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A family of Nim-like arrays: stabilization
LOWELL ABRAMS AND DENA S. COWEN-MORTON

In previous work, the authors and others constructed a family of Nim-like
arrays using the operation of Nim addition composed with the operation of
sequential compound. Every row of these arrays is a permutation of the
natural numbers that, for large enough values, is arithmetically periodic. In
this work, we regularize, or “stabilize”, these arrays row by row, so that each
row becomes both doubly infinite and everywhere arithmetically periodic.
We study basic properties of these stabilized arrays, in particular showing
that various interesting properties of the original arrays continue to hold for
their stabilized counterparts. We then show that the row-permutations of the
stabilized arrays are in fact affine permutations of Z, and thus the groups
generated by these permutations are themselves groups of affine permutations.
To give a taste of the complexity of these groups, we analyze an illustrative
example highlighting the structure of a subgroup of the multiplication group
for one particular array of the family, and examine its Cayley graph.

1. Introduction

We continue our study of the family A∗ of recursively generated arrays we call
Nim-like arrays. These arise from sequential compounds of the game of Nim.

1.1. Nim, sequential compound, and the arrays As. The game of Nim is a
two-person combinatorial game in which the players alternate turns removing
any number of stones they wish from a single pile of stones; the winner is the
player who takes the last stone. The direct sum G1⊕G2 of two combinatorial
games G1, G2 is the game in which a player, on their turn, has the option
of making a move in exactly one of the games G1 or G2 as long as it is not
yet exhausted (in Nim this simply means having several independent piles of
stones). Again, the winner is the last player to make a move. The importance of
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Nim was established by the Sprague–Grundy theorem [11; 18] (also developed
in [9, Chapter 11]), which essentially asserts that Nim is universal among finite,
impartial two-player combinatorial games in which the winner is the player to
move last. Briefly, that is to say that every such game G is, vis-à-vis direct sum,
equivalent to a single-pile Nim game.

The Sprague–Grundy theorem implies that direct sum of Nim piles yields an
operation, called Nim addition, and it is well known that Nim addition may be
represented as a recursively generated array [7].

In [19], Stromquist and Ullman define an operation on games called “sequential
compound”. Essentially, the sequential compound G→ H of games G and H
is the game in which play proceeds in G until it is exhausted, at which point
play switches to H . In this paper we continue our exploration of combinatorial
games whose structure is (G1 ⊕ G2)→ H , where G1 and G2 are individual
combinatorial games, and H is equivalent to the Nim pile with s stones. This
more complicated operation gives rise to the family A∗ of recursively generated
arrays As (the formal definition is reviewed in Section 2).

The connections of the arrays As to the game of Nim and combinatorial games
in general are elucidated further in our previous works [1; 2; 3]. In particular,
in [1] we discuss the algebraic structure of the arrays As , and in [2] we describe
periodicity properties which hold in the rows and along the diagonals of As .
Most recently, in [3] we show that for certain values of s, the entries of As satisfy
a property we call the “locator property”, which links the location in the array As

of the entry j in row i to the entry in column j of row i ; in fact, this is equivalent
to the permutation corresponding to that row being an involution.

1.2. Aim and content of this work. Interest in the periodic behavior of the
Sprague–Grundy function of a game, which returns for each instance of the game
the size of the Nim pile equivalent to that instance, is not new. One motivation
for this, aside from the joys of pattern hunting, is that periodicity of the Sprague–
Grundy values implies the existence of a polynomially computable strategy for
the game. Of particular interest in our work here is arithmetic periodicity, which
is to say that the Sprague–Grundy function G satisfies G(n+ p)= G(n)+ s for
some fixed p and s. There are many well-known periodicity results. For example,
Horrocks and Nowakowski [12] show that some octal games exhibit arithmetic
periodicity when a pass move is allowed, and Howse and Nowakowski [13] point
out that hexadecimal games can have a variety of interesting kinds of periodicity,
including arithmetic periodicity.

As will be explained below, our Sprague–Grundy functions arise from a
kind of generalization of misère play. Periodicity results abound here as well.
Allen [5] proves periodicity in the context of misère play using the traditional
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analysis tool of genus sequences. Periodicity results for misère games are placed
in a very contemporary context by Weimerskirch [20], who uses them for the
calculation of quotient monoids. In fact, it may be that “misère-like” situations
are more likely to exhibit periodicity. Fairly recently, Sopena [17] presented a
subtraction/division game for which the Sprague–Grundy function is aperiodic
under normal play, but periodic under misère play.

Nevertheless, much remains less than perfectly understood about periodicity.
Althöfer and Bültermann [6] showed that periods for Sprague–Grundy functions
can be arbitrarily large, but for specific situations it may not be clear what the
precise behavior of the periods is. For instance, Albert and Nowakowski [4]
demonstrate the existence of periodic behavior in the k-th diagonals G(a, a+k) for
two-pile greedy Nim, but not the form of the period. Indeed, this is the situation
with the Sprague–Grundy functions we are studying, for which we conjecture,
but cannot yet prove, that there are infinitely many different periods. More
generally, after observing periodic behavior for the Sprague–Grundy function
of arc Kayles for various classes of graphs, Huggan and Stevens [14, p. 13]
conclude that “a general theorem on periodic behavior of games would help this
analysis”, and that is certainly the case here as well.

The original aim of this work was to develop a new approach to studying
periodicity, with the hope that this would shed light on the periodicity properties
of As first described in [2]. In that work, we found that each row of every array As

is eventually arithmetically periodic. In this paper, we utilize the arrays As to
construct the stabilization arrays

↔

A s . In effect, the stabilization arrays arise from
the original arrays in the following manner: Within each array As , we continue
down each individual row until we reach the arithmetically periodic part of that
row, and then extend the arithmetic periodicity for that row backwards. The
resulting arrays become doubly infinite and everywhere periodic.

As is true of the original arrays As , the stabilization arrays
↔

A s exhibit interest-
ing properties, some of which we highlight in Sections 3 and 4. Notably, the same
mex rule that was used to construct the original arrays As is still satisfied in the
stabilized arrays

↔

A s , and if in each row of As , the “locator property” eventually
holds, then it holds for every entry in

↔

A s . We conclude Section 4 with the
conjecture that for s ̸= t and {s, t} ̸= {0, 1} we have

↔

A s ̸=
↔

A t , and provide some
evidence for this conjecture. In Section 5, we build, from the stabilized arrays

↔

A s ,
the multiplication groups

↔Ms , which are generated by the regular actions of
↔

A s

on itself. The groups
↔Ms are the second focus of this article, and its highlight.

As the reader will see, these groups are surprisingly intricate and yield some
beautiful results and conjectures. After first studying, in Section 6.1, the simplest
examples,

↔M0 and
↔M1, our discussion in Section 6.2 of a specific example of

a small subgroup of
↔M2 further helps detail the complexity of the groups

↔Ms .
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We end with a “mex–maxx conjecture”, which, in the stabilization, connects
the usual mex operations to a new operation, denoted by maxx. This property
does not hold in the original arrays As for s ≥ 2. Additional applications of
stabilization to periodicity questions will be discussed elsewhere.

2. Mex and the arrays As

In the following, we closely follow [1; 2]. We begin by constructing a family of
infinite arrays using the mex operation:

Definition 1. For a set X ⊂ N0 = {0, 1, 2, 3, . . . } we define mex X to be the
smallest nonnegative integer not contained in X . Here, mex stands for minimal
excluded value.

Definition 2. For any 2-dimensional array A indexed by N0×N0, let ai, j denote
the entry in row i , column j , where i, j ≥ 0. The principal subarray A(p, q)

is the subarray of A consisting of entries ai, j with indices (i, j) ∈ {0, . . . , p}×
{0, . . . , q}. For i ≥ 0 define Up(i, j) = {ap, j : p < i}, and for j ≥ 0 define
Left(i, j)= {ai,q : q < j} and Right(i, j)= {ai,q : q > j}.

Observe that Definition 2 gives Left(i, 0)= Up(0, j)=∅.

Definition 3. The infinite N0×N0 array As , for s ∈N0, is constructed recursively:
the entry a0,0 is set to the seed s, and for (i, j) ̸= (0, 0),

ai, j :=mex
(
Left(i, j)∪Up(i, j)

)
.

We sometimes write A∗ for {As}s∈N0 .

Definition 3 yields the Grundy values of Nim when s= 0, of misère Nim when
s = 1, and of the sequential compound with a Nim pile with s stones for s > 1.

To motivate the terminology in the definitions, see, for example, Figure 1,
in which we are concerned with the principal subarrays A0(7, 7) and A2(7, 7),
with row indices i = 0, 1, 2, . . . , 7 and column indices j = 0, 1, 2, . . . , 7.

The reader may easily verify that a change of seed from 0 to 1 has a minimal
effect; other than the top left 2×2 block (i.e., A0(1, 1)), the entries in the array A1

are exactly the same as those of A0. As seed s = 1 corresponds to misère play,
this highlights the subtle difference between regular play and misère play.

The following simple, yet fundamental, property is an immediate consequence
of the recursive construction:

Proposition 4 [1, Proposition 2.4]. For each s, the array As is symmetric, and
each nonnegative integer appears exactly once in each row (and, by symmetry,
each column).

As we first demonstrated in [1], there are many patterns that occur in the
rows, columns, and diagonals of the arrays As , some of which will be useful
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

0 1 2 3 4 5 6 7
1 0 3 2 5 4 7 6
2 3 0 1 6 7 4 5
3 2 1 0 7 6 5 4
4 5 6 7 0 1 2 3
5 4 7 6 1 0 3 2
6 7 4 5 2 3 0 1
7 6 5 4 3 2 1 0





2 0 1 3 4 5 6 7
0 1 2 4 3 6 5 8
1 2 0 5 6 3 4 9
3 4 5 0 1 2 7 6
4 3 6 1 0 7 2 5
5 6 3 2 7 0 1 4
6 5 4 7 2 1 0 3
7 8 9 6 5 4 3 0


Figure 1. A0(7, 7) (left) and A2(7, 7) (right).

throughout the discussion below; we include the relevant patterns here. The
following lemma showcases the patterns in rows 0–3 of the arrays As .1

Lemma 5 [1, Propositions 3.1–3.4]. For seed s in As :

(1) For all j > s, a0, j = j .

(2) If j > s > 0 then

a1, j =

{
j−1 if j−s ≡ 0 mod 2,

j+1 if j−s ≡ 1 mod 2.

(3) If j > s ≥ 2 then

a2, j =


j+1 if s ≡ 0, 1 mod 3 and j > s+1 and j−s ≡ 0 mod 2,

j−1 if s ≡ 0, 1 mod 3 and j > s+1 and j−s ≡ 1 mod 2,

j−2 if s ≡ 2 mod 3 and j−s ≡ 0, 3 mod 4,

j+2 if s ≡ 2 mod 3 and j−s ≡ 1, 2 mod 4.

(4) If j > s ≥ 5 then

a3, j=



j−2 if s ≡ 0, 4 mod 9 and j−s ≡ 0, 3 mod 4,

j+2 if s ≡ 0, 4 mod 9 and j−s ≡ 1, 2 mod 4,

j+2 if s ≡ 1, 6 mod 9 and j > s+1 and j−s ≡ 0 mod 2,

j−2 if s ≡ 1, 6 mod 9 and j > s+1 and j−s ≡ 1 mod 2,

j+2 if s ≡ 2 mod 9 and j−s ≡ 0, 3 mod 4,

j−2 if s ≡ 2 mod 9 and j−s ≡ 1, 2 mod 4,

j−2 if s ≡ 3, 7 mod 9 and j > s+1 and j−s ≡ 0, 1 mod 4,

j+2 if s ≡ 3, 7 mod 9 and j > s+1 and j−s ≡ 2, 3 mod 4,

j+1 if s ≡ 5, 8 mod 9 and j > s+1 and j−s ≡ 0 mod 2,

j−1 if s ≡ 5, 8 mod 9 and j > s+1 and j−s ≡ 1 mod 2.

1For the reader consulting reference [1], which expresses the “pattern properties” in terms of an
operation ∗, we note that while ai, j ̸= i∗ j for small values of i, j , we do have ai, j = i∗ j for i, j > s.
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3. The stabilization arrays
↔
A s

3.1. Construction of
↔
A s.

Definition 6. For fixed seed s, associated to each index pair (i, j) in As is the
offset di ( j):= ai, j − j .

Definition 7. We say a sequence {xi }
∞

i=1 is eventually periodic if there is an
index N such that {xi }

∞

i=N is periodic. In this case, we say that {xi }
∞

i=1 is periodic
from N .

The offset is simply the difference between an entry and its column index. It
satisfies the following important property which sets the groundwork for much
of this paper:

Theorem 8 [2, Theorem 4.1] . For fixed seed s, and for each row i in As , the
sequence {di ( j)}∞j=0 is eventually periodic.

In [2], the authors prove this theorem using the finite state machine approach
of Landman [15]. Another possible approach is that of Dress et al. [10].

Definition 9. We say a function f : N0 → N0 is arithmetically periodic if
the sequence { f (n) − n}∞n=0 is periodic. We sometimes then say that f is
“fully arithmetically periodic”. The function f is arithmetically p-periodic if
f (a+ p) = f (a)+ p for all a ∈ N0. In this case, we sometimes say that f is

“fully arithmetically p-periodic”. We extend these terms analogously to the case
when f is Z.

Note that in the terminology of [12], for example, our definition of arithmetic
periodicity is equivalent to having saltus equal to the period p. Combining
Definitions 9 and 7 yields:

Definition 10. We say a function f :N0→N0 is arithmetically p-periodic from
N ∈ N if the sequence { f (n)− n}∞n=N is p-periodic, i.e., f (n+ p)= f (n)+ p
for all n ≥ N . We sometimes then say that f is “eventually p-periodic”. We
extend these terms analogously to the case when f is Z.

Definition 11. For a given seed s, let Ni denote the smallest integer greater
than s such that row i of As is arithmetically pi -periodic from Ni . The offset
period in row i , denoted by pi , is the period of the offsets {di ( j)}∞j=Ni

.

Example 12. Using Figure 1 as a reference, in A0, we have

{d0( j)}∞j=0 = {0,0,0, . . . }, so p0 = 1 and N0 = 0,

{d1( j)}∞j=0 = {1,−1,1,−1, . . . }, so p1 = 2 and N1 = 0,

{d2( j)}∞j=0 = {2,2,−2,−2,2,2, . . . }, so p2 = 4 and N2 = 0.
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Similarly, in A2, we have

{d0( j)}∞j=0 = {2,−1,−1,0,0,0, . . . }, so p0 = 1 and N0 = 3,

{d1( j)}∞j=0 = {0,0,0,1,−1,1,−1, . . . }, so p1 = 2 and N1 = 3,

{d2( j)}∞j=0 = {1,1,−2,2,2,−2,−2,2,2,−2, . . . }, so p2 = 4 and N2 = 2.

With this notation, Theorem 8 tells us that for each row i we have ai, j+pi =

ai, j + pi for sufficiently large j , so for each row i , the sequence {di ( j)}∞j=0
is eventually arithmetically pi -periodic. We will use Theorem 8 to construct,
from the family A∗, a family

↔

A∗ of “stabilized arrays”, where we use the term
“stabilized” to connote the idea that each row in the resulting array will be
arithmetically periodic, rather than just eventually arithmetically periodic.

We begin with the central definition of this paper. Note that ⌈x⌉ denotes the
usual ceiling function.

Definition 13. We define the stabilization of As , denoted by
↔

A s , to be the N0×Z

array arising as follows: set ri, j = ⌈(Ni − j)/pi⌉ for each j ∈ Z and define the
(i, j) entry of

↔

A s to be ↔a i, j = ai,( j+ri, j ·pi )− ri, j pi .

Expressed verbally, to define
↔

A s we do the following: In each row i of the
original array As we move (in jumps of length pi ) until we reach the arithmetically
periodic part of that row; thus to define ↔a i, j we examine ai, j = ai,( j+ri, j ·pi ). Then
we extend the arithmetic periodicity for that row backwards, which corresponds
to ai,( j+ri, j ·pi )− ri, j pi .

The values ri, j tell how many jumps of size pi to the right (if ri, j > 0) or
to the left (if ri, j ≤ 0, although in that case, strictly speaking, no jumps are
needed) must be performed in row i to reach from column j to the periodic part
of As . Once a given row in As has reached its arithmetically periodic part, the
entries in

↔

A s agree with the entries in As . We note that, as a direct result of the
construction, row i in

↔

A s is arithmetically pi -periodic everywhere.
Within the stabilized arrays, we define the column indexing by declaring that

entry 0 in row i = 0 appears in column j = 0, i.e., so that ↔a 0,0 = 0. Since the
entry 0 occurs exactly once in row i = 0, this indexing is well defined.

3.2. Examples of construction. To illustrate Definition 13, we now look at the
construction of

↔

A2 based on A2(7, 7) from Figure 1. A portion of
↔

A2 can be
found in Figure 2, so that the reader can verify that the calculations do, indeed,
work. We refer the reader to Example 12 for calculations of pi and Ni .

Example 14. In this example, we construct the values of row i = 0 in
↔

A2. Here,
N0 = 3 and p0 = 1.

(1) To find ↔a 0,0: We have r0,0 = ⌈(N0 − 0)/p0⌉ = 3, and therefore ↔a 0,0 =

a0,(0+r0,0·p0)− r0,0 · p0 = a0,0+3·1− 3 · 1= a0,3− 3= 0.
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(2) To find ↔a 0,1: We have r0,1 = ⌈(N0 − 1)/p0⌉ = 2, and therefore ↔a 0,1 =

a0,(1+r0,1·p0)− r0,1 · p0 = a0,1+2·1− 2 · 1= a0,3− 2= 1.

(3) To find ↔a 0,2: We have r0,2 = ⌈(N0 − 2)/p0⌉ = 1, and therefore ↔a 0,2 =

a0,(2+r0,2·p0)− r0,2 · p0 = a0,2+1·1− 1 · 1= a0,3− 1= 2.

(4) To find ↔a 0,3: We have r0,3 = ⌈(N0 − 3)/p0⌉ = 0, and therefore ↔a 0,3 =

a0,(3+r0,3·p0)− r0,3 · p0 = a0,3+0·1− 0 · 1 = a0,3− 0 = 3. Note as a0,3 is in
the periodic part of the row, we expected ↔a 0,3 = a0,3.

(5) Skipping ahead, to↔a 0,7: We have r0,7=⌈(N0 −7)/p0⌉=−4, and therefore
↔a 0,7 = a0,(7+r0,7·p0)− r0,7 · p0 = a0,7+(−4)·1− (−4) · 1= a0,3+ 4= 7. Note
as a0,7 is in the periodic part of the row, we expected ↔a 0,7 = a0,7.

(6) Moving backwards, to ↔a 0,−1: We have r0,−1 = ⌈(N0 + 1)/p0⌉ = 4, and
therefore ↔a 0,−1 = a0,(−1+r0,−1·p0) − (r0,−1) · p0 = a0,−1+(4)·1 − (4) · 1 =
a0,3− 4=−1.

(7) Likewise, for ↔a 0,−2: We have r0,−2 = ⌈(N0 + 2)/p0⌉ = 5, and therefore
↔a 0,−2 = a0,(−2+r0,−2·p0)− (r0,−2) · p0 = a0,−2+(5)·1− (5) ·1= a0,3−5=−2.

Example 15. In this example, we construct the values of row i = 1 in
↔

A2. Here
N1 = 3 and p1 = 2.

(1) To find ↔a 1,0: We have r1,0 = ⌈(N1 − 0)/p1⌉ = 2, and therefore ↔a 1,0 =

a1,(0+r1,0·p1)− r1,0 · p1 = a1,0+2·2− 2 · 2= a1,4− 4=−1.

(2) To find ↔a 1,1: We have r1,1 = ⌈(N1 − 1)/p1⌉ = 1, and therefore ↔a 1,1 =

a1,(1+r1,1·p1)− r1,1 · p1 = a1,1+1·2− 1 · 2= a1,3− 2= 2.

(3) To find ↔a 1,2: We have r1,2 = ⌈(N1 − 2)/p1⌉ = 1, and therefore ↔a 1,2 =

a1,(2+r1,2·p1)− r1,2 · p1 = a1,2+1·2− 1 · 2= a1,4− 2= 1.

(4) To find ↔a 1,7: We have r1,7 = ⌈(N1 − 7)/p1⌉ = −2, and therefore ↔a 1,7 =

a1,(7+r1,7·p1)− r1,7 · p1 = a1,7+−2·2− (−2) · 2= a1,3+ 4= 8.

(5) To find ↔a 1,−1: We have r1,−1 = ⌈(N1 + 1)/p1⌉ = 2, and therefore ↔a 1,−1 =

a1,(−1+r1,−1·p1)− (r1,−1) · p1 = a1,−1+2·2− 2 · 2= a1,3− 4= 0.

(6) To find ↔a 1,−2: We have r1,−2 = ⌈(N1 + 2)/p1⌉ = 3, and therefore ↔a 1,−2 =

a1,(−2+r1,−2·p1)− (r1,−2) · p1 = a1,−2+3·2− 3 · 2= a1,4− 6=−3.

Figure 2 shows a portion of the stabilized array for
↔

A2. We index the rows
with i = 0, 1, 2, . . . increasing down the page and we index the columns by the
entries in row 0. By Lemma 16, this indexing is well defined. It is interesting
to note that in the original array A2 the i-th row and i-th column give the same
infinite sequence, whereas in

↔

A2 the i-th column seems to no longer give the
same infinite sequence as (even a portion of) the i-th row.
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· · · −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 · · ·
· · · −7 −4 −5 −2 −3 0 −1 2 1 4 3 6 5 · · ·
· · · −8 −3 −2 −5 −4 1 2 −1 0 5 6 3 4 · · ·
· · · −5 −6 −3 −4 −1 −2 1 0 3 2 5 4 7 · · ·
· · · −3 −8 −7 −6 0 2 −2 3 −1 1 7 8 9 · · ·
· · · −4 −2 −6 −1 −5 −3 3 4 5 0 1 2 8 · · ·
· · · −9 −7 −1 0 1 −4 −3 −2 4 6 2 7 3 · · ·
· · · −2 −1 −8 −7 −6 −5 4 5 6 7 0 1 2 · · ·

...
...

...
...

...
...

...
...

...
...

...
...

...


Figure 2. A portion of

↔

A2: the row indexing is 0, 1, 2, . . . , and the
column indexing is defined to be the values in row i = 0.

Lemma 16. ↔a 0, j = j in
↔

A s .

Proof. Lemma 5(1) shows that for every As , if j > s, then a0, j = j , so row 0 is
always arithmetically periodic in the original arrays As from column s+ 1, with
period p0 = 1. Thus ↔a 0, j = a0, j = j for all j ≥ s+ 1, and since the rows of

↔

A s

are arithmetically periodic we have ↔a 0, j = j for all j . □

4. Properties of the stabilization and the stabilized mex rule

In this section, we highlight some of the stabilization properties of the arrays
↔

A s .
Recall the definitions of

↔

A s and Ni from Definitions 11 and 13, which will be
heavily used throughout this section.

4.1. Basic properties of the stabilization.

Proposition 17. For a fixed seed s that is in As for all j ≥ Ni and in
↔

A s for
all j ∈ Z, the entries in row i from columns j to j + pi − 1 form a complete set
of representatives mod pi .

Proof. We use the surjectivity of rows in the arrays As from Proposition 4. In As ,
fix row i and recall that di ( j) is periodic with offset period pi for j ≥ Ni , i.e., for
j ≥ Ni we have ai, j ≡ ai, j+pi mod pi . Thus all ai, j with j ≥ Ni belong to one
of the congruence classes mod pi of ai,Ni , . . . , ai,(Ni+pi−1). Since row i contains
all natural numbers, this must be a complete set of representatives mod pi .

The full result follows by arithmetic periodicity and the construction of
↔

A s . □

Definition 18. For each i ∈N0 we define the arithmetically pi -periodic function
σi : Z→ Z by σi ( j) :=↔a i, j .

We speak interchangeably of row i in
↔

A s being arithmetically pi -periodic
and σi being arithmetically pi -periodic.
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Theorem 19. For each i ∈ N0, the function σi : Z→ Z is an arithmetically
pi -periodic bijection. Furthermore, for any i ̸= i ′ and any j ∈ Z we have
σi ( j) ̸= σi ′( j).

Proof. Arithmetic periodicity holds by Theorem 8. The remainder of the proof
makes frequent use of Proposition 4.

Fix row i and define S = {↔a i,Ni ,
↔a i,Ni+1,

↔a i,Ni+2, . . . } = {ai,Ni , ai,Ni+1, . . . }.
By Proposition 17, S contains representatives of all congruence classes mod pi ,
and arithmetic periodicity implies that in each such congruence class all but
finitely many positive representatives are contained in S. It follows that there is
a well-defined maximal element m of Z \ S and so S = {m+ 1, m+ 2, . . . } ∪ T
for some finite subset T of N0.

For any x ∈ Z there is l ∈ Z such that x+ lpi > max{m, i+Ni }. By definition
of m this means there is a j such that ai, j = x + lpi . By [2, Proposition 4.2]
(which states that for all i, j > 0, ai, j ≤ i + j) and our choice of l we have
i + Ni < ai, j ≤ i + j , so j > Ni . Thus, by definition of Ni we have σi ( j) =
↔a i, j = ai, j = x + lpi , which shows that σi ( j − lpi ) = x . It follows that σi is
surjective.

If σi ( j)= σi ′( j ′) then

σi ( j + lpi pi ′)= σi ( j)+ lpi pi ′ = σi ′( j ′)+ lpi pi ′ = σi ′( j ′+ lpi pi ′)

for any integer l. Taking lpi pi ′ ≥max{Ni , Ni ′} we get

ai,( j+lpi pi ′ )
= σi ( j + lpi pi ′)= σi ′( j ′+ lpi pi ′)= ai ′,( j ′+lpi pi ′ )

.

If i = i ′, then by the injectivity of the rows in As we have j = j ′, and thus
the rows of

↔

A s are one-to-one. Last, if j = j ′, then ai,( j+lpi pi ′ )
= ai ′,( j+lpi pi ′ )

,
and we obtain the same element twice in column j + lpi pi ′ of As , which is a
contradiction unless i = i ′. □

4.2. The stabilized mex rule. We now introduce definitions and lemmas leading
up to the proof of Theorem 25, which asserts that the mex rule from Definition 3
applies, with suitable alteration, to the stabilization

↔

A s .

Definition 20. Working in
↔

A s instead of As , define
←→

Up (i, j),
←→

Left(i, j), and
←→

Right(i, j) by analogy with Definition 2, but allowing for any j ∈ Z.

For any set S ⊂ Z and any j ∈ Z, we denote by S+ j the set {x + j | x ∈ S}.

Lemma 21. For fixed s and for each row i and each j, m ∈ Z we have
←→

Left(i, j+mpi )=
←→

Left(i, j)+mpi and
←→

Right(i, j+mpi )=
←→

Right(i, j)+mpi .

If p := lcm{p0, . . . , pi } and j, m ∈ Z, then
←→

Up (i, j +mp)=
←→

Up (i, j)+mp.
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Proof. We repeatedly use the arithmetic periodicity in row i :
←→

Left(i, j +mpi )= { . . . ,
↔a i,( j+mpi−2),

↔a i,( j+mpi−1)}

= { . . . ,
↔a i,( j−2)+mpi ,

↔a i,( j−1)+mpi }

= { . . . ,
↔a i,( j−2),

↔a i,( j−1)}+mpi

=
←→

Left(i, j)+mpi .

The proof for
←→

Right is similar.
As for

←→

Up , we have
←→

Up (i, j +mp)= {
↔a 0,( j+mp),

↔a 1,( j+mp), . . . ,
↔a i−1,( j+mp)}

= {
↔a 0, j +mp,

↔a 1, j +mp, . . . ,
↔a (i−1), j +mp}

= {
↔a 0, j ,

↔a 1, j , . . . ,
↔a (i−1), j }+mp

=
←→

Up (i, j)+mp. □

Definition 22. For any subset S ⊊ Z such that Z \ S contains only finitely many
negative integers, we define mexZS to be the smallest integer not contained in S.

We note that for each seed s and pair (i, j), Proposition 17 and Theorem 19
ensure that the set Z \

←→

Left(i, j) contains only finitely many negative integers.

Lemma 23. If S ⊊ Z is such that Z \ S contains only finitely many negative
integers, then mexZ(S+ j)=mexZ(S)+ j for all j ∈ Z.

Proof. Let χS : Z→ {0, 1} denote the characteristic function of S. Since Z \ S
contains only finitely many negative integers the same is true for Z \ (S + j),
and thus mexZ(S+ j) is well defined. We see that, for each j ,

mexZ(S+ j)=min{z ∈ Z | χ(S+ j)(z)= 0}

=min{z ∈ Z | χS(z− j)= 0}

=min{z′+ j ∈ Z | χS(z′)= 0}

=mexZ(S)+ j. □

The next lemma follows immediately from the definitions.

Lemma 24. Let S ⊊ N0. Then mex(S)=mexZ(S ∪ (Z \N0)).

Recalling our definition of Ni (Definition 11), we may now confirm that the
mex rule still holds in the stabilized array.

Theorem 25. For fixed s and for all (i, j) ∈ N0×Z,
↔a i, j =mexZ

(←→
Left(i, j)∪

←→

Up (i, j)
)
.

Proof. Fix i and let N =max{N0, N1, . . . , Ni }; this allows N to be sufficiently
large that rows 0 through i have stabilized. Throughout this proof we let i ′ denote
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a row index with i ′ ≤ i and j ′ a column index with j ′ ≥ N . In each of the rows i ′

and columns j ′, we are in the part of the original array As which is arithmetically
periodic, and so ↔a i ′, j ′ = ai ′, j ′ ∈ N0. Moreover, we have

←→

Up (i ′, j ′)= Up(i ′, j ′)
and

←→

Right(i ′, j ′)= Right(i ′, j ′). Since σi ′ is bijective, we therefore have
←→

Left(i ′, j ′)= Z \
(
{
↔a i ′, j ′} ∪

←→

Right(i ′, j ′)
)
= Z \

(
{ai ′, j ′} ∪Right(i ′, j ′)

)
= N0 \

(
{ai ′, j ′} ∪Right(i ′, j ′)

)
∪ (Z \N0)

= Left(i ′, j ′)∪ (Z \N0).

By Lemma 24,

ai ′, j ′ =mex
(
Left(i ′, j ′)∪Up(i ′, j ′)

)
=mexZ

(
Left(i ′, j ′)∪ (Z \N0)∪Up(i ′, j ′)

)
,

proving that for i ′ ≤ i and j ′ ≥ N , we have
↔a i ′, j ′ = ai ′, j ′ =mexZ

(←→
Left(i ′, j ′)∪

←→

Up (i ′, j ′)
)
. (4.2.1)

We now specialize to row i and consider an arbitrary column j . Let p =
lcm{p0, . . . , pi } and choose k ∈Z so j+kp≥ N . Then, by the analysis in (4.2.1)
and the periodic behavior of

↔

A s ,
↔a i, j + kp =↔a i, j+kp =mexZ

(←→
Left(i, j + kp)∪

←→

Up (i, j + kp)
)
.

By Lemma 21 we obtain
↔a i, j + kp =mexZ

((←→
Left(i, j)+ kp

)
∪

(←→
Up (i, j)+ kp

))
=mexZ

((←→
Left(i, j)∪

←→

Up (i, j)
)
+ kp

)
,

and, finally, by Lemma 23 we have ↔a i, j =mexZ

(←→
Left(i, j)∪

←→

Up (i, j)
)
. □

4.3. The locator property. The focus of our paper [3] was the “locator property”,
which establishes a connection between the row index, column index, and value
of an entry. This property may also be understood in terms of cycles of a
permutation, as the locator property holds whenever the row permutations are
involutions.

Definition 26. Let seed s be fixed. For each i , define the bijective function
mi : N0→ N0 by mi ( j) := ai, j .

We will at times refer to the function mi as “row i”.

Definition 27 [3]. For a fixed seed s we say that the locator property holds in As

at (i, j) if there exists k ∈ Z such that mi ( j) = k and mi (k) = j . We say that
the locator property eventually holds in row i of As if there is some Ji such that
for j ≥ Ji the locator property holds at (i, j).
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Note that this property yields mi (mi ( j))= j . Another way to state the locator
property is that the entry j in row i appears in column ai, j , i.e., ai,ai, j = j .

Theorem 28 [3, Proposition 3.2, Theorem 3.13]. For seeds s = 0, 1 the locator
property holds in As for all (i, j). For seeds s = 2, 3, 5, 7, the locator property
holds in As for all (i, j) ∈ Ls , where

L2 = {(i, j) : i > 2 or j > 2},

L3 = {(i, j) : (i > 3 or j > 3) and j ̸= 1, 2 and |i − j |> 1},

L5 = {(i, j) : (i > 6 or j > 6) and j ̸= 1, 2, 3, 4 and |i − j |> 2},

L7 = {(i, j) : (i > 9 or j > 9) and j ̸= 1, 2, 3, 4, 5 and |i − j |> 3}.

Computational evidence given in [3] suggests that the locator property does
not hold for seeds other than those mentioned in Theorem 28 above.

We now bring the locator property into the context of the stabilization arrays.
Recall our definition of the function σi (Definition 18).

Definition 29. For a fixed seed s we say that the locator property holds in
↔

A s

at (i, j) if there exists k ∈ Z such that σi ( j)= k and σi (k)= j .

As with Definition 27, this means that σi (σi ( j))= j .
As might be expected, the locator property holding in the original array yields

the locator property in the stabilized array as well:

Proposition 30. If As is such that for each i ∈N0 the locator property eventually
holds in row i , then in

↔

A s the locator property holds for all i and j .

Proof. Fix i, j and suppose that the locator property holds in As in row i for all
columns j ≥ Ji . Choose k ∈N0 large enough that both ↔a i, j+kpi = ai, j+kpi ≥ Ni

and j + kpi ≥max{Ji , Ni }. Then

σi (σi ( j))= σi (σi ( j)+ kpi )− kpi (by periodicity)

= mi (σi ( j)+ kpi )− kpi (because ↔a i, j + kpi ≥ Ni )

= mi (σi ( j + kpi ))− kpi (by periodicity)

= mi (mi ( j + kpi ))− kpi (since j + kpi ≥ Ni )

= ( j + kpi )− kpi (since j + kpi ≥ Ji )

= j.

Thus the locator property holds for all i and j . □

4.4. Contrasting distinct arrays in
↔
A∗. Building on Lemma 16, we end this

section by examining the differences between
↔

A s and
↔

A t for s ̸= t . Lemma 16
tells us that all stabilization arrays agree on row 0 entries. The smallest changes
to the overall original arrays occur in the stabilizations for seeds 0 and 1. In
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particular, for columns j ≥ 0 the stabilization of A0 agrees with A0 itself; i.e.,
for all j ≥ 0 in A0, ↔a i, j = ai, j , as A0 is always arithmetically periodic. Since
A0 and A1 differ only in their respective 2× 2 principal subarrays, it follows
immediately from Definition 13 that

↔

A0 =
↔

A1.
A natural question arising from Lemma 16 is whether the stabilizations arising

from different seeds could possibly turn out to be equal. We conjecture that,
except for the case

↔

A0=
↔

A1 above,
↔

A s ̸=
↔

A t if s ̸= t . The following proposition
gives strong evidence for the veracity of this conjecture, and proves that, once
again, seeds 0 and 1 behave differently than the rest:

Proposition 31. There is a partition S1, S2, . . . , S6 of N0 such that if s ∈ Si and
t ∈ S j for i ̸= j we have

↔

A s ̸=
↔

A t .

Proof. Define the partition S1, S2, . . . , S6 as follows:

S1 = {0, 1},

S2 = {s ∈ N0 : s ≡ 0 (mod 2), s ̸= 0},

S3 = {s ∈ N0 : s ≡ 0, 1 (mod 3) and s ≡ 1, 3 (mod 4), s ̸= 1},

S4 = {s ∈ N0 : s ≡ 2 (mod 3) and s ≡ 1 (mod 4)},

S5 = {s ∈ N0 : s ≡ 5, 8 (mod 9) and s ≡ 3 (mod 4)},

S6 = {s ∈ N0 : s ≡ 2 (mod 9) and s ≡ 3 (mod 4)}.

The crux of the proof is that the entries in column j = 0 vary from stabilized
array to stabilized array. We make heavy use of Lemma 5, as it identifies patterns
for rows 0 through 3 for every one of the original arrays As .

The array A0 is fully arithmetically periodic, and hence, in its stabilization
↔

A0,
we have↔a i, j ≥ 0 for j ≥ 0, whereas we have↔a i, j < 0 for j < 0. As we previously
noted,

↔

A0 =
↔

A1.
Suppose s >1. If s is even then↔a 1,0=−1, whereas if s is odd then↔a 1,0=1. If

s is odd and s≡ 0, 1 (mod 3), then↔a 2,0=−1. If s is odd and s≡ 2 (mod 3), then
we need two cases: if s ≡ 1 (mod 4), then ↔a 2,0 =−2, whereas if s ≡ 3 (mod 4),
then ↔a 2,0 = 2. Last, if s ≡ 3 (mod 4), and s ≡ 5, 8 (mod 9) then ↔a 3,0 =−1 but
if s ≡ 3 (mod 4) and s ≡ 2 (mod 9), then we get ↔a 3,0 =−2.

Thus, for s > 1, at least one of a1,0, a2,0, a3,0 is negative, contrary to the
situation for s = 0, 1. More generally, we have shown that seeds from distinct
blocks of the partition yield distinct triples (a1,0, a2,0, a3,0), proving the result. □

Conjecture 32. For s ̸= t and {s, t} ̸= {0, 1} we have
↔

A s ̸=
↔

A t .

In the proof of Proposition 31, considering columns other than column 0 or
larger values of the row index i would readily yield an even finer partition, adding
to the evidence for our conjecture.
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5. The multiplication group of the stabilization: general properties

For each fixed seed s, Definition 18 and Theorem 19 tell us that row i of
↔

A s

defines the arithmetically pi -periodic permutation σi : Z→ Z. In this section,
we focus on the observation that the functions σi are affine permutations.

Write [p]={1, . . . , p} and let Sp denote the symmetric group on [p]. Suppose
f : Z→ Z is an arithmetically p-periodic permutation of Z. For each i ∈ [p]
and k ∈ Z, there are ri ∈ Z and ni ∈ [p] such that f (i + kp) = ri p+ ni + kp,
so, adopting notation suggested by [8], we may write f = [r1, . . . , rp | τ̄ ],
where τ̄ ∈ Sp is given by τ̄ (i)= ni . Of course, this notation for f is valid; since
f is arithmetically p-periodic, it is determined by its values on [p].

If, with this notation, we have f = [r1, . . . , rp | τ̄ ] and g = [s1, . . . , sp | σ̄ ],
then a straightforward calculation gives

f g = [s1+ rσ̄ (1), . . . , sp + rσ̄ (p) | τ̄ σ̄ ]. (5.0.1)

This shows that the group of arithmetically p-periodic permutations of Z is
isomorphic to the semidirect product Zp ⋉ Sp. The semidirect product of groups
is a standard construction; see [10, §5.5] for further details.

Definition 33. [8; 16] The group of affine p-periodic permutations of Z is the
subgroup {

[r1, . . . , rp | τ̄ ] ∈ Zp ⋉ Sp
∣∣ ∑

ri = 0
}
.

Proposition 34 is the key observation of this section.

Proposition 34. For fixed seed s and each i , the map σi is an affine pi -periodic
permutation of Z.

Proof. By Proposition 17, ai,(Ni+1), . . . , ai,(Ni+pi ) is a complete set of represen-
tatives mod pi . For each k, Lemma 21 (which we may apply in this context
since we are considering column indices greater than Ni ) tells us that all entries
congruent to and larger than ai,(Ni+k) appear to the right of column Ni + k. By
Proposition 4 all other elements of N0 congruent to, and necessarily smaller
than, ai,(Ni+k) must appear to the left, hence among ai,0, . . . , ai,Ni . There are
⌊ai,(Ni+k)/pi⌋ such entries (where ⌊x⌋ denotes the usual floor function) and so

Ni + 1= |{ai,0, . . . , ai,Ni }| =

pi∑
k=1

⌊
ai,(Ni+k)

pi

⌋
. (5.0.2)

Because (5.0.2) depends only on the fact that arithmetic periodicity in row i holds
for column indices at least Ni , but not on Ni being the smallest such possible
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column index, we can, without loss of generality, choose any integer l > 0 such
that lpi > Ni and replace Ni in (5.0.2) with lpi . Then

lpi + 1=
pi∑

k=1

⌊
ai,(lpi+k)

pi

⌋
=

pi∑
k=1

⌊↔a i,(lpi+k)

pi

⌋
,

by definition of Ni . But then, using the periodicity of
↔

A s , we have

lpi + 1=
pi∑

k=1

⌊↔a i,(lpi+k)

pi

⌋
=

pi∑
k=1

⌊
(
↔a i,k)+ lpi

pi

⌋
= lpi +

pi∑
k=1

⌊↔a i,k

pi

⌋
,

which yields
pi∑

k=1

⌊↔a i,k

pi

⌋
= 1. (5.0.3)

By Proposition 17 and Theorem 19 we know that for k = 1, . . . , pi there are
integers r1, . . . , rpi and a permutation (n1, . . . , n pi ) of 1, . . . , pi such that↔a i,k =

rk pi + nk , and we have ⌊↔a i,k

pi

⌋
=

{
rk + 1 if nk = pi ,

rk otherwise.

Using this to rewrite (5.0.3), the result follows. □

Definition 35. For fixed seed s, we define
↔Ms to be the subgroup generated by

{σi | i ∈ N0} of the symmetric group on Z, with the group operation defined to
be composition of the permutations. We refer to

↔Ms as the multiplication group
for

↔

A s .

Since a composition of a p-periodic affine permutation and a q-periodic
affine permutation is also a periodic permutation of period at most lcm(p, q), by
Proposition 34,

↔Ms is a group of affine permutations, although not necessarily
all of the same period. By Proposition 30, when s is such that the locator property
holds in

↔

A s , we have σi (σi ( j))= j for each i, j , and thus
↔Ms is generated by

involutory affine permutations. This is interesting because the affine permutation
groups Ãn (not to be confused with

↔

A s) are known to be generated by involutions.

6. The multiplication group of the stabilization: some structure

6.1. The structure of ↔M0 and ↔M1. For any seed s, periodicity in each row
implies that any element of

↔Ms is determined by its values on N0. In
↔M0, though,

we have the additional property that, for every row i , the permutation σi restricts
to a bijection σi : N0→ N0. It follows that the structure of

↔M0 is exactly the
structure of the group 0 generated by the restrictions σi |N0 .
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Now, as is well known, A0 can itself be viewed as the multiplication table
for a group structure on N0, namely, the Cartesian product of countably many
copies of Z/2Z, each corresponding to a digit in the binary representation of the
natural numbers [7]. It follows that 0, and hence

↔M0, is isomorphic to this same
Cartesian product. Since

↔

A0 =
↔

A1, we have
↔M0 =

↔M1 as well.
For comparison with Section 6.2, consider the following four elements of

↔M0;
it is not difficulty to verify that, as expected, these comprise a finite subgroup
isomorphic to Z/2Z×Z/2Z:

σ0 = e,

σ1 = [−1, 0, 0, 1 | (14)(23)],

σ2 = [0,−1, 0, 1 | (13)(24)],

σ3 = [0, 0,−1, 1 | (12)(34)].

For convenience we have written σ1 with period 4, even though as a map it
has period 2. Proposition 38 addresses in more detail the issue of multiple
representations of an affine permutation.

6.2. An interesting subgroup of ↔M2. In this section we study a small subgroup
of the multiplication group

↔M2, one of the highlights of this paper; even this
initial analysis of

↔M2 demonstrates its complexity and beauty. As noted above
more generally,

↔M2 is a group of affine permutations and each σi in
↔M2 is an

involution. This is of course also true in
↔M0 (and

↔M1), but as we will now see,
the similarity does not go much beyond that observation.

We write ē for the identity element of Sn regardless of the value of n and
write e for the identity element of

↔M2. Reading off rows 0, 1, 2, 3 from
↔

A2

(see Figure 2), consider the following four elements of
↔M2:

σ0 = e,

σ1 = [0, 0, 0, 0 | (12)(34)],

σ2 = [−1,−1, 1, 1 | (13)(24)],

σ3 = [−1, 0, 0, 1 | (14)(23)].

Again for convenience, we have written σ1 and σ3 with period 4, even though as
maps they have period 2.

Proposition 36. The permutations σ1, σ2, σ3 satisfy the following relations for
all k ∈ Z (we write a for (a, b, c)):

(1) σ 2
1 = σ 2

2 = σ 2
3 = e.

(2) (σ1σ2)
2
= e.

(3) (σ1σ3σ2σ3)
2
= e.



334 LOWELL ABRAMS AND DENA S. COWEN-MORTON

(4) σ a
1 (σ3σ1)

2k+bσ c
3 =



[k,−k,k,−k | ē] if a=(0,0,0),

[k,−k−1,k+1,−k |(13)(24)] if a=(0,1,0),

[k,−k,k,−k |(12)(34)] if a=(1,0,0),

[k,−k−1,k+1,−k |(14)(23)] if a=(1,1,0),

[−k−1,k,−k,k+1 |(14)(23)] if a=(0,0,1),

[−k−1,k+1,−k−1,k+1 |(12)(34)] if a=(0,1,1),

[−k−1,k,−k,k+1 |(13)(24)] if a=(1,0,1),

[−k−1,k+1,−k−1,k+1 | ē] if a=(1,1,1).

(5) σ a
2 (σ3σ2)

2k+bσ c
3 =



[−k,−k,k,k | ē] if a=(0,0,0),

[−k−1,−k,k,k+1 |(12)(34)] if a=(0,1,0),

[−k−1,−k−1,k+1,k+1 |(13)(24)] if a=(1,0,0),

[−k−2,−k−1,k+1,k+2 |(14)(23)] if a=(1,1,0),

[k−1,k,−k,−k+1 |(14)(23)] if a=(0,0,1),

[k,k,−k,−k |(13)(24)] if a=(0,1,1),

[k,k+1,−k−1,−k |(12)(34)] if a=(1,0,1),

[k+1,k+1,−k−1,−k−1 | ē] if a=(1,1,1).

Proof. Relation (1) follows from Proposition 30. The proofs of the other relations
are all straightforward calculations, some involving induction. To illustrate the
group operation in

↔M2, we verify the case (a, b, c)= (0, 1, 0) of relation (4).
First, using (5.0.1) we have

σ3σ1 = [−1, 0, 0, 1 | (14)(23)] · [0, 0, 0, 0 | (12)(34)]

= [0+ 0, 0+ (−1), 0+ 1, 0+ 0 | (13)(24)] = [0,−1, 1, 0 | (13)(24)],

and therefore also

(σ3σ1)
2
= [0+ 1,−1+ 0, 1+ 0, 0+ (−1) | ē] = [1,−1, 1,−1 | ē].

Proceeding by induction on k, suppose that

(σ3σ1)
2k+1
= [k,−k− 1, k+ 1,−k | (13)(24)].

We then have

(σ3σ1)
2(k+1)+1

= [k,−k− 1, k+ 1,−k | (13)(24)] · [1,−1, 1,−1 | ē]

= [1+ k,−1+ (−k− 1), 1+ (k+ 1),−1+ (−k) | (13)(24)]

= [k+ 1,−(k+ 1)− 1, (k+ 1)+ 1,−(k+ 1) | (13)(24)],



A FAMILY OF NIM-LIKE ARRAYS: STABILIZATION 335

as desired, verifying the relation for positive k. To see that the relation holds for
negative k, note first that (σ3σ1)

−2
= [−1, 1,−1, 1 | ē], and then use this in a

second proof by induction. □

We now use the results of Proposition 36 to verify that the subgroup of
↔M2

generated by σ1, σ2, σ3 is given up to isomorphism by the presentation

⟨σ1, σ2, σ3 | σ
2
1 = σ 2

2 = σ 2
3 = (σ1σ2)

2
= (σ1σ3σ2σ3)

2
= e⟩

or, more picturesquely, that the graph depicted in Figure 3 is the Cayley graph
G(
↔M2, {σ1, σ2, σ3}) of that subgroup, using the right action of

↔M2 on itself. We
will write G123 for G(

↔M2, {σ1, σ2, σ3}). We encourage the reader to refer to
Figure 3 while reading through the following discussion verifying its validity.

First, we note that by relation (1) of Proposition 36, all edges in G123 may
be treated as bidirectional, hence undirected. Relations (2) and (3) validate the
σ1, σ2-squares and σ1, σ2, σ3-octagons in G123, respectively.

Now consider the subgraph G13 of G123 obtained by deleting all σ2 edges.
All vertices of G13 have degree 2, and hence G13 is a disjoint union of infi-
nite paths and finite cycles, each alternating between σ1-edges and σ3-edges.
However, relation (4) of Proposition 36 shows that the only possible solutions
to σ a

1 (σ3σ1)
2k+bσ c

3 = e fail to correspond to any finite cycle in G123. Thus, the
σ1-edges and σ3-edges form a disjoint union of infinite paths. We refer to each
such infinite path as a “1,3-path”.

A similar analysis, using relation (5) of Proposition 36, shows that the subgraph
G23 of G123 obtained by deleting all σ1 edges also consists of a disjoint union
of infinite paths, which we refer to as “2,3-paths”.

Proposition 37. If P1 is a 1,3-path and P2 is a 2,3-path, then P1 and P2 share
exactly two vertices, and these are the ends of a single σ3 edge.

Proof. We first show that P1 and P2 have a vertex X in common. Consider the
group M̂ given by the presentation

M̂= ⟨x1, x2, x3 | x2
1 , x2

2 , x2
3⟩.

We view the elements of M̂ as reduced words in x1, x2, x3, i.e., we presume
that all possible cancellations have been performed. Let π : M̂→ ↔M2 be the
map given by π : xi 7→ σi for i = 1, 2, 3, and let inv12 : M̂→ N0 be defined on
a word q1q2 · · · qn by

inv12(q1q2 · · · qn) :=
∣∣{(i, j) | qi = x2, q j = x1 and i < j}

∣∣.
(Note that inv12(q1q2 · · · qn) counts inversions of the order x1, x2.) We define
two kinds of operations on a word w ∈ M̂. If there are words w1, w2 ∈ M̂
such that w = w1x2x1w2, then we refer to w1x1x2w2 as a 2,1-swap of w.
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Figure 3. The Cayley graph for the subgroup generated by σ1, σ2,
and σ3. Horizontal edges correspond to σ1, vertical edges correspond
to σ2, and diagonal edges correspond to σ3.

If there are words w1, w2 ∈ M̂ such that w = w1x2x3x1w2 then we refer to
w1x3x1x3x2x3w2 as a 2,3,1-swap of w. These swaps correspond to taking
alternate paths around the squares and octagons, respectively. Note that if a
word w′ is obtained from a word w via a sequence of one or more swaps of either
kind, then inv1,2(w

′) < inv1,2(w), and by relations (2) and (3) of Proposition 36
we have π(w)= π(w′).

Suppose w ∈M̂ has inv1,2(x) > 0. Then in the word w there are subwords w1,
w2, w3, possibly empty, such that w =w1x2w2x1w3. Without loss of generality,
we may assume that w1 is as large as possible; this implies that w2 contains no
instance of x2. Given w1, we may also suppose that w3 is as large as possible;
this implies that w2 contains no instance of x1. If follows that either w2 is empty
or w2 = x3. In the former case we may apply a 2,1-swap to w and in the latter
case we may apply a 2,3,1-swap. Thus, we have proven that if inv1,2(x) > 0
then we can always use a sequence of 2,1-swaps and 2,3,1-swaps to obtain a
word w′ with inv1,2(w

′)= 0 and π(w′)= π(w).
Now let α be a vertex on P1 and let β be a vertex on P2; since G123 is

connected, there is a path P from α to β. By viewing vertices as paths from
the “origin”, i.e., the vertex corresponding to the group identity, we can interpret
α, β and P as elements of

↔M2 such that β = αP , and that P = π(P̂) for
some word P̂ ∈ M̂. Using 2,1-swaps and 2,3,1-swaps as necessary, we may
assume inv1,2(P̂)= 0. In that case there are words P̂1, P̂2 with P̂ = P̂1 P̂2 such
that P̂1 has no instance of x2 and P̂2 has no instance of x1. Because π(P̂1) has
no instance of σ2, απ(P̂1) corresponds to a vertex on P1. Similarly, because
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π(P̂2) has no instance of σ1, βπ(P̂2)
−1 corresponds to a vertex on P2. Now we

have β = αP = απ(P̂1)π(P̂2), and thus βπ(P̂2)
−1
= απ(P̂1), which shows that

we have a vertex γ = απ(P̂1) at which P1 and P2 intersect. Of course, each
of P1 and P2 has two edges incident to γ . Since every vertex in G123 has exactly
one σ1 edge, one σ2 edge, and one σ3 edge, and P1 and P2 can share neither a σ1

edge nor a σ2 edge, they necessarily share a σ3 edge d for which γ is an endpoint.
Suppose now, for the sake of contradiction, that P1 and P2 also share a

vertex δ which is not an endpoint of d. Let P ′1, P ′2 be the paths along P1, P2,
respectively, from γ to δ. Then P ′1 necessarily corresponds to an element g1 of
the form σ a

1 (σ3σ1)
2k+bσ c

3 for some a, b, c ∈ {0, 1} and k ∈ Z, and P ′2 necessarily
corresponds to an element g2 of the form σ

q
2 (σ3σ2)

2l+rσ s
3 for some q, r, s ∈{0, 1}

and l ∈ Z. Since P ′1 and P ′2 both start at γ and end at δ, interpreting γ and δ as
elements of

↔M2 we have γ g1 = δ = γ g2, and thus g1 = g2.
A careful analysis of the cases in relations (4) and (5), though, shows that

g1 ̸=g2. To see this, suppose that g1=[r1, r2, r3, r4 | τ̄ ] and g2=[s1, s2, s3, s4 | σ̄ ].
If τ̄ = σ̄ = ē or τ̄ = σ̄ = (14)(23), then [r1, r2, r3, r4] and [s1, s2, s3, s4] cannot
be equal since in both cases they necessarily have different sign patterns. If
τ̄ = σ̄ = (12)(34) or τ̄ = σ̄ = (13)(24), then [r1, r2, r3, r4] and [s1, s2, s3, s4]

cannot be equal since in both cases the entries of one will all have the same
absolute value and the entries of the other will not. □

This confirms that Figure 3 does indeed correctly depict G123.
We note that the inclusion of even the single additional generator σ4, given by

σ4 = [0,−1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0 | (1 3)(2 11)(4 7)(5 8)(6 9)(10 12)],

complicates the situation significantly. Indeed, we have the following relations:

(1) σ 2
4 = e.

(2) (σ3σ4)
3
= e.

(3) σ1σ4 and σ2σ4 have infinite order.

(4) (σ1σ3σ4)
8
= (σ3σ1σ4)

8
= (σ2σ3σ4)

8
= (σ3σ2σ4)

8
= e.

(5) σ1σ2σ4 = σ2σ1σ4 has infinite order.

(6) (σ3σ2σ1σ4)
10
= (σ1σ3σ1σ4)

4
= (σ1σ3σ2σ1σ4)

6
= (σ1σ3σ2σ1σ3σ4)

12

= (σ3σ2σ3σ2σ3σ4)
5
= e.

To verify these, it is helpful to make use of a simple lemma describing how our
notation can be used to represent the same permutation with different periods.

Proposition 38. Suppose that f = [r1, r2, . . . , rp | τ ], where τ ∈ Sp. Then,
for each positive integer l, the permutation f can also be expressed in the
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form f =[R1, R2, . . . , Rlp | T ], where T ∈ Slp and for each 0≤ k < l and i ∈ [p],

Ri+kp =

⌊
f (i)+ kp− 1

lp

⌋
and T (i + kp)= f (i)+ (k− Ri+kpl)p.

Proof. If we write ni = τ(i) for i ∈ [p] and νi = T (i) for i ∈ [lp], then for any
0≤ k < l and i ∈ [p] we want to construct Ri+kp ∈ Z and νi+kp ∈ [lp] such that

ri p+ ni + kp = f (i)+ kp = f (i + kp)= Ri+kplp+ νi+kp. (∗)

Solving for νi+kp, we require

0 < ri p+ ni + kp− Ri+kplp ≤ lp,

and now solving for Ri+kp gives

ri p+ ni + kp
lp

> Ri+kp ≥−1+
ri p+ ni + kp

lp
.

There exists a unique integer Ri+kp satisfying this condition, and it is given by
the formula in the statement of the lemma. From (∗), we easily get νi+kp =

f (i)+ kp− Ri+kplp. □

Using Proposition 38, we can express σ1, σ2, and σ3 in period 12, to match
the period of σ4. This gives

σ1 = [0, 0, . . . , 0 | (1 2)(3 4)(5 6)(7 8)(9 10)(11 12)],

σ2 = [−1,−1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1 | (1 11)(2 12)(3 5)(4 6)(7 9)(8 10)],

σ3 = [−1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 | (1 12)(2 3)(4 5)(6 7)(8 9)(10 11)].

Verification of the various relations now becomes primarily a matter of direct
computation; we sketch here some key points and examples. For instance,

σ3σ4 = [0,−1,−1, 0, 0, 0, 0, 0, 0, 1, 1, 0 | (1 2 10)(3 12 11)(4 6 8)(5 9 7)],

(σ3σ4)
2
= [−1, 0,−1, 0, 0, 0, 0, 0, 0, 1, 0, 1 | (1 10 2)(3 11 12)(4 8 6)(5 7 9)],

from which item (2) readily follows.
To verify claims of infinite order of a permutation f = [r1, r2, . . . , rp | τ ], as

in items (3) and (5), it is necessary and sufficient to show that if q is the order
of τ and we write f q

= [R1, R2, . . . , Rp | ē], then at least one of R1, . . . , Rp is
not 0. This is because f aq

= [a R1, a R2, . . . , a Rp | ē] for all a ∈ Z.
For example, we have

σ2σ4 = [0, 0,−1, 0, 0, 0, 0, 0, 0, 1, 0, 0 | (1 5 10 2)(3 11 12 8)(4 9)(6 7)],

(σ2σ4)
2
= [0, 0,−1, 0, 1, 0, 0,−1, 0, 1, 0, 0 | (1 10)(2 5)(3 12)(8 11)],

(σ2σ4)
4
= [1, 1,−1, 0, 1, 0, 0,−1, 0, 1,−1,−1 | ē],

which confirms the second assertion in item (3).
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The other assertions are verified similarly. Note that our list of relations im-
plicitly conveys all relations involving σ4 which are of length 3 or less. However,
we have omitted the vast majority of relations, both of finite and infinite exponent
and even among those of length at most 6.

7. The mex–maxx conjecture

We end this paper with a definition and a conjecture.

Definition 39. Let S ⊊ Z be any set such that Z \ S contains only finitely many
positive integers. Define maxxZ(S) to be the maximal excluded element of S,
i.e., the largest integer not in S.

Conjecture 40 (mex–maxx conjecture). For each seed s and for every (i, j) ∈
N0×Z we have

mexZ

(←→
Left(i, j)∪

←→

Up (i, j)
)
=
↔a i, j =maxxZ

( ←→
Right(i, j)∪

←→

Up (i, j)
)
.

We note that this property does not hold in the original arrays As for s ≥ 2.
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