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Denjoy subsystems and horseshoes
MARIE-CLAUDE ARNAUD

We introduce a notion of weak Denjoy subsystem (WDS) that generalizes the
Aubry–Mather–Cantor sets to diffeomorphisms of manifolds. We explain how
a rotation number can be associated to such a WDS. Then we build in any
horseshoe a continuous one parameter family of such WDS that is indexed by
its rotation number. Looking at the inverse problem in the setting of Aubry–
Mather theory, we also prove that for a generic conservative twist map of
the annulus, the majority of the Aubry–Mather sets are contained in some
horseshoe that is associated to a Aubry–Mather set with a rational rotation
number.

1. Introduction and main results

All the dynamicists know the famous Poincaré sentence about periodic orbits:

Ce qui nous rend ces solutions périodiques si précieuses, c’est qu’elles
sont, pour ainsi dire, la seule brèche par où nous puissions essayer de
pénétrer dans une place jusqu’ici réputée inabordable.

But a periodic orbit for a dynamical system f : X→ X is simply a finite invariant
subset and the dynamics restricted to this set cannot be very complicated. What
is more interesting is the dynamics close to such a periodic orbit, that may give
rise to various rich phenomena. For example, for a symplectic diffeomorphism
of a surface, two kinds of restricted dynamics to invariant Cantor sets can exist
close to the periodic orbits, that are:

• Horseshoes close to hyperbolic periodic points (see [27]);1 since the work
of Katok in [16], they are known to be the evidence of positive topological
entropy. Moreover, they contain a dense set of periodic points.
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• Aperiodic Aubry–Mather sets close to elliptic periodic points (see [3; 8; 22]);
they are known to have zero topological entropy and contain no periodic
points.

Although we will later focus on some specific horseshoes, we give here a general
definition of horseshoe.

Definition. Let f : M→ M be a surface diffeomorphism. A horseshoe for f
is a f -invariant subset H ⊂ M such that the dynamics f|H is C0 conjugate to
the one of a nontrivial transitive subshift with finite type. A horseshoe for f
is a σ2-horseshoe when the dynamics f|H is C0 conjugate to the shift with two
symbols.

Example. The first horseshoe was introduced by S. Smale in [27] close to a
transversal homoclinic intersection of a hyperbolic periodic point. This horseshoe
is hyperbolic. Burns and Weiss extended this in [7] to the case of topologically
transversal homoclinic intersection. Le Calvez and Tal use purely topological
horseshoes for 2-dimensional homeomorphisms in [20].

The category of aperiodic Aubry–Mather set was recently extended in [2] to
the notion of so-called Denjoy subsystem by P. Le Calvez and the author. We
recall the definition given in [2].

Definition. Let f : M→ M be a Ck diffeomorphism of a manifold M . A Ck

(resp. Lipschitz) Denjoy subsystem for f is a triplet (K , γ, h) where:

• γ : T→ M is a Ck (resp. bi-Lipschitz) embedding.

• h : T→ T is a Denjoy example with invariant compact minimal set K ⊂ T.

• f (γ (K ))= γ (K ).

• γ ◦ h|K = f ◦ γ|K .

Remarks. • In this definition, γ (T) is not necessarily invariant.

• Observe the importance of γ to fix the regularity of γ (K ).

• For k = 0, what we call a C0-diffeomorphism is in fact a homeomorphism
and in this case we just require that γ is a continuous embedding.

• The embedding is also useful to define a circular order on the Cantor
set γ (K ).

Example. There exists different notions of Aubry–Mather sets for the exact
symplectic twist maps of the annulus; see [3] and [22]. We will follow [4] and
for us, an Aubry–Mather set is a well ordered compact set that contains only
minimizing orbits in a variational setting; see, e.g., [3; 4]. Let us recall some
results that are contained in [4] and [1] and that we will use. We fix an exact
symplectic twist map f of the infinite annulus and a lift F : R2

→ R2. Then:
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• Every Aubry–Mather set is a partial Lipschitz graph.

• Every Aubry–Mather set A has a rotation number ρ(A) ∈ R.

• For every r ∈ R\Q, there exists a unique maximal (for ⊂) Aubry–Mather
set Ar with rotation number r that contains every Aubry–Mather set with
the same rotation number.

• For every r = p
q ∈Q, there exist two Aubry–Mather set A±r with rotation

number r that are maximal (for ⊂) among the Aubry–Mather sets with the
same rotation number. They are such that: ∀x ∈Ãr

+, π1◦Fq(x)≥π1(x)+ p
(resp. ∀x ∈ Ãr

−, π1 ◦ Fq(x) ≤ π1(x)+ p) where π1 : R
2
→ R is the first

projection.

• If (An) is a sequence of Aubry–Mather sets such that the sequence of rotation
numbers (ρ(An)) converges to some r ∈ R, then

⋃
n∈N An is relatively

compact and any limit point of (An) for the Hausdorff distance is an Aubry–
Mather set with rotation number r .

The Aubry–Mather sets Ar that have an irrational rotation number and that are
not a complete graph always contain a Lipschitz Denjoy subsystem Cr .

We noticed that an important advantage of γ is to define a circular order along
γ (K ). But to do that, we only need the embedding restricted to K . That is why
we introduce now a new notion, the one of weak Denjoy subsystem that extends
the one of Denjoy subsystem. This notion is similar to the one of Denjoy set that
was introduced by J. Mather in [23].

Definition. Let f : M→ M be a homeomorphism of a manifold M . A weak
Denjoy subsystem for f (in short WDS) is a triplet (K , j, h) where:

• h : T→ T is a Denjoy example with invariant minimal set K ⊂ T.

• j : K → M is a homeomorphism onto its image.

• f ( j (K ))= j (K ).

• j ◦ h|K = f ◦ j .

When j is bi-Lipschitz or a Ck embedding (in the Whitney sense), we speak
of Lipschitz or Ck weak Denjoy subsystem for f . Two WDS (K1, j1, h1) and
(K2, j2, h2) are equivalent if j1(K1)= j2(K2).

The restriction of a Denjoy subsystem to its nonwandering set is always a
WDS. On a surface, we have the reverse implication.

Proposition 1.1. Let (K , j, h) be a WDS of a surface homeomorphism. Then
there exists a C0 Denjoy subsystem (K , γ, h) such that γ|K = j .
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Remarks. • This result is specific to the case of surfaces because it uses a
classical result on extension of homeomorphisms between Cantor sets of
surfaces.

• We do not know about such a result with more regularity: Lipschitz, C1 (a
kind of Whitney extension theorem for diffeomorphisms). Observe that we
proved in [2] that there exists no C2 Denjoy subsystem.

Remark. Let us recall that a circular order relation on a set X is a relation ≺
that is defined on the triplets of points of X such that:

• If x, y, z ∈ X , we have x ≺ y ≺ z or z ≺ y ≺ x ; we use the notation
[x, z]≺ = {y ∈ X; x ≺ y ≺ z}.

• If x 6= z, the two previous lines of inequalities are simultaneously satisfied
if and only if x = y or y = z.

• If x ≺ y ≺ z, then y ≺ z ≺ x .

• If x ≺ y ≺ z and x ≺ z ≺ t then x ≺ y ≺ t .

If ≺ is a circular order on X , the inverse order −≺ is defined by

∀x, y, z ∈ X, x(−≺)y(−≺)z⇔ z ≺ y ≺ x .

Notations. • If (K , j, h) is a WDS, we denote by ≺K the circular order on
j (K ) that is deduced from the one of K ⊂ T via the map j .

• The graph G(≺K ) of this order relation is the set of the triplets (a, b, c) ∈
( j (K ))3 such that j−1(a)≺ j−1(b)≺ j−1(c) where ≺ is the usual order on
T. This graph G(≺K ) is then a closed subset of ( j (K ))3 and then of (M)3.
Observe that for every a, c ∈ j (K ), G(≺K , a, c) = {b ∈ j (K ); (a, b, c) ∈
G(≺K )} is a nonempty compact subset of M , called an interval of G(≺K ).

Remark. We have G(≺K , a, a)= j (K ) and for a 6= c, G(≺K , a, c) contains at
least a and c. Moreover, we have G(≺K , a, c) = {a, c} if and only if {a, c} is
one gap of the Cantor set.2

The first theorem we will prove allows us to extend Poincaré’s notion of
rotation number to WDS, or more precisely to the classes of equivalence of
WDS.

Theorem 1.2. Let (K1, j1, h1) and (K2, j2, h2) be two equivalent WDS for a
same homeomorphism f : M→ M of a manifold M. Then:

• There exists a homeomorphism h : T→ T such that h ◦ h1 = h2 ◦ h.

• We have ≺K1=≺K2 or ≺K1= − ≺K2 , hence the two orders have the same
intervals.

2Observe that in this case, a and c are α and ω-asymptotic under the dynamics.
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Corollary 1.3. The map ρ defined on the set of WDS with values in T/x ∼−x
that associates to any WDS (K , γ, h) the rotation number of h modulo its sign
is such that if (K1, γ1, h1) and (K2, γ2, h2) are equivalent, then ρ(K1, γ1, h1)=

ρ(K2, γ2, h2).

Let us endow the set of WDS with a topology that focus on their order relation.

Notations. We endow M with a Riemannian metric d and M3 is endowed with
the natural sup distance associated to d that is denoted by d∞. Then D (resp.
D∞) is the associated Hausdorff distance on the set of nonempty compact subsets
of M (resp. M3).

Definition. Let f : M → M be a homeomorphism of a manifold M . Let
(Ki , ji , hi ) be two weak Denjoy subsystems for f . We denote by G(≺Ki )⊂ M3

(resp. G(−≺Ki )) the graph of ≺Ki (resp. −≺Ki ).
We define a distance δ on the set of the weak Denjoy subsystems for f by the

following equality.
We have

δ((K1, j1,h1),(K2, j2,h2))

=max
{
D( j1(K1), j2(K2)),min{D∞(G(≺K1),G(≺K2)),D∞(G(−≺K1),G(≺K2))}

}
.

Proposition 1.4. The map that associates to every WDS its rotation number is
continuous.

Remark. The previous result extends a result that is well-known in the setting
of well-ordered sets for twist maps.

Horseshoes and WDS are different but in general, it is believed that, up to
some entropy restriction, horseshoes dynamics contain every dynamics (via
symbolic dynamics).3

We will prove that every horseshoe contains many WDS, and even a continuous
1-parameter family (Dρ) continuously depending on its rotation number ρ where
ρ is in a nontrivial interval of T/x ∼−x of irrational numbers.

Theorem 1.5. Let f :M→M be a Ck diffeomorphism and let H be a horseshoe
for f . Then exists N ≥ 1 and a continuous map D : r ∈ (T\Q)/x ∼−x 7→
(Kr , jr , hr ) such that:

• D(r)= (Kr , jr , hr ) is a continuous WDS with rotation number r for f N .

• jr (Kr )⊂H.

Moreover, if H is a σ2-horseshoe, we have N = 1.

3This is not completely correct because, for example, the dynamics of an odomoter cannot
be embedded in a horseshoe even if it has zero entropy: it is an isometry and the horseshoe is
expansive.
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Different authors before us built embedding of Denjoy dynamics into horse-
shoes. The first one is certainly [12], that embeds some Denjoy dynamics into the
abstract horseshoe by using Sturmian sequences (this article follows the seminal
work of Hedlund and Morse in [25]). In [15], the authors build an uncountable
family of Denjoy dynamics in a given horseshoe. If we analyze their construction,
for every irrational rotation number, they build an uncountable family of weak
Denjoy subsystems with two holes that are not conjugate together (see Markley,
[21], for a characterization of conjugated Denjoy examples). In [6], Boyland
used a distance different from the one we use (his distance uses the Hausdorff
distance D in M and also a distance on the set of Borel probability measures)
and proved that for every irrational rotation number and every integer N ≥ 1,
there is a N -dimensional topological disc of weak Denjoy subsystems having
this rotation number in every horseshoe. He also explained a general method to
obtain all the weak Denjoy subsystem of a horseshoe. In [5], looking for special
invariant measures of the angle doubling on the circle, Bousch uses the one side
shift on {0, 1}N and the unique invariant measure with support in a Cantor set
analogous to the one we build.

Remarks. • The continuous WDS that we will embed in the horseshoe are
WDS that have only a pair of orbits that are ω asymptotic (and then α-
asymptotic because we have a Denjoy dynamics), i.e., that correspond to a
Denjoy example with exactly one orbit of a wandering interval (we will say
one gap).

• Observe that the shift dynamics is expansive. Hence we cannot embed in it
a WDS with a infinite countable number of gaps: one of these gaps would
have all its orbit with diameter less than the expansivity constant, which is
impossible.

• But it is possible to embed a family of WDS with a finite number p of gaps
in a σsup{2,p}-horseshoe.

• A similar method to embed Cantor sets with an interval of rotation numbers
was proposed by K. Hockett and P. Holmes for dissipative twist maps in
[15]. Here we proved a more general statement (for WDS) and also prove a
continuity result.

Corollary 1.6. Let f : M (2)
→ M (2) be a Ck diffeomorphism of a surface and let

H be a horseshoe for f . Then exists N ≥ 1 and a map D : r ∈ (T\Q)/x ∼−x 7→
(Kr , γr , hr ) such that:

• D(r)= (Kr , γr , hr ) is a continuous Denjoy subsystem with rotation number
r for f N .

• The map W : r ∈ (T\Q)/x ∼−x 7→ (Kr , γr |Kr , hr ) is continuous.
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• γr (Kr )⊂H.

Moreover, if H is a σ2-horseshoe, we have N = 1.

Remarks. • We do not know how to choose continuously the embedding γr

or at least its image. But we do not need that to describe the dynamics on
γr (Kr ).

• In the setting of the Aubry–Mather theory, the map that associates to any
Aubry–Mather set Ar the graph that linearly interpolates Ar is in fact
continuous when we endow the set of functions with the C0 distance, and
we will see that the Aubry–Mather sets with an irrational rotation number are
actually contained in some horseshoes in the generic case. But the Aubry–
Mather set do not continuously depend on the rotation number r ∈ R\Q,
so even in the case of the Aubry–Mather sets we do not know if we can
interpolate in a continuous way by a curve.

We now focus on Aubry–Mather theory and address the inverse problem: are
the WDS that appear in a natural way in symplectic 2-dimensional dynamics
contained in some horseshoe?

Theorem 1.7. Let f : T×R→ T×R be an exact symplectic twist map and let
F : R2

→ R2 be a lift of f . Assume that A+r (resp. A−r ) is uniformly hyperbolic
for some rational number r ∈ Q. Let Vr be a neighborhood of A+r (resp. A−r ).
Then there exists a horseshoe H+r (resp. H−r ) for some f N and ε > 0 such that:

• H+r (resp. H−r ) contains A+r (resp. A−r ) and is contained in Vr .

• Every Aubry–Mather set with rotation number in (r, r + ε) (resp. (r − ε, r))
is contained in H+r (resp. H−r ).

• Every point in H+r (resp. H−r ) has no conjugate points, i.e., has its orbit that
is locally minimizing.

Remarks. • It is well known that the topological entropy of a twist map
restricted to the union of all its hyperbolic Aubry–Mather sets is zero and
has zero Hausdorff dimension; see [9]. Theorem 1.7 implies that for an open
and dense subset of conservative twist diffeomorphisms (in any reasonable
topology), there exists an invariant set K of points with no conjugate points
such that the dynamics restricted to K has positive topological entropy and
positive Hausdorff dimension.

• In [18], a transitive set that contains all the Aubry–Mather sets is built by P.
Le Calvez. But this set is very different from the one we build here, because
it contains in general orbits with conjugate points and is far from every
Aubry–Mather set A±r . Moreover, it is not a horseshoe.
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• Observe that no WDS (K , j, h) that is contained in a hyperbolic horseshoe
is C1. Indeed, the endpoints a, b of every gap are α and ω-asymptotic and
their orbits are dense in j (K ). But for n large enough, f n(a) and f n(b) are
in the same local stable manifold and then oriented in the stable direction
and f −n(a) and f −n(b) are in the same local unstable manifold and the
oriented in the unstable direction. Hence, close to any point in j (K ), we
find points such that the geodesic that joins them is either along the stable
or the unstable direction. So j cannot be C1. In the Aubry–Mather setting,
it is Lipschitz.

• As we noticed before, a weak Denjoy subsystem (K , j, h) that is contained
in a horseshoe has a finite number of gaps. When the horseshoe is uniformly
hyperbolic with an expansivity constant equal to ε and j is k-bi-Lipschitz,
it can be proved that the number of gaps is at most k

ε
.

A remarkable result of P. Le Calvez asserts that general Aubry–Mather sets
of general exact symplectic twist diffeomorphisms are uniformly hyperbolic;
see[19]. Joint with Theorem 1.7, this implies the following corollary.

Corollary 1.8. There exists a dense Gδ subset G of the set of Ck exact symplectic
twist diffeomorphisms (for k ≥ 1) such that for every f ∈ G, there exist an open
and dense subset U ( f ) of R and a sequence (rn)n∈N in U ( f )∩Q such that every
minimizing Aubry–Mather set with rotation number in U ( f ) is hyperbolic and
contained in a horseshoe associated to a minimizing hyperbolic Aubry–Mather
set whose rotation number is rn .

Remark. Observe that in [11], Goroff gives an example where the union of all
the Aubry–Mather sets is uniformly hyperbolic.

An open problem is the possible extension of Theorem 1.7 in a relaxed setting.
Hence we rise the following questions.

Question (A. Fathi). Without assuming hyperbolicity, are the Aubry–Mather
sets that are Cantor contained in some (nonhyperbolic) horseshoe?

Another question concerns the dynamics that are not necessarily twist diffeo-
morphisms.

Question. For a (possibly generic) symplectic diffeomorphism, is any WDS
contained in some horseshoe?

It is possible to build C1 or C2 examples that have WDS that are not contained
in horseshoes (examples that have a C1 invariant curve on which the dynamics
is Denjoy, see [14]), but our question concerns higher differentiability.
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1A. Notations. For any hyperbolic periodic point x of a C1 diffeomorphism,
we denote by W s(x, f ) or W s(x) (resp. W u(x, f ) or W u(x)) its stable (resp.
unstable) submanifold and by W s

loc(x, f ) or W s
loc(x) (resp. W u

loc(x, f ) or W u
loc(x))

its local stable (resp. unstable) submanifold. We adopt exactly the same notations
for not necessarily periodic points that belong to some hyperbolic set.

Also we mention that the annulus is A=T×R, that its tangent space is A×R2

and that the tangent space at every point is endowed with its usual Euclidean
norm. Moreover, we use the notation π1 : A→ T for the first projection as well
as its lift π1 : R

2
→ R.

2. Proof of Proposition 1.1

We assume that (K , j, h) is a weak Denjoy subsystem of a surface homeomor-
phism. If we embed T in R2, then K is a Cantor set that is a subset of R2.

The main argument of the proof is a result that is contained in Chapter 13
of [24].

Theorem. Every homeomorphism between two Cantor subsets of R2 can be
extended so as to give a homeomorphism of R2 onto itself.

Corollary 2.1. Let C be a Cantor subset that is contained in a topological open
disc D. For every δ > 0, there exists a finite number of disjoint topological discs
D1, . . . , Dn with diameter less than δ such that

C ⊂
⋃

1≤i≤n

Dk ⊂
⋃

1≤i≤n

Dk ⊂ D.

Let us prove the corollary. If C is a Cantor set that is contained in an open disc
D, there exists a homeomorphism h : D→R2 such that h(C) is the triadic Cantor
set C0⊂R×{0}. We can decrease slightly D in such a way that C⊂ D′⊂ D′⊂ D
and h is restricted to the closed topological disc D′. For every ε > 0, there exists
a covering of C0 by a finite number of topological discs d1, . . . , dn that are
contained in h(D′) and have diameter less than ε; indeed, this result is well
known for the triadic subset in the real line and we just have to choose ε less than
the distance between C0 and R2

\h(D′) and thicken the intervals into topological
discs. Because h−1 is uniformly continuous, we deduce that for every ε > 0,
there exists a finite covering of C by a finite number of disjoint discs that are
contained in D′ and have diameter less than ε. �

There exists η > 0 (that is less than the radius of injectivity of the Riemannian
metric on j (K )) such that every set with diameter less than η that intersects
j (K ) = C is contained in some topological disc. As C = j (K ) is a Cantor
set, it is (uniformly) homeomorphic to the triadic Cantor set. Hence, there
exists a closed partition of C into a finite number of sets C1, . . . ,C p that are
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open an closed in C and have diameter less than η. As the diameter of every
C j is less than η, there exists a topological disc B j that contains the Cantor
set C j . We introduce the notation δ = min{min{d(Ci ,C j ); i 6= j}, η}. Then
we can apply Corollary 2.1: there exists a finite number of disjoint topological
discs D j

1 , . . . , D j
n j with diameter less than δ

2 such that C j ⊂
⋃

1≤k≤n j
D j

k ⊂⋃
1≤k≤n D j

k ⊂ B j . For every i 6= j , D j
k intersects C j and has diameter less than

d(Ci ,C j )/2. We deduce that if ( j, k) 6= ( j ′, k ′), then D j
k ∩ D j ′

k′ =∅. We have
found a covering of C by disjoint discs. We can join them to obtain a topological
disc D in M that contains C . There exists a homeomorphism 8 : D→ R2.

Then the Cantor subset 8◦ j (K ) of R2 is homeomorphic to the Cantor subset
K of R2.

We deduce that there exists a homeomorphism ψ : R2
→ R2 that extends the

homeomorphism 8 ◦ j : K → 8 ◦ j (K ).4 Then γ = 8−1
◦ψ : T→ D ⊂ M

is a simple continuous curve and (K , γ, h) is a Denjoy subsystem that extends
(K , j, h).

3. Proof of Theorem 1.2 and Corollary 1.3

3A. Proof of the first point of Theorem 1.2 and of Corollary 1.3. Let (X, d) be
a metric space. We associate to any continuous dynamical system F : X→ X
an equivalence relation RF that is defined by

xRF y⇔ lim
k→+∞

d(Fk x, Fk y)= 0.

Observe that if H : X→ Y is a homeomorphism and if X is compact, then we
have

xRF y⇔ H(x)RH◦F◦H−1 H(y).

Hence X/RF is compact if and only if Y/RH◦F◦H−1 is compact. We denote by
pF : X→ X/RF the projection.

Because of Poincaré classification of circle homeomorphisms (see for example
[17]), for every orientation preserving homeomorphism h of the circle with
an irrational rotation number, we have Rh = Rh−1 . Moreover, for such an
orientation preserving homeomorphism of the circle with irrational rotation
number, the relation is closed and it is also true for the restriction to any invariant
compact subset. In this case, the quotient space, that corresponds to a closed
equivalence relation on a compact space, is also compact. We then consider a
semiconjugation k between the orientation preserving homeomorphism h of the

4Observe that this is specific to the 2-dimensional setting and that there exists some homeomor-
phisms between two Cantor subsets of R3 that cannot be extended to a homeomorphism of R3,
see Theorem 5 of chapter 18 of [24].
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circle with irrational rotation number and a rotation Rα , i.e., k is nondecreasing
continuous map onto the circle such that

k ◦ h = Rα ◦ k.

Then k : T→ T is continuous and we have

∀x, y ∈ T, k(x)= k(y)⇔ xRh y.

We denote by Kh the unique nonempty minimal h-invariant compact subset (then
Kh is T or a Cantor subset) and we denote by Gh the set of points of Kh that are
Rh related to another point of T. In other words, Gh is the union of the endpoints
of the gaps of the set Kh . Then there exists a unique map k̄ : Kh/Rh → T

such that k̄ ◦ ph = k. The definition of the quotient topology implies that k̄ is
continuous and it is then a homeomorphism from Kh/Rh to T. Moreover, there
exists a unique map h̄ : Kh/Rh→ Kh/Rh that is the quotient dynamics and that
satisfies

h̄ ◦ ph = ph ◦ h;

we have then
k̄ ◦ h̄ = Rα ◦ k̄,

i.e., k̄ is a conjugation between h̄ and Rα.
Let us consider two WDS (K1, j1, h1) and (K2, j2, h2) for the same homeo-

morphism f : M→ M of a manifold M such that C = j1(K1)= j2(K2). Let ki

be a semiconjugation between hi and a rotation Rai , i.e.,

ki ◦ hi = Rai ◦ ki .

As f|C = ji ◦ hi ◦ j−1
i , then C/R f is homeomorphic to Ki/Rhi and so to T. We

denote by p :C→C/R f the projection and by f̄ :C/R f →C/R f the reduced
dynamics; see Figure 1.

Then the map ki ◦ j−1
i : C→ T is a continuous surjection such that

ki ◦ j−1
i (x)= ki ◦ j−1

i (y)⇔ p(x)= p(y).

Hence, there exists a unique homeomorphism `i :C/R f →T such `i◦p=ki◦ j−1
i .

We have then for all x̄ = p(x) ∈ C/R f

Rai ◦ `i (x̄)= Rai ◦ ki ◦ j−1
i (x)

= ki ◦ hi ◦ j−1
i (x)

= ki ◦ j−1
i ◦ ( ji ◦ hi ◦ j−1

i )(x)

= ki ◦ j−1
i ◦ f (x)

= `i ( f̄ (x̄)).
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hi

Ki

Rai

ki

phi
hi

flC

C/Rf

fi

p

ji C=ji(Ki)

Ki/Rhi

Figure 1. Two WDS, (K1, j1, h1) and (K2, j2, h2) for the same
homeomorphism f :M→M of a manifold M such that C = j1(K1)=

j2(K2).

We deduce that

Ra1 = `1 ◦ f̄ ◦ `−1
1 = (`1 ◦ `

−1
2 ) ◦ Ra2 ◦ (`1 ◦ `

−1
2 )−1.

As Ra1 and Ra2 are conjugate, we have a1 =±a2. More precisely, a1 = a2 when
the conjugation preserves the orientation (and then is (x 7→ x+C)) and a1=−a2

when the conjugation reverses the orientation (and then is (x 7→ C − x)). This
gives Corollary 1.3 but doesn’t end the proof of the first point of Theorem 1.2.

To finish the proof of this point, let us observe that

j1(Gh1 ∩ K1)= j2(Gh2 ∩ K2)= {x ∈ C; ∃y ∈ C; y 6= x, yR f x}

is the set of the endpoints of the gaps of f|C (gaps are pairs of points that are
ω-asymptotic). We denote this set by C0.

Thus we have ki (Ghi )= ki ◦ j−1
i (C0)= `i ◦ p(C0). We deduce that k1(Gh1)=

`1 ◦ `
−1
2 (k2(Gh2)). As `1 ◦ `

−1
2 is either a translation x 7→ x +C or a symmetry

x 7→ C − x , there exists C ∈ R such that either k1(Gh1) = C + k2(Gh2) or
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k1(Gh1)=C−k2(Gh2). In other words, the image by k1 of the union of the gaps
of Kh1 is the image by a translation or a symmetry of the image by k2 of the
union of the gaps of Kh2 . As explained in [13] and [21], this is equivalent to the
fact that h1 and h2 are conjugated.

3B. Proof of the second point of Theorem 1.2. For the second point, we know
that ji :Ki→C defines the order≺Ki . If we identify points that are ω-asymptotic,
we obtain a reduced order relation ≺Ki on Ki/Rhi and C/R f and j̄i : Ki/Rhi →

C/R f is an order preserving homeomorphism. As there are only two possible
orientations on the circle, we deduce for the two reduced order relations on
C/R f that either they are equal or they are reverse. To deduce the result for the
nonreduced relation, we have just to note that there is only one way to define the
closed order relation ≺Ki on C whose reduced relation is ≺Ki .

4. Proof of Proposition 1.4

Let us begin by explaining some results on the symbolic dynamics of WDS.
If (K , j, h) is a WDS for f , we can encode the dynamics in the following
noninjective way.5 Let x0 ∈ j (K ) be a point of j (K ). We consider the interval
I0 of j (K ) of the points y ∈ j (K ) such that x0, y and f (x0) are in this order
for ≺K . We decide that x0 ∈ I0 but f (x0) /∈ I0. We denote by I1 = j (K )\I0 the
complement of I0 in j (K ). Then we consider the map that associates to every
point x ∈ j (K ) its itinerary

I(x)= (nk(x))k∈Z

where f k(x) ∈ Ink(x). When x0 is the right end of a gap (a gap is the image by j
of the two endpoints of a wandering interval of h) of j (K ), I0 and I1 are closed
and open in j (K ) and then I is continuous.6

We assume that x0 is indeed the right end of a gap of j (K ) and we denote
by K the set I(K ). As the Denjoy example is semiconjugate to the rotation
with angle α = ρ(h), I(x0) is nothing else than the Sturmian sequence that is
associated to the rotation Rα , i.e., (see [10]) nk(x)= 0 if and only if kα ∈ [0, α).

Let us now consider a WDS (K1, j1, h1) that is close to (K , j, h) for the
topology that we defined before. Let (x1, x0) be the gap whose x0 is the right
end in j (K ). Then the interval G(≺K , x1, x0) = {x0, x1} has only two points.
As G(≺K1) is close to G(≺K ) for the Hausdorff distance, there exists two points
y1, y0 ∈ j (K1) that are close to x1, x0 and such that G(≺K1, y1, y0) is contained

5Observe that this is not necessarily the encoding that is given by the subshift of finite type on
the horseshoe when this WDS is contained in some horseshoe.

6We will prove in Section 5 that when h is a Denjoy example with one gap, then I is in fact a
homeomorphism on its image.
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in a neighborhood of G(≺K , x1, x0). As we know that y1, y0 ∈ G(≺K1, y1, y0),
that y0 is close to x0 and that y1 is close to x1, this implies that G(≺K1, y1, y0)

is close to G(≺K , x1, x0) for the Hausdorff distance. Then we write

G(≺K1, y1, y0)= G0 ∪G1

where the points of G0 are close to x0 and the points of G1 are close to x1. Observe
that G(≺K1, y1, y0) is an interval for ≺K1 , where ≺K1 define a (noncircular) total
order. Hence we can define z1 = supG1 and z0 = infG0. Then {z1, z0} is a gap
of K1 that is close to {x1, x0} for the Hausdorff topology. We then associate to
z1 its itinerary exactly as we did for x1. Let us fix N ≥ 1. Then if (K1, j1, h1) is
close enough to (K , j, h), the two itineraries between −N and N match. But
these itineraries determine the first terms of the continued fraction of the two
rotations numbers of h1, h (see [10]). Because they coincide up to the order N,
we deduce that ρ(h1) is close to ρ(h) and then that the rotation number map is
continuous.

5. Proof of Theorem 1.5 and Corollary 1.6

5A. Proof of Theorem 1.5. We will use the following notions.

Definition. A n-cylinder in 62 is a set of sequences (uk)k∈Z ∈ {0, 1}Z such that
u−n = δ−n; . . . , u0 = δ0; . . . ; un = δn where the δi s are fixed in {0, 1}. Defining
d((uk)k∈Z, (vk)k∈Z) = maxk∈Z|uk − vk |/(|k| + 1), observe that a n-cylinder is
exactly a closed ball with radius 1/(n+ 2). A n-word of u is a sequence of n
successive terms of u.

Let f : M → M be a Ck diffeomorphism and let H be a horseshoe for f .
Then there exists a transitive subshift with finite type σA :K→K that is defined
on some shift invariant compact subset K of 6p such that f|H is C0 conjugate
to σA. Then there exists a σA-invariant compact subset K0 ⊂ K and N ≥ 1 such
that σ N

A|K0
is C0 conjugate to σ2. Hence we just need to prove the theorem for a

σ2-horseshoe to deduce the general statement. We assume that f|H = k ◦σ2 ◦k−1.
Let hα : T→ T be a Denjoy example with minimal Cantor set Cα such that:

• T\Cα is the orbit of one interval Iα = (aα, bα).

• The rotation number of h is α.

We consider two disjoint segments I0(α) and I1(α) in T such that:

• One endpoint of I j (α) is in Iα and the other one is in hα(Iα).

• I0(α) joins Iα to hα(Iα) in the direct sense.

Let kα : T→ T be a semiconjugation between hα and Rα , i.e., kα ◦hα = Rα ◦ kα .
Then, the intervals I0(α) and I1(α) are mapped on intervals K0 = [0, α] and
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K1 = [α, 1]. As α is irrational, if (nk)k∈Z ∈62 is any sequence of 0 and 1, there
exists at most one θ ∈ T such that, for every k ∈ Z, we have θ + kα ∈ Knk . Let
us now consider two points θ1 6= θ2 in Cα such that for every k ∈ Z, hk

α(θ1)

and hk
α(θ2) belong to a same interval Ink (α). Then for every k ∈ Z, the points

kα ◦ hk
α(θ1) = kα(θ1)+ kα and kα ◦ hk

α(θ2) = kα(θ2)+ kα belong to the same
interval Knk and so kα(θ1)= kα(θ2), i.e., θ1 and θ2 are the two endpoints of some
gap of the Cantor set Cα. So there exists k ∈ Z such that hk

α(θ1) and hk
α(θ2)

are the two endpoints of Iα for example Iα = (hk
α(θ1), hk

α(θ2)). But this implies
that hk

α(θ1) ∈ I1(α) and hk
α(θ2) ∈ I0(α) and this contradicts that for every k ∈ Z,

hk
α(θ1) and hk

α(θ2) belong to a same interval Ink (α). So we have proved that if
we use the notation for θ ∈ Cα that hk

α(θ) ∈ Ink(θ), then the map `α : Cα→62

defined by `α(θ) = (nk(θ))k∈Z is injective. As the Ik(α) ∩ Cα are open (and
closed) in Cα , this map is also continuous and then is a homeomorphism onto its
image. This provides a homeomorphism from Cα onto `α(Cα)⊂62 such that

∀θ ∈ Cα, `α ◦ hα(θ)= σ2 ◦ `α(θ).

The WDS with rotation number α ∈
[
0, 1

2

)
\Q that we consider is then (Cα, jα =

k ◦ `α, hα).
Observe that `α(bα)= (nk(bα))k∈Z is the Sturmian sequence that is associated

to the rotation Rα . Let us recall that if u = (uk)k∈Z is a Sturmian sequence, then
for every n ≥ 1, there are exactly n+ 1 n-words in u. As hα|Cα is minimal, the
orbit of `α(bα) under σ2 is dense in `α(Cα). Now let us fix α0 ∈ [0, 1/2)\Q
and n ≥ 1. There exists N ≥ 1 such that all the m-words in `α0(bα0) with
m ≤ 2n + 1 are contained in (nk(bα0))k∈[−N ,N ]. If α is close enough to α0,
(nk(bα))k∈[−N ,N ] is equal to (nk(bα0))k∈[−N ,N ]. As `α(bα) = (nk(bα))k∈Z is
Sturmian, this implies that all the m-words in `α(bα)with m≤2n+1 are contained
in (nk(bα))k∈[−N ,N ]= (nk(bα0))k∈[−N ,N ], which means that the distance between
the σ2 orbits of `α(bα) and `(bα0) is less than 1/(n + 2). This implies that
`α(Cα) is 1

n -close to `α0(Cα0). Hence jα(Cα)= k(`α(Cα)) is close to jα0(Cα0)=

k(`α0(Cα0)).
Now we want to prove that G(≺Cα ) is close to G(≺Cα0

). In a equivalent way, we
can work in 62 instead of H and assume that the graphs of G(≺Cα ) and G(≺Cα0

)

are in (62)
3. Then the intersection of the n cylinder C(δ−n, . . . , δ0, . . . , δn)=

{(uk)k∈Z; ∀k ∈[−n, n], uk= δk}with `α(Cα) is an interval for the order≺Cα , that
is before encoding the intersection of intervals

⋂k=n
k=−n h−k

α (Iδk ). This interval is
nonempty if and only if (δi )i∈[−n,n] is a (2n+ 1)-word of the Sturmian sequence
(nk(bα0))k∈Z for α0. Now let us fix n ≥ 1. There exists N ≥ 1 such that all
the admissible (2n + 1)-words of (nk(bα0))k∈Z are contained in the sequence
(nk(bα0))k∈[−N ,N ]. There exists a neighborhood V of α0 in T such that, for every
α ∈ V , we have:
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• ∀k ∈ [−N , N ], nk(bα)= nk(bα0).

• The intervals

C(nk−n(bα), . . . , nk(bα), . . . , nk+n(bα))∩ `α(Cα)

and

C(nk−n(bα0), . . . , nk(bα0), . . . , nk+n(bα0))∩ `α(Cα0)

for n−N ≤ k ≤ N−n (that are 1
n -close to each other) are in the same order,

for ≺Kα
for the first ones and for ≺Kα0

for the second ones, because it is
the order of this intervals for the two rotations.

We deduce that G(≺Cα ) is 1
n -close to G(≺Cα0

).

5B. Proof of Corollary 1.6. It is a corollary of Proposition 1.1 and Theorem 1.5.

6. Proof of Theorem 1.7 and Corollary 1.8

Definition. Let f : A→ A be a diffeomorphism. Then f is an exact symplectic
twist map if:

• The diffeomorphism f is isotopic to identity.

• If λ= π2dπ1 is the Liouville 1-form on A, then f ∗λ− λ is exact.

• If F :R2
→R2 is a lift of f , for every x ∈R, the map y ∈R 7→ π1 ◦ f (x, y)

is a C1 diffeomorphism onto R.

6A. Proof of Theorem 1.7. We assume that f : T×R→ T×R is an exact
symplectic twist map and that F : R2

→ R2 is one of its lifts. We assume that
A+r is uniformly hyperbolic for some rational number r ∈Q. We want to prove
that there exists a horseshoe H+r for some f n and ε > 0 such that:

• H+r contains A+r .

• Every Aubry–Mather set with rotation number in (r, r + ε) is contained
in H+r .

• Every point in H+r has no conjugate points, i.e., has its orbit that is locally
minimizing.

We write r = p
q as an irreducible fraction. As A+r is a compact uniformly

hyperbolic set, it has a finite number of q-periodic points. We denote them by
x1, . . . , xn in the usual cyclic order along T (for the first projection). Then A+r
is the union of these periodic points and some heteroclinic orbits between these
heteroclinic points; see, e.g., [4]. Moreover, such heteroclinic orbit for f q that
is contained in A+r can only connect an xk to xk+1 (with xn+1 = x1). If two
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heteroclinic orbits in A+r connect the same xk to xk+1, we can choose an order
on the union of these two orbits (y j ) j∈Z and (z j ) j∈Z for f q such that

xk < · · ·< y j−1 < z j−1 < y j < z j < y j+1 < z j+1 < · · ·< xk+1.

Let ε > 0 be an expansivity constant for f q
|A+r

and let K be a Lipschitz constant
of the Aubry–Mather set A+r as a graph. Then for some j we have d(y j , z j )≥ ε.
Hence the distance between the projections of y j , z j on the first factor is more
than ε/(1+ K ) for some j . Of course we can use the same argument for any
finite set of heteroclinic orbits (y1

j ) j∈Z, . . . , (yN
j ) j∈Z connecting xk to xk+1 in

A+r . We have

xk · · ·< y1
j−1 < · · ·< yN

j−1 < y1
j < · · ·< yN

j < · · ·< xk+1,

and we find N integers j1, . . . , jN such that (with the convention yN+1
j = y1

j+1)

∀i ∈ {0, N }, d(yi
ji , yi+1

ji )≥ ε.

Then the intervals (π1(y1
j1), π1(y2

j1)), . . . , (π1(yN
jN
), π1(yN+1

jN
)) are disjoint inter-

vals in T with length larger or equal to ε/(K+1). This implies that N ≤ (K+1)/ε.
Hence A+r is a hyperbolic set that is the union of periodic orbits and of a finite
number of heteroclinic orbits. Moreover, there always exists at least a heteroclinic
connection in A+r between two adjacent periodic points in A+r (see [4]). Hence
A+r is a cycle of transverse heteroclinic intersections with period q (see definition
in the Appendix).

We introduce the notation p : R2
→ T×R for the usual projection. When

E ⊂ T×R, we denote by Ẽ = p−1(E) its lift.
Let us fix a neighborhood N of A+r . Then A−r \N is finite because A−r is the

union of A−r ∩A+r and the union of a finite number of orbits that are homoclinic
to A−r ∩A+r . For every x ∈ Ãr

−
\Ñ , we have π1 ◦ Fq(x) < π1(x)+ p. Then

ε=min{π1(x)+ p−π1◦Fq(x); x ∈ Ãr
−
\Ñ } is a positive number. We introduce

the open set

U = p
({

x ∈ R2
;π1(x)+ p−π1 ◦ Fq(x) > ε

2

})
that contains A−r \N . Then N ∪U is a neighborhood of A+r ∪A−r . As the rotation
number map is continuous and as the union of minimizing orbits is closed,
there exists η > 0 such that every Aubry–Mather set with rotation number in
(r − η, r + η) is in N ∪U . If moreover A is an Aubry–Mather set with rotation
number in (r, r + η), then we have

∀x ∈ Ã, π1 ◦ Fq(x) > π1(x)+ p.
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Hence A∩U =∅ and thus A⊂N . We have the proved that there exists η > 0
such that every Aubry–Mather set with rotation number in (r, r+η) is contained
in N .

We then use Section A3 of the Appendix. There exists N ≥ 1 and a neigh-
borhood N of the cycle of transverse heteroclinic intersections with period q
A+r , such that the maximal f q N invariant set contained in N is a horseshoe H+r
for f q N (see Definition). This horseshoe then satisfies the two first points of
Theorem 1.7.

Moreover, observe that along A+r , there exists a D f invariant field of half-lines
(the half Green bundles g+ of G+, see [1]) transverse to the vertical fiber, that is
a subset of the unstable bundle along A+r . By continuity of the unstable bundle
along any hyperbolic set, we can extend g+ to the whole H+r into a field of
half-line that are contained in the unstable bundle. If N is small enough, this
field as well as its first q N images by D f is also transverse to the vertical. This
implies the last point of Theorem 1.7.

6B. Proof of Corollary 1.8. We use the results of P. Le Calvez that are in [19].
We consider the Gδ subset G of the set of Ck symplectic twist diffeomorphisms
f whose elements satisfy the following conditions:

• If x is a periodic point for f with smallest period q , none of the eigenvalues
of D f q(x) is a root of unity.

• All the heteroclinic intersections between invariant manifolds of hyperbolic
periodic points are transverse.

It is proved in [19] that all the Aubry–Mather sets that have a rational rotation
number are hyperbolic. By Theorem 1.7, for every r ∈Q, there exists an open
interval (r − εr , r + εr ) such that every Aubry–Mather set with rotation number
in this interval is contained in the horseshoe H+r or the horseshoe H−r . This gives
the conclusion of the corollary for

U ( f )=
⋃
r∈Q

(r − εr , r + εr ).

Appendix: On horseshoes

In this section, we will be interested in some horseshoes that are related to
the heteroclinic intersections. Generally, authors look at what happens close
to one homoclinic point associated to a periodic point (in [7], the authors also
consider heteroclinic connections for two fixed points). But to apply our results
to Aubry–Mather sets, we will need to study the horseshoes that can be built by
using a (circular) family of periodic points and heteroclinic intersections. Let us
explain this now.
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A1. Introduction to heteroclinic horseshoes. We will consider heteroclinic
cycles. For a diffeomorphism f : M→ M of a surface, we will call a q-periodic
point x a saddle if the two eigenvalues λ, µ of D f q(x) are positive and such
that µ < 1< λ.

Definition. Let f : M→ M be a surface diffeomorphism. A cycle of transverse
heteroclinic intersections with period 1 is determined by:

• A finite cyclically ordered set of saddle hyperbolic fixed points xn+1 =

x1, . . . , xn with an orientation on each submanifold W s(xi ) and W u(xi ).

• For every k ∈ [1, n] a nonzero finite number nk of transverse heteroclinic
points yk

1 , . . . , yk
nk

in W u(xk, f )∩W s(xk+1, f ) such that xk, yk
1 , . . . , yk

nk
are

in this order along W u(xk, f ) and yk
1 ,. . ., yk

nk
, xk+1 also along W s(xk+1, f ).7

Moreover, they define different orbits:

Definition. Let f : M → M be a surface diffeomorphism and let q ≥ 1 be
an integer. A cycle of transverse heteroclinic intersections with period q is
determined by:

• A finite cyclically ordered set of saddle hyperbolic q-periodic points
xnq+1 = x1, . . . , xnq such that this order is preserved by f with an ori-
entation on each submanifold W s(xi ) and W u(xi ); we assume that every
set {xi , xi+n, . . . xi+(q−1)n} is an orbit.

• For every k ∈ [1, qn] a nonzero finite number nk of transverse heteroclinic
points yk

1 , . . . , yk
nk

in W u(xk, f )∩W s(xk+1, f ) such that xk, yk
1 , . . . , yk

nk
are

in this order along W u(xk, f ) and yk
1 ,. . ., yk

nk
, xk+1 also along W s(xk+1, f ).8

Moreover, they define different orbits.

7This implies that the yk
i are all on a same branch of W u(xk , f ) and W s(xk+1, f ).

8This implies that the yk
i are all on a same branch of W u(xk , f ) and W s(xk+1, f ).
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• We also assume nk+n = nk , that xk and xn+k are on a same orbit and that
yk

j and yn+k
j are on the same orbit.

Notation. Now we consider a cycle of transverse heteroclinic intersections H
with period q for f that is given by the xk and the yk

j as before. We denote by
K (H) the union of the orbits of the xk and the yk

j .

Remark. Observe that K (H) is a f -invariant compact set that is uniformly
hyperbolic. We denote by E the tangent bundle T M . By [28], we can translate
the hyperbolicity condition by using some cones. This is an open condition and
we can extend these cones to a compact neighborhood V of K (H) such that:

• There exists a continuous splitting E = E1
⊕ E2 on V that coincides with

E = E s
⊕ Eu on K (H) and two norms |·|i on E i such that

Cx = {v = v1+ v2, v1 ∈ E1
x , v2 ∈ E2

x , |v1|1,x ≤ |v2|2,x};

the family (Cx)x∈V is the associated cone field; the dual cone field is the
family (C∗x )x∈V defined by C∗x = Ex\ int Cx .

• For some constant c > 1, we have for every x ∈ V , v1 ∈ E1
x and v2 ∈ E2

x

c−1
‖v1+ v2‖ ≤max{|v1|1,x , |v2|2,x} ≤ c‖v1+ v2‖x .

• There exists an integer m ≥ 1 and a constant µ > 1 so that:

(1) For x ∈ V , D f (Cx)⊂ C̃µ, f (x) where

C̃λ,x = {v = v1+ v2 ∈ Ex ;µ|v1|1,x ≤ |v2|2,x}.

(2) For x ∈ V , for v ∈ Cx , ‖D f m(v)‖ f m(x) ≥ µ.‖v‖x .
(3) For x ∈ V , for v ∈ C∗x , ‖D f −m(v)‖ f −m(x) ≥ µ.‖v‖x .

We define
K(V)=

⋂
k∈Z

f k(V).

Then K(V) is compact and hyperbolic. Let ε > 0 be a constant of expansivity,
i.e., such that

∀x, y ∈ K(V), (∀k ∈ Z, d( f k x, f k y) < ε)⇒ x = y.

Choosing possibly a smaller neighborhood, we can assume that the diameter
of every connected component of V is smaller than ε, and also that V has a finite
number N of connected components that all meet K (V).

We denote by C1, . . . , CN the connected components of V and define the
itinerary function H :K(V)→6N by f k(x)∈ CH(x)k . Hence the k-th component
of H(x) corresponds to the connected component of V that contains f k x . Then
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H is continuous. Because of the expansiveness property, H is injective, so H is
a homeomorphism from K(V) onto H(K(V))⊂6N such that

∀x ∈ K(V), σ ◦ H(x)= H ◦ f (x).

But in fact, we are looking for dynamics that are actually conjugate to a
transitive subshift of finite type. In order to build such dynamics, we will be
more precise for the choice of V in Section A3.

A2. Rectangles partition. Here we explain how a good family of rectangles,
called a rectangles partition, is useful to build a locally maximal invariant hyper-
bolic sets. We introduce geometric Markov partition, that are reminiscent from
the Markov partition and that are studied in [26], but as we didn’t find the exact
setting that we use elsewhere, we give some details.

We assume that f : M→ M is a C1 diffeomorphism and that V ⊂ M is an
open set endowed with two continuous families of open symmetric cones, the
unstable one x ∈ V 7→ Cu(x)⊂ Tx M and the stable one x ∈ V 7→ C s(x)⊂ Tx M
such that, if we denote the closure of a set A by A, we have for a constant
λ ∈ (0, 1):

• ∀x ∈V∩ f −1(V), D f (Cu(x))⊂Cu( f (x)) and D f (C s(x))⊃C s( f (x)).

• ∀x ∈ V,∀v ∈ Cu(x), ‖D f (x)v‖ ≥ 1
λ
‖v‖ and ∀x ∈ V,∀v ∈ C s(x),

‖D f (x)v‖ ≤ λ‖v‖.

• ∀x ∈ V,Cu(x)∩C s(x)= {E0}.

Definition. • A C1-embedding γ : [a, b]→ V define a unstable (resp. stable)
curve if ∀t ∈ [a, b], γ ′(t) ∈ Cu(γ (t)) (resp. ∀t ∈ [a, b], γ ′(t) ∈ C s(γ (t))).

• A rectangle R is given by an embedding 8R : [0, 1]2→ R ⊂ V such that for
every t ∈ [0, 1], 8R({t}× [0, 1]) (resp. 8R([0, 1] × {t}) ) defines a stable
(resp. unstable) curve.

• Then the stable (resp. unstable) boundary of R is ∂s R=8R({0, 1}×[0, 1])
(resp. ∂u R =8R([0, 1]× {0, 1}).

• A rectangle R′ is a stable (resp. unstable) subrectangle of a rectangle R if
R′ ⊂ R and ∂u R′ ⊂ ∂u R (resp. ∂s R′ ⊂ ∂s R).

Remarks. (1) Observe that a stable curve is always transversal to an unsta-
ble curve, and that when their mutual intersection with some rectangle is
nonempty, then it is a point.

(2) To a given rectangle R, we can associate different embeddings 8R and then
different stable and unstable foliations F s(R) and F s(R).

(3) The stable and unstable boundaries are independent from the embedding.
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(4) When γ ⊂ V is a unstable (stable) curve, every connected component of
f (γ )∩V (resp. f −1(γ )∩V) is also an unstable (resp. stable) curve.

Let us now introduce the notion of rectangles partition that we will use.

Definition. A rectangles partition is a finite set {R1, . . . ,Rm} of disjoint rect-
angles of V such that, if we use the notation R jk = f (R j )∩Rk , we have:

• For every j, k ∈ {1, . . . ,m}, either R jk =∅ or R jk is an unstable subrect-
angle of Rk . When R jk 6=∅, we use the notation

R j
f
−→Rk,

and we say that we have a transition from R j to Rk .

• When R jk 6=∅, then f (∂uR j )∩ ∂
uRk =∅ and f (∂sR j )∩ ∂

sRk =∅.

An admissible sequence is then (ik)k∈Z ∈ {1, . . . ,m}Z =6m such that

∀k ∈ Z,Rik
f
−→Rik+1 .

Remark. Observe that R j
f
−→Rk if and only if Rk

f −1
−→R j (the stable boundary

for f −1 is then the unstable one for f ).

Notation. We denote by 3(R1, . . . ,Rm) the maximal invariant set that is con-
tained in R1 ∪ · · · ∪Rm , i.e.,

3(R1, . . . ,Rm)=
⋂
k∈Z

f k(R1 ∪ · · · ∪Rm).

Observe that this set is hyperbolic. Hence there exist a stable and an unstable
submanifold at every of its points. We even have the following result.

Proposition A.1. If x ∈3(R1, . . . ,Rm)∩Ri0 , then the connected component
of W s(x)∩Ri0 (resp. W u(x)∩Ri0) that contains x is a stable (resp. unstable)
curve that joins the two connected components of ∂uRi0 (resp. ∂sRi0).

Proof. As 3(R1, . . . ,Rm) is hyperbolic, there exists ε > 0 such that for every
x ∈3(R1, . . . ,Rm), the length of every branch of W s(x) is greater than ε. We
denote by M> 0 a lower bound of the length of the stable curves contained in
one R j0 that join the two components of ∂uR j0 . Then we choose N ≥ 1 such that
ε
λN >M. Then if j0 is such that f N (x)∈R j0 , the curve f −N (W s( f N (x))∩R j0)

is contained in W s(x) and crosses the two connected components of ∂uRi0 . This
gives the wanted result. �

Different versions of the following proposition exist in different settings. We
will provide a proof for the convenience of the reader.
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Proposition A.2. Let {R1, . . . ,Rm} be a rectangle partition for f in V . Let
(ik)k∈Z ∈6m be a sequence. The two following assertions are equivalent:

• (ik)k∈Z is an admissible sequence.

• There exists a unique point x ∈Ri0 such that

∀k ∈ Z, f (x) ∈Rik .

Proof. We just prove the direct implication, the only one that is nontrivial. Hence
we assume that (ik)k∈Z is an admissible sequence.

We begin by proving the existence of x . For every n ∈ N, we introduce the
notation

Ds
n =

n⋂
k=0

f −k(Rik ) and Du
n =

n⋂
k=0

f k(Ri−k ).

Then (Du
n )n∈N (resp. (Ds

n)n∈N) is a decreasing sequence of unstable (resp. stable)
rectangles of Ri0 . Hence (Kn)n∈N = (Du

n ∩ Ds
n)n∈N is a decreasing sequence of

nonempty compact subsets of Ri0 . Their intersection contains at least one point
x , and this point satisfies

∀k ∈ Z, f k(x) ∈Rik .

We now want to prove the unicity of x . We introduce the notation

Du
∞
=

⋂
n∈N

Du
n and Ds

∞
=

⋂
n∈N

Ds
n.

Lemma A.3. The set Du
∞

(resp. Ds
∞

) is an unstable curve that joins the two
connected components of ∂s Ri0 (resp. ∂u Ri0). More precisely, if {x}= Du

∞
∩Ds
∞

,
then Du

∞
⊂W u(x) and Ds

∞
⊂W s(x).

Let us prove Lemma A.3. We just prove the result for Ds
∞

. As every Ds
n is a

stable rectangle, Ds
∞

is a connected compact set that joins the two connected
components of ∂u Ri0 . To prove that it is a (at least continuous) curve, we just
need to prove that it intersects every leaf of the unstable foliation Fu(Ri0) of
Ri0 at most once. So let Lu be an unstable leaf of Ri0 and let x , y be two points
of Ds

∞
∩Lu . We denote by Lu

[x, y] the arc of Lu that has for endpoints x and y.
Observe that Lu

[x, y] ⊂Ri0 Then for every n ∈N, the connected component Ln

of f n(Lu)∩Rin that contains f n(Lu
[x, y]) is an unstable curve of Rin .9 Let B a

common upper bound of the lengths of the unstable leaves that are contained in
some rectangle of the Markov partition (observe that these curves are uniformly
Lipschitz graphs in the charts 8Ri ). Then we have length(Ln) ≤ B and we

9Observe that the endpoints of this curve are indeed in Rin and hence by the point (4) of the
remark, f n(Lu

[x, y])⊂Rin .
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deduce ∀n ∈ N, length(Lu
[x, y])= length( f −n(Ln))≤ λ

nB. So x = y and Ds
∞

intersects every unstable leaf at most once, and so exactly once because Ds
∞

is a
connected set that joins the two connected components of ∂u Ri0 .

Moreover, observe that Ds
∞

contains the connected component C s of W s(x)∩
Ri0 that contains x . This implies that Ds

∞
= C s is a smooth stable curve (see

Proposition A.1). �

A3. Precise construction of heteroclinic horseshoes. We use the same notations
as in Section A1.

Remark. As explained before, we want to build an invariant set that is close (for
the Hausdorff distance) to K (H). That is why we need to use all the heteroclinic
intersections that are in K (H) in our construction. Another approach could be
to use the transitivity of the relation R defined on q-periodic points by: xRy if
W s(x, f ) and W u(y, f ) have a transverse heteroclinic intersection. This implies
that every periodic point in K (H) has a homoclinic intersection and thus we
could use directly Smale’s method (see [27]) to build a homoclinic horseshoe.
Unfortunately, a neighborhood of this homoclinic orbit is not necessarily a
neighborhood of the whole K (H) and so this horseshoe is in general not close
to K (H) for the Hausdorff distance, so doesn’t give us what we want.

Theorem A.4. There exists N ≥ 1 and a neighborhood N of the cycle K (H) of
transverse heteroclinic intersections with period q, such that the maximal f q N

invariant set contained in N is a horseshoe 3 for f q N (see Definition).

As K (H) is (uniformly) hyperbolic, we can chose a neighborhood V of K (H),
a constant λ ∈ (0, 1) and two continuous families of open symmetric cones
(see Section A1) the unstable one x ∈ V 7→ Cu(x) ⊂ Tx M and the stable one
x ∈ V 7→ C s(x)⊂ Tx M such that, if we denote the closure of a set A by A, we
have:

• ∀x ∈ V ∩ f −1(V), D f (Cu(x))⊂ Cu( f (x)) and D f (C s(x))⊃ C s( f (x)).

• ∀x ∈ V,∀v ∈ Cu(x), ‖D f (x)v‖ ≥ 1
λ
‖v‖ and ∀x ∈ V,∀v ∈ C s(x),

‖D f (x)v‖ ≤ λ‖v‖.

• ∀x ∈ V,Cu(x)∩C s(x)= {E0}.

Notation. For every xk , we denote by Bs(xk) the branch of W s(xk) that contains
the yk−1

i s and by Bu(xk) the branch of W u(xk) that contains the yk
i s. Then we

choose a small (curved) rectangle Rk with two sides on Bs(xk) and Bu(xk); see
Figure 2.

We denote by δu
k and δs

k the size of Rk along Bu(xk) and Bs(xk).
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xk

Bs(xk)
Bu(xk)Rk

Figure 2. A small (curved) rectangle Rk with two sides on Bs(xk) and
Bu(xk).tw.

xk

Bs(xk)

Bu(xk)

Rk

xk+1

Bu(xk+1)

Rk+1

Figure 3. The subrectangles of Rk+1 which are connected components
of f q Nk (Rk)∩ Rk+1 that meets W s

loc(xk+1) at some point of the orbit
of yk

i .

Then we look at the Poincaré map for f q from Rk onto Rk+1. Adjusting the
quantities δu and δs , we can find some Nk such that f q Nk (Rk)∩ Rk+1 contains
the union of a finite numbers of unstable rectangles. There are two cases:

• When n = q = 1, there are n0+ 1 rectangles: R0
0 that contains x0 and R1

0 ,
R2

0 , . . . , Rn0
0 such that Ri

0 is a connected component of f q N0(R0)∩ R0 that
meets W s

loc(x0) at some point of the orbit of y0
i .

• When nq > 1, there are nk unstable subrectangles of Rk+1 that we denote
by R1

k+1, R2
k+1, . . . , Rnk

k+1 such that Ri
k+1 is a connected component of

f q Nk (Rk)∩ Rk+1 that meets W s
loc(xk+1) at some point of the orbit of yk

i ;10

see Figure 3.

10Observe that f q Nk (Rk)∩Rk+1 can have other connected components, for example connected
components that correspond to other heteroclinic intersections. We just work with some chosen
heteroclinic points.
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xk

Bs(xk)
Bu(xk)

Rk
Rk

0

Rk
1

Rk
2

Figure 4. The connected component of Rk ∩ f q N (Rk) that contains xk .

When we decrease δu
k or δs

k+1, then Nk increases and when we decrease δs
k or

δu
k+1, then Nk doesn’t change. Hence, if we possibly decrease the δu

k ’s, we can
assume that all the Nk are equal to some constant integer that we denote by N .
Let us denote by R0

k the connected component of Rk ∩ f q N (Rk) that contains
xk and let us prove that it is disjoint from the Ri

k for 1≤ i ≤ nk . There are two
cases:

• There is only one fixed point in the heteroclinic cycle, i.e., q = n= 1; in this
case the rectangles Ri

1 are different connected components of R1 ∩ f N (R1)

and so they are disjoint.

• If not, as the different Rk are disjoint, in particular f q N (Rk) and f q N (Rk−1)

are disjoint and every unstable rectangle that is contained in Rk ∩ f q N (Rk)

is disjoint from
⋃nk−1

i=1 Ri
k ; see Figure 4.

We introduce the notation Tk =
⋃nk

i=0 Ri
k and consider now the f q N -invariant

set

3=
⋂
j∈Z

f jq N
( qn⋃

k=1

Tk

)
.

Then the R j
k s with 1 ≤ k ≤ nq and 0 ≤ j ≤ nk define a rectangle partition for

f q N
|V and the following transitions occur:11

• ∀i ∈ [0, nk], Ri
k

f q N
−→ R0

k .

• ∀i ∈ [0, nk],∀ j ∈ [1, nk+1], Ri
k

f q N
−→ R j

k+1.

We denote by A the associated matrix. Observe that for every Ri
k , R j

h , then
Ri

k can be connected to R j
h by a succession of such transitions. We deduce from

Proposition A.2 that f Nq
|3 is conjugate to the subshift associated to A, that is

11We do not know if other transitions occur.
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transitive. In particular, f Nq
|3 is mixing, has an infinity of periodic points and has

positive topological entropy.

Remarks. • If we decrease the constants δu
k and δs

k , then we increase N but
this is not a problem because we just add some iterations of f q that are
close to the periodic orbits where we know exactly how the dynamics looks
like. An advantage is that decreasing sufficiently these constants, we can be
sure that

⋃q N
j=0 f j

(⋃qn
k=1 Tk

)
is contained in a small neighborhood of the

heteroclinic cycle K (H). So in this case, the Hausdorff distance between
K (H) and the invariant set

⋃q N
j=1 f j (3) is also as small as we want.

• Being defined by a rectangle partition, the set 3 is a locally maximal
invariant set by f q N .
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