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Values of generic impartial
combinatorial games

ERIC FRIEDMAN

We introduce the study of “typical” combinatorial games, where a specific
game is chosen at random from a large set of games. We study one such class
of games, those arising from a k-regular multigraph, and show that the limiting
distribution of (Sprague–Grundy) values converges to a stationary distribution
which only depends on k. We provide an iterative procedure for computing
this distribution and prove several high probability results for finite plays. Our
work provides some initial steps towards formalizing the “renormalization
approach” to combinatorial games which has proven effective at describing the
properties of several classic combinatorial games but as yet is nonrigorous in
most applications. In addition, our results may provide insights into properties
of complex combinatorial games that have so far resisted formal analyses.

1. Introduction

Combinatorial game theory primarily focuses on the detailed analysis and tech-
niques for specific games [1; 2]. We propose a complementary approach in
which we study statistical regularities across large classes of games. Our main
result shows that for a specific class of games, there exist strong regularities
among the distribution of Sprague–Grundy values (henceforth referred to simply
as “values”, capitalized to distinguish from other uses of the word). We show
that almost all k-regular multigraph games converge to a specific distribution
that only depends on k. We also prove other nonasymptotic properties of the
distribution to understand the convergence process.

Our analysis suggests a path to the formalization of renormalization analyses,
which have been effective in understanding games which appear to be unsolvable,
such a Wythoff’s game, Chomp, and perturbed versions of Nim [4] as well as
many other games and variants [5], but are mostly nonrigorous, with the notable
exception of [6].
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Also, as discussed in the final section of this paper, this model may also be use-
ful for understanding deterministic, but complex, games where the distributions
of values seem to behave randomly.

2. Definitions

In order to compute the value of a game one considers the game’s directed graph,
G, where nodes are positions and edges from a position point to other positions
via legal moves (their options) [2]. We will assume that this graph has a unique
sink (where the game ends) and is acyclic. One can then compute the values of
the positions iteratively, from the sink, by setting the value of the sink, V (r) = 0,
and then defining the value of node w to be the mex( ) of all its options, where
mex( ) is the minimum excluded value of its arguments, i.e., mex(0, 1, 3) = 2.

To simplify the presentation we will allow the digraph to be a directed multi-
graph, with potentially multiple edges from one node to another. This allows us
to define k-regular games as those in which every node in the directed multigraph,
except the sink, has exactly k outgoing edges.

Note that one could consider a directed graph that is not a multigraph but is
approximately k-regular asymptotically without changing the asymptotic behavior
of the values, since for large n the probability of two edges from a node pointing
to the same node vanishes. However, the assumption of strict k-regularity chosen
in the paper simplifies the presentation and analysis.

Since there always exists a topological ordering for a directed graph, to
simplify the presentation, we will assume that all nodes are numbered, 0, 1, . . .

and nodes only point to nodes with lower numeric values, i.e., the game proceeds
from higher numbered nodes with legal moves to lower numbered nodes. Then
we can view the value function as V (n) : N0 → N0, where N0 = {0, 1, 2, . . . }.

In this paper we will study the set of games which consists of all k-regular
multigraphs with labeled edges. In order to construct a (uniformly) randomly
chosen k-regular multigraph, we can take each node and then sequentially for
each of the k edges chose a random node with lower numeric label. For example,
if k=2 then node 6 could chose nodes 1 and 3, or node 4 twice.

We will focus on the dependent empirical probabilities,

pk
j (n) = |{0 ≤ i < n | V (i) = j}|/n. (1)

We will also consider their asymptotic values

pk
j = lim

n→∞
pk

j (n) (2)

which we will show are well defined.
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Note that both V (n) and pk
j (n) depend deterministically on the exact game

so will be viewed as random variables when a game is chosen at random.

2.1. Examples. Consider the classic game of one pile Nim [3], which is neither
random nor k-regular but provides a simple example to demonstrate our notation.
In this game there is an initial number of tokens and players alternately remove
any number of tokens and the player who takes the last token wins. Clearly
this is a simple game as the optimal strategy is to take all the tokens, but it
will illustrate our basic notation. In this case node j corresponds to the case
with j tokens and since all moves move to lower number of tokens, node j has
exactly j edges, one to each node i for 0 ≤ i < j . Since V (0) = 0, by definition,
v(1) = mex(V (0)) = mex(0) = 1 and inductively, V ( j) = j so pNIM

j (n) does
not converge for any j .

If we modify the game so that a player is only allowed to take 1 token at a turn
(the she loves me she loves me not game), then we see that every node j > 1 has
one edge to the node directly before it and V ( j) = 0 if j is even and V ( j) = 1
if j is odd. In this case p j (n) converges to p j =

1
2 for j ∈ {0, 1}.

Now consider a randomly chosen k-regular game where k = 1. Note that in
this case node 1 has 1 edges pointing to node 0, while node 2 has 1 edge which
is chosen randomly to point at either node 1 or node 0. Since V (0) = 0 we must
have V (1) = 1, thus p1

0(1) = p1
1(1) =

1
2 . The next value, V (2) is equally likely

to be 0 or 1 and thus p1
0(2) =

2
3 or p1

0(2) =
1
3 . It seems intuitively obvious that

this p1
j (N ) converges to 1

2 for j ∈ {0, 1} and 0 otherwise, since if p1
0(n) > 1

2
for some n then it is more likely for V (n) = 1 which will move it towards the
stationary distribution. In fact, this convergence is quite strong and we will show
that both p1

0(n) = p1
1(n) converge to 1

2 for large n for almost all games chosen
at random from the 1-regular games.

For k = 2 we similarly see that V (0) = 0 and V(1) = 1, but V (2) = 0 with
probability 1

4 , when both edges from node 2 point to node 1. Similarly, V (2) = 1
with probability 1

4 so V (2) = 2 with probability 1
2 . To compute the stationary

distribution, we note that V (n) = 0 whenever none of the options have value 0
which occurs with probability (1 − p2

0(n))2. Therefore the distribution will be
stationary if (1 − p2

0(n))2
= p2

0(n) which implies that

p2
0(n) = (3 − 51/2)/2 ≈ 0.38

As we show below, this is the asymptotic distribution and we will show that
p2

0(n) will converge to a fixed value p2
0 for almost all games chosen at random

from the 2-regular games.
Now consider p5

j (n) in as shown in Figure 1. Note that the numerical values
converge rapidly and that p5

5 is quite small.
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Figure 1. Numerical values of p5
j (n) for a randomly chosen 5-regular

multigraph. (Curves for higher j generally sit below those with
lower j . A color version of this and subsequent graphs is available
from https://library.slmath.org and also on the publisher’s web site (see
copyright page for URL.)

Figure 2. Numerical values of p50
j (n) for a randomly chosen 50-regular

multigraph.

Now compare to k = 50 in Figure 2. Note that the convergence is rapid for
p50

j (n) when j = 0 then a slower for each increase in j . In fact, as we show
later, the first appearance of a value of j = 50 is almost always around n = 250

which is not shown on this plot for obvious reasons.
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Figure 3. Numerical approximation of pk
j for various values of k with

j on the x-axis.

Consider Figure 3 with the asymptotic numerical values pk
j . Notice that the

values for small j’s are fairly constant and then drop off rapidly. Similarly to
the late appearance of values for j close to k, those values are extremely rare
and pk

k ≤ 2−k as proven later. Numerically, note that for k = 50, pk
0 ≈ 0.0560 ≈

W (50)/50 = 0.057 where W ( ) is the Lambert W function as discussed later.
Similarly pk

1 ≈ 0.0552 and pk
2 ≈ 0.0547.

Also note that pk
j is decreasing in j , as we will prove later.

3. Stationary distributions

We first focus on the stationary distribution. Consider an arbitrary distribution qk .
Define f k(qk) where f k

j (qk) is the probability that j is the value chosen under
probabilities qk .

Thus, We say that a distribution is stationary if it maps to itself and define
pk(∗) = f k(pk(∗)) to be a stationary distribution.

Now note that f k
j (qk) can be computed using only the numerical values qk

i
for i ≤ j since this probability is unaffected by the precise numerical values
greater than j , only their sum which can be computed from the numerical values
qk

i for i ≤ j . Thus we can write gk
j (q

k
0 , . . . , qk

j ) = f k
j (qk).

We first show that pk
j (∗) is well defined by the following lemma.

Lemma 1. f k
j (qk) is decreasing in qk

j .

Proof. Notice that increasing qk
j while holding the other qk

i fixed increases the
probability of it being chosen by a random edge thus decreasing its probability
of being chosen. □



312 ERIC FRIEDMAN

Theorem 2. The stationary distribution pk(∗) exists and is unique for all k.

Proof. Solving iteratively for each j , pk
j (∗) is the solution of

pk
j (∗) = gk

j (pk
0(∗), . . . , pk

j (∗)).

Since the right-hand side is strictly decreasing in pk
j (∗), by the previous lemma.

Since the left-hand side is strictly increasing in pk
j (∗) the stationarity equation

must have a unique solution. □

Next we show monotonicity in j .

Theorem 3. The stationary distribution pk(∗) satisfies pk
i (∗) < pk

j (∗) for i < j .

Proof. For all y we have gk
j (pk

1(∗), . . . , pk
j−1(∗), y) > gk

j+1(pk
1(∗), . . . , pk

j (∗), y)],
since the left side of the equation adds an additional constraint to be satisfied,
lowering the probability. Thus, pk

j (∗) > pk
j+1(∗) must also decrease as it is the

intersection of the identity line and that function. □

4. Asymptotics

We now show that the empirical distribution of the value function will converge
to the stationary distribution almost surely for all j, k.

Our analysis will be iterative; assuming that pk
j (n) have already converged

for all j < t to show the convergence of pk
t (n).

Consider
W (n) = |pk

j (n) − pk
j (∗)|

and note that
pk

j (n) = (1 − 1/n)pk
j (n − 1) + (1/n)X (n)

where X (n) = 1 if j is chose at step n and X (n) = 0 otherwise. Also note that
E[x(n)] = f k

j (pk
j (n − 1)).

Now consider
W (n)

W (n − 1)
=

|pk
j (n) − pk

j (∗)|

|pk
j (n − 1) − pk

j (∗)|

and apply the previous equation to get

E
[

W (n)

W (n − 1)

]
=

|(1 − 1/n)pk
j (n − 1) + (1/n) f k

j (pk
j (n − 1)) − pk

j (∗)|

|pk
j (n − 1) − pk

j (∗)|
.

Let bk
j = f k

j (pk
j (n − 1) − pk

j (∗) to get

E
[

W (n)

W (n − 1)

]
=

|(1 − 1/n)(pk
j (n − 1) − pk

j (∗)) + (1/n)bk
j |

|pk
j (n − 1) − pk

j (∗)|
.
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Since f (·) is a decreasing function, if pk
j (n − 1) < pk

j (∗) (resp. pk
j (n − 1) >

pk
j (∗)) then 1 > bk

j ≥ 0 (resp. −1 < bk
j ≤ 0) define ck

j = 1 − |b| to get

E
[

W (n)

W (n − 1)

]
≤ (1 − ck

j/n).

Since f (·) is a continuous function on a bounded interval, we can let c be the
maximum over the interval to prove the following:

Lemma 4. E[W (n)] ≤ W (n − 1)(1 − c/n).

Now we apply the Robbins–Siegmund theorem [9].

Theorem 5 (Robbins–Siegmund). If Zn ≥ 0 and

E[Zn+1] ≤ (1 − an + bn)Zn + cn

for positive adaptive random variables Zn, an, bn, cn such that with probability 1,∑
n

an = ∞

∑
n

bn < ∞

∑
n

cn < ∞

then limn→∞ Zn = 0.

This allows us to prove our main theorem.

Theorem 6. For a randomly chosen k-regular multigraph j, k, pk
j (n) converges

to pk
j (∗) a.s. as n → ∞.

Proof. Since the harmonic series diverges, the Robinson–Siegmund theorem
implies that W (n) → pk

j (∗) almost surely. (Note that we set bn = cn = 0.) We
can then apply this inductively, first allowing p0(n) to converge then p1(n) to
converge up to pk(n), yielding the theorem. □

5. Convergence properties

We now consider some convergence properties. We note that initially, the value
function grows rapidly.

Theorem 7. Given a randomly chosen k-regular multigraph game,

V (n) = n

with probability greater than 1 − n2e−k/n , for k > n.

Proof. Our proof is a variant of a standard analysis of the coupon collector
problem [8]. First we compute the union bound for the probability that V (i) ̸= i
conditional on V ( j) = j for all j < i . This will occur if any of the nodes j < i
are pointed at by edges from node i . Since all previous nodes are equally likely,
we can bound this by a union bound j (1 − 1/j)k < je−k/j . Now combine these
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with a union bound for all j ≤ n to show that the unconditional probability that
V (n) ̸= n is at most

∑
j<n je−k/j < n2e−k/n proving the theorem. □

For example, if n = k/(2 log(k)) then the probability that V (n) ̸= n is less
than (log(k))−2, which approaches 0 as k → ∞.

However, once we get past this initial period of linear growth, growth of V (n)

will slow significantly. For example one can get exponential lower bounds for
the convergence to pk

j for large j .
We first consider the first time the event that V (n) = k occurs.

Theorem 8. Given a randomly chosen k-regular multigraph game, let m be the
smallest n such that V (n) = k. Then E[m] ≥ 2k .

Proof. The probability of getting V (n) = k is

k!5 j pk
j (n) ≤ (k/2)k/kk

= 2−k (3)

since k! ≤ (k/2)k and 5 j pk
j (n) ≤ 1/kk , which is attained with the uniform

distribution. Thus the expected number of steps is at least 2k . □

We now generalize this to other large values of i for V (n) = i .

Theorem 9. Given a randomly chosen k-regular multigraph game, let m be the
smallest n such that V (n) = i for 0 < i < k. Then E[m] ≥ (1 − e−k/ i )−i/2.

Proof. In order to attain V (n) = k there must be edges from node n to nodes with
values less than i and no edges to nodes with value i . The relevant probabilities
are defined by the pk

j (n). A direct calculation is cumbersome so we bound
this by considering the uniform distribution given by qk

j = 1/ i for j < i and
qk

j = 0 otherwise. To compute this probability we can approximate this event
by assuming that number of edges attaining each value j < i are independent
Poisson distributions. Then the probability would be given by (1 − e−k/ i )i .
Theorem 5.10 from [8] shows that the true probability must be less than twice
this amount implying the stated result. (That theorem shows that the effects of
the correlations between events can be precisely bounded. We refer the reader to
Chapter 5 of [8] for a detailed discussion of this methodology.) □

For example if i = k/2 then E[m] > 1.15i .
The proof also showed that pk

i (n) is small for large i

Corollary 10. pk
i (n) ≤ 2(1 − e−k/ i )i for all n > 0.

Notice that this implies that for large k, pk
j (n) is exponentially small for most

values of j . As above if i = k/2 then pk
j (n) < 0.87i . More generally if i = αk

with 0 < α < 1, pk
j (n) ≤ 2(1 − e−1/α)i since (1 − e−1/α) < 1.
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6. Stationary distributions for large k

When k is large, we can approximate some of the numerical values of pk
j (∗). We

begin with values of j which are much smaller than k.

Theorem 11. For fixed j as k → ∞,

pk
j (∗) → W (k)/k

where W (k) is the Lambert W function.

Proof. Recall that pk
j (∗) = gk

j (pk+1
1 (∗), . . . , pk+1

j−1(∗))(1 − pk
j (∗))k . Define

pk
j (∗) = ak

j /k then

ak
j = kg j

k (pk+1
1 (∗), . . . , pk+1

j−1(∗))(1 − ak
j /k)k

→ ke−ak
j

since

gk
j (pk+1

1 (∗), . . . , pk+1
j−1(∗)) → 1

as k → ∞. Thus we get

k = ak
j e

ak
j

which yields

ak
j = W (k)

proving the theorem. □

We now bound the probabilities for values of j close to k using Theorem 9.

Corollary 12. For fixed j as k → ∞, pk
k− j (∗) ≤ 2−(k− j)

7. Conclusions

While interesting in its own right, the study of generic games may provide insights
into specific games with complicated values. For example, the game of Chomp is
extremely complex but numerical analyses (with analytical components) suggest
that the p-positions satisfy certain probabilistic properties [4]. Similarly the
values of various arithmetic games [7] appear to display statistical patterns that
can be (partially) understood by analogies to random games by extending our
analysis. However, in these games the degree is not typically bounded and
grows with n. Numerical results suggest that generic games capture several key
attributes of these arithmetic games (unpublished); however, a formal analysis
appears quite challenging.
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