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Impartial games whose rulesets produce
given continued fractions

URBAN LARSSON AND MIKE WEIMERSKIRCH

We study 2-player impartial games of the form take-away which produce P-
positions (second player winning positions) corresponding to complementary
Beatty sequences, given by the continued fractions (1; k, 1, k, 1, . . .) and
(k+1; k, 1, k, 1, . . .). Our problem is the opposite of the main field of research
in this area, which is to, given a game, understand its set of P-positions. We
are rather given a set of (candidate) P-positions and look for “simple” rules.
Our rules satisfy two criteria, they are given by a closed formula and they are
invariant, that is, the available moves do not depend on the position played
from (for all options with nonnegative coordinates).

1. Introduction

This paper uses ideas from combinatorial game theory, Beatty sequences, and
Sturmian words. We have in many cases given the pertinent information in this
paper, but have chosen to omit some material on these subjects. The reader who
wishes to have more background information on certain topics is directed to the
following references.

For standard terminology of impartial removal games on heaps of tokens,
see [WW]; for Beatty sequences, see [B]; for k-Wythoff Nim, see [W; F]; for
Sturmian words, see [L]; and for continued fractions, see [K].

Our problem is an inverse to that of the main field of research, which for a
given an impartial ruleset 0, (for example, 0 = k-Wythoff Nim) is to determine
the P-positions of 0 (within reasonable time-complexity). Here we rather start
with a particular (candidate) set of P-positions and search for “simple” game
rules. Let us explain the setting.

Throughout this paper, we will denote the position consisting of two heaps of
x ≥ 0 and y ≥ 0 tokens as (x, y). When the values of x and y are known, we
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adopt the convention that x ≤ y, though in general we regard such a position as
an unordered multiset, so we identify (y, x) with (x, y).

Similarly, we let the move (u, v) denote a removal of v > 0 tokens from one
of the heaps and u from the other, where 0≤ u ≤ v; thus from the position (x, y),
the move (u, v) is ambiguous, being either (x, y)→ (x − u, y − v), provided
both x−u ≥ 0 and y−v≥ 0, or (x, y)→ (x−v, y−u), provided both x−v≥ 0
and y− u ≥ 0. Therefore, in general, it is necessary to examine both cases.

Recall that a (homogeneous) Beatty sequence is a sequence of integers of the
form (bnγ c), the modulus γ being a positive irrational and n ranging over the non-
negative integers, here denoted by N. We are interested in positions of the form

(bnαc, bnβc) (1)

for n ∈ N, where 0< α < β are irrationals with

α−1
+β−1

= 1, (2)

that is 1< α < 2< β. By (2), the sequences (bnαc) and (bnβc), where n ranges
over the positive integers, Z+, are complementary, (see [B]); that is, each positive
integer is attained precisely once in precisely one of these sequences.

In k-Wythoff Nim [F], the P-positions correspond to all unordered pairs of
the form in (1) with

α = [1; k, k, k, . . .] = 2−k+
√

k2+4
2

and

β = [k+ 1; k, k, k, . . .] = 2+k+
√

k2+4
2

= α+ k,

where x = [x1; x2, x3, x4, . . .] denotes the unique continued fraction expansion,
CF, of x :

x = x1+
1

x2+
1

x3+
1

x4+ · · · .

For a variation, in [DR] game rules are examined for P-positions corresponding
to the CFs

[1; 1, k, 1, k, . . . ] and [k+ 1; k, 1, k, 1, . . . ]. (3)

In this paper, we rather study the CF

α = αk = [1; k, 1, k, 1, k, . . . ] = 1+
√

1+4/k
2

,



IMPARTIAL GAMES WHOSE RULESETS PRODUCE CONTINUED FRACTIONS 405

æ

æ

æ

æ

æ

æ
æ
æ
æ
æææææææææææææææææææææææææææææææ

10 20 30 40
k

1.1

1.2

1.3

1.4

1.5

1.6

Α

æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ

10 20 30 40
k

10

20

30

40

Β

Figure 1. The numbers αk and βk for k ∈ {1, 40}. See also Figure 5.

with corresponding

β = βk = [k+ 1; 1, k, 1, k, 1, . . . ] = k+2+k
√

1+4/k
2

= kα+ 1= kα2.

Note that αk ∈ (1, 1+1/k) and βk ∈ (k+1, k+2) (see Figure 1 and Lemma 13).

Notation 1. For each k ∈ Z+, for all n ∈ N, we let an = bnαc, bn = bnβc,
cn = an−an−1 and dn = bn−bn−1. Moreover we define the following sequences,
A = (a1, a2, . . .), B = (b1, b2, . . .),C = (c1, c2, . . .) and D = (d1, d2, . . .).

Then, for all n ∈ Z+,

bn =

n∑
j=1

d j and an =

n∑
j=1

c j .

Example 2. For k = 2,

A = (1, 2, 4, 5, 6, 8, 9, 10, 12, 13, 15, 16, 17, 19, 20, 21, 23, 24, . . .),

C = (1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 1, 2, 1, . . .),

B = (3, 7, 11, 14, 18, 22, 26, 29, 33, 37, 41, 44, 48, 52, 55, . . .),

D = (3, 4, 4, 3, 4, 4, 4, 3, 4, 4, 4, 3, 4, 4, 3, . . .).

Since αk ∈ (1, 1+ 1/k) and βk ∈ (k+ 1, k+ 2), for each k and all n, we also
get that

cn ∈ {1, 2} and dn ∈ {k+ 1, k+ 2}

(see [L]). Moreover, each value is attained infinitely often, a statement which we
strengthen in Section 2.

Henceforth, for a fixed k ∈ Z+, let

Sk = {(an, bn) | n ∈ N}.

Note that the special case of S1 corresponds precisely to the P-positions of
Wythoff Nim.
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The problem of finding a closed formula ruleset such that the set of all P-
positions is identical to S2 was posed by A. S. Fraenkel at the GONC 2011
workshop at the Banff Centre. Here we resolve the general case for the set of
(candidate) P-positions being Sk . Henceforth we omit the word “candidate” and
simply talk about sets of P-positions. We have also added the requirement that
the ruleset be invariant [DR; LHF]; that is, the available moves do not depend
on the position (for all options with nonnegative coordinates). This criterion
is implicitly fulfilled by many classical removal games, e.g., Nim, k-Wythoff
Nim, subtraction games [WW] and S. Golombs take away-games [Go]. Without
the requirement of invariance, one may define the most trivial game rules, no
move is possible from a position in S, and otherwise each position has a move
to (0, 0). On the other hand, the problem of finding invariant (but not necessarily
simple) game rules for any set of P-positions, defined by a complementary pair
of homogeneous Beatty sequences, was resolved in [LHF]. However those game
rules are not simple in the meaning that the only known formula for the invariant
moves is exponentially slow in log(xy). See Figures 2, 3 and 4 for invariant
games corresponding to the CFs on page 404, cases k = 2.

For many classical games, such as normal play Nim and k-Wythoff Nim, the
final winning position is unique, namely (0, 0). Given our set of P-positions, Sk ,
this requirement clearly needs to be satisfied. A convenient way to achieve this
is to follow the example of our classical games, to include the Nim rules to our
new game. An immediate benefit of doing this is that we automatically satisfy
one of the other inherent requirements of the set Sk , namely that there can be at
most one P-position in each row and column of N×N. Precisely, the desired
ruleset 0k has the following permitted moves.

Theorem 3. Let the set Sk be defined by the Beatty sequences where α =
[1; k, 1, k, 1, k, . . .] and β=[k+1; 1, k, 1, k, 1, . . .]; that is Sk={(bnαc, bnβc) |
n ∈ N}. Then the invariant ruleset 0 = 0k consisting of the following moves has
a set of P-positions identical to the set Sk (in all cases, n, s, t ∈ Z+):

Type I (Nim moves): (x, y)→ (x − n, y) or (x, y)→ (x, y− n).

Type II (extended diagonal moves): (x, y) → (x − s, y − t) provided that
|s− t |< k. These moves are identical to the moves in k-Wythoff Nim.

Type III (extra moves): For i = 1 to k − 1, use the initial value ( f i
0 , gi

0) =

(0, i + 1) and define recursively for n > 0,

( f i
n , gi

n)= ( f i
n−1+ gi

n−1, k f i
n−1+ (k+ 1)gi

n−1+ i).

The extra moves for each i are ( f i
n , gi

n − 1) for n > 0.
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Figure 2. To the left we display the initial moves of the classical game
of 2-Wythoff Nim and in the middle its initial P-positions together
with the corresponding slopes. To the right we give the initial invariant
moves for the game (2-Wythoff Nim)??, with notation as in [LHF],
which has P-positions of the same form as those of 2-Wythoff Nim.
(The moves are defined via a simple greedy algorithm.)

Figure 3. The left-most figure displays the initial moves of our game
for k = 2 as given in Theorem 3 (see also Example 4 for the extra
moves). In the middle we see the P-positions and to the right the initial
moves of the invariant game from [LHF] with P-positions identical to
the set S2.

Note that when n = 0, the move (0, i) is already in the ruleset as it is a Nim
move. In Section 2, we will need to back up the recursion one step and use
( f i
−1, gi

−1)= (−1, 1) for all i .

Example 4. For k = 2, (and therefore i = 1), the extra moves are

(2, 6), (9, 25), (35, 96), . . .

An explicit formula for the Type III moves ( f 1
n , g1

n) is given by

f 1
n =

(1+
√

3)(2+
√

3)n+(1−
√

3)(2−
√

3)n−2
4

, (4)

g1
n =

(2+
√

3)n+1
+(2−

√
3)n+1

−2
2

. (5)
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Figure 4. These figures represent the moves (left figure) resolving the
P-positions (middle figure) given by the continued fraction (3) with
k = 2 from [DR]. The right-most figure gives the initial moves of the
invariant game from [LHF] with identical P-positions.

Explicit formulas can be found for larger values of k, but are not as succinct,
and therefore we have chosen to omit them.

Example 5. For k = 4, the extra moves are

i = 1 : (2, 10), (13, 63), (77, 372), . . .

i = 2 : (3, 16), (20, 98), (119, 576), . . .

i = 3 : (4, 22), (27, 133), (163, 780), . . .

The extra moves are necessary for positions of the form (an, bn − 1), where
cn = 1 and dn = k + 2. For instance, when k = 4, we seek a winning move
from the N-position (38, 185) where (38, 186) is a P-position. The previous P-
positions are (37, 180), (36, 174), (35, 169) and (33, 163) with differences from
one P-position to its predecessor of (1, 6), (1, 6), (1, 5) and (2, 6) respectively.
Preceding the nearest lesser difference of (2, 6) are two copies of (1, 6) (ignoring
the (1, 5)). The winning move uses the largest valid move from the extra move
set with i = 2, namely the move (20, 98) which moves from (38, 185) to the
P-position (18, 87).

The next section develops the machinery to examine these positions and corre-
sponding moves. The final section shows that the rules described in Theorem 3
produce the prescribed set of P-positions.

Remark 6. In the case k = 1, the set S1 is the set of P-positions in 1-Wythoff
Nim. The ruleset in Theorem 3 is precisely the ruleset for 1-Wythoff Nim since
when k = 1, there are no moves of Type III.

Remark 7. In view of Figures 2 and 3, one can see that there is in fact a very
succinct description of our games as a modified greedy algorithm. Given an Sk-set
of candidate P-positions, the algorithm starts with the moves as in k-Wythoff Nim
as a base set of moves and then greedily (use for example lexicographic ordering)
adjoins an ordered pair of nonnegative integers (x, y), which does not belong to



IMPARTIAL GAMES WHOSE RULESETS PRODUCE CONTINUED FRACTIONS 409

the candidate set of P-positions, as a new move if and only if the move options
already defined do not suffice to find a move from (x, y) to any (candidate)
P-position. The new move set will be identical to our move set as in Theorem 3.

In this context one might want to explore other complementary Beatty se-
quences (forming candidate P-positions) and try and describe when similar greedy
algorithms define closed formula move sets similar to the ones studied in this
paper.

2. The Sturmian word and morphism construction of the Beatty sequence

Here, we lay the groundwork for finding Type III winning moves for positions
of the form (an, bn − 1), where cn = 1 and dn = k + 2. If the reader wishes
to become more familiar with the main structure of the proof of Theorem 3
before reading this section, the details are given in Section 3; all but the one
most intricate cases are proved without reference to Section 2. Here we use some
terminology from Sturmian words and morphisms [L]. After some preliminaries,
we produce the characteristic word which corresponds to the D sequence (this
is Lemma 11 which is proved in the Appendix) and thereby gives an alternative
description of the B sequence. From it, we find a new characterization of the
C and A sequences and note some important properties. Finally, we give an
algorithm for finding the desired winning move in Lemma 26.

Lemma 8. For all n ∈ N and i ∈ {1, . . . , k− 1}, gi
n+1 = (k+ 2)gi

n − gi
n−1.

Proof. We have that

gi
n+1 = (k+ 1)gi

n + k f i
n + i

= (k+ 2)gi
n − gi

n + k f i
n + i

= (k+ 2)gi
n − (k f i

n−1+ (k+ 1)gi
n−1+ i)+ k( f i

n−1+ gi
n−1)+ i

= (k+ 2)gi
n − gi

n−1. �

2.1. The sequence D = (d1, d2, d3, . . .). We wish to describe the sequence
D = (d1, d2, d3, . . .) via the Sturmian word produced by the morphism

ϕ(σ)= στ k
= στττ . . . τ (k copies of τ),

ϕ(τ )= στ k+1
= στττ . . . τ (k+ 1 copies of τ),

ϕ(uv)= ϕ(u)ϕ(v).

for any words u, v consisting of the letters σ , τ where the operation is concate-
nation.
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Figure 5. The fractional parts {αk} and {βk}, for k ∈ {1, 40}.

Notation 9. Let w0 be the word σ , and wn = ϕ(wn−1). Note that wn−1 is a
prefix of wn so that

W = lim
n→∞

ϕn(w0)

is well-defined.

Example 10. For k = 2,

W = σττστττστττσττστττστττστττσττστττ . . .

Lemma 11. For all k, d j = k+ 1 if the j-th letter of W is σ and d j = k+ 2 if
the j-th letter of W is τ .

We give the proof of Lemma 11 in the Appendix.

2.2. The sequence C = (c1, c2, c3, . . .). Next, we give an equivalent construc-
tion of the sequence C = (c1, c2, c3, . . .) via the D sequence.

Notation 12. The remainder or fractional part of x ∈ R shall be denoted {x} =
x −bxc.

Lemma 13. For all k, {αk}< 1/k.

Proof. Since 1< α < 2, {α} = α− 1= 1
2(
√

1+ 4/k− 1). Then

(k+ 2)2 > k2
(

1+ 4
k

)
⇒

k+2
k

>

√
1+ 4

k
⇒

1
k
>

1
2

(√
1+ 4

k
− 1

)
= {α}. �

Lemma 14. For all k, {βk} = k{αk}.

Proof.
β = kα+ 1= k+ 1+ k{α} ⇒ {β} = k{α}

since {α}< 1/k⇒ k{α}< 1. �

We now compare the sequences C and D, first via an example.
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Example 15. For k = 4,(
C
D

)
=

(
1
5

1
6

1
6

1
6

2
6

1
5

1
6

1
6

1
6

2
6

1
6

1
5

1
6

1
6

2
6

1
6

1
6

1
5

1
6

2
6

1
6

1
6

1
6

1
5

2
6

1
6

1
6

1
6

2
6

1
5

1
6

1
6

1
6

2
6

1
5
· · ·

)
If we remove each 5 in the D sequence and the corresponding 1 in the

C sequence, what remains in the C sequence is periodic with the value 2 in
positions 4, 8, 12, . . . and the value 1 otherwise. It turns out that this observation
corresponds to an alternative description of the C sequence provided by the D
sequence for general k.

Lemma 16. Suppose that cp = cq = 2 for p > 0 and q > p minimal. Then there
are exactly k− 1 values of i , p < i < q for which di = k+ 2.

Proof. Since cp = ap − ap−1 = 2, Lemma 13 gives {pα} < 1/k. Let i ∈
{p+ 1, . . . , q − 1} so that ci = 1 and so (the latter inequality is by Lemma 13),

0< {α} = {iα}− {(i − 1)α}< 1/k. (6)

By Lemma 14, this gives {β} = k{iα} − k{(i − 1)α}. Now, as we have seen,
going from bi−1 to bi produces either the difference di = k+ 1 or k+ 2. Then,
by β ∈ (k+1, k+2), it is clear that the greater value will be attained if and only
if there is a j ∈ {1, . . . , k− 1} such that {(i − 1)α}< j/k < {iα}.

By the last inequality in (6), each j will correspond to a unique i . Hence
di = k+2 occurs exactly k−1 times between consecutive occurrences of cn = 2.

�

Lemma 17. Let k ∈Z+. Then cn=2 if and only if dn= k+2 and bn≡n (mod k).

Proof. Suppose now that di = k+ 1 so that

0< {β} = {iβ}− {(i − 1)β}< 1. (7)

Then 0 < k{α} = {ikα} − {(i − 1)kα} < 1. If in addition ci = 2 we get that
0 < {ikα} = k{iα} < 1, so that 0 < {iα} − {α} = {(i − 1)kα}/k < 1/k. This
gives that {iα}> 1/k so that ci = 1. Thus, we have proved that cn = 2 implies
dn = k+ 2. But then Lemma 16 gives that bn − (k+ 1)n ≡ 0 (mod k), for each
n such that cn = 2. �

For record keeping purposes, we index the τ in the word W with period k so
that

W = στ1 . . . τkστ1 . . . τkτ1στ2 . . .

Definition 18. A syllable of W is a string of letters of the form ϕ(σ) or ϕ(τ);
that is, it begins with σ , and ends with the τ which precedes the next σ .
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Thus the morphism ϕ maps letters to syllables. Note that the indexing for the
ϕ(σ) will depend on the preceding syllable, but each index will appear exactly
once. Hence, for all i , we get that

ϕ(τi )= στiτi+1 . . . τkτ1 . . . τi .

Using this notation, Lemma 17 states that

cn = 2 if and only if the n-th letter of W is τk . (8)

2.3. Sums of factors.

Definition 19. A factor of a word is a sequence of consecutive letters. If the
factor begins with the first letter of the word, the factor is called a prefix. If the
factor contains the last letter of a finite word, the factor is called a suffix.

Definition 20. For each i ∈ {1, . . . , k − 1}, let wi
0 be the word στ1 . . . τi and

wi
n = ϕ(w

i
n−1).

Lemma 21. For each i ∈ {1, . . . , k − 1} and all n ≥ 0, f i
n counts the number

of copies of τk in the word wi
n and gi

n counts the number of letters. Note that
for n ≥ 1, gi

n−1 counts the number of syllables in the word (which equals the
number of copies of σ in wi

n by construction).

Proof. Base case: f i
0 = 0 and wi

0 contains no τk ; wi
0 contains i + 1 letters and

gi
0 = i + 1.

Induction: The morphism ϕ sends each τk to a syllable containing two τk and all
other letters to a syllable containing a single τk , hence the number of copies of τk

in wi
n+1 is 2 f i

n+(g
i
n− f i

n )= f i
n+1. The number of letters in the new word is k+2

for each letter subtracting one for each σ for a total of (k+ 2)gi
n − gi

n−1 = gi
n+1

by Lemma 8. �

Lemma 22. A factor of W of length gi
n contains either gi

n−1 or gi
n−1− 1 copies

of σ . No other number is attainable.

Proof. By construction, wi
n has length gi

n and has gi
n−1 copies of σ so gi

n−1 is
attainable. W is a Sturmian word, and therefore balanced; hence, only one other
value is attainable, either gi

n−1−1 or gi
n−1+1. Shift k+2 steps to the right in wi

n .
Then we lose two copies of σ and gain one. Hence gi

n−1−1 is the correct value. �

Lemma 23. For each i ∈ {1, . . . , k − 1}, and for all n ≥ 1, ( f i
n , gi

n) is a P-
position.

Proof. Let j = gi
n−1, which is the length of wi

n−1 by Lemma 21. By (8), the
number of copies of τk plus the number of letters in wi

n−1 is a j . By Lemma 21
this equals f i

n−1+ gi
n−1 = f i

n . By construction and Lemma 8, b j = (k+ 2) j −
(the number of copies of σ in wi

n−1)= gi
n . �
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Definition 24. A factor of W has index i if it ends with τi for some i ∈ {1, . . . ,
k−1}. A P-position (an, bn) has index i if the prefix of W of length n has index i .

Lemma 25. For a fixed index i , let x be a factor of the word wi
n+2, with the

following properties:

• x has length gi
n+1,

• x is not the suffix of wi
n+2,

• x ends in τi .

Then x contains precisely gi
n copies of σ . By construction, two equal length

factors of W with the same index and the same number of copies of σ will
correspond to two equal length factors of C with the same number of copies of 2.
Hence the two factor sums in C are equal and the two factor sums in D are equal.

Proof. Note that the statement is vacuous if n =−2.

Base case: n =−1: If n = −1, then x has length i + 1; wi
1 has i + 1 syllables,

with τi in position i+1 in the first syllable and in position i+3−s in syllable s for
2≤ s ≤ i + 1. Hence, the i + 1 letters ending in τi always contain exactly one σ .

Induction: If the terminal τi of the factor x is the last letter of a nonterminal
syllable of wi

n+2, then the factor contains exactly gi
n syllables since the terminal

τi was a result of the output of ϕ(τi ), and the previous word wi
n+1 has precisely

gi
n−1 copies of σ in a factor of length gi

n by induction.
If the terminal τi is not the last letter in its syllable, then compare the factor x

with the nearest previous factor y for which the terminal τi is the last letter in
its syllable. If the factors x and y overlap so that there exist nonempty words
t , u, v with y = tu, x = uv, we need to show that the number of copies of σ in
t equals the number of copies of σ in v.

Let j be the index of the syllable containing the terminal τi of the factor x . If
there is no syllable ϕ(σ) in v, then the length of v is (k+1)m where m = j− i if
j > i and m = k+ j− i if j ≤ i ; v contains m−1 full syllables plus the terminal
partial syllable. Each full and partial syllable contains one σ , so v contains m
copies of σ . In other words, the fraction of letters in v which are σ is 1/(k+ 1).
If v does contain a syllable ϕ(σ), this ratio is unchanged.

For any integer m, the number of copies of σ in any factor of length (k+1)m
cannot exceed this ratio since the length of each syllable is ≥ k+ 1. Since the
number of copies of σ in y is gi

n , which is maximal by Lemma 22, the number
of copies of σ in x , which is at least as many as in y, must also be gi

n; hence,
the number of copies of σ in y equals the number of copies of σ in x .

In the case that x and y do not overlap, note that the maximum distance that x
needs to be shifted occurs when the terminal τi of x is the leading τ in a syllable
ending in τi and that this distance is k− 1 syllables of length k+ 2 plus perhaps
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a syllable of length k+ 1 plus 2 for a total of [(k− 1)(k+ 2)] + [k+ 1] + 2=
(k+1)2< gi

2; thus in the induction step, x and y do not overlap only for n= 0. In
this case, y has one syllable of length k+1 and i syllables of length k+2 yielding
i+1 copies of σ . We know x has its terminal partial syllable of length≤k+1; thus
x has at least as many copies of σ as does y, and since the number of copies of σ in
y is maximal by Lemma 22, the number of copies of σ is the same in x and y. �

At the beginning of this section we promised an algorithm for finding a certain
winning move. We deliver it here.

Lemma 26. Let (x, y)= (an, bn) be a P-position with index i ∈ {1, . . . , k− 1}.
From the position (x, y − 1), the Type III move (u, v) corresponding to i with
v ≤ bn − 1 maximal is to a P-position.

Proof. Find m such that gi
m ≤ bn < gi

m+1. In the first case, if bn = gi
m , then from

(x, y− 1), the extra move ( f i
m, gi

m − 1) is to (0, 0) by Lemma 23. In all other
cases, Lemma 25 shows that all factors with index i and length gi

m−1, except the
last, in the word wi

m have the same number of copies of σ ; hence the factor sums
in C and D have the same sums as in the first case, namely f i

m and gi
m−1. Hence

the move ( f i
m, gi

m − 1) is to the P-position (an− j , bn− j ), where j = gi
m−1. �

3. The rules are correctly defined

In this section, we prove Theorem 3; that is, we verify that the set Sk is generated
as the complete set of P-positions by the ruleset 0k .

Definition 27. The gap of a P-position (an, bn), denoted δn , is

δn = bn − an.

The gap difference between two P-positions (am, bm) and (an, bn) with m > n,
denoted 1(m, n) is

1(m, n)= δm − δn.

We must check that there is no move connecting any two P-positions (such a
“short-circuit” would force at least one of the P-positions to be de facto N and so
we had to exclude it from the set Sk) and that every N-position has a move to a
position in the set Sk (for otherwise one of the N-positions would be de facto P,
and so we had to include it to the set Sk).

Proof, part I — no move connects P to P. By the complementarity of the Beatty
sequences, moves of Type I cannot connect any two P-positions.

Note that1(m,m−1)= k or1(m,m−1)= k+1. Recall that am−am−1≤ 2,
so moves of Type II cannot connect (am, bm) and (am−1, bm−1). If m−n>1, then
1(m, n)≥ 2k, so moves of Type II cannot connect P-positions in this case either.
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It remains to justify that moves of Type III never connect two P-positions. Let
(p, q), p< q be an extra move so that (p, q+1)= (ai , bi ) for some positive inte-
ger i , by Lemma 23. From the P-position (am, bm), it is clear that (am−q, bm−p)
is not a P-position since (bm − p)− (am − q) > δm and the gap must decrease.

To show that (an − p, bn − q) is not a P-position, assume the contrary, and
note that

(an − p, bn − q)= (an − ai , bn − bi + 1)

= (bnαc− biαc, bnβc− biβc+ 1). (9)

We have

b(n− i)αc = (n− i)α−{(n− i)α}

= nα− iα−{(n− i)α}

= bnαc+ {nα}− biαc− {iα}− {(n− i)α}.

But then

b(n− i)αc− bnαc+ biαc = {nα}− {iα}− {(n− i)α} (10)

must be an integer, and is therefore either 0 (if {nα} ≥ {iα}+ {(n− i)α}) or −1
(if {nα}< {iα}+ {(n− i)α}).

Case 1: {nα}− {iα}− {(n− i)α} = 0. Then, (9) and (10) give that

an − p = bnαc− biαc = b(n− i)αc = an−i .

Hence, for (an − p, bn − q) to be a P-position, we must have

bn − bi + 1= bn−i = b(n− i)βc

= bbn +{nβ}− bi −{iβ}c

= bn − bi +b{nβ}− {iβ}c,

but b{nβ}− {iβ}c cannot be 1.

Case 2: {nα}− {iα}− {(n− i)α} = −1. Then (10) gives that

bnαc− biαc = b(n− i)αc+ 1.

By the latter expression, this number, which is strictly greater than zero, can
belong either to the set A or B. If

b(n− i)αc+ 1= bx ∈ B,

then, for

(an − p, bn − q)= (bnαc− biαc, bnβc− biβc+ 1)
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to be a nontrivial P-position, we must have that ax = bn − q and bx = an − p.
But, since for all x > 0, bx > ax , this gives

an − ai > bn − bi + 1,

which is false, since δn > δi if n > i .
Otherwise,

bnαc− biαc = an−i+1 ∈ A

so that, by (9) and the definition of a P-position, we must have

bn − bi + 1= bn−i+1 = b(n− i + 1)βc. (11)
However,

b(n− i + 1)βc = bbn +{nβ}− bi −{iβ}+ b1−{β}c

= bn − bi + b1+b{nβ}− {bi }− {b1}c.
(12)

The last term is either 0 or −1. There are no moves of Type III for the case k = 1;
thus k≥ 2 and β > 3. Therefore b1≥ 3, which gives b1+b{nβ}−{iβ}−{β}c 6= 1,
which, by (12), contradicts (11).

Proof, part II — every n has a move to a P. Assume in all cases that x ≤ y.
If (x, y) is an N-position and either x ∈ B or y ∈ B, then there is a Nim move

(Type I) to a P-position. If x = an ∈ A, y ∈ A, with y > bn , the Nim move
lowering y to bn is to a P-position.

If x = an, y ∈ A, y < bn − 1, then y− x ≤ δn − 2. Since the gaps δ j increase
by either k or k+ 1 as j increases by 1, then there is an extended diagonal move
(Type II) to a P-position corresponding to δ j which is nearest y− x .

What remains to be shown are winning moves from x = an, y = bn − 1. If
an = an−1+ 2 or bn = bn−1+ k+ 1, then the extended diagonal move (2, k+ 1)
or (1, k) moves to the P-position (an−1, bn−1). Otherwise, Lemma 26 finds the
winning Type III move. �

Appendix

All notation in the appendix is local unless stated otherwise. We use theory from
[Gl] (further references are given in [Gl]). The words are defined on the alphabet
{0, 1}. For k ≥ 2 an integer, we are interested in the morphism

θ : 0→ 1k0 (A.1)

1→ 1k01, (A.2)

which we will show corresponds to the positive root

γ =

√
k2+4k−k

2
∈
( 1

2 , 1
)

(A.3)
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of x2
+ kx − k = 0. Namely, by a result in [Gl], we will obtain that

lim
n→∞

θn(1)

is the characteristic word cγ of γ . The density of (the number of 1’s in) cγ is of
course γ . Also β as defined in Section 1 equals γ+k+1 (that is γ ={β}). Hence
the continued fraction expansion of γ is γ = [0; 1, k, 1, k] (where x̄ denotes the
periodic pattern x, x, . . .).

Let X = limn→∞ θ
n(1). We show by induction that the Sturmian word W =

lim→∞ ϕ(σ), defined as in Section 2, is identical (via σ ↔ 0, τ↔ 1) to the word
0X . That is, we want to show that:

Lemma A.1. The i-th letter of 0X is a 1 if and only if the i-th letter of W is a τ .

Proof. The first letter in 0X and W is 0 and σ respectively; ϕ acts on its letter,
whereas θ does not. Rather, θ acts on the first letter in X . Let us state our
induction hypothesis:

Case 1, x j = 0: Then the last letter of the j -th syllable of θ , as in the right-hand
side of (A.1), corresponds precisely to the first letter of the ( j+1)-st syllable of ϕ.

Case 2, x j = 1: Then the last two letters of the j-th syllable of θ , as in the right-
hand side of (A.2), correspond precisely to the first two letters of the ( j + 1)-st
syllable of ϕ.

If these two cases hold for all j , then, by

(the length of ϕ(σ))= (the length of θ(0))= k+ 1
and

(the length of ϕ(τ))= (the length of θ(1))= k+ 2,

the infinite words correspond precisely. This follows since then the first k letters
in the j-th syllable of X , each a copy of 1, correspond precisely to the last k
letters of the j-th syllable of W , each a copy of τ .

Our base case is that the first syllable of X ends with 01 and the second
syllable of W begins with στ , and indeed it holds for the prefixes 01k01 and
στ kστ k+1 respectively.

But then, comparing the definitions of ϕ and θ with the paragraph after Case 2,
the induction hypothesis gives the claim. �

Define on {0, 1} the following three morphisms:

E :
0 7→ 1
1 7→ 0

, η :
0 7→ 01
1 7→ 0

, η :
0 7→ 10
1 7→ 0

.

A morphism ψ is Sturmian if and only if it is a composition of E , η, and η in
any number and order. Furthermore, a morphism ψ is standard if and only if
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it is a composition of E and η in some order. A morphism is nontrivial if it is
neither E nor the identity morphism.

Suppose α = [0; 1+ d1, d2, d3, . . .], with d1 ≥ 0 and all other dn > 0. To the
directive sequence (d1, d2, d3, . . .), we associate a sequence (sn)n≥−1 of words
defined by

s−1 = 1, s0 = 0, sn = sdn
n−1sn−2, n ≥ 1.

Such a sequence of words is called a standard sequence.
For any n ≥ 0, sn is a prefix of sn+1, so that limn→∞ sn is well defined as

an infinite word. Moreover, standard sequences are related to characteristic
Sturmian words. Each sn is a prefix of cα, and we have

cα = lim
n→∞

sn.

In [Gl], all irrationals α ∈ (0, 1) such that the characteristic Sturmian word cα
is generated by a morphism are classified. A Sturm number is an irrational
number α ∈ (0, 1) that has a continued fraction expansion of one of the following
types:

(i) α = [0; 1+ d1, d2, . . . , dn]<
1
2 with dn ≥ d1 ≥ 1.

(ii) α = [0; 1, d1, d2, . . . , dn]>
1
2 with dn ≥ d1.

Observe that if α = [0; 1+ d1, d2, . . . , dn] with dn ≥ d1 ≥ 1, then

1−α = [0; 1, d1, d2, . . . , dn].

Hence, α has an expansion of type (i) if and only if 1− α has an expansion
of type (ii). Accordingly, α is a Sturm number if and only if 1− α is a Sturm
number and one can show that c1−α is obtained from cα by exchanging all letters
0 and 1 in cα, so that

c1−α = E(cα). (A.4)

Therefore, we can restrict our attention to characteristic Sturmian words cα
such that α is a Sturm number of type (i).

We say that a morphism ψ fixes an infinite word x if ψ(x) = x , in which
case x is called a fixed point of ψ . The following result describes all irrationals
α ∈ (0, 1) such that cα is a fixed point of a nontrivial morphism.

Theorem A.2 [BS]. Let α ∈ (0, 1) be irrational. Then cα is a fixed point of
a nontrivial morphism σ if and only if α is a Sturm number. In particular, if
α = [0; 1+ d1, d2, . . . , dn] with dn ≥ d1 ≥ 1, then cα is the fixed point of any
power of the morphism

σ :
0 7→ sn−1,

1 7→ sdn−d1
n−1 sn−2.
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Now we can prove Lemma 11. Our irrational γ = [0; 1, k, 1, k] (as in (A.3))
is of type (ii) for all k, with n = 3, d1 = k, d2 = 1, d3 = k, and so we rather
apply the theorem to α = 1− γ = [0; 1+ k, 1, k], which is of type (i). For our
application, we have that s−1 = 1, s0 = 0, s1 = 0k1 and s2 = 0k10, so that the
morphism σ in Theorem A.2 corresponds to 0→ 0k10 and 1→ 0k1. By (A.4),
it is easy to check that the standard morphism (Eη)kη is identical to Eσ = θ ,
so that E(limn→∞ σ

n(0)) corresponds to the characteristic word cγ with γ as in
(A.3). This concludes the proof. �
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