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Reversibility, canonical form, and invertibility
in dead-ending misère play

URBAN LARSSON, REBECCA MILLEY,
RICHARD J. NOWAKOWSKI,

GABRIEL RENAULT AND CARLOS P. SANTOS

In normal play combinatorial game theory, there is a slick reduction of game
forms via domination and reversibility, which yields a unique reduced game
form, dubbed the canonical form or simply the game value. In misère play,
the situation is much more varied and complex. In restricted misère play
(Plambeck and Siegel 2008), where the definition of inequality is weakened,
domination is in analogy with normal play, but reversibility is not: in particular,
if a Left option is reversible through a position with no Left option, then the
reversible Left option cannot always be removed (Siegel 2015). Dorbec et al.
(2015) found a modified reversibility reduction to give unique reduced forms
for dicot games. We present a set of reductions for reversible options in
dead-ending games (Milley et al. 2013). We prove that the reduced forms are
unique with respect to our choice of reduction. We use uniqueness of reduced
forms to prove that dead-ending, dicotic, and impartial restrictions have the
conjugate property: if a game has an inverse, then it is the conjugate, i.e., the
game where players have swapped roles.

1. Introduction

In combinatorial game theory there are two ways to simplify a game: remove
dominated options and bypass reversible options. These simplifications give
unique reduced game forms in both normal play, where the first player unable to
move loses, and in misère play, where the first player unable to move wins [17].
Generic misère play has been much less studied than normal play, because of a
loss of algebraic structure, including fewer instances of simplification.

In recent years, study of misère games has focused on restricted or modular
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play [15], where the relations of equality and inequality are weakened by restrict-
ing to a given subset, or universe, of games, say U .1 The idea is that games may
be equal or comparable, or have an inverse, “modulo U”, even if they are not
equal/comparable/invertible in full misère play. Modular misère play has facili-
tated successful analysis of many types of games, as we will review in Section 2.1.

However, the theory of reductions opens up new research problems in the
study of modular misère play. Specifically, domination can be applied as usual,
but reversibility cannot. In particular, if a Left option is reversible (modulo U)
through a position with no Left options, i.e., through a Left-end, then removing
the reversible Left option may not leave an equivalent game [17]; this constitutes
the problem of so-called end-reversibility.

Dorbec et al. [4] introduced a modified reversibility reduction to give unique
reduced forms for the universe of dicots, D, where at every position, either both
players can move or neither can; i.e., where the only end is zero. Dicot games
appear in rulesets such as FLOWER GARDENS [3], CLOBBER [1] and BIPASS [6].

The universe of dicots is a subset of another well-studied misère universe. A
dead-ending game has the property that if, at some stage of play, a player cannot
move, then they cannot move after any sequence of moves by the other player.
HACKENBUSH and DOMINEERING [3] are examples of dead-ending rulesets.

In this paper we present a solution for end-reversibility in the universe E of
dead-ending games, and we prove that the resulting reduced form is unique
modulo E . As a consequence, we also prove that D, E , and the subuniverse of
impartial games satisfy the conjugate property: if a game has an inverse (which
is not guaranteed even in modular misère play), then the inverse is the conjugate,
where the roles of the players are swapped.

Standard definitions, including outcome, sum, conjugation and partial order
are reviewed in Section 2. In Section 2.1 we define game comparison in the dicot
and dead-ending universes. In Section 2.2 we define the concept of “waiting
games”, which leads to the version of absolute game comparison relevant to
this work. In Section 3 we discuss the standard reductions, domination and
reversibility. In Section 3.1 we discuss the case of open-reversibility, and in
Section 3.2 we discuss the case of end-reversibility. In Section 4 we discuss our
choice to arrive at a canonical form. In Section 5 we round up with proofs that
the conjugate property holds.

2. Some standard definitions

The players are called Left (she) and Right (he). A game G = {GL
| GR

} is

1A set of misère games is a universe if it satisfies standard closure properties: it has a neutral
element and is closed under sums, taking options and conjugates. See Definition 1.
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defined recursively by the set of Left options GL and the set of Right options GR.
The zero game, 0 = {∅ | ∅}, is a position with no options for either player. The
rank (or birthday) of a game is the depth of its (literal form) game tree; the rank
of 0 is 0 and the rank of any nonzero game is one more than the maximum rank
of its options. A follower of a game G is any position that can be reached from
play in G, including G.

A game is called a Left-end if GL
= ∅ and a Right-end if GR

= ∅; thus,
the zero game is both a Left-end and a Right-end. A game is an end if it is a
Left-end or a Right-end. In normal play, all ends reduce to an integer game. This
is not the case in general misère play, but we will use the same notation to mean
a game with the same game tree as a normal-play canonical form integer: for an
integer n ⩾ 1, n = {n − 1 | ∅} and n = {∅ | n − 1}.

Under normal play, the first player unable to move on their turn loses. Under
misère play, this player wins. Under a specified winning condition, with a
specified starting player, there are two possible results of a game: Left wins,
denoted by L, or Right wins, denoted by R. The Left outcome oL(G) is the
optimal result of G when Left plays first and the Right outcome oR(G) is the
optimal result of G when Right plays first. The outcome of G is

o(G) =


L if (oL(G), oR(G)) = (L, L);

N if (oL(G), oR(G)) = (L, R);

P if (oL(G), oR(G)) = (R, L);

R if (oL(G), oR(G)) = (R, R).

The results are ordered with L > R, so that the outcomes are partially ordered
with L > N > R and L > P > R, while N and P are incomparable.

The disjunctive sum of two games G and H is the game in which, on a player’s
turn, they choose to play in exactly one of G or H :

G + H = {GL
+ H, G + HL

| GR
+ H, G + HR

},

where GL
+ H is the set of all positions of the form GL

+ H with GL
∈ GL.

Games are compared by the inequality relation

G ⩾ H if o(G + X) ⩾ o(H + X) for all X,

that is, G ⩾ H means G is always at least as good as H for Left.
Two games G, H are equivalent if G ⩾ H and H ⩾ G; i.e.,

G ≡ H if o(G + X) = o(H + X) for all X.

Thus, games are equivalent if they can be interchanged in any sum without
affecting the outcome. Like outcome, note that equivalence and inequality are



248 U. LARSSON, R. MILLEY, R. J. NOWAKOWSKI, G. RENAULT AND C. P. SANTOS

dependent upon the winning condition. In this paper, we always assume misère
play, unless otherwise specified.

The conjugate of G is the game G with the roles of Left and Right swapped:
the hereditary definition is G = {GR | GL}, where X = {X | X ∈ X }.

2.1. Misère play modulo D and E . Analysis of games in full misère play is
intricate, for example, the only invertible game is 0, and most pairs of games
are incomparable.2 To combat this, we consider restricted or modular misère
play [15]. When we restrict attention to a subsets of games we must verify that
the set satisfies standard closure properties.

Definition 1 (Universe of Games). A set of misère games U is a universe if

• 0 ∈ U ;

• for all G, H ∈ U , G + H ∈ U ;

• for all G ∈ U , G ∈ U ;

• for all G ∈ U , for all options G ′, G ′
∈ U .

Given a universe U , and two games G and H (not necessarily in U),3 inequality
modulo U is defined as

G ⩾U H if o(G + X) ⩾ o(H + X) for all X ∈ U .

Consequently, equivalence is defined by G ≡U H , if G ⩾U H and H ⩾U G. In
fact, inequality is a congruence relation [9], so that if G ⩾U H then, for all J ∈U ,

G + J ⩾U H + J. (1)

Moreover, G ∈ U is invertible modulo U if there exists an H ∈ U such that
G + H ≡U 0. As a consequence of the congruence relation (1), if J is invertible,
then G + J ⩾U H + J if and only if G ⩾U H .

When the surrounding context is clear, we may omit the subscript U ; for
example, when we explicitly announce G, H ∈ U , then we usually prefer the
more slick notation“G ⩾ H” instead of “G ⩾U H”; if G, H ∈ U then, unless
otherwise stated, comparison is modulo U .

Let us mention a central property that every well structured universe should
satisfy. (See Section 5.)

Definition 2 (Conjugate Property). A universe U has the conjugate property if,
for all G ∈ U , G + H ≡ 0 implies H ≡ G.

2See [14] for a full survey of partizan misère play.
3In this study G and H mostly belongs to the same universe as X . The general definition is

used in Corollary 26 and in another paper in this volume [10].
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Two well studied universes of games are those of the dicots and the dead-ends.

Definition 3 (Dicots and Dead-ends). A dicot is a game in which the only end
is zero: either both players can move, or neither can. The set of all dicots is D.
Each follower of a dead Left-end is a Left-end, and similar for Right. A dead
end is a dead Left-end or a dead Right-end. A dead-ending game is a game in
which each end follower is a dead end. The set of all dead-ending games is E .

Notice that D ⊂ E .

Proposition 4. The sets D and E are universes of games.

Proof. Obvious. □

Critical results for the dicot and dead-ending universes are the recursive
comparison tests introduced in [9; 8], stated in Theorem 8 below. For the
dead-ending variant, we will require the definition of waiting protected outcome
(Definition 7).4

2.2. Misère waiting games. Suppose that Right receives the following offer just
when he is about to start a game: for G ∈ E , an arbitrary game of rank k > 0, he
may, if he wishes, design a Left-end E ∈E to be played in disjunctive sum with G.
Note that the outcome of a nontrivial Left-end is Left-win: so does the challenge
really make sense? In fact, there is a class of games, with a modest number of
nodes, about twice the rank of G, which makes the offer very attractive. The
waiting game of dead-ending misère play, introduced in [8], is a good tool for any
player adventurous enough to take on a challenge, where in general “moves are
good”, except at the very end. In a sense, Right wants to use a waiting game to
maximize the chance that Left plays last in an arbitrary game G of specified rank.5

Definition 5 [8]. The (Right) waiting game of rank n, Wn ∈ E , is

Wn =

{
0 if n = 0;

{∅ | 0, Wn−1} if n > 0.

Thus, W0 = 0, W1 = {∅ | 0}, W2 = {∅ | 0, {∅ | 0}}, and so on. Right Waiting
games of rank up to 4 are displayed in Figure 1.

The importance of waiting game ends in the dead-ending universe is es-
tablished in [8]; a “waiting game Left-end” is a worst Left-end, from Left’s
perspective, because it maximizes Right’s movability in case he needs it, and it
minimizes his risk of extra unwanted moves.

Theorem 6 [8]. If G is a Left-end with rank(G) = k > 0, then G ⩾ Wn , for all
n ⩾ k.

4This is sometimes abbreviated “strong outcome”.
5The concept of “waiting” is central in absolute theory, and it leads to concepts of strong

outcomes and more (see the Introduction in [9]).
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W0 W1 W2 W3 W4

Figure 1. Waiting games of ranks 0 to 4.

Waiting games will appear in our reversibility reductions in Section 3.1.
A major tool is the waiting protected outcome.

Definition 7 [8]. The waiting protected Left-outcome and Right-outcome of
G ∈ E are

ôL(G) = min{oL(G), oL(G + Wn−1)},

ôR(G) = max{oR(G), oR(G + Wn−1)},

respectively, where n = rank(G). The waiting protected outcome of G ∈ E is

ô(G) =


L if (ôL(G), ôR(G)) = (L, L);

N if (ôL(G), ôR(G)) = (L, R);

P if (ôL(G), ôR(G)) = (R, L);

R if (ôL(G), ôR(G)) = (R, R).

A fundamental use of this protected outcome follows.

Theorem 8 (Recursive Comparison Test [8]). Let U ∈ {D, E} and let G, H ∈ U .
Then G ⩾U H if and only if G, H satisfy:

(1) Proviso: if U = D, o(G) ⩾ o(H); if U = E , ô(G) ⩾ ô(H).

(2) Maintenance Property:

(a) for all H L
∈ HL, there exists GL

∈ GL such that GL ⩾U H L or there
exists H L R

∈ H LR such that G ⩾U H L R;
(b) for all G R

∈ GR, there exists H R
∈ HR such that G R ⩾U H R or there

exists G RL
∈ G RL such that G RL ⩾U H.

Some proofs seem to require these simplifying constructive techniques, while
other proofs will apply the standard “by definition and induction on the rank of
game trees”. One advantage of being able to use the standard induction proofs is
that the “absolute” criterion is not required, and techniques may generalize in a
broader sense. We will take a note of these aspects as we go along.

We make use of the hand-tying principle in modular misère play. Notice that
this applies in any universe, not just the dead-ending universe.
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Lemma 9 (Misère Hand-tying Principle [12]). Consider a misère play universe U ,
and let G ∈ U . If |GL

| ⩾ 1 then for any H ∈ U , {GL, H | GR
} ⩾U G.

Proof. Since GL is nonempty, Left may ignore the option H . □

3. Domination and reversibility

Let us give some intuition for Theorem 10. Consider a game G and a winning
condition, normal, or misère. If Left has two options GL1, GL2 with GL1 ⩾ GL2 ,
then by definition, Left prefers GL1 in every possible situation, and we may
as well remove GL2 from the set of Left options. In this case we say GL2 is
dominated by GL1 , and

G ≡ {GL
\{GL2} | GR

},

in both normal and misère play, with equivalence defined by the respective win-
ning condition. Similarly, if G R1 ⩽ G R2 , then we can reduce G by removing G R2

from the set of Right options.
Removing dominated options also applies in modular misère play. This is

demonstrated in [4] for the dicot case, but generalizes to dead-ending, where
the reduced game is trivially also dead-ending: if G ∈ D (or E), a reduced game
{GL

\ {A} | GR
}, as in Theorem 10, is still in D (E).

Theorem 10 (Domination [4]). Let U ∈ {D, E}, with G ∈ U . If A, B ∈ GL with
A ⩽ B, then G ≡ {GL

\ {A} | GR
}.

Let us give some intuition for Definition 11 in the next section. Removal of
dominated options is one of two type of game reductions. The second reduction
technique applies when a Left option of G, say A = GL , has a Right option AR

that is at least as good for Right as the original game G; i.e., AR ⩽ G. In this
case, A is reversible and can be bypassed. The intuition is that Left can expect
a Right reply to AR , and so Left should immediately consider the Left options
of AR . Bypassing the reversible Left option A gives the following reduced game:

{GL
\{A}, ARL

| GR
}. (2)

In normal play, reversible options can be bypassed in this way, while main-
taining equivalence, even if AR is a Left-end; in this case the reduction is simply
to remove A from the left options of G. In full misère, the same situation cannot
happen: if X is a Left-end and Y is not, then X ̸⩽ Y [17].

This brings us to study reversibility under modular misère play. With the
weakening of the inequality relation, it is now possible to have X ⩽U Y for a
Left-end X and a non-Left-end Y . For example, in the universe of dead-ending
games, the position G = {0, 1 | 1} satisfies G ⩾E 0, by Theorem 8. Note that the
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game {0, 1 | 1} is the DOMINEERING position

In full misère play, this position does not reduce.
Thus, in modular misère play, we may find GL R ⩽U G when GL R is a Left-

end; however removing GL may not leave a position that is equivalent modulo U .
For example, in the same G = {0, 1 | 1} given above, the Left option GL

= 1
has a Right option GL R

= 0 ⩽E G. However, it is not the case that G ≡E {0 | 1}:
they do not even have the same outcome under misère play, as

o(G) = N , o({0 | 1}) = R.

A primary goal of this paper is to determine what to do with end-reversible
options modulo dead-ending games (Section 3.2). First, we settle the simpler
case of open reversibility.

3.1. Reversibility in modular misère play. We collect the reversibility discussion
from Section 3 by adapting some definitions from [7]. In that paper, ends are
called “atomic games”, and hence atomic-reversible is synonymous with end-
reversible. We give the definitions from Left’s perspective, but the analogous
definitions for Right are also used.

Definition 11 [7]. Consider a universe U under misère play, and let G ∈ U .
Suppose that there are followers A ∈ GL and AR

∈ AR with AR ⩽U G. Then
the Left option A is reversible through its Right option AR . This AR is called
the reversing option. If ARL is nonempty then it is a replacement set for A, and
in this case A is open-reversible. If the reversing option AR is a Left-end (i.e.,
ARL

= ∅), then A is end-reversible.

Observe that no “replacement set” is indicated whenever A is end-reversible.
A special treatment is required to analyze such situations, and indeed this analysis
is a main contribution of this work. We devote Section 3.2 to this study.

We begin by showing that in the case of dead-ending, the definition is justified
by replacing open-reversible options by its replacement set: when A is replaced
by the set ARL, one does obtain an equivalent game. Indeed, this is in analogy
with classical normal-play theory, and it is a straightforward generalization of
the result for dicots [4]. In the next subsection, we consider the more intricate
case of end-reversible options.

Theorem 12 (Open Reversibility). Consider U ∈ {D, E}, and G ∈ U . If GL
= A

is open-reversible, with replacement set ARL
̸= ∅, then

G ≡U {GL
\ {A}, ARL

| GR
}.
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Proof. This result holds in the universe of dicots [4].
Consider U = E , with games as in the statement of the theorem. Since A is

open reversible, the replacement set ARL is nonempty. Hence, let

H = {GL
\ {A}, ARL

| GR
}.

Note that GR cannot be empty since G is dead-ending and A ∈ GL has a Right
option. Thus, H ∈ E . We prove that H ≡ G.

We will prove that Left wins G + X whenever she wins H + X , and vice versa.
We proceed by induction on the rank of X .

First assume that Left wins H + X moving first. If the winning move is to
some GL , then clearly Left wins G + X with the same move. If it is to an X L ,
then Left wins G+X L by induction. Finally, if the winning move is to some ARL ,
then since G ⩾ AR , there is a move in G that is at least as good as ARL . So Left
wins G + X playing first.

Next assume Left wins H +X moving second. So Left wins from any H +X R ,
which by induction means Left wins any G + X R , and also Left wins from any
H R

+ X ; but the Right options of G are identical to those of H , so Left will
win from any G R

+ X , as well. By symmetry, this also proves Left wins H + X
playing second whenever she wins G + X playing second.

Finally, assume Left wins G + X moving first. If the good move is to X L , then
Left also wins H + X L by induction. If the good move is to any GL besides A,
then the same move is available in H . The remaining case is if the good move is
to A + X . Then Left must be able to win from AR

+ X ; i.e., Left wins first on
AR

+ X . But every Left move in AR
+ X is available to Left in H + X , so Left

also wins H + X moving first. Fix X . Note that BL, GL and HL are nonempty,
and so AR

+ X , G + X and H + X all have Left options. Also, A + X has Right
options, because A has at least one Right option, namely AR .

Claim. H ⩾ AR.

Proof of Claim. Suppose that Left starts in the game AR
+ X . If C ∈ ARL then

C ∈ HL and thus, if Left wins in AR
+ X with C + X , Left also wins in H + X

with C + X . For the base case XL
= ∅, this is enough. If XL

̸= ∅, if Left wins
in AR

+ X with AR
+ X L , by induction, Left also wins in H + X with H + X L .

Suppose that Right starts in the game H + X . If Right wins in H + X with
H + X R then, by induction, Right wins in AR

+ X with AR
+ X R . For the Right

moves H R
+X (this includes the base case X =0), we observe that H R

+X is also
a Right option of G+X . Since G ⩾ AR , if Right wins with H R

+X , we must have
a winning move for Right in AR

+ X . This concludes the proof of the claim. □

To prove that G ≡ H , we have to prove that G ⩾ H and G ⩽ H . Besides
induction, we only need to use two arguments.
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For G ⩾ H , if ARL
+ X is a winning move for Left in H + X , then because

G ⩾ AR , there is a winning move for Left in G + X .
For G ⩽ H , if A + X is a winning move for Left in G + X , after an automatic

Right reply to AR
+ X , Left must have a winning move again. But, by the claim,

the existence of that winning move implies that Left has a winning move in
H + X .

Thus o(H + X) = o(G + X), for all X , and so G ≡ H . □

3.2. End-reversibility. The idea for simplifying games with end-reversible op-
tions in specified modular misère play is as follows: played alone end-reversible
options are winning options. Thus we attempt to replace them with an appropriate
simpler winning option. However, if an end-reversible option is not the only
winning option, we rather attempt a brute force removal. The simplification has
to be justified in each specified universe. A simplification for dicot misère is
proven in [4].

Theorem 13 (End-reversibility in D [4]). Let G ∈ D and suppose that G has
an end-reversible Left option, say A. Then G ≡ {∗, GL

\ {A} | GR
}. The Left

option ∗ is omitted if Left has a winning option in GL
\ {A}.

In the special case where G has only one Left and one Right option, both
end-reversible, then the following substitution can be made for G. Theorem 13
is applied to both end-reversible options to obtain G ≡D {∗ | ∗}, and then we use
the known result that {∗ | ∗} (or ∗ +∗) is equivalent to 0 modulo dicots [2; 11].

Corollary 14 (Substitution Theorem for D [4]). If G = {A | B} ∈ D, where A
and B are end-reversible, then G ≡ 0.

We will now extend the technique of [4] to develop a similar solution for
end-reversibility in E , and we introduce the concept of a revocable option.

Definition 15 (Nonessential Left Option). Consider G ∈ E such that ôL(G) = L.
A Left option A ∈ GL is nonessential if ôL({GL

\{A} | GR
}) = L, and otherwise

A is essential.

Notice that if G has only one Left option, it is nonessential, because its
removal leaves a Left-end, and Left would win playing this in a sum with a
waiting Left-end.

We are now ready for our first end-reversible results for E . There are more
cases to consider than there were in D. We start by proving that if an end-
reversible option is nonessential, then it can be removed to leave an equivalent
game. In particular, if there is exactly one end-reversible Left option and one
end-reversible Right option, then these are nonessential and both can be removed,
so that G ≡ 0. It is important to note that we will only remove a lone Left
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option if the result is still in E . If the Right options of G are not all Left-ends,
then changing G = {A | GR

} to {∅ | GR
} would create a game that is not dead-

ending. In this case, we will instead settle for simplifying G using a substitution
(Theorem 19).

Suppose that G ∈ E has an end-reversible Left option, say A, with reversing
option, say AR . Then, since AR is a Left-end, G ⩾ AR implies that

ôL(G) = ôL(AR) = L. (3)

Thus, the notion of nonessential Left option is well defined in the following
result.

Theorem 16 (Nonessential End-reversibility in E). Suppose that G ∈ E has a
nonessential end-reversible option A ∈ GL.

(1) If {GL
\ {A} | GR

} ∈ E , then G ≡ {GL
\ {A} | GR

}.

(2) If G = {A | B}, where B is also end-reversible, then G ≡ 0.

Proof. Case 1: Consider the end-reversible Left option A ∈ GL, and let AR
∈ AR,

with ARL
= ∅ and G ⩾ AR .

Let us begin by proving the inequality G ⩾ H . Suppose Left wins H + X ,
for some X ∈ E . In the case XL

=∅, Left wins G + X by (3), so suppose X has
a Left option. If |GL

| = 1, then Left has no move in H , so the winning move
must be to H + X L . By induction, G + X L is also a winning move. If |GL

| > 1,
then G ⩾ H by the Hand-tying Principle (Lemma 9). Thus G ⩾ H .

Next, we prove the inequality G ⩽ H . Suppose Left wins G + X for some
X ∈ E . If Left’s winning move in G + X is GL

+ X where GL
̸= A, then this is

also a Left winning move in H + X . If Left’s winning move in G + X is G + X L ,
then by induction H + X L is a Left winning move in H + X . The remaining
case is if A + X is the only winning Left move in G + X . In this case, X must
be a Left-end; else by Lemma 17, there would exist a winning move G + X L , a
contradiction.

If X is a Left-end and |GL
| = 1, then H is also a Left-end, and so Left wins

H + X .
If X is a Left-end and |GL

| > 1, since AR
+ X is a Left-end, oL(AR

+ X) = L,
which by G ⩾ AR implies oL(G + X) = L. But then, since A is nonessential,
oL(H + X) = L. Thus, Left wins H + X .

To conclude this case, G ≡ H .

Case 2: If G ={A | B}, with both options end-reversible, then the above argument
shows G ≡ {∅ | B} ≡ {∅ | ∅} (and the test if {∅ | B} ̸∈ E becomes obsolete). □

Let us prove a strategic fact for Left playing in a game with an end-reversible
Left option.
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Lemma 17 (Weak Avoidance Property). Consider a misère universe U and let
G ∈ U . Suppose that A is an end-reversible Left option of G. If Left wins G + X
with A + X , where X is not a Left-end, then Left also wins G + X with some
G + X L .

Proof. With notation as in the statement, let AR be a reversing option for A. By
assumption, G ⩾ AR and ARL

= ∅. If Right, playing first, loses A + X , then
Left, playing first, wins AR

+ X . Of course, because ARL
= ∅ and XL

̸= ∅, a
Left winning move must be some AR

+ X L . But G ⩾ AR , so G + X L must be a
winning move for Left, from G + X . □

Next, we have a general structural simplification for any end-reversible Left
option A; in particular this allows us to simplify end-reversible options that do
not satisfy Theorem 16, either because they are essential or because they are lone
Left options whose removal bumps the game out of E . If A is end-reversible
through a Left-end AR , the simplification is to trim A so that it has no Left
options and its only Right option is AR .

Proposition 18. Let G ∈ E . If A ∈ GL is reversible through a Left-end AR , then
G ≡

{
{∅ | AR

}, GL
\ {A} | GR}

.

Proof. Let H =
{
{∅ | AR

}, GL
\ {A} | GR}

.
Consider X ∈ E such that oL(H + X) = L. If {∅ | AR

}+ X is a winning move
for Left in H + X , then Left has a good response to Right’s move to AR

+ X , and
this means that Left can also win in the game G + X , because, by assumption,
G ⩾ AR . Any other winning option for Left in H + X is also available in G + X ,
so oL(G + X) = L. Observe that any winning option for Right in G + X is also
available in H + X , so trivially oR(H + X) = oR(G + X). Altogether, this shows
that G ⩾ H .

For the other direction, we prove by induction on the rank of X that, for all X ,
o(H + X) ⩾ o(G + X).

Suppose Left wins G + X , playing first. If Left’s winning move in G + X is
G + X L , then by induction o(H + X L) ⩾ o(G + X L) and so H + X L is a left
winning move in H + X . If Left’s winning move in G + X is GL

+ X , where
GL

∈ GL
\ {A}, then this is also a Left winning move in H + X . The remaining

case is if A + X is the only winning move in G + X . In this case, X must be
a Left-end; else by Lemma 17, there would exist a winning move G + X L , a
contradiction. But if X is a Left-end, then {∅ | AR

}+ X is a winning move for
Left, because it is a Left-end. Thus Left wins H + X . □

In fact, we can do better than Proposition 18, and simplify instead to a game
of the same form but with AR replaced by a position with a weakly decreased
rank. This is shown next in the Substitution Theorem (Theorem 19). To get
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there, we use the waiting games — specifically the fact that they are worse than
any other Left-end — to construct another substitution for end-reversible options.
Like Proposition 18, this substitution applies to all end-reversible options, but
is only required for those options that are not removed by Theorem 16: that is,
when A is essential (and therefore |GL

| > 1), or when A is a lone option and
{∅ | GR

} ̸∈ E .

Theorem 19 (Substitution Theorem for E). Let G ∈ E . If A ∈ GL is end-
reversible, then there exists a smallest nonnegative integer n such that G ⩾ Wn

and G ≡
{
{∅ | Wn}, GL

\ {A} | GR}
.

Proof. Suppose that A ∈ GL is end-reversible through the Left-end AR . Let
k = rank(AR). By assumption, G ⩾ AR and thus, by Theorem 6, G ⩾ AR ⩾ Wk .
Since k is a nonnegative integer, the existence part is clear. Let n be the minimum
nonnegative integer such that G ⩾ Wn .

Let H =
{
{∅ | Wn}, GL

\ {A} | GR}
, and let G ′

=
{
{∅ | Wn}, GL

| GR}
. By

Lemma 9, we have G ′ ⩾ G. Then G ⩾ Wn and G ⩾ AR imply that both {∅ | Wn}

and A are end-reversible options of G ′.
Now, ôL(H) = L, because Left wins moving first in any H + Wm , by moving

to the Left-end {∅ | Wn} + Wm . Likewise, ôL(G) = L because G ⩾ AR and
ôL(AR) = L. Since H and G are the games G ′ with A and {∅ | Wn} removed
respectively, this shows that both A and {∅ | Wn} are nonessential in G ′. Thus,
by Theorem 16, G ′

≡ H and G ′
≡ G. This gives G ≡ H , as required. □

The rank of {∅ | AR
} is weakly greater than the rank of {∅ | Wn}, because n

is chosen to be minimum. So Theorem 19 will usually give a substitution that is
simpler than the substitution in Proposition 18.

Example 20. Suppose we apply the Substitution Theorem to the form described
in Theorem 16(2). That is, G = {A | B} ∈ E with both A and B end-reversible.
Then, by Theorem 19,

G ≡
{
{∅ | Wn} | {Wk | ∅}

}
.

Since the options are reversible, we have Wk ⩾ G ⩾ Wn; but Wk ⩾ Wn is only
possible if both are zero, because otherwise the former is Right-win and the latter
is Left-win. So k = n = 0 and G ≡

{
{∅ | 0} | {0 | ∅}

}
= {−1 | 1}. This game

would then reduce to 0 by Theorem 16.

These are all of the reductions for the dead-ending universe. To summarize,
there are four types of reductions in D [4] and five types in E ; the first two are
common:

(1) Remove dominated options (Theorem 10).

(2) Reverse open-reversible options (Theorem 12).
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In D we have two additional reductions, for end-reversible options [4]:

(3) Replace end-reversible options by ∗ (Theorem 13).

(4) Replace {∗ | ∗} by 0 (Corollary 14).

And in E we instead have three additional reductions, for end-reversible options:

(3) Remove nonessential end-reversible options, including removal of lone
options as long as the result is in E (Theorem 16(1)).

(4) Simultaneously remove lone Left and lone Right-end-reversible options; i.e.,
replace {A | B} with 0 if both A and B are end-reversible (Theorem 16(2)).

(5) Replace other end-reversible options of rank n > 0 (i.e., those that are
essential and those whose removal give a game not in E) by {∅ | Wn} for
Left options, or by {Wn | ∅} for Right options (Theorem 19).

We call a game reduced if the above reductions have been applied, in any
order, until application stabilizes.

Definition 21 (Reduction). A game G ∈ E is reduced if none of Theorems 10,
12, 16, or 19 can be applied to give a game with differing options. A game G ∈D
is reduced if none of Theorems 10, 12, 13, or 14 can be applied to give a game
with differing options.

Note that our results for end-reversible reductions guarantee that reduced
dead-ending games remain in E .

In Section 4 we show that, given our choice for end-reversible substitution,
there is a simplest unique reduced form of any game in E .

4. Uniqueness and simplicity of reduced forms

We are now able to prove the existence of a simplest reduced form for a con-
gruence class of games in the dead-ending universe. Moreover, this form is
unique up to choice of end-reversibility substitution. (A similar result for the
dicot universe is proved in [4].)

Let ∼= indicate that two games are identical; that is, G ∼= H if G and H have
the same literal form.

Recall from Definition 21 that a game in E is reduced if

(i) dominated options have been removed;

(ii) open-reversible options have been reversed;

(iii) nonessential end-reversible options have been removed, unless removal
gives a non-dead-ending game; and

(iv) other end-reversible options have been replaced by {∅ | Wn} (Left) or
{Wn | ∅} (Right), for a minimal choice of n respectively.
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Let us demonstrate that any two equivalent reduced games are in fact identical.
First, we note the following result from [13], which says that all ends are invertible
modulo E .

Theorem 22 [13]. If G ∈ E is an end, then G is invertible and the inverse is the
conjugate, i.e.,

G + G ≡ 0.

Thus, if G ∈ E is an end, we may make the identification G = −G.

Theorem 23 (Uniqueness of Reduced Form). Let G, H ∈ E . If G ≡ H and both
are reduced games, then G ∼= H.

Proof. Assume G ≡ H and both are reduced as in Definition 21. We will
proceed by induction on the sum of the ranks of G and H . We will exhibit a
correspondence GL i ≡ H L i and G R j ≡ H R j between the options of G and H .
By induction, it will follow that GL i ∼= H L i , for all i , and G R j ∼= H R j , for all j ,
and consequently G ∼= H .

For the base case, if G ∼= 0 and H ∼= 0, then G ∼= H . If G and H are not
both zero, then without loss of generality, assume that there is a Left option H L .
We will break the proof into two cases based on whether or not H L is an end-
reversible option. Since the games are reduced, note that there can be no open
reversible options. Moreover, if a reduced game is end-reversible it must be of
the form (iv) above.

Case 1: H L is not end-reversible.

This means that H L is not reversible at all, since H cannot have open-reversible
options. Since G ≡ H , of course G ⩾ H . Then from Theorem 8, there exists
a GL with GL ⩾ H L or there exists a H L R ⩽ G. Now H L R ⩽ G ≡ H would
contradict that H L is not reversible. Thus, there is some GL with GL ⩾ H L .

We claim that this GL cannot be end-reversible. If it were, then since G is in
reduced form, by Definition 21, GL ∼= {∅ | Wn} for some nonnegative integer n.
Also, from the reversibility of GL , we would have G ⩾GL R

= Wn . Since G ≡ H ,
this gives

H ⩾ Wn. (4)

Now, from GL ⩾ H L and GL ∼= {∅ | Wn}, we have {∅ | Wn}⩾ H L . But {∅ | Wn}

is invertible (Theorem 22), and so

0 ⩾ H L
+ {Wn | ∅}. (5)

From the Maintenance Property of Theorem 8, inequality (5) implies that
from every Left move in H L

+{Wn | ∅}, there exists a Right move that is less
than or equal to 0. If Left moves to H L

+ Wn , there is no Right response in Wn ,
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so the Right reply must look like H L R
+ Wn ⩽ 0. By the invertibility of Wn , this

means H L R ⩽ Wn . Combining this with inequality (4) gives H ⩾ H L R , which
contradicts that H L is not reversible. Thus, GL is not end-reversible, as claimed.

A similar argument for GL gives a Left option H L ′

such that H L ′

⩾ GL .
Therefore, H L ′

⩾ GL⩾ H L . Since there are no dominated options in the reduced
game H , it must be that H L ′

≡ H L
≡ GL . By induction, H L ∼= GL .

The symmetric argument gives that each nonreversible option H R is identical
to some G R . In conclusion, we have a pairwise correspondence between options
of G and H that are not end-reversible.

Case 2: H L is end-reversible.

Since H is reduced, this means that H L ∼= {∅ | Wn}, for some nonnegative
integer n, and H ⩾ Wn . We have two subcases.

Case 2a: |HL
| > 1.

In this case, since H is reduced and Theorem 16 cannot be further applied, it
must be that H L is an essential Left option of H .

This means that H L is the only good Left option in the following sense:
ô({HL

\ {H L
}|HR

}) = R. Since G ≡ H , there must also be a good Left move
in G, say GL . We claim that GL is end-reversible. If not, then by Case 1, there
is a corresponding nonreversible option H L ′

in H such that GL ∼= H L ′

. Then
H L ′

is also a good move in H , a contradiction.
Therefore, GL is end-reversible in G, and since G is reduced this means

GL ∼= {∅ | Wn′}, for some nonnegative integer n′. To see GL
≡ H L ∼= {∅ | Wn},

we need only show n = n′. But this follows from Theorem 19, because n, n′ are
minimal such that G ⩾ Wn, Wn′ . Thus, H L ∼= GL .

Case 2b: |HL
| = 1.

We need to show that G has a Left option GL ∼= H L ; we claim that it suffices
to show GL

̸=∅. To see that this is sufficient, first note that any Left option of G
must be end-reversible, since otherwise the pairwise correspondence from Case 1
would mean H has a nonreversible Left option, contradicting our assumption
that there is only one Left option and it is end-reversible. Since G is reduced,
it has at most one end-reversible Left option, as the rest would be removed by
Theorem 16, and so if GL

̸= ∅ then in fact |GL
| = 1. By Theorem 19, this

one end-reversible Left option must be GL
= {∅ | Wn′}, for some nonnegative

integer n′, and then n = n′ follows as above, and we get GL ∼= H L , as required.
So suppose by way of contradiction that GL

=∅. Since H = {{∅ | Wn} | HR
}

cannot be reduced further, Theorem 16(1) cannot be applied, and it follows that
{∅ | HR

} ̸∈ E . Thus, there must exist some Right option H R of H that is not a
Left-end. If this H R is not end-reversible then by Case 1 there is a corresponding
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Right option G R ∼= H R in G; but this is a contradiction because G ∈ E would be
a Left-end with a follower that is not a Left-end.

So H R is end-reversible. If H R is the only Right option then H is of the
form in Theorem 16(2), which contradicts the fact that H is reduced. So there
are other Right options, say H R2, H R3, . . . , and then we know two things: first,
H R must be essential, else it would have been removed, and second, these other
Right options cannot be end-reversible, else as nonessential they would have
been removed.

By Case 1, this means there are corresponding nonreversible options in GR,
G R2 ∼= H R2 , G R3 ∼= H R3, . . . . Since H R is essential, it is the only good move,
i.e., ôR({HL

|HR
\ {H R

}) = L. In particular, none of H R2, H R3, . . . is a good
move. Since G ≡ H , G must have a good move, say G R . This G R must be
end-reversible; else by Case 1 it would be identical to one of the H R

i . But by
Theorem 19, since G is reduced, G R must be {Wm | ∅}, for some nonnegative
integer m, and this is a contradiction because all options of the Left-end G ∈ E
must be Left-ends.

This shows that GL
= ∅ is impossible, and so then by the argument above

we get GL
= {GL

} with GL ∼= H L .
In all cases, we have shown that HL is identical to GL. The proof for HR

and GR is similar. Consequently, G ∼= H . □

Thus two equivalent reduced games have the same literal form, which means
that the reduced form does not depend on the order of reductions; it is unique
with respect to our choice of substitution for end-reversible options.

We can further say that the reduced form of a game in E is a simplest equivalent
form, modulo E .

Theorem 24 (Simplicity). Let G ∈ E be a reduced form of a game. If G ′
≡ G,

then rank(G ′) ⩾ rank(G).

Proof. If G ′ is also reduced, then G ′ ∼= G and so clearly the ranks are equal.
Otherwise, reduce G ′ to G ′′; then G ′′

≡ G ′
≡ G implies G ′′ ∼= G by Theorem 23.

Since all reductions either maintain or reduce the rank of G ′′, this means
rank(G ′) ⩾ rank(G ′′) = rank(G). □

These results let us talk about a canonical form (with the same meaning as
the defined reduced form) of a game in the dead-ending universe, E , provided
we emphasize the choice made of substitution for end-reversibility. Analogous
results were shown for D in [4]. With this, we have completed our second major
goal of the paper, while the first goal was to establish the Substitution Theorem.
In the next and final section, we use these defined canonical forms to establish
the third major goal, that both D and E satisfy the conjugate property.
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5. Conjugates and inverses

We end the paper with a proof that the conjugate property, Definition 2, holds
modulo D or E . We will find good use of the defined canonical forms from the
previous section.

The proofs use a technique originally employed by Ettinger in his work on
dicot scoring games [5] (see specifically Claim (ii) in Case 1 of the proof of
Theorem 27). Let us begin by proving the conjugate property for the simpler
case of the dicots.

Theorem 25. The universe of dicot games has the conjugate property.

Proof. Consider the canonical forms of G, H ∈ D, and suppose G + H ≡ 0. We
prove, by induction on the rank of G + H , that H ≡ G. If the conjugate is an
additive inverse, we make the identification −G = G. For the base case, if G
and H both reduce to 0, then trivially H ≡ G. Otherwise, the game G + H ∈ D
has at least one Left option and at least one Right option. Consider without
loss of generality a Left option of G, GL . We break the proof into two cases
depending on whether GL is reversible. Note that, since G is in reduced form,
if GL is reversible then it must be end-reversible with GL

= ∗ .

Case 1: GL is not reversible.

By Theorem 8, for the Left option GL
+ H , there exists either GL R

+ H ⩽ 0
or GL

+ H R ⩽ 0. The former inequality is impossible, since adding G to both
sides gives GL R ⩽ G, and hence GL is reversible, a contradiction. Therefore,
there exists H R such that GL

+ H R ⩽ 0. The proof that GL
+ H R

≡ 0 is adapted
from Claim (ii) in the proof of Theorem 27 (except here the only end-reversible
option H R is ∗). By induction then H R

≡ −GL .

Case 2: GL
= ∗ .

Since ∗ is reversible in G, then G ⩾0. Adding H to each side gives G+H ⩾ H ,
and therefore by assumption 0 ≡ G + H ⩾ H .

Assume, by way of contradiction that ∗ ̸∈ HR. By Case 1, the other Right
options of H are the inverses of the Left options of G (by using also induction).
Since G is reduced and ∗ is an end-reversible option of G, Left does not have any
other winning move in G (see also Theorem 13). By symmetry, then, H has no
winning Right move. But this contradicts 0⩾ H , as Right wins playing first on 0.
Thus, if GL is end-reversible, then there is a corresponding end-reversible H R

in H , and both are ∗ . Since −∗ = ∗ , we have H R
≡ −GL .

Thus, we have established a pairwise equivalence of the options of G and H .
This gives G ≡ H . □

The analogous result holds for the dicot subuniverse of impartial games, I.
Here we get use for the modular definition of inequality.
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Corollary 26. The universe of impartial games has the conjugate property.

Proof. A result of [16] establishes that, for G, H ∈ I, G ≡D H if and only if
G ≡I H . Apply Theorem 25. □

Theorem 27. The universe of dead-ending games has the conjugate property.

Proof. Suppose that G, H ∈ E satisfy G + H ≡ 0, and consider G, H in their
reduced forms. We will prove, by induction on the rank of G + H , that we must
have H ≡ G. Because of numerous algebraic manipulations, we will revert to the
short-hand notation −G = G, if the existence of a negative is given by induction.

For the base case, if G and H both reduce to 0, then trivially H ≡G. Otherwise,
the game G + H has at least one option; without loss of generality, assume G
has at least one Left option, GL . We break the proof into two cases based on
whether or not GL is reversible.

Case 1: GL is not reversible.

We prove two claims.

Claim (i): There exists H R such that GL
+ H R ⩽ 0.

Let J = G + H ≡ 0. From Theorem 8, for all Left moves J L , there exists J L R

such that J L R ⩽ 0. In particular, for the Left option GL
+ H , there exists either

GL R
+ H ⩽ 0 or GL

+ H R ⩽ 0. The former inequality is impossible, since
adding G to both sides gives GL R ⩽ G, which contradicts that GL is not a
reversible option. Therefore, the claim holds.

Claim (ii): With H R as in Claim (i), GL
+ H R

≡ 0.

We have that GL
+ H R ⩽ 0, and so suppose by way of contradiction that

the inequality is strict. Let us index the options starting with GL
= GL1 and

H R
= H R1 , so that our assumption is GL1 + H R1 < 0.

Consider the Right move in G + H to G + H R1 . Since G + H ⩾ 0, there
exists a Left option such that (G + H R1)L ⩾ 0. This option is either of the form
G + H R1 L ⩾ 0 or GL2 + H R1 ⩾ 0 for some option GL2 that cannot be GL1 , since
GL1 + H R1 < 0.

If we have the first inequality, G + H R1 L ⩾ 0, then, by adding H to both sides,
we get H R1 L ⩾ H . Therefore, since H is in canonical form, H R1 is an end-
reversible option and, by Theorem 19, H R1 = {−Wn | ∅} for some nonnegative
integer n. The two inequalities GL1 + H R1 ⩽ 0 and G + H R1 L ⩾ 0 become
GL1 + {−Wn | ∅} ⩽ 0 and G − Wn ⩾ 0, respectively. In GL1 + {−Wn | ∅}, by
Theorem 8, if Left moves to GL1 − Wn , then Right has a response of the form
GL1 R

− Wn ⩽ 0. Then GL1 R ⩽ Wn and G ⩾ Wn leads to GL1 R ⩽ G, which is a
contradiction because GL1 is not reversible.
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If we have the second inequality, GL2 + H R1 ⩾ 0, then we can assume
GL2 is not end-reversible; if it were end-reversible, then as above, H R1 would
be end-reversible and so GL1 would also be end-reversible, contradicting our
assumption. By induction, GL2 + H R1 ≡ 0 implies that H R1 = −GL2 , since G
and H are in reduced form. But now we have 0 > GL1 + H R1 = GL1 − GL2 ,
or GL2 > GL1 , which is a contradiction because GL should have no dominated
options. Therefore, GL2 + H R1 > 0. By Claim (i) and the above argument,
there must exist a Right option H R2 in H and a Left option GL3 in G, such that
GL2 + H R2 ⩽ 0 and GL3 + H R2 > 0, and from there a H R3 and GL4 , and so on.
We get the following chain of inequalities:

GL1 + H R1 ⩽ 0, GL2 + H R1 > 0,

GL2 + H R2 ⩽ 0, GL3 + H R2 > 0,
...

...

But the number of Left options of G is finite; at some point, we will get an
inequality like GL1 + H Rm > 0 (re-indexing if necessary).

Because the inequalities are strict, summing the left-hand and the right-hand
inequalities gives, respectively,

m∑
i=1

GL i +

m∑
i=1

H Ri ⩽ 0 and
m∑

i=1

GL i +

m∑
i=1

H Ri > 0,

which is a contradiction.
Therefore, we conclude that GL

+ H R
≡ 0, which proves the claim, and then

by induction H R
≡ −GL , which solves this case.

Case 2: GL is reversible.

That is, since G is reduced, GL is end-reversible: there is a smallest n such
that GL

= {∅ | Wn}.
We will argue that GL must be paired with a symmetric end-reversible option

in HR. If not, by Case 1, G + H would be

{{∅ | Wn}, GL2, GL3, . . . | . . . } + { . . . | −GL2, −GL3, . . . }.

Since GL is end-reversible, we know G ⩾ Wn . Adding H to both sides and
using G + H ≡ 0, we get 0 ⩾ H + Wn .

Let us first assume that GL has more than one option, so the end-reversible
option GL must be essential. This means that there is a Left-end X such that
{∅ | Wn} + X is the only winning move for left in G + X . As ends, both Wn

and X are invertible, and so we can add Wn + X to both sides of 0 ⩾ H + Wn to
see Wn + X ⩾ H + X . Now, Right wins first on Wn + X (Right-end), so Right
must have a good first move on H + X . But then Left would have a good first
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move on H + X , which contradicts that GL is essential in G. Thus, H must have
an end-reversible Right option after all, say {∅ | Wn′}, and since G and H are
reduced it must be that n = n′.

All that remains is the case where GL
= {∅ | Wn} ∈ GL is the only Left option.

If so, if HR is not empty, the proof follows as above. If HR
=∅, by Theorem 22,

GL should be empty, which is a contradiction.
We have seen that each GL has a corresponding −GL in the set of Right

options of H . This finishes the proof. □

6. Related/future work

In a related paper in this volume, we prove that there are infinitely many (misère)
absolute universes [10]. Problem: establish infinitely many reduction theorems,
specifically, explain how end-reversibility generalizes to those settings.
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