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Dead-ending day-2 games under misère play
AARON DWYER, REBECCA MILLEY AND MICHAEL WILLETTE

Combinatorial games do not exhibit the same algebraic structure in misère play
as they do in normal play; e.g., no nonzero game has an additive inverse under
misère play. In recent years, misère research has considered “restricted” play,
where games can be equal or comparable modulo a subset (universe) of games,
even if they are not in general. One universe well suited for misère analysis is
the set of dead-ending games: games with the property that if a specific player
cannot move at some point in the game, then that player will never again be
able to move. Dead-ending games have many nice properties: some games,
including normal-play numbers, are invertible “modulo dead-ending”, there is
an easy test for inequality, and there are reductions that give unique reduced
forms. We apply recent results for inequalities and game simplification to
find the unique, reduced dead-ending games born by day 2, and we determine
which of these are invertible modulo dead-ending games.

1. Introduction

A combinatorial game is a two-player game of perfect information and no
elements of chance. Many well-known combinatorial games, including DOMI-
NEERING,1 HACKENBUSH, and others, have the dead-end property: if a player
cannot move at some point, then that player can never move again; i.e., no move
by the player’s opponent can “open up” a move.

Most research in combinatorial game theory assumes normal play, where the
first player unable to move on their turn loses; in this paper, we assume misère
play, where that player wins. In general, misère play is much harder to analyze
than normal play (see Section 1.2). Dead-ending games were introduced in [6]
as a set of interest for misère analysis; in this universe, misère play has more
structure and exhibits some of the familiar algebraic properties from normal
play. Recently, results from absolute game theory [4] have been applied to
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1We refer to DOMINEERING several times in this paper. It is a tiling game, usually played on a
rectangular grid, in which Left places vertical dominoes and Right places horizontal dominoes.
Play continues until a player cannot move on their turn.
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dead-ending games [2; 3] to show that these games have unique reduced forms
under misère play. The primary purpose of this paper is to find the reduced forms
of all dead-ending positions “born by 2” — i.e., those games that end in at most
two moves. We also completely classify which of these games have an additive
inverse in the dead-ending universe.

1.1. Definitions. The two players are called Left and Right. A game G =

{GL
|GR

} is defined by the set of Left options, GL, that Left can reach in one
move and the set of Right options, GR, that Right can reach in one move. The
game { · | · } with no moves for either player is called the zero game, 0. The
followers of a game G include G, its options, the options of its options, etc. The
game tree of a game is a directed graph with each node representing a follower
of the game; the root is the original position, moves available to Left are drawn
to the left, and moves available to Right are drawn to the right. Each leaf is a
zero position.

A game with no moves for Left is called a Left end. If all followers of a Left
end are also Left ends, then it is a dead Left end. (We similarly define Right ends
and dead Right ends, and note that 0 is both a dead Left end and dead Right end.)
To have the dead-end property — i.e., to be dead-ending — all end followers of a
game must be dead ends. The game tree shown in Figure 1(a) is dead-ending;
the game tree in Figure 1(b) is not dead-ending, because the Right end at ◦ is
not dead.

The outcome o(G) is the winner under optimal play:

o(G) =


L if Left wins G whether she goes first or second,

R if Right wins G whether he goes first or second,

N if the next player to move in G wins,
P if the previous player (i.e., not the next player) wins.

The outcome function depends on the winning convention; in this paper, unless
stated otherwise, we always assume misère play. Outcomes are ordered according
to preference by Left: L>N >R and L>P >R, with N and P incomparable.

(a) (b)

Figure 1. (a) A game that is dead-ending. (b) A game that is not dead-ending.



DEAD-ENDING DAY-2 GAMES UNDER MISÈRE PLAY 269

The disjunctive sum of two games G and H is the game G + H in which,
on a player’s turn, they may play in G or in H : G + H = {GL

+ H, G + HL
|

GR
+ H, G + HR

}, where GL
+ H = {GL

+ H : GL
∈ GL

}, etc. Two games
G and H are equal if they can be interchanged in any sum without affecting
the outcome: that is, if o(G + X) = o(H + X) for any sum of games X . A
partial order of games is inherited from the ordering of outcomes: G ⩾ H if
o(G + X) ⩾ o(H + X) for all X . Equality and inequality are dependent on the
winning convention; e.g., two games could be equal in normal play but not in
misère play.

In both normal and misère play, given a game G, if Left has options to GL1

and GL2 with GL1 ⩾ GL2, then by definition, Left will prefer GL1 in every
situation; thus, we can remove the dominated option GL2 and obtain a simpler
position that is still equal to G. This is one of two game reductions that lead
to unique canonical forms. The other reduction involves reversible options. A
Left option GL is reversible if there is a Right reply GL R with GL R ⩽ G; to be
specific, we say GL is reversible through GL R . In normal play and in general
misère play, we can bypass reversible options, replacing GL with the Left options
of GL R , if there are any, or by removing GL , if there are not. The result is a
simpler game that is equal to the original.

In normal play, a game whose game tree is the mirror image of G is called its
negative, −G, because G + (−G) = 0 for all G. In general misère play, this is
actually never true, unless G is exactly 0 [5]. Thus, we use the term conjugate
and symbol G for the same game, defined recursively as G = {GR |GL}, with
0 = 0 and with GR = {G R : G R

∈ GR
}, etc.

The birthday of a game is the depth of its game tree. The zero game is “born
on day 0”, and any game with only options to 0 is “born on day 1”. The day-1
games are

1 = {0| · }, 1 = { · |0}, ∗ = {0|0}.

This paper studies games born by day 2; that is, games whose options are
limited to 0, 1, 1, and ∗ .

1.2. Restricted misère play. There are many problems with general misère play.
In normal play, all games with outcome P are equal to zero; in general misère
play, no game is equal to zero besides the literal game with no moves for either
player. In particular, a nonzero game and its negative do not sum to zero in
misère play; thus, unlike normal play, the set of all games under misère play is
not a group. There is less intuition for outcomes of sums under misère play: in
normal play, L+L is always L, but in misère play, it could be any of the four
outcomes [5]. Equality and inequality are rare in misère play, and the easy test
from normal play — i.e., that G ⩾ H ⇐⇒ G − H ∈ L∪P — does not hold. For
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example, the game 0 and the game 1 are incomparable in misère play: Left wins
first on 0 and loses first on 1, but Left loses first on 0 +∗ and wins first on 1 +∗ .

To combat some of these issues, restricted play was introduced [8], with weaker
equality and inequality relations, so that games might be equal or comparable
“modulo some subset of games”, even if they are not equal or comparable in
general misère play. A universe U is a set of games closed under addition,
negation (conjugation), and followers.2 The restricted-play relations are

G ≡U H ⇐⇒ o(G + X) = o(H + X) for all X ∈ U;

G >U H ⇐⇒ o(G + X) > o(H + X) for all X ∈ U .

The universe could be taken to be all positions that occur under a particular rule
set, such as DOMINEERING, or could be defined by a game property; commonly
studied universes include impartial games I, dicots D (where at every point of
the game, either both players can move or neither player can), and dead-ending
games E . Note that I ⊂ D ⊂ E .

One notable problem with restricted misère play is reversibility through ends.
In general misère play, bypassing reversible options works, but is not often
applicable because nontrivial inequalities are rare [9]. In restricted misère play, we
are more often able to find GL R ⩽U G, and if GL R has Left options, bypassing GL

works as above; but if not — if GL R is a Left end — then removing GL may not
leave an equivalent game [9]. There is no general solution to the problem of
end-reversibility for restricted play in an arbitrary universe. However, there are
solutions for dicots [1] and dead-ending games [3].

Indeed, the dead-ending universe exhibits a number of nice properties under
misère play: modulo E , all ends are invertible [6], there is a recursive test for
inequality [2], and the end-reversibility reductions mentioned above give unique
reduced forms [3]. The number of reduced dicot games born by day 3 are
enumerated in the study of the dicot subuniverse in [1]. We start a similar line of
study in E , and consider the dead-ending games born by day 2.

1.3. Objective and outline. In this paper, we analyze the set of dead-ending
games born by day 2. We use the recursive comparison test and reductions
from [2] and [3] to determine the unique reduced day-2 forms modulo E , and
furthermore determine which of these positions are invertible modulo E .

Section 2 sets up the day-2 dead-ending game trees and establishes some
preliminary results, including comparability with and equivalence to zero mod-
ulo E . In Section 3, we see how end-reversibility in E applies to day-2 games

2Some authors also require a universe to have the parental or dicotic property, where {S|T } ∈U
for all nonempty subsets of games S, T ⊆ U . The dead-ending universe does have this additional
property.
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and computationally determine the number of unique reduced positions born
by day 2, modulo E . In Section 4, we determine which of these positions are
invertible modulo E . Finally, Section 5 discusses future work and a general
conjecture arising from the invertibility results for day-2 games.

2. Dead-ending day-2 games

Which positions born by day 2 are dead-ending? The four games born by day 1
(0, 1, 1, ∗) are all dead-ending. Thus, any game born on day 2 will have all
dead-ending followers, and so will be dead-ending itself unless it is a Left end
with an option that is not a Left end, or a Right end with an option that is not a
Right end. In particular, non-ends born on day 2 are all dead-ending. There are
24

− 1 = 15 nonempty subsets of {0, 1, 1, ∗} to choose as nonempty option sets
GL and GR, which gives 15×15 = 225 non-end positions. However, note that if
GL

= GR
= {0}, then G = ∗ , which we have already counted as a day-1 game.

For the ends, we cannot have a Left end with a Right option to 1 or ∗ or a
Right end with a Left option to 1 or ∗ . Thus, the dead ends born on day 2 are
{1| · }, {0, 1| · }, and their conjugates. Note that {1| · } is the game called “2” in
normal play. The game {0, 1| · } would reduce to 2 in normal play, but not in
misère play — not even modulo E , because 0 and 1 are still incomparable here.
The 4 × 1 DOMINEERING board is an example of this game: Left placing a
vertical domino can play in the middle to 0 or at the top or bottom to 1.

Including the day-2 dead ends gives a total of 232 dead-ending positions born
by day 2. These are illustrated in Table 3 (page 280). We already know the day-1
games 1, 1, and ∗ cannot be simplified, because neither can be equivalent to zero;
and it is already known that 1 and 1 are invertible, while ∗ is not invertible. Thus,
the remaining work is focused specifically on the 228 games born on day 2 —
i.e., the day-2 dead-ending games.

2.1. Strong outcome. Given a game G, the Left outcome, oL(G), is the result
(L wins or R wins) when Left plays first, and the Right outcome, oR(G), is the
result when Right plays first. The concept of strong outcome was introduced
in [2]. The strong Left outcome is the worst possible Left outcome, from Left’s
perspective, of G plus a Left end, and the strong Right outcome is the worst case
scenario for Right of G plus a Right end. That is,

ôL(G) =

{
L if oL(G + X) = L for every Left end X ,

R if there is a Left end X such that oL(G + X) = R;

ôR(G) =

{
R if oR(G + X) = R for every Right end X ,

L if there is a Right end X such that oR(G + X) = L .
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The strong outcome of G is then defined by the pair (ôL(G), ôR(G)):

ô(G) =


L if ôL(G) = L and ôR(G) = L ,

N if ôL(G) = L and ôR(G) = R,

P if ôL(G) = R and ôR(G) = L ,

R if ôL(G) = R and ôR(G) = R.

Recall that all ends in normal play reduce to numbers. In misère play, what
would the “worst Left end” look like, for Left? It is a game over which Right has
total control; after each move, Right can either end the game immediately (move
to zero), or continue the game. These games were introduced in [2], where they
are named perfect murders.3 They appear in the reversibility reductions for E .
The perfect murder Left end born on day n is denoted by Mn , with M0 = 0 and

Mn = { · |0, Mn−1}.

One of the conditions of the recursive comparison test for G ⩾E H is that
the strong outcome of G be greater than or equal to the strong outcome of H .
Thus, we will want a quick way to determine the strong outcome of the dead-
ending games born on day 2. Recall, ôL(G) is the worst outcome (for Left)
of Left playing first on G + X , where X ranges over all possible Left ends,
including X = 0.

Theorem 1. If G is a day-2 dead-ending game and is not an end, then:

(1) ôL(G) = L ⇐⇒ 1 ∈ GL or {0, ∗} ⊆ GL.

(2) ôR(G) = R ⇐⇒ 1 ∈ GR or {0, ∗} ⊆ GR.

Proof. We prove (1), and (2) follows by symmetry. Assume G is not an end.

(⇒) We prove the contrapositive. Suppose G does not have a Left move to 1
and does not have Left moves to both 0 and ∗ . If Left has no move to 1 and
no move to ∗ , then Left will lose G playing first, as the Left options are either
1 or 0. If Left has no move to 1 and no move to 0, then Left will lose G + 1
playing first, as the Left options are either 1 + 1 or ∗ + 1. In either case, the
strong outcome ôL(G) is R.

(⇐) Suppose G has a Left move to 1 or Left moves to both 0 and ∗ . We will
show Left wins G + X playing first, for any Left end X . If X = 0, then Left wins
G + X playing first by moving to either 1 or ∗ . If X = 1, then Left wins G + X
playing first by moving to either 1 + 1 or to 0 + 1. If X is any other Left end,
Left will always win G + X playing first, because after Left’s turn, there is at
most one more Left move and at least two more Right moves. □

3In later papers these have been renamed to “waiting games”.
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2.2. Comparability with zero. In Section 3, to apply reversibility reductions to
the day-2 dead-ending games, we will need to know which games are comparable
to the zero game. We establish this here, using the following recursive test for
inequality (comparison) modulo E , from [2]. Recall that 1 and 1 are incomparable
with 0, even modulo E .

Theorem 2 [2]. Let G, H ∈ E . Then G ⩾E H if and only if G and H satisfy:

(1) Proviso: ô(G) ⩾ ô(H).

(2) Maintenance Property:

(a) for all H L
∈ HL, there exists GL

∈ GL such that GL ⩾E H L or there
exists H L R

∈ H LR such that G ⩾E H L R;
(b) for all G R

∈ GR, there exists H R
∈ HR such that G R ⩾E H R or there

exists G RL
∈ G RL such that G RL ⩾E H.

Using Theorem 2, we can now determine which day-2 dead-ending games
are comparable with zero.

Theorem 3. If G is a day-2 dead-ending game, then:

• G ⩾E 0 if and only if GL contains 1 or both 0 and ∗ , and GR is a nonempty
subset of {1, ∗}.

• G ⩽E 0 if and only if GR contains 1 or both 0 and ∗ , and GL is a nonempty
subset of {1, ∗}.

Proof. We prove the first item and the second follows by symmetry.
Suppose G ∈ E2 satisfies G ⩾E 0. The strong outcome of zero is N , so from

the Proviso we must have ô(G) = L or N ; that is, we must have ôL(G) = L . By
Theorem 1, this means the Left options of G must include 1 or both 0 and ∗ .
With H = 0, part (a) of the Maintenance Property is vacuously true. In (b), since
there are no games H R , for each G R we need a G RL with G RL ⩾ 0. Since G
is born on day 2, any G RL is actually exactly 0. So the Maintenance Property
stipulates that every G R has a Left option to 0; thus, the only allowable Right
options for G are 1 and ∗ .

The converse follows similarly: if GL contains 1 or both 0 and ∗ , then
Theorem 1 tells us that the Proviso is satisfied. If GR is a nonempty subset of
{1, ∗} then the Maintenance Property is satisfied. □

Four of the 228 day-2 dead-ending games satisfy both conditions of Theorem 3
simultaneously and are therefore equivalent to zero modulo E (see Figure 2):

{1|1} ≡E 0, {1, ∗|1} ≡E 0, {1|1, ∗} ≡E 0, {1, ∗|1, ∗} ≡E 0.

Note that {1|1} is precisely 1 + 1, which is already known to be equivalent to
zero modulo E [6], because all ends are invertible in the dead-ending universe.



274 AARON DWYER, REBECCA MILLEY AND MICHAEL WILLETTE

{1|1} {1|1, ∗} {1, ∗|1} {1, ∗|1, ∗}

Figure 2. The four day-2 dead-ending game trees that are equivalent
to 0 modulo E .

3. Reversibility and reduced form

Recall that GL is reversible through GL R if GL R ⩽ G. Let us consider how we
could have GL R ⩽E G for a day-2 game G.

Theorem 4. If G is a day-2 dead-ending game, then:

• GL
∈ GL is reversible if and only if GR is a nonempty subset of {1, ∗}, and

(i) GL
= 1, or

(ii) GL
= ∗ , and either 0 or 1 is also a Left option.

• G R
∈ GR is reversible if and only if GL is a nonempty subset of {1, ∗}, and

(i) G R
= 1, or

(ii) G R
= ∗ , and either 0 or 1 is also a Right option.

Proof. If G is born on day 2, then any GL R is actually the zero game, and for
GL R

= 0 to exist, GL must be 1 or ∗ . For GL to be reversible, we must have
G ⩾E GL R

= 0. Now, by Theorem 3, G ⩾E 0 if and only if GL contains 1 or
both 0 and ∗ , and GR is a nonempty subset of {1, ∗}. This proves the theorem
for Left options, and the result for Right follows by symmetry. □

Now that we know what reversible options will look like, let us see how to
handle them. The reversibility reductions for E are presented in Theorem 5. We
require one new definition: GL is a fundamental option if

ôL(G) = L and ôL
({

GL
\ {GL

} | GR})
= R.

That is, GL is fundamental if for some Left end X , GL is the one and only good
first move for left in G + X . Similarly, G R is a fundamental option for Right if

ôR(G) = R and ôR
({

GL
| GR

\ {G R
}
})

= L .

Theorem 5 (end-reversibility in E [3]). If GL
∈ GL and there is a Left end

GL R ⩽E G, then GL is reversible and one of the following simplifications can be
made:

(i) If G = {GL
|G R

}, where both GL and G R are end-reversible, then remove
both options simultaneously: G ≡E 0.
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(ii) If GL is not fundamental, then remove it: G ≡E {GL
\ {GL

} | GR
}, as long

as this is still in E .

(iii) If GL is fundamental, or if its removal via (ii) would create a non-dead-
ending game, then replace GL with { · |Mn}, where n is the smallest integer
such that G ⩾E Mn . In this case, G ≡E

{
GL

\ {GL
}, { · |Mn} | GR}

.

Symmetric statements to (ii) and (iii) hold for a reversible Right option G R (i.e.,
G R with G RL ⩾ G).

How does Theorem 5 apply to day-2 games? First note that case (i) of that
theorem can only occur if G = {1|1}, and as mentioned in Section 2.2, we
already know this game reduces to zero modulo E . The other cases can similarly
be simplified using our previous results for day-2 dead-ending games. The
reductions specifically for day-2 games are given as Theorem 6.

Theorem 6 (end-reversibility in E for day-2 games). Let G be a day-2 dead-
ending game with ∅ ̸= GR

⊆ {1, ∗} and GL
∈ GL.

(i) If G = {1|1}, then G ≡E 0.

(ii) If GL
= 1 and 0, ∗ ∈ GL, then GL is a nonfundamental reversible option,

and can be removed: G ≡E {GL
\ {1} | GR

}.

(iii) If GL
= ∗ and 1 ∈ GL, then GL is a nonfundamental reversible option, and

can be removed: G ≡E {GL
\ {∗} | GR

}.

(iv) If GL
= ∗ and 0 ∈ GL, 1 ̸∈ GL, then GL is a fundamental reversible option,

and can be replaced by 1: G ≡E
{
GL

\ {∗} ∪ {1} | GR}
.

The symmetric results hold for reversible Right options.

Proof. We have already noted that case (i) of Theorem 5 is equivalent to case (i)
of Theorem 6. To apply the other cases of Theorem 5, we must determine which
Left options are fundamental for day-2 games in E . Recall, GL is fundamental if
the strong Left outcome of G is L , but the strong Left outcome of G without GL

is R. By Theorem 1, ôL(G)= L if and only if 1 ∈ GL or both 0 ∈ GL and ∗∈ GL.
This is already satisfied if GL is reversible. So whether or not GL is fundamental
equates to the strong Left outcome of G with GL removed. If GL

= 1, the strong
Left outcome is still L if 0 and ∗ are Left options, and otherwise it is R. Thus, if
GL

= 1, it is nonfundamental if 0, ∗ ∈ GL, and so by Theorem 5 case (ii), GL

can be removed.
If GL

=∗ , the strong Left outcome is still L if 1 is a Left option, and otherwise
it is R. Thus, in this case, if 1 ∈ GL then GL

= ∗ is not fundamental and can be
removed. If 1 ̸∈ GL but 0 ∈ GL then GL

= ∗ is a fundamental reversible option
and by Theorem 5, it can be replaced by 1. □
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Note that if 1 is a fundamental Left option, then, by Theorem 5, we should
replace it with { · |Mn}, where n is the smallest integer such that G ⩾E Mn . But
we have G ⩾ 0 = M0, so this instruction is to replace 1 with { · |0} = 1; i.e., there
is no simplification to be made here. Thus, Theorem 6 omits the case where 1 is
fundamental.

We can tidy Theorem 6 slightly. In the case where 1, 0, ∗ are all Left options,
reductions (ii) and (iii) could both apply; but if we apply (ii) and remove the 1,
then we are in case (iv), which says to replace the remaining ∗ with 1; thus,
we should just apply reduction (iii) from the start. This, along with analogous
reductions for Right options, is summarized in Corollary 7, a complete guide to
reducing day-2 dead-ending games.

Corollary 7. Let G be a day-2 dead-ending game.

(i) If G = {1|1}, then G ≡E 0.

(ii) If GR is a nonempty subset of {1, ∗} and 1, ∗ ∈ GL, then remove the Left
option to ∗ .

(iii) If GR is a nonempty subset of {1, ∗} and 0, ∗∈ GL but 1 ̸∈ GL, then replace
the Left option to ∗ with 1.

(iv) If GL is a nonempty subset of {1, ∗} and 1, ∗ ∈ GR, then remove the Right
option to ∗ .

(v) If GL is a nonempty subset of {1, ∗} and 0, ∗∈ GR but 1 ̸∈ GR, then replace
the Right option to ∗ with 1.

Applying these reductions to 228 day-2 dead-ending game trees, we find 193
unique positions. As we know, one of these — {1|1} — reduces to the zero game.
Including 1, 1, and ∗ , we have the following theorem.

Theorem 8. There are 196 unique, reduced dead-ending game born by day 2.

Proof. This number was obtained computationally, applying the reductions from
Corollary 7. The 196 reduced positions are highlighted (circled) in Table 3. The
Python code is on GitHub (https://github.com/rmilley/day2deadend). □

Of the 192 day-2 games, 172 are not equivalent to any other day-2 game
modulo E , and 20 are equivalent to one or two other day-2 games. Table 1 lists
the 20 sets of equivalent positions, with reduced forms identified in bold. For
completeness, we also list the day-2 games equivalent to zero, although they are
not counted in the 192.

4. Invertibility

We know that among day-1 games, modulo E , ∗ is not invertible, while 1 and 1
are. For day-2 games, it is already known that the four ends — {1| · }, {0, 1| · },

https://github.com/rmilley/day2deadend
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0, {1|1}, {1, ∗|1}{1|1, ∗}, {1, ∗|1, ∗} {0, 1|1, ∗}, {0, ∗|1, ∗}, {0, 1, ∗|1, ∗}

{1|∗}, {1, ∗|∗} {0, 1, 1|1}, {0, 1, ∗|1}, {0, 1, 1, ∗|1}

{∗|1}, {∗|1, ∗} {0, 1, 1|∗}, {0, 1, ∗|∗}, {0, 1, 1, ∗|∗}

{1|1, 1}, {1|1, 1, ∗} {0, 1, 1|1, ∗}, {0, 1, ∗|1, ∗}, {0, 1, 1, ∗|1, ∗}

{∗|1, 1}, {∗|1, 1, ∗} {1|0, 1}, {1|0, ∗}, {1|0, 1, ∗}

{1, ∗|1, 1}, {1, ∗|1, 1, ∗} {∗|0, 1}, {∗|0, ∗}, {∗|0, 1, ∗}

{1, 1|1}, {1, 1, ∗|1} {1, ∗|0, 1}, {1, ∗|0, ∗}, {1, ∗|0, 1, ∗}

{1, 1|∗}, {1, 1 ∗ |∗} {1|0, 1, 1}, {1|0, 1, ∗}, {1|0, 1, 1∗}

{1, 1|1, ∗}, {1, 1, ∗|1, ∗} {∗|0, 1, 1}, {∗|0, 1, ∗}, {∗|0, 1, 1∗}

{0, 1|1}, {0, ∗|1}, {0, 1, ∗|1} {1, ∗|0, 1, 1}, {1, ∗|0, 1, ∗}, {1, ∗|0, 1, 1∗}

{0, 1|∗}, {0, ∗|∗}, {0, 1, ∗|∗}

Table 1. Reduced day-2 dead-ending positions (bold) and the day-2
games to which they are equivalent.

and their negatives — are invertible modulo E . Which other reduced day-2 games
in E are invertible? By the symmetry of the position G + G (for any G, not just
day-2 games), it suffices to show that G +G ⩾E 0. We can thus apply Theorem 2
to determine which dead-ending games are invertible.

Theorem 9. For any dead-ending game G, G +G ≡E 0 if and only if these hold:

(1) Proviso: The strong outcome of G + G is N .

(2) Maintenance: Every Right move in G+G has a Left response that is greater
than or equal to 0.

Proof. Since G + G is self-conjugate, G + G ≡E 0 if and only if G + G ⩾E 0.
By Theorem 2, G + G ⩾E 0 if and only if the Proviso and Maintenance Property
are satisfied. For the Proviso, we need ô(G + G) ⩾ ô(0) = N . Again, by the
symmetry of G + G, we cannot have that its strong outcome is Left; thus, the
Proviso is equivalent here to ô(G + G) = N , which is condition (1). For the
Maintenance Property, part (a) is vacuously true because 0 has no options. For
all (G + G)R , part (b) of the Maintenance Property can only be satisfied with a
(G +G)RL ⩾ 0, because there are no Right options of 0. This is condition (2). □

We used our computer program to check which day-2 dead-ending positions
satisfy G + G ≡E 0 via Theorem 2. We found that 43 of the 192 reduced
day-2 dead-ending games are invertible modulo E : 3 symmetric positions and 20
conjugate pairs. These are listed in Table 2. The table also includes the invertible
form {1|1} ≡E 0, which we did not count in the 43. Including 0, 1, and 1, we
have 46 invertible dead-ending positions born by day 2.

Observe that the invertible reduced day-2 games do not have outcome P
and do not have an option to ∗ . In fact, this is if and only if; we confirmed
computationally that any day-2 dead-ending game that is P-win or that has an
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{1|1} {0, 1|0, 1} {1, 1|1, 1} {0, 1, 1|0, 1, 1}

{·|1} {0|0, 1, 1} {1|0, 1} {0, 1|1, 1}

{1|·} {0, 1, 1|0} {0, 1|1} {1, 1|0, 1}

{·|0, 1} {1|1} {1|0, 1} {0, 1|0, 1, 1}

{0, 1|·} {1|1} {0, 1|1} {0, 1, 1|0, 1}

{0|1} {1|0, 1} {1|1, 1} {0, 1|1, 1}

{1|0} {0, 1|1} {1, 1|1} {1, 1|0, 1}

{0|0, 1} {1|1, 1} {1|0, 1, 1} {0, 1|0, 1, 1}

{0, 1|0} {1, 1|1} {0, 1, 1|1} {0, 1, 1|0, 1}

{0|1, 1} {1|0, 1, 1} {0, 1|0, 1} {1, 1|0, 1, 1}

{1, 1|0} {0, 1, 1|1} {0, 1|0, 1} {0, 1, 1|1, 1}

Table 2. The invertible reduced day-2 dead-ending positions.

option to ∗ (after reduction) is not invertible. To explore this relationship further,
we prove exactly which day-2 dead-ending games are previous-win.

Lemma 10. If G ∈ E is born on day 2 then o(G) = P if and only if GL is a
nonempty subset of {0, 1} and GR is a nonempty subset of {0, 1}.

Proof. If G is born on day 2 and o(G) = P , then the second player must win
immediately after the first turn; i.e., there must be no alternating reply to any
opening move. This means the only Left options are 0 and 1, and the only Right
options are 0 and 1. The converse is clearly also true. □

Here are the previous-win day-2 games:

{0|1}, {0|0, 1}, {1|0}, {1|1}, {1|0, 1}, {0, 1|0}, {0, 1|1}, {0, 1|0, 1}.

With this we can prove our observation about the categorization of invertible
positions and confirm theoretically the results in Table 2.

Theorem 11. If G ∈ E is born by day 2 and G is in reduced form, then G is
invertible if and only if

∗ ̸∈ GL, GR and o(G) ̸= P,

i.e., if and only if

∗ ̸∈ GL, GR and either GL ⊈ {0, 1} or GR ⊈ {0, 1}.

Proof. We have confirmed this computationally and will spare the reader the
tedious proof that these conditions on GL and GR are equivalent to the two
conditions of Theorem 9; i.e., to (1) the strong outcome of G + G is N and (2)
every Right move in G + G has a Left response ⩾ 0. The code can be found
on GitHub. □

https://github.com/rmilley/day2deadend
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5. Summary and future work

In this paper, we identified all dead-ending games born by 2, determined the
reduced forms modulo E , and classified each as invertible or noninvertible
modulo E . To do this, we determined how to calculate the strong outcome from
Left and Right options (Theorem 1), and similarly determined how to apply
the recursive comparison test from [2], based on the options of the given day-2
games. We used end-reversibility reductions for E from [3] to determine the
number of reduced day-2 games, and finally, we determined algebraically and
computationally the invertible day-2 positions. Our results are summarized below.

• There are 228 dead-ending game trees of depth 2.

• Of these, 4 are equivalent to 0 modulo E .

• There are 192 unique, reduced day-2 dead-ending games, 172 of which are
not equivalent to any other day-2 game modulo E .

• Of the 192 reduced games, 43 are invertible modulo E .

• Including 0, 1, 1, and ∗ , there are 196 reduced dead-ending games born by
day 2, and 46 of them are invertible.

Table 3 shows all game positions born by day 2, with possible Left option
sets GL down the left and possible Right option sets GR across the top. Gray
cells are not dead-ending. A checkmark ✓ indicates that a position is invertible,
and a cross × indicates that it is noninvertible. Reduced positions are highlighted
with a circle . When a game is equivalent to 0, we indicate so, but note that
these cells could also be marked as ✓ for a nonreduced, invertible position.

Future work could consider the partial order of the dead-ending games born
by day 2. We could also begin to look at reductions and invertibility for day-3
dead-ending games.

It is very interesting that the invertible day-1 and day-2 games are precisely
those with outcome not P and with no P followers. We used our computer
program to create random day-3 dead-ending games, and found that this pattern
continues. Our code is available on GitHub. We end this paper with the following
conjecture for all dead-ending games.

Conjecture 12. A dead-ending game G is invertible if and only if o(G ′) ̸= P
for all followers G ′ of G (including G itself).

Addendum

The research in this paper was completed during 2019–2021 and submitted for
publication in 2021. Since that time, some of the results have been generalized
beyond day 2; in particular, Conjecture 12 was proven and published in [7].

https://github.com/rmilley/day2deadend
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