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An historical tour of binary and tours

DAVID SINGMASTER

Recreational mathematics has an old and honourable history. We illustrate
that history and perhaps a bit of the utility of recreational mathematics by
discussing a number of recreations involving binary representations and paths
on graphs.”

Leibniz’s binary arithmetics

In the seventeenth century, Francis Bacon used binary 5-tuples as a code, but
binary arithmetic as we currently understand it— doing actual arithmetic with
binary numbers rather than just using binary representations — starts with Leibniz
about 1679, though he didn’t publicize it until the late 1600s. He heard about the
Fu-Hsi ordering of the I-Ching hexagrams from Jesuit missionaries in China in
1701 and wrote a good deal about it thereafter (see Figures 1 and 2 and p. 219).

Figure 1. The title page of Leibniz’s booklet [Leibniz 1734] explaining
binary notation to a nobleman shows a medallion he created, later
borrowed by the Stadtsparkasse of Hanover to honor Leibniz himself.
T This is an elaboration of notes for a talk at the First European Congress of Mathematics, Paris,
July 1992, and given several times since. This material has been edited for Games of No Chance 5

by Urban Larsson (urban031@gmail.com). In a few occurences when uncertainty about historical
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Figure 2. Leibniz’s first writing on binary arithmetic, dated 11 March 1679.

However, Leibniz was anticipated by Thomas Harriot, 1604, who did not publish,
and by John Napier, whose Rabdologice of 1617 gave binary arithmetic as far as

computing square roots, but this seems to have been ignored.

references remained in the author’s Word file, question marks have been erased in this version,
following also suggestions from referees. The editor advanced this decision for readability, and
would be greatful for any comments in the future to complement or assist the numerous findings in

this work.
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But binary ideas go much further back. Some simple counting systems are
more or less base 2 and there are many instances of duality in nature — hands,
sexes, etc. But we are interested in material that is somewhat more mathematical.

Binary multiplication

The earliest implicit use of binary representations occurs in ancient Egyptian
mathematics. Figure 3 is Problem 30 of the Rhind Mathematical Papyrus,
ca. 1700 B.C.E., computing (%-i— %) x 13. The problem is to solve (% +%)x =10,
which is being done by false position, using x = 13 as a trial.

Because of their complicated notation for numbers, especially fractions, they
multiplied by repeatedly doubling, then adding the appropriate terms. For in-
stance, to multiply a number by 13, they computed successively the double, the
quadruple and the octuple of the number, then added the number to its quadruple
and its octuple. This is also known as Russian peasant multiplication and was
in use in Russia until the twentieth century. It was sufficiently common that
duplication and mediation (halving) were reckoned among the basic rules of
arithmetic in the middle ages and could be found in arithmetic books until the
seventeenth century. It uses the fact that every integer is a sum of distinct powers
of two, which is the same as saying that every integer has a binary representation.
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Figure 3. Problem 30 from the Rhind Mathematical Papyrus of ca. 1700 B.C.E.
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Binary weights

A somewhat more explicit use of binary representation occurs in Arabic sources
about the eleventh century. This is the use of weights 1,2, 4, ... to make all
integer weights on a scale. (Actually, if we allow putting weights into the other
side, one can use weights 1, 3,9, ...) This is often known as Bachet’s weights
problem, but it already appears in Fibonacci and several other European books
before Bachet.

Chinese rings and Gray code

At about the same time, the puzzle known as the Chinese Rings (Figure 4) appears
in China, though tradition attributes it back to the semi-legendary Hung Ming of
about 200 C.E.

One Oriental name, Lau kdk ch’a, translates as “delay-guest-instrument”.

Vo7 (S

V)

Figure 4. Four examples of Chinese Rings. From p. 107 of [Slocum
and Botermans 1986].
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Figure 5. Early description of the Chinese rings, from [Cardan 1550].

It is first known in Europe in 1550 when Cardan describes and illustrates it
in his De subtilitatis; see Figure 5. It has recently been recognised that Luca
Pacioli, in his unpublished manuscript De viribus quantitatis of about 1500,
describes the puzzle, with no diagram. Wallis explains it quite clearly in his
De algebra tractatus of 1693 (Figure 6). An old English phrase for it is “tiring
irons” or “tarrying irons”, and these words are recorded in the Oxford English
Dictionary as far back as 1601. Descriptive or picturesque names in various
languages include Chinese rings, Chainese rings, Cardan’s rings, Ryou-kaik-tjyo,
Lau kdk ch’a, Kau tsz’ lin wain (‘Nine-connected-rings’), Tiring or Tarrying
irons, Baguenaudier, Meleda, Zauberkette, Magische Ringspiel, Niirnberger
Tand, Grillenspiel, Zankeisen, Nodi d’anelli.

It is difficult to describe the puzzle and how to do it, and even finding good
images is hard. Suffice it to say that it has some number, n, of rings attached to
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Figure 6. First illustrated discussion of Chinese rings, from [Wallis 1685].

a bar by wires and systematically looped over a second bar in such a way that
one can take off or put on only one ring at a time, which is either the end ring or
the next to the last ring on the bar. Figure 7 shows the solution for four rings.
If we represent a state of the puzzle as a sequence of ons and offs, or better,
1s and Os, then each position is a binary number and the movement changes such
a binary number to another one which differs in just one place, which is either
the last place or the place next to the last 1. Figure 8 (left) shows this for five
rings, from Afriat, p. 31, with the binary patterns written in the image by me.
Looking at the sequence of moves, Figure 8 (right) as it appears, one sees that
starting from the position with all rings off is more interesting and the pattern
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Figure 8. A 5-ring solution, from [Afriat 1982], with the corresponding
Gray Code (right).

of movesis: 1,2,1,3,1,2,1,4,1,2,1,3,1,2,1,5,... (Flip the picture, view
Figure 8 from the side.)

You may recognize this pattern, especially if you are English or American and
hence use rulers marked in halves, quarters, eighths, . ... Figure 9 is a picture of
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Figure 9. A genuine left-handed ruler.

a Left-Hand Ruler, obtainable from left-handed shops! If you are metric, then
you may not be so familiar with this.

Consequently the binary number for the k-th position is not the binary represen-
tation of k. With five rings, the first few binary numbers are 00000, 00001, 00011,
00010, 00110, 00111, 00101, 00100, 01100, ... See Figure 8 (right). (Note
that it would be easier to have numbered the rings 0, 1, 2, . .. in the preceding
discussion, so the sequence of moves is: 0,1,0,2,0,1,0,3,0,1,0,...)

This pattern was rediscovered by Frank Gray in 1947 and patented by Bell
Labs in 1953! See below for more history. Generalizations of such patterns are
now called Gray codes, but we will call the present pattern the Gray Code.

Proposition 1 below is easy to obtain, but not as well known as it should be.
(I first found it in 1970, but not clearly formulated.)

Letn =) b, ;2 be the binary expansion of the integer n. Let C = C, be the
number of consecutive 1s at the end of this binary expansion. We can also say
that C,, is the largest i such that the i-th bit changes when we go from n ton 4 1
or that C,, is the power of 2 which exactly divides n + 1, i.e. it is the number of
Os at the end of n 4+ 1. C,, + 1 gives the number of the ring moved at step n + 1,
if we start at one. Let G, be the number of the n-th Gray Code value and let
3" gn.i2" be its binary expansion. Then G, has its C,-th bit changed to produce
Gyt1. Thus |G,41 — G,| = 2€. By careful counting, one can show that

8ni = bn,i _bn,i+l = bn,i +bn,i+l = bn’,i-i—la (1)

where n' =n + 2.

In other words, we can find the binary form of G, as follows. Write n in
binary as Y_ b, ;2'. Shift it one place to the right, throwing away the rightmost
bit; this produces the binary expression of [n/2] (with | | = floor function).
Then add the binary expressions for n and |[n/2], but without carrying, which
we denote by @. This establishes the following.

Proposition 1. Let B(k) be the binary representation of k and let G (k) be the
k-th binary word in the Gray Code. Then G (k) = B(k) ® B(1k/2]). That is, we
shift the binary representation of k to the right, losing the end digit, and do a
Boolean addition (also known as addition mod 2, exclusive or, XOR) with B (k).
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n Binary C C+l1 Gray G
0 00000 0 1 00000 0
1 00001 1 2 00001 1
2 00010 0 1 00011 3
3 00011 2 3 00010 2
4 00100 0 1 00110 6
5 00101 1 2 00111 7
6 00110 0 1 00101 5
7 00111 3 4 00100 4
8 01000 0 1 01100 12
9 01001 1 2 01101 13
10 01010 0 1 01111 15
11 01011 2 3 01110 14
12 01100 0 1 01010 10
13 01101 1 2 01011 11
14 01110 0 1 01001 9
15 01111 4 5 01000 8
16 10000 0 1 11000 24
17 10001 1 2 11001 25
18 10010 0 1 11011 27
19 10011 2 3 11010 26
20 10100 0 1 11110 30
21 10101 1 2 11111 31

Figure 10. The relation between binary and Gray coding.

For example:

« For k =7, we have B(7) = 00111, B(|7/2]) = B(3) = 00011, and G(7) =
00111 @ 00011 = 00100 = 4.

e For k = 15, we have B(15) = 01111, B(|15/2]) = B(7) = 00111, and
G(15)=01111 00111 = 01000 = 8.

For the inverse process, we have

bn,j = Zgn,i-

i>]
Otherwise stated, we have to sum all the shifts of G. That is, the binary value
corresponding to a Gray code G is given by G® |G/2| ® |G/4] D |G/8]D---
E.g., if G =15, we have that the binary value of 15 is 1111, so we compute
11110111 0011 0001 = 1010 = 10, i.e. G(10) =15.
Note that n = 101010... gives G(n) = 111111..., which is the desired
endpoint of the Chinese Rings process and the Rings are solved in n steps.
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Suppose we have r rings. By considering the cases when r is odd and when it
is even, we can determine #. In both cases, we can write n = I_%Z’J.

This and other basic results were (first) developed by Louis A. Gros, a notary
of Lyon about whom little is known, in a very rare pamphlet titled Théorie du
Baguenodier, Lyon, 1872. I have not been able to see this yet; a photocopy was
made and given to the Radcliffe Science Library at Oxford by Afriat, but the
library could not find it when I asked for it.

The function G (k) can be viewed as a permutation of the binary n tuples —
indeed of the binary numbers in [27—1, 2" —1]. Francis Clarke at Swansea has
made some study of this permutation; in particular, he has determined its order.

In 1880, Lucas published a report that Dr. O.-J. Broch, former Minister and
President of the Royal Norwegian Commission at the Universal Exposition of
1878, recently told him that country people in Norway still used the rings to
close their chest and sacks. No one has ever confirmed this fact and in 1904 a
Norwegian ethnographer said he had never heard of it.

Looking at the sequence of 5-tuples given above, we see that the right-hand
triples are a sequence which goes through every binary triple and ends adjacent
to where it started. If we depict a binary triple as a point on the 3-cube, we have
a circuit along the edges of this cube which goes through every vertex just once
and returns to its starting point. See Figure 11 (left).

Such circuits are generally known as Hamiltonian circuits, for reasons to be
seen shortly, and the Hamiltonian circuits on the n-cube are the generalized Gray
codes.

Exercise. Show that every Hamiltonian circuit on the 3-cube is equivalent to
this circuit. (This is no longer true in higher dimensions.)

4=110 3=010

Figure 11. Left: a 3-cube showing Gray Code. Right: a switch, using
Gray Code to minimize errors.
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In 1947, Frank Gray of Bell Labs was using binary representations for coding
and he found that a certain kind of error was minimized if the codings for adjacent
numbers differed in just one binary bit. That is, he wanted to use a coding which
was a Hamiltonian circuit on the n-cube.

Figure 11 (right) shows a switch for detecting the position of a central axis
which has an arm containing three contact points marked 1, 2, 3. The black
areas are at some voltage and the white areas are insulation. As shown all three
contacts have no voltage, so the signal on the arm is 000. (Alternatively, one can
have the arm contacts having voltage and the black areas as detectors.) As we
turn, the signal becomes 001, then 011, 010, . ... When the arm is at one of the
transition angles, it is possible for a contact to register O instead of 1 or vice versa.
The Gray coding guarantees that there is never more than one contact point that
can be in error and that the two possible signals give adjacent positions, so the
effect of such an error is minimized. If one uses the ordinary binary coding, one
can have all three contacts being subject to error and the position of the arm is
completely undetermined.

. . March 17, 1953 A 2,632,058
Gray constructed his coding pre- s con entceeson
cisely by the pattern of the Chinese """ **7 ¢ eotersheot 2
Rlngs, though he a.lso \'Nent.on 'to s o
consider other Hamiltonian circuits cone sk oo s (Pnion 4r7)
on the n-cube. Bell Labs patented B D ml= ' M Dmgg
the idea in 1953 (Figure 12), but I ‘ m}= DSE
. = =
believe the patent was cancelled as L DDS Dggg
part of an anti-trust settlement. T SS M DDS%
The number of Hamiltonian cir- ] DDE O=E
cuits or Gray codes on the n-cube re- DDE [JE=E
. . . . - SE
mains an interesting problem, which L] DE I Sgg
leads to the question of when two ~D§§ DDEE
. . : o=
circuits are equivalent. If we take - l—l Dg : _DDSE
L = THIRTY-EIGHT =
both the symmetries of the circuit | == T S
(i.e. starting at any point in either H; DDD Dmgg
. . . =] E
direction) and the symmetries of the Us (R
) . = [|U=E
cube as equivalences, the determina- & D = O=g
. . . . . DD DS
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n = 3, there is essentially only one ﬁyﬁ cRAY
. . g €. N~
circuit and there are nine for the 4- ATTORNEY

cube. But already for the 5-cube, the
counting which has been done failed ~ Figure 12. Patent for the Gray Code.
to consider all the symmetries, so
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Figure 13. Baudot’s use of the Gray Code in the 1870s. From [Heath
1972], p. 82.

we do not know how many inequivalent circuits there are, but it will be somewhere
in the order of a million.

Surprisingly, the idea of a switch using the Gray code was discovered by
the Belgian telegraph engineer Jean Emile Baudot (1845-1903) — the eponym
of baud —in the 1870s, and utilised in his printing telegraphs. See Figure 13.
I have also read that Stibitz used the same code in 1941, and Jack Good also
recognised the pattern at Bletchley Park, 1943.

I-Ching hexagrams

Trying to keep in historical order, the ordinary binary representations of integers
0 to 63 occur in the 64 hexagrams of the I-Ching; Figure 14 (left) shows some
objects decorated with the simpler 8 trigrams. The book itself goes back to
ca. 600 B.C.E., but had the hexagrams in a traditional order attributed to King
Wan, which has no known mathematical structure. Figure 15 (top) shows the
64 hexagrams in Wan’s order, and Figure 14 (right) shows the fu-hsi ordering,
which occurs in many places. The fu-hsi ordering only dates from the eleventh
century and the binary pattern is clearly seen in the associated “segregation
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Figure 14. Left: I-Ching trigrams make a popular pattern. Right: the
Fu-Hsi ordering (Yoshida Mitsuyoshi, Jinkoki, 1627; see [Sato 2013]).

table” (Figure 15, bottom), also occurring in many places. Leibniz learned about
the later order from the Jesuit missionary Joachim Bouvet in 1701 and this
inspired him to write a great deal more on binary arithmetic. He even produced a
theological analogy that God was the One who created Everything out of Nothing;
this pleased him so much that he had a special medal made to commemorate it
(Figure 1, left). He expected this idea would convert the Emperor of China to
Christianity.

Binary divination

Another explicit use of binary occurs in divination cards. These are 6 cards
on which numbers are written. The subject, assumed to be less than 64 years
old, says which cards his age occurs on and you add up the first numbers on
these cards to determine his age (Figure 16, left). The first known European
appearance of these is in the unpublished manuscript De viribus quantitatis by
Luca Pacioli, about 1500. However, I have seen a Japanese description of two
versions of the idea called Magic Cards and Magic Picture which says they have
been known since at least the fourteenth century. Figure 16, right, shows versions
from the early seventeenth century.
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PLATE L

Tue Hexacrams, in the order in which they appear in the Yi, and were

arranged by king Win.

¥ R il‘w;@_!’
| | g
i mﬁﬁ’%ﬂégkiﬁ!ﬁﬂgﬁﬂmgmﬁﬁ;ﬁ%ﬁ;kl

TULUN e
N AN ENRRE

THHRSREER AL Aﬁ%ﬂ%ﬁ%#@;xﬂﬂﬁﬂiﬂgﬁ

i
EEEEENR

H

s

FE BE % |

Figure 15. Top: the non-mathematical ordering of Wan [Legge 1899].

Bottom: the “segregation table” in Zhu Xi’s Zhouyi benyi (twelfth
century C.E.), reproduced in Hu Wei’s Yitu minghian (1706).
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1 3 5 7 9 11 13 15
17 19 21 23 25 27 29 3

49 51 53 55 57 59 61 63

18 19 22 23 26 27 30 31
34 35 38 39 42 43 46 47
50 51 54 55 58 59 62 63

20 21 22 23 28 29 30 31
36 37 38 39 44 45 46 47
52 53 54 55 60 61 62 63

24 25 26 27 28 29 30 31
40 41 42 43 44 45 46 47
56 57 58 59 60 61 62 63

16 17 18 19 20 21 22 23
26 25 26 27 28 29 30 31
48 49 50 51 52 53 54 55
56 57 58 59 60 61 62 63

32 33 34 35 36 37 38 39
40 41 42 43 44 45 46 47
48 49 50 51 52 53 54 55
66 57 58 59 60 61 62 63

Figure 16. Left: divination cards. Right: magic cards and a magic pic-
ture from the Jinkoki of Yoshida. (Note by editor: For more information
about this early seventeenth-century work see [Sato 2013].)

Knight’s tours

Now we go backwards a bit in time to find the beginning of our other main idea:
Hamiltonian circuits and paths. The oldest Hamiltonian circuits and paths are
knight’s tours and paths on the chessboard. In the mathematical literature, knight’s
tours first appear in the 1723 edition of Ozanam’s Récréations mathématiques et
physiques (see Figure 17) and are first studied systematically by Euler (1759)
and Vandermonde (1771). Euler describes it as “a curious question which does
not submit to any analysis”.

But if we examine the chess literature, we immediately discover tours going
back to the dawn of chess. Murray’s History of Chess describes a half-board
path in the Kavyalankara of Rudrata, c900 (Figure 18, left). These are given
in poetic forms in the shapes of “wheel, sword, club, bow, spear, trident, and
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Figure 17. Knight’s tours from [Ozanam 1723], pp. 261-262.

plough, which are to be read according to the chessboard squares of the chariot
[= rook], horse [= knight], elephant [= bishop].” The poet placed syllables in
the cells of a half chessboard so that it reads the same straight across as when
following a piece’s path. With help from the commentator Nami, of 1069, the
rook’s and knight’s path’s are reconstructed, and are given in Murray. Both are
readily extended to full board paths, but not tours, by placing a second copy of

32|35|30|25| 8| § 50|55
29|24 |33|36|51|56|7 |4
34|31 |26| 9| 6 |49|54|57
1|30 9|20 3 |24 |11 |26 23(28 37 [12 [ 1 [52] 3 |48
16(19| 2 [29|10]27| 4 |23 38|13 | 22 | 27 |10 |47 |58 |53
3|8 |17[14|21|6[25[12 19]16| 11 [64|61| 2 [43]46
18|15 (32| 7 (28|13 |22| 5 1 |39(18 |21 |44 |41 62|59
17 | 20| 15 |40|63|60|45]|42

Figure 18. Rudrata, earliest half board path (left). Earliest knight’s
tour (right). From [Murray 1913], pp. 54 and 336.



AN HISTORICAL TOUR OF BINARY AND TOURS 223

the half board beneath the given copy and seeing that the first cell of the second
board is connected to the last cell of the first board.

The next oldest known versions, which are full-board tours, appear in Kitdb
ash-shatranj mimma’l-lafahu’l- ‘Adli was-Siili wa ghair-huma (Book of the Chess;
extracts from the works of al *Adli, allli and others), by an unknown author,
copied by Abi Ishaq Ibrahim ibn al Mubarak ibn ‘Ali al Mudhahhab al Baghdadj,
in 1141. Murray gives two distinct tours. The solution of the first is a numbered
diagram, Figure 18 (right), but the second is “solved” four times by acrostic
poems, where the initial letters of the lines give the tour in an algebraic notation.
There are also a knight/bishop tour and a knight/queen tour, where moves of the
two types alternate.

A natural question arises: how many knight’s tours are there? A little trial
soon sends you to smaller boards, where two investigators found 9862 knight’s
tours on the 6 x 6 board in the 1970s.

This enumeration accounted for the symmetry group of a circuit, which is
D5, by taking a corner as the starting cell and one of the two cells adjacent to
the corner as the second cell of the circuit. However, I don’t believe anyone has
examined these circuits to see how many have various symmetries of the board
and thus to determine the number of inequivalent circuits. On the 8 x 8 board,
some 75,000 tours were found having the same first 35 moves! In 1975, I made
some crude estimates and predicted there are 10?33 tours on the 8 x 8 board.

Martin Loebbing and Ingo Wegener, in “The number of knight’s tours equals
33,439,123,484,294 — counting with binary decision diagrams” Electronic J.
Combinatorics 3 (1996), RS, gives a somewhat vague description of a method
for counting knight’s tours — they speak of directed knight’s tours, but it is not
clear if they have properly accounted for the symmetries of a tour or of the board.
Several people immediately pointed out that the number is incorrect because it
has to be divisible by four. Two comments have appeared (ibid.)—on 15 May
1996, the authors admitted this and said they would redo the problem, but they
have submitted no further comment as of Jan 2001. On 18 Feb 1997, Brendan
McKay announced that he had done the computation another way and found
13,267,364,410,532.

In view of the difference between these values and my 1975 estimate, it might
be worth explaining my reasoning. In 1964, Duby found 75, 000 tours with
the same first 35 moves. The average valence for a knight on an 8 x 8 board
is 5.25, but one cannot exit from a cell in the same direction as one entered,
so we might estimate the number of ways that the first 35 moves can be made
as 4.2535 = 9.9 x 1021. Multiplying by 75,000 then gives 7.4 x 1026. I think
I assumed that some of the first moves had already been made, e.g. we only
allow one move from the starting cell, and factored by 8 for the symmetries



224 DAVID SINGMASTER

of the square, to get 2.2 x 1025. I can’t find my original calculations, and I
find the estimate 1025 in later papers, so I suppose I tried to reduce the effect
of the 4.2535 some more. In retrospect, I had no knowledge of how many of
these had already been tried. If about half of all moves from a cell had already
been tried before any circuit was found, then the estimate would be more like
2.2534 x 75,000 = 7.1 x 1016. If we divide the given number of circuits by
75,000 and take the 34th root, we get an average valence of 1.78 remaining, far
less than I would have guessed.

I am grateful to Don Knuth for this reference. Neither he nor I expected to
ever see this number calculated!

The Icosian Game

In the 1850s, Kirkman observed that there was only one inequivalent Hamiltonian
circuit on the dodecahedron. Hamilton developed this idea into a board game
called The Icosian Game (after the 20 vertices) and he also developed the
mathematics into the first description of a group by means of generators and
relations. See Figure 19.

Only one example of the board for The Icosian Game was known until recently.
(Three more have been found in the last decade or so.) Lucas and Ahrens, writing
about the turn of the century, describe a solid version of the game and Ahrens
even gives an address of where to buy one, but no examples were known until
about 2000.

THE ICOSIAN GAME.

Registered
agroeably o
Aot V. & V1. Vio. cap. 100,

Iy this new Gume (invented by Sir Wrenraw Rowaw Ilmaston, LLD,, &, of Dublin, and
by him named Teosian, from o Greek word signifying “twenty”) a player is to place the ©
whole or part of a set of twenty numl bered pieces u the points or in the holes
of a board, represented by the diagram above drawn, nanner as always to proceed

along the lines of the figure, and also to fulil certain other conditions, which may in various,
ways be assigned by another player. Ingenuity and skill may thus be exercised in proposing as
well as in resolving problems of the game. For example, the first of the two players may place
the first five pieces in any five consecutivo holes, and then require the second player to place
the remaining fifteen men consccutively in such g m at the succession may be cyelical,
that is, so that No. 20 may bo adjacent to No. 1; and it e e

of this kind. Thus, if BCD F G be the five given
the succession by following the alphabetical order of the twenty cor
the dingram itself; biit aftor placing the picce No. 6 in the hole T, s before, it is also allowed
(by the supposed conditions) to put No. 7 in X instead of J, and then to conclude with the

succession, W R ST VIKLMNPQZ Other K
tions of some of them, will be found in the following

of Teosian Problems, with solu-

LONDON:
PUBLISHED AND SOLD WHOLESBALE BY JOHN JAQUES AND SON, 102 HATTON GARDEN;
AND 70 X HAD AT NOST OF TILE LEADING FANCY REPOSITORIES
TIROVGEOUT THE KINGDON.

Figure 19. The Icosian Game: an exemplar in the Royal Irish Academy,
from Robin Wilson, and its instructions.



AN HISTORICAL TOUR OF BINARY AND TOURS 225

Take, for instance, the object illustrated below this paragraph.
For the sake of those who find pleasure in testing their wits, I
ask: What is itP—hastening to add that archaologists themselves
have yet to agree on an answer.

‘ “‘ THE MYSTERIOUS DODECAHEDRON WITH THE
é PENTAGONAL ENDS.

Judging by its external appearance as shown in the picture, it
is a bronze object shaped like a pentadodecahedron. Round open-
ings of various sizes are found in the center of each face. The in-
terior of the object is hollow. All specimens of this artifact have
been found north of the Alps, which indicates a Roman origin.

One interpreter sees this mysterious thing as a mere toy; an-
other as a die used in games of chance; a third as a model used
in teaching the measurement of cylindrical bodies; a fourth as a
candleholder.

What is it?

Since this book was first published, I have received over a
hundred answers to this question from both experts and laymen
all over the world. The experts’ explanations tend to be quite
authoritative in tone, though they contradict each other. The most
probable solution—though far from established—is that we have
here a musical instrument.

Figure 20. The Roman Dodecahedron and C. W. Ceram’s discussion
of it (Gods, graves, and scholars, 2nd ed., Gollancz, London, p. 25).

On the other hand, there are about 100 examples of Roman bronze hollow
dodecahedra with knobs at the corners which look exactly like solid versions of
the Icosian Game; Figure 20 shows a photo of a facsimile. Archaeologists are
mystified as to what these objects are; there are hundreds on conjectures in the
archaeological literature, now including mine that they might be early versions
of Hamilton’s game.

The Tower of Hanoi

The greatest of French recreational mathematicians was Francois-Edouard-
Anatole Lucas (1842-1891), who died at the height of his powers from blood
poisoning caused by a scratch from a plate dropped at a scientific banquet. In
1883, he brought out his Tower of Hanoi, which I will presume is known to all
of you (see Figure 21). The story about the 64 discs in Benares appears in the
original literature and was so widely spread that it appeared as truth in Robert
Ripley’s Believe It Or Not! (Figure 22).

When I gave this talk in 1993, Jean Brette, of the Palais de la Découverte in
Paris, told me that there was an original example of the Tower of Hanoi in the
Conservatoire National des Arts et Métiers — Musée National des Techniques.
At the time, it was closed for refurbishment, but some years later, I wrote to
ask about this and Elisabeth Lefevre sent details and photocopies of the box,
instruction sheet and some other material. The bottom of the box has an ink
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LA TOUR D'HANOI

VERITABLE CASSE-TETE ANNAMITE

JEU RAPPORTE DU TONKIN

PAR LE PHOFESSEUR N. CLAUS (DE SIAM)
JEU | 3 Mandarin du Gollge 14-50u-stant

RAPFORIF DU TONKIN'Y — %
AL PROFESSE R CLAVS Desing
AR

co & it trouvé, pour la promibes fois, duns les erits do Tillastes Mandarin
FER-F) AM, qui seront publiés, plus ou moias prochainement, suivaat les ordros
du Gous incis.

La TOUR D'HANOI so compose d'éages superposés t décroissants, en nombre virisble
que nous avons représeatés par huit pions en bais, percés & lear centee. Au Japon, s Chiae.
au Tonkin, on les fai en porcelaine.

by i@‘?

Le Jeu consiste & démlic I tour, élago par élago, of & Ia reconstruice dans un liew vuisin
conformémeat an rigles indiquees.

Amusant et instructif, faile & apprendro et & jouer, & Ia vlle, & la campagne, sn voyage,
il & pobf but Ia valgarisation des sciences, commo tous les antres joux curieus at indits du
professenr N. CLAUS (DE SI.

Nous pourcions oftie une prime de dis mille francs, de. con mille francs, d'un millon de
francs, ot plus encore. & celui qui réaliserit,

exicater successivement lo nombro do déplacems
18 446 744 0;
<o qui exigorst plus do cing millords de sl

615

Diais wuo vioils igonda indiane, les brah
lea marches de Taute, dans lo Tomplo do Bénarbs, pour sxécuter e déplaceraeat do I Tour Secrée,
de Buam, ux soixtnte-quatro élages en or fi -geesie da dismants de Goleonde. Quand tou)
sera fin, Ia Tour et les brahmes tomberoat, et co sera Ia fin du monde!

ucckdeat depuis bisn longtemps, e

PARIS, PEKIN, YEDO et SAIGON
Ches les librairs ot marchands de nouseente
1883

Figure 21. The original box cover and instructions (1883) for the
Tower of Hanoi, where the game’s introduction is attributed to N. Claus
(de Siam), a pseudonym of Lucas (d’ Amiens).
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Figure 22. From Robert i BRAHMA PrRAMID — GREKTEST of ALl puzzces”
Ripley’s Believe It OI" - TRANSFER THE €4 DISCS To EIMER of THE OTHER 2 PEGS.

(EACK DISC MUST BE TRANSFERRSD To EITWER AN EMPTY PEG,0R UPoN
A PEG WHERS THERE IS A LARGER DisC AN THE ONE To BE PLACED O IT)

Not!, book 2 (Simon & ) o o o o !, ’
Schuster, 1931, and other s v MAsWILL )

| 588/000,000,000 Years /
edltlons)' HIS pyramid—wrought in plates of solid gold—really exists
Tin Benares, India, and the Brahman priests have been at the

task for 3,000 years. The Brahmans (the “Twice-Born") are the
upper class of the Hindus, who number some 230,000,000.

Benares is the Holy City of India. It is situated on the banks

of the Ganges, and is one of the most interesting spots on earth,

I think. “Benares is said to combine the virtues of all the places

of pilgrimage, so much so that anyone of whatever creed, and
however great his misdeeds, dying within the compass of the
Panch Kosi road which surrounds Benares, is transported straight !
to heaven.”

I have seen Benares (described in the first book), but I did not
see the Brahma pyramid. It is supposed to be hidden under the
roofed quadrangle of the Golden Temple near where i» located )
the famous Gyan Kup, “Well of Knowledge". » .

It is the tradition of the Brahmans that the god Siva has

charged them with the task of taking the pyramid down and.
replacing it on another peg, the divine will being that each one
of the 64 discs must be placed either on an empty peg or upon
* one on which a larger disc has been placed previously. When
the job will be finished, the world will have come to an end.
Although the Brahman priests have been at the task for 3,000
years, the demolition has hardly started. Mathematically 2%,
or a total of 18,446,744,073,709,551,615 transpositions will be
necessary before the job of transferring the pyramid to another
peg will be accomplished. At the rate of one transposition a
second, coming generations of Brahmans will be at it for at
least 588,000,000,000 years.
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Figure 23. The bottom of the original Tower of Hanoi box (left); the
inside of the lid of the box (right).

inscription: Hommage de 1’auteur / Ed Lucas / Paris 1888 (Figure 23, left). The
date is not clearly legible on the photocopy, but is known from the Museum’s
records. Inside the cover, apparently in the same hand (that is, in Lucas’s writing),
is an ink inscription (Figure 23, right); it translates to “The Tower of Hanoi:
a combination game to explain the binary numbering system. Invented by Mr.
Edouard Lucas, November 1883. Present of the author.”” These comments are
very important historically in that Lucas never publicly admitted to inventing the
game!

Despite its age, the Tower of Hanoi continues to surprise. In the late 1980s, 1
observed that the discs can be placed on the pegs in 3" ways and wondered if any
position was more difficult to obtain from the initial position than the position with
all discs on another peg. In fact there is not, but there are 2" positions which are
just as difficult. The following analysis is based on work I did then, but this was
improved by seeing the approach used by Daniele Parisse: “The Tower of Hanoi
and the Stern-Brocot array”, PhD Thesis at Fakultit fiir Mathematik, Ludwig-
Maximilians-Universitit Miinchen, 1997, under the direction of Andreas Hinz (an
amended version was printed). In late 2000 and early 2001, I used this material
as part of “The history of some combinatorial recreational problems”, a chapter
for History of Combinatorics, edited by Robin J. Wilson. In so doing, I found I
needed some extra results; they eventually turned out to be pretty straightforward,
but little of my original 1993 organization remains! The following is the revised
material.

The first article on the puzzle, [Longchamps 1883], showed that it takes 2" — 1
moves to solve the problem when there are n discs. There has been some question
as to whether this or any other early discussion actually showed that this number
of moves is minimal, but if AM,, is the minimal number of moves for n discs, then
the basic argument clearly leads to

My =M1+ 1+ M. (2)
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In actually carrying out the minimal solution, one finds that the sequence of
discs moved is precisely the same as the sequence of rings moved in the Chinese
Rings: 1,2,1,3,1,2,1,4,1,2,1,3,1,2, 1,5, ..., though there is not an anal-
ogous binary representation for the positions. Further each disc always moves
through the pegs in the same cyclic order, with alternate discs moving in alternate
directions. The Tower of Hanoi corresponds to a Hamiltonian circuit on the
n-dimensional cube, while the Chinese Rings corresponds to a Hamiltonian path
from one corner to a diametrically opposite corner—in both cases the route
is the very particular one that we have called the Gray Code. This seems to
have first been observed by Crowe [1956] (see also [Gardner 1957]). Because
of the recursive nature of the solution, it has been a popular problem for testing
programming techniques in recent years.

A position means a legal arrangement of the discs, i.e., no disc is on a smaller
one. The order of discs on a peg is then determinate and we only have to say
which discs are on which peg. Let us call the position, with all discs on one peg,
an initial or perfect position.

To analyse my 1980s question of how many positions are maximally difficult,
let A(n, d) be the number of positions with n discs requiring d moves to obtain
from the initial position. All the positions with the n-th disc still in its initial place
can be viewed as positions on the first n — 1 discs and so A(n,d) = A(n —1,d)
for d < 2"~!. If the n-th disc has moved, there are two positions it can get to in
2"=! — 1 moves and the other discs are in a pile of n — 1 at the other non-initial
position. Hence A(n,2" ' —14+d) =2A(n —1,d), ford <2"".

If 0 < d < 2" and we write d in its binary representation: d = Y _ d;2" and
set S(d) =) d; —i.e., S(d) is the number of ones in the binary representation
of d —then one readily sees there are 25@ positions that require d moves to
achieve. The average value é of d turns out to be precisely % of the maximum
number, 2" — 1, of moves. Andreas Hinz [1989a; 1992] found this same result
and further determined the average number of moves between any two positions
is asymptotic to (466/885)2".

The basic idea of Hinz is to examine the graph of positions connected by
legal moves. This graph was already formulated by Scorer, Grundy and Smith
[Scorer et al. 1944], though they didn’t proceed as far as Hinz. This graph is in
a triangular array with 2" points along each edge. It is constructed recursively
and it is difficult to relate a given arrangement of the discs to its location in the
graph. I have reformulated this and determined how to relate a position to its
point in the graph. This process also yields the above results and some others.
This takes a little notation. Recall we use @ for Boolean addition or “exclusive
or” and we will use ©® for Boolean multiplication or “and”. We count discs and
pegs starting with 0.
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The Disc-Peg Incidence matrix A is defined by: A(i, j) = 1 if disc i is on peg
j,and A(i, j) = 0 otherwise. We will do two examples. If discs 0 and 1 are on
peg 1 and disc 2 is on peg 0, then the matrix is the first shown below, while if
discs 0 and 1 are on peg 1, disc 2 is on peg 0, and disc 3 is on peg 2, then the
matrix is the second shown.

peg 0 1 2 peg 01 2

disc
A 0 010 010
1 010 010
2 100 100
3 001

It is easier to view this matrix by its columns or its rows. The three columns
give three binary n-tuples x, x1, xo which indicate which discs are on the pegs.
These “peg contents n-tuples” describe a partition of the discs, so x; ©x; =00...0
fori # jand ) x; =11...1. We can also interpret x; as the integers given by
the binary n-tuples, i.e. as x; =Y, A(i, j )2/ and we denote this vector as x. In
our examples, we get x = (4, 3, 0) and x = (4, 3, 8). The fact that > _x; =2" —1
tells us that we could plot the positions with triangular coordinates.

However, not all the points satisfying this condition correspond to a partition
of the discs and adjacent points in the resulting plot are not connected by legal
moves, so this does not lead to a useful graph. (One can see a connection with
the Chinese Rings if one thinks of a Chinese Rings position as a pair of binary
n-tuples, one recording the rings on the bar and the other recording the rings off
the bar. Then these two n-tuples correspond to a partition of the rings.)

If we consider the rows of A, we can define the “disc location n tuples” or
“disc location vector” as p = (p;), where p; = j if A(i, j) =1, i.e. if disc i
is on peg j. In our examples, we get p = (1, 1,0) and p = (1, 1, 0, 2). Thus
p € (Z3)" and all such points occur, i. e. the puzzle has 3" positions. Since each
peg is adjacent to both others, Z3 behaves like a 3-point circle; when n = 2, we
have a 9-point torus. We will tend to identify a position with its disc location
vector. It is straightforward, but a bit messy, to find the mappings between these
two descriptions and to describe the legal moves in each case.

Now we need some more notation.

Let d(p, gq) be the shortest number of moves between positions p and g. Since
moves are reversible, we have d(p, g) =d(q, p) and d( -, -) is easily seen to be
a metric.

Let i be the disc location vector (i, i, ..., i), i.e., the perfect or initial position
with all discs on peg i.

Letioj=—(G{+j) (mod3),soioj=iifi=j;ioj&{i,j}ifi #j.
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We want to determine d; = d(i, p) for some position p. Though the process
is reversible, it seems easier to describe it as starting from i. The largest disc,
numbered n — 1 since we start counting with zero, wants to go onto peg p,,—1.

If p,_1 = j #1i, then we have to move the first n» — 1 discs from peg i onto
the other disc, namely disc i o j. This takes 2"~! — 1 moves. Then we move disc
n—1 onto peg j and we have reduced the problem by one disc, using 2"~ moves.
But our pile of n — 1 discs is now on peg i o p,_1, so our reduced situation starts
from this peg and the roles of pegsi =i o p,_10py,—1 andio j=1io p,_; have
been interchanged.

If p,_1 =i, then we don’t have to carry out the 2"~! moves and the reduced
situation still starts from pegi =i o p,_1.

This establishes the following.

Proposition 2. For a position p, the value of d = d; = d (i, p) is determined by
the following process.
t=i
d=0
FORk=n—-1TOOSTEP —1
IF py #¢t THEN d =d + 2*
t=topg
NEXT k

In our examples, the three distances are dy =04+2+1=3,d; =4+2+1=7,
d3;=4+0+0=4forthe firstand dy =8+4+2+1=15,d; =8+0+2+1=11,
d3 =044+ 0+ 0 =4 for the second.

Now consider computing dy, d1, d; in parallel as we will generally do. Observe
that when (a, b, c) is a permutation of (0, 1, 2), then so is (a o px, bo pk, co pi).
Hence the three ¢ values in the algorithm, which are originally (0, 1, 2), always
remain a permutation of (0, 1, 2) at each stage. Hence we see:

Corollary 3. Each binary place has the value 1 twice in the binary expansions
of do, dv, d>.

If we let Dy(a) be the k-th digit of the binary representation of a, we can
express the result of Corollary 3 as

> Di(d;) =2 for each k. (3)

1

Hence we also have:
Corollary 4. ) . d; =2(2" - 1).
Since the situation is symmetric in the pegs, we readily see:

Corollary 5. The average value of d; over all p is %(2” —1).
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Now considering the calculation of dy, d1, d; in parallel, we see that p uniquely
determines (dy, d1, d»). For if g # p, then the first place, counting down from
n — 1, where the vectors differ will give a different binary digit in two of the
distances.

Proposition 6. The set of positions in the Tower of Hanoi with n discs is in
one-to-one correspondence with the set of triples of binary n-tuples, (dy, di, dy),

satisfying (3).

Proof. Proposition 2 gives a mapping from the set of positions to the distance
triples and Corollary 3 says these triples satisfy (3). The above discussion shows
the mapping is one-to-one. But there are precisely 3" such triples and we already
know there are 3" positions of the puzzle, so the mapping must also be onto. []

One can determine p = (py) from a triple (dy, d1, d») satisfying (3) by the
following.

10)=0;t(1)=1;t2) =2
FORk=n—1TOOSTEP — 1

FOR i =0TO 2
IF Dy(d;) = 0 THEN py = 1(i)
NEXT i
FOR i =0TO 2
t(@)=t(i) o px
NEXT i
NEXT k

We have that dy + d + d»> adds to a constant, 2(2" — 1), which leads us to
think of using triangular coordinates, but the sum is twice what it ought to be.
But this is what happens when we take distances to the corners rather than the
usual distances to the edges. This suggests that the natural coordinates are the
complementary distances d! = (2" — 1) — d;. In our examples, these are (4, 0, 3)
and (0, 4, 11). Then (3) becomes

> " Di(d)) =1, for each k. 4)

1

Thus ), d; =2" — 1, so the (d]) can be used as triangular coordinates for
a graph of the positions within a triangle of edge 2" — 1, i.e. having 2" points
along each edge. Proposition 6 tells us which points in the triangle are legal
positions of the puzzle.

In triangular coordinates, two points are adjacent if and only if they differ
by one in two coordinates. E.g. (0, 0, 3) is adjacent to (0, 1, 2). The truth of
this for our (d) implies the same relationship for the (d;). We want to see that
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two positions in the Tower of Hanoi differ by just one move if and only if the
corresponding points are adjacent in our triangular graph.

To see this, we consider the possible moves from a position p. From any
position, there are at most three moves, of two types.

1) The smallest disc can be moved from its peg to either of the other pegs.
These moves can be made from any position.

2) The second smallest of the uppermost discs, i.e. the smaller of the uppermost
discs on the pegs which the smallest disc is not on, can be moved from its
peg to the other such peg. An empty peg acts as if it had an infinitely large
and immovable disc on it, but when there are two empty pegs, there is no
move of this type. That is, there are only two moves, of type 1, from the
perfect positions.

Consider a move of the first type from a position p to a position g and its effect
on the distances d;. The calculations will be identical until the final stage when
one will be added to one distance and subtracted from another. The same holds
for the coordinates d; and so p and g will be adjacent in our triangular graph.

Now what happens if we make a move of the second type? If the second
smallest uppermost disc is the k-th, then the £ discs 0, 1, ...,k — 1 are all on
the same peg. From the symmetry of the situation, let us assume position p has
discs 0,1, ...,k —1 on peg 0 and disc k on peg 1 and we want to move it to
peg 2 to obtain position g. In computing the distances for p and g, everything is
identical forn — 1,n —2, ..., k+ 1. We can ignore these discs — the only effect
is that this permutes the ¢ values in the algorithms, but we only need to examine
the set of distances.

Using the known result (2) that it takes 2% — 1 moves to move the first k discs
from one peg to another, we see that for position p, the distances are these:

for position p: for position g:

do=2F—1+1425—1=21_1, dy=2"—1+142F—1=2K1_1,
dy =2F—1, di =142F—1=2%,
dr = 1+2%—1 =2k, dy =2%—1.

So we see that p and ¢ are adjacent in our triangular graph.

So every pair of positions differing by one move in the Tower of Hanoi
corresponds to an adjacent pair of points in our triangular graph. But a point in
the triangular graph has: 2 adjacent points if it is at a corner; 4 adjacent points if
it is in the interior of an edge; 6 adjacent points otherwise. The three corners
are well behaved; both adjacent points are one move from the corner. For all
other points I claim that only three of the adjacent points satisfy (4). Renumber
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the pegs so that Dy(dj) = 1, i.e. disc 0 is on peg 0. Suppose that the first zero
value in the binary representation of dy is the k-th digit, i.e. Di(d))) = 0, but
Dj(d)) =1for j=0,1,...,k—1. Renumber so that D;(d;) = 1. Then the
binary representations have the forms

dy=...011...1,
dj=...100...0,
dy=...000...0.

It is clear that we can subtract one from 4, and add it to either of the other
coordinates while preserving (4). Adding one to d, gives us ... 100...0 and
(4) can only hold if we subtract one from dj, getting ...011...1. If 4 is not
changed, then we have to add one to either of the other two distances and this
gives an end digit of one and so (4) does not hold. Hence the only situations
where p and ¢ are adjacent points in our triangular graph are those corresponding
to moves in the Tower of Hanoi. This completes the proof of the following.

Theorem 7. The graph of positions in the Tower of Hanoi with n discs and with
adjacency between positions one move apart, is isomorphic to the graph of triples
of binary n tuples (dy, d|, d;) satisfying (4) considered as triangular coordinates
in a triangle of edge length 2"~' and with adjacency being adjacency in the
lattice.

Figure 24 shows a Tower of Hanoi diagram for n = 3, with some disc location
vectors and our first example plotted. This picture was described by Scorer,
Grundy and Smith [Scorer et al. 1944] by a different process, which I illustrate
for the passage from 1 to 2 discs. For 1 disc, there are three positions in a triangle;
Figure 25 (left). For 2 discs, we get this repeated three times, once for each
peg that the second disc is on; Figure 25 (middle). We place these copies at the
corners of a triangle and then reflect each small triangle about the axis through
the corner of the big triangle; Figure 25 (right). This reflection is the geometric
process associated with the i o j operation above and corresponds to the fact that

p=(1,1,0)
x=(4,3,0)
d=@3,7,4)
d'=(4,0,3)

222

Figure 24. A Tower of Hanoi diagram for n = 3.
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Figure 25. The passage from 1 to 2 discs, from [Scorer et al. 1944].

when we start at i and we want to move a disc from i to j, with i # j, we have
first to move all the previous discs to peg i o j, so the problem is reduced to a
smaller problem, but starting on the different pegi o j.

Scorer, Grundy and Smith noted that every position, except the perfect ones,
has three moves from it, one of each of the kinds discussed above and that the
mapping of triples x = (xo, X1, x2) to triples d’ = (d|), d}, d}) has order 2. The
distances d and the coordinates d really tell us all we could want to know about
a position; Figure 24 show the next stage of the graph and the point p = (1, 1, 0)
on it). From the symmetry of the triangular pattern, some results can be deduced
from properties of the triangle —e.g., § is the distance of the centroid from a
vertex and the average value of d; over all p is the distance of the centroid from
an edge, i.e., §/2.

When we think of the Chinese Rings positions as pairs of binary n tuples, each
position has either one or two moves and a move consists of shifting a bit from
one n-tuple to another according to certain rules. In the Tower of Hanoi, each
position is a triple of binary n-tuples and has two moves of the same sort, but
generally has a more complex move, though this shifts one from one coordinate
to another. The Gray Code permits us to recognise adjacent positions in the
Chinese Rings; the triangular coordinates do the same for the Tower of Hanoi. I
still feel that the analysis is not quite satisfactory in that there is no formula for
the Tower of Hanoi analogous to G (k) = B(k)@® B(|k/2]). The standard problem
of moving from one perfect position to another, say from O to 1, corresponds
to moving along the edge d, = 0 of our triangular graph and the point with
coordinates (2" — 1 — k, k, 0) is the k-th point on the solution path. If we are
given the point number, k£, we can recreate p by the method after Proposition 6.
Early methods of doing this seem rather more complex; see [Hinz 1989a].!

IEditor’s note: for a comprehensive survey of similar topics, see also [Hinz et al. 2013].
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Figure 26. Odd values in Pascal’s Triangle. From Siegfried Rosch,
Farbenlehre, auf die Mathematik angewandt Studien am Pascalschen
Dreieck; palette Nr. 15 (Spring 1964), Sandoz AG, Basel.

Related ideas

Ian Stewart, and perhaps others, have pointed out that the triangular pattern
arising is the same as the pattern of odd binomial coefficients (BC) in the rows
0,1,...,2" — 1 of Pascal’s triangle. This is an easy consequence of the result
that BC(m, k) is odd if and only if m + (m — k) has no carries when done in
binary. If we have peg 0 at the top of our triangle, then BC(m, k) is located at
the point ((2" — 1) —m, k, m — k) on the triangular graph and is a legal position
if and only if Kk © m — k = 0. This also allows us to deduce the number of
positions in the m-th row as I did before. This pattern is also the n-th stage in the
construction of the fractal called Sierpinski’s Gasket (Figure 26). Hinz showed
that the average distance between points in these patterns satisfies a fifth-order
recurrence and is asymptotic to 466/885 of the maximal length.

Hinz also considered arrangements of the discs which were not in correct
order and asked how many moves were needed to get to a correct order.

Donald Knuth told me about the problem where we imagine the three pegs
in a line and one can only move to an adjacent peg. That is, one cannot move
from one end to the other. If we want to move the whole pile from one end to
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S — - No. of

Disks Pegs

11 1 1 1 11
2 3 3 3 3 3 3
3 7 5 5 5 5 5
4 15 9 7 7 71 7
5 30 1311 9 9 9
6 63 17 15 13 11 11
7 127 25 19 17 15 13
8 255 33 23 21 19 17
9 511 41 27 25 23 21

—
()

1023 49 31 29 27 25

Figure 27. Variant Towers of Hanoi, from Lucas (“Nouveaux jeux
scientifiques de M. Edouard Lucas”, La Nature 17 (1889), 301-303),
with a list of best solutions (Joe Celko, Puzzle Column: “Mutants of
Hanoi”, Abacus 1:3 (1984), 54-57).

the other end, then this variation has a remarkable connection with Hamiltonian
circuits which I will leave as an exercise! One can also consider the problem
with all movements having to go in the same direction.

There are also unsolved problems. Suppose we have four (or more) pegs
(Figures 27, left). Then we can carry out the transfer more easily. Some study
reveals a fairly natural method but there are many ways to carry out the transfer
in the same number of moves. Hinz has also investigated this and found that this
allows one to transfer 64 discs to another peg, in less than six hours using four
pegs, compared to some 5 x 10° centuries when using three pegs. No one has yet
come up with a proof that this method is really minimal and Knuth suggests that
it may be impossible because of the many different ways which give the minimal
number of moves. Some best known results are shown on the Figure 27, right.?

A number of variations of the Chinese Rings have been devised, several in
recent years. In 1891, George E. Everett of Grand Island, Nebraska, obtained a
UK patent for the Loony Loop; Figure 28 (left). I have not found a US patent
on this. It appeared about 1900 in English puzzle boxes as the Canoe Puzzle.
A number of topological variations have appeared more recently. A Hungarian
example of the 1980s was called Bogi; Figure 28 (right) is the instructions. Two

2We thank one of our reviewers for the following remark: Here the problem on the lower
bounds of the number of moves for the k-peg Tower of Hanoi (k > 4) is unsolved. But in recent
years, there have been breakthroughs and it seems to be solved completely for the four-peg case: T.
Bousch, “La quatrieme tour de Hanoi”, Bull. Belg. Math. Soc. Simon Stevin 21:2 (2014), 895-912.
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Figure 28. Left: From the patent for the Loony Loop. Right: Bogi
instruction sheet.

A Puzzle to Make Your Head Spin!

The ideais simple: just turn the

disks at the indicated spot, one

by one. When the disks are all

turned sideways, the slide will Start puzzle with alldisks turned
unlock from the base and can be asillustrated above.

removed.

There is. only one solution, designed and programmed by the computer.
170 sequential movements of the rods wil return all 8 wedges to the IN position. The rods slide through- Beware: It's tougher than it looks.
SPIN-OUT" will instantly draw Som ey oo oy e Bt
may turn only one disk at a i
:;;::: but good luck getting out e e

8 diferent levels. Each level is cut-out diferently than the other seven levels. When a rod sides in, it
re-aligns allthe levels o a new pafter. This re-alignment will uniock some o the fods and re-ock
others. No more than 2 rods are movable at any given time and only one is the correct move.

B - Can you discover the correct sequence?
g 1 you suceeed, can you bring all 8 wedges back out again? (Another 170

SPIN-OUT™ will have you, your
family and friends going in circles
for hours. When all disks are turned to form one straight line,

ertial moves) A Clue: The program is based on the Gray Binary System. one
=5 And enjoying every second! the slide can be removed and the puzzle is solved!

For solution, Send 50 cents and self-addressed stamped envelope
No.2225 The Brain TM(© 1989,
Mag-Nif Inc..

8820 East Avenue, Mentor, Ohio 44060

138414 uids PeaH InoA eI 113
* 77 3pIIS 3Y3 noway 03 SXSIQ IYBKY Ay uids Isnr

|

PhA FECPUPPPELLR]  Printed in USA.

Figure 29. Brain, bottom of box, and SpinOut, from box.

mechanical versions appeared in the 1980s: The Brain (trademarked by Mag-Nif
in 1989); Figure 29, and Spin Out (patented by William Keister in 1972, produced
by Binary Arts in 1986); Figure 29 (right).

A similar looking, but quite different, puzzle called Panex, invented by Toshio
Akanuma, appeared in Japan in 1983. It looks like two 10-disc piles in two of
three channels; see Figure 30 (but the middle channel is not clear). The frame has
concealed notches so that a piece cannot move down further than its natural posi-
tion. With this restriction, one doesn’t worry about such trivial matters as putting
large discs on smaller. (An essentially identical puzzle was patented in the US
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by someone else in 1993.) Mark Manasse, Danny
Sleator and Victor Wei, at Bell Labs (unpublished
study, 1983) have shown that one can move one
pile to the centre peg in 4875 moves and one can
exchange the piles in a number of moves between
27564 and 31537. They found minimal solutions
for up to six levels. At the Fifth Gathering for
Gardner in 2002, Nick Baxter gave out a sheet
which said that levels seven and eight had been
solved, but with current computing power, the
next two levels would take 10 and 1200 years. See
Figure 30. Panex. http://www.baxterweb.com/puzzles/panex.
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