and their difference
vanish at most at isolated e1 values.

For the last row, notice that

χ2(e1, h, qwall
1 , qwall

2 )=
T2(h− e1)

T̃2(h− e1)

T1(e1)− T̃1(e1)

T2(h− e1)
=
2smooth

2 −22

2θwall
2

, (39)

namely, 2{χu}θ
wall
2 =2smooth

2 −22−2K2θ
wall
2 , hence the last equation becomes

2θwall
2 (h− e1; qwall

2 )(1+ 2K2)

= 22smooth
2 (e1, h)−22(e1, h, qwall

1 )− 2π(1+ 2M), (40)

which shows, as above, that it is also satisfied at most at isolated e1 values.
Notice that θwall

2 > 0 for all level sets in Rc(h), so the circle map has always
at least two nontrivial components (JR and JU ), and in fact, with the exception
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�J
L

A

R

Σ1
− Σ1

+ Σ1 Σ1
−

Σ2
−

Σ1
JR

JK+1
JK

�J
L
R

A

Σ1
− Σ1

+ Σ1
−

Σ2
−

Σ1 J'R

J'K+1

J'K

�J
L
R

Figure 11. Order of intervals: the intervals JK2, JK2+1 correspond to
orbits that bounce, respectively, K2, K2+ 1 times above the step. On
the SW surface these are the orbits that enter the horizontal arm and
wrap, respectively, K2, K2+ 1 times around it before returning to the
vertical arm. Thus, their order on 61 is reversed by the flow. The phase
θ L

JR
denotes the left edge of JR — the phase that separates the orbits

that enter the horizontal arm from those that bounce off the vertical
arm boundary, namely the vertical boundary of the step.

of isolated points within Rc(h), it has three nontrivial components since {χ2}

vanishes at most at isolated e1 values. �

5. Additional properties of the family of IEM

Theorem 4.2 implies that the dynamics for level sets in the step set are completely
determined by the numerical properties of χ2,22, θ

wall
2 . All these functions

depend smoothly on e1 for the level sets in Rc(h) and are nonconstant functions —
indeed, their values at the boundaries of Rc(h) are always distinct — see Tables 1
and 2. Hence, these functions attain both rational and irrational values as e1

is varied (in some cases, but not all, these functions are also monotone in e1).
While one may suspect that this implies that for almost all e1 values the dynamics
are uniquely ergodic, it is difficult to check directly when the corresponding
IEM satisfies the Veech condition; see [13]. Indeed, while Lemma 4.3 states
that the functions χ2,22, θ

wall
2 are pairwise independent, and, in Theorem 4.2
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we established that the lengths of the intervals of the IEM are nonzero with the
exception of isolated e1 values, more delicate relations between the intervals
lengths may arise. Indeed, rewriting equation (39) as

2smooth
2 (e1, h)

= 2θwall
2 (h− e1, qwall

2 )χ2(e1, h, qwall
1 , qwall

2 )+22(e1, h, qwall
1 ), (41)

shows that in the linear case, where 2smooth,LO
2 = 2π ω2

ω1
, the three functions are

functionally related! The implications of this dependence on the dynamics and
the properties of it for general nonlinear oscillators are yet to be explored. For
now we show, by analyzing the properties of these functions, that, for some cases
minimal dynamics arise and in others nonminimal dynamics arise.

In particular, we establish that there can be isolated strongly resonant level sets
at which orbits of different periods coexist (e.g., if 22/2π, 2θwall

2 /2π, {χ2} ∈Q),
level sets for which periodic and quasiperiodic motion coexist (e.g., when
{2/2π, 2θ2/2π} ∈ Q, {χ2} /∈ Q such a case may emerge) and isolated level
sets in Rc(h) at which the IEM reduces to a rotation (when {χ2} = 0 so the
directional flow on SW has a diagonal trajectory in the horizontal arm). Notice
that the analogous computations for the return map to 62 amounts to replacing
1↔ 2 in all the above definitions.

In particular, we notice the special role the function χ2 plays: its magnitude
controls the number of bounces experienced by phases in JK2 (recall that K2 =

bχ2c) and its phase, {χ2}, controls the division of JU to two intervals (recall that
λJK2+1 = 2θwall

2 {χ2}). Hence, we study the dependence of χ2 on e1 and on the
parameters qwall

1,2 . We begin with two simple cases where we can completely
characterize the dynamics.

Corllary 5.1. For level sets in Rc(h) for which {χ2} = 0 the return map to 61 is
of only 2 intervals, namely it corresponds to a rotation by22, and is thus ergodic
if and only if 22/2π /∈Q.

Proof. By (29), {χ2} = 0 implies that λJK2
= 2θwall

2 > 0 and λJK2+1 = 0, hence,
(31) becomes a rotation by 22. �

In terms of the directed motion on the L-shaped billiard, the condition {χ2}= 0
corresponds to the case of a diagonal orbit connecting the corners of the horizontal
arm. If, additionally, 22/2π ∈Q then this orbit is also a diagonal of the vertical
arm. Notably, if qwall

2 > 0, close to the boundary of Rc(h) the horizontal sleeve
becomes narrow (see Figure 12) and thus there are many level sets at which
{χ2} = 0.

Lemma 5.2. If qwall
2 > 0, for all h > hstep, there are countable infinite level sets

in Rc(h) for which {χ2} = 0.



IMPACT HAMILTONIAN SYSTEMS AND POLYGONAL BILLIARDS 59

2.0

1.5

1.0

0.5

0.0

− 0.5

−1.0

−1.5

−2.0

2qwall
2q

−2.0 −1.5 −1.0 − 0.5 0.0 0.5 1.0 1.5 2.0

2 )(ı�
wall 2

)
(

2
ı

�
w

al
l

Σ2

Σ1

Figure 12. The dynamics for small θwall
2 .

Proof. Since, for qwall
2 > 0, T̃2(h − e1; qwall

2 )→ 0 as e1 → h − hstep
2 whereas

T1(e1)− T̃1(e1; qwall
1 ) attains a finite positive limit (since h > hstep), the smooth

function χ2(e1, h) = (T1(e1)− T̃1(e1)/T̃2(h− e1)) in the open interval Ic(h)
becomes infinite on the interval right boundary, hence it passes through integer
values at countable infinite values of e1. �

Another case which allows a complete characterization of the motion is when
22 is rational and θwall

2 is small.

Lemma 5.3. For level sets in Rc(h) for which 22 = 2πm/n and 2θwall
2 < 2π/n,

the IEM to 61 is nonergodic. For such level sets, if {χ2} /∈Q the motion is dense
on a union of open intervals and is periodic on its complement. If {χ2} ∈Q, all
i.c., are periodic, yet, there are two distinct periods. All the above conditions are
realizable for some level sets and wall positions.

Proof. Let I = [−π, π)\
⋃n−1

j=0 F j (JU ) ⊂ JR where JU = JK2 ∪ JK2+1. Since
here λJU = 2θwall

2 < 2π/n, this is a nonempty set. It is invariant since the end
points of JU belong to JR , so the end points are n-periodic. Hence, all the i.c.,
in I are n periodic and thus F is nonergodic on the circle.

The dynamics in the complement to I , namely the invariant set
⋃n−1

j=0 F j (JU ),
depends on the numerical value of {χ2}. Notice that for all i.c., in JK2 , Fn(θ2)=

θ2+2θwall
2 {χ2}∈ JU whereas for all i.c., in JK2+1, Fn(θ2)=θ2−2θwall

2 (1−{χ2})∈

JU , namely, Fn(θ2) is a 2-IEM on JU , hence it is periodic for {χ2} =
p
q ∈ Q

and is dense in JU otherwise. In the periodic case, initial conditions in I are
n-periodic whereas initial conditions in its complement are nq periodic. Finally,
since the functions 22, χ2, θ

wall
2 are continuous (in fact, smooth) nonconstant

functions of e1 in Ic(h) and since 22 =22(e1, h, qwall
1 ) we obtain that for every

h, qwall
1 there is a countable set of e1 values in Ic(h), e∗1 = e1(m/n, h, qwall

1 ) for
which 22 = 2πm/n. Notice that 22 does not depend explicitly on qwall

2 . Fixing
m/n, h, qwall

1 , there is a qwall
2 (δ) value such that 2θwall

2 (h− e∗1, qwall
2 ) < 2π/n for

all qwall
2 >qwall

2 (δ); indeed, choose qwall
2 (δ)>0 such that V2(qwall

2 (δ))=h−e∗1−δ,
so, by (7) and (18), for small δ, θwall

2 (δ) = θwall
2 (h − e∗1, qwall

2 (δ)) is monotone
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decreasing (in δ) to 0 (see Figure 12). In particular, there exists δ∗(n) such
that for all δ ∈ (cδ∗(n), δ∗(n)), for any 0 < c < 1, the impact angle satisfies
2θwall

2 (cδ∗(n)) < 2θwall
2 (δ) < 2π/n, so it is small yet bounded away from 0,

as needed for the smooth dependence on e1 near e∗1 . In particular, for this
range of qwall

2 (δ) values, motion on the level set (e∗1, h − e∗1) is n-periodic for
the set I as described above. Moreover, on this level set, from (26), χ2(δ) =

(2smooth(e∗1, h) − 2πm/n)/θwall
2 (δ) > 0, hence, it is a continuous monotone

increasing function of δ, and thus, {χ2} /∈ Q for almost all δ values in the
interval and there is a countable set of δ values for which {χ2} ∈Q. Namely, we
established that these conditions are always realizable by varying the parameter
qwall

2 . �

Notice that for sufficiently small c in the above proof the function χ2(δ)

becomes large, as in Lemma 5.2, therefore, {χ2(δ)} vanishes at some isolated
δ values. Finally, since χ2 is continuous, its range for e1 ∈ Ic(h) is at least
as large as the interval (χ2(h

step
1 ), χ2(h − hstep

2 )). When one of these values is
an integer, the behavior below and above this energy changes. Thus, Table 2
provides conditions for energy values at which bifurcations occur. For linear
oscillators, we can find the ranges explicitly, see Section 6.

All the above properties were stated for the return map to 61, creating an
artificial asymmetry between the horizontal and vertical directions. The same
results apply to the return map to the 62 section by reversing the roles of 1 and
2 and horizontal and vertical in all definitions.

6. The step dynamics for linear oscillators

For the quadratic potentials (2), the L-shaped billiard tables vertices are found
explicitly and the direction of motion is fixed. We begin this section by proving
Theorem 2.6 regarding the linear-oscillators-step dynamics and continue with
additional observations regarding the singular level sets for this case.

Proof of Theorem 2.6. The transformation to action angle coordinates for linear
oscillators, with the convention (14), becomes

(qi (t), pi (t))=
(√

2Ii
ωi

cos θi (t),−
√

2Iiωi sin θi (t)
)
, Hi = ωi Ii ,

and Ii =
1
2

(
p2

i /ωi +ωi q2
i

)
. Hence, for ei > hstep

i =
1
2ω

2
i (q

wall
i )2:

θ
wall,LO
i (ei ; qwall

i )= arccos
√
ωi

2Ii
qwall

i

= arccos
ωi qwall

i
√

2ei
∈

{(
π
2 , π

)
qwall

i < 0,(
0, π2

)
qwall

i > 0.
(42)
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Since the frequencies of linear oscillators are independent of the energy, the
direction of motion in the isoenergetic billiard family, B(h), is fixed to (ω1, ω2)

for all the level sets. Hence, for a given energy surface h = e1+ e2 > hstep, the
linear oscillator step dynamics on each level set (e1, e2 = h− e1) ∈Rc(h) are
conjugated to the directed billiard motion, in direction (ω1, ω2), in the L-shaped
billiards L(π, π, arccosω1qwall

1 /
√

2e1, arccosω2qwall
2 /
√

2(h− e1)). Moreover,
since

dθwall,LO
1 (e1; qwall

1 )

de1
=
ω1qwall

1

2e1

1√
2e1− (ω1qwall

1 )2
(43)

and

dθwall,LO
2 (h− e1; qwall

1 )

de1
=−

ω2qwall
2

2(h− e1)

1√
2(h− e1)− (ω2qwall

2 )2
, (44)

the widths of the arms are monotone in e1 and are of opposite monotonicity if
and only if qwall

1 qwall
2 > 0. �

As shown in Section 5, the monotonicity, bounds and limits of the functions
22, χ2, θ

wall
2 determine the variety of behaviors of the dynamics on isoenergy

surfaces. For linear oscillators, 2LO
2 , θ

wall,LO
2 are monotone in the step region

whereas:

Lemma 6.1. For all h > hstep, the function χLO
2 (e1, h) is monotone if and only if

qwall
1 qwall

2 < 0.

Proof. Observe that for linear oscillators qwall
i T̃ ′LO

i (ei ; qwall
i ) > 0 (see equations

(7) and (9) and recall that T ′LO
i = 0, hence the result follows from the definition

(26) of χ2(e1, h), or, from direct differentiation of

χLO
2 (e1, h)=

ω2

ω1

(π − arccos(ω1qwall
1 /
√

2e1))

arccos(ω2qwall
2 /
√

2(h− e1))
=
ω2

ω1

π − θ
wall,LO
1 (e1; qwall

1 )

θ
wall,LO
2 (h− e1; qwall

2 )

(see (11)),

χLO′
2 (e1)=

ω2

(
−
ω1qwall

1 arccosω2qwall
2 /
√

2(h−e1)

2e1
√

2e1−(ω1qwall
1 )2

+
ω2qwall

2 (π−arccosω1qwall
1 /
√

2e1)

2(h−e1)
√

2(h−e1)−(ω2qwall
2 )2

)
ω1(arccosω2qwall

2 /
√

2(h− e1))2
.

(45)
The denominator is always positive (it approaches 0 when qwall

2 > 0 and e1↗

h− 1
2(ω2qwall

2 )2 ) so the sign is determined by the numerator. If qwall
1 qwall

2 <0 both
terms in the numerator have the same sign so χ2 is monotone. If qwall

1 qwall
2 > 0,

the first term in the numerator diverges to − sign(qwall
1 )∞ as e1↘

1
2(ω1qwall

1 )2,
the second term diverges to sign(qwall

2 )∞ as e1↗ h− 1
2(ω2qwall

2 )2, hence χ ′2(e1)

changes sign and χ2 is nonmonotone. �
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qwall
1 qwall

2 χLO
2 (hstep

1 )→ χLO
2 (h− hstep

2 ) 2LO
2 (hstep

1 )→2LO
2 (h− hstep

2 )

< 0 < 0 0↗↘ ω(1− 1/πθ∗1 (h)) 2πω↘ 2ωθ∗1 (h)

< 0 > 0 0↗∞ 2πω↘ 2ωθ∗1 (h)

> 0 < 0 ωπ/θ∗2 (h)↘ ω(1− 1/πθ∗1 (h)) 0↗ 2ωθ∗1 (h)

> 0 > 0 ωπ/θ∗2 (h)↘↗∞ 0↗ 2ωθ∗1 (h)

Table 3. The values of χLO
2 ,2LO

2 at the edges of Rc(h) and their
monotonicity properties, where ω = ω2

ω1
.

Corllary 6.2. If qwall
2 > 0, for all h > hstep, the step region has countable infinite

level sets at which {χLO
2 } = 0, namely at which the return map to 61 reduces to

a two intervals rotation on the circle. For qwall
2 < 0, for sufficiently large h, the

number, N 2
osc(h), of such level sets when qwall

1 < 0 is at least
⌊ 1

2
ω2
ω1

⌋
whereas if

qwall
1 > 0 there are

⌊ 3
2
ω2
ω1

⌋
such level sets. The same results hold for the return

map to 62 when replacing the roles of 1↔ 2 in the above statements.

Proof. First, it follows from (11) that in the step region χLO
2 (e1, h) is a smooth

nonoscillatory function which diverges only at the step region upper boundary
(and this occurs if and only if qwall

2 > 0). Hence, for any fixed h, there is at most
countable infinite level sets N 2

osc(h) at which {χLO
2 (e1)} may vanish. The edge

values — the values of χLO
2 ,2LO

2 at the end points of the step-region (namely
calculating (9), (11) at e1 = hstep

1 and at e1 = h− hstep
2 ) and their monotonicity

property are listed in Table 3, where

θ∗1 (h)= θ
wall
1 (h− hstep

2 ; q
wall
1 )= arccos

ω1qwall
1√

2h− (ω2qwall
2 )2

(46)

θ∗2 (h)= θ
wall
2 (h− hstep

1 ; q
wall
2 )= arccos

ω2qwall
2√

2h− (ω1qwall
1 )2

. (47)

For any energy h, these values supply the range of χLO
2 in the monotone

cases (second and third rows in the tables) and a lower bound on its range in the
nonmonotone cases (first and last rows). The number of isoenergy level sets at
which {χLO

2 = 0} (at which the directional motion in the horizontal arm of the
SW surface is diagonal) is determined by the number of integer values contained
in the range of χLO

2 . The second and fourth rows of Table 3 show that the range
is infinite when qwall

2 > 0, proving the first statement of the corollary. Table 4
shows the asymptotic edge values at large energies, using the observation that
θ∗1,2(h)→

π
2 . The rest of the corollary follows from this table — for qwall

2 < 0, the
first row of Table 4 corresponds to the nonmonotone case whereas the third row
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qwall
1 qwall

2 χLO
2 2LO

2 N 2
osc N 1

osc

< 0 < 0 0↗↘ ω/2 2πω↘ πω > bω/2c > b1/2ωc

< 0 > 0 0↗∞ 2πω↘ πω ∞ b3/2ωc

> 0 < 0 2ω↘ ω/2 0↗ πω b3ω/2c ∞

> 0 > 0 2ω↘↗∞ 0↗ πω ∞ ∞

Table 4. The behavior of χLO
2 ,2LO

2 on Rc(h) at large h and the number
of oscillations, N i

osc(h), of {χLO
i } in the family of isoenergy return maps

to 6i for sufficiently large h, where ω = ω2/ω1.

qwall
1 qwall

2 χLO
2 2LO

2 N 2
osc(h

step
+η)

<0 <0 0↗↘a1ω 2πω↘2πω(1−a1) &ba1ωc

<0 >0 0↗∞ 2πω↘2πω(1−a1) ∞

>0 <0 ω(1+a2)↘ω(1−a1) 0↗πa1 bω(a1+a2)c

>0 >0 ω/a2↘↗∞ 0↗πa1 ∞

Table 5. The values of χLO
2 ,2LO

2 at the edges of Rc(h=hstep
+η) for

small η>0, namely χLO
2 (hstep

1 ),χLO
2 (η+hstep

−hstep
2 ) and N 2

osc(h). The
values of N 1

osc(h) in the first and second rows are found by switching
1↔2 (as in Table 4). For shorthand notation we denote here ω=ω2/ω1

and ai=
1
π

√
η/hstep

i , i=1,2.

corresponds to the monotone case. Since N 2
osc(h) are integers, for sufficiently

large h the limiting values and N 2
osc(h) are identical. Finally, by symmetry,

replacing the roles of 1↔ 2, provides the estimates for N 1
osc(h), the number of

oscillations in the vertical arm before returning to the section 62. �

Table 5 displays the edge values at energies near hstep (i.e., for h = hstep
+ η,

and small, positive, η). Notice that for such h values

θ∗i (h)=
√
η/hstep

i if qwall
i > 0

and

θ∗i (h)= π −
√
η/hstep

i if qwall
i < 0.

We see that when qwall
2 > 0, infinite number of oscillations occur for arbitrary

small η, whereas in the other cases, the number of oscillations scales with
√
η.



64 BECKER, ELLIOTT, FIRESTER, GONEN COHEN, PNUELI AND ROM-KEDAR

7. Summary and discussion

An integrable mechanical Hamiltonian system with a step barrier in the configu-
ration space which is aligned with the continuous symmetries of the integrable
Hamiltonian produces dynamics that are not Liouville integrable, yet are un-
analyzable. An experimental setup which realizes such a theoretical model
has been suggested (Figure 1). In such models, the motion on energy surfaces
is foliated by level sets, yet, the motion on a range of isoenergy level sets is
nonintegrable and is conjugated to the motion on a family of genus 2 flat surfaces
or, equivalently, to an L-shaped billiard (Theorem 2.2). The return map to a
Poincaré section for this range of level sets is a 5 interval exchange map, and
the lengths of the intervals change nontrivially along the isoenergy family of
level sets (Theorem 4.2). For the case of Linear oscillators the L-shaped billiard
dimensions and thus the intervals lengths are found explicitly (Theorem 2.6)
whereas for general nonlinear oscillators they are given up to quadratures. While
our main example included a single step, the same strategy may be applied to any
barrier geometry which combines horizontal and vertical barriers. The flow of the
HIS (1) with such barriers is conjugated, for any given level set, to a directional
motion in the angles’ space on nibbled a flat surface, and in some cases (see
[12]) one obtains rectangles similar to those analyzed in [11]. An important
conclusion is that above certain energy the energy surfaces of (1) are foliated
by several families of level set surfaces; within any such family the geometry
varies smoothly, and different families have distinct topology. Namely, on the
same energy surface there are families of level-set surfaces with different number
of connected components and different numbers of holes; see Corllary 2.3 and
Figure 10.

The implications of our findings are intriguing; First, the statistics of a typical
observable of such mechanical systems (i.e., an observable which does not depend
only on the energy distribution among the degrees of freedom) are now related to
the delicate theories derived for studying IEM and Teichmuler flows on moduli
spaces. Second, by considering soft steep potentials instead of impacts, the
topology of the energy surfaces remains as complex as the one constructed here
(then the motion is not expected to be foliated to level sets). Higher dimensional
extensions, other symmetries, potentials with local maxima (so that the smooth
system has singular level sets of the Liouville foliation), and the influence of small
perturbations and soft potentials are exciting directions to be further explored;
see related results in [18; 22].
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