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Scoring play combinatorial games
FRASER STEWART

In this paper we will discuss scoring play games. We will give the basic
definitions for scoring play games, and show that they form a well-defined set,
with clear and distinct outcome classes under these definitions. We will also
show that under the disjunctive sum these games form a monoid that is closed
and partially ordered. We also show that they form equivalence classes with
a canonical form, and even though it is not unique, it is as good as a unique
canonical form.

Finally we will define impartial scoring play games. We will then examine
the game of nim and all octal games, and define a function that can help us
analyse these games. We will finish by looking at the properties this function
has and give many conjectures about the behaviour this function exhibits.

1. Introduction

Combinatorial games where the winner is determined by a “score”, rather than
who moves last, have been largely ignored by combinatorial game theorists. As
far as this author is aware, there have been four previous studies of scoring play
combinatorial games, all of which focused on the universe of “well-tempered”
scoring games.

There are the works of Milnor [9], Hanner [6], Ettinger [3; 4] and most
recently, Johnson [7]. The definition of a scoring game that all of them used is
the following.

Definition 1. A scoring game is defined as

G =
{

a real number if GL
= G R

=∅,

〈GL
|G R
〉, if GLand G R

6=∅.

The authors would say that a game G, where GL
= G R

=∅, is atomic and
all other games are not atomic. Using this terminology, they were able to define
concepts such as the disjunctive sum, and the “left outcome” and “right outcome”,
which are the score at the end of a game under optimal play, when Left and Right
move first respectively. Their mathematical definitions are given here.
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Definition 2. The disjunctive sum is defined as follows:

G+ H =
{

G+ H, if G and H are atomic,
〈GL
+ H, G+ H L

|G R
+ H, G+ H R

〉, otherwise.

Definition 3. The left outcome L(G) and right outcome R(G) are defined as
follows:

L(G)=

{
G, if G is atomic,
maxGL R(GL), otherwise;

R(G)=

{
G, if G is atomic,
minG R L(G R), otherwise.

Effectively they showed that under the disjunctive sum, this class of games
forms a nontrivial monoid, and that with certain restrictions, it is equivalent to
the set of all small normal play combinatorial games.

However, these games all share one thing in common, they are all dicot scoring
games, or a subset of dicot scoring games. Meaning that if one player has an
option, so does the other, and if one player has no options, then neither does his
opponent.

For this paper, we will be considering the most general class of scoring games
that it is possible to define. The definitions given in this paper, are effectively,
equivalent to the definitions given by Milnor, Hanner, Ettinger and Johnson. That
is to say, the class of games studied by these four authors is a proper subset of
the class of games we will be defining and analysing in this paper.

2. Scoring play games

In this paper, we will be looking at the structure of scoring play games under
the disjunctive sum, since it is by far the most commonly used operator in
combinatorial game theory. Intuitively, we want all scoring play games to have
the following four properties:

(1) The rules of the game clearly define what points are, and how players either
gain or lose them.

(2) When the game ends, the player with the most points wins.

(3) For any two games G and H , a points in G are equal to a points in H ,
where a ∈ R.

(4) At any stage in a game G, if Left has L points and Right has R points then
the score of G is L − R, where L , R ∈ R.

For example, in the game Go you get one point for each of your opponents
stones that you capture, and for each piece of area you successfully take. In
Mancala you get one point for each bean you place in your Kala. So when
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comparing these games, we would like one point in Mancala to be worth one
point in Go.

Mathematically, scoring games are defined in the following way.

Definition 4. A scoring play game G = {GL
|GS
|G R
}, where GL and G R

are sets of games and GS
∈ R, the base case for the recursion is any game

G where GL
= G R

= ∅. GL
= {all games that Left can move to from G},

G R
= {all games that Right can move to from G}, and for all G there is an

S = (P, Q) where P and Q are the number of points that Left and Right
have on G respectively. Then GS

= P−Q, and for all gL
∈GL , gR

∈G R , there
is a pL , pR

∈ R such that gL S
= GS

+ pL and gRS
= GS

+ pR .

A quick note about the notation. One thing the reader will notice, especially
after we introduce the disjunctive sum, is that if both GL and G R are nonempty,
then the value of GS does not appear to be relevant.

However, it is useful for several reasons. The first is that it tells us how many
points a player gains or loses on their turn, i.e., Left gains GL S

− GS points,
and Right gains GS

−G RS points. The second is that if we are playing games
under the short rule (i.e., the game ends when a player cannot move on any
one component), then the value of GS can change everything. It is also worth
keeping it so that we can use “standard” notation for scoring play games.

The reader may also feel that it is perhaps better to write {. |GS
|G R
} as

{GSL
|G R
}, and likewise if G R

=∅. However, we feel that this is simply a matter
of personal choice, and from a mathematical perspective, not really relevant.

A concept we will be using throughout this paper is the game tree of a game.
While it may be intuitively obvious to the reader, nonetheless, we feel it is
important to define it mathematically.

Definition 5. The game tree of a scoring play game G = {GL
|GS
|G R
} is a

tree with a root node, and every node has children either on the Left or the Right,
which are the Left and Right options of G respectively. All nodes are numbered,
and are the scores of the game G and all of its options.

We also need to define a concept that we call the “final score”. This is
something which hopefully the reader finds relatively intuitive. When the game
ends, which it will after a finite amount of time, the score is going to determine
whether a player won, lost or tied.

From a combinatorial game theory perspective we want to know “what is the
best that a player can do?”. Left is trying to maximise the value of the score,
while Right is trying to minimise it. Since this is going to be the backbone of
our theory it is important to get it right, and so we use the following definition.

Definition 6. We define the following:
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• GSL
F is called the Left final score, and is the maximum score — when Left

moves first on G — at a terminal position on the game tree of G, if both
Left and Right play perfectly.

• GS R
F is called the Right final score, and is the minimum score — when Right

moves first on G — at a terminal position on the game tree of G, if both
Left and Right play perfectly.

The reason we define it this way is because the terminal position can vary
dramatically, depending on the rules of the game and the operator being used.
For instance under the long rule the game ends when a player cannot move on
all components, but under the short rule the game ends when a player cannot
move on any one component. These two rules will clearly give different results
when computing the final score of a game.

Since we want our definition to be as general as possible, i.e., cover every
possibility, it makes sense to define the final score in this way. For the purposes
of this paper we will be using standard combinatorial game theory convention.
That is, a game ends when it is a player’s turn and he has no options.

It is also important to note that we will only be considering finite games, i.e.,
for any game G the game tree of G has finite depth and finite width. This means
that GSL

F and GS R
F are always computable, and cannot be infinite or unbounded.

There is also the case where a game may have a form of aggregate scoring.
For example players may play two games in sequence, and the winner would
be the player who gets the most points over both games. This gives scoring
play games an additional dynamic, where in the event of a tie after two games,
the winner may be determined by the player who managed to accumulate more
points in one of the games.

However, as far as this paper is concerned, we will not be considering games
of this type. We will only look at games where the winner is determined after
one game ends. Games with aggregate scoring would be an interesting area to
look at for further research.

There are two conventions that we will be using throughout this paper. The
first is that in all examples given we will take the initial score of the game to
be 0, unless stated otherwise. The second is that if for a game G, GL

=G R
=∅,

we will simply write G as GS , rather than {. |GS
| .}. For example the game

G = {{. | 0 | .} | 1 | {. | 2 | .}}, will be written as {0 | 1 | 2}. The game {. | n | .}, will
be written as n and so on. This is simply for convenience and ease of reading.

2.1. An example. Before we continue we will give an example of a scoring play
game to demonstrate how to use the notation. So consider the game Toad and
Frogs from Winning Ways [1], under scoring play. The rules are as follows:

(1) The game is played on a horizontal grid.
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TBF D

TBF.0/

BTF.0/

F TB.�1/

FBT .�1/

TFB.0/

BF T .1/

FBT .1/

Figure 1. TBF = {{. | 0 | {−1 | − 1 | .}} | 0 | {{. | 1 | 1} | 0 | .}}.

(2) Left moves Toads and Right moves Frogs.

(3) Toads move from left to right and Frogs move from right to left.

(4) Toads can only jump Frogs and Frogs can only jump Toads.

(5) The player who jumps the most pieces wins.

So consider the game TBF as shown in Figure 1, where B represents a blank
space, T represents toads and F represents frogs. The numbers in brackets are
the current score.

The game in Figure 1 has value {{. | 0 | {−1 | − 1 | .}} | 0 | {{. | 1 | 1} | 0 | .}}.
This game is in “canonical form”, that is it neither has a dominated or reversible
option. For more details see Section 3.

2.2. Outcome classes. In combinatorial game theory we would like to know
who wins under optimal play, e.g., if G ∈ L, then that means Left has a winning
strategy moving first or second, if he plays his optimal strategy for both normal
and misère play. Under scoring play the outcome classes are a little different,
since in scoring play we allow ties, i.e., games where neither player wins.

Before we can define what the outcome classes precisely, we first need a new
definition. The definition we are about to give is very important for scoring play
combinatorial game theory. It, together with the definition of the final score,
forms the core of our theory.

Definition 7.

L> = {G |GSL
F > 0}, L< = {G |GSL

F < 0}, L= = {G |GSL
F = 0};

R> = {G |GS R
F > 0}, R< = {G |GS R

F < 0}, R= = {G |GS R
F = 0};

L≥ = L> ∪ L=, L≤ = L< ∪ L=, R≥ = R> ∪ R=, R≤ = R< ∪ R=.
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Since we would like to classify every game by an outcome class it is also
important that every game belongs to exactly one outcome class. So we define
the five outcome classes as follows.

Definition 8. The outcome classes of scoring games are defined as:

• L= (L> ∩ R>)∪ (L> ∩ R=)∪ (L= ∩ R>).

• R= (L< ∩ R<)∪ (L< ∩ R=)∪ (L= ∩ R<).

• N = L> ∩ R<.

• P = L< ∩ R>.

• T = L= ∩ R=.

The reason that we chose the outcome classes in this way is because if you
have a game G = {1 | 0 | 0}, then it is more natural to say that it belongs to the
outcome L, since Right cannot win, but Left can if he moves first. In this way
we also keep the usual convention of calling a game G ∈N a “next player win”
and a game H ∈ P a “previous player win”.

An interesting distinction is that while L means the set of games where Left
can win moving first or second in both normal and misère play, in scoring play,
it means that if Left wins moving first he does not lose, and may win, moving
second, and vice-versa. Another distinction is the addition of the outcome class T ,
which of course does not exist in either normal or misère play, and means that
the game ends in a tied score regardless of who moves first.

Theorem 9. Every game G belongs to exactly one outcome class.

Proof. This is clear since every game belongs to exactly one of L>, L<, L=
and exactly one of R>, R<, R=. Therefore, every game belongs to exactly one
of the nine possible intersections of L>, L<, L= and R>, R<, R=. Since each
outcome class is simply the union of one or more of these, then each game can
only be in exactly one outcome class. �

2.3. The disjunctive sum. As we mentioned earlier, the disjunctive sum is by far
the most commonly used operator in combinatorial game theory. This is because
many well-known games, such as Go, naturally break up into the disjunctive
sum of two or more components. For scoring play the disjunctive sum needs to
be defined a little differently; this is because in scoring play games when we
combine them together we have to sum the games and the scores separately.

For this reason we will be using two symbols+` and+. The ` in the subscript
stands for “long rule”. This comes from [2], and means that the game ends when
a player cannot move on any component on his turn. The “short rule” means that
the game ends when a player cannot move on at least one component on his turn.
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In this paper we will only be considering the disjunctive sum played with the
long rule.

Definition 10. The disjunctive sum is defined as follows:

G+` H = {GL
+` H, G+` H L

|GS
+ H S

|G R
+` H, G+` H R

},

where GS
+ H S is the normal addition of two real numbers.

As with the disjunctive sum of normal and misère play games we abuse
notation by making the comma mean set union, and GL

+` H means take the
disjunctive sum of all gL

∈ GL with H .
We would also like to know when one game is “better” than another one.

That is, given several options to play, which one is the best? In normal play and
misère play the definitions of “≥” and “≤” are relatively easy to define, since
players either win or lose; however, for scoring play we have to take into account
tied scores. So for this reason we will redefine “≥” and “≤”.

Definition 11. We define the following:

• −G = {−G R
| −GS

| −GL
}.

• For any two games G and H , G = H if G+` X has the same outcome as
H +` X for all games X .

• For any two games G and H , G ≥ H if H +` X ∈ O implies G+` X ∈ O ,
where O = L≥, R≥, L> or R>, for all games X .

• For any two games G and H , G ≤ H if H +` X ∈ O implies G+` X ∈ O ,
where O = L≤, R≤, L< or R<, for all games X .

• G ∼= H means G and H have identical game trees.

• G ≈ H means G and H have the same outcome.

Theorem 12. G ≥ H if and only if H ≤ G.

Proof. First let G ≥ H , and let G+` X ∈ O for some game X , where O is one
of L≤, R≤, L< or R<. This means that H +` X 6∈ O ′, where O ′ is one of L≥,
R≥, L> or R>, since if it was this would mean that G+` X ∈ O ′, since G ≥ H ;
therefore H +` X ∈ O , and hence H ≤ G.

A completely identical argument can be used for H ≤ G, and hence G ≥ H
if and only if H ≤ G and the theorem is proven. �

Theorem 13. Scoring play games are partially ordered under the disjunctive
sum.

Proof. To show that we have a partially ordered set we need 3 things:

(1) Transitivity: If G ≥ H and H ≥ J then G ≥ J .

(2) Reflexivity: For all games G, G ≥ G.
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(3) Antisymmetry: If G ≥ H and H ≥ G then G = H .

(1) Let G ≥ H and H ≥ J . G ≥ H means that if H +` X ∈ O this implies
G+` X ∈ O , where O = L≥, R≥, L> or R>, for all games X . H ≥ J means that
if J +` X ∈ O this implies that H +` X ∈ O . Since G ≥ H , then this implies that
G+` X ∈ O , therefore J +` X ∈ O implies that G+` X ∈ O for all games X ,
and G ≥ J .

(2) Clearly G ≥ G, since if G+` X ∈ O then G+` X ∈ O , where O = L≥, R≥,
L> or R>, for all games X .

(3) First let G ≥ H and H ≥ G. G = H means that G+` X ≈ H +` X for
all X . So first let G+` X ∈ L=, then this implies that H +` X ∈ L≥, since
H ≥ G. However, H +` X ∈ L=, since if H +` X ∈ L>, then this implies that
G+` X ∈ L>, since G ≥ H , therefore G+` X ∈ L= if and only if H +` X ∈ L=.

An identical argument can be used for all remaining cases, therefore G+` X ≈
H +` X for all games X , i.e., G = H . �

Theorem 14. For any three outcome classes X , Y and Z , there is a game G ∈X
and H ∈ Y such that G+` H ∈ Z .

Proof. Consider the games G={{{d | c | e} | b | .} | a | .} and H ={. | f | {. | g | h}}.
The final scores of G are GSL

F = a and GS R
F = b, and the final scores of H are

H SL
F = f and H S R

F = g. Now consider the game G+` H shown in Figure 2.
The final scores of G+` H are (G+` H)SL

F =e+g or d+h and (G+` H)S R
F =

e+ h. Since e, d and h can take any value we can select them so that: e+ g,
d+h and e+h > 0 and G+` H ∈L; e+g, d+h and e+h < 0 and G+` H ∈R;
e+ g, d+h > 0 and e+h < 0 and G+` H ∈N ; e+ g, d+h < 0 and e+h > 0
and G+` H ∈ P or finally e+ g = d + h = e+ h = 0 and G+` H ∈ T .

Since the outcomes of G and H depend on the values of a, b, f and g, we can
select them so that G and H can be in any outcome class, and thus the theorem
is proven. �

From the theory of normal play games, we have the following theorem.

C`

d e

c

b

a

f

g

h

Figure 2. The game G+` H , G = {{{d | c | e} | b | .} | a | .} and H =
{. | f | {. | g | h}}.



SCORING PLAY COMBINATORIAL GAMES 455

Theorem 15 (the greediness principle). Let G = {GL
|G R
} and H = {H L

| H R
}

be two combinatorial games. If H L
⊆ GL and G R

⊆ H R , then G ≥ H.

A direct consequence of Theorem 14 is that this principle will not hold for
scoring play games.

Under normal play combinatorial games form an abelian group under the
disjunctive sum. The identity that is used is the set P , that is if I ∈ P then
G+` I ≈ G for all games G. In this case the entire set P has a single unique
representative, the game {. | .}. This of course also means that G = H if and only
if G+`(−H) ∈ P .

Under misère play, the identity set contains only one element, which is the
same game {. | .}. That is, if G 6∼= {. | .}, then G 6= {. | .}. This was proven by Paul
Ottaway (personal communication, 2007). This of course means that there is no
easy or equivalent method for determining if two games are equivalent under
misère play.

For scoring play games, we have an equivalent theorem. That is our identity
set contains only one element, namely the game {. | 0 | .}, which we will call 0.
It should be clear that 0+` G ≈ G for all games G, and so 0 is the identity.

Theorem 16. For any game G, if G 6∼= 0 then G 6= 0.

Proof. The proof of this is very simple, first let GL
6=∅, since the case G R

6=∅
will follow by symmetry. Next let P={. | a | b}, and note that P SL

F =a, since Left
has no move on P . So let a > 0; if G = 0 then this means that (G+` P)SL

F ≈ P .
However, since G is a combinatorial game we know from the definition that G
has both finite depth, and finite width. So we can choose b < 0 such that |b| is
greater than any score on the game tree of G.

Therefore when Left moves first on G+` P he must move to the game
GL
+` P . Right will respond by moving to GL

+` b, since (G+` P)SL
F < 0

by choice of b. This implies that G+` P 6≈ P , and G 6= 0. �

What is interesting is that unlike misère games, some scoring games do have
an inverse, namely the set of games {. | n | .}, where n is a real number. It should
be clear that these are the only games which are invertible under scoring play,
and any other nontrivial game cannot be inverted.

Another important consequence of this theorem is that under normal play if we
wish to know if G > H for any two games G and H , we simply play G+ (−H),
where “+” here means the disjunctive sum. However, because no nontrivial scor-
ing games are invertible, we can no longer use this technique to compare them.

3. Canonical forms

Canonical forms are important, because if we can show that these games can be
split up into equivalence classes with a unique representative for each class, then
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it makes these games much easier to analyse and compare. We do not have to con-
sider each game individually, but only the equivalence class to which it belongs.

Theorem 17. There exist two games G and H such that G 6∼= H and G = H.

Proof. Consider the games G and H , where a, b, c, d, e, f ∈ R, shown in
Figure 3.

This example is a variant of a similar example used to prove the same theorem
for misère games in [8].

For any two games G and H , G = H if G+` X ≈ H +` X for all games X .
The easiest way to prove this is to show that G ≥ H and H ≥G. Right can do at
least as well playing H +` X as he can playing G+` X , by simply copying his
strategy from G+` X and not playing the left-hand string on H . Right cannot
do better on H +` X than he can on G+` X , since the string on the left hand
side of H can be copied on G+` X by simply not moving to e. So therefore if
H +` X ∈ O then this implies that G+` X ∈ O where O = L≥, R≥, L> or R>,
i.e., G ≥ H .

Left can also do at least as well playing H +` X as he can playing G+` X ,
since if Right can achieve a lower final score playing the left-hand string on
H +` X , then he can also do so by choosing not to move to e on G+` X . Similarly
if Right copies his strategy from G+` X onto H +` X then their final scores will
be the same. So if G+` X ∈O then this implies that H +` X ∈O where O= L≥,
R≥, L> or R>, i.e., H ≥ G. So therefore, G = H and the proof is finished. �

For both normal and misére play games, the standard way to reduce a game
to its canonical form is to use two concepts. These are called domination and
reversibility, and are defined as follows.

Definition 18. Let G = {A, B, C, . . . |GS
| D, E, F, . . . }, if A ≥ B or D ≤ E

we say that A dominates B and D dominates E .

Definition 19. Let G = {A, B, C, . . . |GS
| D, E, F, . . . }, an option A is re-

versible if AR
≤ G. An option D is also reversible if DL

≥ G.

C`

d e

c

b

a

f

g

h

Figure 3. Two games G and H , where G 6∼= H , but G = H .
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Theorem 20. Let G = {A, B, C, . . . |GS
| D, E, F, . . . }, and let A ≥ B, then

G ′ = {A, C, . . . |GS
| D, E, F, . . . } = G. By symmetry if D ≤ E and G ′′ =

{A, B, C, . . . |GS
| D, F, . . . } then G ′′ = G.

Proof. Let G = {A, B, C, . . . |GS
| D, E, F, . . . } such that A ≥ B; further let

G ′ = {A, C, . . . |GS
| D, E, F, . . . }. First suppose that G+` X ∈ O , where

O = L≥, R≥, L> or R> if Left moves to B+` X . This implies that G ′+` X ∈ O ,
since A≥ B. Hence if G+` X ∈ O this implies that G ′+` X ∈ O , and since the
Right options of G and G ′, this implies that G ′ ≥ G.

Next suppose that G ′+` X ∈ O ′ where O ′= L≤, R≤, L< or R<. This implies
that G+` X ∈ O ′, since the only option in GL that is not in G ′L is B and
B ≤ A, therefore G ′ ≤ G, and G = G ′. So this means that the option B may be
disregarded and the proof is finished. �

Theorem 21. Let G={A, B, C, . . . |GS
| D, E, F, . . . }, and let A be reversible

with Left options of AR
={W, X, Y, . . . }. If G ′={W, X, Y, . . . , B, C, . . . |GS

|

D, E, F, . . . }, then G = G ′. By symmetry if D is reversible with Right options
of DL

= {T, S, R, . . . }. If G ′′= {A, B, C, . . . |GS
| T, S, R, . . . , D, E, F, . . . },

then G = G ′′.

Proof. Let G = {A, B, C, . . . |GS
| D, E, F, . . . }, where the Left options of

AR
= {W, X, Y, . . . } and let G ′ = {W, X, Y, . . . , B, C, . . . |GS

| D, E, F, . . . },
further let AR

≤ G. If G+` X ∈ O , where O = L≥, R≥, L> or R>, when Left
does not move to A on G, then clearly G ′+` X is also in O , since all other
options for Left on G are available for Left on G ′.

So consider the case where G+` X ∈ O if Left moves to A+` X , then
this implies that AR

+` X must also be in O . This means that G ′+` X ∈ O
because ARL

⊂ G ′L , and since all other options on G ′ are the same as G, then
AR
+` X ∈ O implies that G ′+` X ∈ O . Hence if G+` X ∈ O then this implies

that G ′+` X ∈ O for all games X , i.e., G ′ ≥ G.
Next assume that G+` X ∈ O ′, where O ′= L≤, R≤, L< or R<, for all games

X . However, AR
≤ G, i.e. G+` X ∈ O ′ implies that AR

+` X ∈ O ′, and since
ARL
⊂G ′L , and all other options on G ′ are identical to options on G, this means

that G+` X ∈ O ′, implies that G ′+` X ∈ O ′, for all games X , i.e. G ′ ≤ G.
Therefore G = G ′ and the theorem is proven. �

Definition 22. A vertex v on the game tree of a game G is called a termination
vertex if there is a game X , such that G+` X ends if the players reach vertex v.

The reason why we called it a termination vertex is because it is a place where
a game could potentially end. If both Left and Right have an option at a particular
vertex, then under the disjunctive sum a game cannot end at that point.
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Definition 23. We say that G is equivalent to H , or G ≡ H , if the underlying
game trees of G and H are identical, and all termination vertices have the same
score.

Theorem 24. If G ≡ H , then G = H.

Proof. To prove this, first let G≡ H and let G+` X ∈O , where O= L>, L≥, R>

or R≥. Since the underlying game trees of G and H are identical, and all
termination vertices have the same score, then Left can do at least as well on
H +` X simply by copying his strategy from G+` X . If he does so, then he
will arrive at the same termination vertex on H +` X as he did on G+` X , and
therefore the games will end with identical scores.

Therefore, if G+` X ∈ O then this implies that H +` X ∈ O , i.e., H ≥G. By
a totally symmetrical argument we also have that G ≥ H . So, G = H and the
theorem is proven. �

Equivalence is a little stronger than equality, and a little weaker than saying
two games are identical. The reason we need it is because it is possible for
two games, say G = {1 | 1 | 1} and H = {1 | 0 | 1}, to be equal to each other, not
identical and neither has a dominated or reversible option.

However, we still want to use domination and reversibility to achieve a “canon-
ical form”, so we will say that nontermination vertices are not important in the
sense of determining the winner. So while it is not a “true” canonical form in
the sense that it is not necessarily unique, it is still useful for studying games.

Definition 25. A game G is in canonical form if it has no dominated or reversible
options.

Theorem 26. For any two games G and H , if G = H , and both G and H are in
canonical form, then G ≡ H.

Proof. Let G and H be two games such that G = H and neither G nor H has a
dominated or reversible option.

So first let H +` X ∈ O , where O = L<, R<, L≤ or R≤. Since G = H , this
implies that G+` X ∈ O . However, if Left moves to GL

+` X then GL R
+` X

cannot be in O . If it were, this would mean that H +` X ∈O implies GL R
+` X ∈

O , i.e., GL R
≤ H , and G would have a reversible option, which means that

GL
+` X R

∈ O .
This implies that H L

+` X R
6∈ O ′, where O ′ = L>, R>, L≥ or R≥. Since if

it were, then H would have a dominated option. Therefore, GL
+` X R

∈ O if
and only if H L

+` X R
∈ O , i.e., for all gL

∈ GL there is an hL
∈ H L such that

gL
≤ hL , and for all hL

∈ H L there is a gL ′
∈ GL such that hL

≤ gL ′ .
So that means gL

≤ hL
≤ gL ′ . However, gL and gL ′ must be identical,

otherwise gL is a dominated option. So every Left option of G is equivalent to
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a Left option of H , i.e., GL
⊆ H L , and by a symmetrical argument H L

⊆ GL .
Therefore, H L

≡ GL , and similarly H R
≡ G R .

Since all options of G and H are equivalent, we can conclude that the only
differences between the game trees of G and H are on nonterminating vertices.
Therefore, H ≡ G and the proof is finished. �

It is also important to note that a game may have more than one canonical
form. For example, consider the game G={{3 | 0 | 4}, {3 | 1 | 4} | 0 | .}. This game
has two canonical forms, namely {{3 | 0 | 4} | 0 | .} and {{3 | 1 | 4} | 0 | .}. However,
both of these games are equivalent, so either can be used as the canonical form
and it will not affect the analysis of this game.

Theorem 27. Let G→ G1→ G2→ · · · → Gn represent a series of reductions
on a game G to a game Gn , which is in canonical form. Further let G→ G ′1→
G ′2→ · · · → G ′m represent a different series of reductions on G to a game G ′m
which is also in canonical form, then Gn ≡ G ′m
Proof. Since each reduction preserves equality, then Gn = G ′m and they are both
in canonical form. By Theorem 26 Gn ≡ G ′m , and so the theorem is proven. �

Finally, it is important to note that it is certainly possible to define a unique
canonical form, for example we could simply set all nonterminating vertices on
a game tree to 0. However, we feel that it is more important to keep the original
values as this gives a lot of information about the games.

Consider the games G = {3 | 0 | 4} and H = {3 | 10 | 4}. In the game G Left
moves and gains 3 points, while Right moves and loses 4, but in the game H
Left moves and loses 7 points, while Right moves and gains 6. If we set H S to
zero then this information would be lost. So for this reason, we feel the only
ways you should reduce a game is using domination and reversibility.

4. Impartial scoring games

The definition of an impartial scoring play game is less intuitive than for normal
and misère play games. The reason for this is because we have to take into
account the score; for example, consider the game G = {4 | 3 | 2}. On the surface
the game does not appear to fall into the category of an impartial game, since
Left wins moving first or second, however this game is impartial since both
players move and gain a single point, i.e., they both have the same options.

So we will use the following definition for an impartial game.

Definition 28. A scoring game G is impartial if it satisfies the following:

(1) GL
=∅ if and only if G R

=∅.

(2) If GL
6=∅ then for all gL

∈GL there is a gR
∈G R such that gL

+`−GS
=

−(gR
+`−GS).
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11 �3 9 �5

2 4 2 4

3

G D

Figure 4. The impartial game G = {2, {11 | 4 | − 3} | 3 | , 4, {9 | 2 | − 5}}.

An example of an impartial game is shown in Figure 4. This game satisfies
the definition since

2+`−3=−(4+`−3),

{11 | 4 | − 3}+`−3=−({9 | 2 | − 5}+`−3)= {8 | 1 | − 6} and

11+`−4=−(−3+`−4)= 9+`−2=−(−5+`−2)= 7.

The reader may be confused about why we choose the name “impartial”. The
reason for this is because under normal play a game G is impartial if both Left
and Right have the same options at all stages in G. The phrase “at all stages” is
crucial here. If a scoring play game G is impartial, then the options of G must
also be impartial. If the reader checks, he will find that our definition is exactly
analogous to the definition used for normal play.

As stated in the introduction, all of the work into scoring play games in the
past focused exclusively on dicot games. Since impartial games are merely a
subset of dicot games, we can deduce much of the structure of these games from
Ettinger’s work.

In particular [5, Theorem 20, p. 20; Corollary 1, p. 22; Theorem 14, p. 48]
give us the structure of impartial games. That is to say, they form a nontrivial
monoid. However, we have the following conjecture.

Conjecture 29. Not all impartial scoring play games have an inverse.

To prove this one needs to show that given an impartial game G, for all
impartial games Y there is an impartial game P such that G+` Y +` P 6≈ P .
This is very difficult to show, however it is extremely likely that this conjecture
is true because for normal play games the inverse of any game G is −G, and as
we will now show there are impartial games H where −H is not the inverse.

So consider the game G = {2, {1 | 2 | 3} | 0 | −2, {−3 | −2 | −1}}, in this case
−G = G. If G is the inverse of itself then G+` G+` 0 ≈ 0; in other words,
G+` G ∈ T . However, G+` G ∈ P , this is easy to see since if Left moves first
and moves to 2+` G, then Right can respond by moving to 2+`{−3 | −2 | −1}
and Left must move to 2+`−3 and loses. If Left moves to {1 | 2 | 3}+` G, then
Right will move to {1 | 2 | 3}+`−2 and Left must move to 1+`−2 and again
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loses. Obviously the opposite will be true if Right moves first on G+`−G. So
G+`−G+` 0 6≈ 0 and G+`−G 6∈ I .

So, because −G is not the inverse of G in this case then it is very unlikely
that any other impartial game could be G’s inverse, and while we do not have a
proof of that, this simple example shows that it is probably true.

It is also worth noting that impartial scoring games can belong to any of the
five outcomes for scoring games, i.e., L,R,P,N and T . This is in stark contrast
to both normal play and misére play games, where impartial games can only
belong to either P or N .

It is easy to see that this is true by considering an impartial game of the form
{a |GS

| b}. Clearly when GS
=0 then b=−a and the outcome can only be N ,P

or T . However, we can set GS
6= 0 and either large enough that both a and b are

greater than zero, or less than zero, depending on if we make GS a very large
positive or negative number. In these cases the outcome will either be L or R.

5. Nim

Nim is a classic combinatorial game. It has been studied under both normal
and misère play extensively, and for that reason we wish to study it, or at least
variations of it, under scoring play. We will define scoring play nim by the
following rules:

(1) The initial score is 0.

(2) The game is played on heaps of beans, and on a players turn he may remove
as many beans as he wishes from any one heap.

(3) A player gets 1 point for each bean he removes.

(4) The player with the most points wins.

It should be clear that the best strategy for this game is simply to remove all
the beans from the largest possible heap, and keep doing so until the game ends.

Another thing to note is that, under normal play, for every single impartial
game G there is a nim heap of size n such that G = n. This not the case with
scoring play games, but as we will show in the next section, these games are still
relatively easy to solve, regardless of the rules and of the scoring method.

5.1. Scoring Sprague-Grundy theory. Sprague–Grundy theory is a method that
is used to solve any variation of a game of nim. The function for normal play G(n)

is defined in a such a way that if for a given heap n, played under some rules, if
G(n)= m then this means that the original heap n is equivalent to a nim heap of
size m.

For scoring play games this function is going to be defined slightly differently.
Rather than telling us equivalence classes of different games, it will tell us the
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final scores of games. While this may not be as powerful as normal play Sprague–
Grundy theory, it is still a very useful function and can be used to solve many
different variations of scoring play nim.

One of the standard variations that have been used widely in books such as
Winning Ways [1] are a group of games called octal games. These games cover a
very large portion of nim variations, including all subtraction games. For scoring
games we will use the following definition.

Definition 30. A scoring play octal game O = (n1n2 . . . nk, p1 p2 . . . pk), is a
set of rules for playing nim where if a player removes i beans from a heap of
size n he gets pi points, pi ∈ R, and he must leave a, b, c . . . or j heaps, where
ni = 2a

+ 2b
+ 2c
+ · · ·+ 2 j .

By convention we will say that a nim heap n ∈ O means that n is played
under the rule set O . We will now define the function that will be the basis of
our theory.

Definition 31. Let n∈O= (t1 . . . t f , p1 . . . p f ) and m∈ P= (s1 . . . se, q1 . . . qe):

• Gs(0)= 0.

• Gs(n)=maxk,i {pk−Gs(n1+` n2+` · · · +` ni )}, where n1+n2+· · ·+ni =

n− k, tk = 2a
+ 2b
+ · · · 2p and i ∈ {a, b, . . . , p}.

• Gs(n+` m)=maxk,i,l, j {pk−Gs(n1+` n2+` · · · +` ni +` m), ql −Gs(n+`

m1+` m2+` · · · +` m j )}, where n1 + n2 + · · · + ni = n − k, tk = 2a
+

2b
+ · · · 2p and i ∈ {a, b, . . . , p}, m1 + m2 + · · · + m j = m − l, sl =

2c
+ 2d
+ · · ·+ 2q and j ∈ {c, d, . . . , q}.

The first thing to prove is that this function gives us the information we want,
namely the final score of a game. So we have the following theorem.

Theorem 32.

Gs(n)= nSL
F =−nS R

F and Gs(n+` m)= (n+` m)SL
F =−(n+` m)S R

F .

Proof. The proof of this will be by induction on all heaps n1, n2, . . . , ni ,

m1, . . . , m j , such that n1+ n2 · · · + ni , m1+ · · ·+m j ≤ K for some integer K ,
the base case is trivial since Gs(0+` 0+` 0+` · · · +` 0)= 0 regardless of how
many zeroes there are.

So assume that the theorem holds for all n1, n2, . . . , ni , m1 . . . , m j , such
that n1 + n2 + · · · + ni , m1 + · · · +m j ≤ K for some integer K , and consider
Gs(n+` m), where n+m = K + 1.

Gs(n+` m)=maxk,i,l, j {pk−Gs(n1+` n2+` · · · +` ni +` m), ql−Gs(n+` m1

+` m2+` · · · +` m j )}, but since n1+n2+· · ·+ni +m and n+m1+m2+· · ·+
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m j ≤ K , then by induction

max
k,i,l, j
{pk−Gs(n1+` n2+` · · · +` ni +` m), ql−Gs(n+` m1+` m2+` · · · +` m j )}

= max
k,i,l, j
{pk−(n1+` n2+` · · · +` ni +` m)SL

F , ql−(n+` m1+` · · · +` m j )
SL
F }

= (n+` m)SL
F ,

and the theorem is proven. �

5.1.1. Subtraction games. Subtraction games are a very widely studied subset
of octal games. A subtraction game is a game of nim where there is a predefined
set of integers and a player may only remove those numbers of beans from a
heap. This set is called a subtraction set. From our definition of an octal game
this means that each ni is either 0 or 3. In this section we will also say that if a
player removes i beans then he gets i points.

Lemma 33. Let S be a finite subtraction set, then for all s ∈ S, Gs(s + 2ik) =

k−Gs(s+ (2i − 1)k) for all i ∈ N, where k =max{S}.

Proof. We will split the proof of this into three parts:

Part 1: For all i ∈ Z+, Gs(r + 2ik)≤ r .
The first thing to show is that for each 0≤ r ≤ k, Gs(r)≤ r and Gs(r+2ik)≤ r

for all i ∈Z+. First let r ≤ k, Gs(r)=max j { j−Gs(r− j)} and since each j in the
set is less than or equal to r , and each Gs(r − j)≥ 0, this implies that Gs(r)≤ r .

Next let Gs(r + 2ik)≤ r for smaller i , and consider Gs(r + 2ik)=max j { j −
Gs(r + 2ik− j)}. If j ≤ r , then since Gs(r + 2ik− j)≥ 0, we have j −Gs(r +
2ik− j)≤ j ≤ r . If j > r , then Gs(r + 2ik− j)= Gs(r + k− j + (2i − 1)k)≥

k−(r+k− j)= j−r , by induction, therefore j−Gs(r+2ik− j)≤ j−( j−r)= r .
So therefore Gs(r + 2ik)≤ r for all i .

Part 2: For all i ∈ Z+, Gs(r + (2i + 1)k)≥ k− r .
We also need to show that for each 0≤ r ≤ k, Gs(r+(2i+1)k)≥ k−r for all

i ∈N. Clearly Gs(r+k)≥ k−Gs(r)≥ k−r . Again let Gs(r+ (2i+1)k)≥ k−r
for smaller i , then Gs(r + (2i +1)k)≥ k−Gs(r +2ik) and from above we know
that Gs(r+2ik)≤ r and hence Gs(r+(2i+1)k)≥ k−Gs(r+2ik)≥ k−r for all i .

Part 3: For all s ∈ S and i ∈ Z+, Gs(s+ 2ik)≥ s and Gs(s+ (2i + 1)k)≤ k− s.
Let s ∈ S, then Gs(s)≥ s−Gs(0)= s, since we know from Part 1 that Gs(s)≤ s;

this means that Gs(s)= s. So consider Gs(s+ k)=max j { j −Gs(s+ k− j)}, if
j ≤ s then j −Gs(s+ k− j)≤ j − k+G(s− j)≤ j − k+ s− j ≤ s− k ≤ k− s.
If j > s then j − Gs(s + k − j) ≤ j − s + Gs(k − j) ≤ j − s + k − j = k − s.
From Part 2 we know that Gs(s+ k)≥ k−Gs(s)= k− s, so Gs(s+ k)= k− s.

So assume that the theorem holds up to i ≥ 1, and consider Gs(s+(2i+1)k)=

max j { j − Gs(s + (2i + 1)k − j)}. If j ≤ s then j − Gs(s + (2i + 1)k − j) ≤
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n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Gs(n) 0 0 0 0 4 5 5 5 5 1 0 0 0 3 4 5

Table 1. A game with subtraction set {4, 5}.

j − k+Gs(s+ 2ik− j), and from Part 2 we know that Gs(s+ 2ik− j)≤ s− j ;
therefore j − k+Gs(s+ 2ik− j)≤ j − k+ s− j ≤ s− k ≤ k− s.

If j > s then j − Gs(s + (2i + 1)k − j) = j − Gs(s + k + 2ik − j) ≤
j − s+Gs(k− j + 2ik)≤ j − s+ k− j , by induction, which is equal to k− s.

Finally consider Gs(s+(2i+2)k)≥ k−Gs(s+(2i+1)k), and from before we
know that Gs(s+(2i+1)k)≤ k−s; therefore k−Gs(s+(2i+1)k)≥ k−(k−s)= s.
So therefore Gs(s+ (2i + 2)k)= s and the lemma is proven. �

The obvious question to ask is, does the lemma hold for all n? The answer
is no. While it is clear that our function is eventually periodic for subtraction
games at least, there are many examples where simply taking the largest number
of beans, as in the lemma, is not always the best move. For example consider
a game with subtraction set {4, 5}. The table of this game’s Gs(n) values are
given in Table 1.

In particular consider the value of Gs(13), this is max{4−Gs(9), 5−Gs(8)} =

4−Gs(9)= 3. Therefore, for this game taking 4 beans and gaining 4 points is
preferable to taking 5 beans and gaining 5 points. This is a very simple example
to illustrate the point that we cannot say playing greedily would always work. In
other words, we need to show that if n is large enough then taking the largest num-
ber of beans available is the best strategy. So we make the following conjecture.

Conjecture 34. Let S be a finite subtraction set, then there exists an N such that
Gs(n+ 2k)= Gs(n) for all n ≥ N , where k =max{S}.

It seems plausible that this conjecture is true, given the lemma, however it is
also possible that there is an n such that Gs(n+2ik)= J and Gs(n+(2i+1)k)=

k− j , where J > j . What we have seen from the data is that often if n 6∈ S the
values of Gs(n+ 2ik) and Gs(n+ (2i + 1)k) will alternate as in the lemma, but
then you will reach an i where the values change, and this switch might happen
several times before it settles down.

A proof of the conjecture or a counterexample would be a very big step
forward in understanding how the function operates.

5.2. Taking-no-breaking games. Taking-no-breaking games are a more general
version of subtraction games, and cover a fairly wide range of octal games. The
rules of these games are fairly basic, when a player removes a certain number of
beans from a heap, he will have one of three options:
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(1) Leave a heap of size zero, i.e., remove the entire heap.

(2) Leave a heap of size strictly greater than zero.

(3) Leave a heap of size greater than or equal to zero.

From the definition of an octal game this means that each ni is either 0, 1, 2
or 3, also an octal game O = (n1n2 . . . nk, p1 p2 . . . pk) is finite if k is finite.

It should be clear that for a fixed m ∈ P and finite O , where P and O are
two taking-no-breaking games, then the function Gs(n+` m) must always be
eventually periodic. The reason is that we always compute each value from a finite
number of previous values, and since O is finite this implies that Gs(n+` m)

is bounded, and both of these facts together mean that the function will be
eventually periodic.

The real question that one needs to answer however is not “Is it periodic?”, but
“What is the period?”. We believe we can answer that question for a particular
class of taking-no-breaking games, and that is the class of games where if you
remove i beans you get i points. We make the following conjecture.

Conjecture 35. Let O = (n1n2 . . . nt , p1 p2 . . . pt) and P = (m1m2 . . . ml, q1q2

. . . ql) be two finite taking-no-breaking octal games such that there is at least one
ns 6= 0 or 1, and if ni and m j = 1, 2 or 3 then pi = i and q j = j , and pi = q j = 0,
otherwise; then

Gs(n+ 2k+` m)= Gs(n+` m),

where O is finite and k is the largest entry in O such that nk 6= 0, 1.

There is very strong evidence that this conjecture will hold. Since m is a
constant it changes the value of Gs(n+` m), but not the period. We have checked
the theorem for many examples and not yet found a counterexample, which
suggests that it is probably true.

Unfortunately, proving it is surprisingly difficult. The conjecture says that
if n is large enough, then your best move is to simply remove the maximum
available beans from the heap n, so a proof would need to show that for any
given m, there are only finitely many places where moving on m or removing
fewer than k beans from n is a better move.

There are several problems with this, the first is that the function Gs(n+` m)

only tells us the maximum possible value from the set of possible values. This
makes it very difficult to do a proof that first shows Gs(n+2k+` m)≥Gs(n+` m)

and vice-versa. The second is to understand why removing a lower number of
beans would be better than playing greedily, in some instances.

The last problem is that induction is hard, because what may hold for lower
values may not hold at higher values, making a proof by induction difficult.
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However, since the function is recursively defined an inductive proof seems to
be more natural than a deductive proof.

We believe that a proof of this theorem would also help in finding the period,
and proving it for the more general case, where i beans are worth k points, k ∈R.

Of course, it is natural to ask what happens in the general case. Unfortunately,
in the general case the conjecture does not hold. To see why consider the game
O = (3333, 2222). The values of Gs(n) are given in the following table:

n 0 1 2 3 4 5 6 7 8 9 10

Gs(n) 0 2 2 2 2 0 2 2 2 2 0

This game has period 5, which does not correspond to a possible value of k,
i.e., 1, 2, 3 or 4. While all taking-no-breaking games are periodic as we can see
from the example, it is not clear what the period is, since we can take our pi ’s to
be any real number. So we make the following conjecture.

Conjecture 36. Let O = (n1n2 . . . nt , p1 p2 . . . pk) and P = (m1m2 . . . ml, q1q2

. . . ql) be two finite taking-no-breaking octal games; then there exists a t such that

Gs(n+ t +` m)= Gs(n+` m).

5.3. Taking-and-breaking. Another type of nim game we can examine are
taking-and-breaking games. That is, games where after the player removes
some beans from a heap, he must break the remainder into two or more heaps.
This is more general than taking-no-breaking games, since taking-no-breaking
games are a subset of taking-and-breaking games.

There are several problems with examining taking-and-breaking scoring games.
The first is that we cannot even say that the function Gs(n+` m) is bounded. The
reason is that with each iteration you are increasing the number of heaps, which
may increase the value of the function as n increases. So we cannot put a bound on
the function as we could with subtraction games and taking-no-breaking games.

Another problem is that if we were to say, examine the game 0.26, which
means take one bean and leave one nonempty heap, or take two beans and leave
either two nonempty heaps, or one nonempty heap, the number of computations
required to find Gs(n) increases exponentially with n. Since a heap of size n− 2
may be broken into two smaller heaps n1 and n2, we must therefore also compute
the value of Gs(n1+` n2).

However, if n1− 2 or n2− 2 may also be broken into two smaller heaps, say
n′1, n′′1, n′2 and n′′2, then we must compute the value of Gs(n′1+` n′′1 +` n2) and
Gs(n1+` n′2+` n′′2). This process will continue until we have heaps that are too
small to be broken up. So this means that computing Gs(n) for a taking-and-
breaking game is a lot harder than for a taking-no-breaking game, simply due to
the number of computations involved.



SCORING PLAY COMBINATORIAL GAMES 467

So we have the following conjecture.

Conjecture 37. Let O = (n1n2 . . . nk, p1 p2 . . . pk) and P = (m1m2 . . . ml, q1q2

. . . ql) be two finite octal games; then there exists a t such that

Gs(n+ t +` m)= Gs(n+` m).

While we feel that this conjecture may be true, it is certainly not as strong as
Conjecture 35, for the reasons previously given. However, studying these games
would certainly be interesting, and anything anyone could find out about them
would be useful.

Conclusion

We hope that we have given the readers some interesting new ideas about the types
of games that can be studied with scoring play theory, as well as opening up a
whole new world of impartial games that can be researched. We have simply intro-
duced the ideas, but there is still much to be learned from these fascinating games.
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