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P play in CANDY NIM

NITYA MANI, RAJIV NELAKANTI,
SIMON RUBINSTEIN-SALZEDO AND ALEXA THOLEN

CANDY NIM is a variant of NIM in which both players aim to take the last
candy in a game of NIM, with the added simultaneous secondary goal of taking
as many candies as possible. We give bounds on the number of candies the
first and second players obtain in 3-pile P positions as well as strategies that
are provably optimal for some families of such games. We also show how to
construct a game with N candies such that the loser takes the largest possible
number of candies and how to bound the number of candies the winner can
take in an arbitrary P position with N total candies.

1. Introduction

One of the first serious results in the study of combinatorial games was Bouton’s
solution to the game of NIM in [2]. NIM is a two-player game played with
several piles of stones. In a turn, a player removes some number of stones from
one pile. The player taking the last stone wins.

Beyond its historical interest, the game of NIM is interesting because a wide
family of games, the so-called finite normal-play impartial combinatorial games,
can all be reduced to the game of NIM, thanks to the celebrated Sprague–Grundy
theory, as first described in [7] and [3]. In this paper, we describe and study
a slight modification of the game of NIM, known as CANDY NIM, which is
interesting in its own right as being a blend of an impartial combinatorial game
and a scoring game. While impartial combinatorial games have been widely
studied ever since the time of Bouton, the study of scoring games has only
recently attracted interest, for instance, in [4; 5; 6; 8].

In any NIM game, either the first player to move or the second player to move
must have a winning strategy, but not both. We classify the NIM positions based
on which player wins with optimal play. Games in which the first player wins
with optimal play are called N positions. Similarly, games in which the second
player wins with optimal play are called P positions. We call N and P the
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outcome classes of the associated games. In the two-player game of NIM, we
refer to the losing player as Luca and the winning player as Windsor.

It is easy to compute the outcome classes and winning strategy for NIM games,
based on the ⊕ function of a, b ∈ Z, called the nim-sum, defined as follows:
a ⊕b is given by the XOR of a and b (obtained by writing both a and b in binary
and adding without carrying).

Theorem 1.1 (Bouton [2]). The NIM game with piles of size a1, a2, . . . , ap is
a P position if and only if n := a1 ⊕ a2 ⊕ · · · ⊕ ap = 0. If n ̸= 0, winning moves
take the total nim-sum to zero.

This quantity a1 ⊕a2 ⊕· · ·⊕ap is of general importance in NIM, and we will
need to use it again later, so we introduce some notation for it. Given a NIM

game G, with piles of size a1, . . . , ap, we define its Grundy value G(G) to be
a1 ⊕ a2 ⊕ · · · ⊕ ap.

The above famous theorem of Bouton gives an easily computable winning
strategy for NIM and more generally has made outcomes of impartial combinato-
rial games more straightforward to understand. As in [4; 5; 6; 8], scoring variants
of combinatorial games are much more challenging to understand and are a
topic of much recent interest. Given NIM’s position as the canonical impartial
combinatorial game, we are interested in studying the natural scoring variant we
obtain when we change the objective of the game slightly.

Definition 1.2. CANDY NIM is a two-player combinatorial game with the same
setup and game play as NIM. However, in addition to the primary goal of making
the last move (as in NIM), players have a secondary goal of collecting as many
stones, or candies, as possible.

Remark 1.3. In CANDY NIM, winning always takes priority over collecting
candies. No number of candies can fully compensate for the embarrassment of
losing the game. Alternatively, at the end of the game, the winner gets a prize
that is more desirable than all the candies put together.

CANDY NIM was first introduced by Michael Albert [1]. In traditional NIM,
the role of the losing player, Luca, and her choices are irrelevant to the outcome
of the game, but by giving Luca a natural, secondary goal, game play becomes
much more interesting and challenging to analyze.

Albert observed, among other things, that it is not always optimal for Luca to
remove candies from the largest pile and also provided some results on values
of CANDY NIM games (see Section 2 for a definition of the value of a game).
This surprising finding along with several other counterintuitive observations
regarding optimal CANDY NIM play (some of which are examined later in this
article) makes the game interesting to study, especially as an indication of the
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tools that may be deployed in a broader analysis of scoring variants of other
impartial normal-play combinatorial games.

Remark 1.4. In this paper, we focus on the games whose outcome class is P .
This is because Luca has many more options to play with than does the winning
player, Windsor. At every turn, in optimal play, Windsor must bring the nim-sum
of all of the pile sizes down to zero. This severely limits the options of the
winning player. In many of the positions we will study, Windsor will only have a
single move available on each turn. On the other hand, Luca loses no matter what
her move is, giving room for optimizing her move with respect to the number of
candies she collects. Consequently, their turns are more interesting to consider.
Throughout, we will assume that Windsor is forced to play winning moves in
the underlying NIM games, so that losing moves are illegal.

In this article, we focus on two broad classes of problems: understanding
optimal play and the resulting scores in 3-pile games and describing extremal
allocations of N candies with respect to the value of the game.

Our primary objective is to obtain bounds on the maximal difference between
the number of candies Luca and Windsor take in a game of k-pile CANDY NIM

(focusing on P positions). Our main results are Theorems 3.3 and 3.5, where we
obtain upper and lower bounds for 3-pile CANDY NIM games.

We begin with some notation and definitions in Section 2, defining, notably,
the value of a game G (which we work to bound for the remainder of the article).
In Section 3, we state our main results concerning 3-pile games, deferring the
proofs of these theorems to Section 6. In Section 4, we subsequently present a
simple strategy for the 3-pile game (the flip-flop strategy) and an iterative variant
(the fractal strategy) that yields the lower bound of our main result, Theorem 3.3.
Some explicit examples of these strategies are worked out in Section 5.

We investigate several related questions beyond the scope of 3-pile CANDY

NIM. In Section 7, we consider optimal allocations of N candies from Luca’s
perspective and give extremal bounds in Theorems 7.1, 7.2, and 7.3. We defer the
proofs of Theorem 7.1 to Section 8 and of Theorem 7.3 to Section 9, as both re-
quire some involved casework. We conclude with some potential generalizations
and remaining open questions in Section 10.

Throughout this work, we provide some worked examples of optimal play
for specific CANDY NIM games. We encourage readers to generate their own
examples using our program, which is available for download.1

2. Preliminaries

We begin with some definitions and notation that will be helpful for the analysis

1https://github.com/nmani2/candynim

https://github.com/nmani2/candynim
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of the 3- and n-pile CANDY NIM games. Unless otherwise specified, G will
always refer to CANDY NIM games.

Definition 2.1. Given a CANDY NIM game G, let N (G) be the total number of
candies in the game. Let NW (G) be the number of candies collected by winning
player Windsor, and let NL(G) be the number of candies collected by losing
player Luca, assuming optimal play.

Our primary goal is to bound the number of candies Luca (the losing player)
can collect relative to Windsor in a P game, assuming optimal play. This
difference in candies will be called the value of the associated CANDY NIM game.

Definition 2.2. The value V (G) of a game G is given by

V (G) = NL(G) − NW (G).

Definition 2.3. A turn is a triple of games T = (G, G ′, G ′′) where Luca moves
from G to G ′ and Windsor moves from G ′ to G ′′. We call each move made by a
player from G to G ′ a ply P = (G, G ′).

Many of the bounds, such as those in Theorems 3.3 and 3.5, arise from
analyzing specific strategies or sequences of moves by Luca and Windsor. To
simplify these analyses, we introduce some notation:

Definition 2.4. The single-turn value VT (G) of a turn T = (G, G ′, G ′′) is

VT (G) = (N (G) − N (G ′)) − (N (G ′) − N (G ′′)) = N (G) + N (G ′′) − 2N (G ′).

Definition 2.5. A strategy S of a game G is a sequence of turns Ti = (Gi , G ′

i , G ′′

i )

for 1 ≤ i ≤ n such that G1 = G and for each j < n, we have G ′′

j = G j+1.
Furthermore, G ′′

n = ∅. We call the strategic value of G with strategy S the
difference between the number of candies collected by Luca and Windsor under
strategy S, i.e., VS(G) =

∑
VTi (G). An optimal strategy is a strategy S from

which neither player has an opportunity to vary and guarantee strictly more
candies than offered from S.

Remark 2.6. If S is an optimal strategy, then VS(G) = V (G).

Definition 2.7. We write G = [a1, a2, a3, a4, . . . , ap] if G is the game with p
piles where pile i has ai ≥ 0 candies.

To gain some basic intuition about CANDY NIM we note that if Luca follows
the strategy where she takes all of the candies from the largest pile in game Gi

for the i-th turn Ti , then VTi (Gi ) ≥ 0 for all i . This implies the following:

Lemma 2.8. For any game G, V (G) ≥ 0.



P PLAY IN CANDY NIM 409

3. 3-pile CANDY NIM

In our main results, Theorems 3.3 and 3.5, we bound the value of 3-pile CANDY

NIM games. In giving such results, it is helpful to use an alternative characteri-
zation of such games.

Definition 3.1. Let G(a, m, x) be the 3-pile CANDY NIM game

G(a, m, x) = [a, 2k+1
· m + x, 2k+1

· m + a ⊕ x],

where k = ⌊log2 a⌋, m ≥ 1, and 0 ≤ x < 2k .

Note that, as per Definition 3.1, 2k+1 is the smallest power of 2 strictly greater
than a. We first show results for the following subset of the class of 3-pile
CANDY NIM games.

Definition 3.2. A game G is a standard-form game if for some k and m,

G = G(2k+1
− 1, m, 0) = [2k+1

− 1, 2k+1
· m, 2k+1(m + 1) − 1].

We pay special attention to standard-form games because of the existence of
simple strategies for Luca that are likely optimal, and that we show are close to
optimal in a precise sense. In particular, we have the following bounds on V (G)

when G is a standard-form game:

Theorem 3.3. Given a standard-form game G = G(2k+1
− 1, m, 0), we have

V (G(2k+1
− 1, m, 0)) ≤ (2k+2

− 2)m + (2k+2
− 2) − 2 + δ0k,

where δ0k is the Kronecker delta function, which is 1 if k = 0 and 0 otherwise.
Furthermore,

V (G(2k+1
− 1, m, 0))

≥ 2(2k+1
− 1)m − 2(2⌈k/2⌉

− 1) + V (G(2⌈k/2⌉
− 1, 2⌊k/2⌋+1

− 1, 0)).

Thus,
V (G(2k+1

− 1, m, 0)) ≥ 2(2k+1
− 1)(m − 1) + b(k),

where
3(2k+1

− 1) ≤ b(k) ≤ 4(2k+1
− 1) − 2.

We obtain our lower bound on V (G) for standard-form games by constructing
two strategies that yield large values of NL(G), the flip-flop and more general
fractal strategies, described in more detail in Section 4. We conjecture that an
instance of the fractal strategy is optimal for standard-form games. We obtain
the upper bound by greedily bounding the maximum number of candies Luca
can take relatively to Windsor each turn, using the semiratio of a turn, defined
in Section 6.
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We can also leverage our standard-form game bounds to prove looser bounds
for more general 3-pile CANDY NIM games.

Corollary 3.4. V (G(a, m, x)) ≥ 2a(m − 1) + x ⊕ a + a − x.

Theorem 3.5. If G = G(2k+1
− 1, m, x), then

V (G(2k+1
− 1, m − 1, 0)) + 2(2k+1

− 1) − 2x

≤ V (G) ≤ V (G(2k+1
− 1, m + 1, 0)) − 2(2k+1

− 1) + 2x .

We defer the proofs of Theorems 3.3 and 3.5 to Section 6.

4. Strategies for the 3-pile game

In order to give the lower bounds of Theorems 3.3 and 3.5, we construct an
strategy for a 3-pile game whose value we can explicitly compute. We present
two strategies for certain families of the 3-pile game, which we call the flip-flop
strategy and the fractal strategy.

The flip-flop strategy is a simple strategy that, until the last turn, allows Luca
to take as many candies as possible subject to allowing Windsor only to take
one candy on that turn. The fractal strategy is an iterative variant of the flip-flop
strategy. We compute the value of this strategy, but obtain a more involved result.
We conjecture that a certain specific version of the fractal strategy is optimal for
games in standard form, and obtain our lower bound on V (G) from the fractal
strategy for 3-pile standard-form games.

The flip-flop strategy. Consider the class of games [1, 2m, 2m + 1]. This class
of games has a simple inductive optimal strategy. If Luca removes three can-
dies from the largest pile, we obtain the game [1, 2m, 2(m − 1)]. Windsor
is then forced to remove a single candy from the middle pile to obtain the
game [1, 2(m − 1) + 1, 2(m − 1)]. The process may then be repeated with
the middle and rightmost piles swapped. This strategy is optimal and gives
V ([1, 2m, 2m + 1]) = 2m, proved and illustrated in Proposition 5.1. This
motivating example suggests the following strategy for games of the form
G = [2k

− 1, 2k
· m, 2k

· (m + 1) − 1], which we will term the flip-flop strategy:

Definition 4.1. Given a game G =G(2k
−1, m, 0)=[2k

−1, 2k
·m, 2k

·(m+1)−1],
the flip-flop strategy FF(G) is given as follows:

(1) If m ≥ 1, Luca removes 2k+1
− 1 candies from the third pile, and then

Windsor removes one candy from the second pile. The resulting game is
G(2k

− 1, m − 1, 0). Then continue with FF(G(2k
− 1, m − 1, 0)).

(2) If m = 0, then we have G = [2k
− 1, 2k

− 1]. Luca removes one pile, then
Windsor removes the other one.
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Figure 1. In the fractal strategy with G = [7, 16, 23], we begin by
applying the flip-flop strategy until the game reaches H = [7, 15, 8].
If Luca continued via the flip-flop strategy, the next turn would be
T = (H, [7, 8], [7, 7]), giving Luca 22 of 30 candies in H . If Luca
instead reduced the smallest pile from size 7 to 1, the single-turn value
of that reduction would be 12. This yields the game [1, 6, 7], which
has value 6, as shown in Proposition 5.1. With this sequence of moves,
Luca does better, obtaining 24 of 30 candies of H .

Proposition 4.2. For G = [2k
− 1, 2k

· m, 2k
· (m + 1) − 1], we have

V (G) ≥ VFF(G)(G) = (m − 1) · (2k+1
− 2).

Proof. Consider the strategy FF(G) with initial turn T1 =
(
G = G(0), G(1), G(2)

)
,

where Luca takes 2k+1
− 1 candies from the largest pile and Windsor takes

one candy from the middle pile. Therefore, VT1(G) = 2k+1
− 2 with G(2)

=

[2k
− 1, 2k

· (m − 1), 2k
· m − 1]. Repeat for turns T2, . . . , Tm−1, where

Ti = (G(2i−2), G(2i−1), G(2i)).

For i = 1, . . . , m − 1,
VTi (G

(2i−2)) = 2k+1
− 2.

When m =0, the resulting game is G(2m−2)
=[2k

−1, 2k
−1] with V (G(2m−2))=0.

Thus, VFF(G)(G) = (m − 1) · (2k+1
− 2). □

The fractal strategy. We can improve the above strategy to one that exhibits a
curious fractal-like behavior, as in Figure 1 and Proposition 5.2.

Definition 4.3. Say that a function f : N → N is contractive if for all a ∈ N,
f (a) ≤ a. Let F denote the family of contractive functions.
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∅

[1, 2m, 2m+1]

[3, 4, 7][7, 8, 15]

[3, 4m, 4m+3][7, 8m, 8m+7]

[15, 16, 31][31, 32, 63][63, 64, 127][127, 128, 255]

[15, 16m, 16m+15][31, 32m, 32m+31][63, 64m, 64m+63][127, 128m, 128m+127]

...

Figure 2. The fractal strategy: the solid arrows indicate the flip-flop
strategy of Section 4, and the dashed arrows indicate a change of
smallest pile size.

Definition 4.4. Consider a game G of the form

G = G(2k
− 1, m, 0) = [2k

− 1, 2k
· m, 2k(m + 1) − 1] for m, k ≥ 1.

Let f ∈ F . We define the fractal strategy Fractal f (G) based on f as follows:

(1) If m > 1, then Luca plays as in FF(G) by removing 2k+1
− 1 candies from

the third pile, and then Windsor moves to G(2k
− 1, m − 1, 0). Then play

Fractal f (G(2k
− 1, m − 1, 0)).

(2) If m = 1 and f (a) = a, then play as in the flip-flop strategy.

(3) If m = 1 and f (a) < a, then Luca moves the smallest pile to 2 f (a)
− 1, and

Windsor moves to G(2 f (a)
− 1, 2a− f (a), 0). Then play Fractal f from there.

We conjecture that with an appropriate choice of contractive function f ∈ F ,
the fractal strategy Fractal f is an optimal strategy for standard-form games. In the
following theorem, we identify a best possible contractive function for the fractal
strategy, namely f (a) = ⌊a/2⌋. We prove that this function is at least as good as
any other function and compute the value of G under the corresponding strategy.

Theorem 4.5. Given G = G(2k
− 1, m, 0) with k, m ≥ 1,

sup
f ∈F

VFractal f (G)

= (m −2) ·(2k+1
−2)

+

⌈log2 k⌉∑
i=0

(
2⌊k/2i

⌋+1
−2⌊k/2i+1

⌋+1
+(2⌊k/2i+1

⌋+1
−1)(2⌊k/2i

⌋−⌊k/2i+1
⌋
−2)

)
,

with the supremum achieved by taking f : a 7→ ⌊a/2⌋.
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Proof. We first show that the function f : a 7→ ⌊a/2⌋ achieves the stated bound.
Consider the strategy Fractal f , where f : a 7→ ⌊a/2⌋. We show

VFractal f (G) = (m − 2) · (2k+1
− 2) +

⌈log2 k⌉∑
i=0

2⌊k/2i
⌋+1

− 2⌊k/2i+1
⌋+1

+ (2⌊k/2i+1
⌋+1

− 1)(2⌊k/2i
⌋−⌊k/2i+1

⌋
− 2).

It suffices to show that for the game H = [2k
− 1, 2k, 2k+1

− 1],

VFractal f (H)=

⌈log2 k⌉∑
i=0

2⌊k/2i
⌋+1

−2⌊k/2i+1
⌋+1

+(2⌊k/2i+1
⌋+1

−1)(2⌊k/2i
⌋−⌊k/2i+1

⌋
−2).

Under Fractal f , the first turn is

T = (H, H ′, H ′′) = ([2k
− 1, 2k, 2k+1

− 1], [2k
− 1, 2k, 2⌊k/2⌋

− 1],

[2k
− 1, 2k

− 2⌊k/2⌋, 2⌊k/2⌋
− 1]).

Then we perform FF(G) until we reach the game [2⌊k/2⌋
− 1, 2⌊k/2⌋, 2⌊k/2⌋−1

].
This involves repeating the following sequence of moves 2k−⌊k/2⌋

− 2 times:

[2⌊k/2⌋
−1, a ·2⌊k/2⌋, (a +1) ·2⌊k/2⌋

−1] 7→ [2⌊k/2⌋
−1, a ·2⌊k/2⌋, (a −1) ·2⌊k/2⌋

]

7→ [2⌊k/2⌋
− 1, a · 2⌊k/2⌋

− 1, (a − 1) · 2⌊k/2⌋
].

Since for any g ∈ F and a ̸= 1, we have that

VFractalg ([2
⌊k/2⌋

− 1, a · 2⌊k/2⌋, (a + 1) · 2⌊k/2⌋
− 1])

= VFractalg ([2
⌊k/2⌋

− 1, a · 2⌊k/2⌋
− 1, (a − 1) · 2⌊k/2⌋

]) + 2⌊k/2⌋+1
− 1,

we obtain that

VFractal f (H) = VFractal f ([2
⌊k/2⌋

− 1, 2⌊k/2⌋, 2⌊k/2⌋+1
− 1]) + 2k+1

− 2⌊k/2⌋

+ (2⌊k/2⌋+1
− 1)(2k−⌊k/2⌋

− 2).

Via the inductive hypothesis we obtain the desired result:

VFractal f (G) = (m − 2) · (2k+1
− 2) +

⌈log2 k⌉∑
i=0

2⌊k/2i
⌋+1

− 2⌊k/2i+1
⌋+1

+ (2⌊k/2i+1
⌋+1

− 1)(2⌊k/2i
⌋−⌊k/2i+1

⌋
− 2).

We now show that the contractive function f : a 7→ ⌊a/2⌋ is optimal over all
of F . It suffices to show that for g ∈ F ,

VFractalg ([2
k
− 1, 2k, 2k+1

− 1]) ≤ VFractal f ([2
k
− 1, 2k, 2k+1

− 1]).
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We consider two cases based on whether g(k) < ⌊k/2⌋ or g(k) > ⌊k/2⌋ First,
if g(k) = i < ⌊k/2⌋, then

VFractalg ([2
k
− 1, 2k, 2k+1

− 1]) ≤ VFractal f ([2
k
− 1, 2k, 2k+1

− 1]). (4-1)

Equivalently, we wish to show that the left side of (4-1) minus the right side is
less than or equal to zero. By the definition of the fractal strategy, we have

VFractalg ([2
k
− 1, 2k, 2k+1

− 1]) − VFractal f ([2
k
− 1, 2k, 2k+1

])

= VFractalg ([2
i
− 1, 2i , 2i+1

− 1]) − VFractal f ([2
⌊k/2⌋

− 1, 2⌊k/2⌋, 2⌊k/2⌋+1
− 1])

− 2k−i
+ 2i+1

+ 2k−⌊k/2⌋
+ 2⌊k/2⌋−i

− 2

≤ 2i+1
+ 2k−⌊k/2⌋

+ 2⌊k/2⌋−i
− 2k−i

− 2.

Now, suppose i ̸= ⌊k/2⌋ − 1. Then we have

VFractalg ([2
k
− 1, 2k, 2k+1

− 1]) − VFractal f ([2
k
− 1, 2k, 2k+1

− 1])

≤ 2i+1
+ 2k−⌊k/2⌋

+ 2⌊k/2⌋−i
− 2k−i

− 2 < 0.

On the other hand, if i = ⌊k/2⌋ − 1, we get

VFractalg ([2
k
− 1, 2k, 2k+1

− 1]) − VFractal f ([2
k
− 1, 2k, 2k+1

− 1])

≤ 2i+1
+ 2k−⌊k/2⌋

+ 2⌊k/2⌋−i
− 2k−i

− 2 ≤ 0.

Next suppose that g(k) = i > ⌊k/2⌋. First, recall the notation from Definition 3.1,
G(a, m, x) = [a, 2k

·m + x, 2k
·m +a ⊕ x], with 2k > a ≥ 2k−1. Let f ′, g′

∈ F

be defined by f ′(n) = f (n) if n ̸= ⌊k/2⌋ and f ′(⌊k/2⌋) = ⌊i/2⌋, and g′(n) =

f (n) if n ̸= k and g′(k) = i . We will show that VFractal f ′ (G(2k
− 1, 1, 0)) ≥

VFractalg′ (G(2k
− 1, 1, 0)). By induction, this implies VFractal f (G(2k

− 1, 1, 0)) ≥

VFractalg (G(2k
− 1, 1, 0)). To this end, we have

VFractal f ′ (G(2k
− 1, 1, 0)) − VFractalg′ (G(2k

− 1, 1, 0))

= VFractal f ′ (G(2⌊k/2⌋
− 1, 1, 0)) − VFractalg′ (G(2i

− 1, 1, 0)) − 2⌊k/2⌋

+ (2⌊k/2⌋+1
− 1)(2k−⌊k/2⌋

− 2) + 2i
− (2i+1

− 1)(2k−i
− 2)

= 2k−i
+ 3 · 2i

+ 2i−⌊i/2⌋
− 2⌊k/2⌋−⌊i/2⌋

− 2⌊k/2⌋+1
− 2k−⌊k/2⌋.

Now, we can see that the trio of inequalities i ≥ k − ⌊k/2⌋ and i ≥ ⌊k/2⌋ + 1
and i ≥ ⌊k/2⌋ − ⌊i/2⌋ are each true, and so that allows us to simplify to get

VFractal f (G(2k
− 1, 1, 0)) − VFractalg (G(2k

− 1, 1, 0)) ≥ 2k−i
+ 2i−⌊i/2⌋,

which is positive. This resolves the last case, yielding the desired result. □
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5. 3-pile strategy examples

Below are worked examples of 3-pile strategies and bounding techniques. We first
highlight a family of 3-pile games for which the flip-flop strategy of Definition 4.1
achieves the maximal V (G):

Proposition 5.1. V ([1, 2m, 2m + 1]) = 2m.

Proof. We show optimality and give the strategy inductively. If m = 1, then G =

[1, 2, 3]. Optimal play occurs when the first move is T1 = (G, [1, 2, 0], [1, 1, 0])

with V (G) = 2 and NL(G) = 4. Now assume that V ([1, 2m, 2m + 1]) = 2m is
true for all 1 ≤ m ≤ m′. We first show that for G = [1, 2(m′

+1), 2(m′
+1)+1],

V (G) ≥ 2m′
+ 2. Consider the strategy S consisting of initial turn

T1 =
(
G, G ′

= [1, 2(m′
+ 1), 2m′

], G ′′
= [1, 2m′

+ 1, 2m′
]
)

followed by optimal play as per the inductive hypothesis for the resulting game
G ′′

=[1, 2m′, 2m′
+1]. VT1(G)=2 and V (G ′′)=2m′ by the inductive hypothesis,

giving V (G) ≥ 2m′
+ 2.

To show this strategy is optimal, we prove V (G) ≤ 2m′
+2. Consider the four

possible cases for Luca’s first move.

Case 1: Consider strategy S1, where Luca takes from the smallest pile. Then the
first turn T1 = (G, G ′, G ′′) satisfies G ′′

= [0, 2(m′
+ 1), 2(m′

+ 1)]. Then

VS1(G) = VT1(G) + V (G ′′) = 0 + 0 < 2m′
+ 2.

Case 2: Consider strategy S2, where Luca takes 2k candies from the largest pile
such that the first turn is

T1 =
(
G, G ′

= [1, 2(m′
+ 1), 2 j + 1], G ′′

= [1, 2 j, 2 j + 1]
)
,

where j = m′
+ 1 − k. Note that VT1(G) = 0. By induction, V (G ′′) = 2 j . So

VS2(G) = VT1(G) + V (G ′′) = 2 j < 2m′
+ 2.

Case 3: Consider strategy S3, where Luca takes 2k + 1 candies from the largest
pile such that the first turn is

T1 =
(
G, G ′

= [1, 2(m′
+ 1), 2 j], G ′′

= [1, 2 j + 1, 2 j]
)
,

where j = m′
+ 1 − k. This time, VT1(G) = 2. By induction, V (G ′′) = 2 j . So

VS3(G) = VT1(G) + V (G ′′) = 2 + 2 j ≤ 2m′
+ 2.

Case 4: Consider strategy S4, where Luca takes k candies from the medium pile
such that the first turn is

T1 =
(
G, G ′

= [1, 2 j, 2(m′
+ 1) + 1], G ′′

= [1, 2 j, 2 j + 1]
)
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[1 2m 2m + 1]

(−3)
��

[1 2m

(−1)
��

2(m − 1)]

[1 2(m − 1) + 1

(−3)
��

2(m − 1)]

[1 ...
...]

(−1)
��

[1 2 3]

(−3)
��

[1 2

(−1)
��

0]

[1 1 0]

Figure 3. The sequence of moves that occurs when using the flip-flop
strategy in the game G = [1, 2m, 2m + 1].

or
T1 =

(
G, G ′

= [1, 2 j + 1, 2(m′
+ 1) + 1], G ′′

= [1, 2 j, 2 j + 1]
)
.

In this case, VT1 ≤ 0. By induction, V (G ′′) = 2 j . Therefore,

VS4(G) = VT1(G) + V (G ′′) ≤ 2 j < 2m′
+ 2.

Since max
(
VS1(G), VS2(G), VS3(G), VS4(G)

)
≤2m′

+2, we obtain the desired
equality V (G) = 2m′

+ 2. □

The inductive optimal strategy in the proof above is pictorially represented by
the sequence of moves in Figure 3.

The improvement obtained by the more involved fractal strategy is exhibited
by the following family of games, providing an example of the methods used to
prove the lower and upper bounds on standard-form 3-pile games:

Proposition 5.2. 62m + 60 ≥ V ([31, 32m, 32m + 31]) ≥ 62(m − 1) + 98.

Proof. We observe that in any turn, Luca can take at most 63 times as many
stones as Windsor will be able to subsequently take (for a more formal proof,
see Lemma 6.2). This implies that

V ([31, 32m, 32m + 31]) ≤
63−1
63+1 · (31 + 32m + 32m + 31) = 60.0625 + 62m.

We use a fractal strategy to give a lower bound. Consider the following
strategy, broken down into m > 1 and m = 1.



P PLAY IN CANDY NIM 417

(1) While m > 1, Luca recursively removes 63 candies from the largest pile,
requiring Windsor to respond by removing one candy from the middle pile,
creating the turn

T = (G, [31, 32m, 32(m − 1)], [31, 32(m − 1) + 31, 32(m − 1)]).

The accumulated value is
∑m

i=2(63 − 1) = 62(m − 1).

(2) When m = 1, the turn is

T4 = ([31, 32, 63], [31, 32, 3], [31, 28, 3]),

with a single-turn value of VT4(G4) = 60 − 4 = 56.

(a) Then, for all games G2 = [3, 4m′, 4m′
+ 3] with m′ > 1, the turn would be

T = (G2, [3, 4m′, 4(m′
− 1)], [3, 4(m′

− 1) + 3, 4(m′
− 1)]).

The accumulated value for all G2 is
∑

m′>1(7 − 1) = 6(7 − 1) = 36.

(b) When m′
= 1, the turn is T1 = ([3, 4, 7], [3, 4, 1], [3, 2, 1]). Finally, the last

two turns are T0 = ([1, 2, 3], [1, 2], [1, 1]) and T ′

0 = ([1, 1], [1],∅). In total, we
get an overall value of 62(m − 1) + 56 + 36 + 4 + 2 + 0 = 62(m − 1) + 98. □

Remark 5.3. We have verified numerically that V ([31, 32m, 32m + 31]) =

62(m − 1) + 98 for m < 12. We conjecture that equality holds for all m ∈ N.

6. Proofs of Theorems 3.3 and 3.5

The strategies of Section 4 enable us to give lower bounds on V (G) for standard-
form and general 3-pile games. To give upper bounds, we will consider maximal
candy allocations turn-by-turn via the semiratio:

Definition 6.1. The semiratio rT (G) of a turn T = (G, G ′, G ′′) is defined to be

rT (G) =
N (G)−N (G ′)

N (G ′)−N (G ′′)
.

Lemma 6.2. Given G =G(a, m, x) and any turn T = (G, G ′, G ′′) the semiratio
rT (G) is at most 2a + 1.

Proof. Consider a turn T = (G, G ′, G ′′). We show rT (G) ≤ 2a + 1. If Luca’s
ply (G, G ′) is in the smallest pile, she would take at most a candies, yielding
a semiratio at most a < 2a + 1. Suppose Luca moves in either the middle pile
or the largest pile such that G ′′

= G(a′, m′, x ′), where a′
̸= a. There are several

cases to consider.

Case 1: Suppose G ′
= [a, 2k+1m + x, a′

] and G ′′
= [a, a ⊕ a′, a′

]. Then

VT (G) = (2k+1m + x ⊕ a − a′) − (2k+1m + x − a′
⊕ a) ≤ 2a.
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Therefore, under this strategy,

rT (G) =
N (G)−N (G ′)

N (G ′)−N (G ′′)
≤ 2a + 1.

Case 2: Suppose G ′
= [a, a′, 2k+1m + x ⊕ a] and G ′′

= [a, a ⊕ a′, a′
]. Then

VT (G) = (2k+1m + x − a′) − (2k+1m + x ⊕ a − a′
⊕ a) ≤ 2x .

Therefore, rT (G) ≤ 2x + 1 ≤ 2a + 1 under this strategy.

Case 3: Suppose

G ′
= [a, 2k+1m + x, 2k+1m + x ⊕ a′

],

G ′′
= [a′, 2k+1m + x, 2k+1m + x ⊕ a′

].

Then
VT (G) = (x ⊕ a − x ⊕ a′) − (a − a′) ≤ a′

+ x − |a′
− x |.

This single-turn value is either 2x or 2a′, so rT (G) ≤ 2 max(x, a′)+ 1 ≤ 2a + 1
under this strategy.

Case 4: Suppose

G ′
= [a, 2k+1m + x ⊕ a ⊕ a′, 2k+1m + x ⊕ a],

G ′′
= [a′, 2k+1m + x ⊕ a ⊕ a′, 2k+1m + x ⊕ a].

Then
VT (G) = x − x ⊕ a ⊕ a′

− (a − a′) ≤ x − a + a′.

Therefore, rT (G) ≤ 2a + 1 under this strategy.

The last possible situation is when G ′′
= G(a, m′, x ′). Here, there are two

cases to consider.

Case 1: m′
= m and x ′ < x . Then

NL(G) − NL(G ′′) < 2a + 1.

Case 2: m < m′. Then VT (G) is maximized when

G ′
= [a, 2k+1m + x, 2k+1m′

+ x ′
].

Here,

VT (G)=((2k+1m +x ⊕a)−(2k+1m′
+x ′))−((2k+1m +x)−(2k+1m′

+x ′
⊕a))

≤2a.

In both cases, rT (G) = (N (G) − N (G ′))/(N (G ′) − N (G ′′)) ≤ 2a + 1. □

From the above, we conclude our main results concerning 3-pile CANDY NIM

games:
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Proof of Theorem 3.3. Upper bound: We will first show that

V (G) = V (G(2k+1
− 1, m, 0)) ≤ (2k+1

− 2)m + (2k+1
− 2) − 2 + δ0k .

By Lemma 6.2, rT (G) ≤ s = 2k+2
− 1. Then

VL(G) ≤
s − 1
s + 1

N (G) = (2k+2
− 2)m + (2k+2

− 2) − 2 +
1
2k .

Lower bound: Given the game G = G(2k+1
− 1, m, 0), consider the strategy

where Luca removes 2k+2
− 1 candies from the largest pile when m > 1 and

2k+2
− 2⌊(k+1)/2⌋ from the largest pile when m = 1. Then

VL(G) ≥ 2(2k+1
− 1)m − 2(2⌈k/2⌉

− 1) + V (G(2⌈k/2⌉
− 1, 2⌊k/2⌋+1

− 1, 0)).

This is an example of the fractal strategy as in Definition 4.4 with f (k) =

⌊(k + 1)/2⌋. □

Proof of Corollary 3.4. Let

G = G(a, m, x) = [a, 2⌊log2 a⌋+1m + x, 2⌊log2 a⌋+1m + x ⊕ a].

Consider the first turn T0 = (G, G ′, G ′′) such that

G ′
= [a, 2⌊log2 a⌋+1m + x, 2⌊log2 a⌋+1(m − 1)],

G ′′
= [a, 2⌊log2 a⌋+1(m − 1) + a, 2⌊log2 a⌋+1(m − 1)].

Then VT0(G)= x⊕a+a−x . For 0< i <m, let the i-th turn be Ti = (Gi , G ′

i , G ′′

i ),
where (similar to the flip-flop strategy of Definition 4.1)

Gi = [a, 2⌊log2 a⌋+1(m − i), 2⌊log2 a⌋+1(m − i) + a],

G ′

i = [a, 2⌊log2 a⌋+1(m − i), 2⌊log2 a⌋+1(m − i − 1)],

G ′′

i = [a, 2⌊log2 a⌋+1(m − i − 1) + a, 2⌊log2 a⌋+1(m − i − 1)],

with VTi (G) = 2a. After turn Tm−1, G ′′

m−1 = [a, a]. Thus, the game concludes
after m turns, and in total, Luca takes 2a(m − 1) + x ⊕ a + a − x candies. □

Proof of Theorem 3.5. Let G = [2k+1
− 1, 2k+1m + x, 2k+1m + 2k+1

− 1 − x].

Upper bound: We construct a strategy S that achieves a value of

VS(G) = V (G(2k+1
− 1, m − 1, 0)) + 2(2k+1

− 1) − 2x .

Let the first turn T1 = (G, G ′, G ′′) consist of

G ′
= [2k+1

− 1, 2k+1m + x, 2k+1(m − 1)],

G ′′
= [2k+1

− 1, 2k+1(m − 1) + 2k+1
− 1, 2k+1(m − 1)].
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Then the single-turn value is VT1(G) = 2(2k+1
− 1) − 2x , and we have that

G ′′
= G(2k+1

− 1, m − 1, 0), yielding an overall value of

VS(G) = V (G(2k+1
− 1, m − 1, 0)) + 2(2k+1

− 1) − 2x,

which gives a lower bound on V (G).

Lower bound: We prove

V (G(2k+1
− 1, m + 1, 0)) − 2(2k+1

− 1) + 2x ≥ V (G).

Given game G0 = G(2k+1
− 1, m + 1, 0), under any strategy S,

VS(G0) ≤ V (G0).

Suppose the first turn in S is T1 = (G0, G ′

0, G ′′

0), where

G ′

0 = [2k+1
− 1, 2k+1(m + 1), 2k+1m + x],

G ′′

0 = [2k+1
− 1, 2k+1m + x, 2k+1m + 2k+1

− 1 − x].

Note that G ′′

0 is the only move to a P position from G ′

0. The resulting game is
G ′′

0 =G, implying that VS(G(2k+1
−1, m+1, 0))=2(2k+1

−1)−2x+V (G). Thus

2(2k+1
− 1) − 2x + V (G) = VS(G(2k+1

− 1, m + 1, 0))

≤ V (G(2k+1
− 1, m + 1, 0)). □

7. Optimal allocation of N candies

Thus far, we have only considered CANDY NIM positions with three piles. We
have seen that, in these games, Luca can take a substantial majority of the candies,
and indeed there are 3-pile P positions in which Luca takes a proportion of at
least 1 − ε of the candies, for any fixed ε > 0. It is natural, then, to consider the
problem of Luca allocating N candies, in a P position, so that she maximizes
the number of candies that she can take with optimal play. This problem is the
motivating question for this section.

Windsor always obtains a logarithmic number of candies no matter how Luca
plays, reaching this bound only for a small family of values of N and a unique
arrangement for each such N .

Theorem 7.1. Given a game G, NW (G) ≥ ⌊log2(N (G))⌋. Equality is achieved
only when N (G) = 2n , 2n

− 2, or 2n
− 2k

− 2, for n, k ∈ Z+, n > k + 1, n > 2
in the following arrangements:

(1) N (G) = 2n and G = [1, 1, 1, 2, 4, 8, . . . , 2n−2, 2n−1
−1].

(2) N (G) = 2n
−2 and G = [1, 2, 4, 8, . . . , 2n−2, 2n−1

−1].

(3) N (G)=2n
−2k

−2 and G =[1,2,4,8,...,2k−2,2k,...,2n−2,2n−1
−1−2k−1

].
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The proof of the above result, Theorem 7.1, is rather tedious; as a result, we
defer the details to Section 8. For small N , we can use the above result to identify
the games G that minimize NW (G).

Example. For N = 10, 12, 14, 16, we find the unique games G that minimize
NW (G) via Theorem 7.1.

• If N = 10, then G = [1, 4, 5] minimizes NW , with NW (G) = 3.

• If N = 12, then G = [2, 4, 6] minimizes NW , with NW (G) = 3.

• If N = 14, then G = [1, 2, 4, 7] minimizes NW , with NW (G) = 3.

• If N = 16, then G = [1, 1, 1, 2, 4, 7] minimizes NW , with NW (G) = 4.

We can guarantee that Windsor only obtains 2(
√

N ) candies for all even
values of N by judicious arrangement of N candies into at most 5 piles. This
constant-pile example represents a contrast to the above result, which required
2(log N ) piles to meet the bound:

Theorem 7.2. For all N ∈ 2Z+, there exists a 5-pile game G with N (G) = N
and NW (G) ≤

3
2

√
2N − 2.

Proof. We can write N in binary as

N = 2k1 + 2k2 + · · · + 2kn + 2kn+1 + 2kn+2 + · · · + 2kn+m ,

where k1 > k2 > · · · > kn+p, where n is defined so that kn ≥ ⌊k1/2⌋ but kn+1 <

⌊k1/2⌋. Therefore n is the minimal i such that 2ki+1 <
√

N . Consider the game
G1 = G(a, m, 0), where

m = 2k1−⌊k1/2⌋
+ 2k2−⌊k1/2⌋

+ 2k3−⌊k1/2⌋
+ · · · + 2kn−⌊k1/2⌋

− 1,

a = 2⌊k1/2⌋−1
− 1.

By construction, N (G1) < N . From this, we can construct the game

G = [2⌊k1/2⌋−1
− 1, 2k1−1

+ 2k2−1
+ · · · + 2kn−1

− 2⌊k1/2⌋−1,

2k1−1
+ 2k2−1

+ · · · + 2kn−1
− 1, 2kn+1−1

+ 2kn+2−1
+ · · · + 2kn+m−1

− 1,

2kn+1−1
+ 2kn+2−1

+ · · · + 2kn+m−1
− 1],

where N (G) = N . Note the last two piles of G are identical. Corollary 3.4 gives

NW (G1) ≤ 2⌊k1/2⌋
− 2 + 2k1 + 2k2 + · · · + 2kn − 2⌊k1/2⌋

− (2k1 + 2k2 + · · · + 2kn ) + rN , rN ≤
√

2N ,

and therefore
NW (G) ≤

3
2

√
2N − 2,

because

NW (G) = 2kn+1−1
+ 2kn+2−1

+ · · · + 2kn+p−1
+ rN − 2. □
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Via induction, we can also give a lower bound on NW (G) as a function of
the number of piles of a game G (this reflects the log2(N ) bound on NW (G)

shown with the arrangement of Theorem 7.1). We defer the details of this proof
to Section 9:

Theorem 7.3. If G is a game containing p piles with no duplicate piles, then
NW (G) ≥ p − 1.

8. Proof of Theorem 7.1

We work to show the upper bound NW (G) ≥ ⌊log2(N (G))⌋, and explicitly
enumerate the games G for which this inequality is an equality.

Lemma 8.1. If G ∈ P , for any ply (G, G ′), we have N (G) − N (G ′) ≤
1
2 N (G).

Proof. Let G = [a1, a2, . . . , ap], where a1 ≥ a2 ≥ · · · ≥ ap. For any ply (G, G ′),
we have N (G) − N (G ′) ≤ a1. Therefore, it suffices to show that a1 ≤

1
2 N (G).

Since G ∈ P , we have a1 = a2 ⊕ a3 ⊕ · · · ⊕ ap. For any x1, . . . , xk , we have
x1 ⊕ · · · ⊕ xk ≤ x1 + · · · + xk , so a1 ≤ a2 + a3 + · · · + ap. Since N (G) =

a1 +a2 +a3 +· · ·+ap, this implies that a1 ≤ N (G)−a1. Thus a1 ≤
1
2 N (G). □

Lemma 8.2. For any game G,

NW (G) ≥ ⌊log2 N (G)⌋. (8-1)

Proof. We induct on N (G). As our base case, we consider the position where
N (G) = 1, when NW (G) = 1 > log2 N (G) = 0. Now, we perform the inductive
step. Fix a game G and suppose that the result holds for any game H such that
N (H) < N (G). Let n = ⌊log2 N (G)⌋. We divide our analysis into two cases:

(1) If G is a P position, consider a ply (G, G ′). Then N (G ′) ≥
1
2 N (G) ≥ 2n−1

by Lemma 8.1. Suppose first that Windsor only removes a single candy when
going from G ′ to G ′′, i.e., N (G ′′) = N (G ′) − 1. If N (G ′) > 2n−1, then

NW (G ′′) ≥ ⌊log2 N (G ′′)⌋ ≥ n − 1,

so
NW (G) ≥ 1 + NW (G ′′) ≥ n = ⌊log2 N (G)⌋,

proving the desired result. On the other hand, if N (G ′) = 2n−1, then N (G ′′) =

2n−1
− 1 has an odd number of candies and is thus an N position, meaning that

Windsor’s last ply was invalid.
The only case left to consider is if Windsor removes at least two candies, i.e.,

if N (G ′′) ≤ N (G ′) − 2. Since N (G ′) − N (G ′′) > 1, we have

N (G ′) − N (G ′′) > ⌊log2(N (G ′))⌋ − ⌊log2(N (G ′′))⌋.
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If N (G ′′) = 0, then G = [a, a] where (8-1) holds, and if N (G ′′) ̸= 0, then

NW (G) − NW (G ′′) = N (G ′) − N (G ′′)

> ⌊log2(N (G ′))⌋ − ⌊log2(N (G ′′))⌋

= n − 1 − ⌊log2(N (G ′′))⌋,

which implies that

NW (G) > n − 1 − ⌊log2(N (G ′′))⌋ + NW (G ′′).

Since NW (G ′′) ≥ ⌊log2(N (G ′′))⌋, this gives NW (G) ≥ n, as desired.

(2) Now suppose G is an N position. Consider a ply (G, G ′). Since Windsor
moves G 7→ G ′,

NW (G) − NW (G ′) = N (G) − N (G ′) ≥ ⌊log2(N (G))⌋ − ⌊log2(N (G ′))⌋

whenever N (G ′) > 0. By the inductive hypothesis, NW (G ′) ≥ ⌊log2(N (G ′))⌋,
so NW (G) ≥ ⌊log2(N (G))⌋, as desired. □

For convenience, we will represent the concatenation of two games by addition:

Definition 8.3. Games G = [g1, g2, g3, . . . , gp] and H = [h1, h2, h3, . . . , hq ]

have sum G + H defined by concatenation as follows:

G + H = [g1, g2, g3, . . . , gp, h1, h2, h3, . . . , hq ].

Lemma 8.4. If K = [a1, a1, a2, a2, . . . , ap, ap], then for all games G, V (G) =

V (G + K ).

Proof. We induct on N (G) + N (K ). First, the base case G = K = ∅ is trivial.
Now we consider the inductive step. Consider a turn T =

(
H := G +K , H ′, H ′′

)
.

If the optimal move is in G, then H ′
= G ′

+ K , with N (G ′) < N (G). Thus, by
the inductive hypothesis, V (H ′) = V (G ′

+ K ) = V (G ′), so

V (G + K ) = N (G)− N (G ′)+ V (G ′
+ K ) = N (G)− N (G ′)+ V (G ′) = V (G).

If (G, G ′) is the optimal ply in G, by the same argument we have

V (G) = N (G) − N (G ′) + V (G ′).

On the other hand, for any ply (K , K ′), the opponent can mimic in K , and hence
move to H ′′

= G + K ′′, where K ′′ consists of only equal piles. It follows that

V (G + K ′) ≤ N (K ) − N (K ′) + V (G + K ′′).

Thus no move in K can be strictly better than the optimal move in G, so we
have V (G + K ) = V (G), completing the inductive step. □

Lemma 8.5. For every positive integer a, there exists a positive integer k such
that a ⊕ (a − 1) = 2k

− 1.
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Proof. If a is odd, then a ⊕ (a − 1) is 1, or 21
− 1. If a is even, then we write

a = 2k1 + 2k2 + · · · + 2kℓ, k1 > k2 > · · · > kℓ > 0.

Then we have

a − 1 = 2k1 + 2k2 + · · · + 2kℓ−1 + 2kℓ−1
+ 2kℓ−2

+ · · · + 23
+ 22

+ 21
+ 1.

This gives the desired result:

a ⊕ (a − 1) = 2kℓ + 2kℓ−1
+ · · · + 23

+ 22
+ 21

+ 1 = 2kl+1
− 1. □

Lemma 8.6. The game G =[1, 2, 4, 8, 16, . . . , 2n−2, 2n−1
−1] maximizes NL(G)

subject to the constraint that N (G)=2n
−2. In this case, we have NW (G)=n−1.

Proof. First, let us compute NW ([1, 2, 4, 8, 16, . . . , 2n−2, 2n−1
− 1]). If Luca

removes the entire largest pile, then Windsor is forced to remove a single candy,
leaving the game G ′

= [1, 2, 4, 8, 16, . . . , 2n−3, 2n−2
− 1]. When n = 2 we get

NW = 1. By induction, NW = n −1. By Lemma 8.2, NW (G) ≥ n −1, for an arbi-
trary P position G with N (G)=2n

−2. Since G =[1, 2, 4, 8, . . . , 2n−2, 2n−1
−1]

achieves equality, it minimizes NL subject to N (G) = 2n
− 2. □

Lemma 8.7. Given

G = [1, 2, 4, 8, . . . , 2k−2, 2k, . . . , 2n−2, 2n−1
− 1 − 2k−1

],

the ply P = (G, G ′) with

G ′
= [1, 2, 4, 8, . . . , 2k−2, 2k, . . . , 2n−2, 2k−1

]

is an optimal move. Then

NW (G) = NW (G ′) = n − 1.

Proof. Lemma 8.2 shows that it is impossible for Luca to concede fewer than n−1
candies to Windsor. Therefore, to show optimality, it suffices to show that
NW (G) = n − 1. If Luca moves the pile of size 2n−1

− 1 − 2k−1 to a pile of
size 2k−1, the remaining game G ′ has 2n

− 2 candies, with NW (G ′) = n − 1
by Lemma 8.6 assuming optimal play by Luca. Thus, G minimizes NW with
NW (G) = n − 1, as desired. □

Proof of Theorem 7.1. First, note that it is sufficient to prove the result when G is
a P position. To see this, suppose that we have proven the result for all P positions,
and G is an N position with a ply (G, G ′), where G ′ is a P position. Then

NW (G) ≥ N (G) − N (G ′) + NW (G ′)

≥ N (G) − N (G ′) + ⌊log2(N (G ′))⌋ ≥ ⌊log2(N (G))⌋.

Thus from now on, we shall always assume that G is a P position.



P PLAY IN CANDY NIM 425

We prove the result by induction on N (G). Via a finite check, this is true
whenever N (G) ≤ 16. For the inductive step, suppose that equality is achieved
only in the above positions for all positions with N (G) < M . We want to show
that if N (G) = M , this theorem holds.

First we show that NW (G)=⌊log2(N (G))⌋ implies NW (G ′′)=⌊log2(N (G ′′))⌋.
Let M = 2n

+ x , where n = ⌊log2 M⌋. Then

2n−1
≤ 2n−1

+
1
2 x ≤ N (G ′) ≤ 2n

+ x − 1 ≤ 2n+1.

If N (G ′) − N (G ′′) = 1, then

2n−1
− 1 ≤ N (G ′′) < 2n+1

− 1.

Since G is a P position, N (G) is even and thus N (G ′′) ̸= 2n−1
−1. Thus 2n−1

≤

N (G ′′) < 2n+1
− 1, so by Lemma 8.2, NW (G ′′) ≥ n − 1. If NW (G ′′) ≥ n, then

NW (G) ≥ n+1, so in any potential equality case, we must have NW (G ′′) = n−1.
If N (G ′)− N (G ′′) ≥ 2, then whenever N (G ′′) > 0 and N (G ′)− N (G ′′) > 1, we
have

N (G ′) − N (G ′′) > ⌊log2(N (G ′))⌋ − ⌊log2(N (G ′′))⌋.

Since N (G ′′) ≥ ⌊log2(N (G ′′))⌋, if NW (G) = ⌊log2(N (G))⌋, then NW (G ′′) =

⌊log2(N (G ′′))⌋. If N (G ′′) = 0, then N (G ′) = N (G)/2. Therefore, NW (G) =

⌊log2(N (G))⌋, which implies NW (G ′′)=⌊log2(N (G ′′))⌋. Thus, by the inductive
hypothesis, G ′′ must be one of the three positions above.

Now we show that if G ′′ is any one of the above three positions, then so is G,
thereby completing the induction.

(1) Suppose that

G ′′
= [1, 1, 1, 2, 4, 8, . . . , 2n−3, 2n−2

− 1].

In order to have

NW (G ′) − NW (G ′′) = ⌊log2(N (G))⌋ − ⌊log2(N (G ′′))⌋,

we must have N (G) ∈ {2n, 2n
+ 2}. If N (G) = 2n

+ 2, then N (G) − N (G ′) =

2n−1
+ 1. However, this implies that

G = [2n−1
+ 1, 2n−1

+ 1] or G = [1, 2n−1, 2n−1
+ 1],

since those are the only two P positions with N (G) = 2n
+ 2. Neither of

those can produce a G ′′ of the specified form. Therefore, N (G) = 2n and
N (G) − N (G ′) = 2n−1

− 1. and there must have been a pile of size at least
2n−1

−1 in G. If there was a pile of size at least 2n−1, we have the same issue as
above with 2n

+ 2. Consequently, there must be a pile of size exactly 2n−1
− 1.

If N (G) = 2n , Windsor removed one candy on the first term, giving the Grundy
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value of G ′, G(G ′) ∈ {1, 3, 2n−1
− 1}. In the first two cases, there is no way to

achieve N (G) − N (G ′) = 2n−1
− 1. Therefore,

G = [1, 1, 1, 2, 4, 8, . . . , 2n−2, 2n−1
− 1].

(2) Now suppose that

G ′′
= [1, 2, 4, 8, . . . , 2n−3, 2n−2

− 1].

As Windsor removed one candy, G(G ′) ∈ {1, 3, 2n−1
− 1}. If G(G ′) = 1, then

G = [1, 2, 4, 8, . . . , 2l
+ 1, . . . , 2m

+ 1, . . . , 2n−3, 2n−2
− 1],

which allows Windsor to remove one candy from a different pile to increase his
winnings, contradicting optimal play. If G(G ′) = 3, then

G = [2, 2, 4, 8, . . . , 2l
+ 3, . . . , 2n−2

− 1] or G = [2, 2, 3, 4, . . . , 2n−2
− 1].

Windsor could have removed three from the 2n−2
− 1 and received more candies

while still winning, again contradicting optimal play. If G(G ′) = 2n−1
− 1, then

G ′
= [1, 2, 4, 8, . . . , 2n−3, 2n−2

].

So, either Luca moved from 2n−1
− 2k

− 1 to 2k or from 2n−1
− 1 to 0. The first

case gives the third game above, and the second gives the second game above.

(3) Finally, suppose that

G ′′
= [1, 2, 4, 8, . . . , 2k−2, 2k, . . . , 2n−3, 2n−2

− 2k−1
− 1],

with G(G ′) ∈ {1, 3, 2k
− 1}. If k ≥ 2, then as G − G ′′

≥ 2k
+ 1, it would be

impossible for Windsor to both remove one, and have ⌊log2(G
′′)⌋ < ⌊log2(G)⌋.

Otherwise k = 1, G(G ′) = 1, and thus G = 2 + G ′′ so ⌊log2(G
′′)⌋ = ⌊log2(G)⌋,

a contradiction. □

9. Proof of Theorem 7.3

Via induction and some careful casework, we show that Windsor can always take
at least one candy fewer than the number of piles in a game G.

Proof of Theorem 7.3. We prove this by induction on N (G). When N (G) < 2,
the result is trivial. When N (G) = 2, then G is either [2] or [1, 1]. The first one
gives 2 ≥ 0, and the second 1 ≥ 1, as desired. Suppose the claim is true for all G
with N (G) < n. We show it holds when N (G) = n.

(N ) Let G be an N position. Then the number of piles in G ′ is at most one
fewer than that of G. So, either NW (G ′) ≥ p − 2 or Windsor made a move to
make two piles equal sizes. In the first case, Windsor must have removed at
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least one candy, so NW (G) ≥ p − 1, as desired. If Windsor moved to create a
duplicate pile,

G ′
= [a, a, g1, g2, g3, . . . , gp−2],

where the gi ’s are all distinct, then by Lemma 8.4,

NW (G ′) = a + NW ([g1, g2, . . . , gp−2]).

By induction, NW ([g1, g2, . . . , gp−2]) ≥ p − 3. Because a ≥ 1, we get that
NW (G ′) ≥ p − 2, so NW (G) ≥ p − 1, as desired

(P) Suppose G is a P position.

(1) If Luca doesn’t remove a full pile, then G ′ has the same number of piles
as G. We consider cases:

(a) If there are no duplicates in G ′, by the inductive hypothesis, NW (G) =

NW (G ′) ≥ p − 1, as desired.

(b) Suppose Luca creates a duplicate pile, so

G ′
= [a, a, g3, . . . , gp].

Then we have NW (G ′) = a + NW ([g3, . . . , gp]). If a ̸= 1, NW (G) = NW (G ′) ≥

2 + p − 3 = p − 1, via inductive hypothesis. Suppose

G ′
= [1, 1, g3, . . . , gp].

In that case, we must have had G = [g1, g2, g3, . . . , gp] with g1 = 1. Windsor
cannot move in a 1-pile, or else Luca would have been able to move to G ′′

=

[g2, g3, . . . , gp], contradicting the assumption that G ∈P . So, his winning move
must be in one of the piles g3, . . . , gp. If Windsor doesn’t remove a pile, we get

NW (G) = NW (G ′) = 2 + NW ([z, g4, . . . , gp]) ≥ p − 1, (9-1)

where the first equality holds because it is currently Luca’s move, and the second
equality follows from Lemma 8.4 and because Windsor removed one candy. The
inequality follows from the inductive hypothesis.

(c) If Luca first creates a 1, 1 duplicate (i.e., moves a pile g2 to size 1 with an
existing pile g1 of size 1) to obtain G ′, Windsor removes a pile in G ′. We have

NW (G) = NW (G ′) = 1 + g3 + NW ([g4, . . . , gp]) ≥ 1 + g3 + p − 4,

where g3 is the pile Windsor removes. If g3 ̸= 1, we have

NW (G) ≥ 1 + 2 + p − 4 = p − 1,

as desired. But if g3 = 1, then G had a 1, 1 duplicate already, contrary to
hypothesis.
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(2) Suppose Luca removes a pile. We have G ′
= [0, g2, g3, . . . , gp]. We further

subdivide into cases:

(a) If Windsor removes a pile g2, then it is Luca’s turn, so g1 ⊕ g2 = 0 and
g1 = g2, giving an initial duplicate pile.

(b) Suppose Windsor doesn’t remove a pile and creates no duplicate piles when
he moves G ′ to G ′′. Via the inductive hypothesis NW (G ′′) ≥ p − 2. Since
Windsor removed at least one candy, NW (G) ≥ p − 1, as desired.

(c) Suppose Windsor removes no entire pile, but creates some duplicate pile of
size a ≥ 2, so G ′′

= [a, a, g4, g5, . . . gp] with

NW (G ′′) = a + NW ([g4, g5, . . . , gp]) ≥ a + p − 4.

Since a ≥ 2, and Windsor removed at least one candy,

NW (G) ≥ 1 + a + p − 4 ≥ 1 + 2 + p − 3 = p − 1,

as desired.

(d) Finally, suppose that Windsor removes some candies to create a duplicate
pile of size 1 with G ′′

= [1, 1, g4, g5, . . . , gp]. This would give

G ′
= [1, 2, g4, g5, . . . , gp], G = [1, 2, 3, g4, g5, . . . , gp],

as Luca removed a pile (so no other pile had size 2). Since G ′′
∈ P , G(G ′) = 3.

It suffices to show that if H = [g4, g5, . . . , gp], then NW (H) ≥ p −3. If H =∅,
we are done. Thus suppose H has at least one pile. Note that for all i ≥ 4, gi > 1
and gi ≡ 0, 1 (mod 4), and all these piles of H are distinct. We can consider the
possible moves in Luca’s ply (H, H ′) as we did above.

• Any duplicate pile created has size at least 4, so creating a duplicate pile would
yield the desired bound:

NW (H) = NW (H ′) ≥ 4 + NW ([g6, g7, . . . , gp]) ≥ 4 + p − 6 = p − 2.

• If Luca neither removes a pile nor creates a duplicate, Windsor must move
in a distinct pile from Luca. If Windsor removed a pile, he removed at least
four candies, so NW (G) ≥ n − 1. Since H is duplicate-free, Windsor cannot
create a duplicate. Thus, if Windsor didn’t remove a pile, we thus obtain H ′′

=

[a, b, g6, g7, . . . , gp], with

NW (G) = NW (G ′) ≥ 1 + NW (G ′′)

= 2 + NW (H ′) = 3 + NW ([a, b, g6, g7, . . . , gp]) ≥ n − 1.

• Suppose Luca removes a pile. Since gi ≡ 0, 1 (mod 4) for all piles in H ,
Windsor must have removed at least three candies since H ′′

∈ P; furthermore,
because H contains no duplicates, Windsor cannot have removed an entire pile in
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moving from H ′ to H ′′. Thus H ′′ consists of p −4 piles. If H ′′ has no duplicate
piles, then by induction, NW (H ′′) ≥ p − 5, so

NW (H) ≥ 3 + (p − 5) = p − 2,

which is greater than the required p−3. On the other hand, if H ′′ has a duplicate
pile, say with H ′′

= [g6, g6, g7, g8, . . . , gp], then

NW (H) ≥ 3 + NW (H ′′) = 3 + g6 + NW ([g7, g8, . . . , gp])

≥ 3 + g6 + (p − 6)

≥ p − 3. □

10. Conjectures and concluding remarks

While our primary focus of this study was the 3-pile CANDY NIM game, there
are a huge number of interesting open questions that remain.

4-pile CANDY NIM. Most of our attention with respect to strategies and bounds
on V (G) has been focused on the case when G is a 3-pile game. We include
a brief analysis and several conjectures regarding V (G) and optimal play for
4-pile games.

In the 4-pile game, Luca does not always have an optimal move in the largest
pile.

Example. Let G = [1, 5, 16, 20]. We have V ([1, 5, 16, 20]) = 28, where Luca’s
optimal move is to remove three candies from the pile of size 5. By checking,
we have the following optimal game play:

[1, 5, 16, 20]
L
→[1, 2, 16, 20]

W
→[1, 2, 16, 19]

L
→[1, 2, 12, 16]

W
→[1, 2, 12, 15]

L
→ [1, 2, 8, 12]

W
→ [1, 2, 8, 11]

L
→ [1, 2, 8, 4]

W
→ [1, 2, 7, 4] = [1, 2, 4, 7].

By Theorem 7.1, V ([1, 2, 4, 7]) = 8. Thus,

V (G) = 20 + 8 = 28.

We can obtain lower bounds on some families of 4-pile games G using related
3-pile games. We first consider the 4-pile games G with smallest two piles of
size 1, 2, and show that their values V (G) are bounded by the “corresponding”
3-pile game with smallest pile size 3.

Proposition 10.1. Let m be a positive integer. Then both of the following hold:

V ([1, 2, 4m, 4m + 3]) ≥ V ([3, 4m, 4m + 3]),

V ([1, 2, 4m + 1, 4m + 2]) ≥ V ([3, 4m + 1, 4m + 2]).
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Proof. Let

G1 = [3, 4m, 4m + 3], G2 = [3, 4m + 1, 4m + 2],

H1 = [1, 2, 4m, 4m + 3], H2 = [1, 2, 4m + 1, 4m + 2].

We will show the desired result by induction on m. Let m = 1 be our base
case. We can check 6 = V ([3, 4, 7]) ≤ V ([1, 2, 4, 7]) = 8 and V ([3, 5, 6]) =

V ([1, 2, 5, 6])=6. For every possible optimal turn TGi = (Gi , G ′

i , G ′′

i ) (i =1, 2),
we show there exists a turn THi = (Hi , H ′

i , H ′′

i ) such that

VTGi
(Gi ) + V (G ′′

i ) ≤ VTHi
(Hi ) + V (H ′′

i ).

Suppose that V (Gi ) ≤ V (Hi ) for m < w. Let m = w. Suppose G ′

i = [3, a, b]

and G ′′

i = [3, a, c]. Then we set H ′

i = [1, 2, a, b] and H ′′

i = [1, 2, a, c], so
that VTGi

(Gi ) = VTHi
(Hi ) and V (G ′′

i ) ≤ V (H ′′

i ), by the inductive hypothesis. If
G ′

i =[2, a, b] or G ′

i =[1, a, b], then we set H ′

i =[0, 2, a, b] and H ′

i =[1, 0, a, b],
respectively. This yields

VTGi
(Gi ) + V (G ′′

i ) = VTHi
(Hi ) + V (H ′′

i ).

Now suppose that G ′′

i = [0, a, b]. If i = 1, then VTG1
(G1) + V (G ′′

1) = 0 and
VTH1

(H1) + V (H ′′

1 ) ≥ 0, by Lemma 2.8. If i = 2, then VTG2
(G2) + V (G ′′

2) ≤ 2,
which implies that it is not an optimal move since Luca could instead remove the
largest pile in G2 and obtain an overall value of 4. Thus, by induction, we have

V ([1, 2, 4m, 4m + 3]) ≥ V ([3, 4m, 4m + 3]),

V ([1, 2, 4m + 1, 4m + 2]) ≥ V ([3, 4m + 1, 4m + 2]). □

General play. We can hope to make even more general inferences from the
3-pile game to multipile CANDY NIM games. Notably, we wonder if a similar
result to Proposition 10.1 holds for a broader family of CANDY NIM games.

Question 10.2. Suppose G = [a, b, c] with a < b < c. Then for some j > 1, do
there exist a1, . . . , a j with

a = a1 + · · · + a j = a1 ⊕ · · · ⊕ a j

such that the game
H = [a1, a2, . . . , a j , b, c]

satisfies V (H) ≥ V (G)?

Remark 10.3. It is not true that for any game G = [a, b, c] and any such
decomposition a = a1 + · · · + a j = a1 ⊕ · · · ⊕ a j the resulting game H in
Question 10.2 satisfies V (H) ≥ V (G). As a counterexample, consider the game
G = [31, 42, 53] with a = 31. Using the decomposition a1 = 1, a2 = 2, a3 = 4,
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a4 = 8, a5 = 16, we obtain the game H = [1, 2, 4, 8, 16, 42, 53]. However,
V (G) = 96 while V (H) = 94.

We can also hope to extend the analysis of Section 7. Observationally, for
a fixed number of candies, the games G that optimize NW (G) have specific
structural properties that we conjecture hold in general:

Conjecture 10.4. For all fixed N > 0, there exist (not necessarily distinct) games
G1, G2 with N (G1) = N (G2) = N such that

NW (G1) = NW (G2) = max
H :N (H)=N

NW (H),

where G1 has a pile with at least N/4 candies and G2 has at most c log N piles
for some absolute constant c > 0.
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