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Keeping your distance is hard
KYLE BURKE, SILVIA HEUBACH,

MELISSA A. HUGGAN AND SVENJA HUNTEMANN

We study the computational complexity of distance games, a class of combi-
natorial games played on graphs. A move consists of placing a colored token
on an unoccupied vertex subject to it not being at certain distances to already
occupied vertices. The last player to move wins. Well-known examples of
distance games are NODE-KAYLES, SNORT, and COL, whose complexities
were shown to be PSPACE-hard. We show that many more distance games are
also PSPACE-hard.

1. Introduction

We begin by introducing distance games and defining specific combinatorial
games needed in the remainder of the paper, then give an introduction to compu-
tational complexity and explain our proof strategy, as well as a table summarizing
our results. At the end of the section we will give an overview of the organization
of the paper.

Distance games. Huntemann and Nowakowski introduced distance games [9];
they are part of a larger class of combinatorial games called placement games
studied in [3] and [6]. Distance games are played by placing game pieces (tokens)
on empty vertices of a graph (= game board) according to rules that forbid game
pieces to be placed at certain distances to already occupied vertices. The distance
between two game pieces is defined as the graph distance between the respective
vertices they occupy. We make the rules of the game precise in the following
definition.
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Figure 1. A position in a graph distance game. A red piece has been
placed on vertex five, while all other vertices do not yet have a piece
placed on them.

Definition 1.1. GRAPHDISTANCE(D, S) is the combinatorial game played on
an arbitrary graph G = (V, E), where S (stands for “same”) and D (stands for
“different”) are subsets of {1, 2, . . . , n}, where n = |V |. Each graph vertex may
be empty or contain a blue or red piece. Two players, Blue and Red, take their
turn by placing a single piece of their color on an empty vertex according to
these rules:

(1) A blue piece and a red piece are not allowed to have distance d ∈ D.

(2) Two pieces of the same color are not allowed to have distance s ∈ S.

Pieces may neither be moved to another vertex nor be removed once placed. The
game ends when one player can no longer place a piece of their color.

For ease of readability, we will sometimes refer to the action of placing a
colored piece on an unoccupied vertex as “coloring the vertex” and we will call
an unoccupied vertex “uncolored”. Also note that, since we play on a finite
graph of n vertices, the diameter of the graph is at most n−1, so S and D can be
restricted to be finite without any loss of generality.

By definition, GRAPHDISTANCE(D, S) is a partizan combinatorial game,
that is, the two players have different moves available. This results from the
fact that their game pieces have different colors. For example, in the game
GRAPHDISTANCE({1},∅) played from the position shown in Figure 1, Blue
cannot play on vertices 2 or 6, while Red is allowed to play on all vertices.

On the other hand, if D = S, then the color of the game pieces becomes
irrelevant, allowing both players to play on the same set of vertices (though
with different colored pieces). Consider again the position shown in Figure 1.
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If D = S = {1}, then Blue cannot play on vertices 2 or 6 because D = {1},
while Red cannot play on these vertices because S = {1}. Thus, when D = S,
GRAPHDISTANCE(D, S) is equivalent to an impartial combinatorial game, one
where both players can make the same moves and the pieces have only one color.

The games listed below are well-known combinatorial games that will play
a key role in the derivation of the complexity of distance games. We define
them here for the reader unfamiliar with these games and express them as graph
distance games.

Definition 1.2. In the game of NODE-KAYLES, players alternate placing tokens
of a common color on empty vertices, all of whose neighbors are also empty.
The game ends when no tokens can be placed.

Thus the impartial game NODE-KAYLES corresponds to GRAPHDISTANCE-
({1}, {1}).

Definition 1.3. The game BIGRAPH-NODE-KAYLES is a partizan version of
NODE-KAYLES played on a bipartite graph with vertex partition V = VB ∪ VR ,
with the additional restriction that Blue can only play on VB and Red can only
play on VR .

Even though the game pieces in BIGRAPH-NODE-KAYLES have the same
color, the fact that all vertices within VB and VR are at even distances, and
those from different vertex sets are at odd distances, BIGRAPH-NODE-KAYLES

corresponds to GRAPHDISTANCE(D, S), where S is the set of odd integers and
D = {1} ∪ {2, 4, 6, . . . }, if at least one vertex is colored. (If no vertices are
colored initially, then there is no way to enforce that the first player plays on the
appropriate side of the bipartite graph.)

Definition 1.4. In the partizan games of SNORT and COL, players place red and
blue tokens on vertices of a graph on any empty vertex with the restriction that
adjacent vertices cannot have tokens of different or the same color, respectively.
The game ends when no tokens can be placed.

Thus SNORT is the game GRAPHDISTANCE({1},∅) and COL is the game
GRAPHDISTANCE(∅, {1}). More information, such as simple winning strategies
and other properties of NODE-KAYLES, SNORT, and COL can be found in [1]
and [12].

In our discussion about the complexity of determining winnability, we need to
take into account all the possible positions of the game, together with the rules
for each player. We will refer to this larger structure as a ruleset. Since S and D
completely determine the available moves, the triple (Q, S, D), where Q is the
set of positions of the game, specifies the ruleset.
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Computational complexity of games. Computational complexity can be applied
to combinatorial games to measure how hard it is to determine whether the
next player has a winning strategy. We will give a short introduction to the
needed concepts in this section. Readers interested further in the application of
computational complexity to combinatorial games should reference [5].

An algorithm is considered efficient if the running time can be expressed as a
polynomial of the size of the input (i.e., the game to be analyzed). The computa-
tional class P is the set of all computational problems with these polynomial-time
solutions. EXPTIME consists of all problems that can be solved in exponential
time or less. Problems that require an exponential amount of time make up the
class EXPTIME-hard.

For the ruleset of any combinatorial game, the problem to be answered is
always: “For a given position, G, that has some or no colored vertices, does Blue,
moving next, have a winning strategy?” Note that this does not mean we need to
find the winning strategy, just determine whether one exists. For some rulesets,
such as NIM [2], this problem is in P. Some other games, such as a version of
CHESS generalized to an n × n board, are instead EXPTIME-hard [8], meaning
the problems are intractable.

PSPACE is the set of decision problems that can be solved using a polynomial
amount of storage with no restrictions on time. It is known that P ⊆ PSPACE ⊆

EXPTIME and P ⊊ EXPTIME, but it is not known whether either of the first
two inclusions are strict or not [10]. Many decision problems are PSPACE-hard,
meaning they are at least as hard as the most difficult problems in PSPACE. A
decision problem is PSPACE-complete if it is both PSPACE-hard and in PSPACE.

The input for the decision problem is the triple (Q, S, D) which specifies the
ruleset. Since we play on a graph with n vertices, each position has at most n
move options for the current player. Furthermore, since each move places a token
on an unoccupied vertex, the game ends in at most n moves, so the game tree for
a given position has height at most n. To analyze the decision tree, we only need
to keep track of the options of any given position that is being analyzed. So at
worst we need to store n positions (maximal length of the game) with at most n
options each, so the storage space is of order n2. Therefore, distance games on
graphs are at worst in PSPACE. As a result, any PSPACE-hard distance game is
also PSPACE-complete: it is among the hardest problems included in PSPACE.

A ruleset T ′ can be shown to be PSPACE-hard with the help of another ruleset,
say T , already known to be PSPACE-hard. T ′ is PSPACE-hard if a function f
exists where

• f : positions(T ) → positions(T ′),

• f can be computed in polynomial time, and
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• f preserves winnability (e.g., for t ∈ positions(T ), Blue has a winning move
going next on f (t) exactly when Blue has a winning move going next on t)
[5].

Such a function f is called a reduction (from T to T ′). Finding reductions
from PSPACE-hard games to new games is common practice for showing the
PSPACE-hardness of these new games. Sometimes these reductions have a
stronger property: each move from any position t ∈ T corresponds to exactly
one move in f (t), that is, the game trees have exactly the same shape. Due to
this injective homomorphism, we can refer to these reductions as play-for-play
reductions.

There are two different approaches to complexity of combinatorial games: one
can consider only starting positions or consider all positions that occur during
play. For some placement games, such as NODE-KAYLES and BIGRAPH-NODE-
KAYLES [12], these two approaches are equivalent as every midgame position
is equal to a starting position on a smaller board. If this is not the case, it is
common practice to consider all positions. This includes for example HEX [11],
SNORT [12], planar SNORT [4], NOGO [4], and planar COL [4]. One interesting
exception is COL [7], where hardness has been shown for starting positions. We
will be taking the more common approach of considering all positions, implying
that our reductions can use partially colored graphs as boards, as long as the
colored vertices satisfy the distance rules for the games. One property of distance
games is that such graphs are positions that can occur during play from the empty
board.

Reduction strategy. In what follows, we will describe each reduction as a trans-
formation of the graph G, on which a game T is played, to a graph G ′, on which
game T ′ is played, via the insertion of subgraphs called gadgets. All reductions
to be used will be play-for-play, as we will enforce the following two properties
in all of our constructions:

Vertex condition: No vertex added to G to form G ′ is playable. No vertex of
the original graph G is deleted.

Edge condition: None of the additional edges will result in any restrictions on
the play on any of the vertices v ∈ V from the original graph G. That is, for any
v ∈ V , a Blue/Red piece can be played at v under ruleset T on G exactly when
it can be played on v using ruleset T ′ on G ′.

We will use the fact that NODE-KAYLES, BIGRAPH-NODE-KAYLES, SNORT,
and COL (all placement games played on graphs) are PSPACE-hard [4; 7; 12] to
create reductions showing that the games GRAPHDISTANCE(D, S) are PSPACE-
hard for many pairs D and S. Table 1 gives a summary of these results. In
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D S reference planar result

{1, 2, . . . , r} ∅ Proposition 4.1 Proposition 6.1
{1, 2, . . . , r} max(S) < r Corollary 4.2 Proposition 6.1
∅ {1, 2, . . . , r} Proposition 4.3 Proposition 6.1
max(D) < r {1, 2, . . . , r} Proposition 4.3 Proposition 6.1
{1, 2, . . . , r} S ⊆ D, max(S) = r Proposition 5.1 ?
D ⊆ S, max(D) = r {1, 2, . . . , r} Proposition 5.1 ?

Table 1. Pairs (D, S) for which GRAPHDISTANCE(D, S) is PSPACE-
hard (r ≥ 2).

all the reduction proofs, the goal is to create a graph G ′ via a play-for-play
reduction so that playing GRAPHDISTANCE(D, S) on G ′ is equivalent to playing
the game from which we reduce on G. We let V ′ be the union of all inserted
vertices, E ′ be the union of all inserted edges, E1 the set of edges of G not
replaced, and G ′

= (V ∪ V ′, E1 ∪ E ′) be the desired graph on which to play
GRAPHDISTANCE(D, S). In our diagrams, we will use B (blue) and R (red) for
the pieces of the respective players.

Outline. Even though the simplest case, namely D = {1, 2}, is covered by
the more general cases to follow, we will use it to give an introduction to the
construction of gadgets by reducing from NODE-KAYLES using very simple
gadgets in Section 2. We develop a more complex gadget in Section 3 that will
be used for more general sets S and D in Section 4 (max(S) ̸= max(D)) and
Section 5 (max(S) = max(D)). We apply results on PSPACE-hardness of planar
COL and planar SNORT to our results in Section 6. We conclude the paper with
open problems for future work.

2. D = {1, 2} and either S = ∅ or S = {1}

Proposition 2.1. The games GRAPHDISTANCE({1, 2}, S) are PSPACE-hard for
S = ∅ and S = {1}.

Proof. Since BIGRAPH-NODE-KAYLES is PSPACE-hard, we will construct a
reduction from a bipartite graph G = (VB ∪ VR, E) on which BIGRAPH-NODE-
KAYLES is played to a graph G ′ on which GRAPHDISTANCE({1, 2}, S) is played,
where S = ∅ or S = {1}.

We first look at the reduction from G to G ′ when S = {1}, which is illustrated
in Figure 2. Note that we do not show the edges connecting the sets VB and VR

to better focus on the reduction, which preserves G as a subgraph.



KEEPING YOUR DISTANCE IS HARD 439

Bipartite Bipartite

B Rv

V B V R V B V R

Figure 2. The reduction from BIGRAPH-NODE-KAYLES on the left
to GRAPHDISTANCE({1, 2}, {1}) on the right.

In BIGRAPH-NODE-KAYLES, VB is restricted to only be playable by Blue
and VR to only be playable by Red. Our goal is to create the graph G ′ via a play-
for-play reduction so that playing GRAPHDISTANCE(D, S) on G ′ is equivalent
to playing BIGRAPH-NODE-KAYLES on G. We describe the reduction as it
relates to the vertices in VB .

The first goal is to ensure that VB cannot be played by Red, hence we connect
all vertices from VB to an uncolored vertex (labeled v) that is connected to an
external vertex colored blue. Since this vertex is distance two from all vertices in
VB , no vertex in VB can be colored red. Also, the vertex v is at distance one from
B, so it can be colored neither red nor blue, so the vertex condition is satisfied.
Next we check the edge condition. We need to be careful because vertex v now
connects vertices in VB with a path of length two. However, all vertices in VB

can only be colored in blue, and since S = {1}, these new paths do not impose
restrictions on vertices in the graph G. Replicating the gadget on the right-hand
side of the bipartite graph with B replaced by R completes the reduction for
S = {1}.

We now consider the case S = ∅, which removes the constraint on labeling
the vertex v blue, so we need to put additional vertices into the gadget to create
this restriction. We replace v by a path of length two consisting of two uncolored
vertices v1 and v2 and a terminal vertex colored red, as shown in Figure 3. The
red vertex now keeps vertex v2 from being colored blue.

In addition, the intermediate vertex v1 is unplayable by both players as it
is distance two from B and hence cannot be colored red, and is adjacent to R
and so cannot be colored blue. Therefore the gadget consisting of these four
vertices satisfies the vertex condition. Since the restrictions on coloring vertices
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Figure 3. The reduction from BIGRAPH-NODE-KAYLES on the left
to GRAPHDISTANCE({1, 2},∅) on the right.

in the same color have been removed completely, none of the paths of length
two created by v1 has any impact, so the edge condition is satisfied as well. We
replicate this gadget on the right-hand side, switching the roles of R and B for
VR , which completes the reduction. □

Note that in these reductions for D = {1, 2} we inserted a fixed number of
vertices (four and eight, respectively), but that the number of additional edges is
a function of the number of vertices of the original graph G. Specifically, we
added a total of n + 2 and n + 6 edges, respectively. The number of edges of G
does not play any role in the construction of the gadget. This is quite different
from the general case discussed later, where the number of the gadgets (and
hence the number of vertices and edges) inserted also depends on the number of
edges of the original graph G.

3. Construction of the forbidden path gadget

For the remaining sets S and D to be considered in this paper, we will utilize
a common construction for the various reductions. So far we have only added
vertices and edges, but in the general case, we will also replace edges by sub-
graphs. As before, the concern is to make any vertex that is added into the graph
unplayable by each of the two players in such a way that the vertices in the
original graph G from which we reduce are not affected. We will achieve this by
creating a forbidden vertex gadget and a forbidden path gadget.

Lemma 3.1. If D or S equals the set {1, 2, . . . , r} for some r , and the other
is a subset of {1, 2, . . . , r}, then we can create a forbidden vertex gadget F(r)

of size r which creates a vertex v such that v is uncolored, but neither player
may choose to play at v, and the playability of any vertex connected to v is not
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R

⌈ r−12 ⌉

B

⌊ r−12 ⌋

if r even

F (r)

va bba =

Figure 4. Given D = {1, 2, . . . , r}, F(r) creates a forbidden vertex
(between a and b) without affecting the playability of a or b.

affected by the vertices in the gadget. Furthermore, all vertices in the gadget are
either colored, or uncolored and unplayable.

Proof. Consider the gadget F(r) shown in Figure 4, which is connected to
vertices a and b. We now prove that any uncolored vertex in the gadget is
unplayable by either player. Since the gadget is symmetric, we assume without
loss of generality that D = {1, 2, . . . , r}. For any r , the paths from the vertices
labeled R and B, respectively, to vertex v are of length r , so each of the vertices
on these paths cannot be colored blue and red, respectively. This means the
vertices common to both paths cannot be colored with either red or blue. In
addition, any vertex connected to v is not affected by the vertices labeled R and
B as their distance from such a vertex is at least r + 1. For the upper portions of
the two paths we now need to ensure that these vertices also cannot be colored
with either color. When r is even, the shortest path from R to B using the dashed
edge has length 2

⌈ 1
2(r − 1)

⌉
+ 1 = r + 1, so each of those vertices is within

distance r of the R and B vertices and cannot be colored in either color. When r
is odd, then the shortest path from R to B has length 2

⌈1
2(r − 1)

⌉
+ 2 = r + 1.

Overall, all the unlabeled vertices in F(r) cannot be played by either player, as
stated. □

We will use a path of an appropriate length made up of forbidden vertex
gadgets in the various reductions, where the size of the forbidden vertex gadget
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FP(t ,r) =
F (r) F (r)

t

Figure 5. FP(t, r) represents a path of t forbidden vertices of size r
with edges leaving either end.

yxx y FP(t ,r)

Figure 6. The edge replacement operation for edges (x, y) in the
original graph G for the reduction to graph G ′ for GRAPHDISTANCE-
(D, S), where t and r depend on the particular reduction.

is equal to the maximal element in the distance set that consists of consecutive
integers. We refer to a path consisting of t forbidden vertices F(r) as FP(t, r),
as shown in Figure 5.

Such a path will be used to replace an edge between two vertices of the original
graph, as shown in Figure 6. We will refer to this operation as edge replacement.
Note that inserting either one of these gadgets into the graph G automatically
satisfies the vertex condition of the play-for-play reduction by Lemma 3.1.

Note that when we replace an edge with a forbidden path FP(t, r), we add a
total of

t
(
1 +

⌊ 1
2(r − 1)

⌋
+ 2

⌈ 1
2(r − 1)

⌉
+ 2

)
≈ t 3

2r

vertices. The number of edges added is of the same order (there is a difference of
1 edge depending on whether r is odd or even). Overall, replacement of an edge
by a forbidden path FP(t, r) or addition of FP(t, r) to any vertex adds O(tr)

edges and vertices to the graph. We will use this fact when looking at specific
reductions in the next few sections.

We are now ready to prove that GRAPHDISTANCE(D, S) is PSPACE-hard
for more general sets D and S.
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4. D or S equals {1, 2, . . . , r}, max(D) ̸= max(S)

Let us first assume that D = {1, 2, . . . , r} with r ≥ 2 and consider the case S =∅.
These distance games are generalizations of SNORT. We define ENSNORT(r) to
be the game GRAPHDISTANCE({1, 2, . . . , r},∅) for r ≥ 2.

Proposition 4.1. ENSNORT(r) is PSPACE-hard.

Proof. ENSNORT(r) is a generalization of SNORT, which is PSPACE-hard [12],
so we will use a reduction from SNORT to prove the result. Let G = (V, E)

be any graph. Since coloring a vertex in ENSNORT(r) affects vertices up to
distance r from a colored vertex, we need to create a reduction that allows us to
increase the distance between the vertices in G in such a way that any vertex that
is inserted is not playable by either player. This can be achieved by replacing
each edge in G with a forbidden path FP(r − 1, r). Now playing ENSNORT(r)

on G ′ is exactly the same as playing SNORT on G. □

For nonempty sets S with max(S) < r = max(D), the same reduction as in
the case S = ∅ works because we only used properties of D, specifically the
maximal reach, in the construction of the forbidden vertices F(r) and paths
FP(r −1, r). As long as max(S) < r , coloring restrictions from the set S do not
impact any of the uncolored vertices from V in G ′, as all vertices from V are
now at distance r from any other vertex in V .

Corollary 4.2. For r ≥ 2, GRAPHDISTANCE({1, 2, . . . , r}, S) is PSPACE-hard
when max(S) < r .

The case S = {1, 2, . . . , r} is very similar to the one treated above, with the
roles of S and D interchanged, with reduction from COL, which is PSPACE-hard
as well [7].

Proposition 4.3. For r ≥ 2, GRAPHDISTANCE(D, {1, 2, . . . , r}) is PSPACE-
hard when D = ∅ or max(D) < r .

To measure the impact of the gadget insertion on the graph in both cases, we
let m = |E | denote the number of edges in the original graph G. Since we have
replaced each edge by a forbidden path FP(r − 1, r), we have added O(mr2)

edges and vertices. Note that the maximal value of m is n2 for a complete graph,
and that r ≤ n. So in the worst case scenario, this reduction adds O(n4) edges
and vertices.

We now turn to the question of why we have to exclude the case max(S) =

max(D). If max(S) = max(D) = r , then for a vertex x colored in one color, a
vertex y such that (x, y) ∈ E would now be uncolorable in either color, not just
the other color. This is why we need a reduction from a game that has the feature
that a vertex adjacent to a colored vertex in V cannot be colored in either color.
This suggests a reduction from NODE-KAYLES.
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5. D or S equals {1, 2, . . . , r} and r = max(D) = max(S)

In this section, we consider distance games in which the maximum distances not
playable by the same and different colors are identical.

Proposition 5.1. GRAPHDISTANCE(D, S) is PSPACE-hard when either D or S
equals {1, 2, . . . , r} and the other set is a subset of {1, 2, . . . , r} with 2 ≤ r =

max(D) = max(S).

Proof. Let G = (V, E) be any graph. We reduce from NODE-KAYLES, which is
PSPACE-hard [12], and start with the extreme case where both D and S consist
of the full set {1, 2 . . . , r}. Since all vertices at distances less than or equal to
r are unplayable by either player, we replace each edge (x, y) ∈ E by the path
gadget FP(r − 1, r). Then playing GRAPHDISTANCE(D, S) on G ′ is exactly
the same as playing NODE-KAYLES on G.

For the more general case where S ̸= D, the same construction works as any
vertex inserted through the path gadget is unplayable as long as one of the two
sets equals {1, 2, . . . , r} by Lemma 3.1. The conclusion follows as in the case
S = D since the only relevant distances for play are the maximal distances. □

Since we used the same edge replacement as in Proposition 4.1, we add at
most O(n4) edges and vertices in this case as well.

6. Distance games on planar graphs

So far we have considered the computational complexity of distance games on
any graph. A game on a more specialized (potentially simpler) graph may be
easier to solve, and therefore might not be PSPACE-hard even though the game
played on a general graph is PSPACE-hard.

In [4] the authors show that SNORT and COL are PSPACE-hard on planar
graphs. The edge replacement operation we have used in our various reductions
results in a planar graph G ′ when starting from a planar graph G. Thus our con-
structions show that the corresponding planar GRAPHDISTANCE(D, S) games
are also PSPACE-hard. The stronger results are listed below:

Proposition 6.1. Both planar GRAPHDISTANCE({1, 2, . . . , r}, S) and planar
GRAPHDISTANCE(D, {1, 2, . . . , r}) are PSPACE-hard when S =∅ or max(S)<

r and D = ∅ or max(D) < r , respectively.

7. Conclusion and future work

To summarize, we used various play-for-play reductions from known PSPACE-
hard games to show that GRAPHDISTANCE(D, S) is PSPACE-hard when D or S
is {1, 2, . . . , r} and the other one is a subset. The games from which we reduced
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were in most cases the natural choices based on the properties of the distance
sets D and S. At the heart of the reductions was the forbidden vertex gadget.
To obtain a play-for-play reduction required that the larger of the distance sets
consists of consecutive integers. This leads to the following question:

Open Problem 7.1. Is GRAPHDISTANCE(D, S) PSPACE-hard for cases not
covered by our results?

As illustrated in the previous section, planar SNORT and planar COL being
PSPACE-hard implies that many of the distance games we considered are also
PSPACE-hard on planar graphs because our reduction preserves planarity. If this
is also the case for NODE-KAYLES, then these results can be further extended.
Thus we are interested in:

Open Problem 7.2. Is planar GRAPHDISTANCE(D, S) PSPACE-hard for other
cases?

The case where max(S) = max(D) and at least one of S or D is equal
to {1, . . . , r} would be covered using our reduction if NODE-KAYLES were
PSPACE-hard on planar graphs.
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