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m-modular Wythoff
TANYA KHOVANOVA AND NELSON NIU

We introduce a variant of Wythoff’s game that we call m-modular Wythoff’s
game. In the original Wythoff’s game, players can take a positive number of
tokens from one pile, or they can take a positive number of tokens from both
piles if the number of tokens they take from the first pile is equal to the number
of tokens they take from the second. In our variant, we weaken this equality
condition to one of equivalence modulo m. We characterize the P-positions
of our m-modular variant as a finite subset of the P-positions of the known
P-positions of the original Wythoff’s game.

1. Introduction

The game of Nim forms the foundation of the mathematical study of two-player
impartial games. In his landmark paper, Bouton [1] solved the game of Nim by
providing a winning strategy when one exists and proving when one did not,
effectively founding the field of combinatorial game theory.

One of the most famous variants of Nim is Wythoff’s game, introduced and
solved by Wythoff [8]. Both Nim and Wythoff’s games are examples of invariant
games, defined in [2]: games whose set of valid moves is independent of the
position from which the moves are played.

Several further variants of Nim and Wythoff have been studied, but few have
moves based on modular congruence. One such example is modular Nim, studied
in [4]. The first author recently explored a different modular variant of Nim in [5].
Dubbed m-modular Nim, it is an invariant game in which moves predicated on
modular congruence are added to the traditional Nim moves.

In this paper, we introduce and solve an analogous invariant modular extension
of Wythoff’s game. Here we mean extension in the sense of [3]: we expand the
set of moves available in Wythoff’s game without removing any. Duchêne et
al. [3] examine extensions of Wythoff’s game that preserve the P-positions of
the original game. In contrast, we will show that our extension — which we call
m-modular Wythoff’s game — restricts the P-positions to a finite subset of those
of the original Wythoff’s game.
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We begin in Section 2 by reviewing the rules and P-positions of Wythoff’s
game and introducing notation. Then in Section 3, we define m-modular Wythoff’s
game, where in addition to the usual Wythoff moves, we allow players to remove
tokens from both piles as long as the number of tokens removed from one pile
is equivalent modulo m to the number of tokens removed from the other. We
proceed to compute the P-positions of m-modular Wythoff for small values of m,
showing that these positions are a subset of the P-positions of Wythoff’s game.

In Section 4, we prove that the number of P-positions of m-modular Wythoff
is always finite. We do so by explicitly characterizing the P-positions of m-
modular Wythoff: there are 2⌊m/ϕ⌋+1 of them, where ϕ :=

1+
√

5
2 is the golden

ratio, and they form a subset of the P-positions of Wythoff’s game. Finally, we
suggest some further directions of research in Section 5.

2. Wythoff’s game

Here we review the rules and winning strategies of Wythoff’s game from [8].

2.1. Rules of Wythoff’s game. Let us recall the rules of Wythoff’s game from [8].
The game is played with two piles of tokens. Two players take turns making
moves, and two types of moves are allowed:

(I) A player may take any positive number of tokens from any one pile. (Note
that these are the same moves available in two-pile Nim.)

(II) A player may take the same positive number of tokens from both piles.

The loser is the player who cannot move, i.e., the player whose turn it is when
both piles are empty.

A position of Wythoff’s game (or any other two-pile game) can be denoted by
ordered pairs of nonnegative integers (p1, p2), indicating the number of tokens
in each pile. We say that position p = (p1, p2) dominates position q = (q1, q2),
writing p ⪰ q, if p1 − q1 and p2 − q2 are both nonnegative. Moreover, we say
that p strictly dominates q, writing p ≻ q , if p dominates q and p ̸= q .

2.2. P-positions of Wythoff’s game. In any combinatorial game, a P-position
is a position from which the previous player has a winning strategy. Note that
if a player who cannot move loses, all terminal positions are P-positions. On
the other hand, an N-position is a position from which the next player has a
winning strategy. Any move from a P-position goes to an N -position; and from
any N -position, there exists a move to a P-position.

Every game we discuss eventually terminates; in such a game, the P-positions
and N -positions partition all of the game’s positions. Finding the winning
strategies of these games then amounts to computing their P-positions.
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The set of P-positions of Wythoff’s game, which we denote by P , is char-
acterized in [8]. Before we describe P explicitly, we introduce the following
notation.

Define a set Pi for each nonnegative integer i recursively as follows:

P0 := {(0, 0)} and Pi := Pi−1 ∪ {(ci , ci + i), (ci + i, ci )}, (1)

where ci is the smallest positive integer not already part of any ordered pair in
Pi−1. So c1 = 1, making

P1 = {(0, 0), (1, 2), (2, 1)};

then c2 = 3, making

P2 = {(0, 0), (1, 2), (2, 1), (3, 5), (5, 3)};

and so on.
Wythoff [8] shows that the P-positions of his game are given by the union of

the nested sequence P0 ⊆ P1 ⊆ P2 ⊆ · · · ; that is,

P =

∞⋃
i=0

Pi .

Furthermore, it turns out that these P-positions are closely related to the golden
ratio ϕ :=

1+
√

5
2 , the positive number satisfying ϕ2

= ϕ + 1. In particular, the
positions (ci , ci + i) and (ci + i, ci ) comprising each Pi \Pi−1 are given by

(ci , ci + i) = (⌊iϕ⌋, ⌊iϕ⌋ + i) = (⌊iϕ⌋, ⌊iϕ2
⌋) and

(ci + i, ci ) = (⌊iϕ⌋ + i, ⌊iϕ⌋) = (⌊iϕ2
⌋, ⌊iϕ⌋).

(2)

The sequence
(ci )

∞

i=1 = (⌊ϕ⌋, ⌊2ϕ⌋, ⌊3ϕ⌋, . . . )

is called the lower Wythoff sequence, consisting of the lower Wythoff numbers,
while the sequence

(ci + i)∞i=1 = (⌊ϕ2
⌋, ⌊2ϕ2

⌋, ⌊3ϕ2
⌋, . . . )

is the upper Wythoff sequence, consisting of the upper Wythoff numbers. The
P-positions of Wythoff’s game thus consist of the terminal position (0, 0) along
with pairs of corresponding lower and upper Wythoff numbers.

3. Introducing m-modular Wythoff

We now describe the rules of m-modular Wythoff’s game, our extension of
Wythoff’s game, for a positive integer m. Like the original Wythoff, m-modular
Wythoff is played with two piles of tokens, denoted by an ordered pair of
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nonnegative integers (p1, p2), indicating the number of tokens in each pile. Two
players take turns making moves until no tokens remain — the terminal position
is (0, 0) reached, and the player whose turn is next loses.

Two types of moves are allowed:

(I) A player may take any positive number of tokens from any one pile. (Again,
these are the same moves available in two-pile Nim.)

(II) A player may take a positive number of tokens from both piles, given that
the difference between the number of tokens taken from each pile is divisible
by m.

We call these Type I and Type II moves, respectively. Note that the moves in
Wythoff’s game are a subset of the moves in our m-modular variant: m-modular
Wythoff is an extension of the original Wythoff.

3.1. Example: 2-modular Wythoff. As an initial example, we compute the
P-positions of m-modular Wythoff in the case of m = 2 via a standard argument.
We may reason as follows:

(1) The terminal position (0, 0) is a P-position.

(2) Positions one move away from (0, 0) are N -positions:
(I) The positions that are a Type I move away from (0, 0) are those in which

exactly one of the coordinates is 0; these are therefore N -positions.
(II) The positions that are a Type II move away from (0, 0) are those with two

positive coordinates of the same parity; these are therefore N -positions
as well.

(3) From the position (1, 2), Type I moves can lead to (0, 2), (1, 1), or (1, 0),
while the only Type II move leads to (0, 1). All four of these are N -positions,
so (1, 2) is a P-position. By symmetry, (2, 1) is a P-position as well.

(4) It remains to consider positions with positive coordinates of opposite parity
not equal to (1, 2) or (2, 1):
(I) If either coordinate of such a position is equal to 1, then the other

coordinate must be 4 or greater, so a Type I move will bring it to either
(1, 2) or (2, 1). Hence the position is an N -position.

(II) Otherwise, both coordinates of such a position are greater than 1, so
the position strictly dominates (1, 2); moreover, the coordinates have
opposite parity, so a Type II move will bring it to (1, 2). Hence the
position is also an N -position.

Therefore, the only P-positions of 2-modular Wythoff are (0, 0), (1, 2), and
(2, 1); all the rest are N -positions. Note that the set of these positions is exactly
the set P1 defined in (1).
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m P-positions of m-modular Wythoff’s game

2 P1 = {(0, 0), (1, 2), (2, 1)}

3 P1 = {(0, 0), (1, 2), (2, 1)}

4 P2 = {(0, 0), (1, 2), (2, 1), (3, 5), (5, 3)}

5 P3 = {(0, 0), (1, 2), (2, 1), (3, 5), (5, 3), (4, 7), (7, 4)}

Table 1. P-positions of m-modular Wythoff for small values of m.

3.2. More examples: m-modular Wythoff for m ≥ 5. Following our example
from Section 3.1, we may manually compute the P-positions of m-modular
Wythoff for small values of m. The results are listed in Table 1. Notice that
every set of P-positions below is one of our sets Pi from (1): a finite subset of
the P-positions of Wythoff’s game.

While the pattern may not be obvious from the rows in this table alone, we will
show in the next section that the P-positions of m-modular Wythoff are precisely
the P-positions in Wythoff’s game for which the smaller pile has strictly fewer
than m tokens.

4. P-positions of m-modular Wythoff

We make the following observation about m-modular Wythoff before we consider
its P-positions.

Lemma 1. Given positions (q1, q2) ≻ (s1, s2) with q1 − q2 ≡ s1 − s2 (mod m),
there is always a move from (q1, q2) to (s1, s2).

Proof. We have three cases: q1 = s1 and q2 > s2; q1 > s1 and q2 = s2; or q1 > s1

and q2 > s2. In either of the first two cases, there is a Type I move from (q1, q2)

to (s1, s2). In the third case, rearranging the equivalence from the hypothesis
yields q1 − s1 ≡ q2 − s2 (mod m), so removing q1 − s1 > 0 tokens from the first
pile and q2 − s2 > 0 tokens from the second pile is a valid Type II move from
(q1, q2) to (s1, s2). □

To describe the P-positions of m-modular Wythoff, it will be helpful to
introduce the following piece of notation. For any positive integer m, let am be
the number of lower Wythoff numbers strictly less than m. Equivalently, we
define am to be the unique integer for which ⌊amϕ⌋ < m ≤ ⌊(am +1)ϕ⌋. In other
words, am = ⌊m/ϕ⌋. Then the sequence a1, a2, a3, . . . is sequence A005206
in [7] (with indices shifted by one). For visualization, Table 2 is a table of the
sequence of am , where bold indices m are lower Wythoff numbers. Each am is
then equal to the number of bold indices to its left.
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m 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

am 0 1 1 2 3 3 4 4 5 6 6 7 8 8 9 9

Table 2. The sequence of am , where bold indices m are lower Wythoff numbers.

We claim that the P-positions of m-modular Wythoff form the set Pam , which
by construction contains 2am +1 = 2⌊m/ϕ⌋+1 elements. To prove our claim, we
will make use of several simple observations regarding the set of positions Pam .
Throughout the rest of this section, we make use of the fact that ϕ is irrational
and satisfies ϕ2

= ϕ + 1 and therefore 1/ϕ = ϕ − 1.

Lemma 2. Let (p1, p2) ∈ Pam with p1 < p2. Then

p1 < m, (3)

p2 < mϕ, (4)

p2 − p1 < m/ϕ = m(ϕ − 1). (5)

Proof. By our construction of Pam and our discussion in Section 2.2, we know
that p1 (resp. p2) must be one of the first am lower (resp. upper) Wythoff numbers,
so in particular p1 ≤ ⌊amϕ⌋ and p2 ≤ ⌊amϕ2

⌋. But by construction ⌊amϕ⌋ < m
and thus ⌊amϕ2

⌋ < mϕ, so (3) and (4) follow.
Moreover, again by our construction of Pam we have that p2 − p1 ≤ am , and

again by our construction of am we have am = ⌊m/ϕ⌋. As ϕ is irrational and
satisfies 1/ϕ = ϕ − 1, we have ⌊m/ϕ⌋ < m/ϕ = m(ϕ − 1), so (5) follows. □

Lemma 3. For any nonnegative integer r < m, there is a position in Pam with r
as a coordinate.

Proof. If r = 0, then (0, 0) ∈Pam and we are done. So assume r > 0. By (2) with
i := am +1, we have that cam+1, the smallest positive integer not already a part of
any ordered pair in Pam , is equal to ⌊(am + 1)ϕ⌋. But by the construction of am ,
we have that m ≤ ⌊(am + 1)ϕ⌋ = cam+1, so in particular r < cam+1. Hence, by
the minimality of cam+1, there exists a position in Pam with r as a coordinate. □

Lemma 4. For any positive integer s < m/ϕ, there are exactly two positions in
Pam whose absolute difference in coordinates is s, namely (q1, q2) and (q2, q1)

in Pam with q1 = ⌊sϕ⌋ and q2 = ⌊sϕ2
⌋.

Proof. As ϕ is irrational, m/ϕ is not an integer, but s is; so s ≤ ⌊m/ϕ⌋. Since
⌊m/ϕ⌋ = am by construction, it follows that s ≤ am . So by (1),

(cs, cs + s), (cs + s, cs) ∈ Ps ⊆ Pam ,

with
cs = ⌊sϕ⌋ and cs + s = ⌊sϕ2

⌋
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by (2). Hence (cs, cs +s) and (cs +s, cs) are the positions in Pam we seek; by the
construction of Pam , every other pair in Pam has a different absolute difference
of coordinates. □

Equipped with these lemmas, we are now ready to describe the set of P-
positions in m-modular Wythoff.

Theorem 5. The P-positions of m-modular Wythoff form the set Pam .

Proof. We know that the terminal position (0, 0) ∈Pam , so it suffices to show that
there are no moves between any two positions in Pam and that from any position
not in Pam , there exists a move to a position in Pam .

First, we show that there are no moves between any two positions in Pam . As
Pam is a subset of the set P of P-positions in Wythoff’s game, there can be no
Wythoff moves between its elements: there can be no Type I moves between
them, and there can be no Type II moves between them in which the same number
of tokens is removed from either pile. It remains to verify that no other Type II
moves are possible between elements of Pam .

Let (p1, p2) be a nonterminal position in Pam with p1 < p2 (the case of
p1 > p2 is analogous by symmetry), and assume to the contrary that there exists
a Type II move from (p1, p2) to another position in Pam that removes a different
number of tokens from each pile. That is, there exist positive integers k1, k2

with k1 ≡ k2 (mod m) but k1 ̸= k2 such that (p1 − k1, p2 − k2) ∈ Pam as well. In
particular, both piles must have a nonnegative number of tokens, so k1 ≤ p1 and
k2 ≤ p2. Then by (3), p1 < m, so k1 < m; and by (4), p2 < mϕ, so k2 < mϕ < 2m.
Hence the only way for k2 − k1 to be a nonzero multiple of m would be for
k2 = k1 + m.

So the Type II move in question must lead to (p1 − k1, p2 − k1 − m) ∈ Pam .
By (5), we have p2 − p1 < m/ϕ = m(ϕ −1), which in turn is less than m; hence

(p1 − k1) − (p2 − k1 − m) = m − (p2 − p1) > 0,

so p1−k1 is the larger of the two piles and m−(p2− p1) is the absolute difference
between them. Then by Lemma 4, we have that p1 − k1 = ⌊(m − (p2 − p1))ϕ

2
⌋,

so (m − (p2 − p1))ϕ
2 < p1. Since

1/ϕ2
= (ϕ − 1)2

= ϕ2
− 2ϕ + 1 = ϕ + 1 − 2ϕ + 1 = 2 − ϕ,

it follows that

m − (p2 − p1) < p1/ϕ
2
= p1(2 − ϕ) < m(2 − ϕ).

Yet we still have p2 − p1 < m(ϕ − 1). Adding these inequalities yields m < m,
a contradiction. Therefore no moves are possible between elements of Pam .
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Next, we show that from any position not in Pam , there exists a move to a
position in Pam . Let (q1, q2) be a position not in Pam with q1 ≤ q2 (again, the
case of q1 ≥ q2 is analogous by symmetry). We wish to show that there exists a
move from (q1, q2) to a position in Pam . There are two cases to consider: either
q1 < m or q1 ≥ m:

Case 1: Say q1 < m. If q1 = 0, then for (q1, q2) /∈ Pam to hold we must have
q2 ̸= 0. Hence there is a Type I move from (q1, q2) = (0, q2) to (0, 0) ∈ Pam ,
and we are done.

So assume instead q1 > 0. Then by Lemma 3, there exists a position in Pam

with q1 as the size of one of the piles: either the larger pile or the smaller pile. If
q1 is the larger pile size of a position in Pam , then there exists q ′

2 < q1 ≤ q2 with
(q1, q ′

2) ∈ Pam . Hence there is a Type I move from (q1, q2) to (q1, q ′

2) ∈ Pam ,
and we are again done.

Otherwise, q1 is the smaller pile size of a position in Pam , so it must be
a lower Wythoff number: q1 = ⌊iϕ⌋ for some positive integer i ≤ am , with
(q1, q1 + i) ∈ Pam . We have two subcases: either q2 > q1ϕ or q2 ≤ q1ϕ.

If q2 > q1ϕ = ⌊iϕ⌋ϕ, then since ϕ = 1 + 1/ϕ, we have

q2 > ⌊iϕ⌋ϕ = ⌊iϕ⌋ + ⌊iϕ⌋/ϕ > ⌊iϕ⌋ + i − 1,

where the latter inequality follows from the fact that iϕ − (i − 1)ϕ = ϕ > 1 and
thus ⌊iϕ⌋ > (i − 1)ϕ. It follows that q2 ≥ ⌊iϕ⌋ + i = q1 + i . Yet (q1, q1 + i) is
in Pam while (q1, q2) is not; so in fact q2 > q1 + i , and there is a Type I move
from (q1, q2) to (q1, q1 + i) ∈ Pam , as desired.

On the other hand, if q2 ≤ q1ϕ, then

q2 − q1 ≤ q1ϕ − q1 = q1/ϕ = ⌊iϕ⌋/ϕ < i ≤ am .

So either q2 − q1 = 0, in which case there is a Type II move from (q1, q2) to
(0, 0) ∈ Pam , and we are done; or q2 − q1 > 0, in which case Lemma 4 implies
that (⌊(q2 − q1)ϕ⌋, ⌊(q2 − q1)ϕ⌋ + q2 − q1) ∈ Pam . Then from above we have
i > q2 −q1, so q1 = ⌊iϕ⌋ > ⌊(q2 −q1)ϕ⌋, and therefore we have a Type II move
from (q1, q2) to (⌊(q2 −q1)ϕ⌋, ⌊(q2 −q1)ϕ⌋+q2 −q1) ∈Pam given by removing
the same number of tokens from each pile, as desired.

Case 1: Say instead q1 ≥ m. By the division algorithm, there exist nonnegative
integers r and x satisfying q2 − q1 = mx + r and 0 ≤ r < m. We have three
subcases: it could be that r = 0; it could be that 0 < r < m/ϕ; or it could be that
m/ϕ < r < m.

If r = 0, then m divides q2 − q1, so removing q1 from one pile and q2 from
the other is a Type II move sending (q1, q2) to (0, 0) ∈ Pam , as desired.
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If on the other hand 0 < r < m/ϕ, then by Lemma 4 there exists a position
(s1, s2) ∈ Pam for which s2 − s1 = r , namely when s1 = ⌊rϕ⌋. We have

s1 = ⌊rϕ⌋ < ⌊(m/ϕ)ϕ⌋ = m ≤ q1

and thus
s2 = s1 + r < q1 + r = q2 − mx ≤ q2,

so (q1, q2)≻ (s1, s2). As s2−s1 = r ≡ q2−q1 (mod m), it follows from Lemma 1
that there is a move from (q1, q2) to (s1, s2) ∈ Pam , as desired.

Otherwise, m/ϕ < r < m. Since q2 −q1 ≡ r (mod m), we have that q1 −q2 ≡

m −r (mod m). Note that ϕ < 2, so 1 < 2/ϕ and thus 1−1/ϕ < 1/ϕ. It follows
that

0 < m − r < m − m/ϕ < m/ϕ,

so by Lemma 4, there exists a position (s2, s1) ∈ Pam for which s2 − s1 = m − r
and thus q1 − q2 ≡ s2 − s1 (mod m); in particular, s2 = ⌊(m − r)ϕ2

⌋. Then

s1 < s2 = ⌊(m − r)ϕ2
⌋ < ⌊(m − m/ϕ)ϕ2

⌋ = ⌊m(ϕ2
− ϕ)⌋ = m ≤ q1 ≤ q2,

so (q1, q2) ≻ (s2, s1). Hence, by Lemma 1, there is a move from (q1, q2) to
(s1, s2), and we are done. □

Corollary 6. The number of P-positions of m-modular Wythoff is finite; in
particular, it is equal to 2⌊m/ϕ⌋ + 1.

Proof. By construction, Pam contains 2am + 1 = 2⌊m/ϕ⌋ + 1 elements. □

5. Further directions

We conclude by suggesting some further directions of study.

5.1. Grundy numbers for m-modular Wythoff. The Grundy number of a po-
sition in a combinatorial game indicates the size of the pile from the game of
Nim to which the position is equivalent. A position’s Grundy number can be
recursively computed as the minimal excluded nonnegative integer among the
Grundy numbers of the positions to which the original position can go in a single
move. In particular, every P-position has a Grundy number of 0, while the
N -positions have Grundy numbers that are positive.

As of [6], no closed-form formula for the Grundy numbers for Wythoff’s game
are known. Nevertheless, we list a few recursively computed Grundy numbers
for Wythoff’s game in Table 3; there, as in the tables that follow, the entry in the
row labeled p1 and the column labeled p2 indicates the Grundy number of the
position (p1, p2).
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The other tables in the Appendix list some of the Grundy numbers for our
m-modular Wythoff in the cases of 2 ≤m ≤ 9. We make a few initial observations:

• Grundy numbers for m-modular Wythoff coincide with the Grundy numbers
for the usual Wythoff’s game when the pile sizes are at most m, as in those
cases the moves available for the two games are identical.

• There is a clear pattern in the Grundy numbers for 3-modular Wythoff: the
Grundy number of position (3i + r, 3 j + s), where i, j, r, s are nonnegative
integers with r, s ∈ {0, 1, 2}, is equal to 3(i + j)+t for t ∈ {0, 1, 2} satisfying
r + s ≡ t (mod 3). This can be proven by induction on i and j . The fact
that the case of m = 3, along with of course the trivial case of m = 1, has
such a concise characterization of its Grundy numbers is likely to do with
the fact that m-modular Wythoff has exactly m P-positions precisely when
m = 3 or m = 1.

But ultimately, just like with Wythoff’s game, we do not have a closed-form
formula for the Grundy numbers of m-modular Wythoff for general values of
m (aside from 1 and 3). Nor do we know precisely how the Grundy numbers
for m-modular Wythoff relate to the Grundy numbers for Wythoff’s game for
larger pile sizes. Further investigation is needed to compute Grundy numbers for
m-modular Wythoff, to see if known results for the Grundy numbers of Wythoff’s
game such as those given in [6] have analogs in m-modular variants, and perhaps
eventually use the properties of the Grundy numbers for m-modular Wythoff to
uncover further properties of the Grundy numbers for standard Wythoff.

5.2. Extensions with finite P-positions. Wythoff’s game has an infinite set
of P-positions; and yet we showed that by expanding the possible moves of
the game in a certain way, we form an extension of Wythoff’s game, namely
m-modular Wythoff, that has a finite set of P-positions — indeed, a subset of the
P-positions of the original Wythoff’s game. This raises the following questions,
among others:

• Can we characterize the additional moves necessary and/or sufficient to
extend Wythoff’s game so that the extension has a finite set of P-positions?

• Can we characterize the additional moves necessary and/or sufficient to
extend Wythoff’s game so that the extension has a finite subset of the
P-positions of the original Wythoff’s game?

• Can we characterize the additional moves necessary and/or sufficient to
extend another invariant game so that the extension has a finite set of P-
positions, particularly a finite subset of the P-positions of the original
game?
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 1 2 0 4 5 3 7 8 6 10 11 9 13 14 12 16
2 2 0 1 5 3 4 8 6 7 11 9 10 14 12 13 17
3 3 4 5 6 2 0 1 9 10 12 8 7 15 11 16 18
4 4 5 3 2 7 6 9 0 1 8 13 12 11 16 15 10
5 5 3 4 0 6 8 10 1 2 7 12 14 9 15 17 13
6 6 7 8 1 9 10 3 4 5 13 0 2 16 17 18 12
7 7 8 6 9 0 1 4 5 3 14 15 13 17 2 10 19
8 8 6 7 10 1 2 5 3 4 15 16 17 18 0 9 14
9 9 10 11 12 8 7 13 14 15 16 17 6 19 5 1 0

10 10 11 9 8 13 12 0 15 16 17 14 18 7 6 2 3
11 11 9 10 7 12 14 2 13 17 6 18 15 8 19 20 21
12 12 13 14 15 11 9 16 17 18 19 7 8 10 20 21 22
13 13 14 12 11 16 15 17 2 0 5 6 19 20 9 7 8
14 14 12 13 16 15 17 18 10 9 1 2 20 21 7 11 23
15 15 16 17 18 10 13 12 19 14 0 3 21 22 8 23 20

Table 3. Grundy numbers for Wythoff’s game.

The latter two questions, generalizing to other invariant combinatorial games
beyond Wythoff’s game, lead to the final avenue of further study we shall mention.

5.3. Modular variants of other games. While a modular extension of Nim was
studied in [5] and a modular extension of Wythoff was studied here, modular
extensions of other combinatorial games have not been studied in any level of
generalization. We are interested in whether modular variants of other games
relate to the original games much like how the modular variants of Nim or
Wythoff relate to standard Nim or Wythoff.

Appendix: Tables of Grundy numbers

In the following tables, we list the Grundy numbers for Wythoff’s game, as well
as m-modular Wythoff’s game for 2 ≤ m ≤ 9, for piles of size at most 15.

Acknowledgments

The authors are grateful to the MIT-PRIMES program for supporting this research,
as well as to several anonymous reviewers for their valued feedback.



502 TANYA KHOVANOVA AND NELSON NIU

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 1 2 0 4 5 3 7 8 6 10 11 9 13 14 12 16
2 2 0 1 5 3 4 8 6 7 11 9 10 14 12 13 17
3 3 4 5 6 2 7 9 10 11 12 8 13 15 16 17 18
4 4 5 3 2 7 6 10 11 9 8 13 12 16 17 15 14
5 5 3 4 7 6 8 11 9 10 13 12 14 17 15 16 19
6 6 7 8 9 10 11 5 12 13 14 15 16 18 19 20 21
7 7 8 6 10 11 9 12 13 14 15 16 17 19 20 18 22
8 8 6 7 11 9 10 13 14 12 16 17 15 20 18 19 23
9 9 10 11 12 8 13 14 15 16 17 18 19 21 22 23 24

10 10 11 9 8 13 12 15 16 17 18 14 20 22 23 21 25
11 11 9 10 13 12 14 16 17 15 19 20 18 23 21 22 26
12 12 13 14 15 16 17 18 19 20 21 22 23 11 24 25 27
13 13 14 12 16 17 15 19 20 18 22 23 21 24 25 26 28
14 14 12 13 17 15 16 20 18 19 23 21 22 25 26 24 29
15 15 16 17 18 14 19 21 22 23 24 25 26 27 28 29 30

Table 4. Grundy numbers for 2-modular Wythoff’s game.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 1 2 0 4 5 3 7 8 6 10 11 9 13 14 12 16
2 2 0 1 5 3 4 8 6 7 11 9 10 14 12 13 17
3 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
4 4 5 3 7 8 6 10 11 9 13 14 12 16 17 15 19
5 5 3 4 8 6 7 11 9 10 14 12 13 17 15 16 20
6 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
7 7 8 6 10 11 9 13 14 12 16 17 15 19 20 18 22
8 8 6 7 11 9 10 14 12 13 17 15 16 20 18 19 23
9 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

10 10 11 9 13 14 12 16 17 15 19 20 18 22 23 21 25
11 11 9 10 14 12 13 17 15 16 20 18 19 23 21 22 26
12 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
13 13 14 12 16 17 15 19 20 18 22 23 21 25 26 24 28
14 14 12 13 17 15 16 20 18 19 23 21 22 26 24 25 29
15 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Table 5. Grundy numbers for 3-modular Wythoff’s game.
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 1 2 0 4 5 3 7 8 6 10 11 9 13 14 12 16
2 2 0 1 5 3 4 8 6 7 11 9 10 14 12 13 17
3 3 4 5 6 2 0 9 10 11 1 8 7 15 16 17 18
4 4 5 3 2 7 6 1 11 9 8 12 13 16 17 15 10
5 5 3 4 0 6 8 10 9 12 13 14 15 17 11 16 19
6 6 7 8 9 1 10 5 12 13 14 15 16 11 18 19 20
7 7 8 6 10 11 9 12 13 14 5 16 17 18 19 20 21
8 8 6 7 11 9 12 13 14 15 16 17 18 19 20 21 22
9 9 10 11 1 8 13 14 5 16 12 18 19 20 21 22 23

10 10 11 9 8 12 14 15 16 17 18 19 20 21 22 23 24
11 11 9 10 7 13 15 16 17 18 19 20 14 22 23 24 25
12 12 13 14 15 16 17 11 18 19 20 21 22 23 24 25 26
13 13 14 12 16 17 11 18 19 20 21 22 23 24 25 26 27
14 14 12 13 17 15 16 19 20 21 22 23 24 25 26 18 28
15 15 16 17 18 10 19 20 21 22 23 24 25 26 27 28 29

Table 6. Grundy numbers for 4-modular Wythoff’s game.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 1 2 0 4 5 3 7 8 6 10 11 9 13 14 12 16
2 2 0 1 5 3 4 8 6 7 11 9 10 14 12 13 17
3 3 4 5 6 2 0 1 9 10 12 8 7 15 11 16 18
4 4 5 3 2 7 6 9 0 11 8 13 1 16 17 15 10
5 5 3 4 0 6 8 10 1 9 7 12 14 17 15 18 13
6 6 7 8 1 9 10 3 11 12 13 14 4 18 16 17 19
7 7 8 6 9 0 1 11 4 13 14 15 12 19 20 10 21
8 8 6 7 10 11 9 12 13 14 15 16 17 20 18 19 22
9 9 10 11 12 8 7 13 14 15 16 17 18 21 19 20 23

10 10 11 9 8 13 12 14 15 16 17 18 19 22 23 21 24
11 11 9 10 7 1 14 4 12 17 18 19 13 23 21 22 25
12 12 13 14 15 16 17 18 19 20 21 22 23 11 24 25 26
13 13 14 12 11 17 15 16 20 18 19 23 21 24 22 26 27
14 14 12 13 16 15 18 17 10 19 20 21 22 25 26 23 28
15 15 16 17 18 10 13 19 21 22 23 24 25 26 27 28 29

Table 7. Grundy numbers for 5-modular Wythoff’s game.
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 1 2 0 4 5 3 7 8 6 10 11 9 13 14 12 16
2 2 0 1 5 3 4 8 6 7 11 9 10 14 12 13 17
3 3 4 5 6 2 0 1 9 10 12 8 7 15 11 16 18
4 4 5 3 2 7 6 9 0 1 8 13 12 11 16 15 14
5 5 3 4 0 6 8 10 1 2 7 12 14 9 15 17 13
6 6 7 8 1 9 10 3 4 5 13 14 15 16 17 18 12
7 7 8 6 9 0 1 4 5 3 14 15 13 17 10 19 20
8 8 6 7 10 1 2 5 3 4 15 16 17 18 9 11 21
9 9 10 11 12 8 7 13 14 15 16 17 6 19 20 21 22

10 10 11 9 8 13 12 14 15 16 17 18 19 20 6 22 23
11 11 9 10 7 12 14 15 13 17 6 19 20 21 18 8 24
12 12 13 14 15 11 9 16 17 18 19 20 21 10 22 23 7
13 13 14 12 11 16 15 17 10 9 20 6 18 22 19 24 25
14 14 12 13 16 15 17 18 19 11 21 22 8 23 24 9 26
15 15 16 17 18 14 13 12 20 21 22 23 24 7 25 26 27

Table 8. Grundy numbers for 6-modular Wythoff’s game.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 1 2 0 4 5 3 7 8 6 10 11 9 13 14 12 16
2 2 0 1 5 3 4 8 6 7 11 9 10 14 12 13 17
3 3 4 5 6 2 0 1 9 10 12 8 7 15 11 16 18
4 4 5 3 2 7 6 9 0 1 8 13 12 11 16 15 10
5 5 3 4 0 6 8 10 1 2 7 12 14 9 15 17 13
6 6 7 8 1 9 10 3 4 11 13 0 15 16 5 18 12
7 7 8 6 9 0 1 4 5 3 14 15 2 17 18 10 19
8 8 6 7 10 1 2 11 3 4 15 16 17 18 19 9 20
9 9 10 11 12 8 7 13 14 15 16 17 18 6 20 21 22

10 10 11 9 8 13 12 0 15 16 17 14 19 20 21 6 23
11 11 9 10 7 12 14 15 2 17 18 19 13 21 22 20 24
12 12 13 14 15 11 9 16 17 18 6 20 21 10 23 19 25
13 13 14 12 11 16 15 5 18 19 20 21 22 23 17 24 26
14 14 12 13 16 15 17 18 10 9 21 6 20 19 24 22 27
15 15 16 17 18 10 13 12 19 20 22 23 24 25 26 27 21

Table 9. Grundy numbers for 7-modular Wythoff’s game.
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 1 2 0 4 5 3 7 8 6 10 11 9 13 14 12 16
2 2 0 1 5 3 4 8 6 7 11 9 10 14 12 13 17
3 3 4 5 6 2 0 1 9 10 12 8 7 15 11 16 18
4 4 5 3 2 7 6 9 0 1 8 13 12 11 16 15 10
5 5 3 4 0 6 8 10 1 2 7 12 14 9 15 17 13
6 6 7 8 1 9 10 3 4 5 13 0 2 16 17 18 12
7 7 8 6 9 0 1 4 5 3 14 15 13 17 10 19 20
8 8 6 7 10 1 2 5 3 4 15 16 17 18 9 11 14
9 9 10 11 12 8 7 13 14 15 16 17 18 19 2 20 21

10 10 11 9 8 13 12 0 15 16 17 14 19 20 18 5 22
11 11 9 10 7 12 14 2 13 17 18 19 15 21 22 23 6
12 12 13 14 15 11 9 16 17 18 19 20 21 22 23 24 25
13 13 14 12 11 16 15 17 10 9 2 18 22 23 19 25 26
14 14 12 13 16 15 17 18 19 11 20 5 23 24 25 21 27
15 15 16 17 18 10 13 12 20 14 21 22 6 25 26 27 23

Table 10. Grundy numbers for 8-modular Wythoff’s game.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 1 2 0 4 5 3 7 8 6 10 11 9 13 14 12 16
2 2 0 1 5 3 4 8 6 7 11 9 10 14 12 13 17
3 3 4 5 6 2 0 1 9 10 12 8 7 15 11 16 18
4 4 5 3 2 7 6 9 0 1 8 13 12 11 16 15 10
5 5 3 4 0 6 8 10 1 2 7 12 14 9 15 17 13
6 6 7 8 1 9 10 3 4 5 13 0 2 16 17 18 12
7 7 8 6 9 0 1 4 5 3 14 15 13 17 2 10 19
8 8 6 7 10 1 2 5 3 4 15 16 17 18 0 9 14
9 9 10 11 12 8 7 13 14 15 16 17 18 19 20 21 22

10 10 11 9 8 13 12 0 15 16 17 14 19 20 18 2 23
11 11 9 10 7 12 14 2 13 17 18 19 15 21 22 20 24
12 12 13 14 15 11 9 16 17 18 19 20 21 22 23 24 25
13 13 14 12 11 16 15 17 2 0 20 18 22 23 19 25 21
14 14 12 13 16 15 17 18 10 9 21 2 20 24 25 23 26
15 15 16 17 18 10 13 12 19 14 22 23 24 25 21 26 20

Table 11. Grundy numbers for 9-modular Wythoff’s game.



506 TANYA KHOVANOVA AND NELSON NIU

References

[1] C. L. Bouton, “Nim, a game with a complete mathematical theory”, Ann. of Math. (2) 3:1-4
(1901/02), 35–39. MR Zbl

[2] E. Duchêne and M. Rigo, “Invariant games”, Theoret. Comput. Sci. 411:34-36 (2010),
3169–3180. MR Zbl

[3] E. Duchêne, A. S. Fraenkel, R. J. Nowakowski, and M. Rigo, “Extensions and restrictions of
Wythoff’s game preserving its P positions”, J. Combin. Theory Ser. A 117:5 (2010), 545–567.
MR Zbl

[4] A. S. Fraenkel, A. Jaffray, A. Kotzig, and G. Sabidussi, “Modular Nim”, Theoret. Comput.
Sci. 143:2 (1995), 319–333. MR Zbl

[5] T. Khovanova and K. Sarkar, “P-positions in modular extensions to Nim”, Internat. J. Game
Theory 46:2 (2017), 547–561. MR Zbl

[6] G. Nivasch, “More on the Sprague–Grundy function for Wythoff’s game”, pp. 377–410 in
Games of no chance, 3: Papers from the workshop on combinatorial game theory (Banff,
Canada, June 2005), Cambridge University Press, 2009. Zbl

[7] N. Sloane, “a(n) = 2(a(n−1) + (n−1)a(n−2)), a(0) = 1”, A005206 in The on-line ency-
clopedia of integer sequences, 1991.

[8] W. A. Wythoff, “A modification of the game of Nim”, Nieuw Arch. Wiskd., II. Ser. 7 (1906),
199–202. Zbl

tanya@math.mit.edu Massachusetts Institute of Technology, Cambridge, MA,
United States

nsniu@uw.edu University of Washington, Seattle, WA, United States

https://doi.org/10.2307/1967631
http://msp.org/idx/mr/1502275
http://msp.org/idx/zbl/31.0148.01
https://doi.org/10.1016/j.tcs.2010.05.007
http://msp.org/idx/mr/2676861
http://msp.org/idx/zbl/1419.11047
https://doi.org/10.1016/j.jcta.2009.07.010
https://doi.org/10.1016/j.jcta.2009.07.010
http://msp.org/idx/mr/2600974
http://msp.org/idx/zbl/1185.91061
https://doi.org/10.1016/0304-3975(94)00260-P
http://msp.org/idx/mr/1335685
http://msp.org/idx/zbl/0445.90104
https://doi.org/10.1007/s00182-016-0545-7
http://msp.org/idx/mr/3646967
http://msp.org/idx/zbl/1398.91128
http://msp.org/idx/zbl/1192.91061
https://oeis.org/A005206
http://msp.org/idx/zbl/37.0261.03
mailto:tanya@math.mit.edu
mailto:nsniu@uw.edu

	1. Introduction
	2. Wythoff's game
	2.1. Rules of Wythoff's game
	2.2. P-positions of Wythoff's game

	3. Introducing m-modular Wythoff
	3.1. Example: 2-modular Wythoff
	3.2. More examples: m-modular Wythoff for m5

	4. P-positions of m-modular Wythoff
	5. Further directions
	5.1. Grundy numbers for m-modular Wythoff
	5.2. Extensions with finite P-positions
	5.3. Modular variants of other games

	Appendix: Tables of Grundy numbers
	Acknowledgments
	References

