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Lexicographic Wythoff
DAVID KLEIN AND AVIEZRI S. FRAENKEL

An important aspect of the classic game Wythoff is that its P-positions form
a disjoint cover of the positive integers by two sequences. Though general-
izations of Wythoff to K > 2 piles abound, we believe that the generalization
presented here is the first where the P-positions form a disjoint cover of
the positive integers by K > 3 sequences. To achieve this we add a novel
ingredient — we allow pile sizes to increase. This leads, inter alia, to games
with infinitely many subpositions, yet every such game ends with no remaining
tokens, due to a lexicographic order ≺ imposed on the moves.

1. Introduction

The original definition of Wythoff is [14]:

Definition 1. The game is played by two persons. Two piles of counters are
placed on the table, the number of each pile being arbitrary. The players play
alternately and either take from one of the piles an arbitrary number of counters
or from both piles an equal number. The player who takes up the last counter or
counters, wins.

A well known property of Wythoff is that the two sequences of its P-positions
form a disjoint cover of N+. We are interested in extending Wythoff to K >2 piles
while retaining the property that the K sequences form a disjoint cover of N+.

There are many generalizations of Wythoff. For example, see most of the 150
bibliographic items in “Wythoff visions” [4]. A significant effort has been made
to generalize Wythoff to more than two piles, some of the more successful ones
are mentioned below.

In [10], the P-positions for a K -pile game, K ≥ 2, are constructed using
triangular numbers, and the resulting strategy is polynomial-time, whereas most
games are either PSPACE-complete or EXPTIME-complete. However, the
P-positions do not tile N+. There is some resemblance between the proofs of
[10] and the present paper.
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In [3] a generalization of Wythoff to 3 piles is constructed based on the tri-
bonacci word. In this case the P-positions do tile N+. This is further generalized
in [2]. Another 3-pile example where the P-positions tile N+ can be found in [8].
It does not look like any of these games can be extended to K > 3 piles.

A further effort along the lines of [8] appears in [9]. That game has P-positions
that tile N+ using an arbitrarily large number of sequences but it is not strictly a
heap game but rather a vector subtraction game. The order of the heaps matters.
For example, although as heaps (1, 2, 4) and (2, 1, 4) are equivalent, the first is
a P-position but the second isn’t.

A quite different generalization is Moore’s Nimk [11] which is a variation
of Nim in which up to k piles can be reduced. Thus Nim1 is Nim. A tractable
strategy can be given by expressing the pile sizes in binary as in Nim, but
XOR-ing them to the base k + 1. If this “sum” (without carries) is 0, we have a
P-position. Otherwise, it is an N-position, and a move to 0 wins. No polynomial
strategy seems to be known for this game. Another generalization appears in
Fraenkel [7].

In [6] it is shown that a natural generalization of Nim to the case of K > 2 piles
of sizes [a1, a2, . . . , aK ] is to either remove any positive number of tokens from
a single pile, or remove xi tokens from each pile simultaneously, subject to the
conditions: (i) xi > 0 for some i . (ii) xi ≤ ai for all i . (iii) x1⊕x2⊕· · ·⊕xK = 0.
Here ⊕ denotes Nim-sum (also known as addition over GF(2), or XOR). The
player making the last move wins and the opponent loses; see also [4, Section 4.3].
This game leads to two open conjectures regarding how similar the P-positions
are to those of Wythoff; see [13] and [12] for their statement and partial results.
Also in this game the P-positions don’t tile N+.

A special case of the game we define in Section 5 is analyzed in [5], which
itself is a generalization of Wythoff obtained by weakening the constraint of
taking equal numbers from both piles.

In a private communication, Professor Shigeki Akiyama shared a generaliza-
tion similar to ours for the 3 pile case. Though his ruleset is slightly different,
we believe that his P-positions may be identical to ours.

The layout of the paper is as follows. In Section 2 we introduce our general-
ization of Wythoff to K > 2 piles utilizing lexicographic order. We call the new
game Wytlex. In Section 3 we present a recursive construction of the P-positions
of Wytlex and show that, as in the case of classical Wythoff, they form a disjoint
cover of N+. In Section 4 we discuss variable Wytlex with a wider category of
moves and prove that again the P-positions form a disjoint cover of N+. Finally,
in Section 5 we concentrate on 2-pile variable Wytlex and show that not only
do the P-positions always form a disjoint cover of N+, but for every pair of
complementary sequences in a broad class there exists a variable 2-pile Wytlex



LEXICOGRAPHIC WYTHOFF 463

with matching P-positions. Most nonhomogeneous Beatty sequences lie within
the specified class. The generalization of Wythoff which appears in [5] is a
special case of our 2-pile variable Wytlex.

2. K -pile Wytlex

A very natural generalization of Wythoff is:

Definition 2. A two-player game of Wythoff(K) is played on K ≥ 2 piles of
tokens. A legal move is to choose two of the piles and make on them a legal
Wythoff move, and from each of the other piles remove zero or more tokens with
no restriction.

Unfortunately, the 13-th and 14-th P-positions of Wythoff(4) (in order of
increasing total number of tokens) are [27, 52, 81, 104] and [27, 55, 80, 103] and
both contain 27. Since we are interested in a generalization of Wythoff where the
P-positions form a disjoint cover of N+, we instead analyze a “Lexified” version
of the game as follows.

Recall lexicographic order: Given vectors A = [a1, a2, . . . , aK ] and B =

[b1, b2, . . . , bK ], we say that B ≺ A if bi < ai for the first index i at which they
differ. For unordered sets (such as pile sizes in a game) one first arranges the
elements into a vector in nondecreasing order, and then applies lexicographic
ordering on the corresponding vectors.

Definition 3. A two-player game of Wytlex(K) is played on K ≥ 2 piles of tokens.
A legal move is to choose two of the piles and either remove or add any number
of tokens from one of them, or remove or add the same number of tokens from
both of them. From each of the other piles remove or add zero or more tokens
with no restriction. For a move from A to B to be legal, one must have B ≺ A.

A position, A, in Wytlex(K) is specified by giving the sizes of the piles in
nondecreasing order [a1, a2, . . . , aK ] with 0 ≤ a1 ≤ a2 ≤ · · · ≤ aK .

Note. Reducing a pile to size 0 does not change the nature of the game. It is
still a K -pile game, not a (K−1)-pile game. In such a case we may always
move from any nonzero position [0, a2, a3, . . . , aK ] directly to [0, 0, 0, . . . , 0]

by performing a Wythoff move on the first and last piles from [0, aK ] to [0, 0]

and removing all tokens from the other piles.

2.1. Examples. We give some examples of positions and moves of Wytlex(K)

for K = 3:

• [0, 0, 0] has no legal moves, since it is first in lexicographical order.
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• [0, 10, 30] has a legal move to [0, 0, 0] as follows: Make a Wythoff move
on the first two piles to [0, 0] and then remove 30 tokens from the third pile.

• [0, 10, 30] has a legal move to [0, 9, 50] as follows: Make a Wythoff move
on the first and third piles from [0, 30] to [0, 50] (because in Wytlex we
may add tokens) and then remove 1 token from the second pile. Since
[0, 9, 50] ≺ [0, 10, 30] the move is legal.

• [10, 10, 20] has a legal move to [5, 12, 12] as follows: Make a Wythoff
move on the first and second piles adding 2 tokens to each pile. Then remove
15 tokens from the last pile. We thus have 12 tokens in each of the first two
piles and 5 in the third. Representing this in nondecreasing order we have
[5, 12, 12]. Since [5, 12, 12] ≺ [10, 10, 20] the move is legal.

• [1, 2, 3] has no legal move to [0, 0, 0] since no two of the piles have a legal
Wythoff move to [0, 0].

Note that Wytlex(2) is just classical Wythoff. Indeed if tokens are added
to one pile, either the other pile remains unchanged or also has tokens added
to it. In either case the lexicographic order would increase so such moves are
not allowed. That leaves us with the moves of Wythoff(2) which is obviously
identical to Wythoff.

One might wonder if the unnatural permission to increase pile size actually
“adds” anything to the game. Might these moves be reversible? To show that
this is not so, the first 13 P-positions of Wytlex(3) versus those of Wythoff(3)
are shown in Table 1. Only the last row differs. The position [23, 39, 58] is a
P-position in Wythoff(K), but in Wytlex(K) it has a legal move to the previous
P-position [20, 37, 53]: we make a “Lexified” Wythoff move on the first two
piles of [23, 39, 58], adding 14 tokens to each, and remove 38 tokens from the
third pile.

We note that in Wytlex(K) with K > 2 any position T with at least two
nonempty piles has an infinite number of subpositions and there is no upper
bound on the number of moves till the game ends. This is true because if the
two piles have sizes 0 < a ≤ b then we can remove 1 token from a and add
n > 0 tokens to b, leaving the other piles untouched (one of the other piles
becomes the untouched pile for the Wythoff move). Since the result is earlier in
lexicographic order, the move is legal for all n > 0. Even so, due to the constraint
on lexicographic order, Wytlex(K) always ends after a finite number of moves.

We would have preferred analyzing Wythoff(K) instead of Wytlex(K) but as
we have seen, the P-positions of Wythoff(K) do not tile N+. In any case, we
think that the concept of “Lexifying” a takeaway game has value in its own right
and might be usefully applied to other takeaway games.



LEXICOGRAPHIC WYTHOFF 465

Wytlex(3)
n a1 a2 a3

0 0 0 0
1 1 2 3
2 4 7 10
3 5 9 13
4 6 11 16
5 8 15 22
6 12 21 30
7 14 25 36
8 17 29 41
9 18 31 44

10 19 34 49
11 20 37 53
12 23 42 61

Wythoff(3)
n a1 a2 a3

0 0 0 0
1 1 2 3
2 4 7 10
3 5 9 13
4 6 11 16
5 8 15 22
6 12 21 30
7 14 25 36
8 17 29 41
9 18 31 44

10 19 34 49
11 20 37 53
12 23 39 58

Table 1. The first 13 P-positions of Wytlex(3) versus those of of Wythoff(3).

3. P-positions of Wytlex

Definition 4. For any set of numbers S and a number x we define the shifted
set, x + S, to be {x + s | s ∈ S}. For two sets S and T we define S + T = {s + t |

s ∈ S, t ∈ T }.

Definition 5. For a nondecreasing sequence of numbers A = [a1, . . . , aK ] we
define the difference set, D(A), to be {a j −ai | 1 ≤ i < j ≤ K }. Note that D(A)

contains only nonnegative numbers.

Notation. (1) The set of components a1, . . . , aK of the vector A=[a1, . . . , aK ]

is denoted set(A).

(2) To enhance readability we use the following notational convention: Sub-
scripts i, j, k, l denote the index of a pile in a position, while superscripts
n, m denote different positions. For example, Pn

i may denote the size of
the i-th pile of the n-th P-position.

Lemma 6. If B ≺ A and A ∩ B ̸= ∅ then there exists a legal move A → B.

Proof. If A ∩ B ̸= ∅ there exist i, j such that ai = b j . We choose pile i as one
of the two piles for the Wythoff move, leaving it untouched. We add/remove
tokens from the other piles as necessary to move from A to B. Thus there exists
a legal move A → B. □

Lemma 7. If B ≺ A and A ∩ B = ∅ then there exists a legal move A → B if
and only if there exist i, j such that a j − ai ∈ D(B).
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Proof. Since B ∩ A = ∅ the Wythoff component of the legal move must
add/remove the same number T of tokens from both piles. This can happen if
and only if there exist indices i, j, k, l such that ai − T = bk and a j − T = bl ,
which happens if and only if ai − bk = a j − bl if and only if a j − ai = bl − bk .
By switching indices i ↔ j and k ↔ l if necessary, we can assume bk < bl so
bl − bk ∈ D(B) as required. □

Motivation. Due to Lemmas 6 and 7 we want to construct the P-positions
recursively so that the n-th P-position has no piles of the same size as in any of
the previous P-positions and that the differences in the sizes of its piles don’t
match any previous differences. This is achieved in the following construction.

Construction 8. We recursively construct a set of candidate P-positions, Pn

and the sets Xn , Dn as follows:

P0
= [0, 0, . . . , 0] (P0 is of length K )

and then for all n > 0

Xn
=

⋃
0≤m<n

set(P m), Dn
=

⋃
0≤m<n

D(P m)

and then, for a given n, define

Qn
1 = Xn

and then recursively for each 1 ≤ i < K

pn
i = mex{Qn

i }, Qn
i+1 = Qn

i ∪ (pn
i + Dn) = Xn

⋃
j≤i

(pn
j + Dn).

Lemma 9. For all n > 0 we have pn
1 > pn−1

1 and for all 1 ≤ i < K we have
pn

i+1 > pn
i . In particular, Pn lists the pile sizes in the correct order.

Proof. Since Xn
⊃ Xn−1 we have pn

1 ≥ pn−1
1 . Since pn−1

i ∈ Pn−1
⊂ Xn we have

pn
1 ̸= pn−1

1 . So pn
1 > pn−1

1 .
Since Qn

i+1 ⊃ Qn
i we have pn

i+1 ≥ pn
i . Since 0 ∈ D1

⊂ Dn for all n > 0, we
have pn

i = pn
i + 0 ∈ Qn

i+1 and therefore pn
i+1 ̸= pn

i . So pn
i+1 > pn

i . □

Lemma 10. The sequences {pn
1}, {pn

2}, . . . , {pn
K} for n > 0 form a disjoint cover

of the positive integers.

Proof. By the definition of pn
1 = mex{Xn

} it is clear that {Xn
}n>0 is a covering.

For all i , Qn
i ⊃ Qn

1 = Xn so pn
i /∈ Xn . By Lemma 9 pn

i+1 > pn
i . So the cover is

disjoint. □

Lemma 11. For all n > m there is no legal move from Pn to P m.
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Proof. By Lemma 10 no pile in Pn has the same number of tokens as a pile in P m.
So by Lemma 7 a legal move exists only if there exist i, j with pn

i − pn
j ∈ D(P m).

But then from Lemma 9 we have i > j . So pn
i ∈ (pn

j + Dn) ⊂ Qn
i contradicting

pn
i = mex{Qn

i }. □

We denote by P the set of candidate P-positions, {Pn
}n≥0. We denote the

complement of P by N, namely the set of candidate N-positions.

Lemma 12. For every position in N there exists a legal move to some position
in P.

Proof. Let V ∈ N . By Lemma 10 v1 = pn
k for some n, k. If k > 1 then by

Lemma 9 v1 = pn
k > pn

1 so Pn
≺ V . So the move V → Pn leaving v1 unchanged

is legal.
If k = 1 then v1 = pn

1 and there exists a first i such that v j = pn
j for all j < i

and vi ̸= pn
i (since V ̸= Pn). If pn

i < vi then again the move V → Pn is legal.
If vi < pn

i then, since pn
i = mex{Qn

i },

vi ∈ Qn
i = Xn

⋃
j<i

(pn
j + Dn) = Xn

⋃
j<i

(v j + Dn).

If vi ∈ Xn then vi equals some pm
l and since v1 = pn

1 > pm
1 , by Lemma 9 the

move V → P m leaving vi untouched is legal.
Finally, if

vi ∈

⋃
j<i

(v j + Dn),

then vi − v j ∈ D(P m) for some m < n. Since v1 = pn
1 > pm

1 , by Lemma 7 the
move V → P m is legal. □

Theorem 13. The P-positions other than 0 of Wytlex(K) are given recursively
by Construction 8. The corresponding sequences {pn

1}, {pn
2}, . . . , {pn

K} for n > 0
form a disjoint cover of the positive integers.

Proof. By Lemmas 11 and 12 P and N are the P-positions and N-positions of
the game. By Lemma 10 the P-positions other than 0 form a disjoint cover of
the positive integers. □

The complexity of the above recursive algorithm depends on the size of the
sets Qn

i , which in turn depends on the sizes of Xn and Dn . Obviously |Xn
| ≤ nK

and |Dn
| ≤ nK 2. So |Qn

i | ≤ |Qn
K | ≤ nK 3. The recursive construction of Pn thus

requires at most n2K 3 steps. For fixed K this is O(n2). We have tried to find a
much more efficient arithmetic or algebraic representation of the P-positions a’
la those in [5] but have had no success. Using the method of [1] we have shown
that the P-positions of Wytlex(3) can’t be described by any Beatty sequence,
homogeneous or not. The same remains true far into the sequence, even after
ignoring P-positions with total pile size less than 2 million.
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4. Variable K -pile Wytlex

We now extend the above definitions and theorems to a wider class of games
which we call Variable Wytlex(K). As motivation for the extension we first
reformulate the definition of a legal move in Wytlex(K).

Definition 14. A move from A to B in Wytlex(K) is legal if B ≺ A and either
A ∩ B ̸= ∅ or D(A) ∩ D(B) ̸= ∅

By Lemmas 6 and 7 the new definition is equivalent to the old one given in
Definition 3.

Before proceeding to the definition of a variable Wytlex(K) we will also need
the following

Definition 15. We define the open interval (i, j) as the set of integers {k | i <

k < j}. We define similarly the closed and half open intervals [i, j], [i, j), (i, j].

And finally:

Definition 16. A game of Variable Wytlex(K) has the same positions as those of
Wytlex(K). In addition there is given a function f : NK

→ N+. A move from A
to B is legal if B ≺ A and either A∩ B ̸=∅ or D(A)∩(D(B)+[0, f (B))) ̸=∅.

We denote the variable Wytlex(K) defined by f as Wytlex(K , f ).
An example Wytlex(K , f ) for K = 3 is given by f (B) ≡ f ([B1, B2, B3]) ≡

1 + B3 − B2. We list the first few positions B and the values of D(B), f (B)

and D(B) + [0, f (B)). The Legality column specifies whether a move from
A=[2, 4, 6] to B is legal and, if so, at least one reason why. Note that D(A)={2}.
Since the number of possible subpositions is infinite, Table 2 obviously doesn’t
contain all legal moves from A.

B1 B2 B3 D(B) f (B) = 1+B3−B2 D(B)+[0, f (B)) Legality

0 0 0 {0} 1 {0} Illegal
0 0 1 {0,1} 2 {0,1,2} D’s intersect
0 0 2 {0,2} 3 {0,1,2,3,4} D’s intersect
0 1 1 {0,1} 1 {0,1} Illegal
0 1 2 {1} 2 {1,2} D’s intersect
0 2 2 {0,2} 1 {0,2} D’s intersect
1 1 1 {0} 1 {0} Illegal
1 1 2 {0,1} 2 {0,1,2} D’s intersect
1 2 2 {0,1} 1 {0,1} A and B intersect
2 2 2 {0} 1 {0} A and B intersect

Table 2. Variable 3-pile Wytlex.
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Lemma 17. If B ≺ A and A ∩ B = ∅ then there exists a legal move A → B if
and only if there exist i < j such that a j − ai ∈ D(B) + [0, f (B)).

Proof. Immediate from the definition of a legal move. □

Construction 18. We duplicate Construction 8 with a single change. We replace
the definition of Dn with

Dn
=

⋃
0≤m<n

D(P m) + [0, f (P m)).

Theorem 19. The P-positions other than 0 of Wytlex(K , f ) are given recursively
by Construction 18 and form a disjoint cover of the positive integers.

Proof. The corresponding proofs of Lemmas 9–12 and Theorem 13 remain
unchanged after replacing Lemma 7 with Lemma 17. □

5. Variable 2-pile Wytlex and complementary sequences

Theorem 20. The P-positions of Wytlex(2, f ) are given by pn
1 = mex{Xn

} and
pn

2 = pn
1 +

∑n−1
m=0 f (P m).

Proof. pn
1 = mex{Xn

} follows directly from Construction 18 and Theorem 19.
We prove pn

2 = pn
1 +

∑n−1
m=0 f (P m) by induction. Since, by convention, the

empty sum is zero, we have p0
2 = p0

1 + 0 = 0 so P0
= [0, 0] as required. For

n > 0 we have

Dn
=

⋃
0≤m<n

D(P m) + [0, f (P m))

=

⋃
0≤m<n

m−1∑
s=0

f (P s) + [0, f (P m))

=

⋃
0≤m<n

[m−1∑
s=0

f (P s),

m−1∑
s=0

f (P s) + f (P m)

)

=

⋃
0≤m<n

[m−1∑
s=0

f (P s),

m∑
s=0

f (P s)

)

=

[
0,

n−1∑
s=0

f (P s)

)
.
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from Theorem 19, looking back at Construction 8, we have

pn
2 = mex{Qn

2} = mex{Xn
∪ (pn

1 + Dn)}

= mex
{

Xn
∪ pn

1 +

[
0,

n−1∑
s=0

f (P s)

)}

= mex
{

Xn
∪

[
pn

1 , pn
1 +

n−1∑
s=0

f (P s)

)}
.

But Xn contains all the integers less than pn
1 and

[
pn

1 , pn
1 +

∑n−1
s=0 f (P s)

)
contains

the rest of the integers up to pn
1 +

∑n−1
s=0 f (P s), so

pn
2 = pn

1 +

n−1∑
s=0

f (P s)

(the last equality is true because, by induction, all elements of Xn are less than
pn

1 +
∑n−1

s=0 f (P s)). □

Note. If we choose f to be a constant function, f (X) = a for all X with a > 0,
then the P-positions of Wytlex(2, f ) are

pn
1 = mex{X N

}, pn
2 = pn

1 + na

which are the same as the P-positions of the generalization of Wythoff introduced
in [5].

Definition 21. An ordered pair of sequences, ({yn
}n>0, {zn

}n>0) which form a
disjoint cover of N+ is monotonic if y1 < z1 and for all n > 0, zn+1

− yn+1 >

zn
− yn .

It is obvious that y1
= 1 and yn < zn for all n and therefore that yn

=

mex{{yi
}i<n, {zi

}i<n}.
From Theorem 20 we know that the P-positions, ({pn

1}n>0, {pn
2}n>0), other

than [0, 0] of Wytlex(2, f ), form a monotonic disjoint cover of N+. The converse
is also true:

Theorem 22. For every monotonic disjoint cover of N+, ({yn
}n>0, {zn

}n>0) there
exists a function f such that the P-positions other than [0, 0] of Wytlex(2, f ) are
(yn, zn)n>0.

Proof. Define f (0, 0) = z1
− y1

= z1
− 1 > 0. For all n ∈ N+ either n = yi or

n = zi . If n = yi define f (yi , zi ) = (zi+1
− yi+1)−(zi

− yi ). For all other (n, m)

the value of f (n, m) will turn out to be irrelevant, so define f (n, m) to be an
arbitrary positive integer (for example, 1). Then, since ({yn

}, {zn
}) is monotonic,

f defines a function from N2
→ N+ and therefore defines a game Wytlex(2, f ).
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If [an, bn
] are the P-positions other than [0, 0] of Wytlex(2, f ) then we prove

by induction that for all n > 0, an
= yn and bn

= zn .
For the case n = 1 we have a1

= 1 = y1 and b1
= a1

+ f (0)= a1
+z1

−y1
= z1.

Assume by induction that am
= ym and bm

= zm for all m < n. Then

an
= mex{{am

}m<n, {bm
}m<n} = mex{{ym

}m<n, {zm
}m<n} = yn,

and

bn
= an

+

n−1∑
m=0

f (am, bm)

= an
− an−1

+ an−1
+

n−2∑
m=0

f (am, bm) + f (an−1, bn−1)

= an
− an−1

+ bn−1
+ f (an−1, bn−1)

= yn
− yn−1

+ zn−1
+ f (an−1, bn−1)

= yn
− yn−1

+ zn−1
+ ((zn

− yn) − (zn−1
− yn−1))

= zn. □

Corollary 23. In particular, if two Beatty sequences ⌊np+βp⌋n>0, ⌊nq+βq⌋n>0

form a disjoint cover of N+ with q ≥ 3 then they are the P-positions of some
Wytlex(2, f ).

Proof. First we note that ⌊x⌋+⌊y⌋≤⌊x+y⌋≤⌊x⌋+⌊y⌋+1. Since 1/p+1/q =1
we have p < 2. But then

⌊(n+1)q+βq⌋−⌊(n+1)p+βp⌋ = ⌊nq+βq+q⌋−⌊np+βp+p⌋

≥ ⌊nq+βq⌋+⌊q⌋−(⌊np+βp⌋+⌊p⌋+1)

= ⌊nq+βq⌋+⌊np+βp⌋+⌊q⌋−⌊p⌋−1

≥ ⌊nq+βq⌋+⌊np+βp⌋+1.

So the Beatty sequences form a monotonic disjoint cover of N+ and the result
follows immediately from Theorem 22. □

6. Further work

It would seem that many other token taking games that have been discussed
in the literature would also be amenable to “Lexification” which might lead
to interesting games in their own right. For classic Nim, where each move is
restricted to taking tokens from a single pile, “Lexification” would add nothing.
Similarly, we noticed that “Lexification” has no effect on classic 2-pile Wythoff.
But there are many games which allow taking from more than two piles. For
example in [6] it is shown that a natural generalization of Wythoff to the case of
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K > 2 piles of sizes [a1, a2, . . . , aK ] is to either remove any positive number of
tokens from a single pile, or remove xi tokens from each pile simultaneously,
subject to the conditions: (i) xi > 0 for some i . (ii) xi ≤ ai for all i . (iii)
x1 ⊕ x2 ⊕ · · · ⊕ xK = 0. Here ⊕ denotes Nim-sum. This game has some
interesting open conjectures regarding its P-positions. We can “Lexify” this
game by allowing some of the xi to be negative (thus adding tokens) and requiring
that moves be to positions which are earlier in lexicographic order.

Two additional directions of research specific to Wytlex would be: To inves-
tigate Wytlex(2, f ) for f linear, or, more generally, Wytlex(K , f ) for suitable
functions f that produce interesting games; To reduce the time complexity of
calculating the P-positions, for example by an algebraic expression or using an
enumeration system.
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