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Survey on Richman bidding
combinatorial games

PREM KANT AND URBAN LARSSON

In this survey, we explore the literature around Richman bidding in both its
continuous and discrete forms. Our primary objective is to highlight recent
advancements in discrete Richman bidding, which, in the normal play setting,
generalizes the classical alternating play to infinitely many game families.

1. Introduction

Consider a game position of TOPPLING DOMINOES as in Figure 1, with two red
pieces and a blue piece between them. In this game, the players, Red and Blue, at
their turn, topple red and blue dominoes, respectively, in either direction. The win-
ner is determined by the normal play convention: a player who cannot move loses.
In the alternating play convention, Red wins irrespective of the starting player;
indeed, if Red is “Left”, who is positive, the well-known game value is 1

2 > 0.
Now consider a variation where the move order is instead decided by bidding.

Both players start with a preallocated budget. Before each move, they bid any
nonnegative integer amount from their budget. The highest bidder wins the bid,
transfers the winning amount to the other player, and makes a move in the game.
One of the players holds a tie-breaking marker to resolve any ties. If there is a
tie in the bids, the player with the tie-breaking marker wins the bid, and transfers
the winning amount together with the marker, and makes a move in the game.
The marker holder may optionally include the marker with their bid; if they win,
they transfer the winning bid and the marker, even without a tie. If a player wins
the bid but cannot make a move, the game ends, and that player loses. This is a
bidding-normal-play situation. We assume that the bids are sealed.

Let us consider a specific budget allocation to the TOPPLING DOMINOES

position in Figure 1. Suppose Blue has |1 with the tie-breaking marker, while
Red has no money. Assume, in their first bidding round, Blue goes all in by
bidding |1 along with the marker, and Red bids |0. Blue wins the bid, transfers |1
and the marker to Red, and topples the blue domino towards the left. With a
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Figure 1. A TOPPLING DOMINOES position (with two red pieces and
a blue piece between them).

single standing red domino, Red bids |1 with the tie-breaking marker, and Blue
bids |0. Red wins the bid, transfers |1 and the marker back to Blue and topples
the last red domino. With no dominoes left, both players bid |0 to avoid making
a move in the game. Blue wins the bid by transferring the marker but cannot
make a move, thus losing the game. Could Blue have bid differently to change
the outcome? The answer is “no”. Even if Red always bids |0, she will win this
game. Later in Section 3, we will see that this is true for all such games.

Now consider the disjunctive sum domino position as in Figure 2. In alternating
normal play, Red wins this disjunctive sum regardless of the starting player;
indeed, if player Red is “Left”, then the alternating play game value is 1

2 1 =

{0|1} +
{
0|{0|−1}

}
> 1

2 > 0.
But what about bidding play? Let us again use the budget allocation where

Blue has |1 with the tie-breaking marker, and Red has no money. Suppose that
Blue first bids |0 with the tie-breaking marker and then bids |1 in the second
round to secure two consecutive moves in the game. He plays both moves
in the second component, ensuring that a single blue domino remains in this
component. Both players then bid |0. Red wins the bid by transferring the marker
and topples the leftmost domino of the first component towards the right, ending
that component. Blue bids |0 again. If Red bids |1, she wins the bid but cannot
move in the game and loses. If Red bids |0, Blue wins the bid by transferring
the tie-breaking marker and topples the last blue domino left in the second
component. As in the previous example, both players bid |0 to avoid winning
the last bid of the game. Red wins the bid by transferring the marker but cannot
move in the game, so she loses. For all other choices by Red, Blue still wins the
game. Hence, the established alternating play theory is not applicable here.

Figure 2. A TOPPLING DOMINOES disjunctive sum position.
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The authors together with Rai and Upasany [7; 8] extend the alternating normal
play theory to include bidding play. This is an important development because it
dramatically enriches both “auction theories” and “combinatorial game theories”
(CGT). Standard theorems in the CGT literature now become reference points
for further studies in the bidding setup.

Outline. The purpose of this survey is to study the development of Richman
bidding combinatorial games, as exemplified in the introduction. In Section 2,
we review the development of both the continuous and the discrete models [6; 9;
10; 11; 12; 13]. In Section 3, we discuss how the discrete bidding convention, as
explained in the above sample games, recently entered the theory of combinatorial
games [4; 5]. The papers [7; 8] define “normal play” in the bidding setup and
develop classical concepts such as outcomes, disjunctive sum, and constructive
game comparison.

2. Richman bidding

Let us explore a game scenario involving two players, Left and Right, based
on a directed graph as in Figure 3. A token, X, is placed on the top vertex.
From each vertex, both players can move the token along the directed edges.
Among these vertices, two are labelled ℓ and r . Left aims to bring the token
to ℓ, while Right aims to bring the token to r . These games are referred to
as double-reachability games since each player has a different target. Let us
consider random turn play where, at each turn, a spinner, equally likely to direct
Left or Right, determines the next mover. It is easy to calculate that in this game,
Left wins with a probability of 3

4 , and Right wins with a probability of 1
4 .

Instead of randomly deciding the next mover, David Richman introduces, in
the mid 1980s, bidding as a mechanism for players to secure the next move
in the double-reachability game.1 In this framework, both players start with
a preallocated amount of money. Players simultaneously bid any nonnegative
real number from their allocated resources to gain the move; the higher bidder
transfers the bid amount to the other player and makes a move in the finite
directed graph D. The directed graph D contains two labelled vertices, ℓ and r ,
with paths from every other vertex leading to either of them. Similar to the
previously discussed random turn play of double-reachability game, each player
can slide the token along an arc in the directed graph. Since the money is paid
only back and forth, for convenience, let us assume a total budget, TB = 1. In
case of a tie in bidding, a fair coin toss determines the winner. In this Richman
game, the objective remains to reach a predefined winning target.

1After his tragic passing, this concept was further developed and published by Lazarus et al.
in [10; 11].



46 PREM KANT AND URBAN LARSSON

X

ℓ r

Figure 3. A directed game graph.

Lazarus et al. in [10] show that in the Richman game, given the initial budget
partition and the token’s location at vertex v, there exists an optimal deterministic
strategy for one of the players to secure victory. Specifically, there exists a
unique rational-valued threshold function R(v) (also known as the Richman
cost function), such that if Left’s share of the money exceeds R(v), she secures
victory; if it is less, then Right wins. Remarkably, the method of conducting bids
does not affect this outcome. Moreover, for acyclic digraphs, they also found a
constructive approach to determine the Richman cost function.

Furthermore, Richman got a surprising connection with the random turn game.

Theorem 1 [10]. Suppose that, in the digraph D, the probability of Left winning
the random turn game from the vertex v is r(v). Then

R(v) = 1 − r(v).

For example, for the bidding variation of the game in Figure 3, the Richman
cost function is R(v) =

1
4 . That is, if Right’s initial budget is more than 3

4 , he
can ensure his win, and if Left’s budget exceeds 1

4 , she can force a victory.
Extending this work, Lazarus et al. [11] show, for infinite “double-reachability

bidding games”, the existence of a nontrivial Richman interval (1− R(v), R(v)).
If Left’s share of the money exceeds R(v), she can force a win; if it is less than
1 − R(v), then Right can force a win, and in all other cases, the game is a draw.
In this case, the Richman cost R(v) is not necessarily a rational number; instead,
it can be any real number between 0 and 1.

Avni et al. [2] study infinite-duration games on directed graphs using the same
Richman bidding setup. Motivated by various real-life applications, they focus
on parity games and mean-payoff games. In parity games, the vertices of the
directed graph are labelled, and a player wins if the parity of the highest index
visited infinitely often is odd. In mean-payoff games, vertices have associated
weights, and the payoff is the long-run average of the accumulated weights of
the visited vertices. Player 1 aims to maximize this payoff and wins the game
if it is ≥ 0, while Player 2 aims to minimize it. They show that parity games
are linearly reducible to reachability games, and thus a threshold budget exists.
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For mean-payoff games, they first determine the mean-payoff value within its
strongly connected components. Building on this, they construct a reachability
game to show the existence of a threshold budget for the original mean-payoff
game. For strongly connected mean-payoff games, they show that the mean-
payoff value does not depend on the initial budget. Furthermore, this value is
equal to the mean-payoff value of the random turn mean-payoff game, where,
the next mover is selected uniformly at random on each turn.

Richman’s theory is elegant and reveals surprising connections with random
turn games, but it considers bidding with real numbers, which is not suitable for
recreational play. Additionally, their study is limited to symmetric games, where
both players can move from each position. Motivated by these limitations, Mike
Develin and Sam Payne discretize Richman’s bidding process in [6] and develop
the theory for partizan games. They consider a game G played on a coloured
directed graph, with red and blue edges representing the moves of Left and Right,
respectively. The terminal nodes are red, blue or uncoloured. Red and blue nodes
denote winning positions for Left and Right, respectively, and the uncoloured
nodes denote ties. There is a token at one of the vertices, and a move by any
player consists of sliding the token along their corresponding coloured edge. The
game ends at a terminal node, or if one player is unable to move, in which case
this player loses. Similar to Richman’s theory, both players start the game with
a preallocated amount of money, and their sum constitutes the total budget TB.
Players bid simultaneously to make a move in the game; the bid winner pays the
winning amount to the other player and, unlike in Richman’s theory, can also force
the other player to make a move. The idea here is to model the zugzwang position,
where no player wants to make a move in the game. To address tie situations,
they introduce a tie-breaking marker. At the beginning of the game, one player
starts with the marker. In case of a tie, the marker holder can either claim victory
by giving away the marker or keep the marker, allowing the opponent to win.
In contrast to the introductory example, here players always want to win the
bid. With this discrete bidding notion, they establish that having the tie-breaking
marker is advantageous but not worth more than a standard chip. Analogous to
the results of Richman’s theory, they prove the existence of a threshold amount
for Left to win the game. This threshold amount depends only on the game G and
the total budget TB. Consequently, the precise manner of bidding does not impact
the theoretical outcome. As an illustration, they study the game of TIC-TAC-TOE

in their discrete Richman bidding model. For all TB ∈ N, they determine the
threshold amount that Left requires to win the game, along with her optimal
strategy. Independently, Theodore Hwa has calculated the solution of TIC-TAC-
TOE in the continuous Richman setting [6]. He finds that the Richman cost of the
initial position for this game is 133

256 . Note that the Richman cost is greater than 1
2
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even though the game is symmetric because a draw is also a possible outcome.
Interestingly, the optimal moves of players in the continuous Richman setting
are also optimal in the discrete Richman bidding model, except when TB = 5.

In 2019, Larsson and Wästlund extend Richman’s work with continuous
bidding to include partizan games [9]. Building on Richman’s continuous bidding
framework, they introduce negative bids to handle zugzwang positions. The game
setup is the same as in [6], but the bidding method contrasts with theirs. Here,
bidding is via an open scheme, where the player who made the last move places
the next bid. When one player bids, the other player can either accept the bid
(taking the bid amount and allowing the bidder to make the next move) or reject
the bid (paying the same amount and making the move). Similar to the Richman
interval for symmetric infinite directed graphs, they show the existence of a
nontrivial interval for partizan games with finitely many positions. When turns
are determined randomly, the lower and upper bounds of this interval represent
the maximum probability that Left can force a win and avoid a loss, respectively.
Additionally, when turns are determined by their bidding rule, the lower and
upper values of the same interval represent the minimum amount Right needs to
avoid losing and to force a win, respectively. They identify a CHESS position
with such a nontrivial interval and show that in a three-piece CHESS scenario (two
kings and one additional piece), the interval collapses to a single value for all
such positions, despite its partizan nature. Furthermore, in CHESS, they identify
zugzwang positions where the optimal strategy involves placing a negative bid.

In the traditional setting, Richman games are zero-sum. In this view, Meir
et al. [12] extend this theory to general sum games, where terminal positions are
assigned with payoffs for both players. They study combinatorial games where
both players have the same move options under both discrete and continuous
bidding. Bidding is simultaneous, and the bid winner makes a move in the game.
In the discrete setting, all ties are resolved in favour of one of the players. With
this setup, they show the existence of pure strategy subgame perfect equilibrium
(PSPE). Interestingly, they find that there can be multiple PSPEs, but they form a
meet-semilattice with a unique minimum, referred to as the Bottom Equilibrium.
Due to the presence of multiple PSPEs, simultaneous bidding becomes crucial.
For binary games (where each node has at most two children), they show that, for
all sufficiently large total budgets, the Bottom Equilibrium exhibits monotonicity
and Pareto-optimality. However, for nonbinary games, they provide an example
where these properties do not hold. Additionally, for continuous bidding, they
show the existence of PSPE.

In [13], Larsson et al. introduce Richman bidding to scoring play via the
ruleset CUMULATIVE SUBTRACTION, a variation of the classical normal play
SUBTRACTION GAMES. In this game, there is a finite heap of pebbles and a
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subtraction set S ⊂ N. A player, on their turn, picks a number from the set S
and removes that many pebbles from the heap. The game ends when the number
of pebbles in the heap is smaller than the minimum number in the set S. The
final score is the total number of pebbles collected by Left during play minus
the total number collected by Right; if the result is positive, Left wins; if it is
negative, Right wins, and otherwise, the game is a tie. They introduce bidding in
this game and call the new game BIDDING CUMULATIVE SUBTRACTION (BCS).
The bidding process is similar to that in [6], with the key difference that the
winner of the bid must make a move in the game. In case of a tie, the player
with the tie-breaking marker wins the bid and transfers the marker. In this setup,
alternating play becomes a special case with a total budget of zero. For any fixed
total budget TB, if the BCS with the subtraction set S satisfies some standard
axioms of monotonicity and marker worth, they prove the existence of a unique
equilibrium for all budget partitions. Specifically, for a fixed heap size, they
show that if the subtraction set S = {1}, then BCS has a unique equilibrium.
Moreover, these equilibrium outcomes are eventually periodic with a period of 2,
with increasing heap sizes.

3. Bidding normal play in a disjunctive sum

Now, we follow up on the TOPPLING DOMINOES example introduced earlier and
study normal play combinatorial games [4; 5] with discrete Richman bidding.
We explain how the Richman bidding convention in [8] generalizes the standard
CGT outcomes and the disjunctive sum theories.

In [8], we observe that the tie-breaking rule of [13] does not give a pure strategy
equilibrium. To illustrate this, consider the case where TB = 2 and the game is
∗ = {0|0} under the bidding convention of [13]. Suppose Left has a budget of |1
along with the marker. Both players have the terminal game as their only option,
so they do not want to hold the marker in the next position. Consequently, for
the first bid, Left aims for a tie, while Right prefers a strict win of the bid by
either player. That is, Left prefers the bidding pair (1, 1) or (0, 0), while Right
prefers (1, 0) or (0, 1). Hence, there is no pure strategy equilibrium. Moreover,
this situation also violates the standard normal play convention where “last move
wins” is the same as “cannot move loses”. For instance, if the bidding pair is
(1, 0), Left gets the last move but loses the game because she keeps the marker.

In [8], we modify the tie-breaking rule of [13] by allowing the marker holder
to explicitly announce the marker along with their bid. With this additional
rule, the marker can be transferred to the other player even without a tie. To
set this up, consider a total budget TB ∈ N0 = {0, 1, 2, 3, . . . }. We define
B = {0, . . . , TB, 0̂, . . . , T̂B}, the set of all feasible budgets, where ·̂ indicates
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Bids 0 1

0 L R

1 R L

0̂ L R

1̂ L L

Table 1. The table displays the winner using our bidding convention in [8].

that Left holds the tie-breaking marker. We consider only those game forms G
which are finite and contain no cycles, denoted by G. A bidding game is a game
form G together with the total budget TB, denoted by (TB, G). An instance of
a bidding game is a triple (TB, G, p̃ ), where p̃ ∈ B denotes Left’s part of the
budget. If TB is understood, we write (G, p̃ ). With this setup, we show the
existence of a unique deterministic outcome of the bidding game. Moreover, this
additional rule establishes that “last move wins” is equivalent to “cannot move
loses”, which was not achievable with the bidding rule of [13]. Furthermore, this
is still a generalization of alternating play when TB = 0.

To illustrate this, consider the same example where TB = 2 and the game is
∗ = {0|0} with Left’s budget of |1 together with the marker. With our bidding
convention, Left has four bidding alternatives to start with, as displayed in Table 1.
The final winner is displayed for each case, depending on whether Right bids |0
or |1. In Table 1 observe that row 4 is better for Left as compared to other rows,
regardless of Right’s choice of move, so Left will choose row 4, which is to start
by bidding 1̂. In this case, she gets the last move and wins the game irrespective
of Right’s choice of move.

Theorem 2 [8]. Consider the bidding convention where the tie-breaking marker
may be included in a bid. For any game (TB, G, p̃ ), there is a pure strategy
subgame perfect equilibrium, computed by standard backward induction.

By the existence of PSPE, we may now drop the assumption of simultaneous
bidding. We refer to the pure subgame perfect equilibrium of a game (TB, G, p̃ )

as the “partial outcome”, o(G, p̃ )∈{L, R}, where by convention the total order of
the results is L>R. The outcome of the bidding game (TB, G) is o(G)=oTB(G),
defined via the 2(TB+1)-tuple of partial outcomes as

o(G) =
(
o(G,

∧

TB), . . . , o(G,
∧

0), o(G, TB), . . . , o(G, 0)
)
.

Next, for a fixed TB, we define the outcome relation ⩾. If G and H are games,
then o(G) ⩾ o(H) if o(G, p̃) ⩾ o(H, p̃) for all p̃ ∈ B. The outcome relation
induces the natural partial order of outcomes.
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Similar to [6], in our bidding setup, the tie-breaking marker is advantageous
but not worth more than a standard chip. We define an outcome to be feasible if
it satisfies, for all games G and all budget partitions,

• o(G, p̃ )⩽o(G, p̃ + 1) for fixed marker holder (outcome monotonicity), and

• o(G, p̂ ) ⩽ o(G, p + 1) (marker worth).

We prove the existence of a game form for each such feasible outcome class.
This creates the base to delve deeper into the study of combinatorial games with

a bidding setup. In [7], we extend our study of individual combinatorial games
with a bidding setup to include games in the disjunctive sum. We next define
several key definitions. The disjunctive sum of the game forms G = {GL

|GR
}

and H = {HL
|HR

} is defined recursively as

G + H = {G + HL, GL
+ H | G + HR, GR

+ H},

where G + HL
= {G + H L

: H L
∈ HL

} when HL
̸= ∅, and otherwise the set is

not defined and omitted. The other terms, GL
+ H , G + HR and GR

+ H , are
defined in a similar way.

Fix a TB and consider games G, H ∈ G. Then G ⩾ H if, for all games X ,
o(G + X) ⩾ o(H + X). The relation ⩾ induces a partial order on G. Moreover,
it leads to game equality, G = H if G ⩾ H and H ⩾ G and also to the G > H
if G ⩾ H but H ̸⩾ G.

We find that the 0 value is the unique identity in this bidding setup. Therefore,
we define a game G as invertible if there exists a game G ′ such that G + G ′

= 0.
A game G is a number if for all GL and for all G R , GL < G < G R , and all

options are numbers. We prove that in a number game G, an optimal bidding
strategy for both players is to bid 0 at each follower.

Next, we develop a constructive comparison test for bidding games.

Theorem 3 (Constructive Comparison [7]). Consider a game form G ∈ G and
any total budget. Suppose that in the game (G, 0), an optimal bidding strategy
by Left is to bid 0 at each follower. Then G ⩾ 0 if and only if o(G, 0) = L.

We list some immediate consequences of this result.

Corollary 4 (Constructive Comparison Tests [7]). Consider any bidding game
(TB, G).

(1) If o(G, 0) = L, with a Left 0-bid strategy, then G ⩾ 0.

(2) If o(G,
∧

TB) = R, with a Right 0-bid strategy, then G ⩽ 0.

(3) If o(G, 0) = L, with a Left 0-bid strategy, and o(G,
∧

TB) = L, then G > 0.

(4) If o(G,
∧

TB) = R, with a Right 0-bid strategy, and o(G, 0) = R, then G < 0.

(5) If o(G, 0) = R and o(G,
∧

TB) = L, then G is incomparable with 0.
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By using Constructive Comparison Tests, we find that the existence of a “game
inverse” is not obvious in general. For example, the game ∗ = {0|0} fails to have
an inverse if TB > 0. Thus, our bidding game monoids are not groups when
TB > 0. Nevertheless, for any TB ⩾ 0, we prove that the numbers constitute
a group structure with subgroups integers and dyadic rationals. For TB > 0,
although the game ∗ does not have an inverse, it continues to be an infinitesimal.

4. A discussion on bidding rules

Richman bidding in combinatorial games appears in both continuous and discrete
forms. This concept originates with Richman’s work published in 1996, where he
introduces continuous bidding (using real numbers) as a mechanism to determine
the next mover in a combinatorial game [10]. Remarkably, Berlekamp also
introduces a similar auction in [3] to determine the mean and the temperature [4]
of a normal play game position. Both these works appear in the first volume of
Games of No Chance in 1996.

From a recreational perspective, continuous bidding is impractical. To address
this issue, Mike Develin and Sam Payne [6] introduce discrete Richman bidding
in 2010. In their bidding rule, the winner of the bid decides the next mover in the
game; there are instances where the bid winner may prefer the other player to
make a move. However, from the perspective of normal play, their bidding rule
creates a discrepancy where “last move wins” is not equivalent to “cannot move
loses”, an analogy that is foundational to alternating play combinatorial games.
Recent research has explored various bidding rules, particularly regarding the
tie-breaking mechanism, but none resolve this discrepancy.

The bidding rule in the scoring play paper [13] is similar to that of [6], with
the main difference being that the winner of the bid has to move in the game
(there are no zugzwangs). Subsequently, [8] further modifies the bidding rule
from [13]. In addition to the scoring play bidding rule, now the marker holder
may give away the marker by including it with the bid, even in the case of a strict
win. With this modification, “the last move wins” becomes equivalent to “cannot
move loses”. This rule also implies PSPE, so that standard backward induction
techniques apply. This creates a strong foundation to develop the theory for a
more general playing order in a combinatorial game. We generalize the concept
of outcomes via a disjunctive sum of games to a constructive game comparison.

While [8] focuses on combinatorial games in general, there has been substantial
research on games on graphs considering different bidding mechanisms, such as
Poorman and Taxman, with both continuous and discrete bidding. Guy Avni and
Thomas A. Henzinger have compiled this research comprehensively in another
survey [1].
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