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Conjoined games: GO-CUT and SNO-GO

MELISSA HUGGAN AND RICHARD J. NOWAKOWSKI

Let F and H be two impartial rulesets. We introduce the conjoined ruleset
(F IH) in which the game is played under the F ruleset and then, when play
is no longer possible, to continue under the H ruleset. The games of GO-CUT

and SNO-GO on a path are considered. We give nim-values for positions at the
start of Phase 2 for GO-CUT, and for SNO-GO we determine the winner.

1. Introduction

The games STRATEGO, OVID’S GAME, THREE-, SIX-, and NINE-MEN’S MORRIS

[3] and also BUILDING NIM [7] are examples of combinatorial games that have
two phases. Specifically, in Phase 1 the board is set up and in Phase 2 the game
is played. There are many other “math games” (which mathematicians want to
analyze regardless of whether people actually want to play them) in which Phase 1
is not even defined, but instances of Phase 2 are analysed. For example, BOXCARS

[2], END-NIM [1], PUSH [2], TOPPLING DOMINOES [8] and their variants.
In this paper, we consider playing Phase 1 as a combinatorial game as well as

Phase 2 and analyze two specific games. We were introduced to this concept by
Kyle Burke and Urban Larsson (personal communication).

To avoid confusion with the multiple meanings of the word “game”, we refer
to the ruleset, which describes the legal moves, and a position, which is an
instance of the game after several (including zero) legal moves. By necessity,
the position also describes the board upon which play takes place.

In an impartial game, both players have the same moves available.

Definition 1. Let F and H be two impartial rulesets. The conjoined ruleset
(F I H) is to play Phase 1 under the F ruleset and when play is no longer
possible to start Phase 2 which is played under the ruleset of H.
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Forming a conjoined game allows for an interesting Phase 1 battle before the
“real” game begins. Since play in Phase 1 sets up the board, it is convenient to
have the corresponding game be a placement game [5], i.e., pieces are placed
but not moved or removed. The positions at the beginning of Phase 2 will have
structure reflecting the Phase 1 rules, and this allows for some partial analysis.
Here we indicate by GAME I a partizan game converted into an impartial game
by allowing both players to place any of the pieces. This paper explores the
following two games with two-phase play:

GO-CUT = (NOGO I I CUTTHROAT I ), and SNO-GO = (SNORT I I NOGO I ).

Brief notes about the games: The game NOGO is known as “anti-atari go”1, but
was independently invented by Neil McKay in 2011 (see also [6]). CUTTHROAT

was introduced in [9] and the full analysis when played on stars is given in [2].
SNORT is introduced in [3], Vol. 1, and is known as “CATS & DOGS” in Portugal.

Our results cover playing these conjoined games on a path, where the first
player who cannot move loses. In Section 2, we obtain the values for all the
possible positions of GO-CUT at the start of Phase 2 but we were not able to find
the outcomes of an empty path of length n, as a function of n. By contrast, we
find the outcome of an empty path for SNO-GO but were not able to find formulas
for the corresponding nim-values.

It should be noted that conjoined games and the sequential compound of
games [11] have similar definitions. However, the latter is formed from two
positions, so that the position for the second phase is known before the game
starts and the first phase only determines who plays first in the second phase. In
conjoined games, the position for the second phase is determined only after the
last play of the first phase.

1.1. Basic background. The basic Sprague–Grundy theory for impartial games
is presented here. Readers should consult any of [3; 2; 10] for further information
and proofs:

• The minimum excluded value, mex, of a set S is the least nonnegative integer
not included in S.

• An option of a position H is any position that can be reached in one move.

• Recursively, the Sprague–Grundy value, or nim-value, of a position H is
given by G(H) = mex{G(H ′) | H ′ is an option of H}. Thus, if a position
has no options, it has nim-value 0.

• Let H be a position; the next player to move can win if and only if G(H)> 0.

1http://senseis.xmp.net/?AntiAtariGo
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• Let p and q be nonnegative integers, then p⊕ q signifies the nim-sum or
exclusive or of p and q. It is obtained by writing p and q in binary and
adding without carrying.

• The disjunctive sum of positions F and H , written F + H , is the game in
which a player may move in one component but not both.

• G(F + H)= G(F)⊕G(H).

2. GO-CUT on a path

Since we are only considering a path we will give only those rules. The gener-
alisations to graphs is left to the reader. We leave the full analysis as an open
question for the reader since the authors didn’t succeed2. In our defence, the game
has similarities to BUILDING NIM, which seems to be hard. However, Lemma 3
gives the nim-value (recall, this is denoted by G) of a path at the end of Phase 1.

Definition 2 (GO-CUT). Initial board is a path with n vertices.
Phase 1: On a move a player chooses an uncoloured vertex (·) and colours it

either red (R) or blue (B) provided that it is contained in a subpath of red (respec-
tively blue) vertices that has at least one end-vertex adjacent to an uncoloured
vertex.

When no moves are playable under Phase 1, delete all uncoloured vertices and
then delete all maximal paths which have only red vertices or only blue vertices.
The game is now a disjunctive sum of components each of which contains both
red and blue vertices, that is, nonmonochromatic components.

Phase 2: A player chooses a component from the disjunctive sum, deletes
one of the vertices then deletes any resulting monochromatic components.

Thus, at the end of Phase 1, for example, we might have the position [B B ·
RB B · RB · R · B B] which, after deleting the uncoloured vertices, leaves [B B]+
[RB B] + [RB] + [R] + [B B]. Now deleting all monochromatic components,
gives the starting position for Phase 2 as [RB B] + [RB].

By the rules of NOGO, at the start of Phase 2, a component will consist of i
blue vertices followed by j red vertices (or the reverse) for some i, j > 0. Call
this an (i, j)-component. To extend the notation, we also refer to (i, 0) and (0, j)
components but these correspond to empty components.

Lemma 3. The nim-value of an (i, j)-component is ((i − 1)⊕ ( j − 1))+ 1.

2The nim-values of GO-CUT starting on a path of n uncoloured vertices, for n = 1 through 15
vertices are: 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 2.
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Proof. Clearly, the nim-value of a (0, j)- or (i, 0)-component is 0. We will refer
to an (i, j)-component by (i, j). If i and j are positive then, by induction,

G(i, j)=mex{G(r, j),G(i, s), 0≤ r ≤ i − 1, 0≤ s ≤ j − 1}

=mex{{(r − 1⊕ j − 1)+ 1, (i − 1⊕ s− 1)+ 1,

1≤ r ≤ i − 1, 1≤ s ≤ j − 1} ∪ {0}}.

Note that the set {(r − 1⊕ j − 1), (i − 1⊕ s− 1), 1≤ r ≤ i − 1, 1≤ s ≤ j − 1}
is the set of nim-values for NIM played with heaps of size i − 1 and j − 1 and
hence contains 0, 1, . . . , (i −1⊕ j −1)−1 and does not contain (i −1⊕ j −1).
Adding one to each value gives that both 0 and (i − 1⊕ j − 1)+ 1 are missing.
Since 0 is an option of (i, j), then

G(i, j)=mex{G(r, j),G(i, s), 0≤ r ≤ i − 1, 0≤ s ≤ j − 1}

= (i − 1⊕ j − 1)+ 1. �

3. SNO-GO on a path

We were able to obtain winning strategies for the conjoined games of SNORT I

and NOGO I on a path. We give the rules for an arbitrary graph so that a useful
general tool, Lemma 6, can be introduced.

Definition 4 (SNO-GO). The initial board is a graph with n vertices.
Phase 1: On a move a player chooses an uncoloured vertex (·) and colours it

red (R) or blue (B) provided that no red vertex is adjacent to a blue vertex.
Phase 2: When no moves are playable under Phase 1 rules, players can colour

an uncoloured vertex red or blue provided that each monochromatic component
has at least one vertex adjacent to an uncoloured vertex.

Thus, at the end of Phase 1, for example, we might have the position [B B ·
R R R · B B · R · B B]. At the end of the game, the position may look like
[B B · R R R RB B · R · B B].

Definition 5. Let G be a graph, x, y ∈ V (G) and z 6∈ V (G). The merger of x and
y results in the graph G ′ where V (G ′)= (V (G)\ {x, y})∪{z}, and vw ∈ E(G ′)
if vw ∈ E(G) or v = z and either xw ∈ E(G) or yw ∈ E(G).

The proof of Lemma 6 is clear and left to the reader.

Lemma 6 (reduction). Let G be a SNO-GO position on a graph G. Suppose x, y
are two adjacent vertices that are coloured the same. Let G ′ be the position on
the board resulting from the merger of x, y where z has the same colour as x and
all other vertices retain their colour. The nim-values of G and G ′ are equal.
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As a guide to intuition, consider a path with n vertices where we label the
vertices x1, . . . , xn . If two adjacent vertices are coloured the same then we can
apply Lemma 6 so that each coloured subpath is reduced to size 1 after Phase 1.
For example, the position [B B · R R R · B B · R · B B] becomes [B · R · B · R · B]
after applying Lemma 6. This notion is summarised in the next Lemma.

Lemma 7. A SNO-GO position on a path of n vertices at the beginning of Phase 2
is equal to a path of alternating coloured vertices, each separated by a single
uncoloured vertex.

Proof. At the end of Phase 1, after applying Lemma 6, all consecutive single
coloured vertices (red or blue) get amalgamated into a single representative of
that colour. If there is a pair of adjacent uncoloured vertices then either of them
can be coloured under Phase 1 rules. Also, if x1 or xn is uncoloured then Phase 1
play is still possible. Hence, after all reductions, the position will consist of
vertices alternating colours with a single uncoloured vertex between them and
the end vertices x1 and xn are also coloured. �

At the end of Phase 1, we will call any uncoloured vertex a hole. Note that a
hole will be adjacent to exactly one red and one blue vertex. We relate this game,
using Lemma 6, to NODE-KAYLES [4] or equivalently to DAWSON’S CHESS [3].

Definition 8. The impartial game NODE-KAYLES is played on a graph. Players
alternately choose a vertex and delete it and all adjacent vertices. The last player
to move wins.

Lemma 9. Given a path on n vertices, let G be a SNO-GO position at the start
of Phase 2 play. Furthermore, suppose G has m uncoloured vertices. If m ≥ 2
then G is equivalent to NODE-KAYLES played on a path with m− 2 vertices.

Proof. It is possible that m = 0 or m = 1. In the first case, all the vertices were
coloured the same. In the second, the final position is B ·R. If m≥2 playing either
of the two holes at the end, without loss of generality [B · R . . .] → [B X R . . .],
X ∈ {B, R}, leaves an illegal Phase 2 position. Playing an interior hole, e.g.,
[B · R · B · R · B · R] → [B · R · B X R · B · R], X ∈ {B, R} eliminates playing
in the two adjacent holes as legal moves. This shows that the position is now
equivalent to playing NODE-KAYLES on a path of length m− 2. �

For ease of referencing the players, we assume that Alf plays first on the
empty board and Betti plays second.

The outcome class of the sequence of NODE-KAYLES on a path is periodic
with period length 34 after a preperiod of 52 and the only P positions are when
n is even. For exact values, see the nim-value sequence for DAWSON’S CHESS

in Winning Ways [3], Vol. 1. Our approach is to show that the winning player
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can ensure to play first at the start at Phase 2, on the equivalent of an odd
NODE-KAYLES position, or win if the opponent does not allow 3 or more holes.

Before proving the Main Theorem of this section, we need the following
lemmas and conventions.

We partition the path into two pieces: the outer vertices consisting of vertices
x1, x2, xn−1, xn , and the interior, consisting of vertices x3, . . . , xn−2.

Lemma 10. Let G be a Phase 1 SNO-GO position on a path of n vertices. If at
least one of {x1, x2} and one of {xn−1, xn} are the same colour then at the end
of Phase 1 there will be an even number of holes. If at least one of {x1, x2} and
one of {xn−1, xn} are opposite colours then at the end of Phase 1 there will be
an odd number of holes.

Proof. Let G be a Phase 1 SNO-GO position where at least one of {x1, x2} and
one of {xn−1, xn} are coloured. At the end of Phase 1, positions will be as in
Lemma 7. If at least one of {x1, x2} and one of {xn−1, xn} are the same colour,
then given the alternating pattern of the colours, the number of coloured vertices
is odd which implies an even number of uncoloured vertices must be separating
them. If at least one of {x1, x2} and one of {xn−1, xn} of the position are different
colours, again given the alternating patterns of colours being separated by single
uncoloured vertices, this implies an even number of coloured vertices, separated
by an odd number of uncoloured vertices. �

Note that Lemma 11 is referring to the original path before applying Lemma 6.

Lemma 11. Let G be a SNO-GO position on a path of 2k+ 1 vertices at the end
of Phase 1. Let h be the number of holes. If h = 0, 2 or h ≥ 3 and is odd then Alf
will win the game.

Proof. If h = 0 then there has been an odd number of moves, the game is over
and Alf had the last move.

If h= 2 then Phase 2 has no moves but it is Betti’s turn to play and so she loses.
If h ≥ 3 and is odd then there has been an even number of moves (2k+1−h)

in Phase 1 and thus Alf moves first in Phase 2. NODE-KAYLES on an odd number
of vertices, here h− 2, is a first player win and so Alf can win the game. �

Theorem 12. Consider SNO-GO played on a path of n vertices. The initial
position is in P if n is even and in N if n is odd.

Proof. First suppose n is odd.
The strategy is for Alf to colour the centre vertex, without loss of generality,

blue. Now, until Betti colours an outer vertex (the first outer vertex to be coloured),
Alf always plays the same move reflected across the centre vertex. When Betti
finally colours an outer vertex there are now several cases to consider. Since
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Betti’s last move was to colour an outer vertex, without loss of generality, suppose
Betti colours xn−1 or xn with X .

If there are two red interior vertices then Alf colours x1 with the opposite
colour from Betti’s choice. By Lemma 10, at the end of Phase 1 there will be an
odd number of holes, at least 3, and by Lemma 11 Alf will win.

Thus we may suppose that at this point in play, all coloured interior vertices
are blue. There are several cases to consider:

(1) Suppose every uncoloured interior vertex is adjacent to at least one blue.
That is, it is now illegal to colour an interior vertex red. Alf colours x1

with X . The number of holes will be 0 if X = blue and 2 if X = red. In
both cases, by Lemmas 10 and 11, Alf can force a win.

(2) Suppose there are 4 interior uncoloured vertices, any pair of these are at
least distance 3 apart, nor is any adjacent to a blue vertex. Alf colours x1

with the opposite colour, hence an odd number of holes, and Alf can force
at least 3 holes by having two reds separated by a blue vertex.

(3) Similarly, if there is an interior uncoloured vertex, not adjacent to any blue
vertex which has an interior blue vertex between it and the closest outer
vertex. By symmetry, the reflected vertex is uncoloured and not adjacent to
a blue vertex. Again, Alf colours x1 with the opposite colour, hence an odd
number of holes, and Alf can force at least 3 holes by colouring one of the
two uncoloured vertices red.

This leaves the situation where the outermost blue interior vertices are followed
by at most 5 uncoloured interior vertices and all other uncoloured interior vertices
are adjacent to a blue vertex. Since Alf will play symmetry following any Betti
move between the two outer blues we can condense the centre to a single blue
vertex. The positions that remain to analyze are, where it is Betti to colour one
of the, say, left two vertices. The position is one of the following:

(i) [· · B · ·],

(ii) [· · ·B · · · ],

(iii) [· · · · B · · · ·],

(iv) [· · · · ·B · · · · · ],

(v) [· · · · · · B · · · · · ·],

(vi) [· · · · · · ·B · · · · · · · ].

In cases (i) and (ii), Alf forces either 0 or 2 holes by playing symmetrically.
In (iii), if Betti plays xn−1, again Alf forces either 0 or 2 holes by playing sym-

metrically. Suppose Betti plays to [B ···B ····], Alf plays to [B ···B ··B·] forcing 0
or 2 holes. If she plays to [R···B ····], then Alf replies [R···B ··R·] forcing 2 holes.
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In (iv) and (v) [· · · · ·B · · · · ·], Alf colours the fourth vertex from the end of
the side opposite to that of Betti’s last move. Alf can now force 2 or 3 holes.

In (vi), from [·X · · · · · B · · · · · · ·] Alf plays to [·X · ·X · ·B · · · · · · ·] and can force
0 or 2 holes. From [X · · · · · ·B · · · · · · ·] Alf plays to [X · · · · · ·B · · · · · ·Y ]. Suppose
without loss of generality that X is red. Regardless of what Betti plays, Alf can
colour a vertex red, on the other side of the centre from X . This generates an
odd number (> 1) of holes.

If the board is of even length, Betti plays the reflection symmetry and a similar
analysis shows that she can force a win. �
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