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A brief conversation about subtraction games

URBAN LARSSON AND INDRAIJIT SAHA
APPENDIX BY KOKI SUETSUGU

In this survey we revisit FINITE SUBTRACTION, one-heap subtraction games
on finite rulesets. The main purpose is to give a general overview of the
development, and specifically to draw attention to Flammenkamp’s thesis
(1997), where he, contrary to other studies, experimentally observes exponen-
tial eventual period length of the outcomes, for a carefully selected subclass
of games. In addition, we contribute an appendix on FINITE EXCLUDED
SUBTRACTION by Suetsugu.

1. Introduction

This survey concerns two-player alternating play impartial combinatorial games,
in the normal play convention. The family of ruleset FINITE SUBTRACTION is
popularly called “subtraction games”. It is a family of rulesets, played on the
nonnegative integers. The current player selects a positive number from a given
finite ruleset S C N = {1, 2, ...}, and subtracts it from the given nonnegative
integer. A player who cannot play, because every subtraction leads to a negative
number, loses.

We compile recent developments, by highlighting Flammenkamp’s Ph.D.
thesis [11]. Contrary to the classical conjecture by Guy, he observes eventual
exponential period lengths of the outcomes. It is interesting to read the quote
from Nowakowski’s “Unsolved problems in combinatorial games” [19]:

In general, period lengths can be surprisingly long, and it has been
suggested that they could be superpolynomial in terms of the size of
the subtraction set. However, Guy conjectures that they are bounded
by polynomials of degree at most (g) in s,, the largest member of a
subtraction set of cardinality 7.

Let us state here the observation of Flammenkamp as a conjecture.
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Conjecture 1 [11]. There exists a sequence of subtraction games on finite rulesets
with an exponential eventual period length of the outcomes, with respect to the
largest member of the subtraction set.

In the Appendix, Suetsugu discusses the related ALL-BUT NIM, also known
as FINITE EXCLUDED SUBTRACTION.

2. Two and three move rulesets

The children’s game “21” starts on a heap of 21 tokens and the two players
alternate in removing one or two tokens. Anyone who plays this game a couple
of times figures out that they do not want to start. The second player’s winning
strategy is to complement the other player’s move modulo three. However naive
this game may seem, together with the game of nim, it is probably the best
introduction for an absolute novice to learn about the concept of perfect play and
more.

For another example, if the starting position is 10 and the subtraction set is
S ={2, 5}, then a possible sequence of play is 10 — 5 — 3 — 1, and the starting
player wins.

The outcome of an impartial game is a perfect play loss or win, depending on
who starts. The outcome is N/, if “the curre 't player wins”, and otherwise the
outcome is P, “the Previous player wins”.

Let us compute the initial outcomes o( - ) of the ruleset S = {2, 5}.

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
ox) P PN N PNNPPNN P NN P P N

In the sample play, obviously, the starting player made a mistake, but so did
the second player. Similar to the game of “21”, a winning strategy, whenever
there is one, is to complement the opponent’s move modulo the sum of the
available moves.

It is well known [3] that given a 2-move subtraction set S = {a, b}, the period
length of the outcomes is a+b, or 2a in case 2a | (a+b), and there is no preperiod.
However, for a 3-move subtraction set S = {a, b, c}, the period length of the
outcomes is more varied. As a warm-up, let us compute the initial outcomes
for the games S| = {2, 3, 5}, S, ={2,5, 7} and S3 = {2, 4, 7}, and identify their
respective behavior.

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
oolx) P PN NN NWNPPNNWNWNWNTP P N
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The outcomes for ruleset S; are purely periodic, and the period length is 7=2+35.

x o 1 2 3 4 5 6 7 8 9 10 11 12 13 14
onox)y P P NN PN NNNWN P NN P P
X 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
ox) N N N N NN N P P N N P N N N

The outcomes for ruleset S, are purely periodic, and the period length is 22.
There are many rulesets that start with a preperiod, and, after that, become
periodic. One example is S3.

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
o3x) P PN N NN PNNPNN P NN P N

Why is it that S, behaves diametrically to S3? The latter has a preperiod but a
very short period length, whereas the former has no preperiod but a relatively
long period length. Is this just a coincidence, and are these types of phenomena
chaotic and/or random? Flammenkamp [11] points the direction towards a fractal-
like behavior for the classification of 3-move rulesets depending on their period
lengths. He writes:

Die fraktale Struktur, die sich andeutet, scheint in ihrer Form unab-
hingig von s3 und mit wachsendem s3 immer stirker ausgepriagt zu
sein.

That is, the fractal structures increase in detail with increasing s3, and it
appears independent of s3. For fixed max § = s3 the fractal-looking behaviors
depend on whether period lengths are of the form s; + 53, s + 53, 51+ 53, Or
“something else”. See Figure 1 for an example.

Flammenkamp shows that very few (a set of density 0) have other period
lengths, and that about half of the rulesets have period length s; + s3. Namely,
for increasing s3, the proportions appear to approach 0.53..., 0.365..., and
0.105 ..., respectively. He also investigates the preperiod lengths of 3-move
rulesets and concludes that six forms on a single parameter have the longest
preperiods. Curiously, four out of these satisfy s; + 5o = s3 &= 1. (While, as
we will see, 3-move rulesets with the longest periods satisfy s1 + s = s53.)
The longest (asymptotic) preperiod appears in the family of games of the form
{5n —2, 5n+3, 10n + 2}, namely, its length is 45n*> — 1, where n € N.

The recent preprint [18] has made great progress on 3-move rulesets. We will
review this along with the other material.
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Figure 1. The picture is adapted from [11, page 3], showing a period
length classification for 3-move subtraction games, where s3 = 3001,
400 < 51 < 1600 and 900 < s, < 2100. Light gray is period length
p = s+ 583, gray is p = 51 + s3, dark gray is p = 51 + 52, black is the
diagonal s; + s, = s3, and all other period lengths are white.

3. Some history

A survey on the historical development of combinatorial games appears in [7].
According to that work, the origin of subtraction games is due to the Italian
mathematician Luca Bartolomeo de Pacioli (written between 1496 and 1508),
who proposed an additive version. The game rule says that in an alternating play,
a player can add positive integer numbers up to 6 on their turn, starting with
an empty pile, and the goal is to achieve 30. He provided the solution for the
game. Also, in the same survey paper, they mentioned a French mathematician,
Claude Gaspard Bachet de Méziriac, who published a set of puzzles in 1612, and
the 22-nd problem is similar to Pacioli’s problem, where instead of 30, a player
has to make 100, and the legal moves are to add any positive integer less than 11.

In the 1960s, Golomb [14] defined a generalization of subtraction games to
several heaps. His nonlinear shift register model determines the outcomes of any
given one-heap subtraction game S, with |S| < co. His construction provides



A BRIEF CONVERSATION ABOUT SUBTRACTION GAMES 29

an elementary proof of the ultimate periodicity of any finite subtraction game;
it gives an upper bound of the preperiod and period lengths of the form 2m% S,
Indeed, 2™ S is the number of combinations of outcome symbols within the range
of the options, so a repetition of the outcome patterns must happen. This upper
bound seems very hard to approach, and the big apparent gap with experimental
results has triggered a lot of research over the years. This survey aims to shed
more light on what has happened since then.

The nim-value of an impartial game can be computed recursively via a minimal
exclusive algorithm on the nim-values of its options (for example, if the option set
has nim-values 0, 1, 3, 5, 8, then the position has nim-value 2). Any P-position,
such as one of the terminal positions, has nim-value 0. Nim-sequences are a
refinement of outcome sequences because they reveal the winning strategies in
disjunctive sum play of impartial normal-play games. In terms of period length,
it is easy to see that Golomb’s argument instead gives an upper bound of the
period length of the nim-values of the form (| S| 4 1)™&* 5,

In the 1970s, Austin [3] analyzes nim-values of subtraction games in his
master’s thesis. He demonstrates that a subtraction game has no preperiod if
there exists a p such that p —s € S whenever s € S, and in this case, the period
length is (a divisor of) p. He calls such games “symmetric”. The reason for this
is the same as in the children’s game “21”, i.e., S = {1, 2}, where the second
player’s winning strategy is to complement the first players move modulo 3. In
Austin’s generalization, a winning strategy is instead to complement modulo p.
In more detail, to prove that there is no preperiod, suppose that we have computed
all nim-values up to a heap of size p — 1. We must show that the values of x
and p + x are the same, say v. By induction, we may assume that y and y + p
have the same values if 0 < y < x. Note that all values smaller than v are
available with options to heaps smaller than x, and therefore by induction, using
the same options from x + p, also between p and p + x — 1. Hence, if no option
of x + p has value v, then p 4+ x must get this nim-value. Every option is of the
form p 4+ x —s. Since S is symmetric, this option has an option to x. Since the
value of x is v for all s, we have p +x — s #£ v.

This idea of complementing or “reversing out” the opponent’s move (via a
known period length) transfers to the following problem: what moves can be
adjoined to a given subtraction set without altering its nim-sequence? Austin
proves that given any purely periodic subtraction game S, with period p say,
if s € S and p —s > 0, the move p — s can be adjoined to S. This is because the
second player can reverse the move if desired: if the first player plays p — s, the
opponent can complement with s to return to the same nim-value.

Without a proof, Austin provides the first complete description of the peri-
ods of the nim-sequences of 2-move rulesets, S = {a, b}, namely, that they
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are (0414)"2" or (0*14)"0"2¢="1", if b = 2n — 1)a +r or b = 2na +r,
respectively, for some 0 < r < a and n € N. He claims that the method
generalizes to 3-move rulesets in arithmetic progression, i.e., games of the
form S = {a, b, 2b — a}; without a proof, he gives a construction, but it is not
very instructive since it lacks game arguments. In support of his construction,
he provides the examples S = {4, 13, 22}, {4, 9, 14} and {4, 7, 10} with nim-
value periods “00001111000011112000011112”, “000011110222103321”, and
“0000111122223”, respectively. We have not yet encountered an update of his
result with a proof in the literature.

Moreover, he studies additive rulesets, that is, rulesets of the form S =
{a, b, a + b}, via what he calls “the Berlekamp method” (see also [5]). He
provides a table of the periods (and preperiods) of all subtraction games with
max S < 8, and he details, for all these games, all moves that can be adjoined
without altering the nim-sequences. Of course, any number for which there is no
collision between nim-values can be adjoined as a move.

Berlekamp et al. [4, Volume 1, Chapter 4, p. 83] continue in the early 1980s,
and in many instances the study is similar to that of Austin’s thesis. For example,
they compute the nim-sequences for all rulesets with subtraction maximum 7
(when Austin already did the same thing up to maximum subtraction 8). They
note that the (ultimate) period length is the sum of two elements from the
subtraction set for all but one ruleset, namely the above S = {2,5,7}. In
[5, Volume 3, Chapter 5, p. 529], they examine additive subtraction games of the
form S = {a, b, a + b}, and provide a complete statement for the nim-sequence
whenever b = 2na — r, for some 0 < r < a and n € N. Specifically, the period
length is 2b 4 r. They highlight Ferguson’s pairing property to derive the nim-
value 1 from the Os in the harder case when instead b =2na+r for some 0 <r <a,
n € N.! In this case, they claim that the period length is a(2b + r), but, to our
best knowledge, the exact nim-sequence has yet been published; see also [15,
Table 4] and the recent preprint [18]. They omit proofs of these results, and the
latter claim still appears open according to [15]; see also recent progress in [18].

Similar to Flammenkamp [11], Ward [23] considers 3-move subtraction S =
{a, b, c}, where a < b < ¢, and conjectures a precise characterization of the
nim-value periods. The conjecture is stated in two different regimes. When S is
additive, i.e., c = a + b, the period is at most a quadratic polynomial in a and b.
This part is stated as a theorem in [11], but concerning only outcomes, and
the author cites Winning Ways (where a complete proof appears to be missing);
both [3] and [5] have at least partial solutions to this part. Both [11] and [23]
conjecture that when ¢ # a + b, the period length has seven possibilities; in

1Ferguson’s pairing property states that G(n) =1 if and only if G(n —a) =0, where a represents
the smallest number in the subtraction set.
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essence, the period length is a divisor of the sum of two elements of the subtraction
set.

4. Polynomial, exponential or something between

Perhaps the phrase “it has been suggested” in the introductory quote is due to
Althofer and Biiltermann’s study [2]? They wonder if the parametrized 5-move
ruleset S, = {a, 8a,30a + 1,37a + 1, 38a + 1} has a superpolynomial period
length of the outcomes in the parameter a.

The conjecture proposed by Guy suggests that the cardinality of the ruleset
is part of the degree of a bounding polynomial. We have not been able to
find many examples that are near his bounds for higher cardinalities. However,
Flammenkamp [11] conducted extensive experiments, and his experimental
observations suggest an exponential period length, even when the cardinality of
the subtraction set is a constant, namely five.

Althéfer and Biiltermann [2] prove some results on the nim-values of the
rulesets S, = {a,2a + 1,3a + 1} for a € N. This ruleset family has a qua-
dratic polynomial period length in the parameter a and no preperiod. They
conjecture that the period length is bounded by a quadratic polynomial in the
maximum entry for general 3-move rulesets. They prove pure periodicity for
S=1{a,4a,12a+ 1, 16a + 1} if 1 < a < 26, and where the period length is a
cubic polynomial in the parameter a, namely 56a° + 52a” + 9a + 1. At first
sight, it appears remarkable that the exact cubic formula holds for all a < 26.
But, in fact, in his thesis, Flammenkamp claims to have a simpler argument
via consistence proof that this result holds for all a, and the method extends to
other parametrized rulesets. To this purpose, he defines a grammar on words that
conjectures periodic nim sequences for loops, which simplifies the method of
proof a lot, leading to fewer subcases. Note that Guy conjectured a bounding
polynomial of degree 6 for 4-move rulesets. Indeed, Flammenkamp defines a
list of 59 parametrized rulesets for which many have period length in terms
of a fifth-degree polynomial while some have a sixth-degree polynomial, but
none satisfies a seventh-degree polynomial. In this list, he also displays some
parametrizations with long preperiods. Either way, long periods for four move
games satisfy one of 5| + sp = 53, §1 + 53 = 54, §2 + 53 = 54 Or 51 + 5 = S4.
To get more wisdom regarding 4-move sets and larger, we continue visiting
Flammenkamp’s thesis. Let us summarize the main features as we (amateur
translators) understand it; an amateur’s translation of selected parts is better than
none at all; we have not yet encountered any translation of his amazing work.

Flammenkamp [11] expands on [2]. He searches for long outcome periods
via extensive computations, and he is not convinced by the mentioned 5-move
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problem from [2]. He studies instead various rulesets through extensive com-
putations, in some cases via a ruleset parameter or in other cases via a “record
holder” ruleset in terms of max S. When it comes to 4-move rulesets he uses the
second method to point at some tendency towards exponential versus polynomial
behavior. He does this by testing the period lengths of record holders in the
range 80 < max S < 235, whether they can be lower bounded by an exponential
expression of the form 2% ™5 for some « > 0, or if they can be upper bounded
by a monomial of the form (max §)#, for some B > 1. As far as his computation
goes, it seems that perhaps both are wrong. Namely « ~ 0.2, but with a decreasing
tendency, whereas an upper bound g seems even more unlikely, because, by
indexing with max S, fgo &~ 2.8 while B35 has increased to ~ 5.2. These record
holders for 4-move games all satisfy s4 — 53 = s1. He also lists initial 4-move
game record holders with respect to preperiods. These tend to satisfy s; = 1
and s4 = s34+ 1. Motivated by these tentative results, Flammenkamp makes more
experiments. He completes a table with record holders for any finite ruleset with
max S < 30, and finds a distinguishing property of members of record holder sets.
They contain many elements of the form: both max S — s and s belong to S. Let
us define this important property: S is max-symmetric if, for all 1 <s < max S,
if max S —s € S, then s € S.? By restricting the experiments to max-symmetric
sets, he finds that most record holders have size 5. By computing record holders
among such sets, for all 61 < max S < 117, he finds that the period lengths
tend to be 2¢ ™S for o & 0.3. This certainly points towards the existence of
subtraction sets with exponential period lengths.

One curious feature, visualized in diagrams in [11], is that if the subtraction
set increases beyond five, then the record holder period lengths tend to rapidly de-
crease (as a function of max §). Perhaps Guy’s conjecture becomes true for large
subtraction sets, but remains false for max-symmetric subtraction games of size 5?

Flammenkamp [11, Theorem 12, page 42] proves that max-symmetric rulesets
are purely periodic. Note that Austin’s argument for symmetric rulesets cannot
be used because the move max S cannot be complemented. Instead, we argue
as follows: suppose that we are given an interval of outcomes of length max S,
starting at say position x. We will compute the outcome of position x — 1. If,
for s € S, one of the positions x — 1 4 s is a P-position, then clearly, x — 1
must be an A/-position. So we suppose that all positions of the form x — 1+
are N -positions. Since, in particular, x — 1 + max S is an N -position, it has
an option that is a P-position. But since S is max-symmetric, each option of
the form x — 1 + max S — s, where s € S\ {max S}, is an N'-position. Hence,
the P-position must be x — 1. We may assume that our interval comes from the

2Flammenkamp calls max-symmetric rulesets “symmetric” (because he does not study Austin’s
symmetric games).
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periodic part of the outcome sequence, which leads to a purely periodic pattern.
Flammenkamp has already argued for outcomes, but by playing in a disjunctive
sum with various nim heaps, we can reuse the argument for nim-values and prove
that this sequence is also purely periodic.

Let us list various other results and observations from Flammenkamp’s thesis:

(1) Conjecture 10 on page 36 is a fairly technical conjecture which describes
the periods of 4-move rulesets of the form {a, b, 2b — a, 2b}.

(2) Figure 6 on page 49 illustrates fractal patterns for 5-move max-symmetric
rulesets, generalizing those for 3-move games.

(3) Theorems 15 and 16 on page 50 discuss short period lengths for rulesets that
satisfy s;41 — 5; < 51, for some i. If 251 < s, together with another restriction,
then the period length is < s3 + s5. If all moves satisfy the inequality, then the
outcome sequence consists of s; P-positions followed by max S A -positions, etc.

(4) Observation 17 on page 56 demonstrates that a certain max-symmetric
one-parameter ruleset with 5n — 5 moves has a longer period than the record
holder for max-symmetric ruleset of size 5, if max§ = 55,70 or 115. For
example, when max § = 115, the period length is 604,771,076,188, compared
with 147,429,129,464 for the record holder, namely {15, 27, 88, 100, 115}, of
max-symmetric rulesets of size 5.

(5) Often, outcomes and nim-values have the same period lengths. However,
Flammenkamp has found several rulesets that have different period lengths. The
following two examples have nim-value period lengths twice that of the outcomes:
{4,6,11, 14} and {5, 7, 14, 17}. Further, he describes four one-parameter rulesets,
Si={n,n+3,3n—-1,3n+3}, $={2,4n—1,4n+1,4n+5,8n -2}, Sz =
{2,4n+1,4n+3,4n+7,8n+2} and Sy = {n, 2n+1, 4n+2, 5Sn+3, 6n+3} with
period lengths (4n +2, 12n+6), (4, 8n), (4, 8n+4), and (10n +4, 10n> +4n),
respectively, with notation (outcome period length, nim-value period length)
as in pages 57-59, Observations 18 and 20; Corollaries 19 and 21; Theorem 22.
He uses his defined grammar to prove these results. (The preperiod lengths are
also different.)

(6) The results Theorem 24 and Corollary 25, page 62, significantly lower the
exponential upper bound on period length in case there exist s; and s; with
si +s; <max S. Then the period length is upper bounded by 2¢™** 5, where ¢ =
(14+/5) /2. Interestingly, this improved upper bound includes the max-symmetric
rulesets for which he experimentally demonstrates exponential period lengths.

(7) Figure 11 on page 78 illustrates fractal patterns for 4-move rulesets with
s1 + 53 = 54, and where s3 = 997 is fixed.

(8) Flammenkamp’s open problems’ section:
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(A) Study periodicity properties of rulesets when the initial seed has been
altered: any initial configuration of Ps and A/s of size max S could initiate
computation of periodic “outcomes” (usually this set is only N positions).
A game interpretation: if a player moves to a P in this set they win, and
otherwise, they lose. A recent result [18] shows superpolynomial period
lengths even for 3-move rulesets in this generalization.

(B) Study rulesets on the real numbers. In particular, there are infinite rulesets
with all moves < max S.

Very recently, it has come to our knowledge that the preprint [18] claims a
complete proof of the outcome-periodicity of additive rulesets. We remark that
they do not study the nim sequence (which might have a longer period length),
as in Austin’s thesis, and Winning Ways, etc. They have made great progress on
various outcome sequences of three-move rulesets and in particular:

(1) They compute the preperiod and period length of the rulesets S = {1, b, c}.
Ho [15] studied the same ruleset but with the restriction b < 4c.

(2) As mentioned, Berlekamp et al. [5] partially understood the nim sequences
of additive three-move rulesets S = {a, b, a 4+ b}. Miklés and Post [18] claim a
full proof for the outcome sequence. Note Althofer and Biiltermann [2] solve a
specific case of additive games of the form S = {a, 2a + 1, 3a + 1}.

(3) In traditional normal play subtraction games, one can think of the negative
heaps as A -positions, and where a move to a negative terminates the game.
Miklés and Post [18] generalize this idea to a “terminal seed” of any string of
outcomes for the positions —maxJ, ..., —1. For example, misere play would
then be the seed A/™inSpmaxS—minS where the Ps and A/s are interpreted as
terminal outcome symbols. In this setting, they claim a proof of superpolyno-
mality of outcome lengths even for three-move rulesets. Namely, they study the
parametrized rulesets S, = {n, 4n — 1, 4n?}. By picking the seed starting with
a sufficient number of N/-positions, and then the word Z';;i PIN#=1=J | they
claim a proof of superpolynomial period length (but not exponential) in terms
of max S, namely their period length is e,

One could imagine doing the same experiment but where the seed is instead a
string of nim-values. In this way, could one achieve even longer periods?

5. Related topics

In the previous section, we asked the question: “which rulesets have long periods,
and how long can they be?”. Now, we ask: “which rulesets have short periods?”.
Some rulesets have an ultimate period length of 2. Obviously, those rulesets
cannot have any even number in the subtraction set. Cairns and Ho [6] define
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bipartite rulesets: “an impartial ruleset is bipartite if its game graph is bipartite”.
They first prove a necessary and sufficient condition for a ruleset to be bipartite.
For a finite subtraction set S with gcd(S) = 1, the ruleset S is bipartite, for all
starting positions, if and only if 1 € S and the elements of S are all odd. Of course,
the N -positions are all the odd heap sizes. They define ultimate bipartite rulesets;
aruleset S is ultimately bipartite if the ultimate period length of outcomes is two,
with alternating {0, 1}-nim-values. They provide [6, Theorem 2] three families
of ultimately bipartite subtraction sets:

() S =1{3,5,9,...,25+ 1) fork >3;
(2) Sy ={3,5,25+1) for k >3;
(3) Sk = {k, k+2, 2k + 3} for odd k > 3.

They mention a curious fact about ultimately bipartite rulesets: for large heap
sizes, the NV -positions are known, but for small heap sizes winning strategies
can be complicated. “If a ruleset is ultimately bipartite, then, any sufficiently
large heap size n is an N -position if and only if # is odd.” The argument is short
and elegant. We may assume that 1 ¢ S, for otherwise, we are done. Suppose,
for a contradiction, that a large odd number 7 is a P-position. After an even
number of moves, the game terminates at an odd number x < min S. Since x is
odd, x — 1 > 0, and the same sequence of moves leads to a win for the second
player from n — 1. Hence, the ruleset is not ultimately bipartite, a contradiction.

Suppose that we adjoin a move to a subtraction set S, such that it does not
change the nim-sequence. The set of all such elements, including elements in S,
is called the expansion set of S. Roughly, § is nonexpandable (according to
Ho [15]) if every expansion s’ implies that s’ — np € S for some nonnegative
integer n and where p is the period length.

Ho [15] continues the work of [4; 5] and [3]; he studies the periodicity of
2-move and 3-move rulesets and their expansion sets. He solves the 2-move case
completely and displays a number of results for the 3-move case in several tables.
For example, he proves the following results on classes of purely periodic games:

(1) Let a < b be relatively prime positive integers, and if a = 1, then b is
even. Consider the subtraction game S = {a, b}. If a + 1 < b < 2a, then
the expansion setis {a +1,...,b — 1} +n(a+b), n € N. If b > 2a,
then S is nonexpandable. (It follows that if a =1 or a + 1 = b, then S is
nonexpandable.)

(2) Leta > 1 be an odd positive integer and let b be an even positive integer.
The subtraction game S = {1, a, b} is purely periodic with period a + b
and nim-values (01)?/2(23)@=1/22_ The expansion set is {{1,3,...,a}U
{b,b+2,....,.b+a—1}}+n(a+b),neN.
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He poses a conjecture that “The subtraction set of a (strictly) ultimately
bipartite game is nonexpandable”.

Zhang [24] adjoins a single move c to a subtraction set S. He wishes to
determine the conditions under which the ruleset S U {c} exhibits preperiod and
period lengths of the outcomes that are linear in the parameter ¢. He provides a
conjecture, which states that if ¢ is sufficiently large, and ¢ modulo ¢ is fixed,
where ¢ is a multiple of the period length of S, then the preperiod and period
are linear in c. He proves this for several cases: if S contains 1, if S contains all
odd numbers, if S = {a, 2a},if S={1,b},orif S={a,a+1,...,b—1,b}.

The subtraction game literature and periodicity-related questions expand to
partizan subtraction games (where the players have different subtraction sets) [12].
Duchéne et al. [9] compute the period lengths when each player’s subtraction set
is of size at most two. They show that computing the preperiod length of the
outcome sequence is NP-hard in the case where one of the players’ subtraction
sets is of size one. Their method of reduction proof fixes one of the players
subtraction set to {1}. To the best of our knowledge, their method does not
generalize to impartial games. And we believe that if both players have nontrivial
rules, the hardness problem remains open. Golomb’s periodicity argument easily
generalizes to the partizan setting. But, it turns out that one of the players often
dominates the other; for large heap sizes, they win whether they start or not. In
the partizan setting, major questions typically concern domination properties and
not period lengths, etc.

6. Subtraction games in more than one dimension

It was recently demonstrated [16] that a slight generalization of subtraction
games, studied in more than one dimension, is Turing complete (see also [10]
which proves similar results in a related setting). The dimension and the finite
“subtraction set” is taken as input, and the main result states that it is undecidable
if two rulesets in the class have the same set of P-positions. Inspired by this
result, the authors focus on play in two dimensions [17], and by generalizing
Golomb’s classical method, prove row and column eventual periodicity of 2-d
subtraction games. Moreover, several diagrams expose a frequent but so far
elusive “outcome segmentation” (see Figure 2) that lead us to the development of
a O-player game, a “coloring automaton” that, in some such cases, can compute
the exact set of P-positions without referring to any N -position. We believe
that the row-column periodicity result does not generalize to periodicity along
any line of rational slope. Several 2-dimensional rulesets behave irregularly. In
particular, the class of (5-move) max-symmetric rulesets from Flammenkamp’s
thesis generalizes to two dimensions, and they show more complexity than most
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Figure 2. An outcome visualization of the 2-dimensional ruleset
S={(2,6), (3,3), (6, 1), (19, 6)} reveals a distinct geometry into five
individually regular segments (with bounding strips of constant width).
The picture shows the first 3600 by 2000 outcomes, where the P-
positions are colored black. Zoom in for detailed patterns.

other rulesets. A conjecture from [17] states that, in case of regular outcomes,
no 2-dimensional ruleset on k moves can have more than k + 1 segments.

Otherwise the literature on 2-dimensional subtraction games on a finite number
of moves is yet remarkably thin. Abuku et al. [1] study a finite version of CYCLIC
NIMHOFF [13]. They provide a closed form for the nim-values whenever the
component has a so-called A-stair structure.

Carvalho et al. [8] consider JENGA, a popular recreational ruleset. They
compute nim-values of JENGA by viewing them as 2-dimensional addition games,
similar to the ones studied in [16]. Moreover, they propose a class of impartial
rulesets CLOCK NIM for which JENGA is a specific example.
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Appendix
by Koki Suetsugu
The purpose of this appendix is to discuss in detail a variant of the subtraction

game ALL-BUT NIM and recent developments on this topic. ALL-BUT NIM is
studied by Angela Siegel in her master’s thesis [20]. In this variant of NIM, the
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player can remove n stones where n is not in the given finite set S C N. We also
refer to the ruleset as FINITE EXCLUDED SUBTRACTION and the set S as a FES
set. Siegel proved that the sequence of nim-values of this ruleset is arithmetic
periodic:

Theorem A.1 (Siegel [20]). Let Gnys(n) be the nim-value of the position in
one-heap ALL-BUT NIM where the FES set is S and the size of the heap is n.
Then there existl > 0, s > 0 and p > 0 such that

Gns(n+ p) =Gns(n) +s
foranyn > 1.

We represent p as the period and s as the saltus. We say the sequence is
purely arithmetic periodic if Gnys(n + p) = Gnys(n) + s holds any n > 0.

When a sequence is purely arithmetic periodic, it is denoted as X" +s, where X
is a sequence and 7 is the number of repetitions of X, and s is the saltus. For
example, (012)3 + 3 means

0,1,2,0,1,2,0,1,2,3,4,5,3,4,5,3,4,5,6,7,8,6,7,8,6,7,8, ...

Note that the period of the sequence p is equal to | X| x n.
Siegel showed that when [S| =1 or |S| = 2, the sequence {Gn\s(n)} is purely
arithmetic periodic:

Theorem A.2 (Siegel [20]). If S = {a}, the sequence of nim-values {Gny\s(n)} is
purely arithmetic periodic and the form is

©---(a—1)%+a

If S={a, b} (a <b), the sequence of nim-values {Gn\s(n)} is purely arithmetic
periodic and the form is

{@~(a—Df+a (b #2a),
O---(a—1D)Y+a (b=2a).

Siegel also studied partizan ALL-BUT SUBTRACTION games in her thesis.

For the case where the size of the FES set is 3, Siegel conjectured that the
sequence of nim-values is purely arithmetic periodic. Later, Sleator and Slusky
solved the conjecture.

In [21], Sleator and Slusky introduced the FES algorithm, which is a way
to calculate nim-values of ALL-BUT NIM. Usually, nim-values are calculated
from smaller heaps to larger heaps. In contrast, the FES algorithm calculates
according to the order of nim-values. That is, the algorithm determines every
position which has nim-value k and next it determines every position which has
nim-value k£ + 1, and so on.
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By using this new method, Sleator and Slusky gave another elegant proof of
Theorem A.1. They also solved Siegel’s conjecture:

Theorem A.3 (Sleator and Slusky [21]). If S = {a,b,c} (a < b < ¢), the
sequence of nim-values {Gn\s(n)} is purely arithmetic periodic.

In almost all cases, the sequence of nim-values is equal to one of the cases
S=/{a, b}, S={a, c}, or S ={a}. However, for the case where S = {a, b, a+b},
they could not determine the length of the period and introduced a conjecture:
Conjecture A.4 (Sleator and Slusky [21]). Let a and b be such that b > 3a and
ged(a, b) = 1 and let p be the period of the sequence of nim-values {Gn\s(n)},
where S = {a, b,a + b}. If there exists an m that is a multiple of 2a with

b<m <a-+bthen p=3am. If no such m exists, then there is some other n
with b <n < a+ b such that p = 3an.

If | S| = 4, the sequence of nim-values is sometimes nonpurely arithmetic
periodic. For example, if S = {2, 3, 5, 7}, then the sequence of nim-values has a
preperiod whose length is 2. Abuku and Suetsugu considered the case that the
size of FES set is 4 in [22].

Theorem A.5 (Abuku and Suetsugu [22]). Let

S=\{ai,...,a}, g=gcd(ay,...,a), S = {ﬂ,...,a—r}.
8 8
Then
n
Ons(n) = gN\S’({gJ)é’ + (n mod g).

From this theorem, we need to consider only the case that the gcd of all
elements in S is 1.

Theorem A.6 (Abuku and Suetsugu [22]). If S={a, b,c,d} (a <b <c <d),
the sequence of nim-values {Gn\s(n)} is purely arithmetic periodic except for the
cases{a,b,c,d}={a,b,a+b,a+2b} (b+#2a)or{a,b,c,d}={a,b,c,a+c}
(b #2a, c # 2a).

Also, they calculated the nim-values of the excluded cases and introduced
some conjectures.

Conjecture A.7 (Abuku and Suetsugu [22]). Consider the case
S={a,b,a+b,a+2b}.

i=Lb_aJ, jZLWJ, k=b—Qi+j+1)a

Let

and
f=4G+ ) + Da* + (4i +3)ka + k>
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The sequence of nim-values {Gn\s(n)} is purely arithmetic periodic and the
period is

f/(b—a) (a <b < 2a),
f/(L%Ja) (b = 2a, gcd(a, b) =a),

f/(ged(a, b)) (b = 2a, gcd(a, b) # a).

Conjecture A.8 (Abuku and Suetsugu [22]). The sequence {Gn\s(n)} of nim-
values is purely arithmetic periodic if S ={a, b, a+ b, 2a + b} and b > 2a.

Related to this conjecture, the following lemma has been solved.

Lemma A.9 (Abuku and Suetsugu [22]). The sequence of nim-values {Gnys(n)}
is purely arithmetic periodic if S ={a, b, a+b,2a+b}, b # 2a, and there exists
a positive integer m such that 2ma < b < (2m + 1)a. In this case, the period
is 2m+3)a+b.

Conjecture A.10 (Abuku and Suetsugu [22]). Consider the case

S={a,b,a+b,2a+ b}
Let

b+2a—1

fe L—Jr a J4a2 +3a(b mod a).
2a

If there exists a nonnegative integer m such that 2m + 1)a < b < 2m + 2)a,

then the sequence of nim-values {Gn\s(n)} is purely arithmetic periodic and the
period is f'/gcd(a, b).

In addition, a combination of ALL-BUT NIM and CYCLIC NIMHOFF is studied
in [1].

References
[1] T. Abuku, M. Fukui, K. Sakai, and K. Suetsugu, “On a combination of the cyclic Nimhoff
and subtraction games”, Tsukuba J. Math. 43:2 (2019), 241-249. MR Zbl

[2] 1. Althofer and J. Biiltermann, “Superlinear period lengths in some subtraction games”,
Theoret. Comput. Sci. 148:1 (1995), 111-119. MR Zbl

[3] R. B. Austin, Impartial and partisan games, master’s thesis, University of Calgary, 1976.

[4] E.R. Berlekamp, J. H. Conway, and R. K. Guy, Winning ways for your mathematical plays, I,
2nd ed., A K Peters, 2001. MR Zbl

[5] E.R. Berlekamp, J. H. Conway, and R. K. Guy, Winning ways for your mathematical plays,
111, 2nd ed., A K Peters, 2003. MR Zbl

[6] G. Cairns and N. B. Ho, “Ultimately bipartite subtraction games”, Australas. J. Combin. 48
(2010), 213-220. MR Zbl


https://doi.org/10.21099/tkbjm/1585706454
https://doi.org/10.21099/tkbjm/1585706454
http://msp.org/idx/mr/4080794
http://msp.org/idx/zbl/1443.91078
https://doi.org/10.1016/0304-3975(95)00019-S
http://msp.org/idx/mr/1347670
http://msp.org/idx/zbl/0874.90224
http://msp.org/idx/mr/1808891
http://msp.org/idx/zbl/1005.00004
http://msp.org/idx/mr/2006327
http://msp.org/idx/zbl/1083.00003
http://msp.org/idx/mr/2732114
http://msp.org/idx/zbl/1218.91033

A BRIEF CONVERSATION ABOUT SUBTRACTION GAMES 41

[7] A. Carvalho, C. Pereira dos Santos, J. P. Neto, and J. N. Silva, “History of combinatorial
games”, pp. 241-276 in Proceedings of the thirteenth board game studies colloquium, edited
by T. Depaulis, 2010.

[8] A. Carvalho, J. P. Neto, and C. Pereira dos Santos, “Combinatorics of Jenga”, Australas. J.
Combin. 76 (2020), 87-104. MR Zbl
[9] E. Duchéne, M. Heinrich, R. Nowakowski, and A. Parreau, “Partizan subtraction games”,
Integers 21B (2021), art.id. A8. MR Zbl
[10] A. Fink, “Lattice games without rational strategies”, J. Combin. Theory Ser. A 119:2 (2012),
450-459. MR Zbl

[11] A.Flammenkamp, Lange Perioden in Subtraktions-Spielen, Ph.D. thesis, Universitit Biele-
feld, 1997.

[12] A.S. Fraenkel and A. Kotzig, “Partizan octal games: partizan subtraction games”, Internat. J.
Game Theory 16:2 (1987), 145-154. MR Zbl

[13] A.S. Fraenkel and M. Lorberbom, “Nimhoff games”, J. Combin. Theory Ser. A 58:1 (1991),
1-25. MR Zbl

[14] S. W. Golomb, “A mathematical investigation of games of “take-away
Theory 1 (1966), 443-458. MR Zbl

[15] N. B. Ho, “On the expansion of three-element subtraction sets”, Theoret. Comput. Sci. 582
(2015), 35-47. MR Zbl

[16] U.Larsson and J. Wistlund, “From heaps of matches to the limits of computability”, Electron.
J. Combin. 20:3 (2013), art.id. 41. MR Zbl

[17] U. Larsson, I. Saha, and M. Yokoo, “Subtraction games in more than one dimension”, Theoret.
Comput. Sci. 1016 (2024), art.id. 114775. MR Zbl

[18] 1. Miklés and L. Post, “Superpolynomial period lengths of the winning positions in the
subtraction game”, 2023. arXiv 2312.02426

[19] R.J. Nowakowski, “Unsolved problems in combinatorial games”, pp. 125-168 in Games of
no chance S, edited by U. Larsson, Math. Sci. Res. Inst. Publ. 70, Cambridge Univ. Press,
2019. MR Zbl

[20] A. Siegel, Finite excluded subtraction sets and infinite modular nim, master’s thesis, Dal-
housie University, 2005.

[21] D. Sleator and M. Slusky, “Subtraction games with FES sets of size 3, 2012. arXiv
1201.3299

[22] K. Suetsugu and T. Abuku, “All-but nim with FES sets of size 4”, pp. 3440 in Game
programming workshop (Hakone, Kanagawa, 2019), 2019. In Japanese.

[23] M. D. Ward, “A conjecture about periods in subtraction games”, 2016. arXiv 1606.04029

[24] S.Zhang, “On the linearity of the periods of subtraction games”, Theoret. Comput. Sci. 985
(2024), art. id. 114350. MR Zbl

9999

, J. Combinatorial

larsson@iitb.ac.in Department of Industrial Engineering and Operations
Research, Indian Institute of Technology Bombay, Mumbai,
India

indrajit@inf.kyushu-u.ac.jp Department of Informatics, Information Science and

Electrical Engineering, Kyushu University, Fukuoka, Japan

suetsugu.koki@gmail.com Waseda University, Tokyo, Japan


http://msp.org/idx/mr/4041870
http://msp.org/idx/zbl/1437.91110
http://msp.org/idx/mr/4353939
http://msp.org/idx/zbl/1490.91032
https://doi.org/10.1016/j.jcta.2011.10.005
http://msp.org/idx/mr/2860605
http://msp.org/idx/zbl/1356.91033
https://doi.org/10.1007/BF01780638
http://msp.org/idx/mr/887178
http://msp.org/idx/zbl/0662.90095
https://doi.org/10.1016/0097-3165(91)90070-W
http://msp.org/idx/mr/1119698
http://msp.org/idx/zbl/0748.90081
https://doi.org/10.1016/S0021-9800(66)80016-9
http://msp.org/idx/mr/209015
http://msp.org/idx/zbl/0149.17002
https://doi.org/10.1016/j.tcs.2015.03.025
http://msp.org/idx/mr/3337936
http://msp.org/idx/zbl/1314.91054
https://doi.org/10.37236/2244
http://msp.org/idx/mr/3118949
http://msp.org/idx/zbl/1295.91024
https://doi.org/10.1016/j.tcs.2024.114775
http://msp.org/idx/mr/4787882
http://msp.org/idx/zbl/1237.91010
http://msp.org/idx/arx/2312.02426
http://msp.org/idx/mr/3965367
http://msp.org/idx/zbl/1444.91068
http://msp.org/idx/arx/1201.3299
http://msp.org/idx/arx/1201.3299
http://msp.org/idx/arx/1606.04029
https://doi.org/10.1016/j.tcs.2023.114350
http://msp.org/idx/mr/4682688
http://msp.org/idx/zbl/07785174
mailto:larsson@iitb.ac.in
mailto:indrajit@inf.kyushu-u.ac.jp
mailto:suetsugu.koki@gmail.com




	1. Introduction
	2. Two and three move rulesets
	3. Some history
	4. Polynomial, exponential or something between
	5. Related topics
	6. Subtraction games in more than one dimension
	Acknowledgements
	Appendix
	References

