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Improving upper and lower bounds
of the number of games born by day 4

KOKI SUETSUGU

In combinatorial game theory, the lower and upper bounds of the number of
games born by day 4 have been recognized as 3.0- 102 and 103, respectively.
We improve the lower bound to 1032 and the upper bound to 4.0 - 10'84.

1. Introduction

The main result of this study is improving the upper and lower bounds on the
total number of canonical forms born by day 4 under normal play convention.
We recall the following definitions and theorems for canonical forms.

Definition 1. For any game G,
« aleft option A is a dominated option if another left option B satisfies A < B,
« aright option H is a dominated option if another right option / satisfies
H=>1,
o a left option A is a reversible option if a right option AR of A satisfies
AR <G, and
o a right option H is a reversible option if a left option HY of H satisfies
HE > G.
Theorem 2 (removing dominated options). Let G={A, B, C,... |H,I1,J,...},
and let G’ be obtained from G by removing A. If A is a dominated option, then
G=G
Theorem 3 (bypassing reversible options). Let G={A,B,C,... |H,I1,J,...}
and assume that AR, a right option of A, satisfies AR < G. Let G be obtained
from G by replacing A with all left options of AX. Then G = G”.
These theorems also hold for the set of right options.
Theorem 4. For any game G, there is a game G’ such that G = G’, and G’ has
no dominated options nor reversible options.
We call such a game a canonical form of G.
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Theorem 5. For two games G and H, assume that G = H. Let G' and H' be
canonical forms of G and H, respectively. Then G' and H' are isomorphic.

These are well-known results. For more details of these theorems, see [2].

Games with game tree heights less than or equal to n are called games born by
day n, and the set of all canonical forms born by day » is denoted by G,,. So far,
the total number of canonical forms born by day 0, 1, 2, 3 have been recognized
as 1, 4,22, 1474, respectively. Meanwhile, the total number of canonical forms
born by day 4 is vast, and only wide lower and upper bounds 3 - 10'? and 10**
are known. Improving these upper and lower bounds was discussed as an open
problem in [2] and [1] and has created much attention. In this study, we used
algebraic properties and programming to improve the upper and lower bounds
and obtained a new upper bound, 4.0 - 10'®*, and a new lower bound, 10?82,

1.1. Early results. Early results of counting the number of games are summa-
rized as a note in [2, Chapter 3, Section 1]. According to the note, the total
number of canonical forms born by day 3 and the total numbers of dicotic games
born by day 4, reduced games born by day 4, and hereditarily transitive games
born by day 4 are known, whereas the total number of canonical forms born
by day 4 is unknown. As indicated in the note, upper and lower bounds of
general |G, | were obtained in [3]. The upper bound is given in the following
three forms, with the lower forms having more complicated inequalities but
stricter upper bounds:

|Gg1] <2151 +1G,,
Gupil <16y +2'%" +2,
Gt | < 1Gul + (1Gu-11* + 316Gy ] +2)21 7201,

Substituting |G3| = 1474 and |G, | = 22 into the third equation and examining
the values specifically, we obtain

|G4| S 1474+ (222 + % +2)21474—2-22 < 103 . 100.3011-1430 < 10434.

The lower bound is given in the following two forms, with the lower form
having a more complicated inequality but a stricter lower bound:

1
1Gpi1| > 2§|G’n|/|6n—1"

G| = (8]Gy—1| —4) @172/ @EI=h ),
Substituting |Gs3| = 1474 and |G, | = 22 into the second equation, we obtain

|G4| > (8-22 —4) - QU4T4=2/@2=D _ 1y 5 171.10'93% = 3.0.10'2.
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Thus, we have
3.0- 10" < |G| < 1074,

and the gap between the two bounds is vast.

The rest of the paper is organized as follows. Section 2 studies how the number
of antichains can be used for bounding the number of canonical forms. Section 3
studies properties of (o3 for bounding the number of antichains in 3. Using
these properties, Section 4 presents improved upper and lower bounds of |Gy4|.
Section 5 provides a conclusion. In the Appendix, all the elements of 3 used in
this improvement are summarized in tables.

2. Using antichains to bound |G, |

In this study, we improve the upper and lower bounds of |G4| by using the
number of antichains in (3.
First, we prepare the following lemmas. Note that n > g for any game g € G,,.

Lemma 6. Assume thats € G,. If n — 1 < s, then s = n.

Proof. Because n —1 —s < 0, s has a left option st such that s > n — 1. Since
st e G,_;, s =n—1 and this yields that the set of left options of s is {n — 1},
because s is canonical.

Next, assume that s has a right option s® € G,_;. Then n — 1 — s has a left
option n — 1 —s® > 0, which contradicts the fact that n — 1 —s < 0. Thus, the
set of right options of s is the empty set. Thatis,s ={n—1]|}=n. ([

Lemma 7. Assume that n > 1. We also assume that S = {s1, s2, ..., S} is an
antichain of games born by day n. That is, for any i and j, s;, s; € G, and s; Z Y
holds. Then {n | sy, s2, ..., 8}, {s1,82,...,8c | —n}, {n—1]|s1, 82, ..., 8}, and
{s1,52,...,8c| —(n—1)} € G,11 are distinct canonical forms. Moreover, if S, S’
are distinct antichains in G, with S, S" & {{n}, {n — 1}, {—n}, {—n+1}}, then the
four canonical forms obtained for S are pairwise distinct from those obtained
for §'.

Proof. Consider {n — 1 | s1, 2, ..., ¢} € G,41. If this is not a canonical form,
then there is a dominated or reversible option in the left or right options.

First, there is only one left option, n — 1, which is not a dominated option. The
right options also have no dominated option because the set of all right options
is an antichain. Further, the left option n — 1 has no right option; therefore, this
is not a reversible option.

The remaining case is that a right option, s;, is a reversible option. If s; is a
reversible option, then s; has a left option s’ satisfying {n—1s1, 52, ..., s¢} <sF.
However, considering {n — 1 | 51, s2, ..., Sx} — sl.L, this game has a left option
n—1—sk. Because s; is born by day n, s” is born by day n—1. Thus,n—1> sF.
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This yieldsn — 1 —sF >0 and {n — 1 | 51, 52, ..., s} — s} £ 0, which means
{n—1]s1,8,...,85 < sl.L does not happen. Other cases are proved similarly.
Next, let S = {s1,52, ..., s} and " = {s], 5}, ..., 5/} be subsets of G, and
S, 8" & {{n}, {n — 1}, {=n}, {=n+1}}. Then
{n|S],S2,...,Sk}_{si,SQ,...,Sl/|_n} foa
because n — (s}, 55, ...,/ | —n} > 0;
{nlsi,s2,....sx)—{n—11]s1,85,....5} £0,
because n —{n—11s{,55,...,85}>0;
{nlsi,s,....800 = {s1, 85, ....s5, | —(n =1} £0,
because n — {s{, 85, ...,5/ | —(n— 1)} > 0;
{s1,8,...,sc | —n}—{n—=1]s),85,....5} 20,
because —n —{n — 1| s}, s5,...,5} <0;
{SI’SZ’---vsk | _n}_{sivsév"'vs[/ | _(n_l)} zO,
because —n — {s}, 55, ..., s/ | —(n — 1)} < 0. Finally, consider
{(n—11s1,5,....50—{s1,85,....,5/ | —(n—1)}
={n—1|s1,5, ..., +{n—1]—=s], =55, ..., —s}.
LetGi={n—1]s1,52,...,s¢}and Go={s],8),...,5/ | —(n—D}. If s <n—1

for all i, then n — 1 — G, > 0 and G| # G,. Therefore, assume that there
exists s; such that s; £ n — 1. From Lemma 6, if s; > n — 1 then s; = n and
S" = {n}. Thus, s # n — 1. The game G| — G has two left options n — 1 — G,
and G| + (n — 1). Suppose for a contradiction that G; — G, = 0. Then a
right option of G satisfies s, = —(n — 1) and a left option of G, satisfies
s, =n — 1. In addition, since S # {—(n — 1)} and §" # {n — 1}, another right
option of G| satisfies s Z —(n — 1) and another left option of G, satisfies
séz Z n — 1. Then G| — G, has a right option s, — G,. Here, s, +n — 1 Z 0
because s, Z —(n —1) and for any left option s € G,_1 of s, sp — G2 # 0
because s& — s/ = s} — (n — 1) < 0. This contradicts the fact that G; — G, =0
and we obtain {n —1|s1, 52, ..., ¢} # {s], 8%, ..., 8 | =(n =D}

Thus, the forms are distinct. O

Lemma 8. For any integersi > j, {i | j} is a canonical form.

Proof. Obviously, there are no dominated options. Suppose for a contradiction
that the left option i is reversible. In particular i has a right option, so necessarily
i <0 and that right optionisi+1, and hence {i | j} >i+1. However, {i | j} <i+1,
because i — (i +1) <0,j—({+1)<0and {i | j} — (i +2) # 0. We have a
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contradiction, so the left option i is not reversible. An analogous proof shows
that the right option j is not reversible either, so {i | j} is a canonical form. [J

Let a(n) be the number of antichains in G,,.
Theorem 9. Foralln > 2, 4a(n) +2n> —5n —3 < |G,q1] < a(n)

Proof. The upper bound is trivial since both sets of options must be antichains. For
the lower bound, from Lemma 8, we have all games {i | j} with —n < j <i <n,
where i and j are integers. Then we have all canonical forms given by Lemma 7
with S # {i}, so in total we get %(Zn +1D)2n+2)+4@hn)—2n+1)) =
4a(n) +2n* —5n —3. O

In this paper, we establish lower and upper bounds for a(3). Note that if n > 3,
then 2n? —5n —3 > 0 and a(n) is much larger than 2n? — 5n — 3. Thus, we will
use 4a(n) as a lower bound instead of 4a(n) + 2n* — 5n — 3, for simplicity.

3. Division of G3

3.1. Stratification of G3. In this section, to improve upper and lower bounds
of |Gy|, we divide G3 by two methods which have good properties. First, by
using CGSuite (Version 0.7), we found all the elements of G3 and divided them
using Algorithm 1.

S<—G3
i <0
while | S| > 0 do
i <—i+1
Ui <~ O
for all s € S do
if Vi € S (s #£¢) then
Ui =U; U{s}
end if
end for
S« S\U;
end while

Algorithm 1. Algorithm determining stratification of Gs3.

As a result, the elements of G3 are divided into sets U;, Uy, ..., Uss. We call
them a stratification of 3. Each pair of elements in the same set is incomparable
and each element in U; (i > 1) has at least one larger element in U;_;. For
reference, the results for G, using a similar process are shown in Figure 1.
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Uy = {2}
/ \
Uy = {1, 1x}
ANZAN
3 {11«} {110} Us={3, {1 =}, {110}
X X
t T {110, %} Us={1, 1% {1]0,x}}
X
+1 Us = {0, , %2, £1}

\X

\ bxo {0, =1} Us={{. % {0, %] - 1}}

X X

-5 {xI=1} {0]-1) Up={=3. {1 =1}, {0] =1}

SN
\/

Figure 1. 22 games born by day 2 and their stratification.

Us = {—1, — 1%}

Uy = {~2)

For (3, the number of elements is enormous, so a schematic is shown in Figure 2.
Elements connected by lines have an order, with the upper element being larger
than the lower element. Elements not directly or indirectly connected to each
other are not comparable.
For disjoint sets A and B, we write A®@ B=AUB. Then G3 =U; ® U, ®
--@Uys. Here, every U, is an antichain by Algorithm 1. The set with the highest
number of elements is U3 with 86 elements. In addition, when 1 < i < 22,
|U;i| < |Uj+1], and when 23 <i <45, |U;| > |U;+1|. Further, by observing the
calculated results, we obtain the following result.

Lemma 10. The stratification is upper and lower symmetric. That is, for any
ue U;, —u € Usg_; holds.
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3 U, = {3}

2% U, = {2, 2%}

Us={3, (211}, {2] 1x}}

Up ={—3.{—1] -2}, {—1x | —2}}

Usg = (=2, =2}

-3 Uss ={=3}

Figure 2. 1474 games born by day 3 and their stratification.

Since this result is obtained by observation, not by algebraic proof, it is not
clear whether it holds for n > 3. If it can be proved in an algebraic way as well,
the result may be extended to the general case.

Next, for each i, we constructed bipartite graph G; = (V| @ V,, E) as follows:

(1) Let |Vi| = |U;| and | V2| = |U;41], and let vy ; be the vertex corresponding
to s; € U;, and vy the vertex corresponding to #; € Uj 1.

(2) For any s; € U;, ty € Ujyy, if s; > 1 then (v, var) € E, and otherwise,
(vij,v) € E.

As an example, Figure 3 shows G3. Here, we examined the maximum matching
of each G; and obtained the following result.

Lemma 11. Let M(G) be the number of elements of a maximum matching of
graph G. Then M(G;) = min(|U; |, |U;1).

That is, any element in the set with a smaller number of elements is always
included in the maximum matching.
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3 211} {2| 1*}

AN

Irs {200 1) {2[{1*}} {2]{1]0}}
Figure 3. G;.

3.2. Chain division of G3. Next, we divide 3 by another way.

Definition 12. S=T718 1>, ®---® T, is a chain divisionof Sby Ty, T», ..., T,
if for any i, every s, € T; (s # t) satisfies s >t or s < 1.

For example, Figure 4 shows a chain division of G, by T}, T,, T3, and Tj.

Next, we consider the chain division of 3. We regard every element in G3
as a vertex and the order of elements as edges. Here, we consider deleting all
edges except for the matching obtained from Lemma 11. Then, from every
element in Uy, Us, ..., Uy, or Usy, one can reach an element in Up3 through
some edges. Further, from Lemma 10, there is an upper and lower symmetry,
and therefore, from every element in Upy, Uss, . .., Uss, and Uys, one can also
reach an element in U,3 through corresponding edges. Thus, there exists as many
chains as elements in Ups.

Theorem 13. There is a chain division of G3 by 86 sets.

We call the sets Ty, T, ..., Tge.

We calculated using programming and obtained a chain division. We also
obtained the following result using the pigeonhole principle and the fact that U3
has 86 elements.

Lemma 14. The antichain in Gz with the largest number of elements has 86
elements.

4. Improving upper and lower bounds of |Gy4|

4.1. Improving the lower bound. From Theorem 9 and Lemma 14, we immedi-
ately obtain the following result.

Corollary 15. 4.28 =288 < |Gy

Since 2> 103, we have 10%0* < 288 < |G| and have succeeded in significantly
improving the previously known lower bound 3 - 102,

4.2. Further improvement of the lower bound. This result can be improved by
scrutinizing the number of antichains. For any element u in Uy, we checked the
number of elements that are smaller than u and included in U,3. Then there are
9, 25, 33, 14 elements which have 2, 3, 4, 5 smaller elements in U,3, respectively.
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T,

/
/

3 T« {110}

1 T {110, %}
3 /
0 * *2 +1
\ T
¢><¢* {0, | —1}

-3 xI-1 {0]-1

AN

Figure 4. Chain division of games born by day 2.

Therefore, the number of antichains which have one element from U, and some
(possibly 0 as well) elements from Uaz is 9- 284 +25.283 41 33.282 1 14.281 =
(9-8+25-4+33-2+414)281 =252.281

From Lemma 10, Uy, and U,4 have a sign-reversed relationship of elements,
and for every element in Ujs, its inverse is also in Ujyz. Therefore, the number
of antichains with one element from U,4 and some (possibly 0 as well) elements
from U,j is the same.

We also consider the number of antichains which have two elements from U,
and some (possibly 0 as well) elements from U,3. It is at least %(9 -8)-282 4+
9.25.281 4+ 1(25.24).280+9.33.28049.14.27 1 25.33.277 425 14.
278+ 1(33-32)-278 43314277 + 1(14 - 13) - 27°. By calculating, this is
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(2304 + 7200 + 4800 + 4752 + 1008 + 6600 + 1400 + 2112 4+ 924 +91) - 276 =
31191 -27°.

We can also use upper and lower symmetry. Therefore, calculating the total
number obtained so far yields 286 +2.252.28! +2.31191.27 =39767-277 >
215.277 =292 Thus, the following holds.

Corollary 16. 4.292 = 2% < |Gyl
Thus, 10282 < |Gy.

4.3. Improving the upper bound. Next, we consider the upper bound. In a
canonical form, the sets of left and right options are both antichains. Therefore,
by using chain division, the following lemma holds.

Lemma 17. For any game G € Gy, let the set of games in left options of G be
S={s1,52,...,8m). Then, foranyi, j (i # j),ifs; € Ty, sj € Ty then x # y.
This is also true for the set of games in right options.

Proof. If s; € Ty, sj € Ty, and x =y, then s; < s; or s; > s; holds, which is a
contradiction. O

From this lemma, the following holds.
Lemmal8. aQB)<(Ti|+1)x(Ta|+1)x---x(Tg| + 1).

Proof. In any antichains in (3, there is at most one element in |7;| for each
1 <i<86.Thus,aB) <(|T1|+1)x(|Ta|+1)x---x (Tl + 1). O

The square of this upper bound on a(3) equals about 3.7979 x 10%°. From
Theorem 9, we have the following result.

Corollary 19. |G4| < 3.8-10%02,

4.4. Further improvement of the upper bound. We also consider the further
improvement of this upper bound. For each u € T;, count how many elements
in T; (i < j) are incomparable to u, and let #; ; be the maximum of all these
numbers. That is, #; ; = max(|{t' € Tj | t £ t'}]);er;. In addition, let S; =
|Ti| % (tiiv1+1) X (tii42+1) x--- X (ti.86 +1). Then S; is an upper bound
of the number of antichains that do not include any elements in 7} (k < i) and
include an element in 7;. Therefore, |G4| < (Z?il S + 1)2.

By calculating this, we obtained the following corollary. The values of S; are
shown in Table 1. Here, (|T3|+1) x (|To|+1) x - - - x (| Tge| +1) < 1.0-10°! < .
Since 300, Si < (1Tl + 1) % (|Tieg1] +1) x -+ x (|Tsg| + 1), we have |Gy| <
(X7, Si+10°1)° < 4.0- 1084

Corollary 20. |G4| < 4.0- 1084,

Therefore, from Corollaries 16 and 20, we obtain the following theorem,
significantly improving previously known upper and lower bounds.
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S1 Sz S3 S4 SS SG S7

4.0-10° 1.8-102 1.5-10% 1.5-108 5.5-10% 3.0-10% 3.0.10%

Table 1. Bounds on values of S;.

Theorem 21. 10882 < |Gy| < 4.0-10'84,

5. Conclusion

In this study, we significantly improved the upper and lower bounds of the
number of games born by day 4. We obtained this result by using some algebraic
properties of combinatorial game theory. As the improvement of upper and lower
bounds has long remained unsolved, this result is an important development for
all aspects of the game as an algebraic object and aspects analyzing the game
itself. However, there remains a gap in the width of the upper and lower bounds,
and we will continue trying to improve them. Specifically, we improved the
upper and lower bounds of |G4| by calculating the length of chains, the number
of chains, and the lower bounds of the number of antichains in 3. As this
method can be generalized, by calculating the length of chains, the number of
chains, and the lower bounds of the number of antichains in G,, we also try
improving the upper and lower bounds of |G,,+|. The methods applied on 3
could also be applied on (;, using the divisions of (3, from Figures 1 and 4, thus
yielding bounds for 3. Doing this, we get 208 < |G3]| < 451584. We can see
that the lower bound is much closer to the true value |Gs| = 1474, so it is likely
that our lower bound on |Gy is also closer to the true value than our upper bound.
This research is also related to counting and algorithms, and we will continue
to contribute to combinatorial game theory and related fields by improving our
methods and conducting research on applications of the results obtained.
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Appendix: G3 and its stratification

Tables 2, 3, and 4 show every element in (33 and its stratification. Because
Uss, ..., Uss can be constructed by using upper and lower symmetry, we omit
them. The i-th element from the left in each row belongs 7; in the chain
division we used. An Excel file integrating these tables is available here:
https://sites.google.com/site/kokisuetsugu2/games-born-by-day-3.
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U | 3
U2 2,2*
Us | 2,{2]1}, {2]1%}
Us | 14,11, {2]1, 1x}, {2]]1]%}, {2](1]0}
U 1%2, 1%, {2|%}, 1 4+ Tiny,,, I + Tiny,, {2|1, {1|*}}, {2|1, {1|0}},
> | R21{110), {1]%))
U (L1 31 14 s, (205, (13} {1, T |1, {113 {1, D |1, {1]0}},
1L {1, 215, {10, 211, (110}, {1]%}}, {2111]0, %}
(L x|, (1 (1150, {215, {110}, {11}, (111, {1]%}},
Ur | {11, {1103, {20 1), {1, L |3, {110}, {1, T |1, {1]0}, {1]%}},
{11110, %}, {2] 1 *}, {2]1, {110, x}}, {2] £ 1}
{1, L] A {0S, {13, {20 1, (110}, {111, {110}, {1]}}, {113, {110},
Us | {210}, {1, Tx| 4 s, {1, 1 |5, {110}, {13} {1, 1|1, {1]0, %},
{2] 1 *, {1]x}}, {215, {1]0, x}}, 1 + Tiny,, {2]1, 1}, {2]*}
{1, 1[0}, {1] 1}, {21 4, {110, %3}, {113, {110}, {1]+}}, {11 1 *},
Uy | (210 (IO {1, 1] 4, (1), {1, L £ (LIOY). {111, (110, #}),
{2|T,T*},{l,1*|%,{1|0,*}},1,{1,1*|1,:|:1},{1,1>:<|>x<},
{215, £1}, (2] 1 x, {110, *}}, {2]%, {1]x}}
{1, 10, {1{0}}, {1, {1]0}|O}, {2]0, {110, x}}, (1|3, {110, *}},
(1] 4 5, (1533, {210, 1}, {1, T | 4, 4 s, (1], (1[0}, {1]1, £1},
Uio| {201, 1, {110, 1}, {1, x| 4, {110, %3}, 1], {1, Ix]4, =1},
{1, (1}, {20 4, £10 {1, T | 4, {110, 53}, {1, 1 [, {1]}},
{20%, 1}, {21 1 *, £1}, {2]%, {1]0, *}}
{1, {1]0}|0, {1]0}}, {1]0}, {210, 1 =, {110, x}}, {115, 1}, {1] 1, 1},
{1, 110, 1}, {1, 1| 1, 4 %, {110, %3}, {1] 1, {110, *}}, 3,
Uil 201, 4 %, £13, {1, Tx]0, {110, #}}, {1 3}, {1, T | 1, 13, {1]x,
{210, £1}, {1] 1, {110, #}}, {1, {11}, {1} (1, U |, 1),
{1, 1| 1%, £1}, {1, 1|, {1]0, x}}, {210, %}, {2]*, 1, {1]0, *}},
{2] %2}, {2]*, £1}
{1, {1]0}]0, {10, x}}, {1]0, {1]0}}, {210, %2}, 3, {1] 1, 1 =, {1]0, x}},
{1, {1]0}]0, 4}, {1, 110, 1 =, {1]0, x}}, {1] 1, £1}, 3, {2], 1, £1},
Uy | (1 D101 (L 4 (1 1) (L, (1)), (210, 4 %, 1),
{14, 13 {1, {2 {1, 1[0, ), {1, 1| 4, 45, 13,
{1, {1}, {110, %3}, {210, %, {110, x}}, {1, L |*, 1, {110, *}},
{1, T | %2}, {1, 1% |*, £1}, {2]| £ 1, %2}, {2]*, %2}
{110, {1]0,%}}, {1]0, 1 %}, {210, %, %2}, {F] 1}, {1] %2}, {1, {1]0}, {1[%}|0, %},
{1, {110}O, 1 =, {110, }}, {1] 1, 1 =, £1}, 1, {2]*, =1, 2}, {1,{1]0}|0, =1},
Ui, {Ls] 1,4, {10}, {1]x, 1}, {210, £1,%2}, {3] 1 #},

{1, {1}, 1, {110, %}}, {1, 1 %0, %, {1]0, %}}, {1, 1 %0, 1 *, £1},
{11, {110, *}}, {210, %, £1}, {1, 1= [+, 1, £1}, {1, 1 %0, =2}, {1, {1]*}|*, £1},
{1, T | £ 1,2}, {1, D |, %2}, {2] L}, {1 %}, {2[]0, | — 1}, {2 | *}

Table 2. Elements in U; (1 <i <13).
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(110, 1), (110, 1, {110, %1}, {210, 4 ) {311, 45} A1, (L), 523, (1 (11110, %}, {1, (11030, %2}, {112 1,52}, 4 #, {20%, {0, + = 1}},
{3, (1IO}O}, {1 [, A}, {10, 4 s}, {1, {1]0}0, %}, {210, {0, | — 1}, A, {1, {1]} 1, 4, £ 1}, (1, {10}, {1[}[0, %, {1]0, }},

{1, {10}[0, 1 5, £ 1}, (1], 1, {110, %)}, {200, 5, &1, %2}, {1, 1[0, 5, 1}, {1, 150, 1, %2}, {1]%, 1}, {1, 1 |%, £1, %2}, {1, 1%]0, %, %2},
(L T ) 5 (D)D) L T 110 ] — 1) {1, T | ) ) (204, 1), (2% ), (14 %2), (214, £1)

(5101, {110, 5, 1), (1 1[0, 4 b {3, {11, 1), (1, (11}, 1,20 (1 {110, #10, ). {110, %2}, (1110, | = 1}, {0] 1. 1 #},

(214 %, {0, %] = 13}, {0, {1]0}]0}, {1 |3, %2}, {10, %2}, {1, {1O}]O, %, {1]0, x}}, {210, *, {0, %[ — 1}}. {1] ||}, {1, {110}, {1[}[0, *, &1},
Uss | {1 {15110, 5, {110, %3}, (3, (10}0, 4 s}, {1, %2}, {1, 110, %, =1, %2}, {150, 5}, {1, {110}]0, 1, %2}, {1, 1, £1}, {1, 1k |, {0, | — 1}},
(L AT10), {1110, 5, %20, (1 {10} L, (51 {1, 1210, {0, 5] = 11 A1 {1} Lo (1, Do 4o 1) {1, T, 4, (31 %20,

(L, Lo, 1, (210, § o, 1), {204, {0, #| = 1)), 20, b, 13, {21 4, § ), {110, #] — 1}

(51045}, {110 £ 1,52}, (1, (110}, (11}10, L), (51 1), (5. (L, %2}, (110,54, (11 43 AL (L1}, (0. % = 1), {0, {110}]0, 1 %),
(21101 = 13, M2 o, {1 [, {0, %] — 1}, {110, {0, ] — 13}, {1, (110, %}[0, 5, {110, #}}, {1, 110, %, {0, x| — 1}}, {1] |, 1},

{1, {1030, , 21}, {1, {11}]0, , 1}, {3, {110}, {1[+}0, ), {1] § #}, {1, {110}, {1[+}0, , &1, %2}, {10, %, %2}, {3, {1]0}|0, %2},
(U, 1,523, (1 1| Lo {0, = 11, (1, {110, 5, 520, (1 {10} L. 13 AP {1, {110}10, {0, ] — 11}, (1. {1]}] L %, £1),

(1 Lo | 4 {0, s — T} {1, 110}, (s}, 4, 153, {1, 1[0, ok, =1, (2(0, 4, {0, 5] = 1} {20%, 4. {0, %] = 1]}, {1, Lok [, |, &1},
(L 1l b d o (5100, = 1) (1 4 (1] 4 (204 b 1) (200 = 1, (21— 51 {1, (110310, , %2}

(0,4 10, 1) (510, %2}, {1, (1O}, (11110, 4 s, £1), {4 [ ) (5 (LI L), {110, %, (110, %)), (1] 4, 1), (1, (0, %] = 1)),

({110}, {1[}]0, =}, {1, 1][0] — 1}, 1 %, {1 %0, *, {0, %] — 1}}, (%. {110}]0, {0, %| — 1}}, {1, {1]0, %}|0, *, &1},

(1, {110, {1110, %, (0. ] = 1)), (1] 1%, %2}, {3, (110}10, #}, (1, {114}]0, %, £1, %2}, (5, (1[+}10, ). (L, (110}]0, | #},

(1, {110, {11}, b, 1), {5, (110}, {11310, %, 23, {0, (110110, 2}, {31, %2}, (1, {1]s}] 4 #, {0, ] = D}, {1, {1110, | =), {3, {110}] 4},
A0, {0, 5] = 13}, (1] ) s, 10 (1 ATIO}] 4 {0, ] = T3 AT, {11}, L3, {0110, | = 1), {1, 15 [0, s, {0, %] — 1}, {210, {O] — 1}},
(204 4o, {0, ) = 11, {1, Ll 00 ] = L (1 {110Y, (1131 4 4 5, (L1, {0, ] = 1), {1 4, {0, %] = 1]}, {110, 4 ),

{1, 1] 4, s, 210 {1 T ||| — 1}, {1, l*|—%), {1, {110, %}[0, =, %2}, {1 |*, L}, {1x| | *, {0, =] — 1}}, {1, {1]0}|*, |},

{1, {1]0}]0, %, £1, *2}, {2]*, {x] — 1}}, {2] £ 1, —%), {2|—-1}

(5, {110, %), {0, 1 [0, %2}, (5. (110}, (1110, 4 ), (1, {110}0, %), {11 1 4 %), (110, %, %2}, {31 1), (1, (110}]0, %, (0, %] = 1)},

(L110, (11310, %, %2}, (1, {101 = 1}, {0, %10, 4 5}, (1[5, 4, (0, ] = 1}, {310, (0, | — 11}, {110, 5, 1}, {5, (110}, {11+}]0, %, {0, %] = 1}},
(4 I, %2}, {5, (110110, 5, %2}, {1, (14}]0, %, (0, %] = 1)), (3. {110, %}10, %), {1, {1]0}[O, |, 1), {1, {1]x}l%, L, £1), (5. (114}10. , %2},

(0, (110310, {0, 5 — 1}, (51, (0, 5l — 13}, {11, {0, ] = 11}, {1, (110, 4 5, 1}, {0, (110}] 1), (O, 1}, {114, {0, — 1)},

Uts | (5145 (5 (10N b 00 1 = 1), (1 {114 4 ) (1111, {0, %] = 1), {1, {110}, (114}10. 4 #, {0, %] = D)} {1, 1% 10, (0] = 1)},

(214, 01 = 133, {1, {110}, (11}, 4 (0,5 = 13}, {1, (110, (11} 4, d s, 1), (5 (1114, (0, ] = 1), (L [l = 1,

(L] b b (1 L] b d o {0, = 1) (L (110} | = 1, (1, (110}, {11} = 53, (1, {110, %310, b ), {5, (110}, {1}, L)

{1510, § 5, {0, | — 1}}, {1, {110, s} [, L}, {1, {110, %}]0, s, £1, %2}, {1, Tx |, {| = 1}}, {1, 1 %[ £1, —%), {1, s | =1}, {1, {1]0} |*, |, £1},
(L1101 = 1, (1 {10} 4, 4 #), (214, (¥ = 1)), (21— 3. {0, ¥ = D)}, 2] = L, £1)

[, {110, %, 523, {0, 10, %2}, (5, (1110, 4 s, (4,1 5 {110, %310, 5}, ({10}, (1110, 4 s, {11, 4}, (0,4 5l 1), (1, {1100, | , {0, %] — 1)},
(5 (L1010, s, %2}, {1[10] = 1}, {, (11+}10, ), (3, (110}, (1)1, 4, (0, %] = 1)}, {0, 1 %[0, (0, #| — 1)}, (110, %, £1, %2},

(%, {110}]0, *, {0, *| — 1}}, {O]*, %2}, (%, {110, %310, *, %2}, {1, {1]0, *}|0, , {0, x| — 1}}, (%\O. *}, (%. {110}]0, | =}, (%, {1}, 1),

(55 (1110, 3, {0, ) = 1)) (0, {110} 4, {0, ] = 1J}. {1 b, (0, ] = 1} {31 4, {0, = 1)), {1, {110, 4 %, (0, %] = 1)),

(L1011}, L, 40, (110M0, 5, (1151 = 1 {1 14 b, (5145 40, %] = 1}, {1, (1131 b o, £, ({110), {1110, %, {0, %] — 1)),

Uio | {1, (110}, {11510, {OF = 131}, {1, T |, {01 = 1}, {2HO] — 13, ol = T}, {1, {11}, s {0, ) = T}, {1 {10} 4, o, 1],

(U114 3 0, 5] = T (L by el = DY), (1] 4 b, (0, = 1), (1, (110Y, (113 4, d s, 40, 5 = T, (5, (110} | = 1), (1, (11 — 3,
(110, 4 ), {3, (10} {11 4o 4 3. (50 (110, (1110, 4, (0, %] = D} {1, {110, %}, L 1}, {1, {110, %[0, | %, £1),

(1, {110, {11, (¢l = 1, (1, {110}, {1} £ 1, =30, (1, (110}, {1} = 1), £, (10}, 43, 43, (1101 = 1), {1, {110, 5] 4, 4 ),

(L Ui o (el = 1) (1 D) = 340, ] = 1) (1, D = L), (L]0, (01 = 1)), (1, (10} = 3}, (1] = ), 20 = 3, (+1 = 1)},

(1, {110}, b, {0, % = 1)}, {21 = 1, (0, %] = 1}, {21{0] = 1}, =5}

(5 {110, %, (0] = 1), (0, %] 43 {5 (L1310, 4, {0, = D) {4, 110, ), {3, (1110, 453, (1144 ), (1, (L), 4,

{1 {10} §. { *, {0, %] — 1}}, {0, {1]0}]0, *, 2}, {1, {1]0}|0, {O] — 1}}, {*, 1, {10, %}|0, %}, (%, {110}, {1}, (x| — 1}}, {0, [0, {0, %[ — 1}},
(110, %, {0, %] = 11}, {1, (110}10, %, {0, %] = 1}, 42, (4, 1 s {110, %3]0, %, 2}, {3, {110, %}10, %, {0, %] = 1}}, {510, , %2}, {3, {110, #}10, 4 #},
(50 4110 5 L (35 (L, b 0, 5 = 1, (U110}, (1}, b0, 5] = T}, (O, {0, ] = 1Y), {41 4 s 0, 5 = 1)), (1, {11310, (0] — 1)},
(1 (L0}, 1 (0, 4, {110, 4310, ), (511 | = 1), {4, {110}10, b ), {0, 1 %] 4, (0, ] = 1)), (1, (110, )] b b, £1),

({110}, (1110, § %, {0, [ = 1)}, (3, {110}, (1110, {0 = D}, {1, 1 [{0] = 1), ] = 1}, {21{0] = 1}, —5. (] = 1)},

(L AL 4 4o {0, = 1), {3, (LI0) o 4 s (11101 = 1), (| b, (sl = 13, {52 (110, (11631 4 Lo, (0, %] = 1)),

(1, {110}, {111 4, (01 = 13}, €0, (1O} 5] = 1}, {1, (11} £ 1, =3}, (110, 4, 1) {5, (1 4y 4 #), (5, (11010, 4, {0, ] — 1)),

(L, 4y 1), (L A110, 510, 4%, (0, %] = 11}, (L, (11}, (= 1)), (5, (110}, (L)) = 3, (L, (L)1 = 1) {3, (110}, 4, (0, %] = 1)),

(51101 = 13, {1, {110, s3] = 53 {1, {110}, (111 4, (] = 1), (1, (110}, {1} = 5, 40, ] = DY, (1 {110}, (11| = 1, 1), {1 b, (0] = 1)},
(1110} = 1), L] = 5, {0l = 1} AL, Tl = . (= 1) (1, {110, ), 4o (0] = 1), {1 Lo = 1, {0, ] = D), {1, L {01 = 1), =3},
G {110, 5, 23, ({110}, (L)1 b, & s, {1 (10} £ 1, = 5), {1 [ = D {1 (10}, £l = D), 21 = 1, f = D), (21 = 1, {01 = 1))

(s, b, b (0, 5l = 13, o, (LD, LY, (5, {11110, o, (0, 5] = 13}, {1, 1 %10, 5, 52}, G, (110, %), (11— 53, {4, 1, (110, )], V),
(3, 4110} b J %, {0, ] = 13}, {0, (10}, #, {0, %] = 1}}, {1, {1[0}] }, (O] = 1}}, {0, , {110, 5}]0, *}, {3, (110} ], {| — 1}},

G, {11310, 5, {0, 5] = 1}, {110, 4 5, {0, 5 — 1}}, (4, {10110, J 5, {0, | — 1}}, {0, {1]0}]0, | }, {0, 1, {10, }10, x, %2},

{11 5%, {110, %310, 5, {0, | — 1}, {510, %, {0, 5 = 11}, {310, 4 %, {5 1%, 43, (5, {13, Gl = 11, 44, {110}, 4, {0, ] — 13},

{01 5, {0, 5 = 1)}, (4 1101 = 1), {5, {11310, (0] — 13}, {0, {10}, 4}, {0, 1 5[0, %}, 0, 1| | = 1}, (1, 4, {110, %}[0, | ),

(0,51 4, 10, ] = 1}, (5, €110, 3] 4 &), {110}, (11 4, d 5, {0, % = 1)), (5, (110}, (11} 4, {01 = 1)}, {1, 1 [{0] = 1}, =4, (] — 1)},

(21 = 1, {01 = 1}, { = D} {1, {11} 4, (01 — 13, {1, {110} 4, 4 #), ({110}, {1110, {0 — 1)}, {15 {0 — 1}, {[ — 1)},

(35 AL b b (0, ] = 13, (1, (110}, {1)[{0] = 1), (] = 1}), ({110}, {1 hedx, (¢l — 1), (3, (1} = 5, (114, & 1), {0, (11631 4, § %),
(55 €110, 510, 4 5, {0, 5 = 1}, (11, 4, {0, ] = 13, {1, (110, 5}10, 0] — 13}, {1, (11}l b, =] = 13, {3, {110}, {11} — 1),

{1, {110, 5} = 13, {5, {110, %}, J, {0, %] = 1}, {5, {110}0, {0] = 1}}, {1, {110, %} £ 1, =}, {3, {110}, {11} 4 =, (x| — 1}},

(1, {1} = 5, 40, = DY, {1, {1} — 1, 1), {1 0] — 1), =3}, (1, {110} — 1, 1}, {3, {110}, {1}+}] — 3, {0, #| — 1)},

(1, {110}, {1} = 5, el = 11, A1, (110, 51 4, § %, {0, 5] = 13}, {1, {110}, {1x}] = 1, {0, | — 1}}, {1, {110}, {1]}|{0] — 1}, — 3},

(e, 1, 1110, %310, 5, 523, ({110}, {11} = 3}, {3, {10} = 33, {1 [ = 1, {0, 5 — 1)}, (1, {10} 4, bl = DY {1, L | = 1, { = 1)},
{1,1%]—1,{0] — 1)),{1*|—%. {x] — 13} {1, (1|())\—%, {0, =] — 13}, {1, {110, s} |, (] — 1}}, {*, 110, =}, {2] — 1%}

Uy

Table 3. Elements in U; (14 <i <21).
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(s, (U 4o, 10,1 = ), O, {1d b, b, {0, 5l = 13, 1 %, {11310, {01 = 13, {1, 1 %10, 5, {0, = 1}, {, {1} 4, 4 #), (11, =3},
{6, 1 (110, 3, L (3, 4110, 53 4, 4%, {0, %] = 11, {0, 1 %, {110, %310, 5, {0, | — 13}, {1, {1O}{O] — 1}, {x] — 1}},{0, , {110, }{0, *, %2},
(%. {10} 4 *, {x] — 1}}, {, {15310, | %, {0, | — 1}}, {1]0, {O] — 1}}, {0, {1]0}|0, | . {0, x| — 1}}, {0, {1]10}] |, | %}, {0, 1 =, {110, *}]0, | =},
{6, 1, (110, %310, %, {0, | = 11}, (510, 4 #, {0, %1 = 1}, {31 4o 4 sh, {1, 1 b, L), (5, (110, %), (%] = 1)), {0, {110}, 1, (0, *| — 1}}, Tiny;,
{1, {11010, {01 — 11}, {3, {11} 4, {01 = 13}, {0, 4 %, {110, |, 13, {0, 1 %10, %, %2}, {4 5, {1, {x] — 11}, {1, 1 %10, L %}, {0, | % | — 1},
{34110, 53 = 5}, (L0}, (113 4, {x] = 133, {5, (110}, {130 = 1}, =33, {1, Lse| = 1, {0 = 1}, {] = 1}}, {21 — 1, — 1),

{1, (LB O = 1), =3}, (1 (L0} 4, &, {0, ] = 11}, ({110}, {15}] ¥, (O] = 1}}, {15 [{O] = 1}, =5, (e = L}, {5, (11}l %, (sl = 13),

Una | {1 ALBHHOL = 1, el = 11, 00, (110}, ] = 1}, 45, (1B} = 500, 5l = 1, (114, 4, {0, 5 = 1)), (1, 4, 110,59 4, 4 ),

(14 %, (110, %310, 4, {0, %] — 1Y, (1, 4o {0, 5 — 11 {3, (110, %310, 0] — 1}, {1, (113 — . () — D} {4, (1)) = 1), (1, 1) — 1),

{4, 1, (110, 6, 4, 10, ] = 1), (5, (110} 4, {01 = 1}, (1, {110, )] = 3, {0, %] — 13}, {5, {110}, {1x}{0] — 1}, {+| — 1)},

(1, {1 = 1,0, 5 = 1)), (1, {110, 5] — 1, 1), (1] = 1, (0] = 1)}, (3, {110} — 1}, ({110}, {1]}] — 5, (0, %] — 1},

(3, 4110, (11} = 5, (] = 1}, {1, (110, 53] 4, {0 = 13}, {1, (1O} — 1, {0, %] = 1}}, {1, {110}, (1[+}{0] = 1}, =5, =] — 1}),

{6, 1 (110, %310, 4 ), {1, {153 = 33, {4, {110} = 33, {3, (110}, (1)) = 1, 40, sl — 11}, {1, {110, )| 4 #, { = 1}),

(1, {110}, {11} = 1, fl = D}, {1, {110}, {11} = 1, {0] = 1), {1 | = 1, f = D}, {3, (1101 = 3, {0, | — 1)}, (1], ] — 1}),

{0, *, %2]0, *}, {1, x| — 1}, {{1]0}, {1|*}| — 1}, {1, {1|O}|{O] — 1),—%).{*, 110, %, %2}, {1, {1]0}| —%,(*\ —1}}

(4, (1) = 540, %] = 1), G, (1) 4 b, (0,0 = 1), (1, (11614, {01 = 113, {0, 1 10, #, {0, ] = 1}, {, 4, {110, ] 4§ #}, £,
(0, 5, {110, 5}, 43, {51 4o b, (0, 5] = 13}, 20, 4, {110, ), (5, (1OH{O] — 1}, (] — 13}, £(0, %, {110, ), {4, {1[0}] 4 *, x| — 1)},

L, (11110, {01 = 13}, {11 4, {01 = 13}, (0, {110}, {0, {110}] — £}, (0, 1 %), £k, 1, {110, 5}, {1, 1 %10, § 5, {0, %] = 1}, (4, 1 ), £(x, 1),
(31, £ = 1), 40, {110} 4, J {0, %] = 1)}, 0, {1, 15, {110, 5110, {01 — 11}, {3, (1} {01 — 1}, =3}, {0, 1 %, {110, )|, |, {0, %] = 1}},

10, s, 4), (4, 1, {110, s, (il = 1)), G, 110, 4 ), G, {1D), (1, 4 5, {110, %) — ), (1, (11D, (5, {110), (1, (1[0}, {1]%)),
(1, 1), {1, {1153 = 1, {01 = 13}, (1, {1101, =10}, {11, (5, {110}, {115, 13, {110, %} | %, (| — 1}},

(1, {10 = 1), =5, (] = 1)}, {0, {110}, (sl = 1}, {5, {1} = 1, {0, | — 1}), (1] = 5, {0, | = 1)}, {0, 4, {110, %}] 4, 4 *},

G, 1 1110, %310, o, {0, ] = 11, {1, 4 b, 4, {0, 5] = 1), {310, {01 = 1), £, (1)), {4, {1} — 1), (1, 1), (4, 4 %, {1]0, =),
{34110, 53] 4, {01 = 1}, (5, {110, %), {3, (13Ol — 1}, {x] = 1}, (1, {11%h), {3, {110, %3 — 1}, {3, {110}, {1} = 1, {0] — 1}},

(1, (10} = 1, ({110}, {1} {01 = 1}, =3}, ({110}, {1]s}] — 3, ] = 1}}, {1, {110, #}[{0] = 1), ] = 1}, (1, {110, %)),

(1, {10}{0] = 1}, =3, L = 1}, {0, 5, {110, %310, 4 ), {, {11} — 5}, (4, {110} = 3, {0, | = 13}, {3, {110}, (1]} — 1, { — D)},

(1, {110, %3] = 4, b = DL (1, {10} = 1, (] = 13}, (1, (10D, (15| — 1, {0] = 1}, (x| = 1}}, (3, {110} — 1, {0, | — 1},

(L, B = 1), %2, {1, (110}, {113 = L, ({110}, {11} = 1,40, | = L}, {1, {110, =} {0l — 1}, =3}, {x, 110, %, {0, %] — 1}},

(3, (110} = L, (%] = 1)), &1, %, %3, £(1%), £2

Table 4. Elements in U; (22 <i <23).
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