
This comprehensive text focuses on the homotopical technology in use at the
forefront of modern algebraic topology. Following on from a standard intro-
ductory algebraic topology sequence, it will provide students with a compre-
hensive background in spectra and structured ring spectra. Each chapter is
an extended tutorial by a leader in the field, offering the first really accessible
treatment of the modern construction of the stable category in terms of both
model categories of point-set diagram spectra and infinity-categories. It is one
of the only textbook sources for operadic algebras, structured ring spectra,
and Bousfield localization, which are now basic techniques in the field, and
the book provides a rare expository treatment of spectral algebraic geome-
try. Together the contributors Emily Riehl, Daniel Dugger, Clark Barwick,
Michael A. Mandell, Birgit Richter, Tyler Lawson, and Charles Rezk offer a
complete, authoritative source to learn the foundations of this vibrant area.
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1 Introduction

by Andrew J. Blumberg, Teena Gerhardt, Michael A. Hill

1.1 Goals of this book

The modern era in homotopy theory began in the 1960s with the profound realization,
first codified by Boardman in his construction of the stable category, that the category of
spaces up to stable homotopy equivalence is equipped with a rich algebraic structure,
formally similar to the derived category of a commutative ring R. For example, for
pointed spaces the natural map from the categorical coproduct to the categorical
product becomes more and more connected as the pieces themselves become more
and more connected. In the limit, this map becomes a stable equivalence, just as
finitely indexed direct sums and direct products coincide for R-modules.

From this perspective, the objects of the stable category are modules over an initial
commutative ring object that replaces the integers: the sphere spectrum. However,
technical difficulties immediately arose. Whereas the tensor product of R-modules
is an easy and familiar construction, the analogous construction of a symmetric
monoidal smash product on spectra seemed to involve a huge number of ad hoc
choices [1]. As a consequence, the smash product was associative and commutative
only up to homotopy. The lack of a good point-set symmetric monoidal product on
spectra precluded making full use of the constructions from commutative algebra
in this setting — even just defining good categories of modules over a commutative
ring spectrum was difficult. In many ways, finding ways to rectify this and to make
the guiding metaphor provided by “modules over the sphere spectrum” precise has
shaped the last 60 years of homotopy theory.

This book arose from a desire by the editors to have a reference to give to their
students who have taken a standard algebraic topology sequence and who want to
learn about spectra and structured ring spectra. While there are many excellent
texts which introduce students to the basic ideas of homotopy theory and to spectra,
there has not been a place for students to engage directly with the ideas needed
to connect with commutative ring spectra and work with these objects. This book
strives to provide an introduction to this whole circle of ideas, describing the tools that
homotopy theorists have developed to build, explore, and use symmetric monoidal
categories of spectra that refine the stable homotopy category:
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1. model category structures on symmetric monoidal categories of spectra,

2. stable ∞-categories, and

3. operads and operadic algebras.

These three concepts are closely intertwined, and they all engage deeply with a
fundamental principle: if the choices for some construction or map are parameterized
by a space, then recording that space as part of the data makes the construction more
natural.

To make this maxim precise in practice, we must keep track of the spaces of maps
between objects in our categories, not just sets of maps, describing the homotopies by
which two equivalent maps are seen to be equivalent. A first example of this is given by
the cup product on ordinary cohomology. Students in a first algebraic topology class
learn that while the cochains on a space with coefficients in a commutative ring are not
a commutative ring, the cohomology of a space is canonically a graded commutative
ring. Steenrod observed that over Fp, we can keep track of cochains that enforce the
symmetry between a ^ b and b ^ a, and out of these, we can build a hierarchy of
cochains and, when a = b, cocycles in increasingly high degree: the Steenrod reduced
powers [283]. May recast this via operads: mathematical objects which exactly record
spaces parametrizing particular kinds of multiplications [198, 194].

Again returning to our maxim, we want to be sure that our constructions, including
of the mapping spaces, are homotopically meaningful in the sense that the resulting
homotopy type of any output depends only on the homotopy types of the inputs.
Model categories provide one way to ensure this, giving us not only checkable condi-
tions to facilitate computation but also a language and explanation for fundamental
constructions in homological algebra like resolutions and derived functors. More
recently, ∞-categories have given another way to ensure homotopically meaningful
information by recording this data from the very beginning.

Homotopy theory is at an inflection point, with much of the older literature
written in the language of model categories and with newer results and machinery
expressed using ∞-categories. Both approaches have distinct benefits, and we provide
an introduction to both: our aim is to give people learning about stable categories and
structured ring spectra a way to connect with both “neoclassical” tools and newer ones.

The book closes with applications of the tools so developed, showing how the
machinery of ∞-categories allows us to fully realize Boardman’s observation and “do
algebraic geometry” with commutative ring spectra. Transformative work of Goerss–
Hopkins–Miller in the last 1990s ushered in the era of spectral algebraic geometry,
showing first that the Lubin–Tate deformation theory of formal groups naturally lifts
to a diagram of commutative ring spectra and then that the structure sheaf of the
moduli stack of formal groups has an essentially unique lift to a sheaf of commutative
ring spectra [106, 126]. This produced a host of new cohomology theories which are
naturally tied to universal constructions in algebraic geometry and moduli problems.
Additionally, it refined classical invariants of rings like modular forms to invariants of
ring spectra: topological modular forms. Lurie has created a vast generalization of
this, showing how one can lift algebraic geometry whole-cloth to commutative ring
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spectra, creating spectral algebraic geometry. The final chapter of this book provides
an introduction to this new area.

1.2 Summaries of the chapters

Chapter 2 (Riehl)

The chapter begins by framing a foundational question: What do we mean by the
homotopy category of a category and by derived functors? It proceeds through a
historical arc: describing first categories of fractions, then moving on to Quillen’s
theory of model categories and their simplicial enrichments, and finally describing the
newer, (∞,1)-categories. The goal here is to introduce the reader to the basic tools
that will be used, fitting them into a broader narrative, demonstrating how they can
be used, and connecting everything clearly to the literature for further study.

Chapter 3 (Dugger)

This chapter gives a comprehensive overview of the modern symmetric monoidal
categories of spectra that were invented in the 90s: symmetric spectra, orthogonal
spectra, and EKMM spectra. The technical foundations are carried out in the setting
of model categories, and there is an emphasis on concrete formulas for the smash
product and related constructions. The goal is for the reader to become comfortable
with working in these categories of spectra.

Chapter 4 (Barwick)

This chapter returns to the construction of the category of spectra and explains the
approach to spectra and stable categories more generally in the framework of (∞,1)-
categories. We hope that comparing and contrasting the treatment in this chapter and
the preceding one will give a flavor of the similarities and differences between the two
technical approaches for abstract homotopy theory. Of necessity, many details about
the underlying foundations are left to the references, but enough detail is provided to
indicate how the theory works.

Chapter 5 (Mandell)

This chapter is a thorough treatment of the theory of operadic algebras in modern
homotopy theory. It gives a streamlined view of the foundations, collecting in one
place results that are scattered throughout the literature, with a unifying viewpoint on
techniques for understanding the homotopy theory of operadic algebras and modules.
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Chapter 6 (Richter)

This chapter gives a broad sampling of applications of commutative ring spectra in
modern stable homotopy theory. Beginning with a treatment of the foundations, it
then surveys applications in topological Hochschild homology, obstruction theory and
topological André–Quillen homology, and the Picard and Brauer groups.

Chapter 7 (Lawson)

This chapter gives a detailed introduction to the theory of Bousfield localization,
starting from the basic constructions and studying the multiplicative properties of the
localization in the context of structured ring spectra. Bousfield localization is one of
the most important techniques in the modern arsenal, and the goal of this chapter is
to prepare the reader to understand how to use it.

Chapter 8 (Rezk)

This chapter draws on all of the earlier sections, showing how the machinery developed
allows us to “do algebraic geometry” in a very general context. The chapter begins
discussing ∞-topoi and sheaves on them, providing along the way useful tools and
ways to reinterpret results to show how these constructions can be used. It then
moves into more algebraic geometry notions, exploring how classical notions like
étale morphism, affine and projective spaces, and stacks lift to commutative ring
spectra. This culminates in a treatment of Lurie’s refinement of the Goerss–Hopkins–
Miller theorem that the structure sheaf of the moduli stack of elliptic curves lifts to
commutative ring spectra.

1.3 Acknowledgements

We would like to thank first and foremost the authors of the chapters for their
incredible work. Hélène Barcelo at MSRI and our editors at Cambridge University
Press have been both enthusiastic about this project and patient. We would particularly
like to thank Series Editor Silvio Levy for his extensive work on this volume. We were
supported throughout the course of this work by the NSF: DMS-1812064, DMS-1810575,
and DMS-1811189. This book is an outgrowth of the transformative MSRI semester
on algebraic topology that took place in 2014, and we are grateful to everyone who
participated in that program and honored to be able to continue the conversation.

We would also like to thank our advisors and mentors, Gunnar Carlsson, Ralph
Cohen, Lars Hesselholt, Mike Hopkins, Mike Mandell, Peter May, and Haynes Miller,
who taught us much of what we understand about this material and so many other
things. We would also like to thank Doug Ravenel for encouraging comments and
Christian Carrick, Robert Housden, Jason Schuchardt, and Andrew Smith for their
comments on some of the chapters.



2 Homotopical categories: from
model categories to
(∞,1)-categories

by Emily Riehl

2.1 The history of homotopical categories

A homotopical category is a category equipped with some collection of morphisms
traditionally called “weak equivalences” that somewhat resemble isomorphisms but
fail to be invertible in any reasonable sense, and might in fact not even be reversible:
that is, the presence of a weak equivalence X ∼−→ Y need not imply the presence of a
weak equivalence Y ∼−→ X. Frequently, the weak equivalences are defined as the class of
morphisms in a category K that are “inverted by a functor” F : K→ L, in the sense of
being precisely those morphisms in K that are sent to isomorphisms in L. For instance:

– Weak homotopy equivalences of spaces or spectra are those maps inverted by the
homotopy group functors π∗ : Top→ GrSet or π∗ : Spectra→ GrAb.

– Quasi-isomorphisms of chain complexes are those maps inverted by the homology
functor H∗ : Ch→ GrAb.

– Equivariant weak homotopy equivalences of G-spaces are those maps inverted by
the homotopy functors on the fixed point subspaces for each compact subgroup
of G.

The term used to describe the equivalence class represented by a topological
space up to weak homotopy equivalence is a homotopy type. Since the weak homotopy
equivalence relation is created by the functor π∗ , a homotopy type can loosely be
thought of as a collection of algebraic invariants of the space X, as encoded by the
homotopy groups π∗X. Homotopy types live in a category called the homotopy category
of spaces, which is related to the classical category of spaces as follows: a genuine
continuous function X → Y certainly represents a map (graded homomorphism)
between homotopy types. But a weak homotopy equivalence of spaces, defining an
isomorphism of homotopy types, should now be regarded as formally invertible.

In their 1967 manuscript Calculus of fractions and homotopy theory, Gabriel and
Zisman [100] formalized the construction of what they call the category of fractions
associated to any class of morphisms in any category together with an associated
localization functor π : K→ K[W−1] that is universal among functors with domain K

that invert the class W of weak equivalences. This construction and its universal
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property are presented in §2.2. For instance, the homotopy category of spaces arises
as the category of fractions associated to the weak homotopy equivalences of spaces.

There is another classical model of the homotopy category of spaces that defines
an equivalent category. The objects in this category are the CW-complexes, spaces
built by gluing disks along their boundary spheres, and the morphisms are now
taken to be homotopy classes of maps. By construction the isomorphisms in this
category are the homotopy equivalences of CW-complexes. Because any space is weak
homotopy equivalent to a CW-complex and because Whitehead’s theorem proves that
the weak homotopy equivalences between CW-complexes are precisely the homotopy
equivalences, it can be shown that this new homotopy category is equivalent to the
Gabriel–Zisman category of fractions.

Quillen introduced a formal framework which draws attention to the essential
features of these equivalent constructions. His axiomatization of an abstract “homotopy
theory” was motivated by the following question: When does it make sense to invert a
class of morphisms in a category and call the result a homotopy category, rather than
simply a localization? In the introduction to his 1967 manuscript Homotopical Algebra
[229], Quillen reports that Kan’s theorem that the homotopy theory of simplicial groups
is equivalent to the homotopy theory of connected pointed spaces [143] suggested to
Quillen that simplicial objects over a suitable category A might form a homotopy
theory analogous to classical homotopy theory in algebraic topology. In pursuing this
analogy he observed that

there were a large number of arguments which were formally similar to well-known ones in
algebraic topology, so it was decided to define the notion of a homotopy theory in sufficient
generality to cover in a uniform way the different homotopy theories encountered. [229, pp. 1–2]

Quillen named these homotopy theories model categories, meaning “categories of
models for a homotopy theory.” He entitled his explorations “homotopical algebra,” as
they describe both a generalization of and a close analogy to homological algebra — in
which the relationship between an abelian category and its derived category parallels
the relationship between a model category and its homotopy category. We introduce
Quillen’s model categories and his construction of their homotopy categories as a
category of “homotopy” classes of maps between sufficiently “fat” objects in §2.3. A
theorem of Quillen proven as Theorem 2.3.29 below shows that the weak equivalences
in any model category are precisely those morphisms inverted by the Gabriel–Zisman
localization functor to the homotopy category. In particular, in the homotopical
categories that we will most frequently encounter, the weak equivalences satisfy a
number of closure properties, to be introduced in Definition 2.3.1.

To a large extent, homological algebra is motivated by the problem of constructing
derived versions of functors between categories of chain complexes that fail to preserve
weak equivalences. A similar question arises in Quillen’s model categories. Because
natural transformations can point either to or from a given functor, derived functors
come with a “handedness”: either left or right. In §2.4, we introduce dual notions of
left and right Quillen functors between model categories and construct their derived
functors via a slightly unusual route that demands a stricter (but in our view improved)
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definition of derived functors than the conventional one. In parallel, we study the ad-
ditional properties borne by Quillen’s original model structure on simplicial sets, later
axiomatized by Hovey [130] in the notion of a monoidal or enriched model category,
which derives to define monoidal structures or enrichments on the homotopy category.

These considerations also permit us to describe when two “homotopy theories”
are equivalent. For instance, the analogy between homological and homotopical
algebra is solidified by a homotopical reinterpretation of the Dold–Kan theorem as an
equivalence between the homotopy theory of simplicial objects of modules and chain
complexes of modules presented in Theorem 2.4.33.

As an application of the theory of derived functors, in §2.5 we study homotopy
limits and colimits, which correct for the defect that classically defined limit and
colimit constructions frequently fail to be weak equivalence invariant. We begin by
observing that the homotopy category admits few strict limits. It does admit weak ones,
as we shall see in Theorem 2.5.3, but their construction requires higher homotopical
information which will soon become a primary focus.

By convention, a full Quillen model structure can only be borne by a category
possessing all limits and colimits, and hence the homotopy limits and homotopy
colimits introduced in §2.5 are also guaranteed to exist. This supports the point of
view that a model category is a presentation of a homotopy theory with all homotopy
limits and homotopy colimits. In a series of papers from 1980 [89, 87, 88], Dwyer
and Kan describe more general “homotopy theories” as simplicial localizations of
categories with weak equivalences, which augment the Gabriel–Zisman category of
fractions with homotopy types of the mapping spaces between any pair of objects. The
hammock localization construction described in §2.6 is very intuitive, allowing us to re-
conceptualize the construction of the category of fractions not by imposing relations
in the same dimension, but by adding maps in the next dimension — “imposing
homotopy relations” if you will.

The hammock localization defines a simplicially enriched category associated to
any homotopical category. A simplicially enriched category is a non-prototypical
exemplification of the notion of an (∞,1)-category, that is, a category weakly enriched
over ∞-groupoids or homotopy types. Model categories also equip each pair of their
objects with a well-defined homotopy type of maps, and hence also present (∞,1)-
categories. Before exploring (∞,1)-categories in a systematic way, in §2.7 we introduce
the most popular model, the quasi-categories first defined in 1973 by Boardman and
Vogt [48] and further developed by Joyal [140, 141] and Lurie [169].

In §2.8 we turn our attention to other models of (∞,1)-categories, studying six
in total: quasi-categories, Segal categories, complete Segal spaces, naturally marked
quasi-categories, simplicial categories, and relative categories. The last two models
are strictly-defined objects, which are quite easy to define, but the model categories in
which they live are poorly behaved. By contrast, the first four of these models live in
model categories that have many pleasant properties, which are collected together in
a new axiomatic notion of an ∞-cosmos.

After introducing this abstract definition, we see in §2.9 how the ∞-cosmos axiom-
atization allows us to develop the basic theory of these four models of (∞,1)-categories
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model-independently, that is, simultaneously and uniformly across these models.
Specifically, we study adjunctions and equivalences between (∞,1)-categories and
limits and colimits in an (∞,1)-category to provide points of comparison for the
corresponding notions of Quillen adjunction, Quillen equivalence, and homotopy
limits and colimits developed for model categories in §2.4 and §2.5. A brief epilogue,
§2.10, contains a few closing thoughts and anticipates future chapters in this volume.

2.1.1 Acknowledgments

The author wishes to thank Andrew Blumberg, Teena Gerhardt, and Mike Hill for
putting together this volume and inviting her to contribute. Daniel Fuentes-Keuthan
gave detailed comments on a draft version of this chapter, while Chris Kapulkin,
Martin Szyld, and Yu Zhang pointed out key eleventh hour typos. She was supported
by the National Science Foundation via the grants DMS-1551129 and DMS-1652600.

2.2 Categories of fractions and localization

In one of the first textbook accounts of abstract homotopy theory [100], Gabriel and
Zisman construct the universal category that inverts a collection of morphisms together
with accompanying “calculi-of-fractions” techniques for calculating this categorical
“localization.” Gabriel and Zisman prove that a class of morphisms in a category with
finite colimits admits a “calculus of left fractions” if and only if the corresponding
localization preserves them, which then implies that the category of fractions also
admits finite colimits [100, §1.3]; dual results relate finite limits to their “calculus of
right fractions.” For this reason, their calculi of fractions fail to exist in the examples
of greatest interest to modern homotopy theorists, and so we will not introduce them
here, focusing instead in §2.2.1 on the general construction of the category of fractions.

2.2.1 The Gabriel–Zisman category of fractions

For any class of morphisms W in a category K, the category of fractions K[W−1]
is the universal category equipped with a functor ι : K→ K[W−1] that inverts W ,
in the sense of sending each morphism to an isomorphism. Its objects are the same
as the objects of K and its morphisms are finite zigzags of morphisms in K, with
all “backwards” arrows finite composites of arrows belonging to W , modulo a few
relations which convert the canonical graph morphism ι : K→ K[W−1] into a functor
and stipulate that the backwards copies of each arrow in W define two-sided inverses
to the morphisms in W .

Definition 2.2.1 (category of fractions [100, 1.1]). For any class of morphisms W in a
category K, the category of fractions K[W−1] is a quotient of the free category on
the directed graph obtained by adding backwards copies of the morphisms in W to
the underlying graph of the category K modulo certain relations:
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– Adjacent arrows pointing forwards can be composed.

– Forward-pointing identities may be removed.

– Adjacent pairs of zigzags

x y xs s or y x ys s

indexed by any s ∈W can be removed.1

The image of the functor ι : K→ K[W−1] is comprised of those morphisms that can
be represented by unary zigzags pointing forwards.

The following proposition expresses the 2-categorical universal property of the
category of fractions construction in terms of categories Fun(K,M) of functors and
natural transformations:

Proposition 2.2.2 (the universal property of localization [100, 1.2]). For any cate-
gory M, restriction along ι defines a fully faithful embedding

Fun(K[W−1],M) Fun(K,M)

Fun
W7→�

(K,M)
�

−◦ι

defining an isomorphism

Fun(K[W−1],M) � Fun
W7→�

(K,M)

of categories onto its essential image, the full subcategory spanned by those functors that
invertW .

Proof. As in the analogous case of rings, the functor ι : K→ K[W−1] is an epimor-
phism and so any functor F : K→M admits at most one extension along ι. To show
that any functor F : K→M that inverts W does extend to K[W−1], we define a graph
morphism from the graph described in Definition 2.2.1 to M by sending the backwards
copy of s to the isomorphism (Fs)−1 and thus a functor from the free category gener-
ated by this graph to M. Functoriality of F ensures that the enumerated relations are
respected by this functor, which therefore defines an extension F̂ : K[W−1]→M as
claimed.

The 2-dimensional aspect of this universal property follows from the 1-dimensional
one by considering functors valued in arrow categories [146, §3].

Example 2.2.3 (groupoid reflection). When all the morphisms in K are inverted, the
universal property of Proposition 2.2.2 establishes an isomorphism Fun(K[K−1],M) �
Fun(K,coreM) between functors from the category of fractions of K to functors valued
in the groupoid core, which is the maximal subgroupoid contained in M. In this

1 It follows that adjacent arrows in W pointing backwards can also be composed whenever their
composite in K also lies in W .
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way, the category of fractions construction specializes to define a left adjoint2 to the
inclusion of groupoids into categories:

Cat Gpd

fractions

core
⊥
⊥

The universal property of Proposition 2.2.2 applies to the class of morphisms
inverted by any functor admitting a fully faithful right adjoint [100, 1.3]. In this case,
the category of fractions defines a reflective subcategory of K, which admits a variety
of useful characterizations, one being as the local objects orthogonal to the class of
morphisms being inverted [238, 4.5.12, 4.5.vii, 5.3.3, 5.3.i]. For instance, if R→ R[S−1]
is the localization of a commutative ring at a multiplicatively closed set, then the
category of R[S−1]-modules defines a reflective subcategory of the category of R-
modules [238, 4.5.14], and hence the extension of scalars functor R[S−1]⊗R − can be
understood as a Gabriel–Zisman localization.

However, reflective subcategories inherit all limits and colimits present in the larger
category [238, 4.5.15], which is not typical behavior for categories of fractions that are
“homotopy categories” in a sense to be discussed in §5.8. With the question of when a
category of fractions is a homotopy category in mind, we now turn our attention to
Quillen’s homotopical algebra.

2.3 Model category presentations of homotopical categories

A question that motivated Quillen’s introduction of model categories [229] and also
Dwyer, Kan, Hirschhorn, and Smith’s later generalization [92] is: When is a category
of fractions a homotopy category? Certainly, the localization functor must invert some
class of morphisms that are suitably thought of as “weak equivalences.” Perhaps these
weak equivalences coincide with a more structured class of “homotopy equivalences”
on a suitable subcategory of “fat” objects that spans each weak equivalence class —
such as given in the classical case by Whitehead’s theorem that any weak homotopy
equivalence between CW complexes admits a homotopy inverse — in such a way that
the homotopy category is equivalent to the category of homotopy classes of maps in
this full subcategory. Finally, one might ask that the homotopy category admit certain
derived constructions, such as the loop and suspension functors definable on the
homotopy category of based spaces. On account of this final desideratum, we will
impose the blanket requirement that a category that bears a model structure must be
complete and cocomplete.

2 More precisely, this left adjoint takes values in a larger universe of groupoids, since the category of
fractions K[K−1] associated to a locally small category K need not be locally small. Toy examples
illustrating this phenomenon are easy to describe. For instance, let K be a category with a proper class of
objects whose morphisms define a “double asterisk”: each non-identity morphism has a common domain
object and for each other object there are precisely two non-identity morphisms with that codomain.
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Consider a class of morphisms W , denoted by “ ∼−→”, in a category M. Such mor-
phisms might reasonably be referred to as “weak equivalences” if they somewhat
resemble isomorphisms, aside from failing to be invertible in any reasonable sense.
The meaning of “somewhat resembling isomorphisms” may be made precise via any
of the following axioms, all of which are satisfied by the isomorphisms in any category.

Definition 2.3.1. The following hypotheses are commonly applied to a class of “weak
equivalences” W in a category M:

– The two-of-three property: for any composable pair of morphisms if any two of
f , g , and gf is in W then so is the third.

– The two-of-six property: for any composable triple of morphisms

•

• •

•

hg∼f

gf
∼

hgf

g
h

if gf ,hg ∈W then f ,g,h,hgf ∈W .
– The classW is closed under retracts in the arrow category: given a commutative

diagram

• • •

• • •
t so t

if s is in W then so is its retract t.
– The class W might define a wide subcategory, meaning that W is closed under

composition and contains all identity morphisms.
– More prosaically, it is reasonable to suppose that W contains the isomorphisms.
– At a bare minimum, one might insist that W contains all of the identities.

Lemma 2.3.2. LetW be the class of morphisms in M inverted by a functor F : M→ K.
ThenW satisfies each of the closure properties just enumerated.

Proof. This follows immediately from the axioms of functoriality.

In practice, most classes of weak equivalences arise as in Lemma 2.3.2. For instance,
the quasi-isomorphisms are those chain maps inverted by the homology functor H•
from chain complexes to graded modules, while the weak homotopy equivalences are
those continuous functions inverted by the homotopy group functors π•. Rather than
adopt a universal set of axioms that may or may not fit the specific situation at hand,
we will use the term homotopical category to refer to any pair (M,W ) comprised of
a category and a class of morphisms and enumerate the specific properties we need
for each result or construction. When the homotopical category (M,W ) underlies a
model category structure, to be defined, Theorem 2.3.29 below proves W is precisely



12 Riehl: Homotopical categories: from model categories to (∞,1)-categories

the class of morphisms inverted by the Gabriel–Zisman localization functor and hence
satisfies all of the enumerated closure properties.

The data of a model structure borne by a homotopical category is given by two
additional classes of morphisms — the cofibrations C denoted “�”, and the fibrations
F denoted “�” — satisfying axioms to be enumerated. In §2.3.1, we present a modern
reformulation of Quillen’s axioms that more clearly highlights the central features of a
model structure borne by a complete and cocomplete category. In §2.3.2, we discuss
the delicate question of the functoriality of the factorizations in a model category with
the aim of justifying our view that this condition is harmless to assume in practice.

In §2.3.3, we explain what it means for a parallel pair of morphisms in a model
category to be homotopic; more precisely, we introduce distinct left homotopy and
right homotopy relations that define a common equivalence relation when the domain
is cofibrant and the codomain is fibrant. The homotopy relation is used in §2.3.4
to construct and compare three equivalent models for the homotopy category of a
model category: the Gabriel–Zisman category of fractions M[W−1] defined by formally
inverting the weak equivalences, the category hMcf of fibrant-cofibrant objects in M

and homotopy classes of maps, and an intermediary HoM which has the objects of
the former and hom-sets of the later, designed to facilitate the comparison. Finally,
§2.3.5 presents a fundamental example: Quillen’s model structure on the category of
simplicial sets.

2.3.1 Model category structures via weak factorization systems

When Quillen first introduces the definition of a model category in the introduction
to “Chapter I. Axiomatic Homotopy Theory” [229], he highlights the factorization
and lifting axioms as being the most important. These axioms are most clearly
encapsulated in the categorical notion of a weak factorization system, a concept which
was codified later.

Definition 2.3.3. A weak factorization system (L,R) on a category M is com-
prised of two classes of morphisms L and R such that:

(i) Every morphism in M may be factored as a morphism in L followed by a mor-
phism in R.

• •
•

f

L3` r∈R

(ii) The maps in L have the left lifting property with respect to each map in R
and the maps in R have the right lifting property with respect to each map in
L: that is, any commutative square

• •

• •
L3` r∈R

admits a diagonal filler as indicated, making both triangles commute.
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(iii) The classes L and R are each closed under retracts in the arrow category: given
a commutative diagram

• • •

• • •
t s t

if s is in that class then so is its retract t.

The following reformulation of Quillen’s definition [229, I.5.1] was given by Joyal
and Tierney [142, 7.7], who prove that a homotopical category (M,W ), with the weak
equivalences satisfying the two-of-three property, admits a model structure just when
there exist classes C and F that define a pair of weak factorization systems:

Definition 2.3.4 (model category). A model structure on a homotopical category
(M,W ) consists of three classes of maps — the weak equivalencesW denoted “ ∼−→”,
which must satisfy the two-of-three property,3 the cofibrations C denoted “�”, and
the fibrations F denoted “�” — so that (C,F ∩W ) and (C ∩W ,F ) each define
weak factorization systems on M.

Remark 2.3.5 (on self-duality). Definitions 2.3.3 and 2.3.4 are self-dual: if (L,R)
defines a weak factorization system on M then (R,L) defines a weak factorization
system on Mop. Thus the statements we prove about the left classes C of cofibrations
and C∩W of trivial cofibrations “ ∼−−→� ” will have dual statements involving the right
classes F of fibrations and F ∩W of trivial fibrations “ ∼−−→→ ”.

Axiom 3 of Definition 2.3.3 was missing from Quillen’s original definition of a model
category; he referred to those model categories that have the retract closure property
as “closed model categories.” The importance of this closure property is that it implies
that the left class of a weak factorization system is comprised of all maps that have
the left lifting property with respect to the right class and dually, that the right class is
comprised of all of those maps that have the right lifting property with respect to the
left class. These results follow as a direct corollary of the famous “retract argument”:

Lemma 2.3.6 (retract argument). Suppose f = r ◦ ` and f has the left lifting property
with respect to its right factor r . Then f is a retract of its left factor `.

Proof. The solution to the lifting problem displayed on the left

• • • • •

• • • • •
f

`

r f ` f
t

t r

defines the retract diagram on the right.

3 The standard definition of a model category also requires the weak equivalences to be closed under
retracts, but this is a consequence of the axioms given here [142, 7.8].
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Corollary 2.3.7. Either class of a weak factorization system determines the other: the left
class consists of those morphisms that have the left lifting property with respect to the right
class, and the right class consists of those morphisms that have the right lifting property
with respect to the left class.

Proof. Any map with the left lifting property with respect to the right class of a weak
factorization system lifts against its right factor of the factorization guaranteed by
axiom 1 of Definition 2.3.3 and so belongs to the left class by axiom 3.

It follows that the trivial cofibrations can be defined without reference to either the
cofibrations or weak equivalences as those maps that have the left lifting property with
respect to the fibrations, and dually the trivial fibrations are precisely those maps that
have the right lifting property with respect to the cofibrations.

Exercise 2.3.8 . Verify that a model structure on M, if it exists, is uniquely determined
by any of the following data:

(i) The cofibrations and weak equivalences.
(ii) The fibrations and weak equivalences.
(iii) The cofibrations and fibrations.

By a more delicate observation of Joyal [141, E.1.10] using terminology to be introduced
in Definition 2.3.14, a model structure is also uniquely determined by

(iv) The cofibrations and fibrant objects.
(v) The fibrations and cofibrant objects.

As a further consequence of the characterizations of the cofibrations, trivial cofibra-
tions, fibrations, and trivial fibrations by lifting properties, each class automatically
enjoys certain closure properties.

Lemma 2.3.9. Let L be any class of maps characterized by a left lifting property with
respect to a fixed class of maps R. Then L contains the isomorphisms and is closed under
coproduct, pushout, retract, and (transfinite) composition.

Proof. We prove the cases of pushout and transfinite composition to clarify the
meaning of these terms, the other arguments being similar. Let k be a pushout of a
morphism ` ∈ L as in the left square below, and consider a lifting problem against a
morphism r ∈ R as presented by the right square:

• • •

• • •
L3`

a

p
k

u

r∈R

b

s

b

t

Then there exists a lift s in the composite rectangle and this lift and u together define
a cone under the pushout diagram, inducing the desired lift t.

Now let ¸ denote any ordinal category. The transfinite composite of a diagram
¸→M is the leg `α of the colimit cone from the initial object in this diagram to its
colimit. To see that this morphism lies in L under the hypothesis that the generating
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morphisms `i in the diagram do, it suffices to construct the solution to any lifting
problem against a map r ∈ R.

• • • • •

• •

`0

`α

`1 `2 · · ·

r∈R

By the universal property of the colimit object, this dashed morphism exists once
the commutative cone of dotted lifts do, and these may be constructed sequentially
starting by lifting `0 against r .

Exercise 2.3.10 . Verify that the class of morphisms L characterized by the left lifting
property against a fixed class of morphisms R is closed under coproducts, closed
under retracts, and contains the isomorphisms.

Definition 2.3.11. Let J be any class of maps. A J -cell complex is a map built as
a transfinite composite of pushouts of coproducts of maps in J , which may then be
referred to in this context as the basic cells.

• • • •

• • • • •

• •

∐
j∈J

p

∐
j∈J

p

∈J -cell∐
j∈J

x

Lemma 2.3.9 implies that the left class of a weak factorization is closed under the
formation of cell complexes.

Exercise 2.3.12 . Explore the reason why the class of morphisms L characterized by
the left lifting property against a fixed class of morphisms R may fail to be closed
under coequalizers, formed in the arrow category.4

2.3.2 On functoriality of factorizations

The weak factorization systems that arise in practice, such as those that define
the components of a model category, tend to admit functorial factorizations in the
following sense.

Definition 2.3.13. A functorial factorization on a category M is given by a functor
M2→M3 from the category of arrows in M to the category of composable pairs of
arrows in M that defines a section to the composition functor ◦ : M3 → M2. The

4 Note, however, that if the maps in L are equipped with specified solutions to every lifting problem posed
by R and if the squares in the coequalizer diagram commute with these specified lifts, then the
coequalizer inherits canonically defined solutions to every lifting problem posed by R and is
consequently in the class L.
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action of this functor on objects in M2 (which are arrows, displayed vertically) and
morphisms in M2 (which are commutative squares) is displayed below:

X Z

Y W

f

u

g

v

7→

X Z

Ef Eg

Y W

f

u

Lf Lg

g
E(u,v)

Rf Rg

v

This data is equivalently presented by a pair of endofunctors L,R : M2 ⇒ M2 sat-
isfying compatibility conditions relative to the domain and codomain projections
dom,cod: M2⇒M, namely that

domL = dom, codR = cod, and E := codL = domR

as functors M2→M.

The functoriality of Definition 2.3.13 is with respect to (horizontal) composition of
squares and is encapsulated most clearly by the functor E which carries a square (u,v)
to the morphism E(u,v) between the objects through which f and g factor. Even
without assuming the existence of functorial factorizations, in any category with a
weak factorization system (L,R), commutative squares may be factored into a square
between morphisms in L on top of a square between morphisms in R

X Z

Y W

f

u

g

v

7→

X Z

E F

Y W

f

u

`∈L L3`′

ge

r∈R R3r ′

v

with the dotted horizontal morphism defined by lifting ` against r ′ . These factor-
izations will not be strictly functorial because the solutions to the lifting problems
postulated by axiom 2 of 2.3.3 are not unique. However, for either of the weak fac-
torizations systems in a model category, any two solutions to a lifting problem are
homotopic in a sense defined by Quillen, appearing below as Definition 2.3.19. As
homotopic maps are identified in the homotopy category, this means that any model
category has functorial factorizations up to homotopy, which suffices for most pur-
poses.5 Despite the moral sufficiency of the standard axioms, for economy of language
we henceforth tacitly assume that our model categories have functorial factorizations
and take comfort in the fact that it seems to be exceedingly difficult to find model
categories that fail to satisfy this condition.

5 While the derived functors constructed in Corollary 2.4.10 make use of explicit point-set level functorial
factorizations, their total derived functors in the sense of Definition 2.4.4 are well-defined without strict
functoriality.
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2.3.3 The homotopy relation on arrows

Our aim now is to define Quillen’s homotopy relation, which will be used to construct
a relatively concrete model hMcf for the homotopy category of the model category M,
which is equivalent to the Gabriel–Zisman category of fractions M[W−1] but provides
better control over the sets of morphisms between each pair of objects. Quillen’s key
observation appears as Proposition 2.3.23, which shows that the weak equivalences
between objects of M that are both fibrant and cofibrant, in a sense to be defined
momentarily, are more structured, always admitting a homotopy inverse for a suitable
notion of homotopy. The homotopy relation is respected by pre- and post-composition,
which means that hMcf may be defined simply to be the category of fibrant-cofibrant
objects and homotopy classes of maps. In this section, we give all of these definitions.
In §2.3.4, we construct the category hMcf sketched above and prove its equivalence
with the category of fractions M[W−1].

Definition 2.3.14. An object X in a model category M is fibrant when the unique
map X→ ∗ to the terminal object is a fibration and cofibrant when the unique map
∅→ X from the initial object is a cofibration.

Objects that are not fibrant or cofibrant can always be replaced by weakly equivalent
objects that are, by factoring the maps to the terminal object or from the initial object,
as appropriate.

Exercise 2.3.15 (fibrant and cofibrant replacement). Assuming the functorial factor-
izations of §2.3.2, define a fibrant replacement functor R : M→M and a cofibrant
replacement functor Q : M→M equipped with natural weak equivalences

η : idM R∼ and ε : Q idM.
∼

Applying both constructions, one obtains a fibrant-cofibrant replacement of any
object X as either RQX or QRX. In the diagram

∅

QX QRX

X

RQX RX

∗

Qη
∼

η o
ε
∼

εo
η∼

Rε
∼

the middle square commutes because its two subdivided triangles do, by naturality
of the maps η and ε of Exercise 2.3.15. This induces a direct comparison weak
equivalence RQX

∼−→QRX by lifting ηQX against εRX .
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Exercise 2.3.16 . Show that any map in a model category may be replaced, up to a
zigzag of weak equivalences, by one between fibrant-cofibrant objects that moreover
may be taken to be either a fibration or a cofibration, as desired.6

The reason for our particular interest in the subcategory of fibrant-cofibrant objects
in a model category is that between such objects the weak equivalences become more
structured, coinciding with a class of “homotopy equivalences” in a sense we now
define.

Definition 2.3.17. Let A be an object in a model category. A cylinder object for A
is given by a factorization of the fold map

AqA A

cyl(A)
(i0,i1)

(1A,1A)

∼
q

into a cofibration followed by a trivial fibration. Dually, a path object for A is given
by any factorization of the diagonal map

path(A)

A A×A

(p0,p1)j
∼

(1A,1A)

into a trivial cofibration followed by a fibration.

Remark 2.3.18 . For many purposes it suffices to drop the hypotheses that the maps
in the cylinder and path object factorizations are cofibrations and fibrations, and
retain only the hypothesis that the second and first factors, respectively, are weak
equivalences. The standard terminology for the cylinder and path objects defined
here adds the accolade “very good.” But since “very good” cylinder and path objects
always exist, we eschew the usual convention and adopt these as the default notions.

Definition 2.3.19. Consider a parallel pair of maps f ,g : A⇒ B in a model category.
A left homotopy H from f to g is given by a map from a cylinder object of A to B
extending (f ,g) : AqA→ B:

A cyl(A) A

B

i0

f
H

i1

g

in which case one writes f ∼` g and says that f and g are left homotopic.
A right homotopy K from f to g is given by a map from A to a path object for B

6 Exercise 2.3.16 reveals that the notions of “cofibration” and “fibration” are not homotopically
meaningful: up to isomorphism in M[W−1], any map in a model category can be taken to be either a
fibration or a cofibration.
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extending (f ,g) : A→ B×B:

A

B path(B) B

f g
K

p0 p1

in which case one writes f ∼r g and says that f and g are right homotopic.

Exercise 2.3.20 . Prove that the endpoint inclusions i0, i1 : A⇒ cyl(A) into a cylinder
object are weak equivalences always and also cofibrations if A is cofibrant. Conclude
that if f ∼` g then f is a weak equivalence if and only if g is. Dually, the projections
p0,p1 : path(B)⇒ B are weak equivalences always and also fibrations if B is fibrant,
and if f ∼r g then f is a weak equivalence if and only if g is.

A much more fine-grained analysis of the left and right homotopy relations is
presented in the classic expository paper “Homotopy theories and model categories”
of Dwyer and Spalinski [91]. Here we focus on the essential facts for understanding
the homotopy relation on maps between cofibrant and fibrant objects.

Proposition 2.3.21. If A is cofibrant and B is fibrant then left and right homotopy define
equivalence relations on the set Hom(A,B) of arrows and moreover these relations coincide.

In light of Proposition 2.3.21, we say that maps f ,g : A ⇒ B from a cofibrant
object to a fibrant one are homotopic and write f ∼ g to mean that they are left or
equivalently right homotopic.

Proof. The left homotopy relation is reflexive and symmetric without any cofibrancy
or fibrancy hypotheses on the domains or codomains. To prove transitivity, consider
a pair of left homotopies H : cyl(A)→ B from f to g and K : cyl′(A)→ B from g to
h, possibly constructed using different cylinder objects for A. By cofibrancy of A and
Exercise 2.3.20, a new cylinder object cyl′′(A) for A may be constructed by factoring
the map from the following pushout C to A:

A A A

cyl(A) cyl′(A)

C

cyl′′(A)

A

i0∼ i1
∼

y

i0∼ i1
∼

∼

∼

∼

∼

o

o

The homotopies H and K define a cone under the pushout diagram inducing a
map H ∪A K : C→ B. By fibrancy of B, this map may be extended along the trivial
cofibration C ∼−−→� cyl′′(A) to define a homotopy cyl′′(A)→ B from f to h. This proves
that left homotopy is an equivalence relation.
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Finally we argue that if H : cyl(A)→ B defines a left homotopy from f to g then
f ∼r g . The desired right homotopy from f to g is constructed as the restriction of
the displayed lift

A B path(B)

A cyl(A) B×B

i0 o

f ∼

(p0,p1)

i1

∼
(f q,H)

along the endpoint inclusion i1. The remaining assertions are dual to ones already
proven.

Moreover, the homotopy relation is respected by pre- and post-composition:

Proposition 2.3.22. Suppose f ,g : A⇒ B are left or right homotopic maps and consider
any maps h : A′ → A and k : B→ B′ . Then kfh,kgh : A′ ⇒ B′ are again left or right
homotopic, respectively.

Proof. By lifting the endpoint inclusion (i0, i1) : A′ qA′� cyl(A′) against the pro-
jection cyl(A) ∼−−→→ A— or by functoriality of the cylinder construction in the sense
discussed in §2.3.2 — there is a map cyl(h) : cyl(A′)→ cyl(A). Then, for any left homo-
topy H : cyl(A)→ B from f to g , the horizontal composite defines a left homotopy
kf h ∼` kgh:

A′ qA′ AqA

cyl(A′) cyl(A) B B′

A′ A

hth

(f ,g)

cyl(h)

o o
H

k

h

Proposition 2.3.23. Let f : A→ B be a map between objects that are both fibrant and
cofibrant. Then f is a weak equivalence if and only if it has a homotopy inverse.

Proof. For both implications we make use of the fact that any map between fibrant-
cofibrant objects may be factored as a trivial cofibration followed by a fibration through
an object that is again fibrant-cofibrant:

P

A B

p

f

j∼

If f is a weak equivalence then p is a trivial fibration. We argue that any trivial
fibration p between fibrant-cofibrant objects extends to a deformation retraction:
admitting a right inverse that is also a left homotopy inverse. A dual argument proves
that the trivial cofibration j admits a left inverse that is also a right homotopy inverse.
These homotopy equivalences compose in the sense of Proposition 2.3.22 to define a
homotopy inverse for f .
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If p is a trivial fibration, then cofibrancy of B implies that it admits a right inverse i.
The homotopy constructed in the lifting problem

∅ P P q P P

B B cyl(P ) P B

p

(1P ,ip)

poi

∼ p

proves that ip ∼ 1P as desired.
For the converse we suppose that f admits a homotopy inverse g . To prove that f is

a weak equivalence it suffices to prove that p is a weak equivalence. A right inverse i
to p may be found by lifting the endpoint of the homotopy H : f g ∼ 1B :

B A P

B cyl(B) B

g

i0o

j

p

i1
∼

H

and then restricting this lift along i1. By construction this section i is homotopic to jg .
The argument of the previous paragraph applies to the trivial cofibration j to prove
that it has a left inverse and right homotopy inverse q. Composing the homotopies
1P ∼ jq, i ∼ jg , and gf ∼ 1A we see that

ip ∼ ipjq = ifq ∼ jgfq ∼ jq ∼ 1P

By Exercise 2.3.20 we conclude that ip is a weak equivalence. But by construction p
is a retract of ip :

P P P

B P B

p ipo p

i p

so it follows from the retract stability of the weak equivalences [142, 7.8] that p is a
weak equivalence, as desired.

2.3.4 The homotopy category of a model category

In this section, we prove that the category of fractions M[W−1], defined by formally
inverting the weak equivalences, is equivalent to the category hMcf of fibrant-cofibrant
objects and homotopy classes of maps. Our proof appeals to the universal property
of Proposition 2.2.2, which characterizes those categories that are isomorphic to the
category of fractions. For categories to be isomorphic, they must have the same object
sets, so we define a larger version of the homotopy category HoM, which has the same
objects as M[W−1] and is equivalent to its full subcategory hMcf.

Definition 2.3.24. For any model category M, there is a category hMcf

– whose objects are the fibrant-cofibrant objects in M and
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– in which the set of morphisms from A to B is taken to be the set of homotopy
classes of maps

[A,B] := Hom(A,B)/∼.

Proposition 2.3.22 ensures that composition in hMcf is well-defined.

Definition 2.3.25. The homotopy category HoM of a model category M is defined
by applying the (bijective-on-objects, fully faithful) factorization to the composite
functor

M Mcf hMcf

HoM

RQ

bij obj
γ

π

f+f
ν (2.1)

That is, the objects in HoM are the objects in M and

HoM(A,B) := M(RQA,RQB)/∼.

Exercise 2.3.26 (HoM ' hMcf).

(i) Verify that the category hMcf defined by Definition 2.3.24 is equivalent to the
full subcategory of HoM spanned by the fibrant-cofibrant objects of M.

(ii) Show that every object in M is isomorphic in HoM to a fibrant-cofibrant object.
(iii) Conclude that the categories HoM and hMcf are equivalent.

Theorem 2.3.27 (Quillen). For any model category M, the category of fractions M[W−1]
obtained by formally inverting the weak equivalences is isomorphic to the homotopy category
HoM.

Proof. We will prove that γ : M→ HoM satisfies the universal property of Proposition
2.2.2 that characterizes the category of fractions M[W−1]. First we must verify that
γ inverts the weak equivalences. The functor RQ carries weak equivalences in M to
weak equivalences between fibrant-cofibrant objects. Proposition 2.3.23 then implies
that these admit homotopy inverses and thus become isomorphisms in hMcf. This
proves that the composite horizontal functor of (2.1) inverts the weak equivalences. By
fully-faithfulness of ν, the functor γ : M→ HoM also inverts the weak equivalences.

It remains to verify that any functor F : M→ E that inverts the weak equivalences
factors uniquely through γ :

M E

HoM

F

γ F̄

Since γ is identity-on-objects, we must define F̄ to agree with F on objects. Recall that
the fibrant and cofibrant replacement functors come with natural weak equivalences
εX : QX ∼−→ X and ηX : X ∼−→ RX. Because F inverts weak equivalences, these natural
transformations define a natural isomorphism α : F⇒ FRQ of functors from M to E.
By the definition HoM(X,Y ) := M(RQX,RQY )/∼, the morphisms from X to Y in
HoM correspond to homotopy classes of morphisms from RQX to RQY in M. Choose
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any representative h : RQX→ RQY for the corresponding homotopy class of maps
and define its image to be the composite

F̄h : FX FRQX FRQY FY .
αX Fh α−1

Y

This is well-defined because if h ∼ h′ then there exists a left homotopy such that Hi0 =
h and Hi1 = h′ , where i0 and i1 are both sections to a common weak equivalence
(the projection from the cylinder). Since F inverts weak equivalences, Fi0 and Fi1 are
both right inverses to a common isomorphism, so it follows that Fi0 = Fi1 and hence
Fh = Fh′ .

Functoriality of F̄ follows immediately from naturality of α and functoriality of
FRQ. To see that F̄γ = F, recall that for any f : X → Y in M, γ(f ) is defined to
be the map in HoM(X,Y ) represented by the homotopy class RQf : RQX→ RQY .
By naturality of α, F̄γ(f ) = Ff , so that the triangle of functors commutes.

Finally, to verify that F̄ is unique observe that from the following commutative
diagram in M any map h ∈ HoM(X,Y ), the leftmost vertical arrow, is isomorphic in
HoM to a map in the image of γ , the vertical arrow on the right:

RQX QRQX RQRQX

RQY QRQY RQRQY

h

ηQRQX

Qh

εRQX

RQh=γ(h)
ηQRQYεRQY

Since the image of F̄ on the right vertical morphism is uniquely determined and the
top and bottom morphisms are isomorphisms, the image of F̄ on the left vertical
morphism is also uniquely determined.

Remark 2.3.28 . The universal property of hMcf is slightly weaker than the universal
property described in Proposition 2.2.2 for the category of fractions M[W−1]. For
any category E, restriction along γ : M → hMcf defines a fully faithful embedding
Fun(hMcf,E) ↪→ Fun(M,E) and equivalence onto the full subcategory of functors
from M to E that carry weak equivalences to isomorphisms. The difference is that a
given homotopical functor on M may not factor strictly through hMcf but may only
factor up to natural isomorphism. In practice, this presents no serious difficulty.

As a corollary, it is now easy to see that the only maps inverted by the localization
functor are weak equivalences. By Lemma 2.3.2, this proves that the weak equivalences
in a model category have all of the closure properties enumerated at the outset of this
section.

Theorem 2.3.29 ([229, 5.1]). A morphism in a model category M is inverted by the
localization functor

M→M[W−1]

if and only if it is a weak equivalence.

Proof. Cofibrantly and then fibrantly replacing the map it suffices to consider a map
between fibrant-cofibrant objects. By Theorem 2.3.27 we may prove this result for
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Mcf→ hMcf instead. But now this is clear by construction: since morphisms in hMcf
are homotopy classes of maps, the isomorphisms are the homotopy equivalences,
which coincide exactly with the weak equivalences between fibrant-cofibrant objects
by Proposition 2.3.23.

2.3.5 Quillen’s model structure on simplicial sets

We conclude this section with a prototypical example. Quillen’s original model struc-
ture is borne by the category of simplicial sets, presheaves on the category ´ of
finite non-empty ordinals [n] = {0 < 1 < · · · < n} and order-preserving maps. A
simplicial set X : ´op → Set is a graded set {Xn}n≥0 — where elements of Xn are
called “n-simplices” — equipped with dimension-decreasing “face” maps Xn→ Xm
arising from monomorphisms [m]� [n] ∈ ´ and dimension-increasing “degeneracy”
maps Xm→ Xn arising from epimorphisms [n]� [m] ∈ ´. An n-simplex has n+ 1
codimension-one faces, each of which avoids one of its n+ 1 vertices.

There is a geometric realization functor | − | : sSet→ Top that produces a topo-
logical space |X | from a simplicial set X by gluing together topological n-simplices
for each non-degenerate n-simplex along its lower-dimensional faces. The simplicial
set represented by [n] defines the standard n-simplex ∆n. Its boundary ∂∆n is the
union of its codimension-one faces, while a horn Λnk is the further subspace formed
by omitting the face opposite the vertex k ∈ [n].

Theorem 2.3.30 (Quillen). The category sSet admits a model structure whose

– weak equivalences are those maps f : X→ Y that induce a weak homotopy equivalence
f : |X | → |Y | on geometric realizations,

– cofibrations are monomorphisms, and
– fibrations are the Kan fibration, which are characterized by the left lifting property

with respect to the set of all horn inclusions:

Λnk X

∆n Y

o

All objects are cofibrant. The fibrant objects are the Kan complexes, those sim-
plicial sets in which all horns can be filled. The fibrant objects are those simplicial
sets that most closely resemble topological spaces. In particular, two vertices in a Kan
complex lie in the same path component if and only if they are connected by a single
1-simplex, with may be chosen to point in either direction. By Proposition 2.3.23 a
weak equivalence between Kan complexes is a homotopy equivalence where the notion
of homotopy is defined with respect to the interval ∆1 using ∆1 ×X as a cylinder
object or X∆

1
as a path object.

Quillen’s model category of simplicial sets is of interest because, on the one hand, the
category of simplicial sets is very well behaved and, on the other hand, the geometric
realization functor defines an “equivalence of homotopy theories”: in particular, the
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homotopy category of simplicial sets gives another model for the homotopy category of
spaces. To explain this, we turn our focus to derived functors and derived equivalences
between model categories, the subject of §2.4.

2.4 Derived functors between model categories

Quillen’s model category axioms allow us to conjure a homotopy relation between
parallel maps in any model category, whatever the objects of that category might be.
For this reason, model categories are often regarded as “abstract homotopy theories.”
We will now zoom out to consider functors comparing such homotopy theories.

More generally, we might consider functors between homotopical categories equipped
with weak equivalences that at least satisfy the two-of-three property. A great deal
of the subtlety in “category theory up to weak equivalence” has to do with the fact
that functors between homotopical categories need not necessarily preserve weak
equivalences. In the case where a functor fails to preserve weak equivalence the next
best hope is that it admits a universal approximation by a functor that does, where
the approximation is either “from the left” or “from the right.” Such approximations
are referred as left or right derived functors.

The universal properties of left or right derived functors exist at the level of
homotopy categories though the derived functors of greatest utility, and the ones that
are most easily constructed in practice, can be constructed at the “point-set level.”
One of the selling points of Quillen’s theory of model categories is that they highlight
classes of functors — the left or right Quillen functors — whose left or right derived
functors can be constructed in a uniform way making the passage to total derived
functors pseudofunctorial. However, it turns out a full model structure is not necessary
for this construction; morally speaking, all that matters for the specification of derived
functors is the weak equivalences.

In §2.4.1, we give a non-standard and in our view greatly improved presentation of
the theory of derived functors guided by a recent axiomatization of Dwyer–Hirschhorn–
Kan–Smith [92] paired with a result of Maltsiniotis [176]. The key point of difference
is that we give a much stronger definition of what constitutes a derived functor than
the usual one. In §2.4.2 we introduce left and right Quillen functors between model
categories and show that such functors have a left or right derived functor satisfying
this stronger property. Then, in §2.4.3, we see that the abstract theory of this stronger
class of derived functors is considerably better than the theory of the weaker ones. A
highlight is an efficient expression of the properties of composite or adjoint derived
functors proven by Shulman [277] and reproduced as Theorem 2.4.15.

In §2.4.4, we extend the theory of derived functors to allow functors of two variables,
with the aim of proving that the homotopy category of spaces is cartesian closed,
inheriting an internal hom defined as the derived functor of the point-set level mapping
spaces. Implicit in our approach to the proof of this statement is a result promised at
the end of §2.3.5. In §2.4.5, we define a precise notion of equivalence between abstract
homotopy theories encoded by model categories, which specializes to establish an
equivalence between the homotopy theory of spaces and the homotopy theory of
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simplicial sets. Finally, in §2.4.6 we briefly sketch the connection between homotopical
algebra and homological algebra by considering suitable model structures appropriate
for a theory of derived functors between chain complexes.

2.4.1 Derived functors and equivalence of homotopy theories

As a warning to the reader, this definition of a derived functor is stronger than the
usual one in two ways:

– We explicitly require our derived functors to be defined “at the point-set level”
rather than simply as functors between homotopy categories.

– We require the universal property of the corresponding “total derived functors”
between homotopy categories to define absolute Kan extensions.

Before defining our derived functors we should explain the general meaning of
absolute Kan extensions.

Definition 2.4.1. A left Kan extension of F : C→ E along K : C→ D is a functor
LanKF : D→ E together with a natural transformation η : F⇒ LanKF ·K such that
for any other such pair (G : D→ E, γ : F⇒ GK), γ factors uniquely through η:7

C E C E C E

D D D

F

K
⇓η

F

K
⇓γ =

F

K

⇓η
LanKF G

LanKF

∃!⇓
G

Dually, a right Kan extension of F : C→ E along K : C→ D is a functor RanKF :
D→ E together with a natural transformation ε : RanKF ·K ⇒ F such that for any
(G : D→ E,δ : GK ⇒ F), δ factors uniquely through ε:

C E C E C E

D D D

F

K
⇑ε

F

K
⇑δ =

F

K

⇑ε
RanKF G

RanKF

∃!⇑
G

A left or right Kan extension is absolute if for any functor H : E→ F, the whiskered
composite (HLanKF : D → E, Hη) or (HRanKF : D → E, Hε) defines the left or
right Kan extension of HF along K .

A functor between homotopical categories is a homotopical functor if it preserves
the classes of weak equivalences, or carries the weak equivalences in the domain to
isomorphisms in the codomain in the case where no class of weak equivalences is
specified. Derived functors can be understood as universal homotopical approximations
to a given functor in a sense we now define.

Definition 2.4.2 (derived functors). Let M and K be homotopical categories with
weak equivalences satisfying the two-of-three property and with localization functors
γ : M→ HoM and δ : K→ HoK.

7 Writing α for the natural transformation LanKF⇒ G, the right-hand pasting diagrams express the
equality γ = αK · η, i.e., that γ factors as F LanKF ·K GK.

η αK
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– A left derived functor of F : M → K is a homotopical functor LF : M → K

equipped with a natural transformation λ : LF ⇒ F such that δLF and δλ :
δLF⇒ δF define an absolute right Kan extension of δF along γ :

M K

F

LF

⇑λ !
M K

HoM HoK

⇑δλ

F

γ δ

δLF

– A right derived functor of F : M → K is a homotopical functor RF : M → K

equipped with a natural transformation ρ : F ⇒ RF such that δRF and δρ :
δF⇒ δRF define an absolute left Kan extension of δF along γ :

M K

F

RF

⇓ρ !
M K

HoM HoK

⇓δρ

F

γ δ

δRF

Remark 2.4.3 . Absolute Kan extensions are in particular “pointwise” Kan extensions,
these being the left or right Kan extensions that are preserved by representable func-
tors. The pointwise left or right Kan extensions are those definable as colimits or
limits in the target category [238, §6.3], so it is somewhat surprising that these con-
ditions are appropriate to require for functors valued in homotopy categories, which
have few limits and colimits.8

As a consequence of Proposition 2.2.2, the homotopical functors

δLF,δRF : M⇒ HoK

factor uniquely through γ and so may be equally regarded as functors

δLF,δRF : HoM⇒ HoK,

as appearing in the displayed diagrams of Definition 2.4.2.

Definition 2.4.4 (total derived functors). The total left or right derived functors
of F are the functors

δLF,δRF : HoM⇒ HoK,

defined as absolute Kan extensions in Definition 2.4.2 and henceforth denoted by

LF,RF : HoM⇒ HoK.

There is a common setting in which derived functors exist and admit a simple
construction. Such categories have a subcategory of “good” objects on which the
functor of interest becomes homotopical and a functorial reflection into this full
subcategory. The details are encoded in the following axiomatization introduced
in [92] and exposed in [276], though we diverge from their terminology to more
thoroughly ground our intuition in the model categorical case.

8 With the exception of products and coproducts, the so-called “homotopy limits” and “homotopy
colimits” introduced in §2.5 do not define limits and colimits in the homotopy category.
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Definition 2.4.5. A left deformation on a homotopical category M consists of an
endofunctor Q together with a natural weak equivalence q : Q =⇒∼ 1.

The functor Q is necessarily homotopical. Let Mc be any full subcategory of
M containing the image of Q. The inclusion Mc → M and the left deformation
Q : M → Mc induce an equivalence between HoM and HoMc. As our notation
suggests, any model category M admits a left deformation defined by cofibrant
replacement. Accordingly, we refer to Mc as the subcategory of cofibrant objects,
trusting the reader to understand that when we have not specified any model structures,
Quillen’s technical definition is not what we require.

Definition 2.4.6. A functor F : M → K between homotopical categories is left
deformable if there exists a left deformation on M such that F is homotopical on an
associated subcategory of cofibrant objects.

Our first main result proves that left deformations can be used to construct left
derived functors. The basic framework of left deformations was set up in [92] while
the fact that such derived functors are absolute Kan extensions was observed in [176].

Theorem 2.4.7 ([92, 41.2-5], [176]). If F : M→ K has a left deformation q : Q =⇒∼ 1,
then LF = FQ is a left derived functor of F.

Proof. Write δ : K→ HoK for the localization. To show that (FQ,Fq) is a point-set
left derived functor, we must show that the functor δFQ and natural transforma-
tion δFq : δFQ ⇒ δF define a right Kan extension. The verification makes use of
Proposition 2.2.2, which identifies the functor category Fun(HoM,HoK) with the
full subcategory of Fun(M,HoK) spanned by the homotopical functors. Suppose
G : M→ HoK is homotopical and consider α : G⇒ δF. Because G is homotopical
and q : Q⇒ 1M is a natural weak equivalence, Gq : GQ⇒ G is a natural isomorphism.
Using naturality of α, it follows that α factors through δFq as

G GQ δFQ δF .
(Gq)−1 αQ δFq

To prove uniqueness, suppose α factors as

G δFQ δF .
β δFq

Naturality of β provides a commutative square of natural transformations:

GQ δFQ2

G δFQ

βQ

Gq δFQq

β

Because q is a natural weak equivalence and the functors G and δFQ are homotopical,
the vertical arrows are natural isomorphisms, so β is determined by βQ. This restricted
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natural transformation is uniquely determined: qQ is a natural weak equivalence
between objects in the image of Q. Since F is homotopical on this subcategory, this
means that FqQ is a natural weak equivalence and thus δFqQ is an isomorphism, so
βQ must equal the composite of the inverse of this natural isomorphism with αQ.

Finally, to show that this right Kan extension is absolute, our task is to show that
for any functor H : HoK → E, the pair (HδFQ,HδFq) again defines a right Kan
extension. Note that (Q,q) also defines a left deformation for HδF, simply because
the functor H : HoK → E preserves isomorphisms. The argument just given now
demonstrates that (HδFQ,HδFq) is a right Kan extension, as claimed.

2.4.2 Quillen functors

We’ll now introduce important classes of functors between model categories that will
admit derived functors.

Definition 2.4.8. A functor between model categories is

– left Quillen if it preserves cofibrations, trivial cofibrations, and cofibrant objects,
and

– right Quillen if it preserves fibrations, trivial fibrations, and fibrant objects.

Most left Quillen functors are “cocontinuous,” preserving all colimits, while most
right Quillen functors are “continuous,” preserving all limits; when this is the case
there is no need to separately assume that cofibrant or fibrant objects are preserved.
Importantly, cofibrant replacement defines a left deformation for any left Quillen
functor, while fibrant replacement defines a right deformation for any right Quillen
functor, as we now demonstrate:

Lemma 2.4.9 (Ken Brown’s lemma).

(i) Any map between fibrant objects in a model category can be factored as a right inverse
to a trivial fibration followed by a fibration:

P

A B

p

q
∼

f

j∼ (2.2)

(ii) Let F : M→ K be a functor from a model category to a category with a class of weak
equivalences satisfying the two-of-three property. If F carries trivial fibrations in M

to weak equivalences in K, then F carries all weak equivalences between fibrant
objects in M to weak equivalences in K.

Proof. For (i), given any map f : A→ B factor its graph (1A, f ) : A→ A × B as a
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trivial cofibration j followed by a fibration r :

B

A P A×B 1

A

f

j
∼

p

q
∼

r

πB

πA

y

Since A and B are fibrant, the dual of Lemma 2.3.9 implies that the product projections
are fibrations, and thus the composite maps p and q are fibrations. By the two-of-three
property, q is also a weak equivalence.

To prove (ii) assume that f : A→ B is a weak equivalence in M and construct the
factorization (2.2). It follows from the two-of-three property that p is also a trivial
fibration, so by hypothesis both Fp and Fq are weak equivalences in K. Since Fj is
right inverse to Fq, it must also be a weak equivalence, and thus the closure of weak
equivalences under composition implies that Ff is a weak equivalence as desired.

Specializing Theorem 2.4.7 we then have:

Corollary 2.4.10. The left derived functor of any left Quillen functor F exists and is
given by LF := FQ, while the right derived functor of any right Quillen functor G exists
and is given by RG := GR, where Q and R denote any cofibrant and fibrant replacement
functors, respectively.

2.4.3 Derived composites and derived adjunctions

Left and right Quillen functors frequently occur in adjoint pairs, in which case the left
adjoint is left Quillen if and only if the right adjoint is right Quillen:

Definition 2.4.11. Consider an adjunction between a pair of model categories.

M N

F

⊥
G

(2.3)

Then the following are equivalent, defining a Quillen adjunction.

(i) The left adjoint F is left Quillen.

(ii) The right adjoint G is right Quillen.

(iii) The left adjoint preserves cofibrations and the right adjoint preserves fibrations.

(iv) The left adjoint preserves trivial cofibrations and the right adjoint preserves
trivial fibrations.

Exercise 2.4.12 . Justify the equivalence of the properties in the definition by proving:
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(i) In the presence of any adjunction (2.3) the lifting problem displayed below left in
N admits a solution if and only if the transposed lifting problem displayed below
right admits a solution in M.

FA X A GX

FB Y B GY

F`

f ]

r

f [

` Gr

g]

k] k[

g[

(ii) Conclude that if M has a weak factorization system (L,R) and N has a weak
factorization system (L′ ,R′) then F preserves the left classes if and only if G
preserves the right classes.

Importantly, the total left and right derived functors of a Quillen pair form an
adjunction between the appropriate homotopy categories.

Theorem 2.4.13 (Quillen [229, I.3]). If

M N

F

⊥
G

is a Quillen adjunction, then the total derived functors form an adjunction

HoM HoN

LF

⊥

RG

A particularly elegant proof of Theorem 2.4.13 is due to Maltsiniotis. Once the
strategy is known, the details are elementary enough to be left as an exercise:

Exercise 2.4.14 ([176]). Use the fact that the total derived functors of a Quillen pair
F a G define absolute Kan extensions to prove that LF aRG. Conclude that Theorem
2.4.13 applies more generally to any pair of adjoint functors that are deformable in
the sense of Definition 2.4.6 [92, 44.2].

A double categorical theorem of Shulman [277] consolidates into a single statement
the adjointness of the total derived functors of a Quillen adjunction, the pseudo-
functoriality of the construction of total derived functors of Quillen functors, and one
further result about functors that are simultaneously left and right Quillen. A double
category is a category internal to Cat: it has a set of objects, a category of horizontal
morphisms, a category of vertical morphisms, and a set of squares that are composable
in both vertical and horizontal directions, defining the arrows in a pair of categories
with the horizontal and vertical morphisms as objects, respectively [147].

For instance, Cat is the double category of categories, functors, functors, and
natural transformations inhabiting squares and pointing southwest. There is another
double category Model whose objects are model categories, whose vertical morphisms
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are left Quillen functors, whose horizontal morphisms are right Quillen functors, and
whose squares are natural transformations pointing southwest. The following theorem
and a generalization, with deformable functors in place of Quillen functors [277, 8.10],
is due to Shulman.

Theorem 2.4.15 ([277, 7.6]). The map that sends a model category to its homotopy category
and a left or right Quillen functor to its total left or right derived functor defines a double
pseudofunctor Ho : Model→Cat.

The essential content of the pseudofunctoriality statement is that the composite
of the left derived functors of a pair of left Quillen functors is coherently naturally
weakly equivalent to the left derived functor of their composite. Explicitly, given a
composable pair of left Quillen functors M L KF G , the map

LG ◦LF := GQ ◦FQ
GεFQ−−−−−→ GFQ =: L(GF)

defines a comparison natural transformation. Since Q : M→ Mc lands in the sub-
category of cofibrant objects and F preserves cofibrant objects, εFQ : QFQ⇒ FQ
is a weak equivalence between cofibrant objects. Lemma 2.4.9(ii) then implies that
GεFQ : GQFQ→ GFQ defines a natural weak equivalence LG ◦LF→ LGF. Given
a composable triple of left Quillen functors, there is a commutative square of natural
weak equivalences LH ◦LG ◦LF→ L(H ◦G ◦F). If we compose with the Gabriel–
Zisman localizations to pass to homotopy categories and total left derived functors,
these coherent natural weak equivalences become coherent natural isomorphisms,
defining the claimed pseudofunctor.

Quillen adjunctions are encoded in the double category Model as “conjoint”
relationships between vertical and horizontal 1-cells; in this way Theorem 2.4.15
subsumes Theorem 2.4.13. Similarly, functors that are simultaneously left and right
Quillen are presented as vertical and horizontal “companion” pairs. The double
pseudofunctoriality of Theorem 2.4.15 contains a further result: if a functor is both
left and right Quillen, then its total left and right derived functors are isomorphic.

2.4.4 Monoidal and enriched model categories

If M has a model structure and a monoidal structure it is natural to ask that these
be compatible in some way, but what sort of compatibility should be required? In the
most common examples, the monoidal product is closed — that is, the functors A⊗−
and −⊗A admit right adjoints9 and consequently preserve colimits in each variable
separately. This situation is summarized and generalized by the notion of a two-
variable adjunction, which we introduce using notation that will suggest the most
common examples.

Definition 2.4.16. A triple of bifunctors

K× L ⊗−→M , Kop ×M
{ ,}
−−→ L , Lop ×M

Map
−−−−→ K

9 Very frequently a monoidal structure is symmetric, in which case these functors are naturally
isomorphic, and a single right adjoint suffices.
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equipped with a natural isomorphism

M(K ⊗L,M) � L(L, {K,M}) � K(K,Map(L,M))

defines a two-variable adjunction.

Example 2.4.17. A symmetric monoidal category is closed just when its monoidal
product −⊗− : V×V→ V defines the left adjoint of a two-variable adjunction

V(A⊗B,C) � V(B,Map(A,C)),V(A,Map(B,C)),

the right adjoint Map : Vop ×V→ V defining an internal hom.

Example 2.4.18. A category M that is enriched over a monoidal category is tensored
and cotensored just when the enriched hom functor Map : Mop ×M→ V is one of
the right adjoints of a two-variable adjunction

M(V ⊗M,N ) �M(M, {V ,N }) � V(V ,Map(M,N )),

the other two adjoints defining the tensor V ⊗M and cotensor {V ,N } of an object
V ∈ V with objects M,N ∈M.10

A Quillen two-variable adjunction is a two-variable adjunction in which the left
adjoint is a left Quillen bifunctor while the right adjoints are both right Quillen bifunc-
tors, any one of these conditions implying the other two. To state these definitions,
we must introduce the following construction. The “pushout-product” of a bifunctor
−⊗− : K× L→M defines a bifunctor − ⊗̂ − : K2 × L2→M2 that we refer to as the
“Leibniz tensor” (when the bifunctor ⊗ is called a “tensor”). The “Leibniz cotensor”
and “Leibniz hom”�{−,−} : (K2)op ×M2→ L2 and M̂ap(−,−) : (L2)op ×M2→ K2

are defined dually, using pullbacks in L and K respectively.

Definition 2.4.19 (the Leibniz construction). Given a bifunctor − ⊗ − : K × L→ M

valued in a category with pushouts, the Leibniz tensor of a map k : I → J in K and
a map ` : A→ B in L is the map k ⊗̂ ` in M induced by the pushout diagram on the
left:

I ⊗A I ⊗B {J,X}

J ⊗A • • {I,X}

J ⊗B {J,Y } {I,Y }

I⊗`

k⊗A
p k⊗B

{k,X}

{J,m}

�{k,m}

J⊗`

k⊗̂`
y

{I,m}

{k,Y }

10 As stated, this definition is a little too weak: one needs to ask in addition that (i) the tensors are
associative relative to the monoidal product in V, (ii) dually that the cotensors are associative relative to
the monoidal product in V, and (iii) that the two-variable adjunction is enriched in V. Any of these three
conditions implies the other two.
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In the case of a bifunctor {−,−} : Kop ×M→ L contravariant in one of its variables
valued in a category with pullbacks, the Leibniz cotensor of a map k : I → J in
K and a map m : X → Y in M is the map �{k,m} induced by the pullback diagram
above right.

Proposition 2.4.20. The Leibniz construction preserves:

(i) structural isomorphisms: a natural isomorphism

X ∗ (Y ⊗Z) � (X ×Y )�Z

between suitably composable bifunctors extends to a natural isomorphism

f ∗̂ (g ⊗̂ h) � (f ×̂ g) �̂ h

between the corresponding Leibniz products;
(ii) adjointness: if (⊗, { , },Map) define a two-variable adjunction, then the Leibniz

bifunctors (⊗̂, {̂ , },M̂ap) define a two-variable adjunction between the corresponding
arrow categories;

(iii) colimits in the arrow category: if ⊗ : K× L→M is cocontinuous in either variable,
then so is ⊗̂ : K2 × L2→M2;

(iv) pushouts: if ⊗ : K× L→M is cocontinuous in its second variable, and if g ′ is a
pushout of g , then f ⊗̂ g ′ is a pushout of f ⊗̂ g ;

(v) composition, in a sense: the Leibniz tensor f ⊗̂ (h · g) factors as a composite of a
pushout of f ⊗̂ g followed by f ⊗̂ h:

I ⊗A I ⊗B I ⊗C

J ⊗A • •

J ⊗B •

J ⊗C

f ⊗A

I⊗g

p

I⊗h

p
f ⊗C

J⊗g
f ⊗̂g

p
f ⊗̂(h·g)

J⊗h
f ⊗̂h

(vi) cell complex structures: if f and g may be presented as cell complexes with cells fα
and gβ , respectively, and if ⊗ is cocontinuous in both variables, then f ⊗̂ g may be
presented as a cell complex with cells fα ⊗̂ gβ .

Proofs of these assertions and considerably more details are given in [245, §4-5].

Exercise 2.4.21 . Given a two-variable adjunction as in Definition 2.4.16 and classes of
maps A in K, B in L, and C in M, prove equivalences between the lifting properties:

A⊗̂B� C ⇔ B� �{A,C} ⇔ A� M̂ap(B,C).

Here A ⊗̂ B � C, for instance, asserts that maps in C have the right lifting property
with respect to each map in A⊗̂B.



2.4 Derived functors between model categories 35

Exercise 2.4.21 explains the equivalence between the following three definitions of a
Quillen two-variable adjunction.

Definition 2.4.22. A two-variable adjunction

V×M ⊗−→ N, Vop ×N
{−,−}
−−−−→M, Mop ×N

Map
−−−−→ V

between model categories V, M, and N defines a Quillen two-variable adjunction
if any, and hence all, of the following equivalent conditions are satisfied:

(i) The functor ⊗̂ : V2 ×M2 → N2 carries any pair comprised of a cofibration in
V and a cofibration in M to a cofibration in N, and this cofibration is a weak
equivalence if either of the domain maps are.

(ii) The functor �{−,−} : (V2)op×N2→M2 carries any pair comprised of a cofibration
in V and a fibration in N to a fibration in M, and this fibration is a weak
equivalence if either of the domain maps are.

(iii) The functor M̂ap : (M2)op×N2→ V2 carries any pair comprised of a cofibration
in M and a fibration in N to a fibration in V, and this fibration is a weak
equivalence if either of the domain maps are.

Exercise 2.4.23 . Prove that if −⊗− : V×M→ N is a left Quillen bifunctor and V ∈ V
is cofibrant then V⊗− : M→ N is a left Quillen functor.

Quillen’s axiomatization of the additional properties enjoyed by his model structure
on the category of simplicial sets has been generalized by Hovey [130, §4.2].

Definition 2.4.24. A (closed symmetric) monoidal model category is a (closed
symmetric) monoidal category (V,⊗, I) with a model structure so that the monoidal
product and hom define a Quillen two-variable adjunction and furthermore so that
the maps

QI ⊗ v→ I ⊗ v � v and v ⊗QI → v ⊗ I � v (2.4)

are weak equivalences if v is cofibrant.11

Definition 2.4.25. If V is a monoidal model category a V-model category is a
model category M that is tensored, cotensored, and V-enriched in such a way that
(⊗, { , },Map) is a Quillen two-variable adjunction and the maps

QI ⊗ m→ I ⊗ m �m

are weak equivalences if m is cofibrant.

Exercise 2.4.26 . In a locally small category M with products and coproducts the hom
bifunctor is part of a two-variable adjunction:

− ∗− : Set×M→M, {−,−} : Setop ×M→M, Hom : Mop ×M→ Set.

Equipping Set with the model structure whose weak equivalences are all maps, whose
cofibrations are monomorphisms, and whose fibrations are epimorphisms, prove that

11 If the monoidal product is symmetric then of course these two conditions are equivalent and if it is
closed then they are also equivalent to a dual one involving the internal hom [130, 4.2.7].
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(i) Set is a cartesian monoidal model category.
(ii) Any model category M is a Set-model category.

Example 2.4.27. Quillen’s model structure of Theorem 2.3.30 is a closed symmetric
monoidal model category. The term simplicial model category refers to a model
category enriched over this model structure.

Exercise 2.4.28 . Show that if M is a simplicial model category then the full simplicial
subcategory Mcf is Kan-complex enriched.

The conditions (2.4) on the cofibrant replacement of the monoidal unit are implied
by the Quillen two-variable adjunction if the monoidal unit is cofibrant and are
necessary for the proof of Theorem 2.4.29, which shows that the homotopy categories
are again closed monoidal and enriched.

Theorem 2.4.29 ([130, 4.3.2,4]).

(i) The homotopy category of a closed symmetric monoidal model category is a closed
monoidal category with tensor and hom given by the derived adjunction

(L⊗,RMap,RMap) : HoV×HoV→ HoV

and monoidal unit QI .
(ii) If M is a V-model category, then HoM is the underlying category of a HoV-enriched,

tensored, and cotensored category with enrichment given by the total derived two-
variable adjunction

(L⊗,R{ , },RMap) : HoV×HoM→ HoM.

In particular:

Corollary 2.4.30. The homotopy category of spaces is cartesian closed. If M is a simplicial
model category, then HoM is enriched, tensored, and cotensored over the homotopy category
of spaces.

2.4.5 Quillen equivalences between homotopy theories

Two model categories present equivalent homotopy theories if there exists a finite
sequence of model categories and a zigzag of Quillen equivalences between them, in a
sense we now define. A Quillen adjunction defines a Quillen equivalence just when the
derived adjunction of Theorem 2.4.13 defines an adjoint equivalence: an adjunction
with invertible unit and counit. There are several equivalent characterizations of this
situation.

Definition 2.4.31 ([229, §I.4]). A Quillen adjunction between a pair of model cate-
gories

M N

F

⊥
G
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defines a Quillen equivalence if any, and hence all, of the following equivalent
conditions are satisfied:

(i) The total left derived functor LF : HoM→ HoN defines an equivalence of cate-
gories.

(ii) The total right derived functor RG : HoN → HoM defines an equivalence of
categories.

(iii) For every cofibrant object A∈M and every fibrant object X∈N, a map f ] : FA→X
is a weak equivalence in N if and only if its transpose f [ : A→ GX is a weak
equivalence in M.

(iv) For every cofibrant object A ∈ M, the composite A → GFA → GRFA of the
unit with fibrant replacement is a weak equivalence in M, and for every fibrant
object X ∈ N, the composite FQGX → FGX → X of the counit with cofibrant
replacement is a weak equivalence in N.

Famously, the formalism of Quillen equivalences enables a proof that the homotopy
theory of spaces is equivalent to the homotopy theory of simplicial sets.

Theorem 2.4.32 (Quillen [229, §II.3]). The homotopy theory of simplicial sets is equiv-
alent to the homotopy theory of topological spaces via the geometric realization a total
singular complex adjunction

sSet Top

|−|

⊥

Sing

2.4.6 Extending homological algebra to homotopical algebra

Derived functors are endemic to homological algebra. Quillen’s homotopical algebra
can be understood to subsume classical homological algebra in the following sense.
The category of chain complexes of modules over a fixed ring (or valued in an arbitrary
abelian category) admits a homotopical structure where the weak equivalences are
quasi-isomorphisms. Relative to an appropriately defined model structure, the left and
right derived functors of homological algebra can be viewed as special cases of the
construction of derived functors of left or right Quillen functors in Corollary 2.4.10 or
in the more general context of Theorem 2.4.7.

The following theorem describes an equivalent presentation of the homotopy theory
just discussed.

Theorem 2.4.33 (Schwede–Shipley after Dold–Kan). The homotopy theory of simplicial
modules over a commutative ring, with fibrations and weak equivalences as on underlying
simplicial sets, is equivalent to the homotopy theory of non-negatively graded chain complexes
of modules, as presented by the projective model structure whose weak equivalences are
the quasi-isomorphisms, fibrations are the chain maps which are surjective in positive
dimensions, and cofibrations are the monomorphisms with dimensionwise projective cokernel.
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Proof. For details of the model structure on simplicial objects see [229, II.4, II.6] and
on chain complexes see [130, 2.3.11, 4.2.13]. The proof that the functors Γ ,N in the
Dold–Kan equivalence are each both left and right Quillen equivalences can be found
in [265, §4.1] or is safely left as an exercise to the reader.

The Dold–Kan Quillen equivalence of Theorem 2.4.33 suggests that simplicial
methods might replace homological ones in non-abelian contexts. Let M be any
category of “algebras” such as monoids, groups, rings (or their commutative variants),
or modules or algebras over a fixed ring; technically M may be any category of models
for a Lawvere theory [154], which specifies finite operations of any arity and relations
between the composites of these operations.

Theorem 2.4.34 (Quillen [229, §II.4]). For any category M of “algebras” — a category of
models for a Lawvere theory — the category M´op

of simplicial algebras admits a simplicial
model structure whose

– weak equivalences are those maps that are weak homotopy equivalences on underlying
simplicial sets,

– fibrations are those maps that are Kan fibrations on underlying simplicial sets, and
– cofibrations are retracts of free maps.

2.5 Homotopy limits and colimits

Limits and colimits provide fundamental tools for constructing new mathematical
objects from existing ones, so it is important to understand these constructions in
the homotopical context. There are a variety of possible meanings of a homotopical
notion of limit or colimit including:

(i) limits or colimits in the homotopy category of a model category;
(ii) limit or colimit constructions that are “homotopy invariant,” with weakly equiva-

lent inputs giving rise to weakly equivalent outputs;
(iii) derived functors of the limit or colimit functors; and finally
(iv) limits or colimits whose universal properties are (perhaps weakly) enriched over

simplicial sets or topological spaces.

We will explore these possibilities in turn. We begin in §2.5.1 by observing that the
homotopy category has few genuine limits and colimits but does have “weak” ones
in the case where the category is enriched, tensored, and cotensored over spaces.
For the reason explained in Remark 2.5.5, homotopy limits or colimits rarely satisfy
condition (i).

In §2.5.2, we define homotopy limits and colimits as derived functors, which in
particular give “homotopy invariant” constructions, and introduce hypotheses on the
ambient model category that ensure that these homotopy limit and colimit functors
always exist. In §2.5.3 we consider particular diagram shapes, the so-called Reedy
categories, for which homotopy limits and colimits exist in any model category. Finally,
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in §2.5.4 we permit ourselves a tour through the general theory of weighted limits and
colimits as a means of elucidating these results and introducing families of Quillen
bifunctors that deserve to be better known. This allows us to finally explain the sense
in which homotopy limits or colimits in a simplicial model category satisfy properties
(ii)-(iv) and in particular have an enriched universal property which may be understood
as saying they “represent homotopy coherent cones” over or under the diagram.

2.5.1 Weak limits and colimits in the homotopy category

Consider a category M that is enriched over spaces — either topological spaces or
simplicial sets will do — meaning that for each pair of objects x,y, there is a mapping
space Map(x,y) whose points are the usual set M(x,y) of arrows from x to y. We may
define a homotopy category of M using the construction of Definition 2.3.24.

Definition 2.5.1. If M is a simplicially enriched category its homotopy category
hM has

– objects the same objects as M and
– hom-sets hM(x,y) := π0Map(x,y) taken to be the path components of the mapping

spaces.

Thus, a morphism from x to y in hM is a homotopy class of vertices in the simplicial
set Map(x,y), where two vertices are homotopic if and only if they can be connected
by a finite zigzag of 1-simplices.

A product of a family of objects mα in a category M is given by a representation m
for the functor displayed on the right:

M(−,m)
�−→

∏
α
M(−,mα).

By the Yoneda lemma, a representation consists of an object m ∈ M together with
maps m → mα for each α that are universal in the sense that for any collection
x→mα ∈M, each of these arrows factors uniquely along a common map x→m. But
if M is enriched over spaces, we might instead require only that the triangles

x

m mα

∃ ' (2.5)

commute “up to homotopy” in the sense of a path in the space Map(x,mα) whose
underlying set of points is M(x,mα). Now we can define the homotopy product to
be an object m equipped with a natural weak homotopy equivalence

Map(x,m)→
∏
α

Map(x,mα)

for each x ∈M. Surjectivity on path components implies the existence and homotopy
commutativity of the triangles (2.5).
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Exercise 2.5.2 . Use the fact that π0 commutes with products and is homotopical
to show, unusually for homotopy limits, that the homotopy product is a product in
the homotopy category hM. Similarly, a homotopy coproduct is a coproduct in the
homotopy category.

For non-discrete diagram shapes, the homotopy category of a category enriched in
spaces12 will no longer have genuine limits or colimits but in the presence of tensors
in the colimit case and cotensors in the limit case it will have weak ones.

Theorem 2.5.3 ([295, 11.1]). If M is cocomplete and also enriched and tensored over spaces,
its homotopy category hM has all weak colimits: given any small diagram F : D→ hM,
there is a cone under F through which every other cone factors, although not necessarily
uniquely.

In general, the colimit of a diagram F of shape D may be constructed as the reflexive
coequalizer of the diagram

∐
a,b∈D

D(a,b)×Fa
∐
a∈D

Fa
ev

proj

id

Note that this construction does not actually require the diagram F to be a functor;
it suffices for the diagram to define a reflexive directed graph in the target category.
In the case of a diagram valued in hM, the weak colimit will be constructed as a
“homotopy reflexive coequalizer”13 of a lifted reflexive directed graph in M.

Proof. Any diagram F : D→ hM may be lifted to a reflexive directed graph F : D→M,
choosing representatives for each homotopy class of morphisms in such a way that
identities are chosen to represent identities. Using these lifted maps and writing I for
the interval, define the weak colimit of F : D→ hM to be a quotient of the coproduct( ∐

a,b∈D
D(a,b)× I ×Fa

)
t

( ∐
a∈D

Fa
)

modulo three identifications:∐
a,b∈D

(D(a,b)× {0} ×Fa t D(a,b)× {1} ×Fa) t
∐
a∈D

I ×Fa
∐
a∈D

Fa

∐
a,b∈D

D(a,b)× I ×Fa wcolimF

(evtproj)tproj

(inclt incl)t id
p

The right-hand vertical map defines the legs of the colimit cone, which commute in
hM via the witnessing homotopies given by the bottom horizontal map.

Now consider a cone in hM under F with nadir X. We may regard the data of this

12 Here we can take our enrichment over topological spaces or over simplicial sets, the latter being more
general [237, 3.7.15-16].

13 Succinctly, it may be defined as the weighted colimit of this reflexive coequalizer diagram weighted by
the truncated cosimplicial object ∗ I whose leftwards maps are the endpoint inclusions into the
closed interval I ; see §2.5.4.
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cone as a diagram D×2→ hM that restricts along {0} ↪→ 2 to F and along {1} ↪→ 2
to the constant diagram at X. This data may be lifted to a reflexive directed graph
D× 2→M whose lift over 0 agrees with the previously specified lift F and whose lift
over 1 is constant at X. This defines a cone under the pushout diagram, inducing the
required map wcolimF→ X.

2.5.2 Homotopy limits and colimits of general shapes

In general, limit and colimit constructions in a homotopical category fail to be weak
equivalence invariant. Famously the n-sphere can be formed by gluing together two
disks along their boundary spheres Sn �Dn ∪Sn−1 Dn. The diagram

Dn Sn−1 Dn

∗ Sn−1 ∗
∼ ∼ (2.6)

reveals that the pushout functor fails to preserve componentwise homotopy equiva-
lences.

When a functor fails to be homotopical, the next best option is to replace it by a de-
rived functor. Because colimits are left adjoints, one might hope that colim: MD→M

has a left derived functor and dually that lim: MD→M has a right derived functor,
leading us to the following definition:

Definition 2.5.4. Let M be a homotopical category and let D be a small cate-
gory. The homotopy colimit functor, when it is exists, is a left derived functor
Lcolim: MD → M, while the homotopy limit functor, when it exists, is a right
derived functor Rlim: MD→M.

We always take the weak equivalences in the category MD of diagrams of shape D

in a homotopical category M to be defined pointwise. By the universal property of
localization, there is a canonical map

MD (HoM)D

Ho(MD)

γ

γD

(2.7)

but it is not typically an equivalence of categories. Indeed, some of the pioneering
forays into abstract homotopy theory [295, 72, 90] were motivated by attempts to
understand the essential image of the functor Ho(MD)→ (HoM)D, the objects in
(HoM)D being homotopy commutative diagrams while the isomorphism classes of
objects in Ho(MD) being somewhat more mysterious; see §2.6.2.

Remark 2.5.5 . The diagonal functor ∆ : M → MD is homotopical and hence acts
as its own left and right derived functors. By Theorem 2.4.13 applied to a Quillen
adjunction to be constructed in the proof of Theorem 2.5.7, the total derived functor
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Lcolim: Ho(MD) → HoM is left adjoint to ∆ : HoM → Ho(MD), but unless the
comparison of (2.7) is an equivalence, this is not the same as the diagonal functor
∆ : HoM → Ho(M)D. Hence, homotopy colimits are not typically colimits in the
homotopy category.14

In the presence of suitable model structures, Corollary 2.4.10 can be used to prove
that the homotopy limit and colimit functors exist.

Definition 2.5.6. Let M be a model category and let D be a small category.

(i) The projective model structure on MD has weak equivalences and fibrations
defined pointwise in M.

(ii) The injective model structure on MD has weak equivalences and cofibrations
defined pointwise in M.

When M is a combinatorial model category, both model structures are guaranteed to
exist. More generally, when M is an accessible model category these model structures
exist [118, 3.4.1]. Of course, the projective and injective model structures might happen
to exist on MD, perhaps for particular diagram shapes D, in the absence of these
hypotheses.

Theorem 2.5.7. Let M be a model category and let D be a small category.

(i) Whenever the projective model structure on MD exists, the homotopy colimit functor
Lcolim: MD→M exists and may be computed as the colimit of a projective cofibrant
replacement of the original diagram.

(ii) Whenever the injective model structure on MD exists, the homotopy limit functor
Rlim: MD → M exists and may be computed as the limit of an injective fibrant
replacement of the original diagram.

Proof. This follows from Corollary 2.4.10 once we verify that the colimit and limit
functors are respectively left and right Quillen with respect to the projective and
injective model structures. These functors are, respectively, left and right adjoint to the
constant diagram functor ∆ : M→MD, so by Definition 2.4.11 it suffices to verify that
this functor is right Quillen with respect to the projective model structure and also left
Quillen with respect to the injective model structure. But these model structures are
designed so that this is the case.

Exercise 2.5.8 .

(i) Show that any pushout diagram B A C comprised of a pair of
cofibrations between cofibrant objects is projectively cofibrant. Conclude that the
pushout of cofibrations between cofibrant objects is a homotopy pushout and use
this to compute the homotopy pushout of (2.6).

14 The comparison (2.7) is an equivalence when D is discrete; this is why homotopy products and
homotopy coproducts are products and coproducts in the homotopy category.
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(ii) Argue that for a generic pushout diagram Y X Z , its homotopy
pushout may be constructed by taking a cofibrant replacement q : X ′ → X of
X and then factoring the composites hq and kq as a cofibration followed by a
trivial fibration:

Y ′ X ′ Z ′

Y X Z

∼ ∼ q ∼

and then taking the ordinary pushout of this projective cofibrant replacement
formed by the top row.

Exercise 2.5.9 .

(i) Verify that any -indexed diagram

A0 A1 A2 · · ·f01 f12 f23

of cofibrations between cofibrant objects is projectively cofibrant. Conclude that
the sequential colimit of a diagram of cofibrations between cofibrant objects is a
homotopy colimit.

(ii) Argue that for a generic sequential diagram

X0 X1 X2 · · ·f01 f12 f23

its projective cofibrant replacement may be formed by first replacing X0 by
a cofibrant object Q0, then inductively factoring the resulting composite map
Qn→ Xn+1 into a cofibration followed by a trivial fibration:

G Q0 Q1 Q2 · · ·

F X0 X1 X2 · · ·

q ∼ q0 ∼

g01

q1 ∼

g12

q2 ∼

g23

f01 f12 f23

Conclude that the homotopy sequential colimit is formed as the sequential
colimit of this top row.

2.5.3 Homotopy limits and colimits of Reedy diagrams

In fact, even if the projective model structures do not exist, certain diagram shapes
allow us to construct functorial “projective cofibrant replacements” in any model
category nonetheless, for example by following the prescriptions of Exercise 2.5.9. Dual
“injective fibrant replacements” for pullback or inverse limit diagrams exist similarly.
This happens when the categories indexing these diagrams are Reedy categories.

If M is any model category and D is any Reedy category, then the category MD

of Reedy diagrams admits a model structure. If the indexing category D satisfies
the appropriate half of a dual pair of conditions listed in Proposition 2.5.22, then
the colimit or limit functors colim, lim: MD→M are left or right Quillen. In such
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contexts, homotopy colimits and homotopy limits can be computed by applying
Corollary 2.4.10.

The history of the abstract notion of Reedy categories is entertaining. The category
´op is an example of what is now called a Reedy category. The eponymous model
structure on simplicial objects taking values in any model category was introduced in
an unpublished but widely disseminated manuscript by Reedy [232]. Reedy notes that
a dual model structure exists for cosimplicial objects, which, in the case of cosimplicial
simplicial sets, coincides with a model structure introduced by Bousfield and Kan to
define homotopy limits [58, §X]. The general definition, unifying these examples and
many others, is due to Kan and appeared in the early drafts of the book that eventually
became [92]. Various draft versions circulated in the mid 1990s and contributed to
the published accounts [124, chapter 15] and [130, chapter 5]. The final [92] in turn
references these sources in order to “review the notion of a Reedy category” that
originated in an early draft of that same manuscript.

Definition 2.5.10. A Reedy structure on a small category A consists of a de-
gree function deg: obA→ ω together with a pair of wide subcategories

−→
A and

←−
A

of degree-increasing and degree-decreasing arrows respectively, so that:

(i) The degree of the domain of every non-identity morphism in
−→
A is strictly less

than the degree of the codomain, and the degree of the domain of every non-
identity morphism in

←−
A is strictly greater than the degree of the codomain.

(ii) Every f ∈morA may be factored uniquely as

• •

•

f

←−
A3
←−
f

−→
f ∈
−→
A

(2.8)

Example 2.5.11.

(i) Discrete categories are Reedy categories, with all objects having degree zero.
(ii) If A is a Reedy category, then so is Aop: its Reedy structure has the same de-

gree function but has the degree-increasing and degree-decreasing arrows inter-
changed.

(iii) Finite posets are Reedy categories with all morphisms degree-increasing. Declare
any minimal element to have degree zero and define the degree of a generic
object d ∈ D to be the length of the maximal-length path of non-identity arrows
from an element of degree zero to d. This example can be extended without
change to include infinite posets such as  provided that each object has finite
degree.

(iv) The previous example gives the category b← a→ c a Reedy structure in which
deg(a) = 0 and deg(b) = deg(c) = 1. There is another Reedy category structure
in which deg(b) = 0, deg(a) = 1, and deg(c) = 2.

(iv) The category a⇒ b is a Reedy category with deg(a) = 0, deg(b) = 1, and both
non-identity arrows said to strictly raise degrees.
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(vi) The category ´ of finite non-empty ordinals and the category ´+ of finite ordi-
nals and order-preserving maps both support canonical Reedy category struc-
tures, for which we take the degree-increasing maps to be the subcategories of
face operators (monomorphisms) and the degree-decreasing maps to be the sub-
categories of degeneracy operators (epimorphisms).

Exercise 2.5.12 .

(i) Show that every morphism f factors uniquely through an object of minimum
degree and this factorization is the Reedy factorization of (2.8).

(ii) Show that the Reedy category axioms prohibit any non-identity isomorphisms.

Remark 2.5.13 . The notion of a Reedy category has been usefully extended by Berger
and Moerdijk to include examples such as finite sets or finite pointed sets that do have
non-identity automorphisms. All of the results to be described here have analogues
in this more general context, but for ease of exposition we leave these details to [38].

To focus attention on our goal, we now introduce the Reedy model structure, which
serves as motivation for some auxiliary constructions we have yet to introduce.

Theorem 2.5.14 (Reedy, Kan [245, §7]). Let M be a model category and let D be a Reedy
category. Then the category MD admits a model structure whose

– weak equivalences are the pointwise weak equivalences, and
– weak factorization systems (C ∩W [D],F [D]) and (C[D],F ∩W [D]) are the Reedy

weak factorization systems.

In the Reedy weak factorization system (L[D],R[D]) defined relative to a weak
factorization system (L,R) on M, a natural transformation f : X → Y ∈ MD is in
L[D] or R[D], respectively, if and only if, for each d ∈ D, the relative latching map
Xd∪LdX LdY → Y d is in L or the relative matching map Xd → Y d ×MdY M

dX is in R.
The most efficient definition of these latching and matching objects LdX and MdX
appearing in Example 2.5.17 makes use of the theory of weighted colimits and limits,
a subject to which we now turn.

2.5.4 Quillen adjunctions for weighted limits and colimits

Ordinary limits and colimits are objects representing the functor of cones with a
given summit over or under a fixed diagram. Weighted limits and colimits are defined
analogously, except that the cones over or under a diagram might have exotic “shapes.”
These shapes are allowed to vary with the objects indexing the diagram. More formally,
the weight — a functor which specifies the “shape” of a cone over a diagram indexed
by D or a cone under a diagram indexed by Dop — takes the form of a functor in
SetD in the unenriched context or VD in the V-enriched context.

Definition 2.5.15 (weighted limits and colimits, axiomatically). For a general small
category D and bicomplete category M, the weighted limit and weighted colimit
define bifunctors

{−,−}D : (SetD)op ×MD→M and − ∗D− : SetD ×MDop
→M
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which are characterized by the following pair of axioms.

(i) Weighted (co)limits with representable weights evaluate at the representing ob-
ject:

{D(d,−),X}D � X(d) and D(−,d) ∗D Y � Y (d).

(ii) The weighted (co)limit bifunctors are cocontinuous in the weight: for any diagram
X ∈MD, the functor − ∗DX preserves colimits, while the functor {−,X}D carries
colimits to limits.

We interpret axiom (ii) to mean that weights can be “made to order”: a weight
constructed as a colimit of representables — as all Set-valued functors are — will
stipulate the expected universal property.

Let M be any locally small category with products and coproducts. For any set S,
the S-fold product and coproduct define cotensor and tensor bifunctors

{−,−} : Setop ×M→M and − ∗− : Set×M→M,

which form a two-variable adjunction with Hom : Mop ×M→ Set; cf. Exercise 2.4.26.

Definition 2.5.16 (weighted limits and colimits, constructively). The weighted colimit
is a functor tensor product and the weighted limit is a functor cotensor product:

{W,X}D �
∫
d∈D
{W (d),X(d)}, W ∗DY �

∫ d∈D
W (d) ∗Y (d).

The limit {W,X}D of the diagram X weighted by W and the colimit W ∗DY of Y
weighted by W are characterized by the universal properties:

M(M, {W,X}D) � SetD(W,M(M,X)), M(W ∗D Y ,M) � SetD
op

(W,M(Y ,M)).

Example 2.5.17. Let A be a Reedy category and write A≤n for the full subcategory
of objects of degree at most n. Restriction along the inclusion A≤n ↪→ A followed by
left Kan extension defines an comonad skn : SetA→ SetA.

Let a ∈ A be an object of degree n and define

∂A(a,−) := skn−1A(a,−) ∈ SetA and ∂A(−, a) := skn−1A(−, a) ∈ SetA
op
,

where A(a,−) and A(−, a) denote the co- and contravariant functors represented by a,
respectively. For any X ∈MA, the latching and matching objects are defined by

LaX := ∂A(−, a) ∗A X and MaX := {∂A(a,−),X}.

Exercise 2.5.18 (enriched weighted limits and colimits). For the reader who knows
some enriched category theory, generalize Definitions 2.5.15 and 2.5.16 to the V-
enriched context to define weighted limit and weighted colimit bifunctors

{−,−}A : (VA)op ×MA→M and −⊗A− : VA ×MAop
→M

in any V-enriched, tensored, and cotensored category M whose underlying unen-
riched category is complete and cocomplete.
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Recall the notion of Quillen two-variable adjunction, the prototypical example being
the tensor-cotensor-hom of a V-model category M.

Theorem 2.5.19 ([239, 7.1]). Let A be a Reedy category and let ⊗ : K× L→M be a left
Quillen bifunctor between model categories. Then the functor tensor product

⊗A : KAop
× LA→M

is left Quillen with respect to the Reedy model structures.

A dual result holds for functor cotensor products formed relative to a right Quillen
bifunctor. In particular, if M is a V-model category, then its tensor, cotensor, and hom
define a Quillen two-variable adjunction, and so in particular:

Corollary 2.5.20. Let M be a V-model category and let A be a Reedy category. Then for
any Reedy cofibrant weight W ∈ VA, the weighted colimit and weighted limit functors

W ∗A − : MA→M and {W,−}A : MAop
→M

are respectively left and right Quillen with respect to the Reedy model structures on MA and
MAop

.

Example 2.5.21 (geometric realization and totalization). The Yoneda embedding
defines a Reedy cofibrant weight ´• ∈ sSet´. The weighted colimit and weighted
limit functors

´• ∗´op − : M´op
→M and {´•,−}´ : M´→M

typically go by the names geometric realization and totalization. Corollary 2.5.20
proves that if M is a simplicial model category, then these functors are left and right
Quillen.

By Exercise 2.4.26, Corollary 2.5.20 also has implications in the case of an unen-
riched model category M, in which case “Reedy cofibrant” should be read as “Reedy
monomorphic.” Ordinary limits and colimits are weighted limits and colimits where
the weight is the terminal functor, constant at the singleton set.

Proposition 2.5.22 (homotopy limits and colimits of Reedy shape).

(i) If A is a Reedy category with the property that the constant A-indexed diagram at
any cofibrant object in any model category is Reedy cofibrant, then the limit functor
lim: MA→M is right Quillen.

(ii) If A is a Reedy category with the property that the constant A-indexed diagram at
any fibrant object in any model category is Reedy fibrant, then the colimit functor
colim: MA→M is left Quillen.

Proof. Taking the terminal weight 1 in SetA, the weighted limit reduces to the
ordinary limit functor. The functor 1 ∈ SetA is Reedy monomorphic just when, for
each a ∈ A, the category of elements for the weight ∂A(−, a) is either empty or
connected. This is the case if and only if A has “cofibrant constants,” meaning that the
constant A-indexed diagram at any cofibrant object in any model category is Reedy
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cofibrant. Thus, we conclude that if A has cofibrant constants, then the limit functor
lim: MA→M is right Quillen. See [245, §9] for more discussion.

There is an analogous result for projective and injective model structures which
the author first saw formulated in this way by Gambino in the context of a simplicial
model category.

Theorem 2.5.23 ([101]). If M is a V-model category and D is a small category, then the
weighted colimit functor

−⊗D − : VD ×MDop
→M

is left Quillen if the domain has the (injective, projective) or (projective, injective) model
structure. Similarly, the weighted limit functor

{−,−}D : (VD)op ×MD→M

is right Quillen if the domain has the (projective, projective) or (injective, injective) model
structure.

Proof. By Definition 2.4.22 we can prove both statements in adjoint form. The
weighted colimit bifunctor of Exercise 2.5.18 has a right adjoint (used to express the
defining universal property of the weighted colimit)

Map(−,−) : (MDop
)op ×M→ VD

which sends F ∈MDop
and m ∈M to Map(F−,m) ∈ VD.

To prove the statement when VD has the projective and MDop
has the injective

model structure, we must show that this is a right Quillen bifunctor with respect to
the pointwise (trivial) cofibrations in MDop

, (trivial) fibrations in M, and pointwise
(trivial) fibrations in VD. Because the limits involved in the definition of right Quillen
bifunctors are also formed pointwise, this follows immediately from the corresponding
property of the simplicial hom bifunctor, which was part of the definition of a simplicial
model category. The other cases are similar.

The upshot of Theorem 2.5.23 is that there are two approaches to constructing a
homotopy colimit: fattening up the diagram, as is achieved by the derived functors of
§2.5.2, or fattening up the weight. The famous Bousfield–Kan formulae for homotopy
limits and colimits in the context of a simplicial model category define them to
be weighted limits and colimits for a particular weight constructed as a projective
cofibrant replacement of the terminal weight; see [58] or [237, §11.5]. The Quillen
two-variable adjunction of Theorem 2.5.23 can be derived as in Theorem 2.4.29 to
express a homotopically enriched universal property of the weighted limit or colimit,
as representing “homotopy coherent” cones over or under a diagram, an intuition to
be explored in the next section.
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2.6 Simplicial localizations

Quillen’s model categories provide a robust axiomatic framework within which to “do
homotopy theory.” But the constructions of §2.5 imply that the homotopy theories
presented by model categories have all homotopy limits and homotopy colimits, which
need not be the case in general. In this section we introduce a framework, originally
developed by Dwyer and Kan and re-conceptualized by Bergner, which allows us to
extend our notion of equivalence between homotopy theories introduced in §2.4.5 to a
more flexible notion of DK-equivalence (after Dwyer and Kan) that identifies when any
two homotopical categories are equivalent.

A mere equivalence of categories of fractions is insufficient to detect an equivalence
of homotopy theories; instead a construction that takes into account the “higher-
dimensional” homotopical structure is required. To that end, Dwyer and Kan build,
from any homotopical category (K,W ), a simplicial category LH (K,W ) called the
hammock localization [88] and demonstrate that their construction has a number of
good properties that we tour in §2.6.1:

– The homotopy category hLH (K,W ) is equivalent to the category of fractions
K[W ]−1 (Proposition 2.6.5).

– If (K,W ) underlies a simplicial model category then the Kan complex enriched
category Kcf ⊂ K is DK-equivalent to LH (K,W ) (Proposition 2.6.7).

– More generally, LH (K,W ) provides a not-necessarily simplicial model category
(K,W ) with function complexes that have the correct mapping type even if the
model structure is not simplicial (Proposition 2.6.6).

– If two model categories are Quillen equivalent, then their hammock localizations
are DK-equivalent (Proposition 2.6.8).

The DK-equivalences are those simplicial functors that are bijective on homo-
topy equivalence classes of objects and define local equivalences of the mapping
spaces constructed by the hammock localization. Zooming out a categorical level, the
Bergner model structure on simplicially enriched categories gives a presentation of
the homotopical category of homotopy theories, with the DK-equivalences as its weak
equivalences. This is the subject of §2.6.2.

2.6.1 The hammock localization

There are two equivalent ways to present the data of a simplicially enriched category,
either as a category equipped with a simplicial set of morphisms between each pair
of objects, or a simplicial diagram of categories Kn of n-arrows, each of which is
equipped with a constant set of objects.

Exercise 2.6.1 . Prove that the following are equivalent:

(i) A simplicially enriched category with objects obK.
(ii) A simplicial object K• : ´op→ Cat in which each of the categories Kn has objects

obK and each functor Kn→ Km is the identity on objects.
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We being by introducing the notion of a DK-equivalence between simplicially
enriched categories.

Definition 2.6.2. A simplicial functor F : K→M is a DK-equivalence if

(i) It defines an equivalence of homotopy categories hF : hK→ hM.
(ii) It defines a local weak equivalence of mapping complexes: for all X,Y ∈ K,

MapK(X,Y ) ∼−→MapM(FX,FY ).

In the case where F is identity on objects, condition (2.6.2) subsumes condition
(2.6.2).

Definition 2.6.3 ([87, 2.1]). Let K be a category with a wide subcategory W , con-
taining all the identity arrows. The hammock localization LH (K,W ) is a simplicial
category with the same objects as K and with the mapping complex Map(X,Y ) de-
fined to be the simplicial set whose k-simplices are “reduced hammocks of width k”
from X to Y , these being commutative diagrams

A0,1 A0,2 · · · A0,n−1

A1,1 A1,2 · · · A1,n−1

X
...

...
... Y

Ak,1 Ak,2 · · · Ak,n−1

o o o

o o o

o o o

where the length of the hammock is any integer n ≥ 1, such that

(i) all vertical maps are in W ,
(ii) in each column of horizontal morphisms all maps go in the same direction and

if they go left then they are in W , and
(iii) the maps in adjacent columns go in different directions.

The graded set of reduced hammocks of width k from X to Y becomes a simplicial
set Map(X,Y ) in which

(iv) faces are defined by omitting rows and
1. degeneracies are defined by duplicating rows.

Composition is defined by horizontally pasting hammocks and then reducing by

(v) composing adjacent columns whose maps point in the same direction and
(vi) omitting any column which contains only identity maps.

There is a canonical functor K→LH (K,W ) whose image is comprised of dimension
zero length 1 hammocks pointing forwards.
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Exercise 2.6.4 . Verify that the composite of the functor K→LH (K,W ) just described
with the quotient functor LH (K,W ) → hLH (K,W ) that collapses each mapping
space onto its set of path components inverts the weak equivalences in K, sending
each to an isomorphism in the homotopy category hLH (K,W ).

In the hammock localization

cancelation in any dimension is achieved not by “imposing relations” in the same dimension,
but by “imposing homotopy relations”, i.e. adding maps, in the next dimension, [87, §3]

in contrast with the category of fractions constructed in §2.2. By considering the effect
of these “homotopy relations,” it is straightforward to see that the induced functor
from the category of fractions to the homotopy category of the hammock localization
is an isomorphism of categories.

Proposition 2.6.5 (Dwyer–Kan [88, 3.2]). The canonical functor K → LH (K,W )
induces an isomorphism of categories K[W−1] � hLH (K,W ).

Proof. The comparison functor K[W−1] → hLH (K,W ) induced by Exercise 2.6.4
and by the universal property of Proposition 2.2.2 is clearly bijective on objects and
full, homotopy classes in hLH (K,W ) being represented by zigzags whose backwards
maps lie in W . To see that this functor is faithful it suffices to consider a 1-simplex in
Map(X,Y ):

A0,1 A0,2 · · · A0,n−1

X Y

A1,1 A1,2 · · · A1,n−1

o o o

and argue that the top and bottom zigzags define the same morphism in K[W−1].
This is an easy exercise in diagram chasing, applying the rules of Definition 2.2.1.

The previous result applies to a model category (M,W ), in which case we see that
LH (M,W ) is a higher-dimensional incarnation of the homotopy category, equipping
M[W−1] with mapping spaces whose path components correspond to arrows in
the category of fractions. A further justification that the mapping spaces of the
hammock localization have the correct homotopy type, not just the correct sets of
path components, proceeds as follows. A simplicial resolution of Y ∈M is a Reedy
fibrant simplicial object Y• together with a weak equivalence Y ∼−→ Y0. Cosimplicial
resolutions X•→ X are defined dually. Every object has a simplicial and cosimplicial
resolution, defined as the Reedy fibrant replacement of the constant simplicial object
in M´op

and the Reedy cofibrant replacement of the constant cosimplicial object in
M´, respectively.

Proposition 2.6.6 (Dwyer–Kan [88, 4.4]). For any cosimplicial resolution X•→ X and
simplicial resolution Y → Y•, the diagonal of the bisimplicial set M(X•,Y•) has the same
homotopy type of MapLH (M,W )(X,Y ), and if X or Y are respectively cofibrant or fibrant
the simplicial sets M(X,Y•) and M(X•,Y ) do as well.
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As a corollary of this result one can show:

Proposition 2.6.7 (Dwyer–Kan [88, 4.7, 4.8]). Let (M,W ) be the homotopical cat-
egory underlying a simplicial model category M. Then for cofibrant X and fibrant Y ,
MapM(X,Y ) and MapLH (M,W )(X,Y ) have the same homotopy type and hence the simpli-
cial categories Mcf and LH (M,W ) are DK-equivalent.

The statement of this result requires some explanation. If K is a simplicial category
whose underlying category of 0-arrows K0 has a subcategory of weak equivalences W ,
then these weak equivalences degenerate to define homotopical categories (Kn,W ) for
each category of n-arrows in K. For each n we may form the hammock localization
LH (Kn,W ). As n varies, this gives a bisimplicial sets of mapping complexes for each
fixed pair of objects of K. The mapping complexes in the hammock localization
LH (K,W ) are defined to be the diagonals of these bisimplicial sets. In the case of a
simplicial model category M, the hammock localization LH (M,W ) is DK-equivalent
to the hammock localization LH (M0,W ) of the underlying unenriched homotopical
category.

Proposition 2.6.8 ([88, 5.4]). A Quillen equivalence

M N

F

⊥
G

induces DK-equivalences

LH (Mc,W ) ∼−→LH (Nc,W ) and LH (Nf,W ) ∼−→LH (Mf,W ).

Moreover, for any model category the inclusions

LH (Mc,C ∩W ) ∼−→LH (Mc,Wc) ∼−→LH (M,W )

are DK-equivalences and hence LH (M,W ) and LH (N,W ) are DK-equivalent.

2.6.2 A model structure for homotopy coherent diagrams

Several of Dwyer and Kan’s proofs of the results in the previous subsection make
use of a model structure on the category of simplicial categories with a fixed set of
objects and with identity-on-objects functors. But this restriction to categories with the
same objects is somewhat unnatural. The Bergner model structure is the extension of
Dwyer and Kan’s model structure that drops that restriction, unifying the notions of
DK-equivalence, free simplicial category (also known as “simplicial computad”), and
Kan complex enriched simplicial category, the importance of which will be made clear
in §2.7.

Theorem 2.6.9 (Bergner [41]). There exists a model structure on the category of simpli-
cially enriched categories given as follows:

– Its equivalences are the DK equivalences.
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– Its cofibrant objects are the simplicial computads: those simplicial categories that, when
considered as a simplicial object C• : ´op→ Cat have the property that

– each category Cn is freely generated by the reflexive directed graph of its atomic
arrows (those admitting no non-trivial factorizations) and

– the degeneracy operators [m]� [n] in ´ preserve atomic arrows.

– Fibrant objects are the Kan complex enriched categories: those simplicial categories
whose mapping spaces are all Kan complexes.

More generally, the cofibrations in the Bergner model structure are retracts of
relative simplicial computads and the fibrations are those functors that are local Kan
fibrations and define isofibrations at the level of homotopy categories; see [41] for more
details.

Definition 2.3.24 tells us that maps in the homotopy category of the Bergner model
structure from a simplicial category A to a simplicial category K are represented by
simplicial functors from a cofibrant replacement of A to a fibrant replacement of
K. These are classically studied objects. Cordier and Porter after Vogt define such
functors to be homotopy coherent diagrams of shape A in K [72].

A particular model for the cofibrant replacement of a strict 1-category A regarded
as a discrete simplicial category gives some intuition for the data involved in defining a
homotopy coherent diagram. This construction, introduced by Dwyer and Kan under
the name “standard resolutions” [89, 2.5], can be extended to the case where A is
non-discrete by applying it levelwise and taking diagonals.

Definition 2.6.10 (free resolutions). There is a comonad (F,ε,δ) on the category of
categories that sends a small category to the free category on its underlying reflexive
directed graph. Explicitly FA has the same objects as A and its non-identity arrows
are strings of composable non-identity arrows of A.

Adopting the point of view of Exercise 2.6.1, we define a simplicial category CA•
with obCA = obA and with the category of n-arrows CAn := Fn+1A. A non-identity
n-arrow is a string of composable arrows in A with each arrow in the string enclosed
in exactly n pairs of well-formed parentheses. In the case n = 0, this recovers the
previous description of the non-identity 0-arrows in FA, strings of composable non-
identity arrows of A.

The required identity-on-objects functors in the simplicial object CA• are defined
by evaluating the comonad resolution for (F,ε,δ) on a small category A:

CA• := FA F2A F3A F4A · · ·

Explicitly, for j ≥ 1, the face maps

FkεFj : Fk+j+1A→ Fk+jA

remove the parentheses that are contained in exactly k others, while Fk+jε composes
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the morphisms inside the innermost parentheses. For j ≥ 1, the degeneracy maps

FkδFj : Fk+j+1A→ Fk+j+2A

double up the parentheses that are contained in exactly k others, while Fk+jδ inserts
parentheses around each individual morphism.

Exercise 2.6.11 . Explain the sense in which free resolutions define Bergner cofibrant
replacements of strict 1-categories by:

(i) verifying that for any A, the free resolution CA• is a simplicial computad, and
(ii) defining a canonical identity-on-objects augmentation functor ε : CA→ A and

verifying that it defines a local homotopy equivalence.

The notation CA• for the free resolution is non-standard and will be explained in
§2.7.2, where we will gain a deeper understanding of the importance of the Bergner
model structure from the vantage point of (∞,1)-categories.

2.7 Quasi-categories as (∞,1)-categories

Any topological space Y has an associated simplicial set Sing(Y ) called its total
singular complex. The vertices in Sing(Y ) are the points in Y and the 1-simplices
are the paths; in general, an n-simplex in Sing(Y ) corresponds to an n-simplex in Y ,
that is, to a continuous map |∆n| → Y . In particular, a 2-simplex |∆2| → Y defines a
triangular shaped homotopy from the composite paths along the spine Λ2

1 ⊂ ∆2 of the
2-simplex to the direct path from the 0th to the 2nd vertex that is contained in its 1st
face.15 Since the inclusion |Λnk | → |∆

n| admits a retraction, Sing(Y ) is a Kan complex.
The total singular complex is a higher-dimensional incarnation of some of the basic

invariants of Y , which can be recovered by truncating the total singular complex at
some level and replacing the top-dimensional simplices with suitably defined “homo-
topy classes” of such. Its set of path components is the set π0Y of path components
in Y . Its homotopy category, in a sense to be defined below, comprised of the vertices
and homotopy classes of paths between them, is a groupoid π1Y called the funda-
mental groupoid of Y . By extension, it is reasonable to think of the higher-dimensional
simplices of Sing(Y ) as being invertible in a similar sense, with composition relations
witnessed by higher cells. In this way, Sing(Y ) models the ∞-groupoid associated
to the topological space Y and the Quillen equivalence 2.4.32 is one incarnation
of Grothendieck’s famous “homotopy hypothesis” (the moniker due to Baez), that
∞-groupoids up to equivalence should model homotopy types [113].

In the catalog of weak higher-dimensional categories, the ∞-groupoids define
(∞,0)-categories, weak categories with morphisms in each dimension, all of which
are weakly invertible. In §2.7.1, we introduce quasi-categories, which provide a
particular model for (∞,1)-categories — infinite-dimensional categories in which every
morphism above dimension 1 is invertible — in parallel with the Kan complex model

15 The simplicial n-simplex ∆n, its boundary sphere ∂∆n, and its horns Λnk are defined in §2.3.5.
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for (∞,0)-categories. We explain the sense in which quasi-categories, which are defined
to be simplicial sets with an inner horn lifting property, model (∞,1)-categories by
introducing the homotopy category of a quasi-category and constructing the hom-space
between objects in a quasi-category. In §2.7.2, we explain how simplicially enriched
categories like those considered in §2.6 can be converted into quasi-categories. Then
in §2.7.3, we introduce a model structure whose fibrant objects are the quasi-categories
due to Joyal and in this way obtain a suitable notion of (weak) equivalence between
quasi-categories.

2.7.1 Quasi-categories and their homotopy categories

The nerve of a small category D is the simplicial set D• whose vertices D0 are the
objects of D, whose 1-simplices D1 are the morphisms, and whose set of n-simplices
Dn is the set of n composable pairs of morphisms in D. The simplicial structure
defines a diagram in Set

· · · D3 D2 D1 D0

Truncating at level 2 we are left with precisely the data that defines a small category
D as a category internal to the category of sets and in fact this higher-dimensional
data is redundant in a sense: the simplicial set D• is 2-coskeletal, meaning any sphere
bounding a hypothetical simplex of dimension at least 3 admits a unique filler.

The description of the nerve as an internal category relies on an isomorphism
D2 � D1×D0

D1 identifying the set of 2-simplices with the pullback of the domain and
codomain maps D1⇒ D0: a composable pair of arrows is given by a pair of arrows
such that the domain of the second equals the codomain of the first. Equivalently, this
condition asserts that the map

Λ2
1 D•

∆2
∃!

admits a unique filler. In higher dimensions, we can consider the inclusion of the spine
∆1∪∆0 · · ·∪∆0∆1 ↪→ ∆n of an n-simplex, and similarly the nerve D• will admit unique
extensions along these maps. From the perspective of an infinite-dimensional category,
in which the higher-dimensional simplices represent data and not just conditions
on the 1-simplices, it is better to consider extensions along inner horn inclusions
Λnk ↪→ ∆n for the reasons explained by the following exercise.

Exercise 2.7.1 . Prove that the spine inclusions can be presented as cell complexes
(see Definition 2.3.11) built from the inner horn inclusions {Λkn ↪→ ∆n}n≥2,0<k<n but
demonstrate by example that the inner horn inclusions cannot be presented as cell
complexes built from the spine inclusions.

The original definition of a simplicial set satisfying the “restricted Kan condition,”
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now called a quasi-category (following Joyal [140]) or an ∞-category (following Lurie
[169]), is due to Boardman and Vogt [48]. Their motivating example appears as
Corollary 2.7.9.

Definition 2.7.2. A quasi-category is a simplicial set X such that X → ∗ has
the right lifting property with respect to the inner horn inclusions for each n ≥ 2,
0 < k < n.

Λnk X

∆n

(2.9)

Nerves of categories are quasi-categories; in fact in this case each lift (2.9) is unique.
Tautologically, Kan complexes are quasi-categories. In particular, the total singular
complex of a topological space is a Kan complex and hence a quasi-category. More
sophisticated examples of (frequently large) quasi-categories are produced by Theorem
2.7.8 below.

Definition 2.7.3 (the homotopy category of a quasi-category [48, 4.12]). Any quasi-
category X has an associated homotopy category hX whose objects are the vertices
of X and whose morphisms are represented by 1-simplices, which we consequently
depict as arrows f : x→ y from their 0th vertex to their 1st vertex. The degenerate
1-simplices serve as identities in the homotopy category, and may be depicted using
an equals sign in place of the arrow.

As the name suggests, the morphisms in hX are homotopy classes of 1-simplices,
where a pair of 1-simplices f and g with common boundary are homotopic if there
exists a 2-simplex whose boundary has any of the following forms:

• • • •

• • • • • • • •

f

∼ ∼
g

∼ ∼
g

f

g f

g

f

(2.10)

Indeed, in a quasi-category, if any of the 2-simplices (2.10) exists then there exists a
2-simplex of each type.

Generic 2-simplices in X

•

• •

g

∼
f

h

(2.11)

witness that gf = h in the homotopy category. Conversely, if h = gf in hX and f ,g,h
are any 1-simplices representing these homotopy classes, there exists a 2-simplex (2.11)
witnessing the composition relation.

Exercise 2.7.4 .

(i) Verify the assertions made in Definition 2.7.3 or see [169, §1.2.3].
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(ii) Show that h is the left adjoint to the nerve functor:16

qCat Cat

h

⊥
N

The mapping space between two objects of a quasi-category A is modeled by the
Kan complex defined via the pullback

MapA(x,y) A∆
1

∆0 A×A

y

(x,y)

The following proposition of Joyal is useful in proving that MapA(x,y) is a Kan
complex and also characterizes the ∞-groupoids in the quasi-categorical model of
(∞,1)-categories.

Proposition 2.7.5 ( Joyal [140, 1.4]). A quasi-category is a Kan complex if and only if its
homotopy category is a groupoid.

Definition 2.7.6 ([140, 1.6]). A 1-simplex f in a quasi-category X is an isomorphism
if and only if it represents an isomorphism in the homotopy category, or equivalently
if and only if it admits a coherent homotopy inverse:

2 X

I

f

extending along the map 2 ↪→ I including the nerve of the free-living arrow into the
nerve of the free-living isomorphism.

2.7.2 Quasi-categories found in nature

Borrowing notation from the simplex category ´, we write [n] ⊂  for the ordinal
category ın + 1, the full subcategory spanned by 0, . . . ,n in the category that indexes a
countable sequence:

[n] := 0 1 2 3 · · · n

These categories define the objects of a diagram ´ ↪→ Cat that is a full embedding:
the only functors [m] → [n] are order-preserving maps from [m] = {0, . . . ,m} to
[n] = {0, . . . ,n}. Applying the free resolution construction of Definition 2.6.10 to these
categories we get a functor C : ´→ sCat, where C[n] is the full simplicial subcategory
of C spanned by those objects 0, . . . ,n.

16 In fact, this pair defines a Quillen adjunction between the model structure to be introduced in Theorem
2.7.12 and the “folk” model structure on categories [237, 15.3.8].
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Definition 2.7.7 (homotopy coherent realization and nerve). The homotopy coher-
ent nerve N and homotopy coherent realization C are the adjoint pair of functors
obtained by applying Kan’s construction [237, 1.5.1] to the functor C : ´→ sCat to
construct an adjunction

sSet sCat

C

⊥
N

The right adjoint, called the homotopy coherent nerve, converts a simplicial cat-
egory S into a simplicial set NS whose n-simplices are homotopy coherent diagrams
of shape [n] in S. That is,

NSn := {C[n]→ S}.

The left adjoint is defined by pointwise left Kan extension along the Yoneda em-
bedding:

´ sSet

sCat

よ

C
�

C

That is, C∆n is defined to be C[n] — a simplicial category that we call the homotopy
coherent n-simplex — and for a generic simplicial set X, CX is defined to be a
colimit of the homotopy coherent simplices indexed by the category of simplices of
X.17 Because of the formal similarity with the geometric realization functor, another
left adjoint defined by Kan’s construction, we refer to C as homotopy coherent
realization.

Many examples of quasi-categories fit into the following paradigm.

Theorem 2.7.8 ([72, 2.1]). If S is Kan complex enriched, then NS is a quasi-category.

In particular, in light of Exercise 2.4.28, the quasi-category associated to a simplicial
model category M is defined to be NMcf.

Recall from §2.6.2 that a homotopy coherent diagram of shape A in a Kan
complex enriched category S is a functor CA→ S. Similarly, a homotopy coherent
natural transformation α : F→ G between homotopy coherent diagrams F and G
of shape A is a homotopy coherent diagram of shape A × [1] that restricts on the
endpoints of [1] to F and G as follows:

CA C(A× [1]) CA

S

0

F
α

1

G

Note that the data of a pair of homotopy coherent natural transformations α : F→ G
and β : G→H between homotopy coherent diagrams of shape A does not uniquely

17 The simplicial set X is obtained by gluing in a ∆n for each n-simplex ∆n→ X of X. The functor C
preserves these colimits, so CX is obtained by gluing in a C[n] for each n-simplex of X.
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determine a (vertical) “composite” homotopy coherent natural transformation F→H
because this data does not define a homotopy coherent diagram of shape A×[2], where
[2] = 0→ 1→ 2. Here α and β define a diagram of shape C(A×Λ2

1) rather than a
diagram of shape C(A×[2]), where Λ2

1 is the shape of the generating reflexive directed
graph of the category [2]. This observation motivated Boardman and Vogt to define,
in place of a category of homotopy coherent diagrams and natural transformations of
shape A, a quasi-category of homotopy coherent diagrams and natural transformations
of shape A.

For any category A, let Coh(A,S) denote the simplicial set whose n-simplices are
homotopy coherent diagrams of shape A× [n], i.e., are simplicial functors

C(A× [n])→ S.

Corollary 2.7.9. Coh(A,S) �NSA is a quasi-category.

Proof. By the adjunction of Definition 2.7.7, a simplicial functor CA→ S is the same
as a simplicial map A→ NS. So Coh(A,S) � NSA and since the quasi-categories
define an exponential ideal in simplicial sets as a consequence of the cartesian closure
of the Joyal model structure of Theorem 2.7.12, the fact that NS is a quasi-category
implies that NSA is too.

Remark 2.7.10 (all diagrams in homotopy coherent nerves are homotopy coherent).
This corollary explains that any map of simplicial sets X→NS transposes to define a
simplicial functor CX→ S, a homotopy coherent diagram of shape X in S. While not
every quasi-category is isomorphic to a homotopy coherent nerve of a Kan complex
enriched category, every quasi-category is equivalent to a homotopy coherent nerve;
one proof appears as [244, 7.2.2]. This explains the slogan that “all diagrams in quasi-
categories are homotopy coherent.”

2.7.3 The Joyal model structure

In analogy with Quillen’s model structure of Theorem 2.3.30, in which the fibrant
objects are the Kan complexes and the cofibrations are the monomorphisms, we might
hope that there is another model structure on sSet whose fibrant objects are the
quasi-categories and with the monomorphisms as cofibrations, and indeed there is
one (and by Exercise 2.3.8(2.3.8) it is unique).

The weak equivalences in this hoped-for model structure for quasi-categories can
be described using a particularly nice cylinder object. Let I be the nerve of the
free-standing isomorphism I; the name is selected because I is something like an
interval.

Proposition 2.7.11. For any simplicial set A, the evident inclusion and projection maps
define a cylinder object

AtA A

A× I(i0,i1)

(1A,1A)

∼
π
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Proof. The map (i0, i1) : AtA→ A× I is a monomorphism and hence a cofibration.
To see that the projection is a trivial fibration, observe that it is a pullback of I→ ∗
as displayed below left, and hence by Lemma 2.3.9 it suffices to prove that this latter
map is a trivial fibration. To that end, we must show that there exist solutions to lifting
problems displayed on the right:

A× I I ∂∆n I

A ∗ ∆n ∗

π

π

y

When n = 0 this is true because I is non-empty. For larger n, we use the fact that
I � cosk0I. By adjunction, it suffices to show that I lifts against sk0∂∆

n → sk0∆
n,

but for n > 0, the 0-skeleton of ∆n is isomorphic to that of its boundary.

The proof of Joyal’s model structure has been widely circulated in unpublished
notes, and can also be found in [169, 2.2.5.1] or [81, 2.13].

Theorem 2.7.12 ( Joyal). There is a cartesian closed model structure on sSet whose

– cofibrations are monomorphisms,
– weak equivalences are those maps f : A→ B that induce bijections on the sets

Hom(B,X)/∼` → Hom(A,X)/∼`

of maps into any quasi-category X modulo the left homotopy relation relative to the
cylinder just defined,

– fibrant objects are precisely the quasi-categories, and
– fibrations between fibrant objects are the isofibrations, those maps that lift against the

inner horn inclusions and also the map ∗ → I.

By Proposition 2.3.23, a map between quasi-categories is a weak equivalence, or
we say simply equivalence of quasi-categories, if and only if it admits an inverse
equivalence Y → X together with an “invertible homotopy equivalence” using the
notion of homotopy defined with the interval I. A map between nerves of strict
1-categories is an equivalence of quasi-categories if and only if it is an equivalence of
categories, as usually defined. In general, every categorical notion for quasi-categories
restricts along the full inclusion Cat ⊂ qCat to the classical notion. This gives another
sense in which quasi-categories model the (∞,1)-categories introduced at the start of
this section. However, quasi-categories are not the only model of (∞,1)-categories, as
we shall now discover.

2.8 Models of (∞,1)-categories

An (∞,1)-category should have a set of objects X0, a space of morphisms X1, together
with composition and identities that are at least weakly associative and unital. One
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idea of how this might be presented, due to Segal [269], is to ask that X ∈ sSet´
op

is
a simplicial space

· · · X3 X2 X1 X0

with X0 still a set, so that for all n the map

Xn→ X1 ×X0
· · · ×X0

X1 (2.12)

induced on weighted limits from the spine inclusion ∆1 ∨ · · · ∨∆1 → ∆n is a weak
equivalence in a suitable sense. Segal points out that Grothendieck has observed
that, in the case where the spaces Xn are discrete, these so-called Segal maps are
isomorphisms if and only if X is isomorphic to the nerve of a category.

In this section we introduce various models of (∞,1)-categories, many of which
are inspired by this paradigm. Before these models make their appearance in §2.8.2,
we begin in §2.8.1 with an abbreviated tour of an axiomatization due to Toën that
characterizes a homotopy theory of (∞,1)-categories. In §2.8.3, we then restrict our
attention to four of the six models that are better behaved in the sense of providing
easy access to the (∞,1)-category Fun(A,B) of functors between (∞,1)-categories
A and B. These models each satisfy a short list of axioms that we exploit in §2.9
to sketch a natively “model-independent” development of the category theory of
(∞,1)-categories.

2.8.1 An axiomatization of the homotopy theory of (∞,1)-categories

The homotopy theory of ∞-groupoids is freely generated under homotopy colimits by
the point. We might try to adopt a similar “generators and relations” approach to build
the homotopy theory of (∞,1)-categories, taking the generators to be the category ´,
which freely generates simplicial spaces. The relations assert that the natural maps

∆1 ∨ · · · ∨∆1→ ∆n and I→ ∆0 (2.13)

induce equivalences upon mapping into an (∞,1)-category. This idea motivates Rezk’s
complete Segal space model, which is the conceptual center of the Toën axiomatization
of a model category M whose fibrant objects model (∞,1)-categories.

For simplicity we assume that M is a combinatorial simplicial model category.
In practice, these assumptions are relatively mild: in particular, if M fails to be
simplicial it is possible to define a Quillen equivalent model structure on M´op

that is
simplicial [78]. The model category M should be equipped with a functor C : ´→M

such that C(0) represents a free point in M while C(1) represents a free arrow. This
cosimplicial object is required to be a weak cocategory, meaning that the duals of
the Segal maps are equivalences

C(1)∪C(0) · · · ∪C(0) C(1) ∼−→ C(n).

We state Toën’s seven axioms without defining all the terms because to do so would
demand too long of an excursion, and refer the reader to [292] for more details.
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Theorem 2.8.1 (Toën [292]). Let M be a combinatorial simplicial model category equipped
with a functor C : ´→M satisfying the following properties.

(i) Homotopy colimits are universal over 0-local objects, those X so that

Map(∗ ,X) ∼−→Map(C(1),X).

(ii) Homotopy coproducts are disjoint and universal.
(iii) C is an interval: meaning C(0) and the C-geometric realization of I are contractible.
(iv) For any weak category X ∈M´op

such that X0 and X1 are 0-local, X is equivalent to
the Čech nerve of the map X0→ |X |c.

(v) For any weak category X ∈M´op
such that X0 and X1 are 0-local, the homotopy fiber

of X→RHom(C, |X |c) is contractible.
(vi) The point and interval define a generator: f : X→ Y is a weak equivalence in M if

and only if Map(C(0),X) ∼−→Map(C(0),Y ) and Map(C(1),X) ∼−→Map(C(1),Y ).
(vii) C is homotopically fully faithful: ´([n], [m]) ∼−→Map(C(n),C(m))

Then the functor X 7→ Map(C(−),X) defines a right Quillen equivalence from M to the
model structure for complete Segal spaces on the category of bisimplicial sets.

A similar axiomatization is given by Barwick and Schommer-Pries as a specialization
of an axiomatization for (∞,n)-categories [26].

2.8.2 Models of (∞,1)-categories

We now introduce six models of (∞,1)-categories, each arising as the fibrant objects in
a model category that is Quillen equivalent to all of the others. Two of these models —
the quasi-categories and the Kan complex enriched categories — have been presented
already in Theorems 2.7.12 and 2.6.9.

A Segal category is a Reedy fibrant bisimplicial set X ∈ sSet´
op

such that the
Segal maps (2.12) are trivial fibrations and X0 is a set.18

Theorem 2.8.2 (Hirschowitz–Simpson [125, 278], Pellissier [220], Bergner [40]). There
is a cartesian closed model structure on the category of bisimplicial sets with discrete set of
objects whose

– cofibrations are the monomorphisms,
– fibrant objects are the Segal categories that are Reedy fibrant as simplicial spaces, and
– weak equivalences are the DK-equivalences (in a suitable sense).

A complete Segal space is similarly a Reedy fibrant bisimplicial set X ∈ sSet´
op

such that the Segal maps (2.12) are trivial fibrations. In this model, the discreteness
condition on X0 is replaced with the so-called completeness condition, which is again
most elegantly phrased using weighted limits: it asks either that the map {I,X} →
{∆0,X} � X0 is a trivial fibration or that the map X0 → {I,X} is an equivalence.
Intuitively this says that the spatial structure of X0 is recovered by the ∞-groupoid of
{I,X} of isomorphisms in X.

18 In [90, §7] the Reedy fibrancy condition, which implies that the Segal maps are Kan fibrations, is
dropped and the Segal maps are only required to be weak equivalences.
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Theorem 2.8.3 (Rezk [233]). There is a cartesian closed model structure on the category
of bisimplicial sets whose

– cofibrations are the monomorphisms,
– fibrant objects are the complete Segal spaces, and
– weak equivalences are those maps u : A→ B such that for every complete Segal space X,

the maps XB→ XA are weak homotopy equivalences of simplicial sets upon evaluating
at 0.

A marked simplicial set is a simplicial set with a collection of marked edges
containing the degeneracies; maps must then preserve the markings. A quasi-category
is naturally a marked simplicial set whose marked edges are precisely the isomorphisms,
described in Definition 2.7.6.

Theorem 2.8.4 (Verity [293], Lurie [169]). There is a cartesian closed model structure
on the category of marked simplicial sets whose

– cofibrations are the monomorphisms,
– fibrant objects are the naturally marked quasi-categories, and
– weak equivalences are those maps A→ B so that for all naturally marked quasi-categories
X the map XB→ XA is a homotopy equivalence of maximal sub Kan complexes.

A relative category is a category equipped with a wide subcategory of weak
equivalences. A morphism of relative categories is a homotopical functor. A weak
equivalence of relative categories is a homotopical functor F : (C,W )→ (D,W ) that
induces a DK-equivalence on hammock localizations LH (C,W )→ LH (D,W ).

Theorem 2.8.5 (Barwick–Kan [23]). There is a model structure for relative categories
whose

– weak equivalences are the relative DK-equivalences just defined

and whose cofibrations and fibrant objects are somewhat complicated to describe.

Each of these model categories, represented in the diagram below by their sub-
categories of fibrant objects, are Quillen equivalent, connected via right Quillen
equivalences as follows:19

CSS Segal

RelCat Kan-Cat

qCat\ qCat

(2.14)

A nice feature of the simplicial category and relative category models is that their

19 The right Quillen equivalences from relative categories are in [23]. The Quillen equivalences involving
complete Segal spaces, Segal categories, and quasi-categories can all be found in [142]. Proofs that the
homotopy coherent nerve defines a Quillen equivalence from simplicial categories to quasi-categories
can be found in [169] and [81]. A zigzag of Quillen equivalences between simplicial categories and Segal
categories is constructed in [42]. The right Quillen equivalence from naturally marked quasi-categories
to the Joyal model structure can be found in [169] and [293].
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objects and morphisms are strictly-defined, as honest-to-goodness enriched categories
in the former case and honest-to-goodness homotopical categories in the latter. From
this vantage point it is quite surprising that they are Quillen equivalent to the weaker
models. But there are some costs paid to obtain this extra strictness: neither model
category is cartesian closed, so both contexts lack a suitable internal hom, whereas
the other four models — the quasi-categories, Segal categories, complete Segal spaces,
and naturally marked quasi-categories — all form cartesian closed model categories.
Consequently, in each of these models the (∞,1)-categories define an exponential
ideal: if A is fibrant and X is cofibrant, then AX is again fibrant and moreover the
maps induced on exponentials by the maps (2.13) are weak equivalences.

2.8.3 ∞-cosmoi of (∞,1)-categories

From the cartesian closure of the model categories for quasi-categories, Segal cate-
gories, complete Segal spaces, and naturally marked quasi-categories, it is possible
to induce a secondary enrichment, in the sense of Definition 2.4.25, on these model
categories:

Theorem 2.8.6 ([240, 2.2.3]). The model structures for quasi-categories, complete Segal
spaces, Segal categories, and naturally marked quasi-categories are all enriched over the
model structure for quasi-categories.

The following definition of an ∞-cosmos collects together the properties of the
fibrant objects and fibrations and weak equivalences between them in any model
category that is enriched over the Joyal model structure and in which the fibrant
objects are also cofibrant:

Definition 2.8.7 (∞-cosmos). An ∞-cosmos is a simplicially enriched category K

whose

– objects we refer to as the ∞-categories in the ∞-cosmos, whose
– hom simplicial sets Fun(A,B) are all quasi-categories,

and that is equipped with a specified subcategory of isofibrations, denoted by “�”,
satisfying the following axioms:

(i) (completeness) As a simplicially enriched category, K possesses a terminal ob-
ject 1, cotensors AU of objects A by all20 simplicial sets U , and pullbacks of
isofibrations along any functor.21

(ii) (isofibrations) The class of isofibrations contains the isomorphisms and all of
the functors ! : A � 1 with codomain 1; is stable under pullback along all

20 For most purposes, it suffices to require only cotensors with finitely presented simplicial sets (those with
only finitely many non-degenerate simplices).

21 For the theory of homotopy coherent adjunctions and monads developed in [241], limits of towers of
isofibrations are also required, with the accompanying stability properties of (ii). These limits are present
in all of the ∞-cosmoi we are aware of, but will not be required for any results discussed here.
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functors; and if p : E � B is an isofibration in K and i : U ↪→ V is an in-
clusion of simplicial sets then the Leibniz cotensor �{i,p} : EV � EU ×BU BV
is an isofibration. Moreover, for any object X and isofibration p : E � B,
Fun(X,p) : Fun(X,E)� Fun(X,B) is an isofibration of quasi-categories.

The underlying category of an∞-cosmos K has a canonical subcategory of equiva-
lences, denoted by “ ∼−→”, satisfying the two-of-six property. A functor f : A→ B is an
equivalence just when the induced functor Fun(X,f ) : Fun(X,A)→ Fun(X,B) is an
equivalence of quasi-categories for all objects X ∈ K. The trivial fibrations, denoted
by “ ∼−−→→ ”, are those functors that are both equivalences and isofibrations. It follows
from 2.8.7(i)-(ii) that:

(iii) (cofibrancy) All objects are cofibrant, in the sense that they enjoy the left lifting
property with respect to all trivial fibrations in K:

E

A B

o∃

(iv) (trivial fibrations) The trivial fibrations define a subcategory containing the
isomorphisms; are stable under pullback along all functors; and the Leibniz
cotensor �{i,p} : EV ∼−−→→ EU ×BU BV of an isofibration p : E � B in K and a
monomorphism i : U ↪→ V between presented simplicial sets is a trivial fi-
bration when p is a trivial fibration in K or i is a trivial cofibration in the
Joyal model structure on sSet. Moreover, for any object X and trivial fibration
p : E ∼−−→→ B, Fun(X,p) : Fun(X,E) ∼−−→→ Fun(X,B) is a trivial fibration of quasi-
categories.

(v) (factorization) Any functor f : A→ B may be factored as f = pj :

Nf

A B

p
q
∼

f

∼
j

where p : Nf� B is an isofibration and j : A ∼−→ Nf is right inverse to a trivial
fibration q : Nf

∼−−→→ A.

It is a straightforward exercise in enriched model category theory to verify that
these axioms are satisfied by the fibrant objects in any model category that is enriched
over the Joyal model structure on simplicial sets, at least when all of these objects are
cofibrant. Consequently:

Theorem 2.8.8 ( Joyal–Tierney, Verity, Lurie, Riehl–Verity [240]). The full subcate-
gories qCat, CSS, Segal, and qCat\ all define ∞-cosmoi.

Moreover, each of the model categories referenced in Theorem 2.8.8 is a closed
monoidal model category with respect to the cartesian product. It follows that each of
these four ∞-cosmoi is cartesian closed in the sense that it satisfies the extra axiom:
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(vi) (cartesian closure) The product bifunctor − × − : K × K → K extends to a
simplicially enriched two-variable adjunction

Fun(A×B,C) � Fun(A,CB) � Fun(B,CA).

A cosmological functor is a simplicial functor F : K→ L preserving the class of
isofibrations and all of the limits enumerated in Definition 2.8.7(i). A cosmological
functor is a biequivalence when it is:

(i) surjective on objects up to equivalence: i.e., if for every C ∈ L, there is some
A ∈ K so that FA ' C ∈ L;

(ii) a local equivalence of quasi-categories: i.e., if for every pair A,B ∈ K, the map
Fun(A,B) ∼−→ Fun(FA,FB) is an equivalence of quasi-categories.

The inclusion Cat ↪→ qCat defines a cosmological functor but not a biequivalence,
since it fails to be essentially surjective. Each right Quillen equivalence of

CSS Segal

qCat\ qCat

defines a cosmological biequivalence.
As discussed in the next section, Theorem 2.8.8 together with an additional

observation — that the ∞-cosmoi of quasi-categories, Segal categories, complete Segal
spaces, and naturally marked simplicial sets are biequivalent — forms the lynchpin of
an approach to develop the basic theory of (∞,1)-categories in a model-independent
fashion. In fact, most of that development takes places in a strict 2-category that we
now introduce.

Definition 2.8.9 (the homotopy 2-category of ∞-cosmos). The homotopy 2-cate-
gory of an ∞-cosmos K is a strict 2-category hK such that

– the objects of hK are the objects of K, i.e., the ∞-categories,
– the 1-cells f : A→ B of hK are the vertices f ∈ Fun(A,B) in the mapping quasi-

categories of K, i.e., the ∞-functors, and

– a 2-cell A B

f

g

⇓α in hK, which we call an ∞-natural transformation, is rep-

resented by a 1-simplex α : f → g ∈ Fun(A,B), where a parallel pair of 1-simplices
in Fun(A,B) represent the same 2-cell if and only if they bound a 2-simplex whose
remaining outer face is degenerate.

Put concisely, the homotopy 2-category is the 2-category hK defined by applying the
homotopy category functor h : qCat→ Cat to the mapping quasi-categories of the
∞-cosmos; the hom-categories in hK are defined by the formula

Hom(A,B) := hFun(A,B)

to be the homotopy categories of the mapping quasi-categories in K.
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As we shall see in the next section, much of the theory of (∞,1)-categories can be
developed simply by considering them as objects in the homotopy 2-category using an
appropriate weakening of standard 2-categorical techniques. A key to the feasibility
of this approach is that the standard 2-categorical notion of equivalence, reviewed in
Definition 2.9.2 below, coincides with the representably-defined notion of equivalence
present in any ∞-cosmos. The proof of this result should be compared with Quillen’s
Proposition 2.3.23.

Proposition 2.8.10. An ∞-functor f : A→ B is an equivalence in the ∞-cosmos K if
and only if it is an equivalence in the homotopy 2-category hK.

Proof. By definition, any equivalence f : A ∼−→ B in the ∞-cosmos induces an equiv-
alence Fun(X,A) ∼−→ Fun(X,B) of quasi-categories for any X, which becomes an
equivalence of categories Hom(X,A) ∼−→ Hom(X,B) upon applying the homotopy cate-
gory functor h : qCat→ Cat. Applying the Yoneda lemma in the homotopy 2-category
hK, it follows easily that f is an equivalence in the standard 2-categorical sense.

Conversely, as the map I → ∆0 of simplicial sets is a weak equivalence in the
Joyal model structure, an argument similar to that used to prove Proposition 2.7.11
demonstrates that the cotensor BI defines a path object for the ∞-category B:

BI

B B×B

(p1,p0)

∆

∼

It follows from the two-of-three property that any ∞-functor that is isomorphic in the
homotopy 2-category to an equivalence in the∞-cosmos is again an equivalence in the
∞-cosmos. Now it follows immediately from the two-of-six property for equivalences
in the ∞-cosmos, plus the fact that the class of equivalences includes the identities,
that any 2-categorical equivalence is an equivalence in the ∞-cosmos.

A consequence of Proposition 2.8.10 is that any cosmological biequivalence in
particular defines an biequivalence of homotopy 2-categories, which explains the
choice of terminology.

2.9 Model-independent (∞,1)-category theory

We now develop a small portion of the theory of ∞-categories in any ∞-cosmos,
thereby developing a theory of (∞,1)-categories that applies equally to quasi-cate-
gories, Segal categories, complete Segal spaces, and naturally marked quasi-categories.
The definitions of the basic (∞,1)-categorical notions presented here might be viewed
as “synthetic,” in the sense that they are blind to which model is being considered,
in contrast with the “analytic” theory of quasi-categories first outlined in Joyal’s [140]
and later greatly expanded in his unpublished works and Lurie’s [169, 168]. In §2.9.1,
we introduce adjunctions and equivalences between ∞-categories, which generalize
the notions of Quillen adjunction and Quillen equivalence between model categories
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from §2.4.3 and §2.4.5. Then in §2.9.2, we develop the theory of limits and colimits in
an ∞-category, which correspond to the homotopy limits and colimits of §2.5.

Our synthetic definitions specialize in the ∞-cosmos of quasi-categories to notions
that precisely recapture the Joyal–Lurie analytic theory; the proofs that this is the case
are not discussed here, but can be found in [243, 240]. Considerably more development
along these lines can be found in [242].

2.9.1 Adjunctions and equivalences

In any 2-category, in particular in the homotopy 2-category hK of an ∞-cosmos,
there are standard definitions of adjunction or equivalence, which allow us to define
adjunctions and equivalences between ∞-categories.

Definition 2.9.1. An adjunction between ∞-categories consists of:

– a pair of ∞-categories A and B;
– a pair of ∞-functors f : B→ A and u : A→ B; and
– a pair of ∞-natural transformations η : idB⇒ uf and ε : f u⇒ idA

so that the triangle equalities hold:

B B

A A

⇓ε f ⇓η =
u

u

B

A

=u u
B B

A A
f

⇓η ⇓ε
f

u =
B

A

=
f

f

We write f a u to assert that the ∞-functor f : B → A is left adjoint to the
∞-functor u : A→ B, its right adjoint.

Definition 2.9.2. An equivalence between ∞-categories consists of:

– a pair of ∞-categories A and B;
– a pair of ∞-functors f : B→ A and g : A→ B; and
– a pair of natural isomorphisms η : idB � gf and ε : f g � idA.

An ∞-natural isomorphism is a 2-cell in the homotopy 2-category that admits a
vertical inverse 2-cell.

We write A ' B and say that A and B are equivalent if there exists an equivalence
between A and B. The direction for the ∞-natural isomorphisms comprising an
equivalence is immaterial. Our notation is chosen to suggest the connection with
adjunctions conveyed by the following exercise.

Exercise 2.9.3 . In any 2-category, prove that:

(i) Adjunctions compose: given adjoint ∞-functors

C B A  C A

f ′

⊥
f

⊥
u′ u

f f ′

⊥
u′u

the composite ∞-functors are adjoint.
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(ii) Any equivalence can always be promoted to an adjoint equivalence by modify-
ing one of the∞-natural isomorphisms. That is, show that the∞-natural isomor-
phisms in an equivalence can be chosen so as to satisfy the triangle equalities.
Conclude that if f and g are inverse equivalences then f a g and g a f .

The point of Exercise 2.9.3 is that there are various diagrammatic 2-categorical
proofs that can be taken off the shelf and applied to the homotopy 2-category of
an ∞-cosmos to prove theorems about adjunctions and equivalence between (∞,1)-
categories.

2.9.2 Limits and colimits

We now introduce definitions of limits and colimits for diagrams valued inside an
∞-category. We begin by defining terminal objects, or as we shall call them “terminal
elements,” to avoid an overproliferation of the generic name “objects.”

Definition 2.9.4. A terminal element in an∞-category A is a right adjoint t : 1→ A
to the unique ∞-functor ! : A→ 1. Explicitly, the data consists of

– an element t : 1→ A and
– a ∞-natural transformation η : idA⇒ t! whose component ηt at the element t is

an isomorphism.22

Several basic facts about terminal elements can be deduced immediately from the
general theory of adjunctions.

Exercise 2.9.5 .

(i) Terminal elements are preserved by right adjoints and by equivalences.
(ii) If A′ ' A then A has a terminal element if and only if A′ does.

Terminal elements are limits of empty diagrams. We now turn to limits of generic
diagrams whose indexing shapes are given by 1-categories. For any ∞-category A in
an ∞-cosmos K, there is a 2-functor A(−) : Catop→ hK defined by forming simplicial
cotensors with nerves of categories. Using these simplicial cotensors, if J is a 1-category
and A is an ∞-category, the ∞-category of J-indexed diagrams in A is simply the
cotensor AJ .23

Remark 2.9.6 . In the cartesian closed ∞-cosmoi of Definition 2.8.7(vi), we also
permit the indexing shape J to be another ∞-category, in which case the internal
hom AJ defines the ∞-category of J-indexed diagrams in A. The development
of the theory of limits indexed by an ∞-category in a cartesian closed ∞-cosmos
entirely parallels the development for limits indexed by 1-categories, a parallelism we
highlight by conflating the notation of 2.8.7(i) and 2.8.7(vi).

22 If η is the unit of the adjunction ! a t, then the triangle equalities demand that ηt = idt . However, by a
2-categorical trick, to show that such an adjunction exists, it suffices to find a 2-cell η such that ηt is an
isomorphism.

23 More generally, this construction permits arbitrary simplicial sets as indexing shapes for diagrams in an
∞-category A. In either case, the elements of AJ are to be regarded as homotopy coherent diagrams
along the lines of Remark 2.7.10.
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In analogy with Definition 2.9.4, we have:

Definition 2.9.7. An ∞-category A admits all limits of shape J if the constant
diagram ∞-functor ∆ : A→ AJ , induced by the unique ∞-functor ! : J → 1, has a
right adjoint:

A AJ
∆

⊥
lim

From the vantage point of Definition 2.9.7, the following result is easy:

Exercise 2.9.8 . Using the general theory of adjunctions, show that a right adjoint ∞-
functor u : A→ B between ∞-categories that admit all limits of shape J necessarily
preserves them, in the sense that the ∞-functors

AJ BJ

A B

lim

uJ

lim�

u

commute up to isomorphism.

The problem with Definition 2.9.7 is that it is insufficiently general: many ∞-
categories will have certain, but not all, limits of diagrams of a particular indexing
shape. With this in mind, we will now re-express Definition 2.9.7 in a form that
permits its extension to cover this sort of situation. For this, we make use of the
2-categorical notion of an absolute right lifting, which is the “op”-dual (reversing
the 1-cells but not the 2-cells) of the notion of absolute right Kan extension introduced
in Definition 2.4.1.

Exercise 2.9.9 . Show that in any 2-category, a 2-cell ε : f u⇒ idA defines the counit
of an adjunction f a u if and only if

B

A A
⇓ε

fu

defines an absolute right lifting diagram.

Applying Exercise 2.9.9, Definition 2.9.7 is equivalent to the assertion that the limit
cone, our term for the counit of ∆ a lim, defines an absolute right lifting diagram:

A

AJ AJ
⇓ε

∆
lim (2.15)

Recall that the appellation “absolute” means “preserved by all functors,” in this case
by restriction along any ∞-functor X → AJ . In particular, an absolute right lifting
diagram (2.15) restricts to define an absolute right lifting diagram on any subobject of
the ∞-category of diagrams. This motivates the following definition.
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Definition 2.9.10 (limit). A limit of a J-indexed diagram in A is an absolute right
lifting of the diagram d through the constant diagram ∞-functor ∆ : A→ AJ

A

1 AJ
⇓λ

∆limd

d

(2.16)

the 2-cell component of which defines the limit cone λ : ∆ limd⇒ d.

If A has all J-indexed limits, the restriction of the absolute right lifting diagram (2.15)
along the element d : 1→ AJ defines a limit for d. Interpolating between Definitions
2.9.10 and 2.9.7, we can define a limit of a family of diagrams to be an absolute
right lifting of the family d : K → AJ through ∆ : A→ AJ . For instance:

Theorem 2.9.11 ([243, 5.3.1]). For every cosimplicial object in an ∞-category that admits
a coaugmentation and a splitting, the coaugmentation defines its limit. That is, for every
∞-category A, the ∞-functors

A

A´⊥ A´
⇓λ

∆

res

ev[−1]

define an absolute right lifting diagram.

Here ´ is the usual simplex category of finite non-empty ordinals and order-
preserving maps. It defines a full subcategory of ´+, which freely appends an initial
object [−1], and this in turn defines a subcategory of ´⊥, which adds an “extra
degeneracy” map between each pair of consecutive ordinals. Diagrams indexed by ´ ⊂
´+ ⊂ ´⊥ are, respectively, called cosimplicial objects, coaugmented cosimplicial
objects, and split cosimplicial objects. The limit of a cosimplicial object is often
called its totalization.

Proof sketch. In Cat, there is a canonical 2-cell

´ ´⊥

1

!
⇑λ

[−1]

because [−1] ∈ ´⊥ is initial. This data defines an absolute right extension diagram
that is moreover preserved by any 2-functor, because the universal property of the
functor [−1] : 1→ ´⊥ and the 2-cell λ is witnessed by a pair of adjunctions. The
2-functor A(−) : Catop→ hK converts this into the absolute right lifting diagram of
the statement.

The most important result relating adjunctions and limits is of course this:

Theorem 2.9.12 ([243, 5.2.13]). Right adjoints preserve limits.
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Our proof will closely follow the classical one. Given a diagram d : 1→ AJ and a
right adjoint u : A→ B to some ∞-functor f , a cone with summit b : 1→ B over uJd
transposes to define a cone with summit f b over d, which factors uniquely through
the limit cone. This factorization transposes back across the adjunction to show that
u carries the limit cone over d to a limit cone over uJd.

Proof. Suppose that A admits limits of a diagram d : 1→ AJ as witnessed by an
absolute right lifting diagram (2.16). Since adjunctions are preserved by all 2-functors,
an adjunction f a u induces an adjunction f J a uJ . We must show that

A B

1 AJ BJ
⇓λ

∆

u

∆limd

d uJ

is again an absolute right lifting diagram. Given a square

X B

1 AJ BJ

b

! ⇓χ ∆

d uJ

we first “transpose across the adjunction,” by composing with f and the counit.

X B A X B A

1 AJ BJ AJ 1 AJ

b

! ⇓χ ∆

f

∆ = !

b

∃!⇓ζ

⇓λ

f

∆

d ⇓εJ
uJ f J

limd

d

The universal property of the absolute right lifting diagram λ : ∆ lim⇒ d induces a
unique factorization ζ, which may then be “transposed back across the adjunction” by
composing with u and the unit.

X B A B X B A B

1 AJ BJ 1 AJ BJ AJ BJ

!

b

∃!⇓ζ

⇓λ

⇓ηf

∆

u

∆ =

b

! ⇓χ ∆

f

⇓η

∆

u

∆limd

d uJ d
uJ

⇓εJ
f J

uJ

=
X B B X B

1 AJ BJ AJ BJ 1 AJ BJ

!

b

⇓χ ∆ ∆ =

b

! ⇓χ ∆

d
uJ

⇓εJ

⇓ηJ
f J

uJ d uJ

Here the second equality is a consequence of the 2-functoriality of the simplicial
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cotensor, while the third is an application of a triangle equality for the adjunction
f J a uJ . The pasted composite of ζ and η is the desired factorization of χ through λ.

The proof that this factorization is unique, which again parallels the classical
argument, is left to the reader: the essential point is that the transposes defined via
these pasting diagrams are unique.

Colimits are defined “co”-dually, by reversing the direction of the 2-cells but not the
1-cells. There is no need to repeat the proofs however: any ∞-cosmos K has a co-dual
∞-cosmos Kco with the same objects but in which the mapping quasi-categories are
defined to be the opposites of the mapping quasi-categories in K.

2.10 Epilogue

A category K equipped with a class of “weak equivalences” W— perhaps saturated in
the sense of containing all of the maps inverted by the Gabriel–Zisman localization
functor or perhaps merely generating the class of maps to be inverted in the category
of fractions — defines a “homotopy theory,” a phrase generally used to refer to the
associated homotopy category together with the homotopy types of the mapping spaces,
as captured for instance by the Dwyer–Kan hammock localization. We have studied
two common axiomatizations of this abstract notion: Quillen’s model categories, which
present homotopy theories with all homotopy limits and homotopy colimits, and
(∞,1)-categories, which might be encoded using one of the models introduced in §2.8
or worked with model-independently in the sense outlined in §2.9.

From the point of view of comparing homotopy categories, the model-independent
theory of (∞,1)-categories has some clear advantages: equivalences between homotopy
theories are directly definable (see Definition 2.9.2) instead of being presented as
zigzags of DK- or Quillen equivalences. The formation of diagram categories (see
Remark 2.9.6) is straightforward and homotopy limit and colimit functors become
genuine adjoints (see Definition 2.9.7) and homotopy limits and colimits become
genuine limits and colimits — at least in the sense appropriate to the theory of (∞,1)-
categories. So from this vantage point it is natural to ask: Do we still need model
categories?24 While some might find this sort of dialog depressing, in our view it does
not hurt to ask.

Chris Schommer-Pries has suggested a useful analogy to contextualize the role
played by model categories in the study of homotopy theories that are complete and
cocomplete: 

model category :: (∞,1)-category
basis :: vector space
local coordinates :: manifold

A precise statement is that combinatorial model categories present those (∞,1)-cate-
gories that are complete and cocomplete and more generally (locally) presentable; this

24 See https://mathoverflow.net/questions/78400/do-we-still-need-model-categories.
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result is proven in [169, A.3.7.6] by applying a theorem of Dugger [77].25 In general
having coordinates is helpful for calculations. In particular, when working inside a
particular homotopy theory as presented by a model category, you also have access
to the non-bifibrant objects. For instance, the Bergner model structure of §2.6.2 is a
useful context to collect results about homotopy coherent diagrams, which are defined
to be maps from the cofibrant (and not typically fibrant) objects to the fibrant ones
(which are not typically cofibrant).

But Quillen himself was somewhat unsatisfied with the paradigm-shifting abstract
framework that he introduced, writing:

This definition of the homotopy theory associated to a model category is obviously unsatisfactory.
In effect, the loop and suspension functors are a kind of primary structure on HoM and the
families of fibration and cofibration sequences are a kind of secondary structure since they
determine the Toda bracket . . . . Presumably there is higher order structure . . . on the homotopy
category which forms part of the homotopy theory of a model category, but we have not been
able to find an inclusive general definition of this structure with the property that this structure is
preserved when there are adjoint functors which establish an equivalence of homotopy theories.
[229, pp. 3–4]

Quillen was referring to a model category that is pointed, in the sense of having
a zero object, like the role played by the singleton space in Top∗. A more modern
context for the sort of stable homotopy theory that Quillen is implicitly describing is
the category of spectra, the (∞,1)-category of which has many pleasant properties
collected together in the notion of a stable ∞-category. We posit that these notions,
which are the subject of Chapter 4 of this volume, might fulfill Quillen’s dream.

25 Morally, in the sense discussed in §2.3.2, all model categories are Quillen equivalent to locally
presentable ones. More precisely, the result that every cofibrantly generated (in a suitable sense of this
term) model category is Quillen equivalent to a combinatorial one has been proven by Raptis and
Rosicky to be equivalent to a large cardinal axiom called Vopěnka’s principle [254].



3 Stable categories and spectra
via model categories

by Daniel Dugger

3.1 Introduction

The first popular model category of spectra was due to Bousfield–Friedlander [56], and
for many years it was the only one in common use (a previous model due to K. Brown
[61] never really caught on). But this category does not admit a suitable smash product
on the model category level. Following an early but limited attempt by Robinson [248],
in the late 1990s several new model categories of spectra appeared that fixed this
problem. These days a working topologist should know a little about each of these
models, and about their various advantages and disadvantages.

Here is a list of the main players:

(1) Bousfield–Friedlander spectra
(2) Symmetric spectra
(3) Orthogonal spectra
(4) EKMM spectra
(5) Γ -spaces (which only model connective spectra)
(6) W-spaces (generalizing “functors with smash product”)

While it would be nice to pick out one model and say this is the one everyone should
learn, life is not that simple. An algebraic topologist is likely to encounter each of the
above models at some point, and some will have advantages over others depending on
the context. For example, at this point there is a developing consensus that orthogonal
spectra work best for equivariant homotopy theory; but some constructions — like
Waldhausen K-theory — naturally produce a symmetric spectrum, not an orthogonal
one. Functors with smash product (FSPs) have largely disappeared from the stage,
being eclipsed by (2) and (3), but they are still worth a passing familiarity. In this
survey we concentrate on (1)–(4), with (5) and (6) only making a quick appearance at
the end.

To describe the organization of this survey, it is helpful to use an analogy from
daily life: the automobile. For most of us, an automobile is a box with wheels that has
certain behaviors when we turn the steering wheel or step on the pedals. That very
primitive level of understanding is sufficient for most day-to-day functioning, and it is
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rare that any of us have to actually look under the hood. To some extent, the same
holds true of spectra. Much of daily life can be covered just by knowing that there
exists a model category of spectra with a smash product satisfying a small list of basic
properties. This kind of superficial knowledge is fine for driving around town, but
unlike the automobile analogy my experience has been that nearly every trip on the
homotopy-theory highway requires one or two stops to mess around with the engine.
It bothers me that this is so, and I usually find myself cursing at the injustice when I
have to do it, but this seems to be the nature of the subject.

To continue beating our analogy to death, when one is messing around under the
hood there is simply no substitute for the technical manuals. For spectra these are
[94], [133], [178], [267], and [132]. The present survey cannot replace them. Instead, we
concentrate on two aims. The first is to give a kind of “driver’s manual” to the world
of stable model categories, monoidal model categories, and general properties that are
satisfied by all the commonly used model categories of spectra. This takes roughly the
first half of the chapter. The second goal is to give enough of a technical introduction
to the different categories that readers can confidently go open up the manuals and
feel that they have a fighting chance.

Before moving on let’s state the definitions of the basic objects:

1. A classical spectrum is a collection of pointed spaces Xn for n ≥ 0 together with
structure maps σn : S1∧Xn→ Xn+1. The notion of a spectrum originated with
Lima [158], but the first model structure was developed by Bousfield–Friedlander.
The phrase “Bousfield–Friedlander spectra” sometimes gets used for these objects,
even though the definition of the objects themselves came much earlier. They
are also sometimes called “prespectra”, mainly in the work of Peter May and his
collaborators. A suspension spectrum is a spectrum where the structure maps
are all identity maps, and an Ω-spectrum (read “omega spectrum”) is one where
the adjoints Xn→ΩXn+1 of the structure maps σn are weak equivalences.

2. A symmetric spectrum is a classical spectrum where each Xn comes equipped
with an action of the symmetric group Σn, and where each of the iterated structure
maps

σp : (S1)∧(p) ∧Xq→ Xp+q

is Σp ×Σq-equivariant. Here σp is actually a composite of associativity maps with
p different applications of σ , the Σp ×Σq-action on the domain is the evident one,
and the action on the target comes from the embedding of groups Σp×Σq ↪→ Σp+q
where the image consists of permutations that permute the first p elements and
last q elements without mixing the two blocks.

3. An orthogonal spectrum is an assignment that sends each finite-dimensional
real inner product space V to a pointed space XV equipped with an action of the
orthogonal group O(V ), together with structure maps σV ,W : SV ∧XW → XV⊕W
that are O(V )×O(W )-equivariant (with SV the one-point compactification of V ).
In addition, to any isometry V →W is assigned (continuously) a homeomorphism
XV → XW , and these must be compatible with all the previous structure. Finally,
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the structure maps must satisfy some evident unital and associativity conditions.
(If we drop the orthogonal group actions then the assignment V 7→ XV together
with the structure maps is often called a coordinate-free spectrum).

4. The definition of an EKMM spectrum cannot be given in a few lines, but the
following words at least give a rough idea. An EKMM spectrum is a coordinate-free
Ω-spectrum where the adjoints of the structure maps are all homeomorphisms,
together with an action of a certain linear isometries monad on this spectrum,
and satisfying an extra “S-unital” condition.

5. For each n ≥ 0 write n+ = {0,1, . . . ,n} for the pointed set with 0 as basepoint. Let
F be the category whose objects are all the n+ and whose morphisms are the
based maps. A Γ -space is simply a functor F→ Top∗.

6. LetW be the category of pointed spaces homeomorphic to finite CW -complexes.
Regard this as a category enriched over topological spaces. A W-space is just
an enriched functor Φ : W → Top∗ . Note that for every X and Y there is a
natural map X → Top∗(Y ,X ∧ Y ) (adjoint to the identity); composing with the
map Top∗(Y ,X ∧ Y )→ Top∗(Φ(Y ),Φ(X ∧ Y )) and taking the adjoint therefore
gives a family of natural structure maps

X ∧Φ(Y )→ Φ(X ∧Y ).

These maps are broad generalizations of the structure maps for classical spectra —
for example, we could get a classical spectrum by setting Φn = Φ(Sn) and letting
X = S1, or more generally by fixing Y and setting ΦYn = Φ(Sn ∧Y ). The notion
of W-space is roughly equivalent to that of “simplicial functor”, and the objects
classically called “functors with smash product” are the monoids in this category.

Remark 3.1.1 . What we here call “EKMM spectra” were called “S-modules” when
first introduced, and are often still called that. Unfortunately, both symmetric spectra
and orthogonal spectra are also S-modules, just in different contexts. So the phrase
“S-module” is now very ambiguous, whereas “EKMM spectrum” cannot be confused
with anything else.

From a historical perspective, the objects in (1) and (5) date to the 1960s and 1970s
and vastly predate all of the others in the list. The objects in (2), (3), (4), and (6)
all appeared in the 1990s, and their importance is that they admit a symmetric
monoidal smash product on the model category level (sometimes colloquially referred
to as the “point-set level”), rather than just on the associated homotopy category —
see Section 3.1.3 below for more discussion of this. (The objects in (6) actually first
appeared in the 1970s, but didn’t enter the limelight until the 1990s with the other
models).

Having such a point-set level smash product quickly led to a flurry of advances,
and nowadays this is a standard part of any algebraic topologist’s toolkit. But because
there are four models and not just one, learning to use the toolkit also means learning
what the different models do best, and how to navigate between them. The different
models come with their own advantages and disadvantages, or pros and cons. These
terms don’t feel quite right, though, because the pros and cons are so closely linked.
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If something good only happens because of something bad, is the “bad” thing really all
that bad? Rather than delve into this philosophical quagmire, we take the elementary-
school approach in the table below (focusing only on the three most commonly used
models):

Things that make us happy Things that make us sad

EKMM
spectra

All objects are fibrant. The unit is not cofibrant.

Weak equivalences are easy.

Plays well with the linear
isometries operad.

Definition of the category is
quite hard, with several layers
of machinery.

Symmetric
spectra

Easy definition of the objects. Weak equivalences are hard to
understand.

The unit is cofibrant. Need fibrant replacement, and
this can destroy other structure.

One can make a theory of
genuine G-spectra, but it feels
a bit unnatural.

Orthogonal
spectra

Works well for G-spectra. Need fibrant replacement.

Unit is cofibrant.

Weak equivalences are easy.

Objects are not as easy as
symmetric spectra, but not hard.

By “weak equivalences are easy” we mean that they coincide with the π∗-isomorphisms
on the underlying classical spectrum. The issue of whether every object is fibrant has
a surprisingly large simplifying effect on how one ends up handling certain monoidal
phenomena — we discuss this more in Section 3.3.2.

For the rest of this introduction I am going to do something a bit unusual.
Mathematical narratives tend to have two sides: one consists of the definitions and
theorems, and the other is the story behind those definitions and theorems (sometimes
called motivation). The latter might try to answer why a certain definition is the right
one, or why a certain theorem should be expected. It is an odd phenomenon that
these two sides of mathematical narration sometimes end up getting in the way of
each other.

To help try to combat this, for the rest of this introduction I am going to give a
series of mathematical vignettes that attempt to highlight various important issues or
ideas behind the “story” of spectra. These come in no particular order, and are also
by no means exhaustive. The hope is that a reader can get some basic picture from
the vignettes right away, even if they don’t make complete sense on first reading. Be
assured that we will return to each of these ideas in more formal ways later in the text.
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3.1.1 Why use model categories?

Let me begin by painting a picture. Somewhere up in the heavens is a wondrous
paradise where lives the homotopy theory of spectra. You are welcome to think of
this realm as an infinity-category if you like, but I will intentionally keep things more
vague. Regardless, it is a magical shangri-la where the theories of associative and
commutative ring spectra, their modules, equivariant analogs, and so forth all work
out easily and naturally. The gods who walk that land are happy and content, and can
do many fine things.

Most of us mortals cannot inhabit this kingdom directly, and so instead we gain
limited access by choosing a model. As with all attempts at creating paradise down
on earth, this doesn’t entirely succeed. These models are not canonical, different
models come with different pros and cons, and no one model seems to be completely
satisfactory for everything. But such is the price we pay for our mortality. Dan Kan
used to compare choosing a model to choosing coordinates on a manifold, and Jeff
Smith once remarked that model categories give a way of bringing infinity-categorical
phenomena down into the realm of 1-categories. These are good ways of thinking
about the situation.

As one reaches for more and more sophisticated structures, any fixed model seems
to inevitably run its course. Early models of spectra adequately capture the homotopy
category but fail to admit a point-set-level smash product. Other models capture the
smash product but fail to give an adequate theory of commutative ring spectra, or of
equivariant spectra. Recent work [221] suggests that none of the existing models can
handle coalgebra spectra correctly. The homotopy theorists’ version of Murphy’s Law
is that after choosing any particular model for spectra, a topologist will eventually
want to do something where the model seems to get in the way and make things
harder than they should be.

This picture so far gives a somewhat skewed view, because the heavenly paradise
is not always one’s main goal. Down here on earth we have concrete objects like
manifolds, chain complexes, and differential graded algebras, and often at the end
of the day we are trying to prove theorems about these concrete things. The more
one ascends into the heavens, the more blurred these objects become in their very
existence. It is not always clear what infinity-categorical theorems are actually saying
about our concrete objects, and this is another place where model categories turn out
to be helpful. In addition to giving us a view into heavenly realms, model categories
are also a tool for taking theorems from those realms and applying them down here
on earth.

3.1.2 Where do models come from?

There is no one answer to this question, but the following schema covers very many
cases. Recall that for any two objects X and Y in a “homotopy theory” there is a
homotopy mapping space hMap(X,Y ), well-defined up to weak homotopy equivalence.
If X and X ′ are related in some homotopy-theoretic sense, then there will be some
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corresponding relation between hMap(X,Y ) and hMap(X ′ ,Y ). The simplest example
is that if there is a map X→ X ′ then there should be an associated hMap(X ′ ,Y )→
hMap(X,Y ).

If C is a collection of “test objects” in our homotopy theory, we can attempt
to understand an object Y by remembering the collection of all function spaces
hMap(U,Y ) for U ∈ C. That is, we understand Y by remembering how all of our test
objects map into it. That’s the basic idea. If there are some relations between our test
objects, we should remember the corresponding relations between our mapping spaces.
In this way we are attempting to model our homotopy theory as certain functions
C → Top. Often C will be a category, and so we actually look at functors Cop→ Top.

For example, the homotopy theory of spectra should have objects S−n for n ≥ 0,
together with equivalences Σ(S−n) ' S−(n−1). If we take these as our test objects, then
a spectrum Y will be modeled by the collection of spaces Yn = hMap(S−n,Y ) together
with the relations ΩYn ' Yn−1. In this way we arrive at the classical definition of an
Ω-spectrum.

Instead of starting with the objects S−n we could just start with S−1 together with
the spectra In = (S−1)∧(n). The symmetric group Σn acts on In, and so there will be an
induced action on the function complexes Map(In,Y ). This perspective leads directly
to the notion of a symmetric spectrum.

Likewise, the fact that the orthogonal group O(n) acts on Sn might lead one to
believe that it should also act on S−n, in which case there would be an induced
action of O(n) on Yn = Map(S−n,Y ). Thus one is led to the notion of an orthogonal
spectrum.

3.1.3 The smash product

Let’s go back to the most basic model of a spectrum: a collection of pointed spaces
Xn for n ≥ 0 with structure maps σn : S1∧ Xn → Xn+1. Given spectra X and Y ,
how could we make a spectrum that deserves to be called X ∧ Y ? In level 0 there
is only one thing that makes sense, which is X0 ∧Y0. We will need a structure map
Σ(X0∧Y0)→ (X∧Y )1, and there are two obvious choices: we could use σX to get into
X1∧Y0, or we could use σY to get into X0 ∧Y1. There is no reason for choosing one
over the other, so let’s randomly choose (X∧Y )1 = X0∧Y1. Similar reasoning leads to
choices for (X∧Y )n for each n, and it’s not hard to believe that we will be fine as long
as we don’t keep making the same choice over and over again: that is, we should make
sure to use each of σX and σY infinitely many times. These considerations do indeed
produce a spectrum X ∧Y , but because of all the choices it is far from canonical. In
fact we have an uncountable collection of models for X ∧ Y . In the old days these
were called handcrafted smash products. One can prove that they all are homotopy
equivalent, thereby giving a well-defined smash product on the homotopy category,
but clearly this is not a very good state of affairs. Still, this at least shows immediately
that there is some kind of smash product around.

Rather than constructing X∧Y by making these arbitrary choices, another approach
is to build all the choices into the spectrum from the beginning. All the modern
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incarnations of the smash product involve some form of this, but let us start by
exploring the most naive. We still take (X ∧Y )0 = X0 ∧Y0, but now for (X ∧Y )1 we
might first make the guess (X0 ∧Y1)∨ (X1∧Y0). The suspension operators σX and
σY then take us into opposite wedge summands, which is no good, so we fix this by
identifying them in an appropriate way:

(X ∧Y )1 = pushout of [X0 ∧Y1 S1∧ (X0 ∧Y0)oo // X1∧Y0 ] ,

where the maps are the evident ones coming from σY and σX . Note that the left-
pointing map must involve the twist map, used to commute the S1 and the X0. We
leave the reader to derive the definition for (X ∧Y )n for n ≥ 2, along the same lines.

This definition does not give us what we want, but it is informative to see why. The
first problem one encounters is that the sphere spectrum S is not a unit (recall that
S is the suspension spectrum of S0). To see this, let us compute S ∧ S . One readily
checks that (S∧S)0 = S0 and (S∧S)1 = S1, but (S∧S)2 is the colimit of the diagram

(S0 ∧ S2) (S1∧ S1) (S2 ∧ S0)

S1∧ (S0 ∧ S1)

γ 44γhh

S1∧ (S1∧ S0)

−γjj γ 66

S1∧ S1∧ (S0 ∧ S0)

id∧γ 44id∧γjj

Replacing each parenthesized (S i∧Sj ) in the diagram with (Xi∧Yj ) gives the diagram
for (X∧Y )2 and helps one understand the various maps. Each map in the diagram uses
associativity, twist, and the structure maps from S in the evident way — for example,
the left map in the bottom row commutes the second S1 past the S0 and then uses
the structure map on the rightmost two terms. Upon analyzing these maps, one finds
that they are all canonical identifications (labeled γ in the diagram), except for one:
this last map involves the twist map on S1 and so ends up being −γ . Consequently,
the colimit of this diagram is the coequalizer of (id,−id) : S2⇒ S2, which is RP 2. So
we see that S ∧ S , S .

Exercise 3.1.2 . For an arbitrary spectrum Y , convince yourself that under the above
definition (S ∧Y )2 is the colimit of the following diagram:

S1∧ S1 ∧Y0

t∧id
��

id∧σ // S1∧Y1
σ // Y2

S1∧ S1∧Y0

id∧σ

88

Working through the simple example preceding Exercise 3.1.2 already suggests the
key for fixing the situation. The problem is that we are not keeping track of the “twists”
that occur when we apply our structure maps, so we need to build in some machinery
for doing so. This is what symmetric spectra do, by building in symmetric groups.
In symmetric spectra, (X ∧ Y )2 is made from X0 ∧ Y2, X2 ∧ Y0, and two copies of
X1∧Y1 (indexed by the elements of the symmetric group Σ2), and then one quotients
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by the same kind of relations we saw above. This fixes the problem. See Section 3.7.2
to find this worked out in detail.

Orthogonal spectra solve the problem in an even more elegant way (though secretly it
is really the same way). Here spectra are indexed on the category of finite-dimensional
inner product spaces, and the direct sum operation on this category already has twist
maps built into it. If X is an orthogonal spectrum then XV⊕W and XW⊕V are different
objects, though the twist t : V ⊕W →W ⊕V gives a homeomorphism between them.
The moral here is that indexing things on inner product spaces forces one to keep
track of the relevant twists in the very notation.

There is another way to see that symmetric groups should come into the picture.
Let us imagine that we have a homotopy theory of spectra (off in some shangri-la)
and we are attempting to model spectra X by the collection of mapping spaces
Xn = Map(I∧(n),X) where I is a model for S−1. We need to ask ourselves: if we have
all the {Xn} and all the {Yn}, what is the best we can do in terms of approximating the
spaces {(X ∧Y )n}? Clearly if p+ q = n we will have maps

Map(I∧(p),X)∧Map(I∧(q),Y )→Map(I∧(p+q),X ∧Y ) = Map(I∧(n),X ∧Y ) (3.1.4)

induced by the shangri-la smash product. However, this kind of process only gives
maps I∧(n)→ X ∧Y which send the first set of “coordinates” into X and the second
set into Y . Not all maps will look this way! Indeed, the action of Σn on I∧(n) induces
an action on Map(I∧(n),X ∧ Y ) and lets us scramble the “coordinates” any way
we want. This suggests, though, that if we use the maps in (3.1.4) together with a
superimposed symmetric group action, then we might get a sensible approximation to
Map(I∧(n),X ∧Y ). This leads us to write down the space[ ∨

p+q=n
(Σn)+ ∧Σp×Σq (Xp ∧Yq)

]/
∼

as a model for Map(I∧(n),X ∧ Y ), where the equivalence relation just comes from
thinking about the evident ways that the maps (3.1.4) interact with symmetric group
actions and the structure maps. We have just invented the smash product for symmetric
spectra!

3.1.5 Coordinate-free spectra

The world of classical spectra provides inverses (under the smash product) for the
standard spheres Sn. If V is a finite-dimensional real vector space then its one-point
compactification SV is isomorphic to SdimV , and so of course SV has an inverse in this
world as well. But this inverse is not canonical, because the isomorphism V �R

dimV

is not canonical. This might seem like a small point, but in some constructions (like
Pontryagin–Thom) it is very convenient to have a canonical inverse for SV .

A larger issue arises in the setting of G-equivariant homotopy theory. Here one has
different spheres SV for each finite-dimensional G-representation V , so to introduce
inverses for these it is not enough to just work with the standard spheres Sn. Thus, for
various reasons we are led to the need for a notion of “coordinate-free” spectra.
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The first idea of what a coordinate-free spectrum should be is an assignment
V 7→ XV that sends every finite-dimensional vector space to a pointed space. For
V ⊆W there should be structure maps S?? ∧XV → XW , but already one runs into
trouble as far as what sphere to put in the domain. This sphere should be related
to the complement of V in W , but there is no canonical such complement. To get
around this, we assume that the vector spaces have inner products on them so that we
can take orthogonal complements. If W −V denotes the orthogonal complement of V
in W , then our structure map should have the form SW−V ∧XV → XW .

Finally, since the collection of all finite-dimensional inner product spaces is not a
set, we prefer to set things up so that there is an intrinsic bound to where these live —
an underlying “universe”. To be precise, define a May universe to be a real inner
product space of countably infinite dimension. Any universe U is isometric to R

∞

with the dot product, but not canonically. Then a coordinate-free spectrum on U

is defined to be an assignment V 7→ XV for finite-dimensional V ⊆ U, together with
maps SW−V ∧XV → XW for every pair V ⊆W ⊆ U. These must satisfy some evident
unital and associativity conditions.

Example 3.1.3. The definitions of some familiar classical spectra immediately generalize
to give coordinate-free spectra:

(a) The sphere spectrum is V 7→ SV .
(b) If A is an abelian group, the Eilenberg–MacLane spectrum HA is the spectrum

V 7→ C(SV ;A) where for any pointed space X the space C(X;A) is the Dold–
Thom space of finite configurations of points on X labeled by elements of A.

(c) The real cobordism spectrum MO is V 7→ Th(EO(V ) ×O(V ) V → BO(V )),
where O(V ) is the group of isometries of V (with its natural topology) and
Th(E → B) is the Thom space. This is also commonly written in the form
V 7→ EO(V )+ ∧O(V ) S

V .

For orthogonal spectra, it is important that we are able to form the direct sum of our
inner product spaces. That is to say, if X is an orthogonal spectrum we need XV⊕W
to make sense when XV and XW do. For this reason we cannot restrict ourselves to
subspaces of a universe U anymore. To avoid set-theoretical issues we must either fix
a small skeletal subcategory of the category of finite-dimensional inner product spaces,
or else fix some Grothendieck universe at the very beginning. See Remark 3.5.4 for
more details.

3.1.6 Rings, modules, and algebras

Let (C,⊗,S) be a symmetric monoidal category. A monoid in C is an object R together
with a unit map S→ R and a product R⊗R→ R satisfying the evident associativity
and unital actions. A monoid in (Ab,⊗,Z) is just a ring, and for this reason we will
sometimes call monoids in other symmetric monoidal categories “rings” as well.

If R is a ring in C then one likewise has notions of left and right R-modules, and if
R is a commutative ring then one can talk about R-algebras. The definitions are all
the obvious ones.
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In the 1970s, after Boardman had constructed the symmetric monoidal structure
on Ho(Spectra), one could apply the above ideas and talk about ring- and module-
spectra. Nowadays these would probably be called “homotopy ring spectra”, or “naive
ring spectra”, to differentiate them from more rigid notions. Suppose that R is one of
these homotopy ring spectra and that f : M → N is a map of left R-modules. One
would like for the homotopy cofiber Cf to be again a left R-module in a canonical
way, but this doesn’t work out. Try it: there is a diagram in the homotopy category
that looks like

R∧M //

��

R∧N //

��

R∧Cf

M // N // Cf

and both rows are homotopy cofiber sequences, so there does indeed exist an extension
µ : R∧Cf → Cf (apply [−,Cf ] to the top cofiber sequence and use the resulting
long exact sequence). However, the homotopy class of µ is not unique and moreover
one cannot prove that µ satisfies the necessary associativity condition.

So this is a deficiency. Using the naive definitions of rings and modules in
Ho(Spectra) does not lead to a situation where we can do homotopy theory for
R-modules. The problem is the usual one: the homotopy category itself is not robust
enough for most purposes. The above problem with cofibers is coming from the fact
that the homotopy category doesn’t have colimits.

This was one of the motivations for desiring a symmetric monoidal smash product
on the model category level. Assuming that one has a model category Spectra with a
smash product that commutes with colimits in either variable, it follows at once that
colimits of left R-modules are again left R-modules in a canonical way. One would
hope that the adjoint functors

R∧ (−) : Spectra� R--Mod: U

would lift the model category structure on Spectra to a corresponding model structure
on the category of left R-modules. Similarly, if R is a commutative ring spectrum
then one might hope for a model category structure on R-algebras, and also one on
commutative R-algebras.

In short, the hope would be that the model structure on Spectra could be passed to
various categories of algebraic structures on spectra. This basically works out, but it
doesn’t work out for free. One approach was developed in [94] for topological model
categories where all objects are fibrant, which reduced things down to their so-called
“Cofibration Hypothesis”. For more general model categories another approach was
developed by Schwede–Shipley [267], who identified the need for a separate axiom
they called the “Monoid Axiom”. The Monoid Axiom is one of those things that is
safely left under the hood on regular days, but that one needs to be prepared to play
with when the car breaks down.

We discuss the Monoid Axiom and its applications to model categories of modules
and algebras in Section 3.3.2.
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3.1.7 The Lewis enigma

In 1991, before the advent of the modern categories of spectra, Lewis discovered
an argument showing that some of the expected properties of such categories were
mutually inconsistent [156]. It is worth understanding this argument not only to see
how the modern categories of spectra interface with it, but also because this same
argument explains some of the complications in various theories of commutative ring
spectra.

Let S be a category with the following properties:

(A1) There exists a symmetric monoidal functor ∧ : S× S→ S.
(A2) There exists an adjoint pair Σ∞ : Top∗� S : Ω∞.
(A3) There is a natural transformation

ηX,Y : Σ∞(X ∧Y )→ Σ∞X ∧Σ∞Y

that is compatible with the associativity and commutativity isomorphisms for
(Top∗,∧) and (S,∧).

(A4) Σ∞S0 is the unit for ∧, and η is compatible with the unital isomorphism.
(A5) There is a natural weak equivalence Ω∞Σ∞X 'QX, where as usual one defines

QX = hocolimnΩ
nΣnX.

Putting X =Ω∞E and Y =Ω∞F into (A3) and using the counit of the adjunction
gives a natural transformation εE,F : Ω∞E ∧Ω∞F→Ω∞(E ∧ F), and this will also
be compatible with the associativity and commutativity isomorphisms.

Given such a category, set S = Σ∞S0. The unit isomorphism S ∧ S → S makes
S into a commutative ring spectrum. Then ε : Ω∞S ∧Ω∞S → Ω∞S makes Ω∞S
into a commutative monoid. So its identity component is a generalized Eilenberg–
MacLane space. But this contradicts (A5), which says Ω∞S = Ω∞Σ∞S0 ' QS0. So
the conclusion is that (A1)–(A5) are mutually incompatible.

Symmetric and orthogonal spectra satisfy (A1)–(A4), but get around the problem
via the failure of (A5). Here Σ∞S0 is not fibrant and so Ω∞Σ∞S0 has the “wrong”
homotopy type; said differently, (A5) must be modified to say that Ω∞FΣ∞X 'QX,
where F is a fibrant replacement functor.

The EKMM setup gets around this problem by having two sets of adjoint functors,
called here (Σ∞S ,Ω

∞
S ) and (Σ∞,Ω∞) (see Section 3.9 for more details). There is a

natural transformation Σ∞S → Σ∞ that is a weak equivalence on cofibrant pointed
spaces, and there is its adjoint Ω∞ → Ω∞S . The pair (Σ∞S ,Ω

∞
S ) is the one with

homotopical meaning (it turns out to be a Quillen pair, with the right model category
structures), whereas (Σ∞,Ω∞) is the one with the good monoidal properties. So Σ∞

satisfies (A3) and (A4), but Ω∞Σ∞ does not satisfy (A5); whereas Ω∞S Σ
∞
S satisfies (A5),

but Σ∞S does not satisfy (A3) and (A4).
Returning to the simpler setting of symmetric spectra, replacing (A5) with its

derived version is not the end of the story. Even with this modified (A5), Lewis’s
argument shows that if R is a fibrant spectrum with a commutative and associative
product then Ω∞R (which is already appropriately derived) must be a generalized
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Eilenberg–MacLane space. This is obviously a matter of concern, since we would like
spectra such as S, K , MO, and MU to have models which are commutative ring
spectra on the nose. That is not prohibited, but such models cannot also be fibrant in
the usual model structure for symmetric (or orthogonal) spectra. The standard way
for dealing with this is to use a different model structure called the positive model
category structure. We will discuss this briefly in Section 3.10.5.

3.1.8 Organization of the chapter

We assume a basic familiarity with model categories, as provided by sources like [91],
[124], [130], and [229]. See also Chapter 2 of this volume. Specifically, we assume the
reader is familiar with the model category axioms, cylinder and path objects, the
homotopy category, Quillen functors, derived functors, the small object argument,
simplicial model categories, and the notion of cofibrant-generation.

We occasionally assume the reader has a passing acquaintance with the classical
aspects of spectra and their connection to (co)homology theories, as represented for
example in any of [1], [2, Part III], and [288].

We also assume the reader has a basic knowledge of closed symmetric monoidal
categories; MacLane’s book [174] is a good source. Finally, we use enriched categories
to a certain extent. Not much more is needed than the basic definition and the notion
of enriched functor, which are essentially obvious; but consult [148] for any needed
background here.

With homotopy-theoretic machinery, there is the usual issue of whether to take
as foundation simplicial sets or topological spaces. For the most part we have tried
to present results in a way that applies to either situation, but this is not always
convenient. To avoid having to constantly work in two situations at once, we choose
topological spaces as our main framework. The reader who prefers to work simplicially
should be able to make the necessary modifications to the exposition with little trouble.

3.1.9 Notation and terminology

When C is a category we write C(X,Y ) for HomC(X,Y ). If C is a category enriched
over some symmetric monoidal category V, we write C(X,Y ) for the corresponding
V-mapping object. We write Top∗ for the category of pointed topological spaces. We
fix S1 = I/∂I and define Sn = S1∧ (S1∧ (S1∧ (· · · ∧ S1))).
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3.2 Stable model categories

A model category is called stable when the suspension functor is a self-equivalence
on the homotopy category. The homotopy categories of stable model categories enjoy
several nice properties: they are additive, triangulated, and the notions of homotopy
cofiber and fiber sequences are the same. These simply stated facts take a nontrivial
amount of effort to set up and prove carefully. Most of Chapters 6 and 7 of [130] are
devoted to this. We aim to give a quick tour for those who are new to this machinery,
partly because the depth of the results in [130] make them a bit of a maze. We hope
the treatment here can serve as a guide through that material.

A category M is called pointed if it has an initial object, a terminal object, and the
two are isomorphic. Quillen [229, Chapter I.2] showed that if M is a pointed model
category then the homotopy category Ho(M) comes equipped with a special pair of
adjoint functors

Σ : Ho(M)�Ho(M) : Ω,

called suspension and loop functors. If X is a cofibrant object, factor X → ∗ as
X� CX −�∼ ∗. Then ΣX can be defined to be the pushout of ∗ ← X→ CX. Likewise,
if Z is a fibrant object then factor ∗ → Z as ∗�∼ P Z � Z and define ΩZ as the
pullback of ∗ → Z← P Z . It is easy to show that these homotopy types do not depend
on the choice of CX or P Z, and moreover that these definitions extend to give the
desired functors. (Note that “C” and “P ” stand for “cone” and “path object”).

Let X be cofibrant and consider the diagram

CX

'
��

Xoooo // // CX

∗ X // //oo CX

Taking pushouts gives a map CXqXCX→ ΣX, and the model category axioms force
this to be a weak equivalence (see [232, Corollary to Theorem B]). But collapsing X
gives CXqX CX→ ΣX ∨ΣX, and so we have constructed a map ΣX→ ΣX ∨ΣX
in Ho(M). A little work shows that this makes ΣX into a cogroup object in Ho(M),
and that Σ2X is a cocommutative cogroup object. Similarly, when Y is fibrant, ΩY is
a group object in Ho(M) and Ω2Y is a commutative group object. It follows that
[Σ2X,Z] and [A,Ω2Y ] have natural structures of abelian groups, where from now on
we will write [−,−] for maps in Ho(M).

Definition 3.2.1. A pointed model category M is called stable if the suspension
functor Σ : Ho(M)→Ho(M) is an equivalence of categories.

The (Σ,Ω) adjunction shows that it is equivalent to require thatΩ be an equivalence.
Moreover, when M is stable the functors Σ and Ω will be inverses. The following is
an easy exercise:

Proposition 3.2.2. Let M be a pointed model category. The following conditions are
equivalent:
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(a) M is stable.

(b) For all objects X and Y the maps ΣΩX→ X and Y →ΩΣY are isomorphisms in
Ho(M).

If M is a stable model category then every object in Ho(M) is a double suspension
(and a double loop space), and so the hom sets are all abelian groups and composition
is additive in both variables. The homotopy category inherits coproducts and products
from M, so Ho(M) is additive. In particular, it follows formally that the canonical
map i : A ∨ B → A × B is an isomorphism in Ho(M). We recall the brief proof:
If jA : A→ A∨B and πA : A×B→ A are the canonical inclusions and projections,
then jAπA + jBπB is a two-sided inverse to i.

When M is a pointed model category Quillen also showed that Ho(M) comes
equipped with special “triangles” called homotopy fiber and cofiber sequences. An
Ω-triangle is a diagram ΩC→ A→ B→ C in Ho(M) such that the composition of
any two maps is zero, and a Σ-triangle is a diagram A→ B→ C → ΣA with the
same property. A map of Ω-triangles is a commutative diagram

ΩC //

Ωh
��

A //

f
��

B //

g
��

C

h
��

ΩC′ // A′ // B′ // C′

and an isomorphism of Ω-triangles is a map where all the vertical maps are isomor-
phisms. We use similar notions for maps and isomorphisms of Σ-triangles.

Exercise 3.2.3 . Check that changing the signs of two maps in an Ω-triangle (or
Σ-triangle) produces an isomorphic triangle.

If p : X� Y is a fibration between fibrant objects, there exists a lifting in the square

∗ //
��

'
��

X

����

P Y

λ
==

// Y

and therefore an induced map ΩY → F, where F is the fiber of X� Y . We leave it
as an exercise to check that a different choice for λ gives the same map ΩY → F in
Ho(M). The Ω-triangle ΩY → F→ X→ Y is called the homotopy fiber sequence
corresponding to p. More generally:

Definition 3.2.4. An Ω-triangle is called a homotopy fiber sequence if it is iso-
morphic to the homotopy fiber sequence corresponding to some fibration between
fibrant objects p : X→ Y .

Remark 3.2.5 . It is a common abuse of terminology to say things like “F→ X→ Y
is a homotopy fiber sequence”, leaving the map ΩY → F implicit.

We leave the reader to write down the dual notion of a homotopy cofiber sequence,
which yields a special class of Σ-triangles.
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Remark 3.2.6 . In addition to the map ΩF→ Y we constructed above, one can show
that there is a map γ : ΩF×Y → Y giving an action of ΩF on Y in Ho(M). Our map
ΩF → Y is the restriction of γ along ΩF × ∗ →ΩF × Y . The notion of “homotopy
fiber sequence” should really include this map γ as part of the data. But when M

is stable ΩF ∨ Y → ΩF × Y is an equivalence, and the restriction of γ to the Y
summand is just the identity. So in this case there is no more information in γ than
in our map ΩF→ Y . We refer to [130, Chapter 6.3] or [229, Chapter I.3] for careful
studies of homotopy fiber and cofiber sequences in the unstable setting.

From now on assume that M is stable. The first result about homotopy cofiber and
fiber sequences is the following:

Proposition 3.2.7. Let M be a stable model category and let T be any object.

(a) For any homotopy fiber sequence ΩY → F→ X→ Y , the induced sequence of abelian
groups

[T ,ΩY ]→ [T ,F]→ [T ,X]→ [T ,Y ]

is exact at the two middle spots.

(b) For any homotopy cofiber sequence A→ B→ C→ ΣA, the induced sequence of abelian
groups

[ΣA,T ]→ [C,T ]→ [B,T ]→ [A,T ]

is exact at the two middle spots.

If X −→f Y −→g Z −→h ΣX is a homotopy cofiber sequence, we get associated maps

ΩZ −→Ωh ΩΣX � X and Y −→g Z � ΣΩZ,

where the two isomorphisms are the unit and counit of the Σ−Ω adjunction. One
might expect the evident sequence ΩZ→ X→ Y → ΣΩZ made from these maps to
be a homotopy cofiber sequence, but this is not correct — there is a sign issue. To get
a homotopy cofiber sequence one must negate one of the maps.

The following proposition gives several results of this form. Rather than give names
to all the maps, we adopt the convention that a minus sign by itself means “take the
negative of the evident map one would get by using Σ, Ω, and the adjunctions”.

Proposition 3.2.8. Let M be a stable model category.

(a) Given a diagram in Ho(M) of the form

A //

��

B //

��

C // ΣA

−
��

ΩZ // X // Y // Z

in which the top row is a homotopy cofiber sequence and the bottom row is a homotopy
fiber sequence, there is a map C→ Y making the diagram commute.
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(b) Given a diagram in Ho(M) of the form

A //

��

B // C //

��

ΣA

−
��

ΩZ // X // Y // Z

in which the top row is a homotopy cofiber sequence and the bottom row is a homotopy
fiber sequence, there is a map B→ X making the diagram commute.

(c) Given a diagram in Ho(M) of the form

A //

��

B //

��

C // ΣA

��

A′ // B′ // C′ // ΣA′

in which both rows are homotopy cofiber sequences, there is a map C→ C′ making the
diagram commute. The dual statement for homotopy fiber sequences holds as well.

(d) If any of the following Σ-triangles are homotopy cofiber sequences, then so are the others:

(i) X −→ Y −→ Z −→ ΣX, (ii) Y −→ Z −→ ΣX −→− ΣY

(iii) ΣX −→ ΣY −→ ΣZ −→− Σ2X, (iv) ΩZ −→− X −→ Y −→ ΣΩZ .

(e) If any of the following Ω-triangles are homotopy fiber sequences, then so are the others:

(i) ΩZ −→ X→ Y −→ Z, (ii) ΩY −→− ΩZ −→ X −→ Y ,

(iii) Ω2Z −→− ΩX −→ΩY −→ΩZ, (iv) ΩΣX −→− Y −→ Z −→ ΣX.

Reading this extensive list of results is a bit tedious, but having it around is very
useful. It captures several of the main points from [130, Chapter 6]. A good (but
challenging) exercise is to try to prove all of these facts from first principles yourself.
If you get stuck, parts (a) and (b) are the content of [130, Proposition 6.3.7], and (c)
is [130, Proposition 6.3.5]. The equivalence of (i) and (ii) in parts (d,e) is covered in
[130, Proposition 6.3.4], and the equivalence with (iii) comes from repeatedly applying
(i) ⇐⇒ (ii) and using Exercise 3.2.3. Finally, the equivalence with (iv) is an easy exercise
using the other parts.

Remark 3.2.9 . Although it is necessary to get the signs right in cofiber or fiber se-
quences, in practice one almost always passes at some point to a long exact sequence
of homotopy classes. In these long exact sequences, one can indiscriminately alter
the signs on the maps without changing exactness. This is why one can sometimes
get away with a cavalier attitude about some of these sign issues.

Part (c) of the following result is a lynchpin of the theory of stable model categories.
It is often phrased colloquially as saying that in a stable model category the classes of
homotopy fiber sequences and homotopy cofiber sequences are the same. We include
the proof here because of the key nature of the result, and because it takes a bit of
work to extract it from [130].

Proposition 3.2.10. Let M be a stable model category.
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(a) If X→ Y → Z→ ΣX is a homotopy cofiber sequence and T is any object, then

[T ,X]→ [T ,Y ]→ [T ,Z]→ [T ,ΣX]

is exact in the middle two spots.
(b) More generally, given a homotopy cofiber sequence X−→f Y −→g Z−→h ΣX and an object T,

· · · → [T ,ΩY ]→ [T ,ΩZ]→ [T ,X]→ [T ,Y ]→ [T ,Z]→ [T ,ΣX]→ ·· ·

is a long exact sequence, where each map is the obvious one obtained by applying Σ and
Ω to f , g , or h and (if necessary) using the unit and counit of the adjunction.

(c) The triangle ΩZ −→ X −→ Y −→ Z is a homotopy fiber sequence if and only if
ΩZ −→ X −→ Y −→− ΣΩZ is a homotopy cofiber sequence, or equivalently if and only
if X −→ Y −→ Z −→ ΣX is a homotopy cofiber sequence.

Proof. Denote the maps by X −→f Y −→g Z −→h ΣX. For (a), suppose u : T → Y is such
that gu = ∗ (we work always in the homotopy category). Rotate the cofiber sequence
and construct the following diagram:

Y
g
// Z

h // ΣX
−Σf
// ΣY

T

u

OO

// ∗ //

OO

ΣT
id // ΣT

Σu

OO

Both rows are homotopy cofiber sequences, so by Proposition 3.2.8(c) there is a fill-in
v : ΣT → ΣX. But Σ : [T ,X]→ [ΣT ,ΣX] is an isomorphism, so let v̄ be a preimage
of v. Then f ◦ v̄ = −u, so −v̄ is the desired lift of u in our sequence. Exactness at
[T ,Z] can be proven by rotating the homotopy cofiber sequence and then applying
what we just proved.

Part (b) is a direct consequence of (a) and stability. We can iteratively rotate the
homotopy cofiber sequence to get the Puppe sequence

X −→ Y −→ Z −→ ΣX −→− ΣY −→− ΣZ −→− Σ2X −→ ·· ·

(where each four terms are a homotopy cofiber sequence), and then apply [T ,−]. But
we can also apply [ΣT ,−] and then use both adjunction and stability to rewrite this as

[T ,ΩX]→ [T ,ΩY ]→ [T ,ΩZ]→ [T ,X]→ ·· ·

Similarly, we repeatedly extend the long exact sequence to the left by applying
[ΣNT ,−] to our Puppe sequence. The signs can be neglected because leaving them off
does not change exactness.

For (c) we just prove one direction as the other is similar. Assume given that
ΩZ −→ X −→ Y −→− ΣΩZ is a homotopy cofiber sequence. Let ΩZ→ F→ Y → Z
be a homotopy fiber sequence and consider the diagram

ΩZ //

id
��

X // Y
− //

id
��

ΣΩZ

−
��

ΩZ // F // Y // Z
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By Proposition 3.2.8(b) there is a fill-in u : X → F. Now let T be any object and
consider the diagram below:

[T ,ΩY ] //

id
��

[T ,ΩZ]

id
��

// [T ,X]

u∗
��

// [T ,Y ]

id
��

− // [T ,ΣΩZ]

− �
��

[T ,ΩY ] // [T ,ΩZ] // [T ,F] // [T ,Y ] // [T ,Z]

Here we have mostly just applied [T ,−] to our diagram in Ho(M), but we have used
(b) to extend the top sequence to the left by one term. The top row is exact by (b),
and the bottom row is exact by Proposition 3.2.7(a). The Five Lemma then implies
that u∗ is an isomorphism. Since this holds for all T we conclude that u itself was an
isomorphism.

Finally, consider the commutative diagram

ΩZ //

id
��

X //

u
��

Y //

id
��

Z

id
��

ΩZ // F // Y // Z

The bottom row was a homotopy fiber sequence by construction, and u is an isomor-
phism, so the top row is a homotopy fiber sequence as well.

For the last statement in (c), use Proposition 3.2.8(d).

We refer the reader to [297, Chapter 10.2] for the axioms of a triangulated category.
The culmination of the above line of work is the following:

Proposition 3.2.11. Let M be a stable model category. Then the suspension functor and
the class of homotopy cofiber sequences make Ho(M) into a triangulated category.

Proof. Axiom TR1 is routine, and TR2 is Proposition 3.2.8(d). Axiom TR3 is Proposi-
tion 3.2.8(c). So the only part that requires additional work is TR4, the Octahedral
Axiom. The main point of this final axiom is to relate the homotopy cofiber sequence
for a composition f g to the homotopy cofiber sequences for f and g . The reader can
find a proof of this axiom (in the unstable version) in [130, Proposition 6.3.6].

3.3 Monoidal machinery

This section concerns categorical (and model categorical) material that is not specific
to the theory of spectra, mostly centering around monoidal structures. We survey
some basic facts about monoidal categories and monoidal model categories, as well as
invertible objects.

3.3.1 Sufficiently combinatorial model categories

A common issue in model categories is that one wants to take a model structure on a
given category M and produce an associated model structure on a related category
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M′ . The first example is where M′ is diagrams (of a fixed shape) inside of M, but we
will see others as well. There are almost no general theorems along these lines; in most
cases some extra structure is required on M or M′ or both. These structures typically
take the form of sets of generating maps where the domains and codomains satisfy
certain smallness properties — whatever one needs to run the small object argument.

The first notion of this type is that of a cofibrantly generated model category; see
[124]. This notion works well for some purposes, but is too weak for others. Later
notions are that of a cellular model category (also in [124]), and Jeff Smith’s notion of a
combinatorial model category. A combinatorial model category is one that is cofibrantly
generated and where the underlying category is locally presentable; see [35] and [77]
for written accounts. The combinatorial setting is especially appealing, because here
all objects are small (with respect to large enough cardinals) and this property passes
to most associated categories.

Most model categories built in some way starting from sSet or Top are cofibrantly
generated, and the ones built from sSet are almost all combinatorial. Jeff Smith
observed that one can make combinatorial forms of Top-based model categories by
replacing Top with the category of ∆-generated spaces.

In this chapter we will sometimes want to phrase results in a way that applies both
to categories of spectra based on simplicial sets and those made from topological
spaces. The safe thing is to always assume the categories in question are combinatorial,
but this does not apply to the category of compactly generated spaces used in [94].
To cut the Gordian knot, we will use the phrase sufficiently combinatorial as an
intentionally imprecise stand-in for “assume enough hypotheses so that the smallness
conditions necessary for the arguments actually work”.

3.3.2 Monoids and models

Let (M,⊗, I) be a monoidal category (I is the unit). Recall that a monoid in this
category is an object R together with unit map I → R and multiplication R⊗R→ R
satisfying the evident axioms. The monoids in (Ab,⊗,Z) are usually called rings, and
in stable homotopy contexts the monoids are often called rings as well. For this reason
we will use the word “ring” as a synonym for “monoid”, although the latter is really
the correct term.

If R is a ring in M, a left R-module is an object X together with a map R⊗X→ X
satisfying the evident axioms. One similarly defines right-modules and bimodules.
By convention, we mean “left R-module” whenever we say “R-module” without
qualification. Recall that if M is a right R-module and N is a left R-module then
one defines M ⊗R N to be the coequalizer (if it exists) of the two action maps
M ⊗R⊗N ⇒M ⊗N .

When M is a symmetric monoidal category we can talk about commutative rings in
M, and for such rings there is an evident way of turning any left module into a right
module, and vice versa. If R is a commutative ring then we define an R-algebra to be
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a ring map f : R→W such that R is central in W , meaning that the diagram

R⊗W

t

��

f ⊗id
// W ⊗W µ

** W

W ⊗R
id⊗f

// W ⊗W µ

44

is commutative. Observe that if M has coproducts and the tensor distributes over
them, then we have the expected “tensor algebra” functor T : R--Mod→ R--Alg given
by T (V ) = Rq V q (V ⊗R V )q ·· · with the evident multiplication. This gives an
adjoint pair T : R--Mod� R--Alg: U , where U is the forgetful functor.

We will be interested in the question of when certain structures on M pass to the
category of R-modules. For example, if M is complete then so is R--Mod. To see
this, let {Mα} be a diagram of R-modules and write limαMα for the limit in M. The
canonical map R⊗ (limαMα)→ limα(R⊗Mα) makes limαMα into an R-module,
and one readily checks that this has the properties of the limit in the category R--Mod.
To say the same thing in fancier language, the forgetful functor U : R--Mod→M is
right adjoint to the free R-module functor X 7→ R⊗X and therefore preserves all limits.

The situation for colimits is a little more challenging. Here the canonical map
colimα(R⊗Mα)→ R⊗ colimαMα goes in the wrong direction, and so does not give
an R-module structure on colimαMα . However, in many cases the functor R⊗ (−)
is a left adjoint and hence preserves colimits; so in these cases the above map is an
isomorphism and everything works as before.

A symmetric monoidal category (M,⊗, I) is called closed if there exists a cotensor
(or “internal hom”) functor F : Mop ×M→M together with natural adjunctions

M(A⊗B,C) �M(A,F(B,C)).

Note that this implies that (−)⊗ (−) commutes with colimits in both variables.

Proposition 3.3.1. Suppose (M,⊗, I ,F) is a closed symmetric monoidal category. Then
both R--Mod and R--Alg are complete and cocomplete.

Proof. We have already discussed the situation for R--Mod. For R--Alg, limits are
created by the forgetful functor U in the adjoint pair T : R--Mod � R--Alg: U .
Colimits in R--Alg are more complicated, but by [53, Proposition 4.3.6] the category is
cocomplete provided that the tensor functor T (−) preserves filtered colimits. The latter
condition is immediate from the fact that ⊗ preserves colimits in each variable.

See Section 5.6 in Chapter 5 of this volume for a more detailed discussion of limits
and colimits in categories of operadic algebras.

We will next discuss the issue of compatibility between a monoidal structure and a
model structure.

Definition 3.3.2. A monoidal model category is a model category M equipped
with a monoidal structure (⊗, I) satisfying the following two axioms:
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(1) [Pushout-Product Axiom] For any two cofibrations f : A� B and j : K � L in
M, the induced map

f � j : (A⊗L)qA⊗K (B⊗K) −→ B⊗L

is a cofibration. Moreover, f � j is a weak equivalence if either f or j is a trivial
cofibration.

(2) [Unit Axiom] There exists a cofibrant replacement QI −→∼ I having the property
that for all cofibrant X the map QI ⊗X→ I ⊗X is a weak equivalence.

The notion of monoidal model category was introduced in [130]. The Pushout-
Product Axiom is analogous to one common form of Quillen’s SM7 axiom for simplicial
model categories; it is the standard axiom for compatibility of a tensor with the model
structure. In the presence of the Pushout-Product Axiom, the Unit Axiom is equivalent
to requiring that every cofibrant replacement QI −→∼ I has the stated property. This
axiom is automatically satisfied if the unit I is itself cofibrant.

It is an easy exercise to verify that in a monoidal model category the derived functor
of ⊗ descends to give a monoidal structure on the homotopy category.

By a closed symmetric monoidal model category we simply mean a monoidal
model category where the underlying monoidal category is symmetric and closed. It is
an easy exercise in adjoint functors to check the following:

Proposition 3.3.3. Let M be a closed symmetric monoidal model category. If f : A� B
and g : X� Y are maps in M then the induced map

F(B,X)→ F(A,X)×F(A,Y ) F(B,Y )

is a fibration, and moreover it is a weak equivalence if either f or g is so.

We next consider when a model category structure on M induces an associated
model structure for R--Mod and for R--Alg. Suppose given a model category M

together with an adjoint pair L : M� N : U . In good cases one can put a model
category structure on N where a map f is a weak equivalence (respectively, fibration)
if and only if Uf is a weak equivalence (respectively, fibration). The cofibrations are
forced to be the maps with the left lifting property with respect to the trivial fibrations,
but often this is about all one can say about them. When such a model structure on N

exists, one refers to it as the model structure created by the right adjoint U .
The main result on such structures is Kan’s Recognition Theorem [124, Theorem

11.3.2], which says that U creates a model structure on N if the following conditions
are satisfied:

(1) M is cofibrantly generated.
(2) The images under L of the generating cofibrations and trivial cofibrations permit

the small object argument.
(3) If J denotes the set of generating trivial cofibrations for M, then U takes all maps

in L̂J to weak equivalences, where L̂J is the class of maps obtained from L(J) by
taking cobase changes and transfinite compositions.
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Conditions (1) and (2) are technical conditions that are always satisfied in the cases of
interest; we will bundle them into the “sufficiently combinatorial” adjective. Condition
(3) is where the real content is.

Let M be a monoidal model category and let R be a monoid in M. Then we have
adjoint functors

M
FR // R--Mod
U

oo

where U is the forgetful functor and FR(X) = R⊗X. If we are lucky, then U will create
a model category structure on R--Mod. Here are some general conditions where this
happens:

Proposition 3.3.4. Let M be a sufficiently combinatorial monoidal model category.

(a) If R is cofibrant in M, then R--Mod has the model structure created by U .
(b) Start with the collection of maps f ⊗ idR : R⊗A→ R⊗ B, where f : A�∼ B is a

trivial cofibration. Let S be the collection of maps obtained from the original collection
using cobase change and transfinite composition. If every element of S is a weak
equivalence, then R--Mod has the model structure created by U .

Proof. In (b), the stated hypothesis exactly verifies condition (3) from Kan’s Recog-
nition Theorem. For (a), the point is that when R is cofibrant the functor R ⊗ (−)
preserves trivial cofibrations by the Pushout-Product Axiom. Since trivial cofibrations
are closed under cobase change and transfinite composition, the condition from (b) is
automatically satisfied.

Now assume that M is a closed symmetric monoidal model category. This allows
us to talk about commutative monoids in M. Let R be a commutative monoid and let
M and N be R-modules (we will identify left and right R-modules, as usual). Define

M ⊗RN = coeq(M ⊗R⊗N ⇒M ⊗N ),

where the two maps in the coequalizer come from the R-module structures on M
and N . Then ⊗R is a symmetric monoidal product on R--Mod with unit R. Likewise,
define

FR(M,N ) = eq(F(M,N )⇒ F(R⊗M,N )),

where the two maps in the equalizer are the adjoints to the two evident maps
F(M,N )⊗R⊗M→N (twist-evaluate-multiply and multiply-evaluate). It follows by
quite general considerations that these definitions give a closed symmetric monoidal
structure on R--Mod with unit R. We can hope that this makes R--Mod into a closed
symmetric monoidal model category.

Finally, let us turn to algebras. If R is a commutative monoid in M then we have
the adjoint functors TR : R--Mod� R--Alg: U . We can again hope that U creates a
model structure on R--Alg.

We now bundle all of these “hopes” into the following definition:
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Definition 3.3.5. Let M be a closed symmetric monoidal model category. We say
that M satisfies the Algebraic Creation Property if

(1) for every monoid R in M, the forgetful functor R--Mod→ M creates a model
structure on M;

(2) when R is a commutative monoid, ⊗R and FR(−,−) make R--Mod into a closed
symmetric monoidal model category; and

(3) when R is a commutative monoid, the forgetful functor R--Alg→ R--Mod creates
a model structure on R--Alg.

There are essentially two separate circumstances where the Algebraic Creation
Property is known to hold. The first is when all objects of M are fibrant, and a few
other conditions are satisfied — this kind of case was treated in [94, Chapter VII],
though some of the ideas go back as far as [229]. When it is not true that all objects
of M are fibrant, the situation is more delicate; it was first analyzed in [267]. The
following proposition, though somewhat awkward, brings together these different
threads.

Proposition 3.3.6. Let (M,⊗, I) be a symmetric monoidal model category that is suffi-
ciently combinatorial and consider the following hypotheses:

(1) For some cofibrant replacement QI −→∼ I and any object X, the map QI ⊗X→ I ⊗X
is a weak equivalence.

(2) All objects of M are fibrant, and M is a simplicial or topological model category.
(3) [The Monoid Axiom] For any trivial cofibration A� B and any object X, the map

A⊗X→ B⊗X is a weak equivalence. Additionally, all maps obtained from the class

{A⊗X→ B⊗X | A→ B is a trivial cofibration and X is any object}

by cobase change and transfinite composition are also weak equivalences.

Assume that (1) holds and that either (2) or (3) holds. Then M satisfies the Algebraic
Creation Property.

Remark 3.3.7 . Condition (1) is automatic if the unit is cofibrant. In general condition (1)
seems much too strong, but it is not clear how to weaken it. Condition (3) was isolated
by Schwede–Shipley [267] and christened by them.

Proof of Proposition 3.3.6. Condition (2) implies that the appropriate model structures
are created on R--Mod and R--Alg; this is by [267, Lemma 2.3(2)] and the fact that
the simplicial (or topological) structure on M gives canonical path objects on both
R--Mod and R--Alg. See also [267, Remark 4.5].

Condition (3) also implies that the appropriate model structures are created
on R--Mod and R--Alg. For R--Mod this is automatic, because the condition of
Proposition 3.3.4(b) is a special case of (3). For R--Alg this is a little more difficult, but
was worked out in [267, Theorem 4.1(3)].

It remains to prove that R--Mod is a monoidal model category. For the Pushout–
Product Axiom, as in [267, Theorem 4.1(2)] it suffices to check this on the generating
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cofibrations and trivial cofibrations of R--Mod. But these are of the form idR⊗f , where
f is a generating cofibration or trivial cofibration of M, and the pushout-product is
readily analyzed. The necessary condition follows at once from the Pushout–Product
Axiom on M.

The trouble arises with the Unit Axiom for R--Mod. This was not dealt with in [267].
Let QI → I be a cofibrant replacement in M. Hypothesis (1) implies that R⊗QI →
R⊗ I = R is a weak equivalence, and of course R⊗QI is cofibrant in R--Mod. So we
must check that for every cofibrant R-module M , the map (R⊗QI)⊗RM→ R⊗RM is
a weak equivalence. This is just the map QI⊗M→M , and so hypothesis (1) completes
the verification.

If we have model categories on R--Mod and R--Alg, we should of course be
concerned with the extent to which they depend on the homotopy type of R. If R→ T
is a map of monoids then there is an adjoint pair

T ⊗R (−) : R--Mod� T --Mod: V , (3.3.3)

where here the right adjoint V is restriction of scalars, and this will be a Quillen pair
if the categories have the model structures created by U (because V will preserve both
fibrations and trivial fibrations).

Similarly, if R→ T is a map of commutative monoids then T ⊗R (−) takes R-algebras
to T -algebras and we have a similar Quillen pair

T ⊗R (−) : R--Alg� T --Alg: V . (3.3.4)

In both cases, if R→ T is a weak equivalence one would hope that the above adjoint
pairs are Quillen equivalences. Unfortunately, this does not work out for free and is
not known without various unsatisfying extra hypotheses. To sweep some of these
under the rug, we make the following definition:

Definition 3.3.8. Let M be a symmetric monoidal model category that satisfies the
Algebraic Creation Property. Then M satisfies the Algebraic Invariance Property if
for every weak equivalence of monoids R→ T the Quillen pair of (3.3.3) is a Quillen
equivalence, and if for every weak equivalence of commutative monoids R→ T the
pair (3.3.4) is a Quillen equivalence.

The following result is basically Theorems 4.3 and 4.4 of [267]. It follows readily
from Quillen’s criterion for checking that an adjoint pair is a Quillen equivalence. The
proof is an easy exercise.

Proposition 3.3.9. Let M be a symmetric monoidal model category satisfying the Alge-
braic Creation Property. Suppose further that

(1) for every monoid R and every cofibrant R-module M, the functor (−)⊗RM preserves
all weak equivalences, and

(2) every cofibration R→ T in R--Alg is a cofibration in R--Mod as well.

Then M satisfies the Algebraic Invariance Property.
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The conditions in this proposition seem like a lot to check, and in some sense
they are. But they have been verified for all the modern model categories of spectra.
Condition (1) turns out to be surprisingly important, and deserves its own name:

Definition 3.3.10. Let M be a symmetric monoidal model category satisfying the
Algebraic Creation Property. Say that M satisfies the Strong Flatness Property if
for every monoid R in M and every cofibrant R-module M, the functor (−) ⊗RM
preserves all weak equivalences of right R-modules.

While this property seems somewhat unnatural from the perspective of model
category theory, it nevertheless is a crucial element of all the modern model categories
of spectra. It automatically implies condition (1) of Proposition 3.3.6, using the Unit
Axiom. One of the lessons of this whole section is that when it comes to model
structures on categories of modules and algebras in a monoidal model category, none
of the existing theory works out quite as naturally as one would like.

Remark 3.3.11 . Lewis and Mandell in [157] have some interesting things to say about
the Algebraic Invariance Property. Define an object C of M to be semi-cofibrant
if F(C,−) preserves fibrations and trivial fibrations; by adjointness this is equivalent
to saying that C ⊗ (−) preserves cofibrations and trivial cofibrations. Every cofibrant
object is semi-cofibrant, but the converse does not necessarily hold. Lewis–Mandell
prove that if one has a weak equivalence of monoids R→ T , where R and T are semi-
cofibrant, then the Quillen pair of (3.3.3) is a Quillen equivalence. The same paper
has many other interesting results about the homotopy theory of module categories.

Remark 3.3.12 . If T is a monad on M, one can consider the category of T -algebras
M[T ] and again ask whether the forgetful functor U : M[T ]→M creates a model
structure on M[T ]. This question generalizes the specific cases of R--Mod and R--Alg
we have considered in this section. While we will not address the general version here,
we refer the reader to [94, Chapter VII.4] for techniques that apply to the case where
M is a topological model category where all objects are fibrant. The task of creating
the model structures is essentially reduced to verifying two criteria, embodied in the
so-called “Cofibration Hypothesis” [94, Remark IV.4.12].

See also Section 5.8 in Chapter 5 of this volume for a detailed discussion of model
structures on operadic algebras more generally.

3.3.5 Invertible objects

If one had to describe the idea of spectra in a single sentence, one approach would
be to say that it is a modification of Top∗ that makes the spheres invertible in the
homotopy category. So it is good to know a little about the general theory of invertible
objects.

Let (C,⊗, I) be a symmetric monoidal category. An object X in C is invertible if
the functor X⊗ (−) : C → C is an equivalence of categories. This is equivalent to saying
that there exists an object Y and an isomorphism α : I −→� Y ⊗X, and here we say
that the pair (Y ,α) is an inverse for X. Note that α is not unique, since given one
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choice one can make others by precomposing with automorphisms of I . Likewise, Y
is unique up to isomorphism but not up to unique isomorphism. However, given an
inverse (Y ,αY ) and another inverse (Z,αZ ) it is easy to check that there is a unique
map f : Y → Z making the diagram

I
αY //

αZ ""

Y ⊗X

f ⊗id
��

Z ⊗X

commute, and moreover f is an isomorphism.
Note that the tensor product of invertible objects is again invertible.
In a symmetric monoidal category, the endomorphisms of the unit always form a

commutative monoid: this is an easy exercise using that if f and g are any two maps
then f ⊗ g = (f ⊗ id)(id ⊗ g) = (id ⊗ g)(f ⊗ id). Given any object X in C, there is a
map of monoids ΓX : End(I)→ End(X) that sends f : I → I to the composite

X
� // I ⊗X

f ⊗id
// I ⊗X � // X.

When X is invertible, the map ΓX is an isomorphism. So in particular, the endomor-
phisms of an invertible object are always commutative. One checks that if (Y ,α) is an
inverse to X and f : X→ X then Γ −1

X (f ) is the composite

I
α // Y ⊗X

id⊗f
// Y ⊗X α−1

// I.

Now let X be any object in C. For n ≥ 0 set X⊗n = X ⊗ (X ⊗ (X ⊗ · · · ⊗X)). Let
σ ∈ Σn and consider natural transformations

X1 ⊗ (X2 ⊗ (X3 ⊗ · · · ⊗Xn)) −→ Xσ−1(1) ⊗ (Xσ−1(2) ⊗ (Xσ−1(3) ⊗ · · · ⊗Xσ−1(n))),

where the domain and codomain are considered as functors C×n → C. MacLane’s
Coherence Theorem for symmetric monoidal categories says that all natural transfor-
mations of this form, made from composites of associativity and commutativity iso-
morphisms, are identical; see [174, Theorem XI.1.1]. So we have a canonical such trans-
formation. Evaluating at the case where all Xi equal X gives a map σ∗ : X⊗n→ X⊗n,
and one readily checks that this gives a group homomorphism Σn→ Aut(X⊗n). If X
is invertible then so is X⊗n, which means Aut(X⊗n) is abelian and therefore this map
factors through the abelianization of Σn (which is Z/2). In particular, every commu-
tator in Σn acts as the identity on X⊗n. The first interesting case is n = 3, where
the commutator subgroup is generated by the cyclic permutation (123). Moreover, via
block sum of permutations and conjugation this case generates the relations for all
higher n as well.

Proposition 3.3.13 (The cyclic permutation condition). If X is an invertible object in
a symmetric monoidal category then the composite

X⊗(X⊗X)
id⊗t
// X⊗(X⊗X) a // (X⊗X)⊗X t⊗id

// (X⊗X)⊗X a // X⊗(X⊗X)
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must equal the identity, where all maps labeled a and t are associativity and commutativity
isomorphisms, respectively.

The cyclic permutation condition seems to have first been identified by Voevodsky,
when attempting to construct symmetric spectra in motivic homotopy theory. See the
discussion preceding Theorem 4.3 in [294].

Invertible objects are, in particular, examples of dualizable objects. Self-maps of
dualizable objects have a trace. We will not recount the general theory here, but just
give a very streamlined version suitable for our present context. For the general theory,
see [155, Section III.1] or the survey in [76].

Assume X is invertible and (Y ,α) is a chosen inverse. Then there is a unique map
α̂ : X ⊗Y → I with the property that the composite

X
� // X ⊗ I id⊗α

// X ⊗ (Y ⊗X) a // (X ⊗Y )⊗X α̂⊗id
// I ⊗X � // X

equals the identity. If f : X → X then the trace of f is the element tr(f ) ∈ End(I)
defined by the composite

I
α // Y ⊗X

id⊗f
// Y ⊗X t // X ⊗Y α̂ // I.

Given f : X→ X we now have two ways to extract an element of End(I): via Γ −1
X (f )

and via tr(f ). These don’t always give the same element! The following results explain
the relation between them. They certainly must be classical, but see [76] for a written
account:

Proposition 3.3.14. Let X be an invertible object in a symmetric monoidal category, and
let τX = tr(idX ) ∈ End(I).

(a) τX = Γ −1
X⊗X(tX ) = tr(tX ) where tX : X ⊗X→ X ⊗X is the twist.

(b) τ2
X = id.

(c) For any f : X→ X, Γ −1
X (f ) = τX · tr(f ).

(d) If Y is another invertible object then τX⊗Y = τXτY .

The elements τX should be thought of as “generalized signs”. They appear as
control factors in commutation formulas involving X, in the same way that ±1 terms
appear in the standard formulas of topology.

Example 3.3.15. Fix a field k and consider the category of Z-graded vector spaces,
equipped with the graded tensor product, standard associativity isomorphism, and
the twist isomorphism that incorporates the Koszul sign rule. Write k[n] for the
graded vector space consisting of a single k in degree n and zero in all other degrees.
We identify k with End(k[0]) by letting x ∈ k correspond to multiplication by x.

The object k[1] is invertible. For an inverse we may choose k[−1] and the map
α : k[0]→ k[−1] ⊗ k[1] sending 1 to 1 ⊗ 1. The map α̂ : k[1] ⊗ k[−1]→ k[0] then
sends 1⊗1 to 1. If x ∈ k and ρx : k[1]→ k[1] is multiplication by x, we leave it as an
exercise to check that Γ −1

X (ρx) = x and tr(ρx) = −x. In particular, τk[1] = −1 here.
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3.4 Spectra for Sulu and Chekov

For many applications one needs a model category of spectra but doesn’t care much
about the inner workings, other than a few basic properties. In the words of one
eloquent topologist, “Sometimes one just needs to drive the Enterprise, not necessarily
be Mr. Scott.” The goal of this section is to supply a list of properties that are shared
by most of the existing models, and to give some standard examples of how they can
be used. These examples were all originally worked out in [94].

In this section we assume the existence of a pointed category Spectra equipped
with a closed symmetric monoidal smash product ∧ with unit S and cotensor F(−,−).
Additionally, we suppose given adjoint functors Σ∞ : Top∗ � Spectra : Ω∞ and a
stable model category structure on Spectra. We assume the following properties:

1. Σ∞ : Top∗� Spectra : Ω∞ is a Quillen pair.
2. The smash product makes Spectra into a monoidal model category. So we have

(a) the pushout-product axiom: given cofibrations f : A� B and g : C� D, the
induced map

f � g : (A∧D)qA∧C (B∧C)→ B∧D

is a cofibration, and additionally it is a weak equivalence if either f or g is so. And
(b): for every cofibrant object X and every cofibrant replacement QS −→∼ S, the
induced map QS ∧X→ S ∧X is a weak equivalence.

3. There exists a weak equivalence ε : Σ∞S0→ S and a natural transformation

η : Σ∞(X ∧Y )→ Σ∞X ∧Σ∞Y

that is oplax monoidal: this says that the evident associativity and unital squares
commute. Additionally, η is a weak equivalence when X and Y are cofibrant.

4. (Spectra,∧) satisfies the Algebraic Creation and Invariance Properties (see Defini-
tions 3.3.5 and 3.3.8).

5. (Spectra,∧) satisfies the Strong Flatness Condition of Definition 3.3.10. In particular,
for any cofibrant spectrum A and any weak equivalence of spectra X → Y , the
induced map A∧X→ A∧Y is a weak equivalence.

6. There is an equivalence of triangulated categories between Ho(Spectra) and the
homotopy category of Bousfield–Friedlander spectra that carries the spectra Σ∞(Sn)
to the standard n-sphere.

7. For any directed system X0 → X1 → X2 → ·· · in Spectra and any n ≥ 0, the
canonical map

colimk[Σ
∞(Sn),Xk]→ [Σ∞(Sn),hocolimkXk]

is an isomorphism, and similarly sequences indexed by other transfinite ordinals.

All these properties are satisfied by the categories of symmetric spectra, orthogonal
spectra, and W-spaces (all to be defined in subsequent sections). Actually (7) is a
consequence of (6) (using the smallness of spheres in Top), but is included separately
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here for emphasis. Note also that Γ -spaces are eliminated from the discussion because
they are not a stable model category, but except for this and the related property (6)
all the other properties are satisfied.

Remark 3.4.1 . EKMM spectra are a special case as they do NOT satisfy property
(3), although they satisfy all of the others. Instead, in EKMM spectra there are two
pairs of adjoint functors called (Σ∞S ,Ω

∞
S ) and (Σ∞,Ω∞) together with natural maps

Σ∞S X → Σ∞X which are weak equivalences whenever X is cofibrant as a pointed
space. The pair (Σ∞S ,Ω

∞
S ) satisfies (1), and the pair (Σ∞,Ω∞) satisfies (3). But if

we use the pair (Σ∞S ,Ω
∞
S ) for (1)–(7) then we can replace (3) above with (3′ ) stating

that there is a contractible space of choices for an η, giving an oplax symmetric
monoidal map in the homotopy category. Keeping this small variation in mind, all of
the arguments in the remainder of this section apply to EKMM spectra as well. (It
is unfortunate that the EKMM (Σ∞,Ω∞) notation conflicts with what we use above,
but we will just live with this).

3.4.1 Homotopy groups of spectra

Write S0 = Σ∞(S0) and S1 = Σ∞(S1). For p > 1 define the stable sphere Sp recursively
by Sp = S1∧ Sp−1, so that

Sp = S1∧ (S1∧ (S1∧ · · · ))).

Note that S1 is cofibrant by property (1), and then Sp is cofibrant by the Pushout–
Product Axiom. Also we see using property (3) that there is a canonical weak equiv-
alence η : Σ∞(Sp)→ Sp. Some authors prefer to adopt Σ∞(Sp) as the definition of
the stable sphere, but η shows that for homotopical purposes this is equivalent to our
approach.

Since Σ is an autoequivalence of the homotopy category, there exists a desuspension
of S0. Let S−1 be any chosen cofibrant spectrum for which there exists an isomorphism
α : S→ S−1 ∧ S1 in Ho(Spectra). For p ≥ 1 inductively define S−p = S−1 ∧ S1−p. Let
α̂ : S1 ∧ S−1 → S be the dual map to α in Ho(Spectra) as defined after Proposi-
tion 3.3.13.

Under these definitions, there are canonical isomorphisms in Ho(Spectra) of the
form

γ : Sk ∧ S l → Sk+l

for any k, l ∈ Z. If k, l > 0 then we define γ as a composite of associativity isomor-
phisms, and MacLane’s Coherence Theorem for monoidal categories says that all
choices for such associativity isomorphisms lead to the same map γ . Similar remarks
apply when k, l < 0. When k = 0 we use

S0 ∧ S l ε∧id // S ∧ S l � S l ,

which uses property (3) and also property (2) to know that the first map is an isomor-
phism. Likewise for l = 0. When k < 0 and l > 0 we use associativity isomorphisms
together with repeated applications of the map α−1 and the unit map. Again, one can



104 Dugger: Stable categories and spectra via model categories

prove that the exact choice of maps here does not affect the final composite. Finally,
when k > 0 and l < 0 we do the same thing but using α̂ instead of α.

It is a theorem that these specified isomorphisms are compatible, in the sense that
the evident pentagon containing Sk ∧ (S l ∧ Sn) and Sk+l+n is commutative in the
homotopy category. More generally, any two composites derived from these canonical
maps (but having the same domain and range) are identical (again, in the homotopy
category). See [76] for a complete discussion.

Here is why this tedious discussion is actually important. For any spectrum X we
write πp(X) for Ho(Spectra)(Sp,X). If X is a ring spectrum and f : Sp → X and
g : Sq→ X we may form the composite

Sp+q γ
// Sp ∧ Sq

f ∧g
// X ∧X

µ
// X,

and this determines a pairing πp(X)⊗πq(X)→ πp+q(X). Also, the composite map
S0 −→ε S→ X determines a special element 1 ∈ π0(X).

Lemma 3.4.2. When X is a ring spectrum, π∗(X) is a ring. If M is a left X-module then
π∗(M) is a left π∗(X)-module.

Proof. Left to the reader as an exercise, but note that the properties of the canonical
maps γ are important here. See [76] for details and generalizations.

3.4.2 Homotopy groups of tensors and cotensors

Let R be a commutative ring spectrum and let M and N be R-modules. We will
construct a spectral sequence of the form

Torπ∗Rp,q (π∗M,π∗N )⇒ πp+q(M ∧LR N ),

where ∧LR denotes the derived version of ∧R. When M = R∧X and N = R∧Y this
gives the Künneth spectral sequence Torπ∗R(R∗(X),R∗(Y ))⇒ R∗(X ∧Y ).

The following argument can be made almost entirely in the homotopy category
Ho(R--Mod), using only the triangulated structure. However, the model structure
on R--Mod is key to setting up this homotopy category to begin with. The model
structure also plays a small role in the following lemma:

Lemma 3.4.3. Let R be a commutative ring spectrum and let M be an R-module. Then
there exists an R-module F of the form F =

∨
i R∧ Sni together with a map F→M in

Ho(R--Mod) that is surjective on homotopy groups.

Proof. Let M → Mfib be a fibrant replacement in R--Mod. Choose a set of π∗R-
module generators αi ∈ π∗(M), together with representative maps αi : Sni →Mfib

in Spectra. We then get R-module maps R ∧ Sni → Mfib using the adjoint pair
Spectra� R--Mod. Let F =

∨
i R∧ Sni and let α : F→Mfib be the evident map.

Since α is a map of R-modules, π∗α is a map of π∗R-modules. So to see that π∗α
is surjective we only need argue that each αi is in the image. This follows from the
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commutative diagram

R∧ Sni
id∧αi // R∧Mfib

µ
// Mfib

S ∧ Sni
id∧αi //

OO

S ∧Mfib

OO

Sni

�

OO

αi // Mfib

�

OO

Let R be a commutative ring spectrum and let M be an R-module. The following
argument takes place entirely in the category Ho(R--Mod). Set X0 = M . Using
Lemma 3.4.3 choose an R-module F0 =

∨
i R∧ Sni and a map F0 → X0 that is a

surjection on π∗(−). Let X1→ F0→ X0 be a homotopy fiber sequence in Ho(R--Mod)
(see the discussion of fiber and cofiber sequences in Section 3.2, and in particular
Remark 3.2.5).

Repeat this process inductively to likewise construct homotopy fiber sequences
Xn→ Fn−1→ Xn−1 where Fn−1 is a wedge of suspensions of R and Fn−1→ Xn−1 is
surjective on homotopy groups. One way to present all this information is through the
diagram

· · · // F2
//

    

F1
//

    

F0

    

X2

>>

>>

X1

>>

>>

M

where double-headed arrows represent maps that induce surjections on homotopy
groups and tailed arrows represent maps that induce injections on homotopy groups.
Observe that the induced sequence π∗(F•) is a free π∗R-resolution of π∗M . (There
are some subtleties in justifying this last claim, which for the moment we leave for the
reader to try to uncover. But see Section 3.4.4 below.)

Our diagram can also be restructured as a diagram of homotopy fiber sequences.
We rotate the fiber sequence Xn→ Fn−1→ Xn−1 to become Xn−1→ ΣXn→ ΣFn−1
and suspend n− 1 times to get

ΣF0 Σ2F1

M X0
// ΣX1

OO

// Σ2X2
//

OO

· · ·

where every “layer” is a homotopy fiber sequence (note that we are being cavalier about
signs, but that will be okay for our application). Now apply the derived functor (−)∧LRN .
This is still taking place entirely within Ho(R--Mod), but observe that we know this
derived functor exists because of model category machinery. For convenience we will
drop the derived “L” in all smash products and write our new tower of homotopy



106 Dugger: Stable categories and spectra via model categories

fiber sequences as

ΣF0 ∧RN Σ2F1∧RN

M ∧RN X0 ∧RN // ΣX1∧RN

OO

// Σ2X2 ∧RN //

OO

· · ·

Every layer of this tower induces a long exact sequence in homotopy groups, because
homotopy fiber sequences of R-modules are also homotopy fiber sequences of spectra
(the forgetful functor from R-modules to spectra is a right adjoint and preserves all
weak equivalences, so is its own right derived functor). These long exact sequences
braid together to give a spectral sequence in the usual way, taking the form

E1
a,b = πa(Σ

b+1Fb ∧RN )⇒ πa−1(M ∧RN ), dr : Era,b→ Era−1,b−r

(and recall once more that all smash products are derived).
Finally, observe that Fb∧RN =

∨
i (R∧Sni )∧RN =

∨
i S

ni ∧N , and so π∗(Fb∧RN )
is a direct sum of shifted copies of π∗(N ). Said in the most canonical way possible,
for any R-module W we have a natural map

π∗(W )⊗π∗(R) π∗(N )→ π∗(W ∧RN )

and when W is R∧ Sn or a wedge of such things this map is an isomorphism. This
identifies the E1-term of our spectral sequence as π∗(F•)⊗π∗(R) π∗(N ), and a little
thought shows the d1 maps are the boundary maps in this complex. So the E2-term
is Torπ∗R(π∗M,π∗N ), as desired. Specifically, E2

a,b = Torπ∗Rb,a−b−1(π∗M,π∗N ) and this
converges to πa−1(M ∧RN ). Recoordinatizing the spectral sequence by setting b = p
and a− b − 1 = q yields the following:

Theorem 3.4.4. Let R be a commutative ring spectrum and let M and N be R-modules.
Then there is a spectral sequence

E2
p,q = Torπ∗Rp,q (π∗M,π∗N )⇒ πp+q(M ∧LR N )

with differentials of the form dr : Erp,q→ Erp−r,q+r−1.

The construction of a spectral sequence for π∗FR(M,N ) is entirely similar. Start
with the same tower of homotopy fiber sequences and apply FR(−,N ). The key part
of the calculation is that

FR(R∧ Sn,N ) ' F(Sn,N ) ' Σ−nN,

and so π∗(FR(Fq,N )) � Homπ∗R(π∗Fq,π∗N ). We leave the reader to work out the
details for the following:

Theorem 3.4.5. Let R be a commutative ring spectrum and let M and N be R-modules.
Write RF(M,N ) for the derived cotensor. Then there is a spectral sequence

E
p,q
2 = Extp,qπ∗R(π∗M,π∗N )⇒ π−(p+q)RFR(M,N )

with differentials of the form dr : Ep,qr → E
p+r,q−r+1
r .

For more about the above two spectral sequences, see [94, Chapter IV.4].
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3.4.3 Constructing Morava K-theory

For each prime p the n-th Morava K-theory spectrum is a certain ring spectrum
K(n) having the property that π∗K(n) = Z/p[v±1

n ], where |vn| = 2(pn −1). In addition
to those properties it can be characterized by the existence of a map MU → K(n)
having a prescribed behavior on homotopy groups (where MU is the usual complex
cobordism spectrum). As a demonstration of the model-category-theoretic tools we
have been describing, we show how they lead to a construction of the spectrum K(n)
starting with MU .

We start with the assumption that there is a commutative ring spectrum MU in
our category Spectra and a ring isomorphism π∗(MU ) �Z[x1,x2, . . .] with |xi | = 2i
for all i. Let MU → X be a fibrant replacement in the category of MU -modules, and
recall that this implies X is fibrant in Spectra.

Fix a prime p. Since π0(MU ) = Z and X is fibrant, there exists a map S0→ X that
represents the element p∈π0(MU ). Consider the compositeMU∧S0→MU∧X−→µ X,
and let MU1 be the homotopy cofiber in the category MU --Mod. This is also a
homotopy cofiber in Spectra: the forgetful functor from MU -modules to spectra
is its own right derived functor and therefore preserves homotopy fiber sequences,
and homotopy cofiber and fiber sequences are the same by Proposition 3.2.10(c).
The long exact sequence on homotopy groups immediately shows that π∗(MU1) =
Z/p[x1,x2, . . .]. (Note: There is a subtlety here! The reader may try to uncover it, or
see the end of Section 3.4.4.)

Now let MU1→ X1 be a fibrant replacement of MU -modules, and choose a map
S2→ X1 that represents x1. Let MU2 be the homotopy cofiber in MU --Mod of the
composite MU ∧ S2→MU ∧X1→ X1, and verify that π∗(MU2) = Z/p[x2,x3, . . .].

The only thing we are ever using is that we are quotienting by an element xi which is
a nonzerodivisor on homotopy groups, so we can continue to do this for whichever xi
we choose. Fix an n and successively kill off all the xi except for xpn−1. For convenience
set r = pn − 1. This produces a sequence in Ho(MU --Mod) of the form

MU =MU0→MU1→MU2→ ·· · →MUr−1→MUr+1→ ·· ·

Lift this to a directed system in MU --Mod, and let Z be the homotopy colimit in
MU --Mod. Then Z sits in a homotopy cofiber sequence

∨
nMUn→

∨
nMUn→ Z,

where the first map is the difference between the identity and the shift map. This
is also a homotopy fiber sequence, by Proposition 3.2.10(c), and that property is
preserved after applying the forgetful functor to Spectra. So Z is the homotopy colimit
of the MUn in Spectra, not just in MU --Mod. We then know by property (7) that
π∗(Z) = colimnπ∗(MUn), and so π∗(Z) �Z/p[xr ].

Now consider the composite map Z∧S2r −→ Z∧MU −→t MU ∧Z −→µ Z . This is a
map of left MU -modules, using that MU is commutative. Applying (−)∧ S−2r gives
a map of MU -modules Z → Z ∧ S−2r . On homotopy groups this is multiplication
by xr . Consider the sequence in Ho(MU --Mod)

Z→ Z ∧ S−2r → Z ∧ S−2r ∧ S−2r → ·· ·
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then lift it to MU --Mod, and let W be the homotopy colimit. It follows again from
property (7) that π∗(W ) = Z/p[x±1

r ].
In this way we have constructed an MU -module spectrum W whose homotopy

groups make it look like W is the n-th Morava K-theory spectrum. The construction
has also produced a map MU →W which does the right thing on homotopy groups,
so W really is Morava K-theory.

Note that we have not constructed W as a ring spectrum, only as an MU -module
spectrum. In Chapters V.3 and V.4 of [94] (see especially Theorem V.4.1) it is explained
how to construct a product W ∧W →W making W into a homotopy ring spectrum,
but this is much weaker than what is desired. To construct W as a ring spectrum one
seems to need the full force of A∞-obstruction theory, which we will not recount here.

Remark 3.4.6 (historical note). All of the arguments in this section first appeared in
[94]. They needed very little of the inner workings of EKMM-spectra, however, and
as we have seen here they work in any of the modern model categories of spectra.

3.4.4 Loose ends

In the course of the argument from Section 3.4.3 we had a homotopy cofiber sequence
MU ∧ S0 →MU →MU1 and wanted to compute the homotopy groups of MU1
using the long exact sequence. This required us to know π∗(MU ∧ S0) — but how
exactly do we know these groups? Recall that S0→ S is a cofibrant replacement, and
so it is tempting to use property (2) to say that MU ∧S0→MU ∧S =MU is a weak
equivalence. But that works only if MU is cofibrant as a spectrum, which we have not
assumed!

To try to get around this issue, let �MU −�∼ MU be a cofibrant replacement in
Spectra. We certainly know �MU ∧ S0 '�MU 'MU by property (2), so we know the
homotopy groups of �MU ∧ S0. We could go back to the beginning and try to do the
entire construction with �MU replacing MU , except we do not know that �MU is a
ring spectrum. The lifting diagram �MU

'
�����MU ∧�MU

33

// MU ∧MU // MU

produces a multiplication, but in general it will only be associative up to homotopy.
If �MU is only a homotopy ring spectrum we do not have a good homotopy theory of�MU -modules, so we are again defeated.

What saves us here is the amazing property (5). Since S0 is cofibrant this property
guarantees that �MU ∧ S0 → MU ∧ S0 is still an equivalence, and so we have
MU ∧ S0 '�MU ∧ S0 '�MU 'MU . This analysis is actually needed at each stage
of the construction, since at the n-th stage we need to know the homotopy groups
of MU ∧ S2n and it is only property (5) that allows these to be identified with the
homotopy groups of MU ∧L S2n (which we know are just a shifted version of the
homotopy groups of MU ).
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A similar subtle issue came up in §3.4.2. There we had a spectrum X =
∨
α(R∧Snα )

and wanted to conclude that π∗(X) �
⊕

απ∗−nα (R). Given cofibrant spectra Eα ,
general model category considerations show that

∨
α Eα is the homotopy colimit of a

directed system Eα1
→ Eα1

∨Eα2
→ ·· · (possibly indexed by an ordinal larger than

ω). So property (7) implies that π∗(
∨
α Eα) �

⊕
απ∗(Eα). The spectra R∧ Snα need

not be cofibrant, but if R̃→ R is a cofibrant replacement in Spectra then we can write

X =
∨
α

(R∧ Snα ) � R∧
(∨

α
Snα

)
' R̃∧

(∨
α
Snα

)
�

∨
α

(R̃∧ Snα )

where we have used property (5) for the weak equivalence in the middle. Since the
spectra R̃∧ Snα are cofibrant, we can use the previously mentioned result to see that
π∗(X) is as desired.

Though not necessarily the most important applications of property (5), these are
good examples of how that property can come to the rescue at key moments.

3.5 Diagram categories and spectra

With the exception of the EKMM model, all of the common model categories of spectra
are built on the foundation of diagram categories. It is perhaps not immediately
apparent from the classical definition, but a spectrum is a kind of diagram. The
goal of this section is to survey the general theory of model structures on diagram
categories, and then to explain how spectra can be regarded as diagrams. This whole
“diagrammatic” perspective is one of the main points of [178].

3.5.1 Model category structures on diagram categories

Let M be a category and let I be a small category. We write MI for the category whose
objects are the functors X : I →M and whose morphisms are natural transformations.
Such functors are also called I-diagrams in M. When M has a notion of weak
equivalence, MI can be equipped with the objectwise weak equivalences, namely
the maps X → Y such that Xi → Yi is a weak equivalence for every object i in I .
These are sometimes called levelwise weak equivalences as well.

If M has a model structure then one might expect there to be an associated model
structure on MI built around the objectwise weak equivalences, but unfortunately this
doesn’t seem to work out unless one assumes some extra hypotheses on M.

Theorem 3.5.1. Let M be a model category and let I be a small category.

(a) If M is cofibrantly generated then there is a model category structure on MI in which
a map f : X→ Y is a weak equivalence (resp., fibration) if and only if fi : Xi → Yi is
a weak equivalence (resp., fibration) for all objects i in I . This is called the projective
model structure on MI . The cofibrations are forced to be those maps satisfying the left
lifting property with respect to the trivial fibrations.

(b) If M is combinatorial (cofibrantly generated and locally presentable) then there is a
model category structure on MI in which a map f : X→ Y is a weak equivalence (resp.,
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cofibration) if and only if fi : Xi → Yi is a weak equivalence (resp., cofibration) for all
objects i in I . This is called the injective model structure on MI . The fibrations are
forced to be those maps satisfying the right lifting property with respect to the trivial
cofibrations.

Both parts (a) and (b) were proven by Heller [117, Theorem II.4.5] in the case
M = sSet, with (b) also following from work of Jardine in this case [135]. For part (a) in
the above generality, see [124, Theorem 11.6.1]. Part (b) in the above generality is due
to Jeff Smith; it follows from [35, Theorem 1.7 and Propositions 1.15, 1.18], using the
forgetful functor MI →

∏
i∈IM as the “detection functor” for Beke’s Proposition 1.18.

Let us say a little about how Theorem 3.5.1 is proven, since the main idea is easy
and also useful in a variety of situations. For each i in I there are adjoint functors

Fi : M�MI : Evi ,

where the right adjoint Evi is the “evaluation at i” functor. The diagram FiX is the
free diagram generated by starting with an X at spot i. One readily checks that for
each X in M and j in I ,

(FiX)(j) =
∐
I(i,j)

X.

That is, (FiX)(j) is a coproduct of copies of X indexed by I(i, j). For T a set it is
convenient to write T �X for the coproduct of copies of X generated by T , so that
(FiX)(j) = I(i, j)�X.

Start with sets {fα : Aα� Bα} and {f̃α : Ãα�
∼ B̃α} of generating cofibrations and

trivial cofibrations for M. The collections I = {Fi(fα)}i,α and J = {Fi(f̃α)}i,α are
potential sets of generating cofibrations and trivial cofibrations for MI : the maps with
the right lifting property with respect to I and J are clearly the objectwise trivial
fibrations and the objectwise fibrations, respectively. The only thing nontrivial in
setting up the projective model category structure is the factorization axiom, and this
can be proven by the small object argument — it works in MI as long as it worked in
M, which is the cofibrant-generation assumption. This proves (a).

Another way of describing the proof of (a) is to package all the pairs (Fi ,Evi) into a
single adjoint pair

F :
∏
i∈I

M�MI : Ev .

Kan’s Recognition Theorem [124, Theorem 11.3.2] immediately yields that the right
adjoint Ev creates the projective model structure on MI .

The proof of (b) works a little differently; it is a direct descendant of the classical
proof that categories of sheaves have enough injectives. Here one fixes a large cardinal
λ (depending on I and M) and looks at a skeletal set of all objectwise cofibrations
(or objectwise trivial cofibrations) where the domain and codomain are both λ-small.
The λ-small conditions guarantee that the isomorphism classes of such things actually
form a set and not a proper class. By choosing λ large enough, one can show that
these give generating cofibrations and trivial cofibrations for the desired injective
model structure.
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Remark 3.5.2 . The cofibrations in the projective model structure on MI are often
called “projective cofibrations”. For general I they are hard to identify explicitly, but
for some special classes of indexing categories I this can be done. One such class
consists of the “upwards-directed Reedy categories”, that is, categories whose objects
can be assigned a degree in N in such a way that all non-identity maps raise degree.
Maps of diagrams over such categories can be built inductively, degree by degree, and
this is what makes it easy to identify the projective cofibrations. See Corollary 3.5.8
below for an example, or [75, Section 14] for a detailed discussion.

Remark 3.5.3 (Comparing diagram categories). Suppose f : I → J is a functor be-
tween small categories. Then there is an induced “restriction” map f∗ : MJ → MI ,
obtained by precomposition with f . The functor f∗ has a left adjoint f ∗ given by left
Kan extension, and the pair (f ∗, f∗ ) is a Quillen pair between the projective model
structures (since f∗ clearly preserves objectwise fibrations and trivial fibrations). We
will often make use of this Quillen pair.

We will not have need of the following, but note that f∗ also has a right adjoint f!
given by right Kan extension, and the pair (f∗, f!) is a Quillen pair when MI and MJ

are given the injective model structures.

Remark 3.5.4 . We have assumed I is a small category, otherwise we run into set-
theoretic difficulties in constructing MI . However, in applications one often wants
to apply these ideas to non-small categories as well. One typical approach is to fix
a Grothendieck universe and to redefine “small” to mean “small with respect to the
universe”. Then one can still construct MI for non-small I , but at the expense of
passing to a larger universe.

If I0 ↪→ I is a small skeletal subcategory, the adjoint functors from Remark 3.5.3
give an equivalence between MI and MI0 . So one could instead just use MI0 as a
substitute for MI and thereby avoid passing to the larger universe.

In practice a combination of these two ideas is often used, mostly without expla-
nation. When I has a small skeletal subcategory one can stay on firm ground by using
MI0 , and common practice is to regard this as allowing one to use MI with impunity.

3.5.2 Enriched diagrams

If I is a category enriched over sSet and M is a simplicial model category, then one
can look at enriched diagrams X : I →M. These are collections of objects Xi for i ∈ I
together with maps of simplicial sets I(i, j)→M(Xi ,Xj ) that satisfy the evident unital
and associativity axioms. Here we will write MI for the category of enriched diagrams,
with the comment that in practice this abuse of notation never leads to any confusion.
The analog of Theorem 3.5.1 still holds for enriched diagrams, and the proof is the
same. The only modification is to realize that here one has (FiX)(j) = I(i, j) ⊗X,
where the simplicial tensor now replaces the previous � symbol.

Similar results hold when M is a model category enriched over Top (satisfying
the analog of SM7) and I is a Top-enriched category, or the same with Top replaced
by Top∗. This will be the case most relevant to spectra.
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3.5.3 Spectra and diagram categories

Classically, a spectrum is a sequence of pointed spaces Xn together with maps
ΣXn → Xn+1. Such an object does not manifestly suggest a diagram, but it turns
out that spectra are precisely certain enriched diagrams. The key here is to realize
that a map ΣXn→ Xn+1 corresponds under the usual adjunctions to a pointed map
S1→ Top∗(Xn,Xn+1) (where Top∗(A,B) denotes the space of maps from A to B).

Define a Top∗-enriched category Θ where the objects are non-negative integers n,
and where

Θ(k,n) =
{ ∗ if k > n,
(S1)∧(n−k) if k ≤ n.

The pairings Θ(l,n)∧Θ(k, l)→ Θ(k,n) are the canonical maps obtained from the
associativity isomorphisms for the smash product in Top∗, and the identity maps in
Θ(n,n) are given by the non-basepoint in S0. It is routine to check that this really is
a Top∗-enriched category. Here is a depiction of the first few levels of Θ:

0 S1
//

S1∧S1

??

S1∧(S1∧S1)

FF1

S1∧S1

��S1
// 2 S1

// 3 // · · ·

At this point it is an exercise to check that a classical spectrum is the same as an
enriched diagram Θ→ Top∗.

3.5.4 The level model structure on classical spectra

We are going to construct this model category in two ways: by brute force (as is
normally done) and then by the diagrammatic perspective. The two ways are really
the same, but it is informative to see that firsthand.

So for the moment let us pause and start from scratch. A spectrum X is a sequence
of pointed spaces Xn for n ≥ 0 together with structure maps σn : ΣXn→ Xn+1. A map
of spectra f : X → Y is a collection of pointed maps fn : Xn → Yn such that the
diagrams

ΣXn
σX //

fn
��

Xn+1

fn+1
��

ΣYn
σY // Yn+1

all commute. Let SpN denote the resulting category.
Let Evn : SpN→ Top∗ be the functor X 7→ Xn. This has a left adjoint which takes

a pointed space W , puts it in level n, and generates a spectrum from that information
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in the freest way possible. Specifically, one readily checks that

(FnW )k =
{ ∗ if k < n,
Σk−nW if k ≥ n,

with the evident structure maps.

Exercise 3.5.5 . Check that Evn also has a right adjoint In : Top∗→ SpN, that sends
a pointed space W to the spectrum with

(InW )k =
{
Ωn−kW if k ≤ n,
∗ if k > n,

again with the evident structure maps.

As another exercise with these adjoints, observe that there are canonical maps
Fn+1(ΣW )→ FnW and InW → In−1(ΩW ). The first is an isomorphism in degrees
larger than n, and the second is an isomorphism in degrees lower than n.

Theorem 3.5.6. There exists a model category structure on SpN in which a map
f : X→ Y is a weak equivalence (resp., fibration) if and only if fn : Xn→ Yn is a weak
equivalence (resp., fibration) for all n. This is called the projective, level model structure
on SpN.

Additionally, the adjoint pairs

Top∗
Fn // SpN

Evn
oo and SpN

Evn //
Top∗

In
oo

are Quillen pairs (with the left adjoint always drawn on top, going left to right).

Proof. We explain the proof in two ways. The first is to take the generating cofibrations
and trivial cofibrations in Top∗ and apply all the functors Fn to them, thereby getting
generating sets for SpN. The model structure then basically constructs itself, using
the small object argument. The second way, which says the same thing, is to use the
observation that SpN is secretly the category TopΘ∗ and then use Theorem 3.5.1(a).

For the statements about Quillen pairs, the right adjoints Evn and In clearly preserve
fibrations and trivial fibrations.

Remark 3.5.7 . Using Theorem 3.5.1(b) there is also a “level, injective” model category
structure on SpN, which is sometimes useful. However, the model structures derived
from the projective one end up having better properties when we get to symmetric
and orthogonal spectra. See Remark 3.7.8(2).

The category Θ acts like an upwards-directed Reedy category, in the sense that all
the interesting maps raise degree. As in Remark 3.5.2, this is a case where we can
explicitly identify the projective cofibrations:

Corollary 3.5.8. A map of spectra f : X → Y is a cofibration in the projective, level
model structure if and only if the evident maps

XnqΣXn−1
ΣYn−1 −→ Yn

are cofibrations for all n, where by convention we set X−1 = Y−1 = ∗ .
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Sketch of proof. Let W −�∼ Z be a levelwise trivial fibration of spectra, and suppose
given a square

X //

��

W

��

Y // Z

We will attempt to produce a lifting Y → W by constructing it inductively on the
levels. At level 0 we have the diagram

X0
//

��

W0

'
����

Y0
// Z0

and so get a lifting if X0→ Y0 is a cofibration. At level 1 we have a similar diagram, but
we can’t just take any lifting — because we need the map Y1→W1 to be compatible
with the already chosen Y0→W0. This compatibility is encoded by the diagram

X1qΣX0
(ΣY0)

��

// W1

'
����

Y1
// Z1

and we will get a lift provided the vertical map on the left is a cofibration. Continuing
inductively in the evident manner, one sees that a map satisfying the conditions
started in the corollary is a cofibration in the projective level model structure.

For the converse, assume X → Y is a projective cofibration and suppose given a
lifting diagram

XnqΣXn−1
ΣYn−1

//

��

W

'
����

Yn // Z

This adjoints over to a diagram

X //

��

InW

��

Y // InZ ×In−1(ΩZ) In−1(ΩW )

and the right vertical map is a levelwise trivial fibration by inspection, so there is a
lifting. Now adjoint back.

Remark 3.5.9 . The level model structure is a rather formal thing, not capturing
any kind of stabilization phenomenon. It treats spectra as mere diagrams, and not
as true stable objects. For example, a spectrum X and its truncation {∗ ,X1,X2, . . .}
should represent the same “stable object”, but the level model structure sees them
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as different. The suspension functor on SpN just applies suspension objectwise, and
clearly this is not an equivalence on the homotopy category level — so we do not have
a stable model category. In Section 3.6 we will see how to impose relations into the
level model structure that incorporate stability.

3.5.5 The level model structure on coordinate-free spectra

This is an easy modification of what we have already done. Fix a May universe U, as
in Section 3.1.5. For V ⊆W ⊆ U, write W −V for the orthogonal complement of V
in W . Define a coordinate-free spectrum to be an assignment V 7→ XV for V ⊆ U

a finite-dimensional subspace, together with maps SW−V ∧XV → XW for every pair
V ⊆W , subject to the evident unital and associativity conditions. Write SpU for the
evident category of coordinate-free spectra on U.

Define a Top∗-enriched category ΘU whose objects are the finite-dimensional
subspaces of U. Let the morphisms be given by

ΘU(V ,W ) =
{
SW−V if V ⊆W,

∗ otherwise.

For V ⊆W ⊆ Z , the evident isomorphism SZ−W∧SW−V → SZ−V gives a composition
map for Θ that is readily checked to be unital and associative. Observe that an enriched
diagram ΘU→ Top∗ is the same as a coordinate-free spectrum defined on U.

The projective model structure on the diagram category TopΘU
∗ is called the

projective, level model structure on SpU.
To compare this construction to classical spectra, pick an orthonormal basis e1, e2, . . .

for U and let Rn be the span of the first n basis elements. Consider the particular
linear map R → R

n+1 −Rn sending 1 to en+1, so that compactifying gives us a
preferred homeomorphism S1 � S(Rn+1−Rn). If X is a coordinate-free spectrum then
the assignment [n] 7→ X

R
n gives a classical spectrum. Let U : SpU → SpN denote

this forgetful functor. From the diagrammatic viewpoint we have described an embed-
ding j : Θ ↪→ ΘU and U is just restriction along this embedding. Category theory
automatically tells us that U has a left adjoint G: it sends a spectrum X : Θ→ Top∗
to its left Kan extension along j . Note that (GX)V is an appropriate (enriched) colimit
over the category of all Rn contained in V . One easy but important fact is that the
map Xn→ (UGX)n is an isomorphism, for all n.

It is formal that the pair G : SpN� SpU : U is a Quillen pair, since U preserves
fibrations and trivial fibrations. It is of course not a Quillen equivalence, because we
are using the levelwise model structures. This will change when we pass to the stable
model structures in the next section.

Remark 3.5.10 (Change of universe). Suppose that U and U′ are two May universes,
and f : U→ U′ is an isometry (which will necessarily be injective, but possibly not
surjective). Then there is an enriched functor ΘU→ ΘU′ that on objects behaves as
V 7→ f (V ) and on maps as SW−V 7→ Sf (W )−f (V ) (induced by f ). We therefore get
a restriction functor f∗ : Top

Θ′
U∗ → TopΘU

∗ and its left adjoint f ∗ as in Remark 3.5.3.
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Again, these are not Quillen equivalences — but their analogs will become Quillen
equivalences after stabilization.

3.6 Localization and the stable model structures on spectra

In this section we will see how to modify the level model structure on spectra in a way
that captures true stable phenomena. This uses a technique that is now called Bousfield
localization, although it of course did not have this name when it first appeared back
in [56]. Here we review the relevant model category theoretic techniques and then we
repeat the work of [56] to obtain the stable structure on spectra. This works in both
the classical and coordinate-free contexts. See also Chapter 7 of this volume for more
on Bousfield localization.

3.6.1 Homotopy mapping spaces

Let M be a model category. To any two objects X and Y in M one can associate
a homotopy mapping space M(X,Y ), also sometimes called a homotopy function
complex. This is a simplicial set, well defined up to weak homotopy equivalence, which
only depends on the weak homotopy types of X and Y . Given maps X → X ′ and
Y → Y ′ one can construct models for these function complexes that come with maps
M(X ′ ,Y )→M(X,Y ) and M(X,Y )→M(X,Y ′).

Here are four standard ways to construct models of M(X,Y ):

(1) Replace X by a cosimplicial resolution QX∗, choose a fibrant replacement Y →
RY , and use the simplicial set M(QX∗,RY ) obtained by applying M(−,RY ) to
QX∗.

(2) Choose a cofibrant replacement QX→ X, a simplicial resolution Y → RY∗, and
use the simplicial set M(QX,RY∗ ).

(3) Use nerves of categories of zig-zags from X to Y to form the so-called hammock
localization space LHM(X,Y ).

(4) When M is a simplicial model category, choose a cofibrant replacement QX→ X
and a fibrant replacement Y → RY and use the simplicial mapping space from
QX to RY .

See [124] and [130] for more on (1) and (2), and [88] or Chapter 2 of this volume
for (3). But all the model categories considered in this chapter are simplicial, so feel
free to focus on (4). Depending on the context one might also write Map(X,Y ) or
hMap(X,Y ) as a synonym for M(X,Y ).

3.6.2 Localization of model categories

Given a model category M and a collection of maps T in M, one sometimes wants
to construct a new model category structure that is obtained from M by adjoining
the maps in T to the already existing weak equivalences. This will likely force even
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more maps to be weak equivalences (at the very least one has to close up the set
under two-out-of-three), and at least one of the notions of cofibration/fibration will
have to change as well. The main technique for accomplishing this is called Bousfield
localization.

Definition 3.6.1. Let M be a model category and let T be a set of maps in M.

(a) An object X in M is T -local if, for all f : A → B in T , the induced map
M(B,X)→M(A,X) is a weak equivalence.

(b) A map f : A → B is a T -local equivalence if, for all T -local objects X, the
induced map M(B,X)→M(A,X) is a weak equivalence.

Briefly, an object X is T -local if it sees all the maps in T as weak equivalences,
where “see” amounts to looking at things from the perspective of M(− ,X). Likewise,
the T -local equivalences are the maps that are seen as weak equivalences by all the
T -local objects. So the T -local equivalences include all of T , but will usually include
other maps as well.

The following result is due to Hirschhorn [124] in the cellular case, and to Jeff Smith
in the combinatorial case (see [35] for a written account):

Theorem 3.6.2. Let M be a cellular or combinatorial model category, and let T be a
set of maps in M. Then there exists a new model structure T −1M on the same underlying
category as M such that

(i) the cofibrations in T −1M are the same as the cofibrations in M,
(ii) the weak equivalences in T −1M are the T -local equivalences,
(iii) the fibrations are the maps with the right lifting property with respect to cofibrations

that are T -local equivalences.

Moreover, an object X is fibrant in T −1M if and only if X is fibrant in M and X is
T -local. Finally, if X and Y are T -local then a map f : X→ Y is a weak equivalence in
T −1M if and only if it is a weak equivalence in M.

When it exists, the model category T −1M is called the left Bousfield localization
of M at the set T . A fibrant replacement functor in T −1M is called a T -localization
functor.

Remark 3.6.3 . It is useful to know a bit about how Theorem 3.6.2 is proven and
about the construction of the localization functor. For each map in T choose a model
f : A� B that is a cofibration. For each simplicial horn j : Λn,k ↪→ ∆n consider the
box product j � f , which is the map

j � f : (Λn,k ⊗B)q(Λn,k⊗A) (∆n ⊗A) −→ ∆n ⊗B.

Here the tensor refers to the simplicial tensor if M is a simplicial model category,
or more generally it refers to a version built using cosimplicial frames (see [124] for
details). Formally add these maps j � f (for every j and f ) to the set of generating
trivial cofibrations of M, and then repeat the small object argument using this new
set to get the required factorization. In particular, the localization functor is obtained
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as a transfinite composition of cobase changes of the generating trivial cofibrations
in M together with the maps j � f .

3.6.3 Bousfield–Friedlander spectra

If X is a spectrum and n ≥ 0, define the n-truncation τ≥nX to be the spectrum
{∗ ,∗ , . . . ,∗ ,Xn,Xn+1, . . .}. There is a natural map τ≥nX→ X. Our basic goal will be to
localize the level, projective model structure on spectra at the class {τ≥nX→ X | n,X}.
However, this class is not a set and so the first task is to pare it down somewhat. To
this end, define

T = {τ≥(n+1)Fn(Sk)→ Fn(Sk) | n,k ≥ 0}.

Observe that τ≥(n+1)Fn(X) is canonically isomorphic to Fn+1(ΣX), so we can also
describe the set as

T = {Fn+1(Sk+1)→ Fn(Sk) | n,k ≥ 0},

where the map in question is adjoint to the identity Sk+1→ Evn+1(FnSk).

Definition 3.6.4. The stable projective model structure on SpN is the localization
of the level projective model structure at the set T.

Let us analyze the T-local objects. Here the relevant observation is that

SpN

(
Fn(Sk),X

)
' Top∗(S

k ,Xn)

by adjoint functors. If f denotes our map Fn+1(Sk+1)→ Fn(Sk) then on mapping
spaces this is

SpN

(
FnS

k ,X
)

//

'
��

SpN

(
Fn+1S

k+1,X
)

'
��

Top∗(Sk ,Xn) // Top∗(Sk+1,Xn+1) Top∗(Sk ,ΩXn+1)

and one checks that the lower horizontal composite is induced by the structure map
Xn→ΩXn+1. So a spectrum X is T-local precisely when it is an Ω-spectrum.

Remark 3.6.5 . We only needed k = 0 to make this argument. So the maps in T where
k > 0 represent redundant information, and we could throw them out of T and still
get the same localization.

For the following result, recall that if X is a spectrum and n ∈Z then

πn(X) = colimkπn+k(Xk)

where the maps in the colimit system are induced by the structure maps of X.

Proposition 3.6.6. In the stable projective model structure on SpN,

(a) the fibrant objects are the levelwise fibrant Ω-spectra, and
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(b) a map f : X → Y is a weak equivalence if and only if it induces isomorphisms
πn(X)→ πn(Y ) for all n ∈Z.

Note that the levelwise fibrant condition is vacuous if we are defining spectra in
terms of topological spaces, but not if we are doing so in terms of simplicial sets.

Proof. We have already proven (a). For (b), first note that for a map of Ω-spectra
the notions of level weak equivalence, π∗-isomorphism, and stable equivalence all
coincide: level equivalence = stable equivalence by the last line of Theorem 3.6.2, and
level equivalence = π∗-isomorphism by inspection.

Next consider the map fn,k : Fn+1(Sk+1)→ Fn(Sk). This is an isomorphism in levels
n+1 and higher, so this same property passes to any cobase change. Hence any cobase
change of an fn,k is a π∗-isomorphism. Similarly, for any set of horns j : Λp,r ↪→ ∆p

the box product j � fn,k is also an isomorphism in levels n+ 1 and higher. It follows
that any map obtained from these box products by cobase changes and transfinite
compositions is a π∗-isomorphism. In particular, the fibrant replacement functors
X→ RX in the stable projective structure are made this way (see Remark 3.6.3) and
are therefore π∗-isomorphisms.

Finally, suppose given a map of spectra g : X→ Y and consider the square

X //

g
��

RX

Rg
��

Y // RY

The horizontal maps are both stable equivalences and π∗-isomorphisms. So g is a
stable equivalence (resp., π∗-isomorphism) if and only if Rg is so. But RX and RY are
Ω-spectra, so the conditions of Rg being a stable equivalence or π∗-isomorphism are
equivalent; hence, the same must hold for g .

In general, it can be very hard to give a nice description for the fibrations in a
Bousfield localization. In the present case one can actually do it, though. Note that
since there are more trivial cofibrations in T−1M than in M, there will be fewer
fibrations.

Proposition 3.6.7. For a spectrum X, let QX = hocolimnΩ
nXn. Then a map of spectra

X→ Y is a fibration in the projective stable structure on SpN if and only if it is a levelwise
fibration and for every n ≥ 0 the square

Xn //

��

QX

��

Yn // QY

is homotopy Cartesian.

Proof. See [56]. In that paper the projective stable category is not constructed
by Bousfield localization, but directly by brute force. The cofibrations and weak
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equivalences, however, match the ones in our structure, and fibrations are always
determined by the trivial cofibrations, so the two structures are in fact the same.

3.6.4 The coordinate-free setting

Recall the coordinate-free setting of Section 3.5.5. Here we localize at the maps
FW (SW−V ∧ Sk)→ FV (Sk) for all k and all pairs V ⊆W ⊆ U. The functor G from
Section 3.5.5 sends the maps in T to these kinds of maps, so by general localization
theory the adjoint pair (G,U ) descends to give Quillen functors between the resulting
stable model categories:

G : SpN

stable� SpU
stable : U.

By the same arguments that we have seen for SpN, the stable equivalences in SpU are
all π∗-isomorphisms. Since X→UGX is a levelwise isomorphism (see Section 3.5.5),
it follows at once that the above pair is a Quillen equivalence.

We leave the reader to think about change of universe in this setting, building off of
Remark 3.5.10.

3.7 Symmetric spectra

The definitions and basic results about symmetric spectra are very elegant and
beautiful. Understanding the details of what is going on beneath the surface is a
different matter. Our approach here will be to quickly survey the basic theory from
[133] and then go back and work on some motivation afterwards.

Definition 3.7.1. A symmetric sequence in a category C is a collection of objects
Xn together with group homomorphisms Σn→ Aut(Xn), for each n ≥ 0.

It will be convenient to have a more diagrammatic way of phrasing this definition.
Let ΣI be the subcategory of Set consisting of the objects n = {1,2, . . . ,n} for n ≥ 0
(with 0 = ∅) together with all automorphisms. A symmetric sequence in C is simply a
functor X : ΣI →C. As usual, we write CΣI for the category of all such functors.

Now assume that (C,⊗, I ,F) is closed symmetric monoidal and also cocomplete.
Given symmetric sequences X and Y , define a new symmetric sequence X ⊗Y by

(X ⊗Y )n =
∐

p+q=n
(Σn)+ �Σp×Σq (Xp ⊗Xq).

To explain the � notation, regard any group G as a groupoid with one object and G
as its endomorphism group. If H ≤ G and W is an object with a left H-action, then
G�H W is the left Kan extension in the diagram

H //
��

��

C

G

??
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Equivalently, one can write

G�H W = coeq
( ∐
G×H

W ⇒
∐
G
W

)
,

where the top map sends the copy of W indexed by (g,h) to the copy of W indexed
by g via left multiplication by h, and the bottom map sends the copy of W indexed
by (g,h) to the copy of W indexed by gh via the identity. The action of G on

∐
GW

by permutation of the factors descends to give a left action of G on G�H W .
There is a self evident, though tedious to write down, associativity isomorphism

X ⊗ (Y ⊗Z) � (X ⊗ Y )⊗Z . Define the twist isomorphism τX,Y : X ⊗ Y → Y ⊗X on
level n to be the coproduct of maps Σn�Σa×Σb (Xa⊗Yb)→ Σn�Σb×Σa (Yb⊗Xa) (where
a + b = n) sending [α,Xa ⊗ Yb] to [αρb,a,Yb ⊗Xa] via the twist map from C, where
ρb,a ∈ Σn is the evident (b,a)-shuffle. It is a good exercise to check that without ρb,a
in the formula this is not a well-defined map, as it does not exhibit the required
Σa×Σb-equivariance; indeed, check that one needs to include a permutation ρ having
the property that (βa |γb) ◦ ρ = ρ ◦ (γb |βa) for every βa ∈ Σa, γb ∈ Σb. The only
permutation that does the job is ρ = ρb,a. (For a general schema that helps one quickly
determine the correct permutation to use in situations like this, see Remark 3.7.9).

When C is complete one can also define a cotensor X,Y 7→ F(X,Y ) for symmetric
sequences. Before giving the definition, let us record the basic property it should have:

Lemma 3.7.2. Let X, Y , and Z be symmetric sequences in C. There are natural bijections
between the following three sets:

(1) CΣI (X ⊗Y ,Z);
(2) collections of Σp ×Σq-equivariant maps Xp ⊗Yq→ Zp+q for all p,q ≥ 0;
(3) CΣI (X,F(Y ,Z)).

Parts (2) and (3) of the lemma lead one directly to the definition of the cotensor. For
X and Y in CΣI define F(X,Y ) by

F(X,Y )n =
∏
q

F(Xq,Yn+q)
Σq ,

where the Σq action is as follows. If α ∈ Σq then we have maps αX : Xq → Xq and
(idn|α)Y : Yn+q → Yn+q, where (idn|α) ∈ Σn+q is the map that permutes the last q
elements according to α. Then α acts on F(Xq,Yn+q) via the composite

F(Xq,Yn+q)
((idn |α)Y )∗ // F(Xq,Yn+q)

(α−1
X )∗

// F(Xq,Yn+q).

This gives an action of Σq, and F(Xq,Yn+q)
Σq is the fixed object (the limit of the

corresponding functor Σq→C). The action of Σn on Yn+q coming from permutation

of the first block of n elements descends to an action of Σn on F(Xq,Yn+q)
Σq .

The following is a routine exercise:

Proposition 3.7.3. With the above associativity and twist isomorphisms, the tensor
product on CΣI is closed symmetric monoidal with unit I = {I,∅,∅, . . .} and cotensor
F(−,−).
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Now fix any object X in C. Recall from Section 3.3.5 that X⊗n is defined inductively
by X⊗n = X ⊗X⊗(n−1), and that there is a natural left action of Σn on X⊗n. Define X

to be the symmetric sequence Xn = X⊗n, and let I→X be the unique map that is
the identity in level 0.

The associativity maps give natural isomorphisms µa,b : Xa ⊗Xb→Xa+b. We use
these to define a pairing X⊗X→X that on level n is the coproduct of maps

Σn �Σa×Σb (X⊗a ⊗X⊗b)→ X⊗(a+b),

which on the summand [α,X⊗a ⊗X⊗b] equals α ◦µa,b. One readily checks that this is
well-defined and makes X into a commutative monoid. The category of left X-modules
then inherits a closed symmetric monoidal structure as in Section 3.3.2, where for
example the tensor is (−)⊗

X
(−).

Definition 3.7.4. A symmetric X-spectrum is a left X-module.

Unwinding the definitions, a left X-module M is a sequence of objects Mn in C
together with an action of Σn on Mn and structure maps

αp,q : X⊗p ⊗Mq→Mp+q

that are Σp ×Σq-equivariant. The unital condition says that α0,q is the identity, and
associativity says that for p = a + b one has αp,q = αa,b+q ◦ (id ⊗ αb,q); that is, the
diagram

X⊗a ⊗ (X⊗b ⊗Mq)
id⊗αb,q

//

�
��

X⊗a ⊗Mb+q
αa,b+q

// Ma+b+q

(X⊗a ⊗X⊗b)⊗Mq
� // X⊗(a+b) ⊗Mq

αp,q

66

is commutative. This implies that the maps αp,q with p > 1 can be built up from the
α1,∗ maps.

So at the end of the day, a symmetric X-spectrum is a collection of objects Mn in C
equipped with a left Σn-action and structure maps α : X ⊗Mn→Mn+1 having the
property that the iterated structure maps

X⊗p ⊗Mn→Mn+p

are Σp ×Σn-equivariant, for all n,p ≥ 0. Here “iterated structure map” means an
evident composition of associativity maps with the structure maps α.

3.7.1 The model category of symmetric spectra

We now specialize to the case where C is Top∗ and X = S1. The spectrum X =
{S0,S1,S2, . . .} is called the sphere spectrum and denoted simply by S . So symmetric
spectra are just left S-modules. Write SpΣ for the category of symmetric spectra.

The evaluation map Evn : SpΣ→ Top∗ has a left adjoint Fn given by

(FnX)k =
{ ∗ if k < n,
Σk �Σk−n (Sk−n∧X) if k ≥ n,
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where in the second line Σk−n sits in Σk as permutations of the front (k−n)-block.
Note that there are canonical maps

Fn+1(S1∧X)→ Fn(X)

that are equal to the identity in level n+ 1. (Warning: Unlike the case of Bousfield–
Friedlander spectra, these maps are not isomorphisms in degrees larger than n+ 1.
See the discussion below for an example.)

Proposition 3.7.5. There is a model category structure on SpΣ where the weak equiva-
lences and fibrations are objectwise. This is called the level, projective model structure.

Proof. One can do this directly using the functors Fn and Kan’s Recognition Theorem,
just as we did for Bousfield–Friedlander spectra. Alternatively, one can realize that
symmetric spectra are just certain enriched functors and use Theorem 3.5.1(a). See
Section 3.7.4 below for more on this perspective.

Definition 3.7.6. The projective stable model structure on SpΣ is the left Bous-
field localization of the projective level model category structure at the set of maps
{Fn+1(S1∧ Sk)→ Fn(Sk) | n,k ≥ 0}.

Say that a symmetric spectrum is an Ω-spectrum if its underlying classical spectrum
is an Ω-spectrum. Here is the main foundational result about symmetric spectra,
pulling together various statements from [133]:

Theorem 3.7.7.

(a) The projective stable model structure on SpΣ is a stable, closed symmetric monoidal
model category satisfying the Monoid Axiom as well as the Algebraic Creation and
Invariance Properties.

(b) The fibrant objects are the objectwise fibrant Ω-spectra.
(c) The forgetful functor U : SpΣ → SpN has a left adjoint G, and the adjoint pair

G : SpN � SpΣ : U is a Quillen equivalence between the projective stable model
structures.

Remarks 3.7.8 .

(1) Part (b) is automatic from the way we choose the maps to localize, just as for
Bousfield–Friedlander spectra.

(2) In (a) it suffices to verify the Pushout-Product Axiom for box products of generat-
ing cofibrations and trivial cofibrations. This is where it is finally important that
we started with the projective level structure and not the injective level structure.
In the former, the generating maps are well understood and it is easy to analyze
their box products. In the latter, there are far too many cofibrations and in fact
the Pushout-Product Axiom does not hold.

(3) The Quillen equivalence in part (c) is not unexpected, but it is not as easy as
one might think. The left adjoint just comes as in Remark 3.5.3, and the fact
that it is a Quillen pair is easy. But the equivalence part takes a bit of work. See
Section 3.10.3 for further discussion.



124 Dugger: Stable categories and spectra via model categories

(4) The precise references for the different parts of Theorem 3.7.7 are these: monoidal
model category, [133, 5.3.8] ; monoid axiom, [133, 5.4.1] ; Algebraic Creation Property,
[133, 5.4.2 and 5.4.3] ; Algebraic Invariance Property, [133, 5.4.5] ; Strong Flatness
Property, [133, 5.4.4] ; Quillen equivalence with SpN, [133, 4.2.5].

The derived functors of the Quillen equivalence from Theorem 3.7.7(c) give an
equivalence of categories

Ho(SpN)

LG
**

Ho(SpΣ).

RU

hh

A common misconception is to confuse RU and U . That is, if E is a symmetric
spectrum, it is tempting to believe that the image of E in Ho(SpN) is represented
by the underlying classical spectrum UE. This is false in general — an example is
E = F1(S1), discussed below. Two other related issues are these:

(1) The functor U does not preserve all stable weak equivalences.

(2) If X is a symmetric spectrum then define

πnaive
n (X) = πn(UX) = colimkπn+k(Xk).

It is not true that all stable weak equivalences induce isomorphisms on πnaive
∗ (−).

In particular, the groups πnaive
∗ (X) are not guaranteed to be the “correct” homo-

topy groups unless X is fibrant.

One source of confusion here is that πnaive
∗ (X) sometimes are the correct homotopy

groups even when X is not fibrant. The paper [261] gives a detailed discussion of
which spectra X are well-behaved in this regard.

The following example from [133, Example 3.1.10] demonstrates (1) and (2) above. It
is worth examining in some detail. Consider the canonical map f : F1(S1)→ F0(S0)
that is the identity in level 1. This is one of the maps we localized to form the stable
model structure, so it is a stable weak equivalence by definition. Note that F0(S0) is just
the sphere spectrum S . For X any pointed space, (F1X)n = Σn �Σn−1

((S1)∧(n−1) ∧X)
for n ≥ 1; in particular, (F1S

1)n = Σn �Σn−1
Sn. As a space, this is a wedge of n

copies of Sn, and the copies may be regarded as indexed by the set of permutations
Tn = {Id, (1n), (2n), . . . , (n−1,n)} (these are coset representatives for Σn/Σn−1). Our
map f takes the form

S0 S1 S2 S3 · · ·

∗

OO

S1

=

OO

∨
T2

(S1∧ S1)

OO

∨
T3

(S1∧ S1∧ S1)

OO

· · ·

where in each level the component indexed by α ∈ Tn is mapped into Sn via the
canonical identification followed by α.
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Of course we know πnaive
0 (S) = Z. The colimit system for πnaive

0 (F1S
1) is

0→Z ↪→Z
2 ↪→Z

3 ↪→Z
4 ↪→ ·· · ,

where in each case the group includes into the next as a direct summand. So
πnaive

0 (F1S
1) is an infinite direct sum of copies of Z. In particular, we see that

Uf is not a stable equivalence and (equivalently) that f does not induce isomor-
phisms on πnaive

∗ (−). Note that πnaive
∗ (−) gives the “correct” answer for S, but not

for F1S
1.

3.7.2 Understanding the smash product

Let us open up the definition of the smash product and look inside. If X and Y are
symmetric spectra (left S-modules) recall that X ∧ Y (also known as X ∧S Y ) is the
coequalizer of X ⊗ S ⊗ Y ⇒ X ⊗ Y . Note that here X is being implicitly converted
from a left S-module into a right S-module via the twist map. Looking level by level,
we find that (X ∧Y )n is the coequalizer of∨

a+b+c=n

Σn �Σa×Σb×Σc (Xa ∧ (S1)⊗b ∧Yc)⇒
∨
p+q=n

Σn �Σp×Σq (Xp ∧Yq).

This looks scary, but we can tame things a bit by adopting a more algebraic notation,
which we now pause to explain.

If a+ b + c + d + e = n write ρa[b]c[d]e for the permutation in Σn that interchanges
the b-block and the d-block and otherwise maintains the internal order within all 5
blocks. When a or c or e is zero we will drop them from the notation. Also, if α ∈ Σp
and β ∈ Σq write α |β ∈ Σp+q for the permutation that is α on the front p-block and
β on the back q-block.

Let us denote elements of symmetric groups by Greek letters, elements of (S1)∧n

by capital Roman letters, and elements of X∗ and Y∗ by lowercase Roman letters.
In addition, we write subscripts xn to denote elements of degree n, e.g., xn ∈ Xn.
Denote the iterated structure map (S1)∧n ∧Xp→ Xp+n by (An,xp) 7→ Anxp, and the
Σn action on Xn by (αn,xn) 7→ αnxn. Observe that the equivariance of the structure
map is the relation

(αnAn)(βpxp) = (αn|βp)(Anxp). (3.7.3)

We claim that the spaces (X ∧Y )n consist of all elements αn[xp ∧ yq] for p+ q = n
subject to the following relations:

(1) (αn(βp |γq))[xp ∧ yq] = αn[βpxp ∧γqyq] for p+ q = n.

(2) Ak[xr ∧ ys] = Akxr ∧ ys = ρ[r][k]s[xr ∧Akys].

(3) (αkAk)(γr+s[xr ∧ ys]) = (αk |γr+s)(Akxr ∧ ys) = (αk |γr+s)ρ[r][k]s[xr ∧Akys]

Relation (2) is a special case of (3); we have listed it separately because it is easier to
absorb in this simpler form. Also, relation (3) is really just relation (2) plus equivariance.
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Remark 3.7.9 . There is a procedure for determining the permutations ρ appearing in
formulas like the ones above. For an equation of the form “ρ(formula P )= formula Q”,
regard each subscript u in P as a block of u symbols. Then ρ is the permutation
that rearranges the blocks as listed in P into the order listed in Q. For example, in
equation (2) consecutive blocks of length r, k, and s must be reordered by bringing
the k-block in front of the r-block.

As an example of how to use the above notation, we work out X ∧ Y in the first
three levels. Level 0 is easy, as there are no relations: (X ∧Y )0 = X0 ∧Y0. Level 1 has
(X∧Y )1 = [(X0∧Y1)∧(X1∧Y0)] /∼, where the relation is A1(x0∧y0) = (A1x0)∧y0 =
x0 ∧ (A1y0). If desired we can translate this back into categorical language and say
that (X ∧Y )1 is the pushout of the diagram

S1∧X0 ∧Y0
f2

&&

f1

xx

X1∧Y0 X0 ∧Y1

with f1(A1,x0, y0) = A1x0 ∧ y0 and f2(A1,x0, y0) = x0 ∧A1y0.
In general, for (X ∧ Y )n one writes down a big wedge of Xp ∧ Yq (with extra

symmetric groups out front) and then quotients by relations coming from structure
maps out of lower levels. So for n = 2 we start with

(X2 ∧Y0)∨ (X1∧Y1)∨ (12)(X1∧Y1)∨ (X0 ∧Y2),

where (12) is the generator of Σ2 and appears here as a bookkeeping factor. The
relations are

(A2x0)∧ y0 = x0 ∧A2y0, A1x0 ∧ y1 = x0 ∧A1y1, A1x1∧ y0 = ρ[1],[1]x1∧A1y0.

Translating again to categorical language, (X ∧Y )2 is the colimit of a diagram

S1∧X1∧Y0

�� &&

S2 ∧X0 ∧Y0

ss **

S1∧X0 ∧Y1

��yy

X2 ∧Y0 (12)(X1∧Y1) X1∧Y1 X0 ∧Y2

where the maps are easily written down from the algebraic relations. As an exercise,
check that when Y = S this colimit gives exactly X2. Note that this fixes the problem
we saw in our naive attempt back in Section 3.1.3, where the factors X1∧ Y1 and
(12)(X1∧Y1) were compressed into a single term.

This discussion also leads to the following useful fact:

Proposition 3.7.10. Let X, Y , and Z be symmetric spectra. To give a map of symmetric
spectra X ∧Y → Z is equivalent to giving maps Xp ∧Yq→ Zp+q for all p,q ≥ 0 that are
Σp ×Σq-equivariant and satisfy the identities

Ak(xp · yq) = Akxp · yq = ρ[p],[k],q(xp ·Akyq).
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A pairing X ∧X→ Z is commutative if it also satisfies the identity

xp · x′q = ρ[q],[p](x
′
q · xp).

Proof. For the first claim, note that relation (3) is a consequence of the listed relations
and the equivariance of the structure maps in Z . The second claim is routine.

This would be a good moment to see some examples of symmetric ring spectra,
but most of the standard examples are also examples of orthogonal ring spectra and
it is clearer to discuss them in that context. The curious reader might wish to look
ahead at Section 3.8.8.

3.7.4 Symmetric spectra and diagram categories

Let C be a closed symmetric monoidal category and let X be an invertible object
in C. Let X∗ and α : I −→� X∗ ⊗X be a choice for inverse, and recall the dual map
α̂ : X ⊗X∗→ I from Section 3.3.5. The adjoint of α̂ is a map X→ F(X∗, I), and more
generally we get canonical maps

X⊗(k)→ F
(
(X∗ )⊗(n+k), (X∗ )⊗(n)

)
(3.7.5)

adjoint to the map X⊗(k) ⊗ (X∗ )⊗(n+k)→ (X∗ )⊗(n) that reverses the order of the tensor
factors in X⊗(k) and then uses α̂ repeatedly to eliminate adjacent factors of X and X∗

(note that there are various associativity isomorphisms as well, but we are ignoring
them). This leads to the following picture of elements in C and canonical “maps”
between them, where an arrow from A to B labeled Z means a map Z→ F(A,B) and
Σn acts on the right of (X∗ )⊗(n) by permutation of the factors:

I X∗
Xoo X∗ ⊗X∗Xoo

X⊗(2)

bb

Σ2

��

X∗ ⊗X∗ ⊗X∗Xoo

Σ3

��

X⊗(2)

ff

X⊗(3)

]] · · ·oo (3.7.6)

Remark 3.7.11 . There are canonical isomorphisms (X∗ )⊗(k) → F(X⊗(k), I) induced
by the tensoring operation F(A,B) ⊗ F(C,D) → F(A ⊗ C,B ⊗ D), and the above
descriptions might make more sense if one uses these isomorphisms to replace every
appearance of the domain by the codomain. The usual left action of Σn on X⊗(n) (see
Section 3.3.5) gives a right action on F(X⊗(n), I), and the maps in (3.7.5) were set up
so that the adjoints generalize the evaluations X⊗(k) ⊗F(X⊗(k), I)→ I .

To capture the picture in (3.7.6) more formally, define a category Σ
op
X enriched over

C as follows (apologies for the mysterious “op” but it will become clear in a moment).
Σ
op
X has one object [n] for every n ≥ 0, and

Σ
op
X ([n], [k]) =

{∅ if k > n,
X⊗(n−k) �Σn−k Σn if k ≤ n.
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In the last line, Σn−k sits in Σn as permutations of the first n− k elements, and the
notation means the evident analog of Σn �Σn−k X

⊗(n−k) obtained by reversing left and
right. To define this as a category we need to explain how to compose maps, and we
will do this using algebraic notation as in the last section. If maps from [n] to [k] are
written B1 . . .Bn−kβn then the rule is

(B1 . . .Bk−lβk)(C1 . . .Cn−kγn) = C1 . . .Cn−kB1 . . .Bk−l(idn−k |βk)γn (3.7.7)

(the switching of the B’s and C’s seems annoying but works itself out when we move
from Σ

op
X to ΣX ). This rule comes from reading off how compositions work in (3.7.6).

For example, pretend X is a one-dimensional vector space and α̂ is evaluation. The
left-hand side of (3.7.7) takes a tensor product of functionals φ1 ⊗ · · · ⊗ φn on X,
permutes them into the new tensor φγ(1) ⊗ · · · ⊗φγ(n), evaluates the first n − k of
these on the C’s to get [φγ(1)(C1)φγ(2)(C2) · · · ] ·φγ(n−k+1) ⊗ · · · ⊗φγ(n), permutes the
remaining functionals according to β, and then evaluates the first k − l of these at the
B’s. One readily verifies that the right-hand side of (3.7.7) does the same thing.

So we have a category Σ
op
X and (3.7.6) amounts to the observation that our choice

of (X∗, α̂) determines a canonical (enriched) functor Σ
op
X →C sending [n] to (X∗ )⊗(n).

This in turn means that if Z is any object in C then we get an (enriched) functor
ΣX →C by [n] 7→ F((X∗ )⊗(n),Z).

A brief amount of thought reveals that enriched functors ΣX → C are precisely
symmetric X-spectra. Note that in ΣX rule (3.7.7) becomes instead

γ−1
n C1 · · ·Cn−k ◦ β−1

k B1 · · ·Bk−l = γ−1
n (idn−k |β−1

k )C1 · · ·Cn−1B1 · · ·Bk−l

which could be made prettier by removing all of the inverses.
To paraphrase this discussion, the category Σ

op
X in some sense encodes the universal

structure an inverse of X would have in C. Symmetric X-spectra arise by “remembering”
how all the inverses of X map into some given object. This is how one could re-invent
the notion of symmetric spectra, if one were trapped on a desert island and forgot
how it all worked.

Let us push these ideas a little further. The subcategory of C pictured in (3.7.6) is
symmetric monoidal, and this structure can be lifted back to Σ

op
X . Define the tensor

by [k] ⊗ [l] = [k + l], let the associativity isomorphism be the identity, and let the
symmetry isomorphism t : [k]⊗ [l]→ [l]⊗ [k] be the permutation ρ[k],[l]. We also have
to define the tensor product of maps, and this is done using the formula

A1 . . .Akαs ⊗B1 . . .Blβt = A1 . . .AkB1 . . .Blρk,[s−k],[l],t−l(αs |βt). (3.7.8)

This formula is again easily derived by thinking about vector spaces and functionals.
The left-hand side is the operation that takes functions φ1, . . . ,φs,µ1, . . . ,µt , permutes
the first set according to α and the second set according to β, then successively
evaluates the first part of each set at the A’s and B’s in order (with the first A getting
plugged into the first φ, and so forth). The right-hand side also does the α and β
scrambling but then moves the first group of µ’s in front of the last group of φ’s,
before plugging in the A’s and B’s. These are clearly the same operation.

It is a good exercise to check that Σ
op
X , thus defined, is indeed symmetric monoidal.
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The symmetric monoidal structure on Σ
op
X yields a corresponding structure on

ΣX , and then this passes to a symmetric monoidal structure on the functor cate-
gory F(ΣX ,C) through a process called Day convolution. Briefly, given two functors
Y ,Z : ΣX →C one forms the diagram

ΣX ×ΣX
⊗
��

Y×Z // C ×C ⊗
// C

ΣX

Y⊗Z

55

(3.7.9)

and Y ⊗Z is the (enriched) left Kan extension. The fact that the tensors on ΣX and C
are both symmetric monoidal yields that the tensor product of functors is symmetric
monoidal as well.

To summarize this discussion, we could have defined symmetric spectra as follows:

Definition 3.7.12 (Symmetric spectra, approach #2). Let Σ denote the category ΣS1 ,
as defined above. This is a category enriched over Top∗. A symmetric spectrum is
simply an enriched functor Σ→ Top.

This approach provides a useful perspective on the difference between classical
spectra and symmetric spectra. Classical spectra are diagrams indexed by the evident
subcategory NS1 of ΣS1 . The monoidal structure on ΣS1 does not descend to this
subcategory: to define the tensor product of two maps one needs the ρ-permutations
as in (3.7.8), and these are not available in NS1. This seems to be the core reason
that classical spectra do not have a smash product at the model category level.

3.8 Orthogonal spectra

The development of orthogonal spectra proceeds along lines very similar to what
we did for symmetric spectra, and so we will be able to cover it fairly quickly. We
describe the two (equivalent) approaches, one going through S-modules and the other
via enriched diagrams. In each case there are some annoying technicalities to be
dealt with at the beginning, but after that everything works much as for symmetric
spectra. Certain formulas that were a little complicated in symmetric spectra — because
they required an introduction of a permutation — have an easier counterpart in the
orthogonal case, because the machinery in some sense keeps track of the permutation
for us. The theory of orthogonal spectra was developed in [178].

Very briefly, an orthogonal spectrum assigns to each finite-dimensional inner product
space V a pointed space XV , and to every linear isometric inclusion f : V ↪→W a
natural structure map σf : SW−f (V )∧XV → XW , where W − f (V ) is the orthogonal
complement of f (V ) in W . The extra complication is that these structure maps
must be continuous in f in an appropriate sense. Some other things are as expected:
if f is an isomorphism then by naturality the structure map will be an isomorphism
XV −→� XW , in particular showing that the orthogonal group O(V ) of self-isometries
will act on each XV .
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Why bother with orthogonal spectra? There are at least three reasons. As mentioned,
the theory works out a bit more naturally, with simpler formulas. Secondly, orthogonal
spectra adapt easily to the setting of equivariant spectra (see [177] or Appendix A of
[120]). Finally, unlike symmetric spectra, orthogonal spectra have the nice property that
the weak equivalences are just the maps inducing isomorphisms on stable homotopy
groups.

In this section we will in fact discuss four types of spectra, interrelated thus:

1: symmetric spectra // 2: generalized symmetric spectra

3: coordinatized orthogonal spectra // 4: orthogonal spectra.

(3.8.1)

(Types 2 and 3 on the anti-diagonal seem to lack standard names; these are our own.)
Our development will proceed in the order 1 −→ 2 −→ 4 −→ 3, although other orders
of navigation are also possible.

3.8.2 Prelude: generalized symmetric spectra

The generalized symmetric spectra we are about to introduce do not typically get
much airtime, as there is little payoff for the extra work and they are not truly
“coordinate-free”. But they are a useful prelude to orthogonal spectra, and only a slight
modification of the symmetric spectra story we saw in Section 3.7. They come up, for
example, in Remark 2.1.5 of [133].

For any finite set T consider the real vector space R〈T 〉 with basis T , together with
its one-point compactification ST = SR〈T 〉. Let Σ(T ) denote the group of permutations
of T ; it acts naturally on ST . Write n for the set {1,2, . . . ,n}, so that Σn = Σ(n).

A generalized symmetric spectrum should be, in part, a functor T 7→ XT defined on
the category of finite sets with isomorphisms, taking values in the category of pointed
spaces. Functoriality will give each XT a Σ(T )-action. In addition, the spectrum should
assign to every subset inclusion T ⊆U a structure map

σT ,U : SU−T ∧XT → XU

that is Σ(U − T )×Σ(T )-equivariant, with the assignment being compatible with the
isomorphisms XJ � XJ ′ for J � J ′ . By restricting to the special sets n and inclusions
n ↪→ k for n ≤ k, we get a (classical) symmetric spectrum X̃. If |T | = n then every
bijection T → n induces a homeomorphism XT → Xn, and one can check that there
is really no more information in X than in X̃. But what we have accomplished here
is to produce a notion of symmetric spectrum that avoids any dependence on the
particular choice of finite sets n, which after all are a bit unnatural.

Remark 3.8.1 . In fact the above yields structure maps for any inclusion f : T ↪→ U ,
of the form

σf : SU−f (T ) ∧XT → XU ,
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via composition:

SU−f (T ) ∧XT
id∧Xf

// SU−f (T ) ∧Xf (T )
σf (T ),U

// XU .

Just as for symmetric spectra, we can follow two approaches for setting up the
generalized version. Let ΣI denote the category of finite sets and isomorphisms.

Approach #1: Define a ΣI-sequence to be a functor ΣI→ Top∗. Define the tensor
product of ΣI-sequences X and Y by

(X ⊗Y )U =
∨
T⊆U

XT ∧YU−T . (3.8.3)

For the Σ(U )-action, an α ∈ Σ(U ) maps the summand XT ∧YU−T to Xα(T )∧Yα(U−T )
via Xα|T ∧Xα|U−T . The twist map in the symmetric monoidal structure carries the
summand XT ∧YU−T (indexed by T ⊆U ) to YU−T ∧XT (indexed by U − T ⊆U ) via
the usual twist map from Top∗.

The sphere spectrum S is the ΣI-sequence T 7→ ST , which can be checked to
be a commutative monoid. We define a generalized symmetric spectrum to be an
S-module.

Unfortunately, because ΣI is not a small category we cannot form the category
of ΣI-sequences without running into set-theoretic issues. See Remark 3.5.4 for the
common ways to get around this: for example, we can choose a skeletal subcategory
ΣIskel ↪→ΣI together with a retraction r, and then transplant all the definitions for
ΣI-sequences to ΣIskel-sequences. One choice for skeletal subcategory is precisely
the category ΣI from Section 3.7, leading to the previous (ungeneralized) notion of
symmetric spectra.

The monoidal product on ΣI-sequences is another example of Day convolution
(see (3.7.9)): the category ΣI has the symmetric monoidal structure q given by disjoint
union, and X ⊗Y is the left Kan extension in the diagram

ΣI×ΣI
��

q
��

X∧Y // Top∗

ΣI

X⊗Y

::

The most natural formula for this left Kan extension is

(X ⊗Y )(U ) = colim[AqB→U ]XA ∧YB,

where the indexing category consists of triples (A,B,f : AqB→U ) for f a map in
ΣI and therefore an isomorphism. The maps between triples are the evident ones.
This indexing category is not small, but again it has a small skeleton and so the
colimit still exists. By associating the triple (A,B,f ) with the image f (A) ⊆ U , one
readily identifies the above colimit with the expression in (3.8.3).

Approach #2: For finite sets A and B define a category [A,B] whose objects are sets
C such that A ⊆ C and |C| = |B|; morphisms C→ C′ are bijections g : C→ C′ which
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are the identity on A. Next define a category Σ enriched over Top∗ whose objects are
the finite sets and where the morphisms are given by

Σ(A,B) = colim[A,B]

[
Isom(C,B)+∧ SC−A

]
(and Isom(C,B) is the set of bijections from C to B). The category [A,B] indexing the
colimit consists only of isomorphisms, and so the colimit can be identified with the
co-invariants of the group of automorphisms acting on any spot of the diagram. In
particular, for any subset A ⊆ C such that |C| = |B| one has

Σ(A,B) � Isom(C,B)+ ∧Σ(C−A) S
C−A.

We can also regard Σ(A,B) as the subset of Hom(A,B)+ ∧ SB consisting of all pairs
(f ,x) where f is an injection and x ∈ SB−f (A); it is easy to check that the above
colimit maps to this space in the evident way. If we do this, the composition is easy to
describe: Σ(B,C)×Σ(A,B) −→Σ(A,C) is the map

((g,y), (f ,x)) 7→ (gf ,y ∧ g(x)).

In this approach, a generalized symmetric spectrum is simply an enriched functor
Σ→ Top∗. Just as in Approach #1, one runs into the difficulty that Σ is not a small
category — and one way of dealing with this is to replace Σ with a skeletal subcategory,
such as the category Σ from Definition 3.7.12.

3.8.4 Orthogonal spectra

Generalized symmetric spectra were built around the vector spaces R〈A〉, where A
ranged over all finite sets. So these are vector spaces with a choice of basis, and
one is naturally led to wonder about a basis-free approach. That is essentially what
orthogonal spectra are. The role of the symmetric groups Σ(A) is instead played by
orthogonal groups O(V ).

Let OI be the category of finite-dimensional real inner product spaces, with linear
isometric isomorphisms for the maps. This category only has maps from V to W
when dimV = dimW , and all such maps are isomorphisms. We regard OI as being
enriched over Top, with OI(V ,W ) having the usual subspace topology induced by
the compact-open topology on the space of all continuous maps W V . For W ∈ obOI
define O(W ) = OI(W,W ) to be the space of isometries from W to itself. If V ⊆W
write W −V for the orthogonal complement of V in W . Then we have a canonical
inclusion O(V ) ↪→ O(W ): isometries of V extend to W by having them act as the
identity on W −V . We will write Isom(U,V ) for space of linear isometric inclusions
from U into V , so when dimU = dimV we have Isom(U,V ) = OI(U,V ).

Approach #1: An OI-sequence is simply an enriched functor OI → Top∗. The
symmetric monoidal structure ⊕ on OI induces a symmetric monoidal structure on
OI-sequences by Day convolution. Specifically, if X and Y are OI-sequences then
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X ⊗Y is the (enriched) left Kan extension

OI ×OI

⊗
��

X×Y // Top∗ ×Top∗
∧ // Top∗

OI
X⊗Y

44

and can be given by the (enriched) colimit formula

(X ⊗Y )W = colimA⊕B→W (XA ∧YB). (3.8.5)

Here the indexing category has objects consisting of tuples (A,B,f : A⊕ B→ W ),
where f is a map in OI , and the evident morphisms (once again this is not a small
category, but has a small skeleton). The enriched colimit is the coequalizer in Top of
the two evident arrows∐

A,B,A′ ,B′ Isom(A,A′)× Isom(B,B′)× Isom(A⊕B,W )× (XA ∧YB)

����∐
A,B Isom(A⊕B,W )× (XA ∧YB)

and so in particular the topology on (X ⊗ Y )W comes from the topology on both
Isom(A⊕B,W ) and on XA ∧YB. As a set (ignoring the topology) we can write

(X ⊗Y )W =
∨
V⊆W

XY ∧YW−V . (3.8.6)

by associating to every isometric isomorphism f : A⊕B→W the subspace f (A) ⊆W
(but this precisely ignores the topology on Isom(A⊕B,W )). Note that in this picture
an isometry h : W →W ′ acts on this wedge by sending the summand XV ∧ YW−V
to Xh(V ) ∧Yh(W−V ) using the maps X(h|V ) and Y (h|W−V ). The description in (3.8.5)
readily gives the continuity of the maps

OI(W,W ′)× (X ⊗Y )W → (X ⊗Y )W ′ .

The indexing category for the colimit in (3.8.5) has the property that all maps are
isomorphisms; it follows formally that the colimit can be identified with the wedge of
the co-invariants of the groups of automorphisms corresponding to every connected
component of the category. So if we choose one Vp ⊆W of dimension p for every
0 ≤ p ≤ dimW then we can write

(X ⊗Y )W �
∨
p

O(W )+ ∧O(Vp)×O(W−Vp) [XVp ∧YW−Vp ]. (3.8.7)

This is correct as topological spaces but is non-canonical because of the choices
of Vp. The bijection from (3.8.7) to (3.8.6) sends a tuple (α, x∧y ∈ XVp ∧YW−Vp ) to
α∗(x)∧α∗(y) ∈ Xα(Vp) ∧Yα(W−Vp).

This tensor gives a closed symmetric monoidal product on the category of OI-
sequences, where the symmetry isomorphism t : X⊗Y → Y ⊗X sends x∧y ∈ XA∧YB
to y ∧ x ∈ YB ∧XA, using the description of (3.8.5).
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Let S denote the OI-sequence defined by V 7→ SV . It is easy to check that the
maps SV ∧ SW → SV⊕W make S into a commutative monoid in the category of
OI-sequences. Define an orthogonal spectrum to be a left S-module. If X and Y
are orthogonal spectra then their smash product is X ∧Y = X ⊗S Y .

We will write SpO for the category of orthogonal spectra.

Remark 3.8.2 . In wanting to consider all enriched functors OI → Top∗ as a category,
we run into the usual problem that OI is not small. To circumvent this using a
small skeletal subcategory, as in Remark 3.5.4, we can take for such a subcategory
the Euclidean spaces (Rn, ·) with standard dot product, for each n ≥ 0. This leads
to a spectrum being an assignment n 7→ Xn, where Xn is a pointed space with an
O(n)-action, together with structure maps S1∧ Xn → Xn+1 such that the iterated
maps Sp∧Xn→ Xn+p are O(p)×O(n)-equivariant. Such an object could be called a
“coordinatized orthogonal spectrum”, and completes our tour of the square (3.8.1).

Approach #2: Here we define a Top∗-enriched category O having the same objects
as OI and where O(V ,W ) is supposed to parameterize the various suspension
maps from XV to XW in a spectrum X. Recall that for every isometry f : V →W
(which will necessarily be injective) we are supposed to have a suspension map
σf : SW−f (V ) ∧XV → XW . The tricky part here is that there is not one single sphere
involved in these maps: the sphere varies continuously with f . So to this end, let
Isom(V ,W ) be the space of isometries from V into W and let W −V → Isom(V ,W )
denote the bundle whose fiber over f : V→W is W − f (V ). Define

O(V ,W ) = Th(W −V → Isom(V ,W )),

the Thom space of the bundle W − V . Note that if |V | > |W | then Isom(V ,W ) is
empty and this Thom space is a single point.

A point in O(V ,W ) can be represented by a pair (f ,x) consisting of an isom-
etry f : V → W and x ∈ SW−f (V ). Using this notation, if (g,y) ∈ O(W,Z) then
composition in O is given by the formula

(g,y) ◦ (f ,x) = (gf ,g(x) + y),

the sum-of-vectors map (g(W )− gf (V ))× (Z − g(W ))→ Z − gf (V ) being extended
to the one-point compactifications in the usual way.

We can make the following identifications:

O(V ,W ) =


O(W )+ ∧O(W−V ) S

W−V if V ⊆W ,
Isom(V ,W ) if dimV = dimW,

Isom(U,W )+ ∧O(U−V ) S
U−V if dimV ≤ dimW and V ⊆U �W ,

∗ if dimW < dimV .

The first two lines are actually special cases of the third, but are included separately for
pedagogical purposes. For the third line use the map Isom(U,W )+∧O(U−V ) S

U−V →
Th(W −V ) given by (h,x) 7→ (h|V ,h(x)).

The point to remember in the above descriptions is that when dimV = dimW we
have exactly Isom(V ,W ) as the space of maps from V to W . When V ⊆W we put
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an SW−V into the space of maps from V to W , and then allow post-compositions
with our O(W ) maps from W to itself — this accounts for the O(W )+∧O(W−V ) S

W−V

term. When V and W are incomparable we choose U ⊇ V such that dimU = dimW
and allow compositions between our SU−V maps from V to U and our Isom(U,W )
maps from U to W , accounting for the Isom(U,W )+ ∧O(U−V ) S

U−V term.
In this approach an orthogonal spectrum is simply an enriched functor O→ Top∗ .

Unraveling this definition, an orthogonal spectrum X consists of

– a functor X : OI → Top∗, and
– for every pair V ⊆W a structure map

σV ,W : SW−V ∧XV → XW

that is O(W −V )×O(V )-equivariant.

These structure maps must satisfy unital and associativity conditions that are easy to
work out.

We leave the reader to justify the following analog of Proposition 3.7.10. Note that
the isometry ρ that appears here is naturally forced upon us, since the second equality
does not even make sense without it. In this sense the situation is a bit simpler than
for symmetric spectra.

Proposition 3.8.3. Let X, Y , and Z be orthogonal spectra. Giving a pairing X∧Y → Z
is equivalent to giving a collection of maps XV ∧YW → ZV⊕W that are O(V )×O(W )-
equivariant and satisfy the identities

AU (xV yW ) = (AUxV )yW = ρ(xV · (AUyW )),

where ρ is the evident isometry V ⊕ (U ⊕W )→ (U ⊕V )⊕W that is natural in the three
variables. (Here we are using the algebraic notation from (3.7.2), adapted in the obvious
way to the present context.) A pairing X ∧X → Z is commutative if it also satisfies the
identities xV · yW = ρ(yW · xV ), where ρ is the twist isometry W ⊕V → V ⊕W .

3.8.8 Examples

We now give several standard examples of orthogonal and symmetric ring spectra.

(a) Let R be a ring and let HR be the spectrum V 7→ R〈SV 〉, where the latter is
the free R-module on the set SV with an appropriate topology (and where the
basepoint is equal to zero). It is convenient to think of points in R〈SV 〉 as finite
configurations on SV with labels in R, written formally as

∑
i rixi with ri ∈ R, xi ∈ SV .

The maps SW ∧ R〈SV 〉 → R〈SW⊕V 〉 send (x,
∑
riyi) →

∑
ri(x ∧ yi). The product

maps R〈SV 〉 ∧R〈SW 〉 → R〈SV⊕W 〉 send (
∑
rixi ,

∑
sjyj )→

∑
i,j risj [xi ∧ yj ], and the

unit maps SW → R〈SW 〉 send x 7→ 1 · x.
(b) Let MO be the spectrum V 7→MOV = EO(V )+ ∧O(V ) S

V . Here we take EG to be
the geometric realization of the standard simplicial space [n] 7→ Gn+1 with projections
as face maps. Note that this comes with canonical maps EH → EG for H → G and
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EG1 ×EG2 −→� E(G1 ×G2), and that G acts on EG from both the left and the right
via its diagonal action on the Gn+1 terms. The O(V ) action on MOV comes from the
left action on EO(V ).

The maps SW ∧MOV →MOW⊕V are (x, (α,y)) 7→ (α,x∧ y), where by abuse we
write α for both an element of EO(V ) and its image in EO(W ⊕V ). It is informative
to check the O(W ) ×O(V )-equivariance. The O(V )-equivariance is clear, but the
O(W )-equivariance looks wrong at first. One must use that O(W ) and O(V ) commute
inside of O(W ⊕V )!

The pairings MOV ∧MOW → MOV⊕W are the evident ones: (α,x)∧ (β,y) 7→
(αβ,x∧y), where αβ refers to the pairing EO(V )×EO(W )→ EO(V ⊕W ). The unit
maps SV →MOV send x to (IdV ,x). We leave the reader to check the necessary
relations to see that this is indeed a commutative ring spectrum.

(c) Constructing MU as an orthogonal ring spectrum is a little tricky. One can mimic our
construction of MO using complexifications and unitary groups and write MU (V ) =
EU (V

C
)+ ∧U (V

C
) S

V
C , where V

C
is the complexification of V , but then one only gets

suspension operators by SWC
−V

C when one wants SW−V . So this doesn’t quite work.
To explain the fix, if W is a Hermitian inner product space define

MUHerm
W = EU (W )+ ∧U (W ) S

W .

This has a left U (W )-action coming from the left action on EU (W ). This construction
satisfies all the analogous properties to (b) above, but only for Hermitian spaces. For
a real inner product space V define MUV = Map(S iV ,MUHerm

V
C

), where iV is the
imaginary part of V

C
. Note that O(V ) acts on S iV in the evident way, on MUHerm

V
C

through the map O(V )→U (V
C

), and then on the mapping space via conjugation.
It is an easy exercise to check that one gets natural maps SV ∧MUW →MUV⊕W

making MU into an orthogonal Ω-spectrum. Moreover, smashing of maps gives the
pairings

MUV ∧MUW Map(S iV ,MUHerm
V
C

)∧Map(S iW ,MUHerm
W

C

)

(f ,g) 7→f ∧g
��

Map(S iV⊕iW ,MUHerm
V
C

∧MUHerm
W

C

)

��

Map(S iV⊕iW ,MUHerm
(V⊕W )

C

) MUV⊕W

which make MU into an orthogonal commutative ring spectrum.

(d) Real K-theory was written down as a symmetric commutative ring spectrum by Joachim
[136]. It is not completely obvious how to do this, but Joachim found a way using spaces
of Fredholm operators. The Σn-actions come from the action on a tensor product of
Hilbert spaces H⊗n. This construction can be adapted to complex K-theory using
techniques similar to those in (c), but it does not immediately yield an orthogonal
spectrum.
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(e) (Waldhausen K-theory). Let C be an exact category in the sense of [224] (or alternatively,
a category with cofibrations and weak equivalences in the sense of Waldhausen).
Waldhausen’s S•-construction produces a spectrum K(C) called the Waldhausen
K-theory spectrum of C. Geisser and Hesselholt observed in [102, Section 6] that
if one sets things up carefully then this construction actually produces a symmetric
spectrum, and that if C has a well-behaved tensor product then K(C) is in fact a
symmetric ring spectrum. While it would take us too far afield to give a rigorous
development of these ideas, by doing a bit of handwaving we can nevertheless give
the general idea. In this example we work entirely simplicially, mostly just to avoid the
excess step of needing to apply geometric realization constantly.

The S•-construction applied to C gives a simplicial set [n] 7→ SnC, where an element
of SnC is, roughly speaking, a filtered object A1 ↪→ A2 ↪→ ·· · ↪→ An in C together
with a particular choice for every quotient Ai /Aj with j ≤ i. We will refer to this as
a “filtered object with quotient data”. For i ≥ 1 the face map di omits Ai from the
filtration, whereas d0 sends the filtered object to A2 /A1 ↪→ A3 /A1 ↪→ ·· · ↪→ An /A1.
Note that S0C = ∗ by convention, and S1C is the set of objects in C.

Define K(C)0 = ∗ and K(C)1 = S•C. We will extend this to a generalized symmetric
spectrum (as discussed in Section 3.8.2) by defining K(C)Q for every finite set Q. To
do this we need the notion of a Q-simplicial set. Recall that ∆ denotes the simplicial
indexing category, and define ∆Q to be the product category

∏
Q∆— a product

of copies of ∆ indexed by the set Q. An object in ∆Q is a Q-tuple n = (nq)q∈Q,
or equivalently a function Q → N. We define a Q-simplicial set to be a functor
(∆Q)op → Set. If |Q| = k, a Q-simplicial set is the same as a k-fold multi-simplicial
set, but we think of the different simplicial directions as being indexed by Q.

If X is a Q-simplicial set, define diag(X) to be the simplicial set [n] 7→ X(n,n,...,n) ,
where the subscript indicates the constant Q-tuple whose value is n. We will also need
the notion of skeleton: if T ⊆ Q and r ≥ 0, define the (T ,r)-skeleton of X to be the
Q-simplicial set given by

(sk(T ,r)X)(n) = X(n′), where n′q =
{
nq if q < T ,
min{nq, r} if q ∈ T .

Despite the cumbersome definition, this just says that whenever q ∈ T we replace the
simplicial q-direction of X by its usual r-skeleton.

Let SQ be the smash product of copies of S1 = ∆1/∂∆1 indexed by the set Q. In
simplicial degree k the set (SQ)k consists of k + 1 elements, which correspond to the
basepoint together with the k possible degeneracies of the 1-simplex [01].

The following strange result turns out to be the key to producing our desired
symmetric spectrum.

Proposition 3.8.4. Let Q and Q′ be finite sets, and let X be a QqQ′-simplicial set.
Assume that sk(Q′ ,0)X = ∗ . Then there is a natural map of simplicial sets

SQ
′
∧diag(sk(Q′ ,1)X) −→ diag(X).

Proof. This is a combinatorial exercise left to the reader. The main point is that the
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non-basepoint elements of (SQ
′
)k can be thought of as exactly corresponding to the k

different ways of applying degeneracies in the Q′-directions to move from simplicial
degree 1 up to simplicial degree k. The desired map is defined to consist exactly of
these degeneracy maps.

With these tools in hand, we return to Waldhausen K-theory. Recall that every [n] in
∆ may be regarded as a category, in which there is a unique map from i to j whenever
i < j . Filtered objects of length n in C may be identified with functors [n]→ C that
send 0 to the zero object of C. Likewise, we associate the tuple n = (nq)q∈Q to the
product category [n] =

∏
q∈Q[nq], and define an n-filtered object to be a functor

[n] → C which sends every tuple containing 0 to the zero object. For example, a
(1,1)-filtered object is the same as an object of C, and a (2,3)-filtered object is a
diagram of the form

X11
//

��

X12

��

// X13

��

X21
// X22

// X23

For each finite set Q, define SQ• C to be the Q-simplicial set which in multidegree (n)
consists of all n-filtered objects of C satisfying certain cofibration conditions together
with particular choices for various quotient objects (again, we are being intentionally
vague and only giving the basic idea). Define K(C)Q = diag(SQ• C). Note that Σ(Q)
acts naturally on this construction, by permutation of the factors.

Observe that sk(Q′ ,1)(S
QqQ′
• C) = SQ• C. So Proposition 3.8.4 gives maps

SQ
′
∧K(C)Q→ K(C)QqQ′

which are readily checked to be Σ(Q′)×Σ(Q)-equivariant. Thus, we have a generalized
symmetric spectrum. Note that there does not seem to be any obvious approach for
producing an orthogonal spectrum here.

If in addition C has a well-behaved tensor product — one that preserves cofibrations
and exactness — then we can take an (nq)q∈Q-filtered object X and an (ks)s∈Q′ -filtered
object Y and tensor them together to get a (nq k)QqQ′ -filtered object X ⊗ Y . This
yields maps

K(C)Q ∧K(C)Q′ → K(C)QqQ′

making K(C) into a symmetric ring spectrum.
We again refer to [102, Section 6.1] for a detailed treatment of this material.

3.8.9 Model structures for orthogonal spectra

We now turn to the development of the commonly used model category structures for
orthogonal spectra. By now the following series of results will be very familiar.

Proposition 3.8.5. There exists a model category structure on SpO where the weak equiv-
alences and fibrations are levelwise. This is called the level, projective model structure.
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Proof. Direct application of Theorem 3.5.1(a) in the setting of enriched diagrams.

The evaluation functors EvV : SpO→ Top∗ have left adjoints FV given by

(FVX)W = Th
(
W −V → Isom(V ,W )

)
∧X

�


O(W )+ ∧O(W−V ) (SW−V ∧X) if V ⊆W,

OI(U,W )+ ∧O(U−V ) (SU−V ∧X) if V ⊆U and dimU = dimW,

∗ if dimW < dimV .

If V ⊆W there is a canonical map FW (SW−V ∧X)→ FV (X).

Definition 3.8.6. The stable projective model structure on SpO is the Bousfield
localization of the level projective model category structure at the set of maps{

FW (SW−V ∧ S0)→ FV (S0)
∣∣∣V ⊆W }

.

There is a simple comparison map between orthogonal spectra and symmetric
spectra. Let e1, . . . , en be the standard basis for Rn, so that we have the usual inclusion
R
n ⊆R

n+1. The choice of vector en+1 gives a map R→R
n+1−Rn (sending 1 to en+1)

and therefore an induced homeomorphism S1 → S(Rn+1−Rn). Permutation of basis
elements gives a group map Σn→O(Rn).

There is a forgetful functor U : SpO → SpΣ that sends an orthogonal spectrum
X to the symmetric spectrum [n] 7→ X

R
n , where the Σn-action on X

R
n comes from

restricting the O(Rn)-action and the structure maps come from those in X via the
identification S1 � S(Rn+1−Rn).

The following results are all proven in [178]:

Proposition 3.8.7.

(a) The stable projective structure on SpO is a stable, closed symmetric monoidal model
category satisfying the Monoid Axiom, the Algebraic Creation and Invariance Properties
and the Strong Flatness Property.

(b) The fibrant objects in SpO are the levelwise fibrant Ω-spectra, meaning orthogonal
spectra for which the adjoints to the structure maps XV →ΩW−VXW are all weak
equivalences for V ⊆W .

(c) The forgetful functor U : SpO→ SpΣ has a left adjoint G and the pair (G,U ) is a
Quillen equivalence.

(d) A map f : X→ Y in SpO is a stable weak equivalence if and only if Uf is a weak
equivalence in SpN (slightly abusing our use of U here).

Proof. The precise references for the different parts are: model structure, [178, 9.2];
monoidal properties, [178, 12.1 (take R = S)]; Algebraic Creation Property, [178, 12.1(i)];
Algebraic Invariance, [178, 12.1vi,vii]; Strong Flatness, [178, 12.3, 12.7]; Quillen Equiva-
lence, [178, 10.4]; U detects stable weak equivalences, [178, 8.7].

Statement (d) is something of a surprise, as this is not true when orthogonal spectra
are replaced with symmetric spectra. The topology of the orthogonal groups turns
out to be what makes this work, as we now explain. If X is an orthogonal spectrum
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define πk(X) = colimnπn+k(XR
n ). These are precisely the homotopy groups of the

underlying Bousfield–Friedlander spectrum. One might think to include other XV
in the colimit system, but there is no point as X

R
n � XV when dimV = n. Part (d)

of Proposition 3.8.7 is equivalent to the statement that the stable equivalences of
orthogonal spectra are just the π∗-isomorphisms.

The key to understanding this is to look at the map Fn+1(S1∧A)→ Fn(A), where
we now write Fn as short for F

R
n . We claim this is a π∗-isomorphism (the analog was

false for symmetric spectra). In level n+ k this map is

O(n+ k)+ ∧O(k−1) (Sk−1 ∧ S1∧A) −→O(n+ k)+ ∧O(k) (Sk ∧A).

The A comes out on both sides as a smash factor, so we might as well throw it away.
Also, we won’t change the stable homotopy groups (except for a shift) if we smash
both sides with Sn, and this gives

O(n+ k)+ ∧O(k−1) S
n+k −→O(n+ k)+ ∧O(k) S

n+k .

Now, if X is a left G-space and H ≤ G then

G+∧H X � G+∧H (G+∧GX) � (G+∧H G+)∧GX � (G/H+∧G+)∧GX � G/H+∧X.

In our case O(n+ k) acts on Sn+k , so the map simplifies to

O(n+ k)/O(k − 1)+ ∧ Sn+k →O(n+ k)/O(k)+ ∧ Sn+k .

Since O(k)/O(k − 1) � Sk−1, the map O(n+ k)/O(k − 1)→ O(n+ k)/O(k) is (k − 1)-
connected and so the smash with Sn+k is (n + 2k − 1)-connected. As this goes to
infinity with k, we have our isomorphism on stable homotopy groups.

3.9 EKMM spectra

Unpacking the definitions of [94] takes time and energy. There are several layers
to unravel, with quite a bit of intricate mathematics. Anything close to a complete
account would involve reproducing a big chunk of the book [94]. Since our aim is
only to survey this material, we will content ourselves with a very incomplete account,
outlining the main steps but omitting the details behind them.

We first explain the basic idea. Start with the notion of a spectrum defined on a
May universe U. This is basically the idea of Bousfield–Friedlander spectra, but done
in a coordinate-free way. If M and N are two such spectra, then the smash product
M∧N seems to be most naturally defined as a spectrum on the universe U⊕U. To get
a spectrum on U we can choose an isomorphism U � U⊕U, but this involves a choice.
The space of all choices is contractible, so in some sense the choice doesn’t matter.
But if we want a smash product that is commutative and associative on the point-set
level, we can’t afford to make a single choice.

To get around this, one adopts a definition that builds all the choices in from the
beginning. An EKMM-spectrum is (approximately) a coordinate-free spectrum that
comes bundled together with its images under all possible changes of universe. The
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smash product of two such things gives a “bundle” (in a very non-technical sense)
of spectra on U⊕U, and then changing back to U in all possible ways just creates
another bundle. No choices have been made, but at the expense of introducing extra
complexity into the objects themselves.

It is informative to contrast symmetric (or orthogonal) spectra with EKMM-spectra.
For the former, the category itself is fairly concrete and easy to understand. The
complexities appear in the model structure, where the fibrant objects and weak
equivalences are complicated. With EKMM-spectra all the complexity is built into the
objects themselves. They are “flabby” enough to all be fibrant in the model structure,
and the weak equivalences are quite simple to understand.

3.9.1 Outline for the EKMM approach

Fix a May universe U, by which we mean a real inner product space isomorphic to
R
∞ with the dot product. For subspaces V ⊆W ⊆ U write W −V for the orthogonal

complement of V in W . Let SV be the one-point compactification of V , and for X a
pointed space write ΩVX for the pointed function space F∗(SV ,X).

It is important to understand that the machinery we describe below was developed
over a long time in the works of May and his collaborators. We note especially [155],
[93], and [94], but there are plenty of precursors in [63] and [199] as well.

(1) A prespectrum is an assignment V 7→ EV that sends finite-dimensional subspaces
of U to pointed spaces, together with suspension maps SW−V ∧EV → EW for every
pair V ⊆W . These maps must satisfy an associativity condition and be the identity
when V =W . Write PU for the category of prespectra on U, with the evident maps.

(2) A spectrum is a prespectrum where the adjoints EV → ΩW−V EW are homeo-
morphisms. Write SU for the category of spectra on U.

(3) There are adjoint functors L : PU� SU : i where the right adjoint i is the evident
inclusion. The functor L is called “spectrification”. (This functor is more mysterious
than one might first guess, and having control over colimits in SU is entirely dependent
on having a good working knowledge of L, as provided by Lewis in [155, Appendix].)

(4) For universes U, U′ there is an external smash product ∧pre : SU× SU′→ P(U⊕U′)
defined as follows. For M and N in SU, define

(M ∧pre N )(V ⊕V ′) =MV ∧NV ′ .

This only defines M ∧pre N on subspaces of U⊕U of the form V ⊕V ′ , but these are
cofinal amongst all subspaces; so extend M ∧pre N to all subspaces in any reasonable
way. For example, this can be done inductively on the dimension: given an arbitrary
finite-dimensional subspace W ⊆ U, choose V and V ′ with W ⊆ V ⊕V ′ and define

(M ∧pre N )(W ) =Ω(V⊕V ′)−W (MV ∧NV ′ ).

Finally, define the external smash product ∧ext : SU× SU′→ S(U⊕U′) by

M ∧ext N = L(M ∧pre N ).
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The choices involved in the definition of M∧preN get ironed out by the spectrification
functor L, and one can check that M ∧ext N is well-defined.

(5) [Change of universe] By an isometry f : U→ U′ we mean a linear isometric embedding,
not necessarily surjective. Given an isometry f : U→ U′ and a spectrum M on U′ ,
there is an induced spectrum f ∗M given by V 7→Mf (V ). The functor f ∗ : SU′→ SU

has a left adjoint f∗, defined as follows. For W ⊆ U′ write Wf = W ∩ im(f ). For a

spectrum E defined on U, define a prespectrum f
pre
∗ E by

(f pre∗ E)(W ) = SW−Wf ∧Ef −1(Wf ).

We leave the reader the pleasant exercise of working out the structure maps. Then
define f∗M = L(f pre∗ M). See [155, II.1] for more details.

(6) Let I (U,U′) denote the space of linear isometries from U to U′ . This is a contractible
space. One would therefore hope that if f ,g ∈ I (U,U′) and E is a spectrum on U then
f∗E and g∗E are weakly equivalent spectra on U′ . This is not known in general, but
there is a special class of spectra for which it does hold. Define a spectrum E to be
Σ-cofibrant if the structure maps SW ∧EV → EV⊕W are all cofibrations, and define
E to be tame if it is homotopy equivalent to a Σ-cofibrant spectrum. It is known that
if E is tame then f∗E and g∗E are homotopy equivalent [94, I.2.5]. We will need to
study all these different pushforwards at once.

(7) Given a space A, a map α : A → I (U,U′), and a spectrum E on U, there is a
construction A n E which is a spectrum on U′ . It is called the “twisted half-smash
product”. It depends on α, but this is omitted from the notation. Loosely speaking,
A n E contains all the ways of constructing a pushforward of E from U to U′ , as
parameterized by the map α, all bundled together. When A is contractible and E is
tame, this has the same homotopy type as the simple pushforwards f∗E.

(8) Write L(j) = I (Uj ,U) where U
j is the direct sum of j copies of U. The spaces L(j)

together form an operad L, called the linear isometries operad.

(9) Let L : SU→ SU denote the monad L(E) = L(1) n E. Then the composition map
L(1) × L(1) → L(1) induces the natural transformation µ : LLE → LE, and the
identity element id ∈ L(1) induces the unit η : E→ LE.

(10) An L-spectrum is an L-algebra: that is, an L-spectrum is a spectrum X together
with a map LX→ X making the usual diagrams commute.

(11) Given L-spectra M and N , we define the smash product by

M ∧LN = L(2)nL(1)×L(1) (M ∧ext N ).

Note that M ∧ext N is a spectrum on U2. The object on the right in this definition is
a coequalizer of certain evident maps coming from the L-algebra structures on M
and N and the operad maps in L. The smash product ∧L turns out to be associative
and symmetric (see [94, I.5]), but not unital.

(12) The sphere spectrum S is the spectrification of the prespectrum V 7→ SV . It turns out
that S is an L-algebra in a natural way, and that for any L-spectrum M there is a
natural map λM : S ∧LM→M . Define an EKMM-spectrum to be an L-spectrum
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M for which λM is an isomorphism. Denote the category of EKMM-spectra by
EKMMS . The spectrum S is itself an EKMM spectrum.

Remark. EKMM-spectra are called “S-modules” in [94]. While not a terrible name, it
conflicts with the notions of S-modules that one has in other categories like symmetric
spectra and orthogonal spectra. The name “EKMM-spectra” seems to lead to less
confusion.

(13) The smash product of EKMM-spectra M and N is defined as M ∧S N = M ∧LN .
This gives a symmetric monoidal smash product on EKMMS with unit S .

(14) Now suppress the universe and abbreviate SU to just S. There are adjunctions

S
L(−)

// (L−Spectra)
S∧L(−)

//

U

oo EKMMS
FL(S,−)
oo

where U is the forgetful functor and the left adjoints both point left to right.

(15) For each V ⊆ U, the evaluation map EvV : S→ Top∗ has a left adjoint, denoted FV .
We also write Σ∞ for the functor F0.

(16) For a map f in S, say that f is a weak equivalence if f is a π∗-isomorphism on
underlying spectra. Since the objects of S are all Ω-spectra, we can also characterize
the weak equivalences as maps inducing objectwise weak equivalences in Top∗ on
application of EvV (for all V ).

If i : EKMMS ↪→ L−Spectra denotes the inclusion then for any M in EKMMS

there is a canonical map iM→ FL(S,M) and this map is always a weak equivalence.
So up to homotopy the functors i and FL(S,−) are really the same; as a consequence,
a map in EKMMS is a weak equivalence if and only if FL(S,−) is a weak equivalence.

Say that f is a fibration if it has the right lifting property with respect to all maps
Fn(Ik × {0})→ Fn(Ik ∧ I+), for all n and k.

Then S has a model category structure with the weak equivalences and fibrations
defined above, and the right adjoints U and FL(S,−) create induced model category
structures on L−Spectra and EKMMS . Note that since all objects are fibrant in Top∗,
the same holds in each of the categories S, L−Spectra, and EKMMS .

Moreover, the two pairs of adjoint functors from (14) are both Quillen equivalences.

(17) For any pointed space X we define

Σ∞S X = S ∧LL(Σ∞X).

This is just the composite of the left adjoints in the diagram

Top∗
Σ∞ // S
Ev0

oo

L(−)
// (L−Spectra)

S∧L(−)
//

U

oo EKMMS
FL(S,−)
oo

and so in particular is a left Quillen functor. Write Ω∞S for the composition of the
right adjoints in the above diagram. For n ≥ 0 write

SnS = Σ∞S (Sn) = S ∧L (L(Σ∞Sn)).
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We regard SnS as a “stable n-sphere”, and from this we can define the notion of
CW -spectra for EKMMS in the usual way. Such spectra will all be cofibrant.

(18) Now we come to a major point. We have the object S = Σ∞S0, which is an EKMM-
spectrum (see (12)) and the unit for the smash product. But we also have the stable
0-sphere S0

S = Σ∞S S
0 = S ∧L LS . The L-algebra structure on S is a map LS → S,

which induces the canonical map

S0
S = S ∧LLS→ S ∧L S = S.

This map is a weak equivalence, but it is not an isomorphism. In fact it turns out that
S is not cofibrant in EKMMS , and so S0

S is a cofibrant replacement for S .
The fact that S is not cofibrant, and the distinction between S0

S and S , is one of the
major differences between EKMM-spectra and symmetric (or orthogonal) spectra.

(19) For any pointed space X, the spectrum Σ∞X (from (15) above) turns out to be an
L-spectrum in a natural way and also an EKMM-spectrum. So we can think of Σ∞

as a functor Top∗→ EKMMS . It has a right adjoint Ω∞. It is dangerous to confuse
Σ∞S and Σ∞. The first is a left Quillen functor, but the second is not. We have the
comparison map

Σ∞S X = S ∧LL(Σ∞X) −→ S ∧L Σ∞X � Σ∞X,

with the middle map coming from the L-structure on Σ∞X, and the last isomorphism
being because Σ∞X is an S-module. This comparison map is a weak equivalence
whenever X is nondegenerately based (i.e., ∗ → X is a cofibration).

The functor Σ∞ has good monoidal properties, such as a natural isomorphism
Σ∞(X ∧ Y ) � (Σ∞X) ∧S (Σ∞Y ) compatible with associativity and commutativity
isomorphisms.

The work in [94] shows the following:

Theorem 3.9.1. The category EKMMS is a stable, closed symmetric monoidal model
category satisfying the Algebraic Creation and Invariance Properties as well as the Strong
Flatness Property. As a model category it is Quillen equivalent to the stable projective model
structure on SpN.

Proof. We sketch a proof here, since there seems to be no simple reference where this
can be just looked up. Let Fn : Top∗→ EKMMS be the functor Fn(X) = S∧LLFn(X).

In [94] the closed symmetric monoidal structure is established, as well as the model
structure. The latter comes with the set {Fm(Sn)→ Fm(Dn+1) |m,n ≥ 0} of generating
cofibrations and the set {Fm(Dn) → Fm(Dn ∧ I+) | m,n ≥ 0} of generating trivial
cofibrations (see [94, VII.5.6–5.8]).

To prove the Pushout-Product Axiom, it suffices to check it on generating cofibra-
tions and trivial cofibrations. So we need to analyze the box product of Fm(f ) and
Fn(g) for f : A� B and g : C�D cofibrations in Top∗. The key point is then that
a choice of homeomorphism U2 � U induces a homeomorphism L(2) � L(1) and
thus an identification Fm(f )�Fn(g) � Fm+n(f � g); the Pushout-Product Axiom then
follows. (See [45, 4.21] for a version of this argument in the context of spaces.)
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There is a canonical map LS→ S , and the induced map α : S∧LLS→ S∧LS � S
is a cofibrant-approximation in EKMMS . Note that the domain is Σ∞S (S0). We must
show for anyM in EKMMS that (S∧LLS)∧SM→ S∧SM =M is a weak equivalence.
Remembering that ∧S = ∧L, consider the diagram

S ∧LLS ∧LM
µ
LS∧idM

//

��

LS ∧LM

��

g
// M

S ∧L S ∧LM
�

µS∧idM
// S ∧LM

�

88

The diagonal map is an isomorphism by the definition of EKMMS . The map g is a
weak equivalence by [94, I.6.2], and µ

LS ∧ idM is a weak equivalence by [94, I.8.5(iii)].
It follows that every map in the diagram is a weak equivalence, and this verifies the
Unit Axiom in the definition of monoidal model category. It also verifies condition (1)
in Proposition 3.3.6.

Condition (2) of Proposition 3.3.6 also holds, since EKMMS is a topological model
category where all objects are fibrant. So Proposition 3.3.6 yields the Algebraic
Creation Property.

The Strong Flatness Property follows from [94, III.3.8] together with the fact that
every cofibrant R-module is a retract of a cell-module. For the Algebraic Invariance
Property we verify the conditions of Proposition 3.3.9: condition (1) is the Strong
Flatness Property, and condition (2) is [94, VII.6.2].

For the Quillen equivalence between EKMMS and SpN, it is easiest to go through
SpO or SpΣ. The Quillen equivalence with SpO is in [177], and the equivalence with
SpΣ is in [262].

3.10 Afterthoughts

One of the drawbacks of a survey like this is that there is never enough time or space
to say everything that one would like. This final section will give a blitz treatment of
various topics that are important and should not go unmentioned.

3.10.1 Functors with smash product

This was an early attempt at a strict model for ring spectra, due to Bökstedt and used
by him in his work on topological Hochschild homology [52]. In modern times these
have been eclipsed by ring objects in either symmetric or orthogonal spectra, but it is
still good to know the basic idea.

Let W be the category of pointed spaces that are homeomorphic to a finite CW -
complex, Regard W as a Top∗-enriched category. A W-sequence is an enriched
functor W→ Top∗ (these are also called W-spaces sometimes). Day convolution, as in
(3.7.9), gives a symmetric monoidal product on W-sequences.

There is a “sphere sequence” S given by the inclusion W ↪→ Top∗ , and this is a
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commutative monoid. We define a W-spectrum to be a left S-module. Unraveling
this, a W-spectrum is an enriched functor Φ : W → Top∗ together with structure
maps X ∧Φ(Y )→ Φ(X ∧Y ) satisfying unital and associativity conditions. However,
these extra structure maps do not provide new information — they are an automatic
consequence of being an enriched functor, as was explained back in Section 3.1. So in
this case W-sequences and W-spectra are the same thing.

There is a functor OI →W given by V 7→ SV , and restriction along this functor
takes W-spectra to orthogonal spectra. One can restrict further along the composite
ΣI →OI →W to get a symmetric spectrum.

The model category story works out in the same way as for orthogonal spectra.
See [178].

A “functor with smash product” (FSP) is a monoid in the category of W-spectra.
This amounts to an enriched functor Φ : W→ Top∗ equipped with maps X→ Φ(X)
and Φ(X)∧Φ(Y )→ Φ(X ∧Y ) satisfying various properties that are not hard to work
out.

Remark 3.10.1 . We saw in Section 3.1.2 that the notion of a classical spectrum comes
from the idea of “remembering” the mapping spaces En = Map(S−n,E) for a fantasy
stable object E. In a similar vein, a pointed finite CW-complex X should give rise to a
stable object Σ∞X, which should have a Spanier–Whitehead dual (Σ∞X)∗. The idea
of W-spectra is that they “remember” the mapping spaces E(X) = Map((Σ∞X)∗,E).

We remark that the notion of W-sequence is essentially equivalent (homotopically
speaking) to the notion of a simplicial functor from sSet to sSet. The connection
between these kinds of functors and spectra was initially raised by Anderson [3].
Lydakis [171] first produced (in the simplicial setting) a model category structure
as well as the symmetric monoidal product, showed the Quillen equivalence with
Bousfield–Friedlander spectra, and identified the ring objects with Bökstedt’s FSPs.

3.10.2 Γ -spaces

Let Γ op be the category of finite based sets n+ = {0,1, . . . ,n} (based at 0) and based
maps. A functor Γ op → Top∗ is called a Γ -space. The smash product of based sets
induces a symmetric monoidal product on Γ op : specifically, we identify m+ ∧n+ with
(m ·n)+ using the lexicographic ordering. Day convolution then gives a monoidal
structure on the category of Γ -spaces.
Γ -spaces were introduced by Segal [268], who showed that the homotopy category

is equivalent to the full subcategory of the stable homotopy category consisting of
the connective spectra. The first model category structure on Γ -spaces goes back to
Bousfield–Friedlander [56] (note that no such model category could be stable, given
that the suspension functor on the homotopy category is not an equivalence). Lydakis
[172] introduced the symmetric monoidal product on Γ -spaces and showed that it
models the smash product of spectra, and [264] produced a model category structure
on the ring objects. See also the discussion in [178].

The idea behind Γ -spaces comes from considerations similar to those made in
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Remark 3.10.1. In any homotopy theory of spectra we would have objects Σ∞T for every
pointed set T (this will just be a wedge of copies of the sphere spectrum S, indexed
by the non-basepoints in T ). Therefore we would also have Spanier–Whitehead duals
(Σ∞T )∗. The assignment T 7→ (Σ∞T )∗ would be a contravariant functor defined on
Γ op, and for a stable object E the assignment T 7→Map((Σ∞T )∗,E) would therefore
be a Γ -space.

If T = [n] then Σ∞T =
∨n
i=1S, and so (Σ∞T )∗ can be identified with the product∏n

i=1S (using that S∗ = S). So another way to say the above is that a Γ -space comes
from remembering what a spectrum looks like through the eyes of the finite products
∗, S, S × S, S × S × S, and so forth. That is to say, if E is a spectrum we remember
[n] 7→ En = Map(S×n,E). As finite products are weakly equivalent to finite wedges in
spectra, it’s clear that this data can only remember the connective part of a spectrum.

In fact, since
∏n
i=1S '

∨n
i=1S we would additionally have the relations

En = Map
( n∏
i=1
S,E

)
'Map

( n∨
i=1
S,E

)
'

n∏
i=1

Map(S,E) =
n∏
i=1
E1.

This suggests that what we really care about are Γ -spaces X such that a canonical
map Xn→

∏n
i=1X1 is an equivalence (and when n = 0 this should be interpreted as

X0 ' ∗). These were called “special” Γ -spaces in [56]. This turns out to equip π0(X1)
with the structure of an abelian monoid via the multiplication

π0(X1)×π0(X1)←−� π0(X2) −→µ π0(X1),

where µ is induced by the map [2]+→ [1]+ sending 1,2 7→ 1. But if X1 = Map(S,E)
then we should have X1 'Ω2 Map(S−2,E), which means π0(X1) would actually be an
abelian group. Adding on this condition yields what [56] called “very special” Γ -spaces.
The pleasant surprise is that there are no further “relations” that one has to keep
track of here: that is, the model category structure on Γ -spaces is set up so that the
fibrant objects are precisely these very special Γ -spaces, and this is enough to get the
Quillen equivalence with connective spectra. See also [79, Example 5.7] for another
perspective on these “relations”.

The inclusion of categories Γ op ↪→W, regarding every pointed set as a discrete
topological space, yields comparison functors between W-spaces and Γ -spaces in the
usual way. See Remark 3.5.3.

Segal introduced Γ -spaces in [268] because they were a natural receptor for a certain
version of algebraic K-theory. We outline this briefly. Let C be a category with finite
coproducts. For a finite set T write P(T ) for the category whose elements are the
subsets of T and whose maps are subset inclusions. Let C(T ) be the category whose
objects are functors F : P(T )→C having the property that whenever A1, . . . ,An ⊆ T
are disjoint the set of maps {F(Ai)→ F(∪iAi)} induces an isomorphism∐

i
F(Ai) −→� F

(⋃
i
Ai

)
.

When n = 0 this property implies that F(∅) is an initial object in C.
If T is a pointed set, let (KC)(T ) = BC(T − ∗ ), where B(−) denotes the usual

classifying space of a small category (that is, the geometric realization of the nerve).
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If f : T →U is a map of pointed sets, there is an induced map P(U − ∗ )→ P(T − ∗ )
sending A 7→ f −1(A)∩ (T −∗ ), and this in turn induces a functor C(T −∗ )→C(U −∗ ).
So KC is a Γ -space. (The basepoint is playing the role of a “sink” here, in the sense
that pointed maps f : T → U are the same as pairs (A ⊆ T , A→ U ), where in the
correspondence one has T −A = f −1(∗ ). The reader is advised to work out the maps
in KC where T and U are {0,1} and {0,1,2}— in either order — to get a feeling for
what is happening here.)

Note that an object in C(T ) can be thought of as a T -indexed collection of objects
in C together with consistent choices of coproducts for all subsets of T . Compare the
description of Waldhausen K-theory from Section 3.8.8.

3.10.3 Spectra in other settings

Let M be a symmetric monoidal model category and let K be a cofibrant object.
Just as spectra stabilize Top∗ under the operation of smashing with S1, one might
want to stabilize M under the operation of tensoring with K . Under mild “sufficiently
combinatorial” hypotheses on M, this works out just fine. Hovey [132] showed that
one can form both Bousfield–Friedlander and symmetric spectra in this generalized
setting, and all the basic model structures work out just as expected.

Standard applications include stabilizing the model category of G-spaces along a
representation sphere SV , or stabilizing a model category of motivic spaces along the
motivic sphere S2,1.

Hovey in fact showed that the Bousfield–Friedlander construction is really about
inverting a functor G : M→M, whereas (as discussed in Section 3.7.4) the symmetric
spectrum construction is about making an object invertible in the symmetric monoidal
sense. This difference has consequences for the comparison of the two constructions
SpN,∧K and SpΣ,K . In the latter, the suspension spectrum of K is an invertible object
and so must satisfy the cyclic permutation condition (3.3.13). In the former, where we
are only inverting the functor (−)∧K and don’t necessarily have a monoidal product
around anymore, there is no guarantee that this holds. So there is no reason to suspect
a Quillen equivalence here: in general, SpΣ,K has more “relations” than SpN,∧K .
Hovey [132] has some results showing that in the presence of the cyclic permutation
condition these two constructions are Quillen equivalent, but he also observes that
the results are perhaps not as general as one would like.

A version of W-spaces (or simplicial functors) for model categories satisfying certain
technical hypotheses has also been developed, by Dundas–Röndigs–Østvaer [84].

3.10.4 G-spectra

Let G be a compact Lie group, but feel free to think only of a finite group if desired.
There should of course be a model category of genuine G-spectra, where one stabilizes
with respect to all finite-dimensional representation spheres. The associated homotopy
category was first developed in [155], and is nicely summarized in [190].

To construct an appropriate model category via symmetric spectra, one could pick
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representatives V1,V2, . . . ,Vn for all finite-dimensional irreducible G-representations
and set V = V1⊕· · ·⊕Vn. Performing the symmetric spectra construction on G-spaces
using the object SV makes a perfectly good model category of genuine G-spectra.
Although this is fine for some purposes, it is a little unnatural. The fact that all
finite-dimensional G-representations aren’t inherently built into the machinery can
make some things more trouble than they should be.

The construction of orthogonal spectra works right out of the box for G-spaces,
requiring only the obvious modifications. See [177] or [120, Appendix A] for details.
Currently this is the preferred setting for G-equivariant spectra.

The equivariant version of EKMM spectra is developed in [177]. One starts with a
G-universe U that is “complete” in the sense that it contains infinitely many copies of
every irreducible representation. One of the surprises is that there are two naturally
arising model category structures on G-equivariant EKMM-spectra, both having the
same notion of stable weak equivalence. One has cofibrations built from cellular
inclusions based on cells of the form Fn(G/H+ ∧ Sk) for n,k ≥ 0, and the other
has cofibrations built from cells of the form FV (G/H+ ∧ Sk) with k ≥ 0 and V a G-
representation. These model structures are Quillen equivalent, but different. We refer
to [177, Chapter IV.2] for details.

When G is finite, versions of equivariant symmetric spectra have been produced
by Mandell [183] and Hausmann [115]. Ostermayr [218] developed a model structure
for equivariant Γ -spaces. A model category structure for an equivariant version of
W-spaces is developed in [84] (see also [43]).

3.10.5 Model categories for commutative algebras

Let (Spectra,∧,S) be a closed symmetric monoidal model category of spectra that
satisfies the Algebraic Creation Property. Let R be a commutative ring spectrum, and
write R--ComAlg for the category of commutative R-algebras. The forgetful functor
U : R--ComAlg→ R--Mod has a left adjoint Sym given by the symmetric algebra
functor

Sym(M) = R∨M ∨ (M ∧RM)/Σ2 ∨ (M ∧RM ∧RM)/Σ3 ∨ · · · .

We can ask if the forgetful functor creates a model structure on R--ComAlg.
In EKMMS , this works with no trouble — in part because all objects are fibrant.

See [94, VII.4.7–4.10]. In contrast, for symmetric and orthogonal spectra there is a
difficulty and such a model structure cannot exist in general. For example, it cannot
exist when R = S : as we saw in Section 3.1.7, there cannot exist a commutative ring
spectrum that is weakly equivalent to S and whose underlying spectrum is fibrant.

One solution to this problem is via the positive model structure on symmetric (or
orthogonal) spectra, suggested originally by Jeff Smith. Basically, go back and mimic
the development of the level and stable structures but remove all references to what
happens in level 0. Change the levelwise weak equivalences to maps that are weak
equivalences in levels greater than zero, and so forth. The fibrant objects in the positive
stable model structure are then spectra X with the property that Xn→ΩXn+1 is a
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weak equivalence for all n ≥ 1 (these are called “positive Ω-spectra”). This model
structure is Quillen equivalent to the one we already had, and it is also monoidal and
satisfies all the nice properties we are used to.

The adjoint to the Σ∞ functor is Ev0 as always, but note that Ev0 no longer has the
behavior of Ω∞ for fibrant objects. So there is no problem with having a model for S
that is a commutative ring spectrum and is fibrant in the positive model structure.

The positive model structures on symmetric and orthogonal spectra are developed
in [178], which also shows that if one uses these structures the forgetful functor does
create a model structure on R--ComAlg for any commutative ring spectrum R.

For more work related to these issues, including yet another model structure on
symmetric spectra, see [274].

As another application, the positive model structure on SpΣ is used in [262] to get
a monoidal Quillen equivalence between SpΣ and EKMMS .

Commutative ring spectra are discussed in more detail in Chapter 6 of this volume.

3.10.6 Stable categories and categories of modules

This is only a very brief remark, but if you want to better understand stable model
categories in general and how they interact with the modern monoidal categories of
spectra, go read [266]. That paper provides a basic technique that is pervasive in how
we approach these categories.



4 Stable homotopy theory via
∞-categories

by Clark Barwick

The task before us is to investigate stable homotopy theory — and stable homotopy
theories more generally — through the lens of ∞-category theory. Of necessity, this
chapter is somewhat ahistorical; we refer the reader to the historical discussions out-
lined in Chapter 3 for background on the development of modern categories of spectra.
However, the reader who is familiar with that story will have a keen appreciation for
the foundational problems that become much cleaner in this framework.

Let us assume familiarity with elementary ∞-category theory as presented by Jacob
Lurie in [169] — most particularly, the theory of limits, colimits, adjunctions, and
presentability. In particular, Chapter 5 of [169] will be frequently cited, but this is the
upper limit: nothing of the later chapters or of any more advanced text will be needed
here. We have tried to be systematic in our citations.

Our exposition is largely a gentle introduction to some of the material in [168] and
subsequent papers, and of course much of our understanding of spectra was informed
by this remarkable and beautiful text. We hope that this presentation will appeal to
mathematicians both within and without homotopy theory.

I offer my sincere thanks to Andrew Blumberg for his enormous assistance in
making my writing palatable.

4.1 Spectra

Let X be a pointed simplicial set. An old observation of Dan Kan provides a simple way
to extract the reduced homology of the geometric realisation |X | from X. Namely, we
let Z̃{X} be the simplicial abelian group in which Z̃{X}n = Z̃{Xn} is freely generated
by the pointed set Xn (so that the point of Xn becomes the zero element of Z̃{X}n).
One then has

H̃n(|X |,Z) � πnZ̃{X}.

More precisely, the simplicial abelian group Z̃{X} corresponds, under Dold–Kan, to
the chain complex C̃∗(|X |,Z).

Let us disregard the abelian group structure and regard Z̃{X} merely as a pointed
simplicial set. In fact, the functor X 7→ Z̃{X} preserves weak equivalences of pointed
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spaces, so we are entitled to think of this assignment as a functor from the ∞-category
of pointed spaces to itself. We can also deduce the following properties:

1. The functor X 7→ Z̃{X} is reduced. That is, if X is contractible, then so is the
simplicial abelian group Z̃{X}. Thus H̃i(∗) = 0.

2. The functor X 7→ Z̃{X} is unital. In other words, Z̃{S0} is the constant simplicial
set with value Z; under the Dold–Kan correspondence, it corresponds to the
complex Z[0] concentrated in degree 0. Thus H̃0(S0) = Z, and H̃i(S0) = 0 for
i > 0.

3. The functor X 7→ Z̃{X} is excisive: for any homotopy pushout

U V

W X

i

(e.g., any “honest” pushout in which i is a monomorphism of simplicial sets), the
square

Z̃{U } Z̃{V }

Z̃{W } Z̃{X}

is homotopy cartesian, so that one obtains a long exact sequence

· · ·→ H̃n(|U |,Z)→ H̃n(|V |,Z)⊕ H̃n(|W |,Z)→ H̃n(|X |,Z)→ H̃n−1(|U |,Z)→·· · .

One can prove this by reducing to the case in which i is an inclusion ∂∆n ↪→ ∆n

and verifying this case explicitly.

4. Finally, the functor X 7→ Z̃{X} is of finite presentation, in that it preserves filtered
colimits.

These four properties actually identify the functor X 7→ Z̃{X} uniquely, up to
canonical natural equivalence. This is the uniqueness of homology.

We may regard X 7→ Z̃{X} as a kind of categorified version of a line of slope 1. The
first two conditions describe the values of the functor on two objects — the one-point
space ∗ , which (as the unit for ∨ ) is our analogue of 0, and S0, which (as the unit
for ∧ ) is our analogue of 1. Under our analogy, we have insisted that f (0) = 0 and
f (1) = 1. The other two axioms declare that X 7→ Z̃{X} is linear. This linearity now
determines the values of this functor on all other objects.

Spectra

If we merely eliminate the “slope 1” condition (unitality), we arrive at the notion of a
spectrum. Here is the definition.
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Definition 4.1.1. Write S∗ for the∞-category of pointed spaces (the full subcategory
of Fun(∆1,S) spanned by those objects X→ Y in which X is contractible).

Then a functor E : S∗→ S∗ is called a linear functor or a spectrum if E is reduced,
excisive, and of finite presentation. That is:

1. The functor E is reduced : for any contractible pointed space P , the pointed space
E(P ) is also contractible.

2. The functor E is excisive: for any pushout square

U V

W X

in S∗, the induced square

E(U ) E(V )

E(W ) E(X)

is a pullback in S∗.

3. The functor E is of finite presentation: for any filtered diagram α 7→ Xα in S∗, the
natural map

colimα E(Xα)→ E(colimαXα)

is an equivalence.

This makes precise the sense in which spectra are said to “be” generalised homology
theories. But in order to come to grips with this definition, we must do some work to
unpack the axioms in turn.

Reduced functors

Reducedness is nothing profound. If one has a functor F : S∗→ S∗ that isn’t reduced,
one may “repair” it by passing to the reduction Fred, which carries a pointed space X
to the cofiber of the map F(∗)→ F(X).

Finitely presented functors

Finite presentability is also relatively straightforward. We say that a pointed space X
is finite if it can be expressed as a finite colimit of contractible pointed spaces. Every
pointed space is the filtered colimit of the finite spaces that map to it, so a functor
F : S∗ → S∗ is of finite presentation if and only if it is left Kan extended from its

restriction to the ∞-category S
fin
∗ of finite spaces.

So a finitely presented functor S∗→ S∗ is uniquely determined by its restriction to

S
fin
∗ . That is, the ∞-category of finitely presented functors S∗→ S∗ is equivalent to

the ∞-category of (arbitrary) functors S
fin
∗ → S∗.
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Excisive functors

The excision condition is where the rubber meets the road. An important special case
of a square in S∗ is when the corners are contractible spaces:

Y ∗

∗ X

(4.1.1)

If (4.1.1) is a pushout square, then X is the suspension ΣY ; since the forgetful functor
S∗→ S preserves pushouts, the pointing of Y is irrelevant. Dually, if (4.1.1) is a pullback
square in S∗, then Y is the loopspace ΩX; here, the pointing of X is important.

4.1.2. Suspension is left adjoint to loopspace:

Σ : S∗� S∗ :Ω.

In particular, we have the unit ε : id→ΩΣ and the counit η : ΣΩ→ id.

Now if F : S∗→ S∗ is a reduced functor, then we may apply it to the pushout square

Y ∗

∗ ΣY

to obtain a canonical map

σY : FY →ΩFΣY .

We may also write σFY whenever disambiguation is called for. It is clear that if F is
excisive, then the natural transformation σY is an equivalence. However, it is relatively
surprising that this condition suffices to ensure the excisiveness of F.

Lemma 4.1.3. Let F : S∗→ S∗ be a reduced functor. Then F is excisive if and only if, for
any pointed space Y , the map

σY : FY →ΩFΣY

is an equivalence.

Proof. The “only if” direction is trivial, so we focus on the “if” direction. For this,
suppose

U V

W X
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is a pushout square in S∗. We expand this square into a diagram

U V ∗

W X W/U ∗

∗ V /U ΣU ΣW

∗ ΣV ΣX

(4.1.2)

of S∗ in which every square is a pushout. When we apply F to this diagram, we obtain
a solid arrow square

F(U ) ΩF(ΣU )

F(W )×F(X) F(V ) ΩF(ΣV )×ΩF(ΣX)ΩF(ΣW )

λ (4.1.3)

in which both horizontal maps are, by assumption, equivalences. The universal
property of ΩF(ΣU ) supplies us with a dotted lift λ, and it follows that every map in
this square is an equivalence.

Notation 4.1.4. We write Fun fp,red(S∗,S∗) for the full subcategory of the∞-category
Fun(S∗,S∗) spanned by the reduced functors F of finite presentation, and we write
Sp ⊂ Fun fp,red(S∗,S∗) for the full subcategory spanned by the spectra.

4.1.5. Let E be a spectrum. Then we obtain a sequence of spaces

{Xn = E(Sn)}n≥0

along with equivalences {Xn −→∼ ΩXn+1}n≥0. Thus a spectrum gives rise to what
we might call a sequential spectrum. We will show that these are in fact equivalent
homotopy theories.

Exercise 4.1.6 . Show that Fun fp,red(S∗,S∗) is a presentable ∞-category:
For any finite pointed space X, denote by hX : S∗→ S∗ the functor corepresented

by X, so that hX(Y ) 'Map
S∗

(X,Y ). Observe that hX is a reduced functor of finite
presentation. For any pointed space Y , the counit ΣΩ→ id induces a map

dX(Y ) : ΣMap
S∗

(ΣX,Y ) ' ΣΩMap
S∗

(X,Y )→Map
S∗

(X,Y );

this is functorial in Y , whence we obtain a natural transformation dX : Σ◦hΣX → hX .
Show that a reduced finitely presented functor F is a spectrum if and only if it is local

with respect to the set of maps {dX : X ∈ S fin
∗ }. Thus Sp is the accessible localisation

of Fun fp,red(S∗,S∗), and the class of morphisms that are inverted by the localisation

is exactly the saturated class generated by {dX : X ∈ S fin
∗ }.

Deduce that Sp is a presentable∞-category, and the fully faithful inclusion functor
Sp ↪→ Fun fp,red(S∗,S∗) preserves limits and filtered colimits.
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Shifting

There is a nontrivial auto-equivalence of the loopspace or suspension of any space. If
X is a pointed space, then the universal property of the kernel product provides an
endomorphism

(−1) : ΩX = ∗ ×X ∗ → ∗×X ∗ =ΩX

obtained by exchanging the roles of the two points. The map (−1) is clearly an
auto-equivalence, and it is a nontrivial one, because it reverses the direction of the
(implicit) homotopy in the square

ΩX ∗

∗ X

The map (−1) is a natural auto-equivalence on the functor Ω. It is not homotopic
to id, but it is an involution in the sense that its composition (−1)2 with itself is
homotopic (in a canonical fashion) to id. This goes some way to justifying the notation.

Geometrically, each point of ΩX corresponds to a parametrised loop, and (−1)
takes each point to the point representing the same loop, parametrised in the reverse
direction. On π1X = π0ΩX, the auto-equivalence (−1) induces the assignment
γ 7→ γ−1.

In precisely the same manner, we obtain an involution

(−1) : Σ→ Σ

of the suspension functor.
These two involutions are compatible under the adjunction between suspension and

loopspace. Indeed, in a square

Y ∗

∗ X

reversing the direction of the implicit homotopy is at once tantamount to the compo-
sition of the map Y →ΩX with (−1) and to the composition of (−1) with the map
ΣY → X. (This point, silly as it is, is the origin of virtually all the signs throughout
stable homotopy theory and homological algebra.)

Warning 4.1.7. There are two ways to iterate the suspension maps σY , and they are
not homotopic; they differ by a sign. For any reduced functor F : S∗→ S∗, one has a
natural homotopy

−ΩσFΣ ' σΩFΣ (4.1.4)

between the two functors ΩFΣ→Ω2FΣ2.

Exercise 4.1.8 . Construct the homotopy (4.1.4) by contemplating the diagrams (4.1.2)
and (4.1.3) in the case in which both V and W are contractible.
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Notation 4.1.9. Let E : S∗→ S∗ be a reduced excisive functor. Then for any natural
numbers a ≤ b, the natural transformation

σΩ
b−1EΣb−1

· · ·σΩ
a+1EΣa+1

σΩ
aEΣa : ΩaEΣa→ΩbEΣb

is an equivalence, which induces, for any pointed space X, a natural isomorphism

πn+aEΣ
aX � πn+bEΣ

bX

for any integer n such that n ≥ −a. Consequently, we may define, for any integer n,
an abelian group

EnX = πn+aEΣ
aX

for some a such that a ≥max{2,−n}, secure in our knowledge that this abelian group
is canonically independent of the choice of a. We thus obtain a functor

E∗ : S∗→AbZ,

where the target is the 1-category of Z-graded abelian groups. This is the E-homology
functor.

If E is a spectrum, then we may define the suspension or shift by 1 of E as the
spectrum E[1] = E ◦Σ. In the other direction, we may define the loop or shift by −1
of E as the spectrum E[−1] = Ω ◦ E. Iterating these, we obtain shifts E[m] for any
m ∈Z, and we note that on homology theories,

E[m]n � En−m .

It is quite common in the literature to see En as a shorthand for the group En(S0).

Homology and cohomology

Let X be a pointed space, and let E be a spectrum. Then we define the E-homology
and E-cohomology of X as the groups

En(X) = πnE(X) and En(X) = π−nMap(X,E(S0)) .

4.2 Examples

Eilenberg–Mac Lane spectra

Our motivation for the definition of a spectrum was our contemplation of ordinary
homology. We therefore already have one class of examples in hand:

Example 4.2.1. The functor X 7→ Z̃{X} is a spectrum HZ : S∗ → S∗. This is the
Eilenberg–Mac Lane spectrum of Z. The groups (HZ)∗(X) are zero in negative degrees,
and in nonnegative degrees, they are the reduced homology groups H̃∗(X,Z) of X.

More generally, for any abelian group A, let us contemplate the functor X 7→ Ã{X},
which as a functor on pointed simplicial sets carries X to the pointed simplicial set
Ã{X}∗ = Z̃{X}∗ ⊗A. This is a spectrum HA : S∗→ S∗, called the Eilenberg–Mac Lane
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spectrum of A. The groups (HA)∗(X) are zero in negative degrees, and in nonnegative
degrees, they are the reduced homology groups H̃∗(X,A) of X.

The derivative

Just as one may often find a best linear approximation of a general (differentiable)
function by forming the derivative, we can construct the best linear approximation of
a general (reduced and finitely presented) functor. This provides us with a few more
useful examples.

Indeed, we have already seen that the full subcategory Sp ⊆ Fun fp,red(S∗,S∗) is a
localisation; that is, the inclusion admits a left adjoint D, which we call the derivative.
The bonus good news is that we can write a convenient formula for this D .

Construction 4.2.2. Let F : S∗ → S∗ be a reduced functor of finite presentation.
Then we may look at the sequence of reduced
functors of finite presentation

F ΩFΣ Ω2FΣ2 · · · ,σF σΩFΣ σΩ
2FΣ2

which is indexed on the natural numbers N.
We write DF = colimnΩ

nFΣn for the colimit
of this diagram of functors.

The assignment F 7→ DF comes equipped
with a natural transformation α : id→D .

Lemma 4.2.3. For any reduced functor

F : S∗→ S∗

of finite presentation, the functor DF : S∗→ S∗
is a spectrum.

Proof. Let Y be a pointed space, and consider
the morphism

σDFY : (DF)Y →Ω(DF)ΣY .

We represent σDFY as the filtered colimit of the
solid arrow sequence of morphisms, shown on
the diagram to the side. The dotted arrows
are all equivalences that make this diagram
commute, and thus in the colimit they define

FY ΩFΣY

ΩFΣY Ω2FΣ2Y

Ω2FΣ2Y Ω3FΣ3Y

Ω3FΣ3Y Ω4FΣ4Y

...
...

(DF)Y Ω(DF)ΣY

σFY

σFY ΩσFY Σ
id

−σΩFΣY

σΩFΣY ΩσΩFΣY Σ
(−1)

σΩ
2FΣ2

Y

σΩ
2FΣ2

Y ΩσΩ
2FΣ2

Y Σ
id

−σΩ3FΣ3
Y

σΩ
3FΣ3

Y ΩσΩ
3FΣ3

Y Σ(−1)

σDFYan inverse to σDFY .

We note that if F is already a spectrum, then αF : F → DF is in fact already an
equivalence. In fact, we now show that DF is the universal linear approximation to F.

Proposition 4.2.4. The natural transformation α exhibits D as a localisation functor
on Fun fp,red(S∗,S∗) whose essential image is precisely Sp.
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Proof. If E is a spectrum, then αE : E→DE is an equivalence. Thus Sp is the essential
image of D, and for any reduced functor F of finite presentation, αDF : DF→DDF
is an equivalence. We must also check that DαF : DF→DDF is an equivalence; for
this, it suffices to note that DσF : DF→D(ΩFΣ) is an equivalence.

Suspension spectra

Now let us use this construction to define some interesting examples of spectra.

Construction 4.2.5. Let S0 = Σ∞S0 be the spectrum Did. That is, for any point
space Y , we have

(Σ∞S0)Y = colimnΩ
nΣnY .

This is the sphere spectrum, which represents stable homotopy:

πsm(Y ) = (Σ∞S0)mY � colimnπm+nΣ
nY ;

by Freudenthal, one has πsm(Y ) � π2m+2(Σm+2Y ).
More generally, for any space X, consider the reduced, finitely presented functor

sX : S∗→ S∗ given by the assignment Y 7→ X ∧Y . We define

Σ∞X =DsX ;

this is the suspension spectrum of X. We therefore obtain

(Σ∞X)Y = colimnΩ
n(X ∧ΣnY ) ' colimnΩ

nΣn(X ∧Y ) ' (S0)(X ∧Y ) .

When X is a sphere, we write Sn = Σ∞Sn, and we observe that

S
n ' S0[n] .

The suspension spectrum is a functor Σ∞ : S∗ → Sp. In the other direction, we
have a functor Ω∞ : Sp→ S∗ that carries a spectrum E to the value E(S0). They are
related in the following manner:

Proposition 4.2.6. The functor Σ∞ is left adjoint to the functor Ω∞.

Exercise 4.2.7 . Verify this.

4.2.8. With the suspension functor in hand, we may define the E-cohomology of a
pointed space X as

En(X) = π−nMapSp(Σ∞X,E)

Spanier–Whitehead duals

It is also possible to generalise the sphere spectrum S0 in a dual manner. We will
study the phenomenon of Spanier–Whitehead duality in a structured manner soon.
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Example 4.2.9. Let X be a finite pointed space, and let hX : S∗→ S∗ be the functor
corepresented by X; that is, hX(Y ) = Map

S∗
(X,Y ). Since X is finite, hX is finitely

presented, and we obtain

(DhX )Y = colimnΩ
nMap

S∗
(X,ΣnY ) 'Map

S∗
(X,colimnΩ

nΣnY )

'Map
S∗

(X, (Σ∞S0)(Y )) .

The spectrum (Σ∞X)∨ =DhX is the Spanier–Whitehead dual of X.
The assignment X 7→ (Σ∞X)∨ is a contravariant functor from pointed finite spaces

to spectra.
Also, the Spanier–Whitehead dual of a finite pointed space may well have negative

homotopy groups. For example, when X is a sphere, we obtain an identification

(Σ∞Sn)∨ ' S0[−n] ,

whence we are compelled to define S−n = (Σ∞Sn)∨.

Exercise 4.2.10 . For any spectrum E and any finite pointed space X, exhibit a homo-
topy equivalence

MapSp((Σ∞X)∨,E) ' E(X) .

Thom spectra

Definition 4.2.11. Let X be a space. Then a local system of spectra on X is a functor
Xop → Sp; we write SpX = Fun(Xop,Sp) for the ∞-category of local systems of
spectra.

4.2.12. If we unpack the definitions a bit, a local system of spectra on a space X is
a functor Xop ×S∗→ S∗, written (x,T ) 7→ ζ(x)(T ), such that for any point x ∈ X, the
functor ζ(x) : S∗→ S∗ is a spectrum.

Example 4.2.13. For any spectrum E, we have a constant local system EX at E.

Example 4.2.14 (The J homomorphism).To any finite-dimensional real vector spaceV
we can attach the one-point compactification SV . This is a topologically enriched
functor from finite-dimensional real vector spaces and isomorphisms to topological
spaces. After passing to the attached∞-categories, we may compose this functor with
the suspension functor to obtain a local system∐

n≥0
BO(n)→ Sp .

This functor factors through the group completion Z×BO→ Sp. The J homomorphism
is then the restricted map

JO : BO ' {0} ×BO ⊂Z×BO→ Sp ,

which is a local system over BO. If X is a topological space with a real vector bundle
ν : X→ BO, one obtains a local system of spectra by composition with JO.



4.2 Examples 161

In the same manner, we obtain a local system

JU : BU → Sp ,

and if X is a topological space with a complex vector bundle ν : X → BU , one
obtains a local system of spectra by composition with JU .

Definition 4.2.15. Let X be a space. A stable spherical fibration over X is a local
system of spectra ζ : Xop→ Sp such that, for each point x ∈ X, the spectrum ζ(x) is
(abstractly) equivalent to the sphere spectrum S0.

The Thom spectrum Xζ of a stable spherical fibration ζ is the colimit of the diagram

ζ : Xop→ Sp .

4.2.16. For any stable spherical fibration ζ over X, the Thom spectrum enjoys the
following universal property: for any spectrum E, we have a natural weak homotopy
equivalence

MapSp(Xζ ,E) 'MapSpX
(ζ,EX ) .

As a functor S∗→ S∗, the Thom spectrum Xζ carries a space T to the space

colimn→+∞Ω
n (colimx∈X Σ

nζ(x)(T )) .

Example 4.2.17. If ζ : Xop → Sp is a constant spherical fibration, then the Thom
spectrum Xζ is nothing more than Σ∞X+.

Example 4.2.18 (Cobordism). By taking the Thom spectra attached to the J homo-
morphism, we obtain

MO = (BO)JO and MU = (BU )JU .

These spectra are the real and complex cobordism spectra, respectively.
The homotopy of MO and MU are known — the former by Thom and the latter

by Milnor:

π∗MO �F2[xn : n ≥ 2,n , 2j − 1, |xn| = n];

π∗MU �Z[zn : n ≥ 1, |zn| = 2n] .

Example 4.2.19. If X is a topological space with a real vector bundle ν, then we may
abuse notation slightly and write Xν for the Thom spectrum X JOν . We may define
the Thom spectrum of a complex vector bundle in the same manner.

Example 4.2.20 (Atiyah duality). Let X be a compact manifold. For a sufficiently
general embedding of X into R

n, the Spanier–Whitehead dual (Σ∞X+)∨ is naturally
equivalent to Σ∞(Rn/(Rn −X))[−n], which in turn can be identified with the Thom
spectrum of the stable normal bundle of X.
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4.3 Smash products

One of the most important aspects of the theory of spectra is the presence of the
smash product, which provides Sp with a symmetric monoidal structure. We won’t
dive headlong into the details of the theory of symmetric monoidal structures on
∞-categories, but the setup of higher categories makes it possible to characterize the
smash product of spectra with a homotopy-coherent universal property.

Day convolution

Let E1, . . . ,En be a finite collection of reduced functors of finite presentation. Since

these can be regarded as functors S
fin
∗ → S∗, and since both source and target are

endowed with the smash product symmetric monoidal structure, we may form their
Day convolution: this is the functor

E1 ? · · · ? En : S fin
∗ → S∗

defined as the left Kan extension of the functor (K1, . . . ,Kn) 7→ E1K1 ∧ · · · ∧EnKn
along the functor (K1, . . . ,Kn) 7→ K1 ∧ · · · ∧Kn. In other words, we have, for any finite
pointed space Y , the formula

(E1 ? · · · ? En)Y = colimK1∧···∧Kn→Y E1K1 ∧ · · · ∧EnKn ,

where the colimit is taken over the ∞-category

(S fin
∗ × · · · ×S

fin
∗ )×

S
fin
∗

(S fin
∗ )/Y .

It is immediate from this formula that E1 ? · · · ? En is a reduced functor. When n = 0,

it’s immediate that the unit is the inclusion functor S
fin
∗ ↪→ S∗.

4.3.1. The Day convolution actually defines a symmetric monoidal structure on the
∞-category Fun fp,red(S∗,S∗), but we won’t concern ourselves with that now. For now,
we simply observe that ∗ is associative and symmetric up to homotopy in the most
naïve sense possible.

Let us note that, for any finite collection X1, . . . ,Xn of finite pointed spaces, the
natural morphism

hX1 ? · · · ? hXn → hX1∧···∧Xn

is an equivalence, and the Day convolution (E1, . . . ,En) 7→ E1 ? · · · ? En preserves
colimits separately in each variable.

The point here is that, since every reduced functor of finite presentation is a colimit
of corepresentables, the Day convolution is controlled by its behaviour on the corep-
resentables, where it mirrors the smash product of pointed spaces.
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Smash product

Now if E1, . . . ,En are spectra, we may form the smash product

E1 ∧ · · · ∧En =D(E1 ? · · · ? En) .

This gives us the explicit (but, in all honesty, not tremendously useful) formula

(E1 ∧ · · · ∧En)Y = colimmΩ
m(colimK1∧···∧Kn→ΣmY E1K1 ∧ · · · ∧EnKn) .

This is only a reasonable definition because of the following technical lemma, which
expresses a compatibility of the Day convolution with the derivative D . Here recall

the collection of natural transformations {dX : X ∈ S fin
∗ } from 4.1.6.

Lemma 4.3.2. For any finite space X and any finitely presented reduced functor F, the
natural transformation dX : ΣhΣX → hX induces a morphism

dX ∗ id : ΣhΣX ∗F→ hX ∗F

that lies in the strongly saturated class of morphisms of Fun fp,red(S∗,S∗) generated by

{dX : X ∈ S fin
∗ }.

Proof. Any finitely presented reduced functor F is a colimit of functors of the form
hY for Y a finite pointed space, so it suffices to assume that F = hY . In that case,
dX ∗ id is homotopic to the natural transformation

dX∧Y : ΣhΣX∧Y → hX∧Y .

This lemma will actually imply that Sp is symmetric monoidal under the smash
product, and the derivative D is symmetric monoidal. For now, we will make do with
the following less structured assertion:

Proposition 4.3.3. The smash product preserves colimits separately in each variable.
Additionally, D carries the convolution product to the smash product in the sense that if

E1, . . . ,En are reduced functors S
fin
∗ → S∗, then the canonical natural transformation on

Day convolutions αE1
? · · ·? αEn : E1 ? · · ·? En→DE1 ? · · ·?DEn induces an equivalence

D(E1 ? · · · ? En) 'DE1 ∧ · · · ∧DEn .

In particular, the sphere spectrum S0 is a unit for the smash product.

Proof. The first claim is formal. For the second, we observe that by the previous

lemma, αE1
? · · · ? αEn lies in the saturated class generated by {dX : X ∈ S fin

∗ }.

Many of the spectra we’ve been contemplating so far are obtained via the derivative.
This result shows that when we are smashing derivatives, we may delay the application
of the derivative to the last possible moment. We deduce the following pleasant
corollary:

Corollary 4.3.4. If X1, . . . ,Xn are pointed spaces, the natural map is an equivalence:

(Σ∞X1)∧ · · · ∧ (Σ∞Xn) ' Σ∞(X1 ∧ · · · ∧Xn) .
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4.3.5. The smash product also appears in the classical formula for the value of an
excisive functor. If E : S∗→ S∗ is a spectrum, then any map K1∧K2→ S0 induces a
map E(K1)∧K2 ∧X→ E(K1 ∧K2 ∧X)→ E(X), natural in X; together, these define
an equivalence

Ω∞(Σ∞X ∧E) −→∼ E(X) ,

natural in X.

Function spectra and duality

For any spectrum E, the functor E′′ 7→ E′′∧E preserves colimits, and since Sp is
presentable, it follows that there exists a right adjoint E′ 7→F(E,E′) thereto. This is
the function spectrum from E to E′ . As a functor on pointed spaces, it is given by the
assignment

X 7→MapSp((Σ∞X)∨ ∧E,E′) .

For any pointed finite space X and for any map f : K1 ∧K2→ Y of pointed finite
spaces, evaluation defines a map

f ◦ (ev∧id ) : Map(X,K1)∧X ∧K2→ K1 ∧K2→ Y .

Letting f and Y vary, we obtain a natural transformation hX ? sX → hS
0
. Applying D ,

we obtain a morphism of spectra

(Σ∞X)∨ ∧Σ∞X→ S
0 ,

which in turn specifies a map

δX : (Σ∞X)∨→F(Σ∞X,S0) ,

which turns out to be an equivalence. We therefore take this as motivation for the
following definition.

Definition 4.3.6. For any spectrum E, the dual of E is the spectrum

E∨ =F(E,S0) .

4.3.7. If E is a spectrum, then there is a morphism of spectra

E ∧E∨ ' E∨ ∧E→ S
0 ,

which corresponds to a morphism E→ E∨∨.

Let’s classify the finite objects of Sp. It turns out that finiteness in Sp is a far simpler
matter than in S; in effect, problems that the Wall finiteness obstruction catches in S
are finessed in Sp:

Theorem 4.3.8. Let E be a spectrum. The following are equivalent.

1. There exists a finite pointed space X, an integer n ∈ Z, and an equivalence E '
(Σ∞X)[n].
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2. The spectrum E can be expressed as a finite colimit of spectra of the form Sn for n ∈Z.

3. The spectrum E is compact as an object of Sp.

4. The natural morphism E→ E∨∨ is an equivalence.

Definition 4.3.9. A spectrum is said to be finite if it satisfies the conditions of 4.3.8.
We write Spfin ⊂ Sp for the full subcategory spanned by the finite spectra.

4.4 Stable∞-categories

A stable ∞-category is much like an abelian category, except that what is asked of
monomorphisms or epimorphisms in an abelian category is asked of all morphisms
of a stable ∞-category. In an abelian category, every monomorphism is the kernel of
its cokernel, and every epimorphism is the cokernel of its kernel. The definition of
stable ∞-category is rigged so that every morphism of a stable ∞-category is both the
kernel of its cokernel and the cokernel of its kernel.

Another way of thinking about stable ∞-categories is in relation to triangulated
categories. A central theme in modern mathematics is the idea of encoding geometric
structure in terms of a triangulated category of modules of some sort, such as the
derived category of a scheme, the stable module category of a finite group, or the
Fukaya category of a symplectic manifold. A lot of work (e.g., see [214]) permits the
use of triangulated categories as a setting for abstract stable homotopy theory. This is
explained by the connection to stable ∞-categories. The structure of a triangulated
category is, in a precise sense, the shadow of the structure of a stable ∞-category:
the homotopy category of a stable ∞-category is a triangulated category. However,
stable ∞-categories are much easier to work with. For one thing, the definition is
considerably more concise, as the axioms of a triangulated category immediately
become basic computations with kernels and cokernels. For another, a variety of
problems go away — notably, the formation of cokernels is functorial in a stable
∞-category, but it is almost never so in a triangulated category. As a result, there
are important invariants that require functorial cokernels, like algebraic K-theory,
that really only make sense for an ∞-category: they are capable of distinguishing two
stable ∞-categories with triangulated-equivalent homotopy categories (e.g., see [258]).

Definition 4.4.1. An ∞-category A is said to be stable if the following conditions
obtain.

1. There is a zero object — that is, an object that is both initial and terminal — in A.
2. The ∞-category A has all finite limits and all finite colimits.
3. A square

U V

W X

is a pushout if and only if it is a pullback.
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If A and B are stable ∞-categories, a functor f : A→ B is left exact (i.e., finite-
limit-preserving) if and only if it is right exact (i.e., finite-colimit-preserving). In this
case, we simply call f exact. The subcategory of Cat∞ whose objects are stable ∞-
categories and whose morphisms are exact functors is denoted Stab∞.

Example 4.4.2. Naturally, Sp is stable, as is Spfin. On the other hand, although

S∗ and S
fin
∗ have zero objects, finite limits, and finite colimits, they certainly aren’t

stable.

Example 4.4.3. For any small ∞-category C and any stable ∞-category A, the ∞-
category Fun(C,A) is stable. In particular, for any space X, the ∞-category SpX of
local systems of spectra on X is stable.

Example 4.4.4. If A is a stable ∞-category, then so is Aop.

Exercise 4.4.5 . Show that if A is a small stable ∞-category, then so is Ind(E).

Kernels and cokernels

Let A be an ∞-category with a zero object 0, and let f : X → Y be a morphism
thereof. We can form the kernel 1 or fibre or cocone i : K → X of f , which is the
pullback

K 0

X Y

i

f

and the cokernel or cofibre or cone p : Y → C of f , which is the pushout

X Y

0 C

f

p

In a stable ∞-category, pullback squares and pushout squares coincide, so f is both
the cokernel of i and the kernel of p. We can keep pushing and pulling with the aid of
the loopspace and the suspension:

Construction 4.4.6. If A has all finite colimits, then we have the endofunctors

X 7→ ΣX = 0∪X 0 and X 7→ΩX = 0×X 0 .

Note that the functors Σ and Ω each admit an involution −1 given by swapping the
zero objects.

These functors are adjoint, but if A is stable, they are also inverse to each other;

1 We have opted to keep the terms “kernel” and “cokernel” in circulation — even though this is uncommon
lingo in stable ∞-category literature — because we think the parallel to abelian categories is highlighted
clearly this way.
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that is, the unit id → ΩΣ and the counit ΣΩ → id are each equivalences. In that
case, we also may write

X[1] = ΣX and X[−1] =ΩX ,

and we call these the shift functors. In particular, for any object X, there is an
endomorphism −1: X→ X that arises from thinking of X as X[1][−1] or X[−1][1].

4.4.7. When A is stable, the kernel of the cokernel of our morphism f is f again,
and the cokernel of the kernel of f is f again. The kernel of the kernel of f is the
morphism −Ωp : Y [−1]→ C[−1] ' F, and the cokernel of the cokernel of f is the
morphism −Σi : C ' F[1]→ X[1]. If we continue to form kernels and cokernels, we
obtain a diagram

X[−1] Y [−1] 0

0 F X 0

0 Y C 0

0 X[1] Y [1]

−Ωf

−Ωp
i

f

p

−Σi

−Σf

(4.4.1)

in which every square is both a pushout and a pullback. In such a diagram, a shift of
a morphism changes sign precisely when it turns from horizontal to vertical or vice
versa.

4.4.8. If f : X → Y and g : Y → Z are morphisms of a stable ∞-category A, and
if η is a nullhomotopy of gf , that is, a homotopy between gf and the zero morphism
0: X → Z, which is the composite of the unique morphisms X → 0 and 0 → Z,
then we can ask whether η exhibits g is the cokernel of f . If it does, then there is a
further morphism h : Z → X[1], and one calls the sequence X → Y → Z → X[1] a
distinguished triangle or a fibre /cofibre sequence. The “triangle” here is the diagram

Y

X Z

gf

h

[1]

where the arrow marked [1] isn’t a morphism as shown but rather the morphism
h : Z→ X[1]. The value of drawing it this way is that it can be rotated:

Z

Y X[1]

hg

−f
[1]

or
X

Z[−1] Y

f−h[−1]

g
[1]
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The homotopy category hA, with shift functor X 7→ X[1] and distinguished triangles
as above, is in fact a triangulated category. The proof of this claim is Theorem 1.1.2.14
in [168]. However, working with a stable ∞-category is always preferable to — and
usually easier than — working with a triangulated category.

Universal property of Sp

The ∞-category Sp admits a universal property as an object of the ∞-category PrLst
of presentable stable ∞-categories and colimit-preserving functors. Precisely, Sp is
the free presentable stable ∞-category on one generator; that is, for any presentable
stable ∞-category E, evaluation at S0 defines an equivalence FunL(Sp,E) ' E, where
FunL is the category of colimit-preserving functors.

Though we won’t go into detail about symmetric monoidal structures on ∞-
categories, it is useful to note that PrLst has such a structure: for any pair of presentable
stable ∞-categories C and D, there exists a presentable stable ∞-category C ⊗D
such that FunL(C ⊗D,A) is equivalent to the ∞-category of functors C ×D→ A that
preserve colimits separately in each variable. In this symmetric monoidal structure,
the unit is Sp.

Since the ∞-category Sp is the unit for the symmetric monoidal structure PrLst that
we discussed above, it follows that Sp admits a unique symmetric monoidal structure
Sp×Sp→ Sp that preserves colimits separately in each variable. This gives a pleasant
universal characterisation of the smash product.

One consequence of the universal property of the ∞-category of spectra is the
following omnibus comparison result to the models of spectra considered in Chapter 3.

Theorem 4.4.9. The underlying ∞-categories of the categories of orthogonal spectra,
symmetric spectra, classical prespectra, and EKMM spectra with the stable equivalences are
all equivalent to the ∞-category of spectra.

Additivity

One point that we will address carefully is the presence of direct sums and the additivity
of a stable ∞-category.

Definition 4.4.10. If A is an ∞-category, we say that A admits direct sums if the
following conditions obtain.

1. The ∞-category A admits finite products and finite coproducts.
2. The natural morphism from the initial object to the terminal object is an equiva-

lence, so that there is a zero object in A.
3. For any objects X,Y ∈ A, the map

I =
(
id 0
0 id

)
: X tY → X ×Y

is an equivalence.
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In this case, we write X ⊕Y for the identified product and coproduct.
If A admits direct sums, then the homotopy category hA acquires an enrichment in

the category of commutative monoids: for any morphisms f ,g : X→ Y , one defines

f + g = (id id)
(
f 0
0 g

)(
id
id

)
: X→ X ⊕X→ Y ⊕Y → Y

One says moreover that A is additive if MaphA(X,Y ) is an abelian group.

The homotopy category hA of a stable ∞-category A is automatically enriched in
abelian groups, thanks to the natural equivalence MapA(S,T ) 'Ω2 MapA(S[−2],T ).
But in fact even more is true:

Proposition 4.4.11. Any stable ∞-category A is additive.

Proof. A contains a zero object, and it admits finite products and finite coproducts.
To see that these coincide, we claim that id× 0: X→ X ×Y and 0× id : Y → X ×Y
together exhibit X ×Y as the coproduct X tY . For any object Z, the induced map

MapA(X ×Y ,Z)→MapA(X,Z)×MapA(Y ,Z)

admits a homotopy inverse given by the formula (f ,g) 7→ (f × 0) + (0× g) (using the
enrichment of hA in abelian groups). Finally, the Eckmann–Hilton argument shows
that the commutative monoid enrichment of hA arising from the presence of direct
sums coincides with the abelian group enrichment of hA arising from the stability
of A.

Notation 4.4.12. If A is a stable∞-category and if X,Y ∈A, we obtain abelian groups

ExtnA(X,Y ) = MorhA(X[−n],Y ) 'MorhA(X,Y [n]) .

When n ≤ 0, we have

ExtnA(X,Y ) � π−nMapA(X,Y ) .

These abelian groups are the homotopy groups of mapping spectra associated to
objects X,Y ∈ A. In fact, in a precise sense the category of stable ∞-categories is
equivalent to the category of spectral categories (where equivalences are the “Morita
equivalences” of spectral categories, defined in terms of equivalences on associated
module categories). See for example [46, 4.23] for a discussion of this.

Loopspace and suspension

The argument of 4.1.3 works in general here, and it implies that, in order to verify
stability, it is enough to check that Σ and Ω are inverse:

Theorem 4.4.13. Let A be an ∞-category with a zero object, all finite limits, and all
finite colimits. If the functors Σ and Ω on A are inverse, then A is stable.

Example 4.4.14. If A is stable, then a stable subcategory is a full subcategory that is
stable under equivalences, contains the zero object, and is stable under finite limits
and colimits.
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Exercise 4.4.15 . Let C be an ∞-category with a zero object and all finite limits. Show
that the limit Spseq(C) in Cat∞ of the sequence

· · · C C CΩ Ω Ω

is stable. (Hint: the tricky point is to confirm that Spseq(C) admits all finite colimits.)
The “cartesian section” point of view on Spseq(C) is that its objects are sequences
{Xn}n≥0 of objects of C along with sequences of equivalences {Xn → ΩXn+1}n≥0.
This goes some way to explaining the notation. The equivalence with “true” spectra
will be addressed in the next section.

4.5 Generalisations

One may ask what happens when one has only part of the axioms of a stable ∞-
category. These ∞-categories often appear as subcategories of stable ∞-categories,
but they also arise directly from applications.

Prestable∞-categories

For example, the subcategory of connective spectra — those whose homotopy is confined
to nonnegative degrees — is only closed under suspension, but not loopspace. More
generally, we have the following subcategories of spectra:

Example 4.5.1. For any integer k, write Sp≥k ⊂ Sp for the full subcategory spanned
by the k-connective spectra, i.e., those spectra E such that En = 0 for n < k. Dually,
write Sp≤k ⊂ Sp for the full subcategory spanned by the k-coconnective spectra, i.e.,
those spectra E such that En = 0 for n > k.

The objects of the ∞-category Sp≥k are called the k-connective spectra, and the
objects of Sp≤k are called the k-truncated spectra.

We will study systems of subcategories like this in detail in Section 4.7. Here,
we are more interested in the intrinsic properties of the ∞-category Sp≥k . Right
away, we notice that the suspension of a k-connective spectrum remains k-connective,
but the loopspace of a k-connective spectrum is in general no longer k-connective.
Consequently, we are interested in situations in which we have “half” of our stability
conditions:

Definition 4.5.2. An∞-category A is said to be prestable if and only if the following
conditions obtain.

1. The ∞-category A admits a zero object.

2. The ∞-category A has all finite colimits.
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3. Every morphism f : X→ ΣY of A admits a kernel i : F→ X, and the square

F X

0 ΣY

i

f

exhibits f as the cokernel of i.

4.5.3. By the same argument as 4.1.3, we see that an∞-category that contains a zero
object and all finite limits and colimits is prestable if and only if the suspension Σ is
fully faithful.

4.5.4. As in Proposition 4.4.11, a prestable∞-category A is automatically additive. To
see this, note that we have the abelian group enrichment, thanks to the equivalence
MapA(S,T ) 'Ω2 MapA(S,T [2]). The rest of the argument is as in 4.4.11.

Example 4.5.5. For any k ∈ Z, the ∞-category Sp≥k of k-connective spectra is
prestable.

Derived∞-categories

The triangulated derived category D(R) of the category of R-modules has some
disadvantages:

– The formation of cones is not functorial; they are generally not unique, but rather
they are unique up to a noncanonical isomorphism in the derived category. This
is because diagrams in D(R) commute up to homotopy, but the data of such a
homotopy is not part of the data of such a diagram.

– In a similar vein, there is not a good theory of sheaves valued in D(R). For instance,
if {U,V ,W } is an open cover of a topological space X, and if F is a sheaf on
X valued in D(R), then the sheaf condition ensures that global sections can be
recovered from local sections that agree up to homotopy on double overlaps, but this
is true even without any compatibility for these homotopies on the triple overlap.

Consequently, it is often more convenient to work with the derived ∞-category of R.
Here is the construction:

Construction 4.5.6. Let E be an abelian category, which we shall regard as an
∞-category. Assume that E has enough projective objects. Write Eproj ⊆ E for the full
subcategory spanned by the projective objects.

We will construct the nonnegative derived ∞-category of E. It’s actually convenient
to start by defining the nonnegative derived ∞-category of Ind(E).

We write D≥0(Ind(E)) ⊆ Fun(Eop
proj ,S) for the full subcategory spanned by those

functors E
op
proj→ S∗ that carry finite direct sums to products.

One has the Yoneda embedding j : Eproj ↪→ D≥0(Ind(E)), which can be thought of
either as freely generating D≥0(Ind(E)) under sifted colimits (that is, filtered colimits
and geometric realisations) or as generating D≥0(Ind(E)) under all colimits, subject
to the condition that j preserve finite coproducts. That is:
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1. For any ∞-category C that admits all sifted colimits, the functor

j∗ : Fun(D≥0(Ind(E)),C)→ Fun(Eproj ,C)

restricts to an equivalence between the full subcategory of Fun(D≥0(Ind(E)),C)
spanned by those functors D≥0(Ind(E)) → C that preserve sifted colimits and
Fun(Eproj ,C).

2. If E admits all colimits, then j∗ restricts to an equivalence between the full
subcategory of Fun(D≥0(Ind(E)),C) spanned by those functors D≥0(Ind(E))→
C that preserve all colimits and the full subcategory of Fun(Eproj ,C) spanned by
those functors A→ E that preserve finite coproducts.

The ∞-category D≥0(Ind(E)) is called the nonnegative derived ∞-category of Ind(E).
We write D≥0(E) ⊆ D≥0(Ind(E)) for the smallest full subcategory that contains

Eproj and is closed under geometric realisations. Thus D≥0(E) is obtained from A
by freely adding geometric realisations; that is, for any ∞-category E that admits all
geometric realisations, the functor

j∗ : Fun(D≥0(E),E)→ Fun(Eproj ,E)

restricts to an equivalence between the full subcategory of Fun(D≥0(Ind(E)),E)
spanned by those functors D≥0(E) → E that preserve geometric realisations and
Fun(Eproj ,E).

The∞-category D≥0(E) is called the nonnegative derived∞-category of E. A functor
F : D≥0(E)→ E that preserves geometric realisations will be said to be the left derived
functor of j∗F.

4.5.7. There is no ambiguity in our notation. If E is an abelian category with enough
projectives and E′ = Ind(E), then E′ also has enough projectives, and our definition
of D≥0(E′) agrees with our definition of D≥0(Ind(E)): each freely adds sifted colimits
to Eproj.

Example 4.5.8. For any abelian category E with enough projectives, the∞-categories
D≥0(Ind(E)) and D≥0(E) are prestable. Indeed, the second universal property makes
it clear that D≥0(E) admits direct sums. To prove that the suspension on D≥0(Ind(E))
is fully faithful, let C : Eop

proj → S∗ be an object; then since products and geometric
realisations are computed objectwise in D≥0(Ind(E)), we may write ΣC as the functor
that carries an object X ∈ A to the geometric realisation of the bar construction

B∗(0,C(X),0) : n 7→ C(X)n .

This simplicial space is a grouplike Segal space, and so we have an equivalence
C(X) 'Ω|B∗(0,C(X),0)| 'ΩΣC(X).

Construction 4.5.9. Let E be an abelian category with enough projectives, and
let C : Eop

proj → S∗ be an object of D≥0(E). Then we obtain, for any integer n ≥ 0,
a functor

Hn(C) = πnC : Eop
proj→ Set∗
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that carries direct sums to products. In other words, Hn(C) ∈ Ind(E).
Let us quickly check that Hn(C) actually lies in E. For any object M ∈ E, one has

H0(j(M)) =M, and for n ≥ 1, Hn(j(M)) = 0. Furthermore, if C∗ is a simplicial object
of D≥0(E) with the property that Hn(Ck) ∈ E for every k,n ≥ 0, then the obvious
spectral sequence argument ensures that for every n ≥ 0, one has Hn|C∗| ∈ A.

We have thus defined the homology functors Hn : D≥0(E)→ E.

If E is an abelian category with enough projective objects, the homotopy category
hD≥0(E) can be shown to be the derived category of nonnegatively graded complexes
in Eproj . Under this equivalence, the homology functors above agree with the classically
defined functors, and the left derived functor of a functor E → E′ in our sense
coincides with the left derived functor in the classical sense.

Definition 4.5.10. For any abelian category E with enough projectives, we write
Fun⊕(Eop

proj,Sp) for the (stable)∞-category of functors E
op
proj→ Sp that preserve direct

sums. We then define D−(E) as the smallest stable full subcategory of Fun⊕(Eop
proj,Sp)

that contains the essential image of Σ∞j : Eproj→ Fun⊕(Eop
proj,Sp) and is closed under

geometric realisations. This is the right bounded derived ∞-category of E.

Exercise 4.5.11 . Verify that the functor Σ∞ : D≥0(E)→D−(E) is fully faithful.

4.5.12. Let E be an abelian category with enough projectives. If C : Eop
proj→ Sp is an

object of D≥0(E), then as in 4.5.9 we obtain, for any integer n ∈Z, a functor

Hn(C) = πnC : Eop
proj→ Set∗

that carries direct sums to products, so that Hn(C) ∈ Ind(E), and once again it turns
out that Hn(C) lies in E itself.

We have thus defined the homology functors Hn : D−(E)→ A.

Construction 4.5.13. If E is an abelian category with enough injective objects, then
we can define

D≤0(E) =D≥0(Eop)op and D+(E) =D−(Eop)op ;

we call D+(E) the left bounded derived ∞-category of E. We can also define the coho-
mology functors H−n =Hn.

4.5.14. An even more dramatic generalisation of the stable∞-categories is the notion
of an exact∞-category. These were introduced in [24] as a simultaneous generalisation
of the exact categories of Quillen and stable ∞-categories. Exact ∞-categories are a
natural setting for algebraic K-theory and Quillen’s Q construction.

4.6 Stabilisation

In this section, we give a machine for printing examples of stable ∞-categories. This
machine is really nothing more than a formal extension of our definition of spectra.
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Definition 4.6.1. Let C and D be ∞-categories. Assume that C admits all finite
colimits. We say that a functor F : C → D is reduced if it carries the initial object of
C to a terminal object of D, and we say that F is excisive if it carries any pushout
square in C to a pullback square in D .

We write Fun∗(C,D) ⊆ Fun(C,D) for the full subcategory spanned by the reduced
functors; Exc(C,D) ⊆ Fun(C,D) for the full subcategory spanned by the excisive
functors; and Exc∗(C,D)⊆Fun(C,D) for the full subcategory spanned by the reduced
excisive functors.

4.6.2. Let C, D, and F be as above. If C is stable, then F is reduced excisive if and
only if F is left exact. If D is stable, then F is reduced excisive if and only if F is right
exact.

If D admits all finite limits, then the argument of 4.1.3 applies again to ensure that
F is excisive if and only if, for any object X ∈ C, the natural map FX → ΩFΣX is
an equivalence.

Exercise 4.6.3 . Check that, if C is an ∞-category C with all finite colimits and D is
an ∞-category D with all finite limits, the ∞-category Exc∗(C,D) is stable.

Definition 4.6.4. For any ∞-category D with all finite limits, a spectrum in D is a
reduced excisive functor S

fin
∗ →D . We write Sp(D) = Exc∗(S

fin
∗ ,D), and we call this

∞-category the stabilisation of D .
Evaluation at S0 defines a functor Ω∞ : Sp(D)→D .

Example 4.6.5. Of course Sp ' Sp(S).

We haven’t got much of an excuse for the notation Ω∞ at the moment, but we will
explain it soon.

Universal property of stabilisation

Exercise 4.6.6 . For any∞-category D with all finite limits, show that Ω∞ : Sp(D)→D
is an equivalence if and only if D is stable.

4.6.7. Let C be an ∞-category with all finite colimits, and let D be an ∞-category
with all finite limits. Then a reduced excisive functor C → Sp(D) is the same thing
as a functor C ×S fin

∗ → D that is reduced and excisive separately in each variable.
This, in turn, is the same thing as a spectrum in the ∞-category Exc∗(C,D).

Proposition 4.6.8. Let C be an ∞-category with all finite colimits, and let D be an
∞-category with all finite limits. The functor Ω∞ : Sp(D)→D induces an equivalence

Exc∗(C,Sp(D)) ' Exc∗(C,D) .

Proof. The induced functor Sp(Exc∗(C,D)) ' Exc∗(C,Sp(D))→ Exc∗(C,D) is Ω∞,
which is an equivalence since Exc∗(C,D) is stable.

This result reveals a universal property of the stabilisation: if we look at the
subcategory Catlex

∞ whose objects are ∞-categories with all finite limits and whose
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morphisms are left exact functors, then the ∞-category Stab∞ is a full subcategory of
Catlex

∞ . Now the previous proposition reveals that the stabilisation is in fact the right
adjoint to the inclusion Stab∞ ↪→ Catlex

∞ . In other words, Stab∞ is a colocalisation of
Catlex

∞ .

Spectra and sequential spectra

Here is another perspective, which explains the notation Ω∞ and refers to the
construction of Spseq of 4.4.15:

Proposition 4.6.9. Let D be an∞-category with a zero object and all finite limits. Then
the functor

Spseq(D)→D

given informally by {Xn}n≥0 7→ X0 exhibits Spseq(D) as the stabilisation of D :

Sp(D) ' Spseq(D) .

Proof. One knows from (4.4.15) that Spseq(D) is stable. Therefore it suffices to prove
that for any stable ∞-category A, the induced functor

Exc∗(A,Spseq(D))→ Exc∗(A,D)

is an equivalence. But this functor is the limit of the sequence

· · · Exc∗(A,D) Exc∗(A,D) Exc∗(A,D) ,Ω Ω Ω

which is a diagram of equivalences over a weakly contractible ∞-category.

Complete derived∞-categories

We can apply the stabilisation process to the nonnegative derived ∞-category:

Definition 4.6.10. Let E be an abelian category with enough projective objects.
We write D−,∧ (E) for the stabilisation Sp(D≥0(E)). This is the right complete derived
∞-category of E.

Dually, if E is an abelian category with enough injective objects, we write D+,∧(E)
for the stabilisation Sp(D≥0(Eop))op. This is the left complete derived ∞-category of E.

In the next section, we will be able to characterise these ∞-categories in an intrinsic
manner.

4.7 t-structures

The most basic examples of triangulated categories possess additional structure
given by shift and truncation functors. For example, for the derived category of a
commutative ring, there are inverse auto-equivalences given by shifting complexes up
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and down, and it is often useful to study about truncated complexes that live entirely
in positive or negative degrees. This structure is axiomatized in terms of additional
data referred to as a t-structure, which specifies positive and negative subcategories
whose intersection is an abelian category known as the heart of the t-structure. There
is a natural generalisation of this theory to the setting of stable ∞-categories.

Definition 4.7.1. Let A be a stable ∞-category, and let A≥0,A≤0 ⊆ A be a pair of
full subcategories. We may shift these subcategories about:

A≥n = (A≥0)[n] and A≤n = (A≤0)[n] .

We say that the pair (A≥0,A≤0) constitute a t-structure on A if it enjoys the following
properties.

1. If X ∈ A≥0 and Y ∈ A≤−1, then the space MapA(X,Y ) is contractible.

2. The subcategory A≥0 is closed under positive shifts, and the subcategory A≤0 is
closed under negative shifts. So A≥1 ⊆ A≥0, and, dually, A≤−1 ⊆ A≤0 as well.

3. For every X ∈ A, there is a distinguished triangle

τ≥0X→ X→ τ≤−1X→ (τ≥0X)[1] ,

where τ≥0X ∈ A≥0 and (τ≤−1X)[1] ∈ A≤0.

4.7.2. For any object X, a distinguished triangle τ≥0X → X → τ≤−1X → (τ≥0X)[1]
exhibits τ≤−1X ∈ A≤−1 as a (A≤−1)-localisation of X. Consequently, τ≤−1 organises
itself into a left adjoint to the inclusion A≤−1 ↪→ A. One may shift to find that for any
n ∈Z, the functor τ≤n defined by

τ≤nX = (τ≤−1(X[−n]))[n]

exhibits the subcategory A≤n ⊆ A as a localisation.
Dually, the distinguished triangle τ≥0X → X → τ≤−1X → (τ≥0X)[1] exhibits

τ≥0X ∈ A≥0 as a (A≥0)-colocalisation of X, and for any n ∈ Z, the functor τ≥n
defined by

τ≥nX = (τ≥0(X[n]))[−n]

exhibits the subcategory A≥n ⊆ A as a colocalisation.

Example 4.7.3. We have already encountered the t-structure on the ∞-category Sp
of spectra. The spectra that lie in Sp≥0 are called connective.

Example 4.7.4. Let E be an abelian category with enough projectives. We have also
encountered the t-structure on right bounded derived ∞-category. Then D≤0(E),
regarded as a full subcategory of D−(E), is a t-structure.

This notion is compatible with the classical notion; if A is a stable ∞-category with
a t-structure in the sense above, then the homotopy category of A is a triangulated
category with a t-structure.
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Warning 4.7.5. Here we are following the homotopy theory convention of homolog-
ical indexing. This is mostly for the sake of compatibility with Lurie’s text.

However, one may expect to encounter cohomological indexing in the literature.
These should be written with superscripts rather than subscripts:

A≤n = A≥−n , A≥n = A≤−n , τ≤n = τ≥−n , τ≥n = τ≤−n .

Unfortunately, even when cohomological indexing is being employed, the truncation
functors are sometimes written with subscripts (notably, in [34]), so one must remain
vigilant.

We emphasise that the meaning of the shift functor X 7→ X[1] is always suspension.
So one has the formulas

A≤n = (A≤0)[−n] and A≥n = (A≥0)[−n] .

4.7.6. A t-structure on a stable ∞-category A is uniquely specified by giving, for
some n ∈Z, any one of the following pieces of data:

1. the full subcategory A≥n ⊆ A;
2. the full subcategory A≤n ⊆ A;
3. the functor τ≥n : A→ A; or
4. the functor τ≤n : A→ A.

4.7.7. For any n ∈ Z, the ∞-category A≥n is an exact ∞-category in which every
morphism is ingressive, and A≤n is an exact ∞-category in which every morphism is
egressive.

4.7.8. For integers a ≤ b, one may define A[a,b] = A≥a ∩ A≤b. The restriction of
τ≤b to A≥a is a left adjoint A≥a → A[a,b], and the restriction of τ≥a to A≤b is a left
adjoint A≤b → A[a,b]. A simple “five lemma” argument furnishes us with a natural
equivalence

τ≤bτ≥a ' τ≥aτ≤b : A→ A[a,b] ,

and we shall write τ[a,b] for this functor.
The ∞-category A[a,b] is an exact ∞-category in which the ingressive morphisms

are those morphisms that are ingressive in A≥a, and the egressive morphisms are
those morphisms that are egressive in A≤b.

As a special case, we write A♥ = A[0,0]; this is called the heart of the t-structure.
Note that the shift functor restricts to a specified equivalence A♥ ' A[n,n] for any
n ∈Z; we now define the homological functors attached to the t-structure:

πn = τ[n,n] : A→ A[n,n] ' A♥ .

We have chosen this notation again for the sake of compatibility with Lurie. Other
authors may write Hn for this functor, and those who use cohomological indexing
are liable to write Hn = τ [n,n].

Proposition 4.7.9. Let A be a stable ∞-category endowed with a t-structure. Then the
heart A♥ is (equivalent to the ∞-category corresponding to) an ordinary abelian category.
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Proof. If X,Y ∈ A♥, then for any n ≥ 1, one has

πnMapA(X,Y ) � Ext−nA (X,Y ) � 0 ,

whence A♥ is (equivalent to) a 1-category. We have already seen that A♥ is an exact
∞-category, whence it is an exact category in Quillen’s sense. To show that it is abelian,
one just has to note that the ingressives are precisely the monomorphisms, and the
egressives are precisely the epimorphisms.

Example 4.7.10. The heart Sp♥ is the category Ab of abelian groups. The homo-
logical functors attached to this t-structure are precisely the usual stable homotopy
group functors πn.

Example 4.7.11. Let E be an abelian category with enough projectives. Then the
heart D−(E)♥ is again E. The homological functors attached to this t-structure are
precisely the homology functors Hn.

Boundedness and completeness

The previous examples show that stable ∞-categories with t-structures are not deter-
mined by their hearts. There is, however, a special class of stable ∞-categories with
t-structures that are determined by their hearts. These are the derived ∞-categories
of abelian categories. To describe them, we must discuss some different kinds of
t-structures.

Definition 4.7.12. Let A be a stable ∞-category equipped with a t-structure. Define

A− =
⋃
m∈Z

A≥m , A+ =
⋃
n∈Z

A≤n , Ab = A+ ∩A− =
⋃

m,n∈Z
A[m,n] .

We call

1. the objects of A− bounded below,
2. the objects of A+ bounded above, and
3. the objects of Ab bounded.

We say that the t-structure is

4. right bounded if A = A−,
5. left bounded if A = A+, and
6. bounded if A = Ab.

Example 4.7.13. The t-structure on Spfin is right bounded.

Definition 4.7.14. Let A be a stable ∞-category equipped with a t-structure. We
define A∧,R ⊆ Fun(Zop,A) as the full subcategory spanned by those sequences X such
that X(m) ∈ A≥m for any m ∈ Z, and that the induced morphism X(n)→ τ≥nX(m)
is an equivalence for any m ≤ n. Dually, we define A∧,L ⊆ Fun(Zop,A) as the full
subcategory spanned by those objects X such that X(m) ∈ A≤m for any m ∈ Z, and
that the induced morphism τ≤mX(n)→ X(m) is an equivalence for any m ≤ n.
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We call

1. A∧,R the right completion of A with respect to its t-structure, and

2. A∧,L the left completion of A with respect to its t-structure.

We say that the t-structure is

3. right complete if the natural map A→ A∧,R is an equivalence,

4. left complete if the natural map A→ A∧,L is an equivalence, and

5. complete if it is both left and right complete.

4.7.15. If A is a stable ∞-category equipped with a t-structure, the right completion
of A− coincides with the right completion of A itself, and the bounded below objects
of the right completion A∧,R coincide with the bounded below objects of A itself.
It follows that there is an equivalence between the ∞-category of right bounded
t-structures and that of right complete t-structures.

Example 4.7.16. Let E be an abelian category. If E has enough projectives, then
the t-structure on D−(E) is right bounded (whence the notation!) and left complete.
Dually, if E has enough injectives, then the t-structure on D+(E) is left bounded and
right complete.

In the same vein, if E has enough projectives, then D−,∧(E) is complete, and
if E has enough injectives, then D+,∧(E) is complete. In fact, D−,∧(E) is the right
completion of D−(E), and D+,∧(E) is the left completion of D+(E).

It is a priori difficult to determine whether a t-structure is right or left complete.
Fortunately, there is a reasonable criterion for this.

Definition 4.7.17. Let A be a stable ∞-category equipped with a t-structure. We
define

A−∞ =
⋂
n∈Z

A≤n and A+∞ =
⋂
n∈Z

A≥n .

We say that the t-structure is

1. right separated if A−∞ = 0,

2. left separated if A+∞ = 0, and

3. separated if it is both left and right separated.

Proposition 4.7.18 ([168, Proposition 1.2.1.19]). Let A be a stable ∞-category with
countable coproducts. Let τ be a t-structure on A with the property that A≥0 is stable under
countable coproducts. Then τ is right complete if and only if it is right separated.

Exercise 4.7.19 . Use this criterion to check that the t-structure on Sp is complete.
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Derived∞-categories

Roughly speaking, the constructions E 7→D−(E) and E 7→D+(E) are left adjoint to
the construction A 7→ A♥. To make this precise, we must specify which ∞-category of
stable ∞-categories we will to use:

Definition 4.7.20. Let A and B be stable ∞-categories equipped with t-structures.
An exact functor f : A → B is said to be right t-exact if f (A≥0) ⊆ B≥0. Dually, an
exact functor f : A→ B is said to be left t-exact if f (A≤0) ⊆ B≤0. An exact functor
f : A→ B is said to be t-exact if it is both left and right t-exact.

Let us say that a right t-exact functor A→ B is left derived if it carries the projective
objects of A♥ into B♥. We write Funlder(A,B) ⊆ Fun(A,B) for the full subcategory
spanned by the left derived right t-exact functors A → B. Dually, let us say that a
left t-exact functor A → B is right derived if it carries the injective objects of A♥

into B♥. We write Funrder(A,B) ⊆ Fun(A,B) for the full subcategory spanned by the
right derived right t-exact functors A→ B.

Theorem 4.7.21. Let E be an abelian category with enough projectives, and let B be a
stable ∞-category equipped with a left complete t-structure. The construction F 7→ τ≤0F|E
is an equivalence of ∞-categories

Funlder(D−(E),B)→ Funrex(E,B♥) ,

where Funrex(E,B♥) ⊆ Fun(E,B♥) is the full subcategory spanned by the right exact
functors E→ B♥.

Dually, let E be an abelian category with enough injectives, and let B be a stable
∞-category equipped with a right complete t-structure. The construction G 7→ τ≥0G|E is an
equivalence of ∞-categories

Funrder(D+(E),B)→ Funlex(E,B♥) ,

where Funlex(E,B♥) ⊆ Fun(E,B♥) is the full subcategory spanned by the left exact functors
E→ B♥.

4.7.22. If E has enough projectives and B is a stable ∞-category equipped with
a left complete t-structure, then we call F : D−(E) → B the left derived functor of
f = τ≤0F|A, and we write Lf = F.

Dually, if E has enough injectives and B is a stable ∞-category equipped with a
right complete t-structure, then we call G : D+(E)→ B the right derived functor of
g = τ≥0G|E , and we write Rg = G.

Example 4.7.23. Since Sp♥ ' Ab, we obtain a t-exact functor H : D−(Ab)→ Sp,
which carries a chain complex C to the generalised Eilenberg–Mac Lane spectrum HC.

This result also allows us to recognise derived ∞-categories.

Corollary 4.7.24. Let A be a stable ∞-category equipped with a left complete t-structure.
Assume that A♥ has enough projectives. The unique t-exact functor K : D−(A♥)→ A is
fully faithful if and only if, for any projective object M ∈ A♥ and any object N ∈ A♥, the
groups Extn(M,N ) = 0 for any n ≥ 1. In this case, the essential image of K is A− ⊆ A.
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4.7.25. As a final comment, we observe that if E is a Grothendieck abelian category,
then there is also an unbounded derived ∞-category D(E) equipped with a t-structure.
Since E has enough injectives, we obtain a stable ∞-category D+(E). The previous
corollary ensures that the unique t-exact functor D+(E)→D(E) is fully faithful, and
it identifies D+(E) with the bounded above objects of D(E).

One might be therefore tempted to believe that D(E) coincides with the left com-
plete derived ∞-category D+,∧(E). We emphasise, however, that this is not generally
true: there are abelian categories E, such as the category of representations of Ga

over a field of positive characteristic, for which D(E) is not left complete.
If, however, countable products in E are exact, the criterion of 4.7.18 works to

ensure that D(E) is left complete. Then we can identify D(E) with D+,∧(E), and
so 4.7.21 furnishes us with a universal characterisation of D(E) in this case. The
author does not know a universal characterisation of D(E) for a general Grothendieck
abelian category.





5 Operads and operadic algebras
in homotopy theory

by Michael A. Mandell

5.1 Introduction

Operads first appeared in the book Geometry of iterated loop spaces by J. P. May [194],
though Boardman and Vogt had earlier implicitly defined a mathematically equivalent
notion as a “PROP in standard form” [49, §2]. In those works, operads and operadic
algebra structures provide a recognition principle and a delooping machine for n-fold
loop spaces and infinite loop spaces. The basic idea is that an operad should encode
the operations in some kind of homotopical algebraic structure. For example, an n-fold
loop space ΩnX comes with n different multiplications (ΩnX)2→ΩnX, which can be
iterated and generalized to a space of m-ary maps Cn(m) (from (ΩnX)m to ΩnX); here
Cn is the Boardman–Vogt little n-cubes operad (see Construction 5.3.5 and Section 5.11
below). The content of the recognition theorem is that Cn specifies a structure that
is essentially equivalent to the structure of an n-fold loop space for connected spaces.
It was clear even at the time of introduction that operads were a big idea and in the
almost 50 years since then, operads have found a wide range of other uses in a variety
of areas of mathematics: a quick MathSciNet search for papers since 2015 with “operad”
in the title comes up with papers in combinatorics, algebraic geometry, nonassociative
algebra, geometric group theory, free probability, mathematical modeling, and physics,
as well as in algebraic topology and homological algebra.

Even the topic of operads in algebraic topology is too broad to cover or even summa-
rize in a single article. This expository article concentrates on what I view as the basic
topics in the homotopy theory of operadic algebras: the definition of operads, the defini-
tion of algebras over operads, structural aspects of categories of algebras over operads,
model structures on algebra categories, and comparison of algebra categories when
changing operad or underlying category. In addition, it includes two applications of the
theory: the original application to n-fold loop spaces, and an application to algebraic
models of homotopy types (chosen purely on the basis of personal bias). This leaves out
a long list of other topics that could also fit in this chapter, such as model structures on
operads, Koszul duality, deformation theory and Quillen (co)homology, multiplicative
structures in stable homotopy theory (for example, on Thom spectra, K-theory spectra,
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etc.), Deligne and Kontsevich conjectures, string topology, factorization homology,
construction of moduli spaces, and Goodwillie calculus, just to name a few areas.

Notation and conventions

Although we concentrate on operads and operadic algebras in topology, much of the
background applies very generally. Because of this and because we will want to discuss
both the case of spaces and the case of spectra, we will use neutral notation: let M
denote a symmetric monoidal category [145, §1.4], writing � for the monoidal product
and 1 for the unit. (We will uniformly omit notation for associativity isomorphisms
and typically omit notation for commutativity isomorphisms, but when necessary,
we will write cσ for the commutativity isomorphism associated to a permutation σ .)
Usually, we will want M to have coproducts and sometimes more general colimits,
which we will expect to commute with � on each side (keeping the other side fixed).
This exactness of � is automatic if the monoidal structure is closed [145, §1.5], i.e., if
for each fixed object X of M , the functor (−)�X has a right adjoint; this is often
convenient to assume, and when we do, we will use F(X,−) for the right adjoint. The
three basic classes of examples to keep in mind are:

(i) Convenient categories of topological spaces, including compactly generated weak
Hausdorff spaces [206]; then � is the categorical product, 1 is the final object
(one point space), and F(X,Y ) is the function space, often written Y X .

(ii) Modern categories of spectra, including EKMM S-modules [94], symmetric spectra
[133], and orthogonal spectra [178]; then � is the smash product, 1 is the sphere
spectrum, and F(−,−) is the function spectrum.

(iii) The category of chain complexes of modules over a commutative ring R; then
� is the tensor product over R, 1 is the complex R concentrated in degree zero,
and F(−,−) is the Hom-complex HomR(−,−).

We now fix a convenient category of spaces and just call it “the category of spaces”
and the objects in it “spaces”, ignoring the classical category of topological spaces.

In the context of operadic algebras in spectra (i.e., (ii) above), it is often technically
convenient to use operads of spaces. However, for uniformity of exposition, we have
written this article in terms of operads internally in M . The unreduced suspension
functor Σ∞+ (−) converts operads in spaces to operads in the given category of spectra.

Outline

The basic idea of an operad is that the pieces of it should parametrize a class of
m-ary operations. From this perspective, the fundamental example of an operad is the
endomorphism operad of an object X,

EndX(m) := F(X(m),X), X(m) := X � · · ·�X︸      ︷︷      ︸
m factors

,
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which parametrizes all m-ary maps from X to itself. Abstracting the symmetry and
composition properties leads to the definition of operad in [194]. We review this
definition in Section 5.2.

Section 5.3 presents some basic examples of operads important in topology, includ-
ing some A∞ operads, E∞ operads, and En operads.

May chose the term “operad” to match the term “monad” (see [191]), to show their
close connection. Basically, a monad is an abstract way of defining some kind of
structure on objects in a category, and an operad gives a very manageable kind of
monad. Section 5.4 reviews the monad associated to an operad and defines algebras
over an operad.

Section 5.5 gives the basic definition of a module over an operadic algebra and
reviews the basics of the homotopy theory of module categories.

Section 5.6 discusses limits and colimits in categories of operadic algebras. It
includes a general filtration construction that often provides the key tool to study
pushouts of operadic algebras homotopically in terms of colimits in the underlying
category. Section 5.7 discusses when categories of operadic algebras are enriched, and
in the case of categories of algebras enriched over spaces, discusses the geometric
realization of simplicial and cosimplicial algebras. Although these sections may seem
less basic and more technical than the previous sections, the ideas here provide the
tools necessary for further work with operadic algebras using the modern methods of
homotopy theory.

Model structures on categories of operadic algebras provide a framework for proving
comparison theorems and rectification theorems. Section 5.8 reviews some aspects of
model category theory for categories of operadic algebras. In the terminology of this
article, a comparison theorem is an equivalence of homotopy theories between categories
of algebras over different operads that are equivalent in some sense (for example,
between categories of algebras over different E∞ operads) or between categories
of algebras over equivalent base categories (for example, E∞ algebras in spaces
versus E∞ algebras in simplicial sets). A rectification theorem is a comparison theorem
where one of the operads is discrete in some sense: a comparison theorem for the
category of algebras over an A∞ operad and the category of associative algebras is an
example of a rectification theorem, as is the comparison theorem for E∞ algebras and
commutative algebras in modern categories of spectra. Section 5.9 discusses these and
other examples of comparison and rectification theorems. In both Sections 5.8 and 5.9,
instead of stating theorems of maximal generality, we have chosen to provide “Example
Theorems” that capture some examples of particular interest in homotopy theory and
stable homotopy theory. Both the statements and the arguments provide examples:
the arguments apply or can be adapted to apply in a wide range of generality.

The Moore space is an early rectification technique (predating operads and A∞
monoids) for producing a genuine associative monoid version of the loop space; the
construction applies generally to a little 1-cubes algebra to produce an associative
algebra that we call the Moore algebra. The concept of modules over an operadic
algebra leads to another way of producing an associative algebra, called the enveloping
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algebra. Section 5.10 compares these constructions and the rectification of A∞ algebras
constructed in Section 5.9.

Sections 5.11 and 5.12 review two significant applications of the theory of operadic
algebras. Section 5.11 reviews the original application: the theory of iterated loop
spaces and the recognition principle in terms of En algebras. Section 5.12 reviews
the equivalence between the rational and p-adic homotopy theory of spaces with the
homotopy theory of E∞ algebras.
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5.2 Operads and endomorphisms

We start with the definition of an operad. The collection of m-ary endomorphism
objects EndX(m) = F(X(m),X) provides the prototype for the definition, and we use
its intrinsic structure to motivate and explain it. Although the endomorphism objects
only make sense when the symmetric monoidal category is “closed” (which means that
function objects exist), the definition of operad will not require or assume function
objects, nor will the definition of operadic algebra in Section 5.4. To take in the picture,
it might be best just to take M to be the category of spaces, the category of vector
spaces over a field, or the category of sets on first introduction to this material.

In our basic classes of examples, and more generally as a principle of enriched
category theory, function objects behave like sets of morphisms: the counit of the
defining adjunction

F(X,Y )�X→ Y

is often called the evaluation map (and denoted ev). It allows “element-free” definition
and study of composition: iterating evaluation maps

F(Y ,Z)�F(X,Y )�X→ F(Y ,Z)�Y → Z

induces (by adjunction) a composition map

◦ : F(Y ,Z)�F(X,Y )→ F(X,Z).
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One can check just using the basic properties of adjunctions that this composition
is associative in the obvious sense. It is also unital: the identity element of M (X,X)
specifies a map 1X : 1→ F(X,X),

idX ∈M (X,X) �M (1�X,X) �M (1,F(X,X)),

where the first isomorphism is induced by the unit isomorphism; essentially by
construction, the composite

1�X
1X�idX−−−−−−−→ F(X,X)�X

ev−−→ X

is the unit isomorphism. It follows that the diagram

1�F(X,Y ) � //

1Y�idF(X,Y )

��

F(X,Y ) F(X,Y )�1
�oo

idF(X,Y )�1X
��

F(Y ,Y )�F(X,Y ) ◦
// F(X,Y ) F(X,Y )�F(X,X)◦

oo

commutes, where the top-level isomorphisms are the unit isomorphisms. More is true:
the function objects enrich the category M over itself, and the � ,F parametrized
adjunction is itself enriched [145, §1.5–6].

In the case when M is the category of spaces, the evaluation map is just the map
that evaluates functions on their arguments; thinking in these terms will make the
formulas and checks clearer for the reader not used to working with adjunctions. Since
in the category of spaces 1 is the one-point space, a map out of 1 just picks out an
element of the target space and the map 1→ F(X,X) is just the map that picks out
the identity map of X.

The basic compositions above generalize to associative and unital m-ary composi-
tions; now for simplicity and because it is the main case of interest here, we restrict to
considering a fixed object X. The m-ary composition takes the form

F(X(m),X)� (F(X(j1),X)� · · ·�F(X(jm),X))→ F(X(j),X),

where j = j1 + · · ·+ jm and (as in the introduction) X(m) denotes the m-th � power of
X; we think of the m-ary composition as plugging in the m ji-ary maps into the first
m-ary map; it is adjoint to the map

F(X(m),X)�F(X(j1),X)� · · ·�F(X(jm),X)�X(j) �

F(X(m),X)�F(X(j1),X)� · · ·�F(X(jm),X)�X(j1) � · · ·�X(jm)→ X

that does the evaluation map

F(X(ji ),X)�X(ji )→ X,

then collects the resulting m factors of X and does the evaluation map

F(X(m),X)�X(m)→ X.

In this double evaluation, implicitly we have shuffled some of the factors of X past
some of the endomorphism objects, but we take care not to permute factors of X
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among themselves or the endomorphism objects among themselves. This defines a
composition map

Γmj1,...,jm
: EndX(m)� EndX(j1)� · · ·� EndX(jm)→EndX(j).

The composition is associative and unital in the obvious sense (which we write out in
the definition of an operad, Definition 5.2.1, below).

We now begin systematically writing EndX(m) for F(X(m),X). We observe that
EndX(m) = F(X(m),X) has a right action by the symmetric group Σm induced by the
left action of Σm on X(m) corresponding to permuting the �-factors. In general, for a
permutation σ , we write cσ for the map that permutes �-factors and aσ for the action
of σ on EndX(m), i.e., the map that does cσ on the domain of EndX(m) = F(X(m),X).
We now study what happens when we permute the various factors in the formula for Γ
above. (As these are a bit tricky, we do the formulas out here and repeat them below
in the definition of an operad, Definition 5.2.1.)

First consider what happens when we permute the factors of X. We have nothing to
say for an arbitrary permutation of the factors of X, but in the composition Γmj1,...,jm ,
we can say something for a permutation that permutes the factors only within their
given blocks of size j1, . . . , jm, i.e., when the overall permutation σ of all j factors
is the block sum of permutations σ1 ⊕ · · · ⊕ σm with σi in Σji . By extranaturality,
performing the right action of σi on EndX(ji) and evaluating is the same as applying
the left action of σi on X(ji ) and evaluating. It follows that the composition Γmj1,...,jm
is (Σj1 × · · · ×Σjm )-equivariant where we use the Σji -actions on the EndX(ji)’s in the
source and block sum with the Σj -action on EndX(j) on the target.

Permuting the endomorphism object factors is easier to understand when we also
permute the corresponding factors of X. In the context of Γmj1,...,jm , for σ in Σm,
let σj1,...,jm ∈ Σj permute the blocks X(j1), . . . ,X(jm) as σ permutes 1, . . . ,m. So, for
example, if m = 3, j1 = 1, j2 = 3, j3 = 2, and σ = (23), then σ1,3,2 is the permutation

(23)1,3,2 =
{

1

��

2

��

3

��

4

��

5

��

6

��
1 5 6 2 3 4

}
= (25364).

In EndX(j1)� · · ·�EndX(jm)�X(j), if we apply σ to permute the endomorphism object
factors and σj1,...,jm to permute the X factors, then evaluation pairs the same factors
as with no permutation and the diagram

(EndX(j1)� · · ·� EndX(jm))�X(j) ev //

cσ�cσj1 ,...,jm
��

X(m)

cσ
��

(EndX(jσ−1(1))� · · ·� EndX(jσ−1(m)))�X
(j)

ev
// X(m)

commutes. This now tells us what happens with Γmj1,...,jm and the permutation action
on EndX(n): the composite of the right action of σ on EndX(m) with Γmj1,...,jm ,

EndX(m)� (EndX(j1)� · · ·� EndX(jm))
aσ� id
−−−−−−→ EndX(m)� (EndX(j1)� · · ·� EndX(jm))

Γmj1 ,...,jm−−−−−−→,EndX(j),
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is equal to the composite of the �-permutation cσ on the End(ji)’s, the composition
map Γmjσ−1(1),...,jσ−1(m)

, and the right action of σj1,...,jm on EndX(j) :

EndX(m)� (EndX(j1)� · · ·� EndX(jm))
id�cσ−−−−−−→ EndX(m)� (EndX(jσ−1(1))� · · ·� EndX(jσ−1(m)))

Γmj
σ−1(1) ,...,jσ−1(m)
−−−−−−−−−−−−−−→ EndX(j)

aσj1 ,...,jm−−−−−−−−→ EndX(j).

See Figure 5.2 on p. 191 for this equation written as a diagram.
Although we did not emphasize this above, we need to allow any of m, j1, . . . , jm, or

j to be zero, where we understand empty �-products to be the unit 1. The formulations
above still work with this extension, using the unit isomorphism where necessary. The
purpose of allowing these “zero-ary” operations is that it allows us to encode a unit
object into the structure: For example, in the context of spaces 1 is the one point
space ∗ and to describe the structure of a topological monoid, not only do we need
the binary operation X ×X→ X, but we also need the zero-ary operation ∗ → X for
the unit.

Rewriting the properties of EndX above as a definition, we get an element-free
version of the definition of operad of May [194, 1.2].1

Definition 5.2.1. An operad in a symmetric monoidal category M consists of a
sequence of objects O(m), m = 0,1,2,3, . . . , together with

(a) a right action of the symmetric group Σm on O(m) for all m,
(b) a unit map 1: 1→O(1), and
(c) a composition rule

Γmj1,...,jm
: O(m)�O(j1)� · · ·�O(jm)→O(j)

for every m, j1, . . . , jm, where j = j1 + · · · + jm, typically written Γ when m and
j1, . . . , jm are understood or irrelevant,

satisfying the following conditions:

(i) The composition rule Γ is associative in the sense that for any m, j1, . . . , jm and
k1, . . . , kj , letting j = j1 + · · ·+ jm, k = k1 + · · ·+ kj , ti = j1 + · · ·+ ji−1 (with t1 = 0),
and si = kti+1 + · · ·+ kti+ji , the equation

Γ
j
k1,...,kj

◦ (Γmj1,...,jm � idO(k1)� · · ·� idO(kj ))

= Γms1,...,sm ◦ (idO(m)� Γ
j1
k1,...,kj1

� · · ·� Γ jmktm+1,...,kj
) ◦ c

holds in the set of maps

O(m)�O(j1)� · · ·�O(jm)�O(k1)� · · ·�O(kj )→O(k),

1 In the original definition, May required O(0) = 1 in order to provide O-algebras with units, which was
desirable in the iterated loop space context, but standard convention has since dropped this requirement
to allow non-unital algebras and other unit variants.
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O(j)�O(k1)� · · ·�O(kj )

Γ
j
k1 ,...,kj

��

O(m)�O(j1)� · · ·�O(jm)�O(k1)� · · ·�O(kj )

Γmj1 ,...,jm
� id�···� id

//

c

��

O(k)

O(m)�

O(j1)�O(k1)� · · ·�O(kj1 )� · · ·

· · ·�O(jm)�O(ktm+1)� · · ·�O(kj )


id�Γ

j1
k1 ,...,kj1

�···�Γ jmktm+1 ,...,kj

// O(m)�O(s1)� · · ·�O(sm)

Γms1 ,...,sm

OO

Figure 5.1 The diagram for 5.2.1 (i). Here c is the �-permutation that shuffles O(k`)’s past
O(ji )’s as displayed, j = j1 + · · ·+ jm, ti = j1 + · · ·+ ji−1 (with t1 = 0), si = kti+1 + · · ·+ kti+ji ,
and k = k1 + · · ·+ kj = s1 + · · ·+ sm.

where c is the �-permutation

O(m)�O(j1)� · · ·�O(jm)�O(k1)� · · ·�O(kj )→

O(m)� (O(j1)�O(k1)� · · ·�O(kj1 ))� · · ·� (O(jm)�O(ktm+1)� · · ·�O(kj )).

that shuffles the O(k`)’s and O(ji)’s as displayed (see Figure 5.1 for the diagram).

(ii) The unit map 1 is a left and right unit for the composition rule Γ in the sense
that

Γ 1
m ◦ (1� id) : 1�O(m)

1� id−−−−−→O(1)�O(m)
Γ 1
m−−→O(m)

is the unit isomorphism and

Γm1,...,1 ◦ (id�1(m)) : O(m)�1(m) id�1(m)

−−−−−−−→O(m)�O(1)(m)
Γm1,...,1−−−−−→O(m)

is the iterated unit isomorphism for O(m) for all m.

(iii) The map Γmj1,...,jm is (Σj1 × · · · ×Σjm )-equivariant for the block sum inclusion of

Σj1 × · · · ×Σjm in Σj .

(iv) For any m, j1, . . . , jm and any σ ∈ Σm, the equation

Γmj1,...,jm
◦ (aσ � idO(j1)� · · ·� idO(jm)) = aσj1 ,...,jm ◦ Γ

m
jσ−1(1),...,jσ−1(m)

◦ (idO(m)�cσ )

holds in the set of maps

O(m)�O(j1)� · · ·�O(jm)→O(j),

where σj1,...,jm denotes the block permutation in Σj corresponding to σ on the
blocks of size j1, . . . , jm, a denotes the right action of (a), and cσ denotes the
�-permutation corresponding to σ (see Figure 5.2 for the diagram).
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O(m)�O(j1)� · · ·�O(jm)
aσ� id�···� id

//

id�cσ

��

O(m)�O(j1)� · · ·�O(jm)

Γmj1 ,...,jm
��

O(j)

O(m)�O(jσ−1(1))� · · ·�O(jσ−1(m))
Γmj
σ−1(1) ,...,jσ−1(m)

// O(j)

aσj1 ,...,jm

OO

Figure 5.2 The diagram for 5.2.1 (iv). Here σ ∈ Σm, cσ is the �-permutation corresponding
to σ , σj1,...,jm ∈ Σj is the block permutation performing σ on blocks of sizes j1, . . . , jm,
j = j1 + · · ·+ jm, and a denotes the Σm action on O(m) and the Σj -action on O(j).

A map of operads consists of a map of each object that commutes with the structure:

Definition 5.2.2. A map of operads ({O(m)},1,Γ ) → ({O′(m)},1′ ,Γ ′) consists of
Σm-equivariant maps φm : O(m)→O′(m) for all m such that

Γ ′mj1,...,jm ◦ (φm �φj1 � · · ·�φjm ) = φj ◦ Γmj1,...,jm
for all m, j1, . . . , jm and 1′ = φ1 ◦ 1; in commuting diagrams:

O(m)�O(j1)� · · ·�O(jm)
Γmj1 ,...,jm //

φm�φj1�···�φjm
��

O(j)

φj
��

O′(m)�O′(j1)� · · ·�O′(jm)
Γ ′mj1 ,...,jm

// O′(j)

1

1

��

1′

��

O(1)
φ1

// O′(1).

The endomorphism operad EndX gives an example of an operad in any closed
symmetric monoidal category (for any object X). Here are some additional important
examples.

Example 5.2.3 (The identity operad). Assume the symmetric monoidal categoryM
has an initial object ∅. If � preserves the initial object in each variable, ∅ � (−) �
∅ � (−)� ∅ (which is automatic in the closed case, i.e., when function objects exist),
we also have the example of the identity operad I , which has I (1) = 1 (with 1 the
identity) and I (m) the initial object for m , 1; this is the initial object in the category
of operads.

Example 5.2.4 (The commutative algebra operad). The operad Com exists in any
symmetric monoidal category:

Com(m) = 1

for all m with the trivial symmetric group actions and composition law Γ given by
the unit isomorphism; its category of algebras (see the next section) is isomorphic
to the category of commutative monoids for � in M (defined in terms of the usual
diagrams, i.e., [174, VII§3] plus commutativity); see Example 5.4.3.



192 Mandell: Operads and operadic algebras in homotopy theory

Example 5.2.5 (The associative algebra operad). If M has finite coproducts and �
preserves finite coproducts in each variable, then we also have the operad Ass:

Ass(m) =
∐
Σm

1

with symmetric group action induced by the natural (right) action of Σm on Σm and
composition law Γ induced by block permutation and block sum of permutations,

σ ∈ Σm, τ1 ∈ Σj1 , . . . , τm ∈ Σjm 7→ σj1,...,jm ◦ (τ1 ⊕ · · · ⊕ τm) ∈ Σj .

Its category of algebras is isomorphic to the category of monoids for � in M ; see
Example 5.4.4.

For operads like Ass, it is often useful to work in terms of non-symmetric operads,
which come without the permutation action.

Definition 5.2.6. A non-symmetric operad consists of a sequence of objects O(m),
m = 0,1,2,3, . . . , together with a unit map and composition rule as in 5.2.1 (b) and (c)
satisfying the associativity and unit rules of 5.2.1 (i) and (ii). A map of non-symmetric
operads consists of a map of their object sequences that commutes with the unit map
and the composition rule.

Forgetting the permutation action on Com gives a non-unital operad called Ass
that is the non-symmetric version of the operad Ass. In general, under the finite
coproduct assumption in Example 5.2.5, given a non-symmetric operad O, the product
O �Ass has the canonical structure of an operad; it is the operad associated to O. In
the category of spaces (or sets, but not in the category of abelian groups, the category
of chain complexes, or the various categories of spectra), an operad O comes from
a non-symmetric operad exactly when it admits a map to Ass: the corresponding
non-symmetric operad O has O(n) the subobject that maps to the identity permutation
summand of Ass, and there is a canonical isomorphism O � O �Ass (which depends
only on the original choice of map O→Ass).

5.3 A∞, E∞, and En operads

This section reviews some of the most important classes of examples of operads
in homotopy theory, the A∞, E∞, and En operads. We concentrate on the case of
(unbased) spaces, with notes about the appropriate definition of such operads in other
contexts. For example, in stable homotopy theory, the unbased suspension spectrum
functor Σ∞+ converts model En operads into operads in the various modern categories
of spectra. The universal role played by spaces in homotopy theory typically allows for
reasonable definitions of these classes of operads in any homotopy theoretic setting.

The terminology of A∞ space and the basic model of an A∞ operad, due to
Stasheff [282], preceded the definition of operad by several years.

Definition 5.3.1. An A∞ operad in spaces is a non-symmetric operad whose m-th
space is contractible for all m.
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Informally, an operad (with symmetries) is A∞ when there is an understood isomor-
phism to the operad associated to some A∞ operad. The definition of A∞ operad
usually has a straightforward generalization to other symmetric monoidal categories
with a notion of homotopy theory: contractibility corresponds to a weak equivalence
with the unit 1 of the symmetric monoidal structure, and we should add the require-
ment that the non-symmetric operad composition rule should be a weak equivalence
for all indexes (which is automatic in spaces). One wrinkle is that a flatness condi-
tion may be needed and should be imposed to ensure that the functor O(m)�X(m)

is weakly equivalent to X(m) (cf. Section 5.9); in the case of spaces, contractibility
implicitly includes such a condition. In symmetric spectra and orthogonal spectra, a
good flatness condition is to be homotopy equivalent to a cofibrant object; in EKMM
S-modules, a good flatness condition is to be homotopy equivalent to a semi-cofibrant
object (see [157, §6]).

We have already seen an example of an A∞ operad: the operad Ass. The associ-
ahedra K(m) of Stasheff [282, I.§6] have the structure of a non-symmetric operad
using the insertion maps [ibid.] for the composition rule, and this is an example of an
A∞ operad. The Boardman–Vogt little 1-cubes (non-symmetric) operad C1 described
below gives a third example.

Next we discuss E∞ operads. Recall that a free Σm-cell complex is a space built by
cells of the form (Σm ×Dn,Σm × Sn−1), where Dn denotes the unit disk in R

n. The
definition of E∞ operad asks for the constituent spaces to have the Σm-equivariant
homotopy type of a free Σm-cell complex and the non-equivariant homotopy type of
a point.

Definition 5.3.2. An operad E in spaces is an E∞ operad when for each m, its m-th
space is a universal Σm space: E(m) has the Σm-equivariant homotopy type of a free
Σm-cell complex and is non-equivariantly contractible.

Unlike the A∞ case, the operad Com is not E∞ as its spaces do not have free
actions. The Barratt–Eccles operad EΣ provides an example:

Example 5.3.3 (The Barratt–Eccles operad). Let EΣ(m) denote the nerve of the
category EΣm whose set of objects is Σm and which has a unique map between any
two objects. The symmetric group Σm acts strictly on the category and the nerve
EΣ(m) inherits a Σm-action; moreover, as the action of Σm on the simplices is free,
the simplicial triangulation of EΣ(m) has the structure of a free Σm-cell complex. It
is non-equivariantly contractible because every object of EΣm is a zero object. The
multiplication is induced by an operad structure on the sequence of categories using
block sums of permutations as in the operad structure on Ass. The resulting operad
is called the Barratt–Eccles operad .

Boardman and Vogt [49, §2] defined another E∞ operad, built out of linear isometries.

Example 5.3.4 (The linear isometries operad). The Boardman–Vogt linear isome-
tries operad L has its m-th space the space of linear isometries

(R∞)m = R
∞ ⊕ · · · ⊕R∞→R

∞
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(where R
∞ =

⋃
R
n), with operad structure defined as in the example of an endo-

morphism operad. The topology comes from the identification

L(m) = limk colimnI ((Rk)m,Rn)

for I ((Rk)m,Rn) the space of linear isometries (Rk)m→R
n (with the usual manifold

topology). The Σm-action induced by the action on the direct sum (R∞)m is clearly
free; each I ((Rk)m,Rn) is a Σm-manifold, and L(m) is homotopy equivalent to a free
Σm-cell complex. Since I ((Rk)m,Rn) is (n− km− 1)-connected, it follows that L(m)
is non-equivariantly contractible.

The Boardman–Vogt little ∞-cubes operad C∞ described below gives a third
example of an E∞ operad.

The requirement for freeness derives from infinite loop space theory. As we review
in Section 5.11, infinite loop spaces are algebras for the little ∞-cubes operad C∞. As
we review in Section 5.9, for any E∞ operad E in spaces, the category of E-algebras
has an equivalent homotopy theory to the category of C∞-algebras. On the other hand,
any algebra in spaces for the operad Com must be a generalized Eilenberg–Mac Lane
space, and the category of Com-algebras does not have an equivalent homotopy theory
to the category of C∞-algebras. In generalizing the notion of E∞ to other categories,
getting the right category of algebras is key. For symmetric spectra, orthogonal spectra,
and EKMM S-modules and for chain complexes of modules over a ring containing
the rational numbers, it is harmless to allow Com to fit the definition of E∞ operad
(cf. Examples 5.9.3, 5.9.4); in spaces and chain complexes of modules over a finite
field, some freeness condition is required. In general, the condition should be a
flatness condition on O(m) for (O(m)�X(m))/Σm as a functor of X (for suitable X)
(cf. Definition 5.9.1).

Unlike the definition of E∞ or A∞ operad, which are defined in terms of homotopical
conditions on the constituent spaces, the definition of En operads for other n depends
on specific model operads first defined by Boardman–Vogt [49] and called the little
n-cubes operads Cn.

Construction 5.3.5 (The little n-cubes operad). The m-th space Cn(m) of the little
n-cubes operad is the space of m ordered almost disjoint parallel axis affine em-
beddings of the unit n-cube [0,1]n in itself. So Cn(0) is a single point representing
the unique way to embed 0 unit n-cubes in the unit n-cube. A parallel axis affine
embedding of the unit cube in itself is a map of the form

(t1, . . . , tn) ∈ [0,1]n 7→ (x1 + a1t1, . . . ,xn + antn) ∈ [0,1]n

for some fixed (x1, . . . ,xn) and (a1, . . . , an) with each ai > 0, xi ≥ 0, and xi + ai ≤ 1; it
is determined by the point (x1, . . . ,xn) where it sends (0, . . . ,0) and the point

(y1, . . . , yn) = (x1 + a1, . . . ,xn + an)
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where it sends (1, . . . ,1). So Cn(1) is homeomorphic to the subspace

{((x1, . . . ,xn), (y1, . . . , yn)) ∈ [0,1]n × [0,1]n | x1 < y1,x2 < y2, . . . ,xn < yn}

of [0,1]n × [0,1]n. For m ≥ 2, almost disjoint means that the images of the open
subcubes are disjoint (the embedded cubes only intersect on their boundaries), and
Cn(m) is homeomorphic to a subset of Cn(1)m. The map 1 is specified by the element
of Cn(1) that gives the identity embedding of the unit n-cube. The action of the sym-
metric group is to re-order the embeddings. The composition law Γmj1,...,jm

composes
the j1 embeddings in Cn(j1) with the first embedding in Cn(m), the j2 embeddings in
Cn(j2) with the second embedding in Cn(m), etc., to give j = j1 + · · ·+ jm total embed-
dings. See Figure 5.3 for a picture in the case n = 2. Taking cartesian product with the
identity map on [0,1] takes a self-embedding of the unit n-cube to a self-embedding
of the unit (n + 1)-cube and induces maps of operads Cn → Cn+1 that are closed
inclusions of the underlying spaces. Let C∞(m) =

⋃
Cn(m); the operad structures on

the Cn fit together to define an operad structure on C∞.

The space Cn(m) has the Σm-equivariant homotopy type of the configuration space
C(m,Rn) of m (ordered) points in R

n, or equivalently, C(m, (0,1)n) of m points in
(0,1)n. To see this, since both spaces are free Σm-manifolds (non-compact, and with
boundary in the case of Cn(m)), it is enough to show that they are non-equivariantly
weakly equivalent, but it is in fact no harder to produce a Σm-equivariant homotopy
equivalence explicitly. We have a Σm-equivariant map Cn(m)→ C(m, (0,1)n) by taking
the center point of each embedded subcube. It is easy to define a Σm-equivariant
section of this map by continuously choosing cubes centered on the given configuration;
one way to do this is to make them all have the same equal side length of 1/2 of
the minimum of the distance between each of the points and the distance from each
point to the boundary of [0,1]n. A Σm-equivariant homotopy from the composite
map on Cn(m) to the identity could (for example) first linearly shrink all sides that
are bigger than their original length and then linearly expand all remaining sides
to their original length. In particular, Cn(1) is always contractible and Cn(2) is Σ2-
equivariantly homotopy equivalent to the sphere Sn−1 with the antipodal action. For

a b Γ 3
1,2,1(a;1,b,1)

Figure 5.3 Composition of little 2-cubes. Shown is the composition

Γ 3
1,2,1 : C2(3)×C2(1)×C2(2)×C2(1)→C2(4)

applied to elements a ∈ C2(3), 1 ∈ C2(1), b ∈ C2(2), 1 ∈ C2(1), with a and b as pictured.
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m > 2, the configuration spaces can be described in terms of iterated fibrations, and
their Borel homology was calculated by Cohen in [70] and [71, IV].

We can say more about the homotopy types in the cases n = 1, n = 2, and n =∞.
For n = 1, the natural order of the interval [0,1], gives a natural order to the embedded
sub-intervals (1-cubes); let C1(m) denote the subspace of C1(m) where the sub-intervals
are numbered in their natural order. The spaces C1(m) are contractible and form
a non-symmetric operad with C1 (canonically) isomorphic to the associated operad.
In other words, the map of operads C1→Ass that takes a sequence of embeddings
and just remembers the order they come in is a Σm-equivariant homotopy equivalence
at each level. In particular C1 is an A∞ operad.

For n = 2, the configuration space C(m,R2) is easily seen to be an Eilenberg–
Mac Lane space K(Am,1), where Am is the pure braid group (of braids with fixed
endpoints) on m strands (see, for example, [194, §4]).

For n =∞, C∞ is an E∞ operad; each C∞(m) is a universal Σm-space. To see this,
it is easier to work with

C(m,R∞) :=
⋃
C(m,Rn).

Choosing a homeomorphism (0,1) �R that sends 1/2 to 0, the induced homeomor-
phisms Cn(m)→ C(m,Rn) are compatible with the inclusions Cn(m)→Cn+1(m) and
C(m,Rn)→ C(m,Rn+1); as these inclusions are embeddings of closed submanifolds
(with boundary in the case of Cn(m)), the induced map

C∞(m) =
⋃
Cn(m)→

⋃
C(m,Rn) = C(m,R∞)

remains a homotopy equivalence. One way to see that C(m,R∞) is non-equivariantly
contractible is to start by choosing a homotopy though injective linear maps from
the identity on R

∞ to the shift map that on basis elements sends ei to ei+m. We then
homotope the configuration (which now starts with the first m coordinates all zero) so
that the i-th point has i-th coordinate 1 and the remainder of the first m coordinates
zero. Finally, we homotope the configuration to the configuration with i-th point at ei .

We use the operads Cn to define En operads:

Definition 5.3.6. An operad E in spaces is an En operad when there is a zigzag
of maps of operads relating it to Cn, each of which is a Σm-equivariant homotopy
equivalence on m-th spaces for all m.

This definition is standard, but a bit awkward, because it defines a property, whereas
a better definition would define a structure and ask for at least a preferred equivalence
class of zigzag.

As we review in Section 5.9, such maps induce equivalences of homotopy categories
of algebras (indeed, Quillen equivalences). We have implicitly given two different
definitions of E∞ operad; the following proposition justifies this.

Proposition 5.3.7. An operad E of spaces is E∞ in the sense of Definition 5.3.2 if and
only if it is E∞ in the sense of Definition 5.3.6.

Before reviewing the proof, we state a closely related proposition.
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Proposition 5.3.8. An operad E of spaces is E1 if and only if it is isomorphic to the
associated operad of an A∞ operad.

The previous two propositions (and their common proof) are the gist of the second
half of §3 of May [194]. In each case one direction is clear, since C1 and C∞ are A∞
and E∞ (respectively), and the conditions of Definitions 5.3.1 and 5.3.2 are preserved
by the zigzags considered in Definition 5.3.6. The proof of the other direction is to
exhibit an explicit zigzag:

Proof. Let E be the operad in question and assume it is either E∞ in the sense of
Definition 5.3.2 (for the first proposition) or A∞ in the sense of Definition 5.3.1 ff. (for
the second proposition). In the case of the first proposition, consider the product in
the category of operads C∞ ×E ; it satisfies

(C∞ ×E)(m) = C∞(m)×E(m)

with the diagonal Σm-action and the unit and composition maps the product of those
for C∞ and E . The projections

C∞←C∞ ×E → E

give a zigzag as required by Definition 5.3.6. For the second proposition, do the
same trick with the non-symmetric operads E and C1 and then pass to the associated
operads.

Definitions 5.3.1 and 5.3.2 mean that identifying A∞ and E∞ operads is pretty
straightforward. In unpublished work, Fiedorowicz [98] defines the notion of a braided
operad , which provides a good criterion for identifying E2 operads. For n > 2 (finite),
the spaces Cn(m) are not Eilenberg–Mac Lane spaces (for m > 1), and that makes
identification of such operads much harder; however, Berger [36, 1.16] proves a theorem
(which he attributes to Fiedorowicz) that gives a method to identify En operads that
seems to work well in practice; see [205, §14], [37, §1.6].

The work of Dunn [85] and Fiedorowicz–Vogt [97] is the start of an abstract
identification of En operads: The derived tensor product of n E1 operads is an En
operad. Here “tensor product” refers to the Boardman–Vogt tensor product of operads
(or PROPs) in [48, 2§3], which is the universal pairing subject to “interchange”, meaning
that an O⊗P -algebra structure consists of an O-algebra and a P -algebra structure on
a space where the O- and P -structure maps commute (see ibid. for more details on the
construction of the tensor product). This still essentially defines En operads in terms
of reference models, though in principle, it gives a wide range of additional models. (I
do not know an example where this is actually put to use, but [62] comes close.) The
concept of interchange makes sense in any cartesian symmetric monoidal structure, so
this also in principle tells how to extend the notion of En to other cartesian symmetric
monoidal categories with a homotopy theory of operads for which the Boardman–Vogt
tensor product is reasonably well-behaved. (Again, I know no examples where this is
put to use, but perhaps work by Barwick (unpublished), Gepner (unpublished), and
Lurie [164] on En structures is in a similar spirit.)
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In categories suitably related to spaces, En algebras are defined by a reference
model suitably related to Cn. For example, in the context of simplicial sets, the total
singular complex of the little n-cubes operad has the canonical structure of an operad
of simplicial sets, and we define En operads in terms of this reference model. In
symmetric spectra and orthogonal spectra, we have the reference model given by the
unbased suspension spectrum functor: an operad is an En operad when it is related
to Σ∞+ Cn by a zigzag of operad maps that are (non-equivariant) weak equivalences
on m-th objects for all m. For categories of chain complexes, we use the singular
chain complex of the little n-cubes operad to define the reference model. To make
the singular chains an operad, we use the Eilenberg–Mac Lane shuffle map to relate
tensor product of chains to chains on the cartesian product; the shuffle map is a lax
symmetric monoidal natural transformation

C∗(X)⊗C∗(Y )→ C∗(X ×Y ),

meaning that it commutes strictly with the symmetry isomorphisms

C∗(X)⊗C∗(Y ) � C∗(Y )⊗C∗(X) and C∗(X ×Y ) � C∗(Y ×X)

and makes the following associativity diagram commute:

C∗(X)⊗C∗(Y )⊗C∗(Z) //

��

C∗(X ×Y )⊗C∗(Z)

��

C∗(X)⊗C∗(Y ×Z) // C∗(X ×Y ×Z)

See, for example, [200, §29].
The fact that En operads need to be defined in terms of a reference model is

not entirely satisfactory, especially in homotopical contexts that are not topological.
Nevertheless, the definition for spaces, simplicial sets, or chain complexes seems to
suffice to cover all other contexts that arise in practice.2

5.4 Operadic algebras and monads

In the original context of iterated loop spaces and in many current contexts in homo-
topy theory and beyond, the main purpose of operads is to parametrize operations,
which is to say, to define operadic algebras. For a closed symmetric monoidal category,
there are three equivalent definitions, one in terms of operations, one in terms of
endomorphism operads, and one in terms of monads. This section reviews the three
definitions.

Viewing O(m) as parametrizing some m-ary operations on an object X means that
we have an action map

O(m)�X(m)→ X.

2 In theory, the definition for simplicial sets should suffice for all homotopical contexts, but this may
require changing models, which for a particular problem may be inconvenient or more complicated, or
make it less concrete.
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Since the right action of Σm on O(m) corresponds to reordering the arguments of the
operations, applying σ ∈ Σm to O(m) (and then performing the action map) should
have the same effect as applying σ to permute the factors in X(m). A concise way
of saying this is to say that the map is equivariant for the diagonal (left) action on
the source O(m)�X(m) and the trivial action on the target X (using the standard
convention that the left action σ on O(m) is given by the right action of σ−1). The
action map should also respect the composition law Γ , making Γ correspond to
composition of operations, and respect the identity 1, making 1 act by the identity
operation. The following gives the precise definition:

Definition 5.4.1. Let M be a symmetric monoidal category and O = ({O(m)},Γ ,1)
an operad in M . An O-algebra (in M ) consists of an object A in M together with
action maps

ξm : O(m)�A(m)→ A

that are equivariant for the diagonal (left) Σm-action on the source and the trivial Σm-
action on the target and that satisfy the following associativity and unit conditions:

(i) For all m, j1, . . . , jm,

ξm ◦ (idO(m)�ξj1 � · · ·� ξjm ) = ξj ◦ (Γmj1,...,jm � id(j)
A ),

i.e., the diagram

O(m)�O(j1)� · · ·�O(jm)�A(j)
Γmj1 ,...,jm

� id(j)
A
//

idO(m)�ξj1�···�ξjm
��

O(j)�A(j)

ξj

��

O(m)�A(m)
ξm

// A

commutes.
(ii) The map ξ1 ◦ (1� idA) : 1�A→ A is the unit isomorphism for �.

A map of O-algebras from (A, {ξm}) to (A′ , {ξ ′m}) consists of a map f : A→ A′ in M
that commutes with the action maps, i.e., that make the diagrams

O(m)�A(m) ξm //

idO(m)�f
(m)

��

A

f

��

O(m)�A′ (m)
ξ ′m

// A′

commute for all m. We write M [O] for the category of O-algebras.

Example 5.4.2. When M has an initial object and � preserves the initial object
in each variable, the structure of an algebra over the identity operad I is no extra
structure on an object of M .
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Per (ii) above and as illustrated in the previous example, the 1 in the structure of the
operad corresponds to the identity operation. In some contexts algebras have units;
when that happens, the unit is encoded in O(0) as in the examples of monoids and
commutative monoids. Recall that a monoid object for � inM (or �-monoid for short)
consists of an object M together with a multiplication map µ : M �M→M and unit
map η : 1→M satisfying the following associativity and unit diagrams

M �M �M
µ�id

//

id�µ
��

M �M

µ

��

M �M µ
// M

1�M
η� id

//

�
$$

M �M

µ

��

M �1
id�η
oo

�
zz

M

(where the diagonal maps are the unit isomorphisms inM ). The opposite multiplication
is the composite of the symmetry morphism c : M �M → M �M with µ, and a
�-monoid is commutative when µ = µ ◦ c.

Example 5.4.3. Given a Com-algebra A, defining η to be the action map ξ0

η : 1 = Com(0)
ξ0−−→ A

and µ to be the composite of the (inverse) unit isomorphism and the action map ξ2

µ : A�A � Com(2)�A�A
ξ2−−→ A

endows A with the structure of a commutative �-monoid: associativity follows from
the fact that the maps Γ 2

1,2 and Γ 2
2,1 are both unit maps for � so under the canonical

isomorphisms

A�A�A � Com(2)� (Com(1)� Com(2))� (A�A�A),

A�A�A � Com(2)� (Com(2)� Com(1))� (A�A�A),

both maps induce the same map A�A�A→ A. Likewise, the unit condition follows
from the fact that

Γ 2
0,1 : Com(2)� (Com(0)� Com(1))→Com(1),

Γ 2
1,0 : Com(2)� (Com(1)� Com(0))→Com(1)

are both unit maps. The multiplication is commutative because the action of the
symmetry map on 1 = Com(2) is trivial. Conversely, we can convert a commutative �-
monoid to a Com-algebra by taking ξ0 to be the unit η, ξ1 to be the unit isomorphism
for �, ξ2 to be induced by the unit isomorphism for � and the multiplication, and all
higher ξm’s induced by the unit isomorphism for � and (any) iterated multiplication.
This defines a bijective correspondence between the set of commutative �-monoid
structures and the set of Com-algebra structures on a fixed object and an isomorphism
between the category of commutative �-monoids and the category of Com-algebras.

For a non-symmetric operad, defining an algebra in terms of the associated operad
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or in terms of the analogue of Definition 5.4.1 without the equivariance requirement
produce the same structure.

Example 5.4.4. The constructions of Example 5.4.3 applied to the non-symmetric
operad Ass give a bijective correspondence between the set of �-monoid structures
and the set of Ass-algebra structures on a fixed object and an isomorphism between
the category of �-monoids and the category of Ass-algebras.

The monoid and commutative monoid objects in the category of sets (with the usual
symmetric monoidal structure given by cartesian product) are just the monoids and
commutative monoids in the usual sense. Likewise, in spaces, they are the topological
monoids and topological commutative monoids. In the category of abelian groups
(with the usual symmetric monoidal structure given by the tensor product), the monoid
objects are the rings and the commutative monoid objects are the commutative
rings. In the category of chain complexes of R-modules for a commutative ring R
(with the usual symmetric monoidal structure given by tensor product over R), the
monoid objects are the differential graded R-algebras and the commutative monoid
objects are the commutative differential graded R-algebras. In a modern category
of spectra, the monoid objects are called S-algebras or sometimes strictly associative
ring spectra. Some authors take the term “ring spectrum” to be synonymous with
S-algebra, but others take it to mean the weaker notion of monoid object in the
stable category (or even weaker notions). Work of Schwede–Shipley [265, 3.12.(3)]
shows that the homotopy category of monoid objects in any modern category of
spectra is equivalent to an appropriate full subcategory of the (mutually equivalent)
homotopy category of monoid objects in EKMM S-modules, symmetric spectra, or
orthogonal spectra (at least when “modern category of spectra” is used as a technical
term to mean a model category with a preferred equivalence class of symmetric
monoidal Quillen equivalence to the currently known modern categories of spectra);
cf. Example Theorem 5.9.6 below. The analogous result does not hold for commutative
monoid objects; see [151]. The term “commutative S-algebra” is typically reserved for
examples where the homotopy category of commutative monoid objects is equivalent
to an appropriate full subcategory of the (mutually equivalent) homotopy category of
commutative monoid objects in EKMM S-modules, symmetric spectra, or orthogonal
spectra. See Chapter 6 of this volume for more on commutative ring spectra.

Returning to the discussion of operadic algebras, in the case when M is a closed
symmetric monoidal category, adjoint to the action map

ξm : O(m)�A(m)→ A

is a map

φm : O(m)→ F(A(m),A) = EndA(m).

Equivariance for ξm is equivalent to equivariance for φm. Similarly, conditions (i)
and (ii) in the definition of O-algebra (Definition 5.4.1) are adjoint to the diagrams
in the definition of map of operads (Definition 5.2.2). This proves the following
proposition, which gives an alternative definition of O-algebra.
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Proposition 5.4.5. LetM be a closed symmetric monoidal category, let O be an operad in
M , and let X be an object inM . The adjunction rule ξm↔ φm above defines a bijection
between the set of O-algebra structures on X and the set of maps of operads O→ EndX .

In the case when M is (countably) cocomplete (has (countable) colimits) and �
preserves (countable) colimits in each variable (which includes the case when it is
closed), algebras can also be defined in terms of a monad. The idea for the underlying
functor is to gather the domains of all the action maps into a coproduct; since the
action maps are equivariant with target having the trivial action, they factor through
the coinvariants (quotient by the symmetric group action), and this goes into the
definition.

Notation 5.4.6. Let M be a symmetric monoidal category with countable colimits,
and let O be an operad in M . Define the endofunctor O of M (i.e., a functor
O : M →M ) by

OX =
∞∐
m=0
O(m)�Σm X

(m),

where O(m)�Σm X
(m) := (O(m)�X(m))/Σm.

(When we use other letters for operads, we typically use the corresponding letters
for the associated monad; for example, we write A for the monad associated to an
operad A, B for the monad associated to an operad B, etc.)

The action maps for an O-algebra A then specify a map ξ : OA→ A; the conditions
for defining an O-structure also admit a formulation in terms of this map. The basic
observation is that we have a canonical isomorphism

(OX)(m) �
∞∐
j1=0
· · ·

∞∐
jm=0

(O(j1)�Σj1X
(j1))� · · ·� (O(jm)�ΣjmX

(jm))

�
∞∐
j=0

∐
j1 ,...,jm∑
ji=j

(O(j1)� · · ·O(jm))�Σj1×···×Σjm X
(j),

using the symmetry isomorphism to shuffle like factors without permuting them. We
can use this isomorphism to give OX the canonical structure of an O-algebra, defining
the action map

µm : O(m)� (OX)(m)→OX

by commuting the coproduct past �, using the operad composition law, and passing
to the quotient by the full permutation group:

O(m)� (OX)(m) �
∞∐
j=0

∐
j1 ,...,jm∑
ji=j

O(m)� (O(j1)� · · ·O(jm))�Σj1×···×Σjm X
(j)

∐∐
Γmj1 ,...,jm

� id(j)
X

−−−−−−−−−−−−−−−→
∞∐
j=0
O(j)�Σj1×···×Σjm X

(j) −→
∞∐
j=0
O(j)�Σj X

(j) = OX.
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The pictured map is well-defined because of the (Σj1×· · ·×Σjm )-equivariance of Γmj1,...,jm
(5.2.1 (iii)). The other permutation rule (5.2.1 (iv)) implies that µm is Σm-equivariant.
The remaining two parts of the definition of operad show that the µm define an
O-algebra structure map: 5.2.1 (i)–(ii) imply 5.4.1 (i)–(ii), respectively. This O-algebra
structure then defines a map

µ : OOX→OX

as above, which is natural in X. The map 1�idX also induces a natural transformation

η : X→OX.

These two maps together give O the structure of a monad.

Proposition 5.4.7. Let M be a symmetric monoidal category with countable colimits
and assume that � commutes with countable colimits in each variable. For an operad O,
the functor O and natural transformations µ, η form a monad: the diagrams

OOOX
µ
//

Oµ

��

OOX

µ

��

OOX µ
//
OX

OX
η
//
OOX

µ

��

OX

commute (where the top map in the left-hand diagram is the map µ for the object OX).

The proof is applying 5.4.1 (i)–(ii) for OX.

Example 5.4.8. Under the hypotheses of the previous proposition, the monad asso-
ciated to the identity operad I is canonically isomorphic (via the unit isomorphism)
to the identity monad Id. The monad associated to the operad Com is canonically
isomorphic to the free commutative monoid monad

PX =
∞∐
j=0
X(j)/Σj .

The monad associated to the algebra Ass is canonically isomorphic to the free
monoid monad

TX =
∞∐
j=0
X(j).

An algebra over the monad O consists of an object A and a map ξ : OA→ A such
that the diagrams

OOA
µ
//

Oξ
��

OA

ξ

��

OA
ξ

// A

A
η
//
OA

ξ

��

A

commute. Given an O-algebra (A, {ξm}), the map ξ : OA→ A constructed as the
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coproduct of the induced maps on coinvariants then is an O-algebra action map.
Conversely, given an O-algebra (A,ξ), defining ξm to be the composite

O(m)�A(m)→OA
ξ
−→ A,

the maps ξm make A an O-algebra. This gives a second alternative definition of
O-algebra.

Proposition 5.4.9. Under the hypotheses of Proposition 5.4.7, for X an object ofM , the
correspondence {ξm} ↔ ξ above defines a bijection between the set of O-algebra structures
on X and the set of O-algebra structures on X and an isomorphism between the category of
O-algebras and the category of O-algebras.

5.5 Modules over operadic algebras

Just as an operad defines a category of algebras, an algebra defines a category of
modules. Because this chapter concentrates on the theory of operadic algebras, we
will only touch on the theory of modules. A complete discussion could fill a book and
many of the aspects of the theory of operads we omit in this chapter (including Koszul
duality, Quillen (co)homology, Deligne and Kontsevich conjectures) correspond to
statements about categories of modules; even an overview could form its own chapter.
We will just give a brief review of the definitions and the homotopy theory.

The original definition of modules over an operadic algebra seems to be due to
Ginzburg and Kapranov [104, §1.6].

Definition 5.5.1. For an operad O and an O-algebra A, an (O,A)-module (or just
A-module when O is understood) consists of an object M of M and structure maps

ζm : O(m+ 1)� (A(m) �M)→M

for m ≥ 0 such that the associativity, symmetry, and unit diagrams in Figure 5.4 com-
mute. A map of A-modules is a map of the underlying objects of M that commutes
with the structure maps.

Although the definition appears to favor A on the left, we obtain analogous right-
hand structure maps

O(m+ 1)� (M �A(m))→M

satisfying the analogous right-hand version of the diagrams in Figure 5.4 by applying
an appropriate permutation. Thus, an A-module structure can equally be regarded as
either a left or right module structure. The following example illustrates this point.

Example 5.5.2. When O = Ass, the (symmetric) operad for associative algebras,
and A is an O-algebra (i.e., �-monoid), an (O,A)-module in the sense of the previous
definition is precisely an A-bimodule in the usual sense: it has structure maps

λ : A�M→M and ρ : M �A→M
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O(j + 1)� (A(j) �M)

ζj

��

O(m+ 1)� (O(j1)� · · ·�O(jm)�1)� (A(j) �M)

(
Γm+1
j1 ,...,jm,1

◦ (id� ···� id�1)
)
� id
//

c

��

M

O(m+ 1)�

 (O(j1)�A(j1))� · · ·
· · ·� (O(jm)�A(jm))�M


id� (ξj1� ···�ξjm� id)

// O(m+ 1)� (A(m) �M)

ζm

OO

O(m+ 1)�A(m) �M

aσ−1�cσ�id

��

ζm

))

1�M

�

!!

1� id // O(1)�M

ζ0

��

M

O(m+ 1)�A(m) �M
ζm

55

M

Figure 5.4 The diagrams for Definition 5.5.1. In the first diagram, j = j1 + · · ·+ jm and c is the
�-permutation that shuffles the O(ji )’s past the M and A’s as displayed composed with the unit
isomorphism for �; ξi denote the O-algebra structure maps for A. In the second diagram, σ
is a permutation of {1, . . . ,m}, permuting the factors of A, viewed as an element of Σm+1 for
permutation action on O(m+ 1). In the third diagram, the diagonal isomorphism is the unit
isomorphism for �.

satisfying the following associativity, unity, and interchange diagrams:

A�A�M
µ� id

//

id�λ
��

A�M

λ
��

A�M
λ

// M

M �A�A
id�µ

//

ρ� id
��

M �A

ρ

��

M �A ρ
// M

A�M

λ
''

1�M �M �1

��

η� id
oo

id�η
// M �A

ρ
ww

M

A�M �A
λ� id //

id�ρ
��

M �A

ρ

��

A�M
λ

// M

where µ denotes the multiplication and η the unit for A and the unlabeled arrow is
the unit isomorphism for �.

Obtaining a theory of modules closer to the idea of a left module (or right module)
over an associative algebra requires working with non-symmetric operads.
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Definition 5.5.3. Let O be a non-symmetric operad and let A be an O-algebra.
A left (O,A)-module (or just left A-module when O is understood) consists of an
object M of M and structure maps

ζm : O(m+ 1)� (A(m) �M)→M

for m ≥ 0 such that the associativity and unit diagrams in Figure 5.4 commute (with
O in place of O). A map of left A-modules is a map of the underlying objects of M
that commutes with the structure maps.

We also have the evident notion of a right A-module defined in terms of structure
maps

ζm : O(m+ 1)� (M �A(m))→M

and the analogous right-hand associativity and unit diagrams.
Unlike in the case of operadic algebras, where working with a non-symmetric operad

and its corresponding symmetric operad results in the same theory, in the case of
modules, the results are very different.

Example 5.5.4. When O =Ass, the non-symmetric operad for associative algebras,
and A is an O-algebra (i.e., a �-monoid), a left (Ass,A)-module in the sense of the
previous definition is precisely a left A-module in the usual sense defined in terms
of an associative and unital left action map A�M →M . Likewise, a right (Ass,A)-
module is precisely a right A-module in the usual sense.

Under mild hypotheses, the category of (O,A)-modules is a category of modules for
a �-monoid called the enveloping algebra of A.

Construction 5.5.5 (The enveloping algebra). Assume that M admits countable
colimits and � preserves countable colimits in each variable. For an operad O and
an O-algebra A, let UOA (or UA when O is understood) be the coequalizer

∞∐
m=0
O(m+ 1)�Σm (OA)(m) //

//

∞∐
m=0
O(m+ 1)�Σm A

(m) // UOA,

where we regard Σm as the usual subgroup of Σm+1 of permutations that fix m+ 1.
Here one map is induced by the action map OA→ A and the other is induced by
the operadic multiplication

O(m+ 1)� (OA)(m) �
∐

j1,...,jm

O(m+ 1)� (O(j1)�A(j1))� · · ·� (O(jm)�A(jm))

�
∐

j1,...,jm

(
O(m+ 1)� (O(j1)� · · ·�O(jm)�1)

)
�A(j)

∐
Γm+1
j1 ,...,jm,1

� id
−−−−−−−−−−−−−→O(j + 1)�A(j)

(where we have omitted writing 1: 1 → O(1) and as always j = j1 + · · · + jm). Let
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η : 1 → UA be the map induced by 1: 1 → O(1) and the inclusion of the m = 0
summand and let µ : UA�UA→UA be the map induced from the maps

(O(m+ 1)�A(m))� (O(n+ 1)�A(n))→O(m+n+ 1)�A(m+n)

obtained from the map ◦m+1 : O(m + 1) �O(n + 1)→ O(m + n + 1) defined as the
composite

O(m+ 1)�O(n+ 1) � O(m+ 1)� (1� · · ·�1�O(n+ 1))
Γm+1
1,...,1,n+1−−−−−−−→O(m+n+ 1)

(where again we have omitted writing 1: 1 → O(1)). Associativity of the operad
multiplication implies that η and µ give UA the structure of an associative monoid
for � and the resulting object is called the enveloping algebra of A over O.

An easy argument from the definitions and universal property of the coequalizer
proves the following proposition.

Proposition 5.5.6. AssumeM admits countable coproducts and � preserves them in each
variable. Let O be an operad and let A be an O-algebra. For an object X of M , (O,A)-
module structures on X are in bijective correspondence with left UOA-module structures. In
particular, the category of (O,A)-modules is isomorphic to the category of left UOA-modules.

Similarly, in the case of non-symmetric operads, we can construct a left module

enveloping algebra UOA (denoted UA when O is understood) as the coequalizer

∞∐
m=0
O(m+ 1)� (OA)(m) //

//

∞∐
m=0
O(m+ 1)�A(m) // UOA (5.5.1)

with maps defined as in Construction 5.5.5. The analogous identification of module
categories holds.

Proposition 5.5.7. Assume M admits countable coproducts and � preserves them in
each variable. Let O be a non-symmetric operad and let A be an O-algebra. For an object
X ofM , left (O,A)-module structures on X are in bijective correspondence with left UA-
module structures. In particular, the category of left (O,A)-modules is isomorphic to the
category of left UA-modules.

We develop some tools to study enveloping algebras in the next section. In the
meantime, we can identify the enveloping algebra in some specific examples.

Example 5.5.8. For O =Ass and A an Ass-algebra (a �-monoid), UAssA is A�Aop,

the usual enveloping algebra for a �-monoid. Viewing A as an Ass-algebra, UAssA
is the �-monoid A. If A is a Com-algebra (a commutative �-monoid), then UComA
makes sense and is also the �-monoid A.

Example 5.5.9. Let L denote the Boardman–Vogt linear isometries operad of
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Example 5.3.4. For an L-algebra, the underlying space of ULA is the pushout

L(2)×L(1) L(0)

◦1

��

id×ξ0 // L(2)×L(1) A

��

L(1) // ULA

where ◦1 is the map induced by 1: ∗ → L(1) and Γ 2
0,1 (as in Construction 5.5.5)

and the right action on L(2) of L(1) � L(1) × ∗ is via Γ 2
1,1 ◦ (id×1). The inclusions

of the m = 0 and m = 1 summands induce the map from the pushout above to
the coequalizer defining ULA; the inverse isomorphism uses the “Hopkins’ Lemma”
[94, I.5.4] isomorphism

L(2)×L(1)×L(1) (L(i)×L(j)) � L(i + j) (HL)

for i, j ≥ 1. The pushout explicitly admits maps in from the m = 0 and m = 1
summands of the coequalizer, and for m > 1 we have the map

L(m+ 1)×Σm A
(m) � L(m+ 1)×Σm×L(1) (A(m) ×L(1))

�
(HL)
L(2)×L(1)×L(1) ((L(m)×Σm A

(m))×L(1))

id×(ξm×id)
−−−−−−−−−−→L(2)×L(1)×L(1) (A×L(1)) � L(2)×L(1) A.

The previous display also indicates how the multiplication of ULA works in the
pushout description: it is induced by the map

(L(2)×A)× (L(2)×A) � (L(2)×L(2))×A(2)

◦2×id
−−−−−→L(3)×A(2)→L(3)×Σ2

A(2)→L(2)×L(1) A,

where the last map is the m = 2 case of the map above. It turns out that the map
ULA→ A induced by the operadic algebra action maps is always a weak equivalence.
(The proof is not obvious but uses the ideas from EKMM, especially [94, I.8.5, XI.3.1]
in the context of the theory of L(1)-spaces, as in for example [28, §6], [44, §4.6], or
[45, §4.3].) If we forget the symmetries in L to create a non-symmetric operad L 6Σ,
then UL6ΣA �ULA. Even when A is just an L6Σ-algebra, UL6ΣA can still be identified
as the same pushout construction pictured above using the analogous comparison
isomorphisms with the coequalizer definition (5.5.1). Analogous formulations also hold
in the context of orthogonal spectra, symmetric spectra, and EKMM S-modules using
the operad Σ∞+ L in the respective categories. In the context of Lewis–May spectra,
these observations are closely related to the foundations of EKMM S-modules and
the properties of the smash product (∧L, ∧, and ∧A); this is the start of a much longer
story on monoidal products and balanced products for A∞ module categories (see,
for example, [184] and [47, §17-18]).

Although in both previous examples we had an isomorphism of enveloping algebras
for symmetric and non-symmetric constructions, this is not a general phenomenon,
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as can be seen, for example, by comparing UAss and UAss 6Σ , where Ass 6Σ is the
non-symmetric operad formed from Ass by forgetting the symmetry. (In this style of
notation, Ass = Com 6Σ.)

The left module enveloping algebra construction for the non-symmetric little 1-
cubes operad, UC1(−), also admits a concrete description [184, §2], which we review
in Section 5.10. It shares the feature with the previous two examples that for any
C1-algebra A, UC1A is weakly equivalent to A (see [184, 1.1] or Proposition 5.10.3).

Given Propositions 5.5.6 and 5.5.7, the homotopy theory of modules over operadic
algebras reduces to (1) the homotopy theory of modules over �-monoids and (2) the

homotopy theory of UOA (or UOA) as a functor of O (or O) and A. The latter first
requires a study of the homotopy theory of operadic algebras, which we review (in part)
in the next few sections, before returning to this question in Corollary 5.9.7. On the
other hand the homotopy theory of modules over �-monoids is very straightforward,
and we give a short review of the main results in the remainder of this section. We
discuss this in terms of closed model categories. (For an overview of closed model
categories as a setting for homotopy theory, we refer the reader to [91]. See also
Chapter 2 of this volume.) The following theorem gives a comprehensive result in
some categories of primary interest.

Theorem 5.5.10. Let (M ,� ,1) be the category of simplicial sets, spaces, symmetric
spectra, orthogonal spectra, EKMM S-modules, simplicial abelian groups, chain complexes,
or any category of modules over a commutative monoid object in one of these categories, with
the usual monoidal product and one of the standard cofibrantly generated model structures.
Let A be a monoid object inM . The category of A-modules is a closed model category with
weak equivalences and fibrations created inM .

The proof in all cases is much like the argument in [94, VII§4] or [267, 2.3].
Heuristically, whenever the small object argument applies and � behaves well with
respect to weak equivalences, pushouts, and sequential or filtered colimits, a version
of the previous theorem should hold. For an example of a more general statement,
see [267, 4.1].

A map of monoid objects A→ B induces an obvious restriction of scalars functor
from the category of B-modules to the category of A-modules. When M admits
coequalizers and � preserves coequalizers in each variable (as is the case in the exam-
ples in the previous theorem), the restriction of scalars functor admits a left adjoint
extension of scalars functor B�A (−) which on the underlying objects is constructed as
the coequalizer

B�A�M //
// B�M // B�AM,

where one map is induced by the A-action on M and the other by the A action on B
(induced by the map of monoid objects). When the categories of modules have closed
model structures with weak equivalences and fibrations created in the underlying
category M , this adjunction is automatically a Quillen adjunction, which implies
a derived adjunction on homotopy categories. When the map A → B is a weak
equivalence, we can often expect the Quillen adjunction to be a Quillen equivalence
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and induce an equivalence of homotopy categories; this is the case in the setting of
the previous theorem.

Theorem 5.5.11. LetM be one of the symmetric monoidal model categories of Theorem
5.5.10. A weak equivalence of monoid objects induces a Quillen equivalence on categories of
modules.

Again, significantly more general results hold; see, for example, [157], especially
Theorem 8.3 and the subsection of Section 1 entitled “Extension of scalars”.

5.6 Limits and colimits in categories of operadic algebras

Before going on to the homotopy theory of categories of operadic algebras, we say
a few words about certain constructions, limits and colimits in this section, and
geometric realization in the next section. While limits of operadic algebras are pretty
straightforward (as explained below), colimits tend to be more complicated and we
take some space to describe in detail what certain colimits look like.

We start with limits. Let D : D →M [O] be a diagram, i.e., a functor from a small
category D , where M is a symmetric monoidal category and O is an operad in M .
By neglect of structure, we can regard D as a diagram in M , and suppose the limit L
exists in M . Then for each d ∈D , we have the canonical map L→D(d), and using
the O-algebra structure map for D(d), we get a map

O(m)�L(m)→O(m)�D(d)(m)→D(d).

These maps satisfy the required compatibility to define a map

O(m)�L(m)→ L,

which together are easily verified to provide structure maps for an O-algebra structure
on L. This O-algebra structure has the universal property for the limit of D in M [O].

Proposition 5.6.1. For any symmetric monoidal categoryM , any operad O inM , and
any diagram of O-algebras, if the limit exists in M , then it has a canonical O-algebra
structure that gives the limit inM [O].

We cannot expect general colimits of operadic algebras to be formed in the
underlying category, as can be seen from the examples of coproducts of �-monoids
(Ass-algebras) or of commutative �-monoids (Com-algebras). The discussion of co-
limits simplifies if we assume that M has countable colimits and that � preserves
countable colimits in each variable, so that Proposition 5.4.9 holds and the category
of O-algebras is the category of algebras over the monad O. The main technical tool
in this case is the following proposition; because we have assumed in particular that
� preserves coequalizers in each variable, it follows that the m-th �-power functor
preserves reflexive coequalizers (see [94, II.7.2] for a proof) and the filtered colimits
that exist (by an easy cofinality argument).
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Proposition 5.6.2. IfM satisfies the hypotheses of Proposition 5.4.7, then for any operad
O, the monad O preserves reflexive coequalizers inM and the filtered colimits that exist
inM .

Recall that a reflexive coequalizer is a coequalizer

X
a //

b
// Y

c // C

where there exists a map r : Y → X such that a ◦ r = idY and b ◦ r = idY ; r is called
a reflexion. The proposition says that if the above coequalizer exists in M and is
reflexive then the diagram obtained by applying O,

OX
Oa //

Ob
// OY

Oc //
OC ,

is also a (reflexive) coequalizer diagram in M . Now suppose that a and b are maps of
O-algebras. Then the diagrams

OX
Oa //

��

OY

��

X a
// Y

and

OX
Ob //

��

OY

��

X
b
// Y

commute (where the vertical maps are the O-algebra structure maps) and we get an
induced map

OC→ C.

Repeating this for OX //
// OY and the two maps OOX //

// OOY to OX //
// OY ,

we see that the map OC→ C constructed above is an O-algebra structure map and
an easy check of universal properties shows that C with this O-algebra structure is
the coequalizer in M [O]. This shows that if a pair of parallel arrows in M [O] has a
reflexion inM , then the coequalizer inM has the canonical structure of an O-algebra
and is the coequalizer in M [O].

We can turn the observation in the previous paragraph into a construction of
colimits of arbitrary shapes in M [O]. Given a diagram D : D →M [O], assume that
the colimit of the underlying functor to M exists, and denote it by colimMD . If
colimMOD also exits, then we get a pair of parallel arrows

O(colimMOD) //
// O(colimMD) , (5.6.1)

where one arrow is induced by the O-algebra structure maps OD(d)→D(d) and the
other is the composite

O(colimMOD)
Oi−−−→OO(colimMD)

µ
−→O(colimMD),

where µ is the monadic multiplication OO→O and

i : colimMOD→O(colimMD)
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is the map assembled from the maps OD(d)→O(colimMD) induced by applying O

to the canonical maps D(d)→ colimMD . We also have a reflexion

O(colimMD)→O(colimMOD)

induced by the unit map D(d)→OD(d). Thus, the coequalizer of (5.6.1) in M has
the canonical structure of an O-algebra which provides the coequalizer in M [O];
a check of universal properties shows that the coequalizer is the colimit inM [O] of D .

Proposition 5.6.3. AssumeM satisfies the hypotheses of Proposition 5.4.7. For any operad
O and any diagram D : D →M [O], if the colimit of D and the colimit of OD exist in
M , then the colimit of D exists inM [O] and is given by the coequalizer of the reflexive
pair displayed in (5.6.1).

For example, the coproduct AqM [O]B inM [O] can be constructed as the coequal-
izer

O(OAqOB) //
// O(AqB) // AqM [O] B.

When B = OX for some X in M , we can say more by recognizing that the category
of O-algebras under A is itself the category of algebras over an operad.

Construction 5.6.4 (The enveloping operad). For m ≥ 0, define U OA (m) by the
coequalizer diagram

∞∐
`=0
O(` +m)�Σ` (OA)(`) //

//

∞∐
`=0
O(` +m)�Σ` A

(`) // U OA (m),

where one arrow is induced by the operadic multiplication

Γ `+mj1,...,j` ,1,...,1
: O(` +m)�O(j1)� · · ·�O(j`)�1� · · ·�1→O(j +m)

and the other by the O-algebra action map OA→ A. We think of the ` factors of
A (or OA) as being associated with the first ` inputs of O(` +m), leaving the last
m inputs open. We then have a Σm-action induced from the Σm-action on O(` +m)
on the open inputs, unit map 1: 1 → U OA (1) induced by the unit map of O (on
the summand ` = 0), and operadic composition Γ induced by applying the operadic
multiplication of O using the open inputs.

This operad is called the enveloping operad of A and generalizes the enveloping
algebra UOA of Construction 5.5.5: for m = 1, U OA (1) is precisely the coequalizer
defining UOA and the operad unit and multiplication Γ 1

1 coincide with the �-monoid
unit and multiplication.

To return to the discussion of the category of O-algebras under A, we note that for
m = 0, the coequalizer in Construction 5.6.4 is

OOA //
// OA // U OA (0),

giving a canonical isomorphism A→U OA (0), and so a U OA -algebra T comes with a
structure map A→ T . Looking at the summands with ` = 0 above, we get a map
of operads O → U OA , giving T an O-algebra structure; the map A→ T is a map
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of O-algebras. On the other hand, given an O-algebra B and a map of O-algebras
A→ B, we have maps

O(` +m)�A(`) �B(m)→O(` +m)�B(`) �B(m)→ B

which together induce maps U OA (m)�B(m)→ B that are easily checked to provide U OA -
algebra structure maps. This gives a bijection between the structure of an O-algebra
under A and the structure of a U OA -algebra.

Proposition 5.6.5. Let M satisfy the hypotheses of Proposition 5.4.7. For an object X
ofM , the set of U OA -algebra structures on X is in bijective correspondence with the set of
ordered pairs consisting of an O-algebra structure on X and a map of O-algebras A→ X
for that structure.

As a consequence we have the following description of the coproduct of O-algebras
AqM [O]

OX, since AqM [O]
O(−) is the left adjoint of the forgetful functor from

O-algebras under A to M .

Proposition 5.6.6. WhenM satisfies the hypotheses of Proposition 5.4.7,

AqM [O]
OX �U

O
AX =

∞∐
m=0
U OA (m)�Σm X

(m)

(where the coproduct symbol undecorated by a category denotes coproduct inM ).

The decomposition above can be useful even without further information on U OA ,
but in fact we can be more concrete about what U OA looks like in the case when A is
built up iteratively from pushouts of free objects in M [O]. As a base case, an easy
calculation gives

U O
OX(m) =

∞∐
`=0
O(` +m)�Σ` X

(`).

Now suppose A′ = AqM [O]
OX OY for some maps X → A and X → Y in M ; we can

then describe U OA′ in terms of U OA and pushouts in M [O] as follows. (In particular,
the calculation of U OA′ (0) describes A′ in these terms and the calculation of U OA′ (1)
describes UA′ in these terms.) First, using the observations on colimits above, a little
work shows that the coequalizer defining U OA′ simplifies in this case to

∞∐
`=0
U OA (` +m)�Σ` (XqY )(`) //

//

∞∐
`=0
U OA (` +m)�Σ` Y

(`) // U OA′ (m)

where one map is induced by the map X → A (= U OA (0)) and the other is induced
by the map X→ Y . We then have a filtration on U OA′ (m) by powers of Y ; specifically,
define FkU OA′ (m) by the coequalizer

k∐
`=0
U OA (` +m)�Σ` (XqY )(`) //

//

k∐
`=0
U OA (` +m)�Σ` Y

(`) // FkU OA′ (m)
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Then colimk F
kU OA′ (m) = U OA′ (m). Comparing the universal properties for Fk−1U OA′ (m)

and FkU OA′ (m), we see that the following diagram is a pushout (in M ):

U OA (k +m)�Σk−1
(X �Y (k−1)) //

��

U OA (k +m)�Σk Y
(k)

��

Fk−1U OA′ (m) // FkU OA′ (m)

This describes U OA′ in terms of iterated pushouts in M , but we can do somewhat
better, as can be seen in the example where M is the category of spaces and X→ Y
is a closed inclusion. In the pushout above, the top horizontal map comes from the
map

Σk ×Σk−1
(X ×Y k−1)→ Y k

which fails to be an inclusion for k > 1 except in trivial cases; however, the image
of this map can be described as an iterated pushout, starting with Xk and gluing in
higher powers of Y . This works as well in the general case (which we now return to).

Let Qk0(X→ Y ) = X(k), an object ofM with a Σk-action and a Σk-equivariant map
to Y (k). Inductively, for i > 0, define Qki (X→ Y ) as the pushout

Σk ×Σk−i×Σi (X(k−i) �Qii−1(X→ Y )) //

��

Σk ×Σk−i×Σi (X(k−i) �Y (i))

��

Qki−1(X→ Y ) // Qki (X→ Y )

(5.6.2)

with the evident Σk-action and Σk-equivariant map

Qki (X→ Y )→ Y (k).

Then for all j > 0, we have a (Σj ×Σk)-equivariant map

X(j) �Qki (X→ Y )→Q
j+k
i (X→ Y )

induced by the map

X(j) �X(k−i) �Y (i) � X(j+k−i) �Y (i)→Q
j+k
i (X→ Y )

and the compatible (inductively defined) map

X(j) �Qki−1(X→ Y )→Q
j+k
i−1(X→ Y )→Q

j+k
i (X→ Y ),

which allows us to continue the induction. In the case when M is the category of
topological spaces and X→ Y is a closed inclusion, the maps

Qk0(X→ Y )→ ·· · →Qkk−1(X→ Y )→ Y (k)

are closed inclusions with Qki (X→ Y ) the subspace of Y k where at most i coordinates
are in Y \X. In the general case, an inductive argument shows that the map

Σk ×Σk−i×Σi (X(k−i) �Y (i))→Qki (X→ Y )
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is a categorical epimorphism and that the map

U OA (k +m)�Σk−1
(X �Y (k−1))→U OA (k +m)�ΣkQ

k
k−1(X→ Y )

is a categorical epimorphism. Since this factors the map

U OA (k +m)�Σk−1
(X �Y (k−1))→U OA (k +m)�Σk Y

(k),

we get the following more sophisticated identification of FkU OA′ (m) as a pushout:

U OA (k +m)�ΣkQ
k
k−1(X→ Y ) //

��

U OA (k +m)�Σk Y
(k)

��

Fk−1U OA′ (m) // FkU OA′ (m)

(5.6.3)

In practice, the map Qkk−1(X→ Y )→ Y (k) is some kind of cofibration when X→ Y is
nice enough; the above formulation is then useful for deducing homotopical informa-
tion in the presence of cofibrantly generated model category structures, as discussed
in Section 5.8.

5.7 Enrichment and geometric realization

Categories of operadic algebras in spaces or spectra come with a canonical enrichment
in spaces, i.e., they have mapping spaces and an intrinsic notion of homotopy. While
more abstract notions of homotopy, for example, in terms of model structures, now
play a more significant role in homotopy theory, the topological enrichment provides
some powerful tools, including and especially geometric realization of simplicial
objects.

We begin with a general discussion of enrichment of operadic algebra categories.
When M satisfies the hypotheses of Proposition 5.4.7, Proposition 5.4.9 describes the
maps in the category of O-algebras as an equalizer

M [O](A,B) // M (A,B) //
// M (OA,B) ,

where one arrow M (A,B)→M (OA,B) is induced by the action map OA→ A and
the other is induced by applying the functor O : M (A,B)→M (OA,OB) and then
using the action map OB→ B. When M is enriched over a complete symmetric
monoidal category (for example, when the mapping sets of M are topologized or
simplicial), then M [O] becomes enriched exactly when O has the structure of an
enriched functor, defining the enrichment of M [O] by the equalizer above. Clearly it
is not always possible for O to be enriched: ifM is the category of abelian groups and
O =Ass or Com, then O is not an additive functor so cannot be enriched over abelian
groups; this corresponds to the fact that the categories of rings and commutative rings
are not enriched over abelian groups. On the other hand, enrichments over spaces
and simplicial sets are usually inherited by algebra categories; the reason, as we now
explain, derives from the fact that spaces and simplicial sets are cartesian.
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For convenience, consider the case when M is a closed symmetric monoidal
category. Let E ,×,∗ be a symmetric monoidal category (which we will eventually
assume to be cartesian), and let L : E →M be a strong symmetric monoidal functor
that is a left adjoint; let R denote its right adjoint. For formal reasons R is then lax
symmetric monoidal and in particular RF provides an E-enrichment of M (where, as
always, F denotes the mapping object in M ). These hypotheses are not all necessary
but avoid some review of enriched category theory and concisely state a lot of
coherence data that more minimal hypotheses would force us to spell out. The iterated
symmetric monoidal product in M then gives a multivariable enriched functor

RF(A1,B1)× · · · ×RF(Am,Bm)→ RF(A1 � · · ·�Am,B1 � · · ·�Bm).

Now assume that × is a cartesian monoidal product, meaning that it is the categorical
product, the unit is the final object, and the symmetry and unit isomorphisms are
the universal ones. With this assumption, we have a natural diagonal map E→ E ×E,
which we can apply in particular to the object RF(A,B) to get a natural map

RF(A,B)→ RF(A,B)× · · · ×RF(A,B)→ RF(A(m),B(m)). (5.7.1)

This makes the m-th �-power into an E-enriched functor for m > 0. In the case m = 0,
we have the final map

RF(A,B)→ ∗→ R1
�−−→ RF(A(0),B(0)).

From here the rest is easy: the � ,F adjunction gives a natural (and E-natural) map

RF(A(m),B(m))→ RF(O(m)�A(m),O(m)�B(m))

and the composite to RF(O(m)�A(m),O(m)�ΣmB
(m)) admits a canonical factorization

RF(A,B)→ RF(O(m)�ΣmA
(m),O(m)�ΣmB

(m)),

since the target is a limit (in E ) that exists by right adjoint considerations when the
quotient O(m)�ΣmB

(m) = (O(m)�B(m))/Σm in M exists. When we assume that M
has countable coproducts, composing further into

RF(O(m)�Σm A
(m),OB),

the countable categorical product over m exists, giving an E-natural map

RF(A,B)→ RF(OA,OB)

which provides the E-enrichment of O. We state this as a theorem:

Theorem 5.7.1. LetM be a closed symmetric monoidal category with countable colimits,
and let O be an operad in M . Let E be a cartesian monoidal category and let E →M
be a strong symmetric monoidal functor with a right adjoint. RegardingM as E-enriched
over the right adjoint, the categoryM [O] of O-algebras has a canonical E-enrichment for
which the forgetful functorM [O]→M is E-enriched.
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We apply this now in the discussion of geometric realizations of (co)simplicial
objects. Let S denote either the category of spaces or of simplicial sets, and write
C(−,−) for the internal mapping objects in S . To avoid awkward circumlocutions,
we will refer to objects of S as spaces in either case for the rest of the section. We
now assume that M is closed symmetric monoidal and has countable coproducts and
that we have a left adjoint symmetric monoidal functor L from S to M , as above,
so that Theorem 5.7.1 applies. We write R for the right adjoint to L as above, so that
RF(−,−) provides mapping spaces for M . The category M then has tensors X ⊗ T
and cotensors T t Y , defined by the natural isomorphisms

RF(X ⊗ T ,−) � C(T ,RF(X,−)) (tensor),

RF(−,T t Y )) � C(T ,RF(−,Y )) (cotensor),

for spaces T and objects X and Y of M , constructed as follows.

Proposition 5.7.2. In the context of Theorem 5.7.1, tensors and cotensors with spaces
exist and are given by X ⊗ T = X �LT and T t Y = F(LT ,Y ) for a space T and objects
X,Y inM .

The proposition is an easy consequence of the formal isomorphism

RF(LT ,X) � C(T ,RX), (5.7.2)

natural in spaces T and objects X of M ; the isomorphism in the forward direction is
adjoint to the map

RF(LT ,X)× T → RF(LT ,X)×RLT → R(F(LT ,X)�LT )→ RX

and the isomorphism in the backwards direction is adjoint to the map LC(T ,RX)→
F(LT ,X) adjoint to the map

LC(T ,RX)�LT � L(C(T ,RX)× T )→ LRX→ X.

Let RFM [O](−,−) denote the mapping spaces constructed above for the category of
O-algebras; despite the suggestion of the notation, this is not typically a composite
functor. For an O-algebra A, F(−,A) does not typically carry a canonical O-algebra
structure, but for a space T , F(LT ,A) = T t A does: the structure map

O(n)� (T t A)(n)→ T t A

is adjoint to the map

O(n)� (T t A)(n) �LT = O(n)� (F(LT ,A))(n) �LT → A

constructed as the composite

O(n)� (F(LT ,A))(n) �LT →O(n)� (F(LT ,A))(n) � (LT )(n)→O(n)�A(n)→ A

using the diagonal map on the space T and the structure map on A. A check of
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universal properties then shows that T t A is the cotensor of A with T in the category
of O-algebras. Tensors in M [O] can be constructed as reflexive coequalizers

O(OA⊗ T ) //
// O(A⊗ T ) // A⊗M [O] T .

Writing ∆[n] for the standard n-simplex, we then have the standard definition of
geometric realization of simplicial objects in M and M [O] (without additional
assumptions) and geometric realization (often called “Tot”) of cosimplicial objects in
M and M [O] when certain limits exist. Given a simplicial object X• or a cosimplicial
object Y •, the degeneracy subobject sXn of Xn is defined as the colimit of the
degeneracy maps and the degeneracy quotient object sY n of Y n is defined as the limit
(if it exists) of the degeneracy maps. (In some literature, sXn is called the “latching
object” and sY n the “matching object”; see [124, §15.2].) The geometric realization of
X• in M or M [O] is then the sequential colimit of |X•|n, where |X•|0 = X0 and |X•|n
is defined inductively as the pushout

(sXn ⊗∆[n])∪(sXn⊗∂∆[n]) (Xn ⊗∂∆[n]) //

��

Xn ⊗∆[n]

��

|X•|n−1
// |X•|n

with both the tensor and the pushouts performed in M to define the geometric
realization in M or performed in M [O] to define the geometric realization in M [O].
The analogous, opposite construction defines the geometric realization of Y • when
all the limits exist. Because cotensors and limits (when they exist) coincide in M and
M [O], geometric realization of cosimplicial objects (when it exists) also coincides in
M and M [O]. Because pushouts generally look very different in M than in M [O],
one might expect that geometric realization of simplicial objects in M and in M [O]
would also look very different; this turns out not to be the case.

Theorem 5.7.3. Assume M satisfies the hypotheses of Theorem 5.7.1 for E either the
category of spaces or the category of simplicial sets.

(i) Let A• be a cosimplicial object inM [O]. If the limits defining the geometric realization
(Tot) exist in M , then that geometric realization has the canonical structure of an
O-algebra and is isomorphic to the geometric realization Tot inM [O].

(ii) Let A• be a simplicial object inM [O]. Then the geometric realization of A• inM has
the canonical structure of an O-algebra and is isomorphic to the geometric realization
of A• inM .

As discussed above, only (ii) requires additional argument. For clarity in the argu-
ment for the theorem, we will write | · | for geometric realization in M and | · |M [O] for
geometric realization in M [O]. Here is the key fact:

Lemma 5.7.4. For M as in the previous theorem, geometric realization in M is strong
symmetric monoidal.
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Proof. Although we wrote a more constructive definition of geometric realization
above, it can also be described as a coend

|X•| =
∫ ∆op

X• ⊗∆[•],

where ∆ denotes the category of simplexes (the category with objects [n] = {0, . . . ,n}
for n = 0,1,2, . . . , and maps the non-decreasing functions) and ∆[n] denotes the
standard n-simplex in spaces or simplicial sets. Because the symmetric monoidal
product � for M is assumed to commute with colimits in each variable, we can
identify the product of geometric realizations also as a coend

|X•|� |Y•| �
∫ ∆op×∆op

(X• �Y•)⊗ (∆[•]×∆[•]).

On the other hand,

|X• �Y•| =
∫ ∆op

diag(X• �Y•)⊗∆[•].

Next, we need a purely formal observation, which is an adjoint form of the Yoneda
lemma: if coproducts of appropriate cardinality exist in C , then given a functor
F : C →D , functoriality of F induces a natural isomorphism∫ c∈C

F(c)×C (c,−)
�−−→ F(−)

(where × denotes coproduct over the given set; this coend exists and the identification
holds with no further hypotheses on C or D ). Applying this to

F((• ,• )) = X• �Y• : ∆op ×∆op→M

and pre-composing with diag, we get an isomorphism

Xp �Yp �

∫ (m,n)∈∆op×∆op

(Xm �Yn)× (∆op(m,p)×∆(n,p))

of functors p ∈∆op→M . Commuting coends, we can reorganize the double coend

|X• �Y•| �
∫ p∈∆op(∫ (m,n)∈∆op×∆op

(Xm �Yn)× (∆op(m,p)×∆op(n,p))
)
⊗∆[p]

as ∫ (m,n)∈∆op×∆op

(Xm �Yn)⊗
(∫ p∈∆op

(∆op(m,p)×∆op(n,p))×∆[p]
)
.

In the latter formula, the expression in parentheses is the coend formula for the
geometric realization (in spaces) of the product of standard simplices (in simplicial sets)
∆[m]• ×∆[n]•, which is ∆[m]×∆[n] by the classic version of the lemma for geometric
realization in spaces. This then constructs the natural isomorphism |X•|�|Y•| � |X•�Y•|,
and a little more fiddling with coends shows that this natural transformation is
symmetric monoidal.
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Because of the previous lemma, we have a natural isomorphism O|X•| � |OX•|
that makes the appropriate diagrams commute, so that the geometric realization
(in M ) of a simplicial object A• in M [O] acquires the natural structure of an O-
algebra. Moreover, the canonical maps An ⊗∆[n]→ |A•| induce maps of O-algebras
An ⊗M [O] ∆[n]→ |A•| that assemble into a natural map of O-algebras

|A•|M [O]→ |A•|.

In the case when A• = OX•, under the identification of colimits |OX•|M [O] = O|X•|,
this map is the isomorphism O|X•| → |OX•| above. To see that it is an isomorphism
for arbitrary A•, write A• as a (reflexive) coequalizer

OOA•
//
// OA• // A•,

apply the functors, and compare diagrams.

5.8 Model structures for operadic algebras

The purpose of this section is to review the construction of model structures on some
of the categories of operadic algebras that are of interest in homotopy theory; we use
these in the next section in comparison theorems giving Quillen equivalences between
some of these categories. Constructing model structures for algebras over operads is a
special case of constructing model structures for algebras over monads; chapter VII of
EKMM [94] seems to be an early reference for this kind of result, but it concentrates
on the category of LMS-spectra and related categories. Schwede–Shipley [267] studies
the general case of monads in cofibrantly generated monoidal model categories, which
Spitzweck [280] specializes to the case of operads. Because less sharp results hold in
the general case than in the special cases of interest, we state the results on model
structures as a list of examples. This is an “example theorem” both in the sense that
it gives a list of examples, but also in the sense that it fits into the general rubric
of the kind of theorem that should hold very generally under appropriate technical
hypotheses with essentially the same proof outline. Some terminology and notation is
explained after the statement.

ExampleTheorem 5.8.1. LetM be a symmetric monoidal category with a cofibrantly
generated model structure and let O be an operad in M from one of the examples listed
below. Then the category of O-algebras inM is a closed model category with

(i) weak equivalences the underlying weak equivalences inM ,
(ii) fibrations the underlying fibrations inM , and
(iii) cofibrations the retracts of regular OI-cofibrations.

This theorem holds in particular in the examples:

(a) M is the category of symmetric spectra (of spaces or simplicial sets) with its positive
stable model structure or orthogonal spectra with its positive stable model structure or
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the category of EKMM S-modules with its standard model structure (with � the smash
product, 1 the sphere spectrum) and O is any operad inM . [68, 8.1]

(b) M is the category of spaces or simplicial sets (with � = ×, 1 = ∗), or simplicial
R-modules for some simplicial commutative ring R (with � = ⊗R, 1 = R) and O is
any operad.

(c) M is the category of (unbounded) chain complexes in R-modules for a commutative
ring R (with � = ⊗R, 1 = R) and either R ⊃ Q or O admits a map of operads
O →O⊗E which is a section for the map O ⊗E → O⊗Com � O, where E is any
E∞ operad that naturally acts on the normalized cochains of simplicial sets. [37, 3.1.3]

(d) M is a monoidal model category in the sense of [267, 3.1] that satisfies the Monoid
Axiom of [267, 3.3] and O is a cofibrant operad in the sense of [280, §3]. [280, §4,
Theorem 4]

The category of EKMM L-spectra [94, I§4] also fits into example (a) if we allow M
to be a “weak” symmetric monoidal category in the sense of [94, II.7.1]; the theorem
then covers categories of operadic algebras in LMS spectra for operads over the linear
isometries operad that have the form O ×L→L; see [68, 3.5].

In part (c), we note that for an operad that satisfies the section condition (or when
R ⊃Q), the functor O(n)×R[Σn] (−) preserves preserve exactness of (homologically)
bounded-below exact sequences of R-free R[Σn]-modules (for all n). For operads
that satisfy this more general condition but not necessarily the section condition, the
algebra category still has a theory of cofibrant objects and a good homotopy theory
for those objects; see, for example, [181, §2].

It is beyond the scope of this chapter to do a full review of closed model category
theory terminology, but we recall that a “cofibrantly generated model category” has a
set I of “generating cofibrations” and a set J of “generating acyclic cofibrations” for
which the Quillen small object argument can be done (perhaps transfinitely, but in the
examples of (a), (b), and (c), sequences suffice). Then

OI = {Of | f ∈ I}

is the set of maps of O-algebras obtained by applying O to each of the maps in I . The
point of OI is that a map of O-algebras has the left lifting property with respect to
OI in O-algebras exactly when the underlying map in M has the left lifting property
with respect to I . The same definition and observations apply replacing I with J .
The strategy for proving the previous theorem is to define the fibrations and weak
equivalences of O-algebras as in (i),(ii), and define cofibrations in terms of the left
lifting property (obtaining the characterization in (iii) as a theorem). The advantage of
this approach is that fibrations and acyclic fibrations are also characterized by lifting
properties: a map of O-algebras is a fibration if and only if it has the right lifting
property with respect to OJ and a map of O-algebras is an acyclic fibration if and
only if it has the right lifting property with respect to OI . For these lifting properties,
we can attempt the small object argument. We now outline the remaining steps in this
approach.

Recall that a regular OI-cofibration is a map formed as a (transfinite) composite of
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pushouts along coproducts of maps in OI . This is the generalization of the notion of
a relative OI -cell complex, which is the colimit of a sequence of pushouts of coproducts
of maps in OI ; in the case of examples (a), (b), and (c), in a regular OI-cofibration the
transfinite composite can always be replaced simply by a sequential composite and
so a regular OI-cofibration is a relative OI-cell complex. The small object argument
for I and J in M implies the small object argument for OI and OJ , which gives
factorization in O-algebras of a map as either a regular OI-cofibration followed by an
acyclic fibration or a regular OJ-cofibration followed by a fibration. (A small wrinkle
comes up in going from the small object argument in M to the small object argument
in M [O] in the topological examples of (a) and (b): we need to check that regular
OI-cofibrations are nice maps, for example, closed inclusions on the constituent
spaces; see the “Cofibration Hypothesis” of [94, VII§4] or [178, 5.3].)

This gets us most of the way to a model structure. Having defined a cofibration of O-
algebras as a map that has the left lifting property with respect to the acyclic fibrations,
the free-forgetful adjunction shows that regular OI-cofibrations are cofibrations;
moreover, it follows formally that any cofibration is the retract of a regular OI-
cofibration: given a cofibration f : A→ B, factor it as p ◦ i for i : A→ B′ a regular
OI-cofibration and p : B′→ B an acyclic fibration, then solving the lifting problem

A
i //

f
��

B′

p
��

B
g

??

id
// B

to produce a map g : B→ B′ exhibits f as a retract of i.

A
id //

f
��

A
id //

i
��

A

f
��

B g
// B′ p

// B

We can try the same thing with regular OJ-cofibrations; they have the left lifting
property with respect to all fibrations so are in particular cofibrations, but are they
weak equivalences? This is the big question and what keeps us from having a fully
general result for Theorem 5.8.1, especially in (c). If regular OJ-cofibrations are
weak equivalences, then the trick in the previous argument shows that every acyclic
cofibration is a retract of a regular OJ-cofibration, and the lifting property for acyclic
cofibrations follows as does the other factorization, proving the model structure.
(Conversely, if the model structure exists, because regular OJ-cofibrations have the
left lifting property for all fibrations, it follows that they are weak equivalences.)

In many examples, including examples (a) and (b) in the theorem above, the
homogeneous filtration on the pushout that we studied in Section 5.6 can be used to
prove that regular OJ-cofibrations are weak equivalences. Specifically, for X→ Y a

map in J , taking A′ = AqM [O]
OX OY , the case m = 0 of the filtration on the enveloping

operad for A gives a filtration on A′ by objects of M starting from A. Now from the
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inductive definition of Qkk−1(X→ Y ) in (5.6.2), it can be checked in examples (a) and

(b) that the map Qkk−1(X→ Y )→ Y (k) is an equivariant Hurewicz cofibration of the
underlying spaces or a monomorphism of the underlying simplicial sets as well as
being a weak equivalence. The pushout (5.6.3) then identifies the maps in the filtration
of A′ as weak equivalences as well. (This approach can also be used to prove versions
of the “Cofibration Hypothesis” of [94, VII§4] or [178, 5.3] that regular OI-cofibrations
are closed inclusions on the constituent spaces.)

Example (d) is similar, except that it uses a filtration argument on the construction
of a cofibrant operad; see [280, §4].

Example (c) fits into the case of the general theorem of Schwede–Shipley [267, 2.3],
where every object is fibrant and has a path object. To complete the argument here,
we need to show that every map f : A→ B factors as a weak equivalence followed by
a fibration:

A
' // A′ // // B.

We then get the factorization of an acyclic cofibration followed by a fibration by using
the factorization already established:

A //
' // A′′

' // // A′ // // B.

In the case of (c) where we hypothesize a map of operads O→O⊗E , this map gives
a natural O-algebra structure on B⊗C∗(−); the hypothesis that the composite map on
O is the identity implies that the canonical isomorphism

B � B⊗C∗(∆[0])

is an O-algebra map. Looking at the maps between ∆[0] and ∆[1], we get maps of
O-algebras

B→ B⊗C∗(∆[1])→ B×B

and the usual mapping path object construction

A
' // A×B (B⊗C∗(∆[1])) // // B

consists of maps of O-algebras and gives the factorization. In the case when R ⊃Q, the
polynomial de Rham functor A∗ reviewed in Section 5.12 is a functor from simplicial
sets to commutative differential graded Q-algebras, which can be used in the same
way to construct a factorization

A
' // A×B (B⊗

Q
A∗(∆[1])) // // B.

In the case of operadic algebras in spaces in example (b) and EKMM S-modules in
example (a), we have another argument taking advantage of the topological enrichment.
In these examples, the maps in J are deformation retractions, and so the maps in OJ
are deformation retractions in the category of O-algebras. It follows that regular OJ-
cofibrations are also deformation retractions and in particular homotopy equivalences.
Since homotopy equivalences are weak equivalences, regular OJ-cofibrations are weak
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equivalences in examples where this argument can be made. The specific examples
again fit into the case of [267, 2.3] where every object is fibrant and has a path object.

5.9 Comparison and rectification theorems for operadic algebras

This section discusses Quillen equivalences and Quillen adjunctions between the model
categories in Example Theorem 5.8.1. When we change from simplicial sets to spaces
or when we change the underlying symmetric monoidal category between the Quillen
equivalent modern categories of spectra, we get Quillen equivalences of categories
of operadic algebras under only mild technical hypotheses on the operad; this gives
several comparison theorems. We also consider Quillen adjunctions and Quillen
equivalences obtained by change of operads. In wide generality, the augmentation
map A→Ass for an A∞ operad induces a Quillen equivalence between categories
of algebras. Likewise, in the case of modern categories of spectra, the augmentation
map E → Com for an E∞ operad induces a Quillen equivalence between categories
of algebras. These comparison theorems are rectification theorems in that they show
that a homotopical algebraic structure can be replaced up to weak equivalence with a
strict algebraic structure.

We begin by reviewing the change of operad adjunction. Let f : A→B be a map of
operads in a symmetric monoidal categoryM . Such a map certainly gives a restriction
functor Uf from B-algebras to A-algebras, and under mild hypothesis, this functor
has a left adjoint. As in the discussion of colimits in Section 5.6, if we assume that M
satisfies the hypotheses of Proposition 5.4.7 then we can define Pf : M [A]→M [B]
by the reflexive coequalizer

B(AA) //
// BA→ Pf (A),

where A and B denote the monads associated to A and B, one arrow is induced by
the A-algebra structure on A, and the other arrow is the composite BA→BB→B

induced by the map of operads f and the monadic product on B. As a side remark,
not related to the rest of this section, we note that in this situation the category
B-algebras can be identified as the category of algebras for the monad Uf Pf inM [A]
(for a general formal proof, see [94, II.6.6.1]).

Now suppose thatM has a closed model structure andM [A] andM [B] are closed
model categories with fibrations and weak equivalences created in M . For a map of
operads f : A→B, we then get a Quillen adjunction

Pf : M [A] //
oo M [B] :Uf .

When can we expect it to be a Quillen equivalence? It is tempting to define an
equivalence of operads in M to be a map f such that derived adjunction induces
an equivalence of homotopy categories; then we have a tautological result that an
equivalence of operads induces a Quillen equivalence of model structures. Instead
we propose the following definition, which leads to a theorem with some substance
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(Example Theorem 5.9.5). It is the condition used in practice in proving comparison
and rectification theorems.

Definition 5.9.1. Let M be a closed model category with countable coproducts
and with a symmetric monoidal product that preserves countable colimits in each
variable. We say that a map f : A→B of operads inM is a derived monad equivalence
if the induced map AZ → BZ is a weak equivalence for every cofibrant object Z
in M .

Though we have not put enough hypotheses onM to ensure it, in practice countable
coproducts of reasonable objects in M will preserve and reflect weak equivalences
and then f will be a derived monad equivalence if and only if each of the maps

A(m)�Σm Z
(m)→B(m)�Σm Z

(m)

is a weak equivalence. In our examples of main interest, we have more intrinsic
sufficient conditions for a map of operads to be a derived monad equivalence.

Example 5.9.2. In the category of spaces (or more generally, any topological or
simplicial model category), a map of operads f : A→B that induces an equivariant
homotopy equivalence A(m) → B(m) for all m is a derived monad equivalence.
Indeed, the map AZ → BZ is a homotopy equivalence for all Z, and a homotopy
equivalence in a topological or simplicial model category is a weak equivalence. As a
special case, when A is a non-symmetric operad with A(m) contractible for all m,
the map of operads A→Ass is a derived monad equivalence.

Example 5.9.3. In the category of symmetric spectra (of spaces or simplicial sets)
with its positive stable model structure or the category of orthogonal spectra with
its positive model structure, a map of operads f : A → B that induces a (non-
equivariant) weak equivalence A(n) → B(n) is a derived monad equivalence. This
can be proved by generalizing the argument of [178, 15.5] (see [68, 8.3.(i)] for slightly
more details). In the case of EKMM S-modules, if f : A → B is a map of operads
of spaces that is a (non-equivariant) homotopy equivalence A(n)→ B(n) for all n,
then Σ∞+ f is a derived monad equivalence. This can be proved by generalizing the
argument of [94, III.5.1]. (See [68, 8.3.(ii)] for a more general statement.) In particular,
in these categories, the augmentation map E → Com for an E∞ operad (assumed to
come from spaces in the EKMM S-module case) is a derived monad equivalence.

Example 5.9.4. In the context of chain complexes of R-modules, a map of operads
A → B that is an R[Σn]-module chain homotopy equivalence A(n)→ B(n) for all
n is a derived monad equivalence. If the functors A(n) ⊗R[Σn] (−) and B(n) ⊗R[Σn]
(−) preserve exactness of (homologically) bounded-below exact sequences of R-free
R[Σn]-modules (for all n), then a weak equivalence A → B is a derived monad
equivalence. This occurs in particular for part (c) of Example Theorem 5.8.1 when A
and B both satisfy the stated operad hypotheses.

To go with these examples, we have the following example theorem.
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Example Theorem 5.9.5. Let M be a symmetric monoidal category and f : A→ B
a map of operads in M , where M , A, and B fall into one of the examples of Example
Theorem 5.8.1 (a)–(c). If f is a derived monad equivalence then the Quillen adjunction
Pf : M [A] //

oo M [B] :Uf is a Quillen equivalence.

Again, as in the previous section, this is an “example theorem” in that it gives an
example of the kind of theorem that holds much more generally with a proof that can
also be adapted to work much more generally. We outline the proof after the change
of categories theorem below, as the arguments for both are quite similar.

In terms of change of categories, one should expect comparison theorems of the
following form to hold quite generally:

Let L :M //
oo M ′ :R be a Quillen equivalence between monoidal model categories with

L strong symmetric monoidal, and let O be an operad inM . With some technical hypotheses,
the adjunction

L : M [O] //
oo M ′[LO] :R

on operadic algebra categories is also a Quillen equivalence.

A minimal technical hypothesis is that LO be “the right thing” and an easy way to
ensure this is to put some kind of cofibrancy condition on the objects O(n). In our
cases of interest, we could certainly state such a theorem, but it would not cover the
example in modern categories of spectra when O is the suspension spectrum functor
applied to an operad of spaces; for such an operad, the spectra O(n) will not be
cofibrant. On the other hand, in these examples the right adjoint preserves all weak
equivalences and not just weak equivalences between fibrant objects; in this setup
it seems more convenient to consider an operad O′ in M ′ and a map of operads
O→ RO′ (or equivalently, LO→O′ ) that induces a weak equivalence

OZ→ R(O′LZ)

for all cofibrant objects Z of M . We state such a theorem for our examples of interest.

ExampleTheorem 5.9.6. Let L :M //
oo M ′ :R be one of the Quillen adjunctions of

symmetric monoidal categories listed below. Let A be an operad inM , let B be an operad
inM ′ , and let f : A→ RB be a map of operads that induces a weak equivalence

AZ→ R(BLZ)

for all cofibrant objects Z ofM . Then the induced Quillen adjunction

PL,f : M [A] //
oo M ′[B] :UR,f

is a Quillen equivalence. This theorem holds in particular in the examples:

(a) M is the category of simplicial sets (with the usual model structure) or the category
of symmetric spectra of simplicial sets, M ′ is the category of spaces or the category of
symmetric spectra in spaces (respectively), and L,R is the geometric realization, singular
simplicial set adjunction.
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(b) M is the category of symmetric spectra,M ′ is the category of orthogonal spectra and
L,R is the prolongation, restriction adjunction of [178, p. 442].

(c) M is the category of symmetric spectra or orthogonal spectra, M ′ is the category of
EKMM S-modules, and L,R is the adjunction of [263] or [177, I.1.1].

As indicated in the paragraph above the statement, the statement takes advantage
of the fact that in the examples being considered in this section, the right adjoint
preserves all weak equivalences; a general statement for other examples should use
a fibrant replacement for BLZ in place of BLZ . The proof sketch below also takes
advantage of this property of the right adjoint. In generalizing the argument to the
case when fibrant replacement is required in the statement, the fibrant replacement of
the filtration can be performed in M ′ .

The proof of the theorems above uses the homogeneous filtration on a pushout

of the form A′ = AqM [O]
OX OY studied in Section 5.6. This is the m = 0 case of the

filtration on the enveloping operad U OA′ , and we will need to use the filtration on
the whole operad for an inductive argument even though we are only interested in
the m = 0 case in the end. We will use uniform notation in the sketch proof that
follows, taking M ′ =M with adjoint functors L and R to be the identity in the case
of Example Theorem 5.9.5. We use the notation I for the preferred set of generators
for the cofibrations of M (as in Section 5.8).

Because fibrations and weak equivalences in the algebra categories are created in the
underlying symmetric monoidal categories, the adjunction PL,f ,UR,f is automatically a
Quillen adjunction (as indicated already in the statements), and we just have to prove
that the unit of the adjunction

A→UR,f (PL,f A) (5.9.1)

is a weak equivalence for any cofibrant A-algebra A. Every cofibrant A-algebra is
the retract of an AI-cell A-algebra, and so it suffices to consider the case when A is
an AI-cell A-algebra; then A = colimAn where A0 =A(0) and each An+1 is formed
from An by cell attachment (of possibly an infinite coproduct of cells). As we shall
see below, the underlying maps An→ An+1 are nice enough that A is the homotopy
colimit (in M or M [A]) of the system of the finite stages An (this is the subject of
the “Cofibration Hypothesis” of [94, VII§4] mentioned parenthetically in the previous
section). Analogous observations apply for PL,f A, which is a cell BLI-algebra with
stages PL,f An. Thus, it will be enough to see that (5.9.1) is a weak equivalence for each
An. By the hypothesis of the theorem, we know that this holds for A0 (which is the
free A-algebra on the initial object of M ); moreover, as the enveloping operad of
A0 is A and the enveloping operad of PL,f A0 is B, we can assume as an inductive
hypothesis that

U
A
An
Z→U

B
PL,f An

LZ

is a weak equivalence for all cofibrant Z; in other words, we can assume by induc-
tion that the hypothesis of the theorem holds for the map of enveloping operads
UAAn→ R(UBPL,f An ). It then suffices to prove that the hypothesis of the theorem holds
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for the map of enveloping operads UAAn+1
→ R(UBPL,f An+1

); this is because in the cate-
gories M and M ′ of the examples, countable coproducts preserve and reflect weak
equivalences and the unit map An+1→UR,f (PL,f An+1) is the restriction of the map of
monads to the homogeneous degree zero summand (at least in the homotopy category
of M ).

To prove this, let X→ Y be the coproduct of maps in I such that An+1 = Anq
M [A]
AX

AY and consider the filtration on UAAn+1
(m) and UBPL,f An+1

(m) studied in Section 5.6.

We note that the induction hypothesis on An also implies that the map

UAAn(m)�Σm1×···×Σmi
(Z(m1)

1 � · · ·�Z(mi )
i )

→ R(UBPL,f An(m)�Σm1×···×Σmi
(LZ(m1)

1 � · · ·�LZ(mi )
i ))

is a weak equivalence for all cofibrant objects Z1, . . . ,Zi (where m =m1 + · · ·+mi ) as
this is a summand of the map

UAAn(m)�Σm (Z1q ·· ·qZi)(m)→ R(UBPL,f An(m)�Σm L(Z1q ·· ·qZi)(m)).

Looking at the pushout square (5.6.2) that inductively defines Qki (X → Y ), a bit of
analysis shows that in our example categories the maps Qki−1→Qki are Σk-equivariant
Hurewicz cofibrations (or in the simplicial categories, maps that geometrically realize
to such). It follows that for any cofibrant object Z, the maps

UAAn(k +m)�Σk×Σm (Qki−1(X→ Y )�Z(m))

→UAAn(k +m)�Σk×Σm (Qki (X→ Y )�Z(m))

are (or geometrically realize to) Hurewicz cofibrations (likewise in M ′ ) and that the
maps

UAAn(k +m)�Σk×Σm (Qki (X→ Y )�Z(m))

→ R(UBPL,f An(k +m)�Σk×Σm (Qki (LX→ LY )�LZ(m)))

are weak equivalences. Now the pushout square (5.6.3) shows that for any cofibrant
object Z, at each filtration level k, the map

Fk−1UAAn+1
(m)�Σm Z

(m)→ FkUAAn+1
(m)�Σm Z

(m)

is (or geometrically realizes to) a Hurewicz cofibration (likewise in M ′ ) and that the
maps

FkUAAn+1
(m)�Σm Z

(m)→ R(FkUBPL,f An+1
(m)�Σm LZ

(m))

are weak equivalences. The colimit is then weakly equivalent to the homotopy colimit
and we get a weak equivalence

UAAn+1
(m)�Σm Z

(m)→ R(UBPL,f An+1
(m)�Σm LZ

(m)),

completing the induction and the sketch proof of Example Theorems 5.9.5 and 5.9.6.
The argument above proved the comparison theorems by proving equivalences of
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enveloping operads. Since the unary part of the enveloping operad is the enveloping
algebra, we also get module category comparison results. We state this as the following
corollary, which says that as long as the algebras are cofibrant, changing categories
by Quillen equivalences and the algebras by derived monad equivalences results in
Quillen equivalent categories of modules.

Corollary 5.9.7. Let L : M //
oo M ′ :R be one of the Quillen adjunctions of symmetric

monoidal categories in Example Theorem 5.9.6 or the identity functor adjunction on one of
the categories in Example Theorem 5.9.5. Let f : A→ RB be a map of operads that induces
a weak equivalence AZ→ R(BLZ) for all cofibrant objects Z, and let g : A→ RB be a
weak equivalence of A-algebras for an A-algebra A and a B-algebra B. If A and B are
cofibrant (inM [A] andM ′[B], respectively), then f and g induce a Quillen equivalence
of the category of (A,A)-modules and the category of (B,B)-modules.

Sketch proof. The argument above shows that under the given hypotheses, the map of
�-monoids UAA→ R(UBB) is a weak equivalence. The left and right adjoint functors
in the Quillen adjunction on module categories are given by UBB�L(UAA) L(−) and
R, respectively. These both preserve coproducts, homotopy cofiber sequences, and
sequential homotopy colimits up to weak equivalence. It follows that the unit of
the adjunction X → R(UBB�L(UAA) LX) is a weak equivalence for every cofibrant
A-module X.

The analogous result also holds for modules over algebras on non-symmetric
operads, proved by essentially the same filtration argument: we have a non-symmetric
version UOA(m) of Construction 5.6.4. In this case, the resulting objects do not
assemble into an operad; nevertheless, UOA(1) still has the structure of a �-monoid
and coincides with the (non-symmetric) enveloping algebra UOA. The non-symmetric
analogue of (5.6.3) holds, and the filtration argument (under the hypotheses of the
previous corollary) proves that the map UAA → R(UBB) is a weak equivalence
of �-monoids. We conclude that the unit map X → R(UBB�LUAA LX) is a weak
equivalence for every cofibrant A-module X.

5.10 Enveloping algebras, Moore algebras, and rectification

In the special case of Example 5.9.2, Example Theorem 5.9.5 gives an equivalence of
the homotopy category of A∞ algebras (over a given A∞ operad) with the homotopy
category of associative algebras, in particular constructing an associative algebra
rectification of an A∞ algebra. We know another way to construct an associative
algebra from an A∞ algebra, namely the (non-symmetric) enveloping algebra. In the
case when the A∞ operad is the operad of little 1-cubes C1, there is also a classical
rectification called the Moore algebra. The purpose of this section is to compare these
constructions.

We first consider the rectification of Example Theorem 5.9.5 and the non-symmetric
enveloping algebra. Let O be a non-symmetric operad and ε : O → Ass a weak



230 Mandell: Operads and operadic algebras in homotopy theory

equivalence. Under the hypotheses of Example Theorem 5.9.5, the rectification (change
of operads) functor Pε associated to ε gives a �-monoid PεA and a map of O-algebras
A→ PεA that is a weak equivalence when A is cofibrant. As part of the proof of
Example Theorem 5.9.5, we get a weak equivalence of enveloping operads

U OA →U
Ass
PεA
.

As mentioned at the end of the previous section, the non-symmetric version of this
argument also works to give a weak equivalence of �-monoids

UOA→UAss(PεA).

Moreover, in the case of the associative algebra operad Ass, we have a natural
isomorphism of �-monoids UAssM→M for any �-monoid M . Putting this together,
we get:

Theorem 5.10.1. Let M be a symmetric monoidal category and O an A∞ operad that
fall into one of the examples of Theorem 5.8.1 (a)–(c). Write ε : O → Ass for the weak
equivalence identifying O as an A∞ operad. If A is a cofibrant O-algebra then the natural
maps

A→ PεA �U
AssPεA←UOA

are weak equivalences of O-algebras.

We now focus on A∞ algebras for the little 1-cubes operad C1, where we can
describe results both more concretely and in much greater generality. For the rest
of the section we work in the context of a symmetric monoidal category enriched
over topological spaces as in Section 5.7: Let M be a closed symmetric monoidal
category with countable colimits, and let L : S →M be strong symmetric monoidal
left adjoint functor (whose right adjoint we denote as R). Then, by Theorem 5.7.1, M
becomes enriched over topological spaces and we have a notion of homotopies and
homotopy equivalences in M , defined in terms of mapping spaces or equivalently in
terms of tensor with the unit interval. We also have LC1 as a non-symmetric operad in
M ; for an LC1-algebra A, we give a concrete construction of the enveloping algebra
UA, mostly following [184, §2]. We first write the formulas and then explain where
they come from.

Construction 5.10.2. [184, §2] Let D be the space of subintervals of [0,1] and let
D be the subspace of D of those intervals that do not start at 0. We have a canonical
isomorphism D � C1(1) (sending a subinterval to the 1-tuple containing it) that we
elide notation for. Under this isomorphism, the composition law Γ 1

1 defines a pairing
γ : D ×D→D that satisfies the formula

γ([x,y], [x′, y′]) = [x+ (y − x)x′, x+ (y − x)y′].

We note that γ restricts to a pairing D ×D → D, and that for formal reasons γ is
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associative:

γ(γ([x,y], [x′, y′]), [x′′, y′′]) = [x+(y−x)x′+(y−x)(y′−x′)x′′,x+(y−x)x′+(y−x)(y′−x′)y′′]
= γ([x,y],γ([x′, y′], [x′′, y′′])),

and unital:

γ([0,1], [x,y]) = [x,y] = γ([x,y], [0,1]),

making D a topological monoid and D a subsemigroup. Define α : D ×D → C1(2)
by

α([x,y], [x′, y′]) =
([

0,
x

x+ (y − x)x′

]
,
[

x
x+ (y − x)x′

,1
])
.

Let DA be the object of M defined by the pushout diagram

LD �1

��

// LD �A

��

LD �1 // DA

where the top map is induced by the composite of the isomorphism 1 � LC1(0) (from
the strong symmetric monoidal structure on L) and the LC1-action map LC1(0)→ A.
We use γ and α to define a multiplication on DA as follows. We use the map

(LD �A)� (LD �A)→ LD �A→DA

coming from the map

(LD �A)� (LD �A) � L(D ×D)� (A�A)→

L(D ×C1(2))� (A�A) � LD � (LC1(2)� (A�A))→ LD �A

induced by the map (γ,α) : D ×D → D × C1(2) and the LC1-action map on A. We
note that both associations

(LD �A)� (LD �A)� (LD �A)→ LD �A

coincide: both factor through the map

(LD �A)� (LD �A)� (LD �A) � L(D ×D ×D)�A(3)→ L(D ×C1(3))�A(3)

induced by the map D ×D ×D → D ×C1(3) given on the D factor as γ ◦ (γ × id) =
γ ◦ (1×γ) and on the C1(3) factor by the formula

[x,y], [x′, y′], [x′′, y′′] 7→ ([0, a], [a,b], [b,1]),

where

a =
x

x+ (y − x)(x′ + (y′ − x′)x′′)
, b =

x+ (y − x)x′

x+ (y − x)(x′ + (y′ − x′)x′′)
.

When restricted to maps

(LD �1)� (LD �A), (LD �A)� (LD �1)→DA,
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this map coincides with the map induced by just γ and the unit isomorphism of M
and so extends to compatible maps

(LD �1)� (LD �1)→DA,

(LD �1)� (LD �A)→DA,

(LD �A)� (LD �1)→DA,

and defines an associative multiplication on DA. The map 1→ DA induced by the
inclusion of the element [0,1] of D is a unit for this multiplication.

To understand the construction, it is useful to think of D as a subspace of C1(2)
rather than a subspace of C1(1), via the embedding

[x,y] 7→ ([0,x], [x,y]).

Then we have a map DA→UA sending LD�1 and LD�A to the 0 and 1 summands

LD �1 � LC1 �A
(0) and LD �A→ LC1(2)�A

in the coequalizer (5.5.1) for UA. We also have a map back that sends the summand
LC1(n+1)�A(n) (for n ≥ 1) to LD�A by remembering just the last interval and using
the rest to do the multiplication on A; specifically, for [x1, y1], . . . , [xn+1, yn+1], we use
the element of C1(n) corresponding to[

x1
xn+1

, y1
xn+1

]
, . . . ,

[
xn
xn+1

, yn
xn+1

]
for the map A(n) → A. It is straightforward to check that these maps give inverse
isomorphisms of objects of M ; see [184, 2.5].

The isomorphism of the previous paragraph then forces the formula for the multipli-
cation. Intuitively speaking, the first box in D (viewed as a subset of C1(2)) holds the
algebra (from the tensor) and the second box is a placeholder to plug in the module
variable; the complement D \D corresponds to the first box having length zero and
then only the unit of the algebra can go there. For the composition, the right copy
gets plugged into the second box of the left copy to give an element of C1(3) (i.e., the
operadic composition ` ◦2 r = Γ 2

1,2(`;1, r), where ` is the element of the left copy of D
and r is the element of the right copy of D); the first and second boxes are on the one
hand rescaled to an element of C1(2) that does the multiplication on the copies of A
and on the other hand joined to give with the third box the new element of D , viewed
as a subspace of C1(2). The associativity is straightforward to visualize in terms of
plugging in boxes when written down on paper. (See Section 2 of [184].) When one
of the elements comes from D \D, the corresponding copy of A is restricted to the
unit 1 and the first box of zero length also works like a unit.

Using the isomorphism of �-monoids UA �DA, we have the following comparison
theorem for the underlying objects of UA and A.

Proposition 5.10.3 ([184, 1.1]). The map of UA-modules UA � 1�UA→ A induced by
the map 1 � LC1(0)→ A is a homotopy equivalence of objects ofM .
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Proof. In concrete terms, the map in the statement is induced by the map

LD �A→ LC1(1)�A→ A

for the map D→C1(1) that sends [x,y] to ([0,x]), which is compatible with the map

LD �1→ 1→ A.

We can use any element of D to produce a map (in M ) from A to UA; a path to the
operad identity element 1 in C1(1) (which corresponds to [0,1] ⊆ [0,1]) then induces
a homotopy of the composite map A→ A to the identity map of A. We can construct
a homotopy from the composite to the identity on UA using a homotopy of self-maps
of C1(1) from the identity to the constant map on 1 (combined with the C1(1) action
map on A) and a homotopy of self-maps of the pair (D,D) from the constant map (on
the chosen element of D) to the identity map. For example, if the chosen element of
D corresponds to the subinterval [a,b] (with a , 0) then the linear homotopy

[x,y], t 7→ [xt + a(1− t), yt + b(1− t)]

is such a homotopy of self-maps of the pair.

In the context of spaces, J. C. Moore invented an associative version of the based
loop space by parametrizing loops with arbitrary length intervals. This idea extends
to the current context to give another even simpler construction of a �-monoid
equivalent (in M ) to an LC1-algebra A.

Construction 5.10.4. Define MA to be the object of M defined by the pushout
diagram

LR>0 �1

��

// LR>0 �A

��

LR≥0 �1 // MA

(where R
>0 ⊂R

≥0 are the usual subspaces of positive and non-negative real numbers,
respectively). We give this the structure of a �-monoid with the unit 1→MA induced
by the inclusion of 0 in R

≥0 and multiplication MA�MA→ MA induced by the
map

(LR>0 �A)� (LR>0 �A) � L(R>0 ×R>0)� (A�A)

→ L(R>0 ×C1(2))� (A�A) � LR>0 � (LC1(2)� (A�A))→ LR>0 �A

induced by the C1-action on A and the map

c : (r, s) ∈R>0 ×R>0 7→ (r + s, ([0, r
r+s ], [

r
r+s ,1])) ∈R>0 ×C1(2).

The idea is that the element of R>0 specifies a length (with the zero length only
available for the unit) and the multiplication uses the proportionality of the two lengths
to choose an element of C1(2) for the multiplication on A; the two lengths add to give
the length in the result. In the case when M is the category of spaces and A =ΩX
is the based loop space of a space X, MA is the Moore loop space. An element is
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specified by an element r of R≥0 together with an element of ΩX (which must be
the basepoint when r = 0) but can be visualized as a based loop parametrized by
[0, r] (or for r = 0 the constant length zero loop at the basepoint). The multiplication
concatenates loops by concatenating the parametrizations, an operation that is strictly
associative and unital.

We can compare the �-monoids MA and UA through a third �-monoid NA
constructed as follows. Let N = R

>0×R>0×R≥0, let N = R
≥0×R>0×R≥0, and define

NA by the pushout diagram

LN �1

��

// LN �A

��

LN �1 // NA

We have maps N ×N →N and N ×N →C1(2) defined by

((r, s, t), (r ′, s′, t′)) ∈N ×N 7→ (r + sr ′, ss′, st′ + t) ∈N,

((r, s, t), (r ′, s′, t′)) ∈N ×N 7→ c(t, st′) = ([0, r
r+sr ′] ,[

r
r+sr ′ ,1]) ∈ C1(2),

which we use to construct the multiplication on NA by the same scheme as above

(LN �A)� (LN �A) � L(N ×N )� (A�A)→ L(N ×C1(2))� (A�A)→ LN �A.

The unit is the map 1→NA induced by the inclusion of (0,1,0) in N .
The parametrizing space N = {(r, s, t)} generalizes D by allowing [r, s] to be a

subinterval of [0, r + s+ t] instead of [0,1], or from another perspective, generalizes
lengths in the definition on the Moore algebra by incorporating a scaling factor s and
padding of length t. In other words, we have maps

[x,y] ∈D 7→ (x,y − x,1− y) ∈N,

r ∈R≥0 7→ (r,1,0) ∈N.

These maps induce maps of �-monoids UA � DA→ NA and MA→ NA, respec-
tively, and the argument of Proposition 5.10.3 shows that these maps are homotopy
equivalences in M . We state this as a theorem, repeating the conventions of this part
of the section for easy reference.

Theorem 5.10.5. LetM be a closed symmetric monoidal category admitting countable
colimits and enriched over spaces via a strong symmetric monoidal left adjoint functor L.
Then for algebras over the little 1-cubes operad (LC1-algebras) the non-symmetric enveloping
algebra UA and the Moore algebra MA fit in a natural zigzag of �-monoids

UA→NA←MA,

where the maps are homotopy equivalences inM . Moreover, the canonical maps UA→ A
and MA→ A are homotopy equivalences inM .

To compare MA and A as A∞ algebras, we use a new A∞ operad C` defined as
follows.
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Construction 5.10.6. Let C`(0) = R
≥0 and for m > 0, let C`(m) be the set of ordered

pairs (S,r) with r a positive real number and S a list of m almost non-overlapping
closed subintervals of [0, r] in their natural order, topologized analogously as in the
definition of C1 (as a semilinear submanifold of R2m+1). The operadic composition is
defined by scaling and replacement of the subintervals: the basic composition

Γ 1
j ((([x,y]), r), (([x′1, y

′
1], . . . , [x′j , y

′
j ]), r

′)) =

(([x+ ax′1,x+ ay′1], . . . , [x+ ax′j ,x+ ay′j ]), r + a(r ′ − 1))

(with a := y − x) scales the interval [0, r ′] to length ar ′ and inserts that in place
of [x,y] ⊂ [0, r]; the resulting final interval then has size r − a + ar ′ . The general
composition Γmj1,...,jm does this operation on each of the m subintervals:

Γmj1,...,jm
: (([x0

1, y
0
1 ], . . . , [x0

m, y
0
m]), r1),

(([x1
1, y

1
1 ], . . . , [x1

j1
, y1
j1

]), r1), . . . , (([xm1 , y
m
1 ], . . . , [xmjm , y

m
jm

]), rm),

7→
(([x0

1 + a1x
1
1,x

0
1 + a1y

1
1 ], . . . , [sm−1 + x0

m + amx
m
jm
, sm−1 + x0

m + amy
m
jm

]), r0 + sm),

where ai := y0
i − x

0
i and si = a1(r1 − 1) + · · · + ai(ri − 1). When one of the ji is zero,

that ji contributes no subintervals but still scales the original subinterval [x0
i , y

0
i ] to

length airi (or removes it when ri = 0). The operad identity element is the element
(([0,1]),1) ∈ C`(1).

The maps C1(m)→C`(m) that include C1(m) as the length 1 subspace assemble to
a map of operads i : C1→C` . We also have a map of operads j : Ass→C` induced
by sending the unique element of Ass(m) to the element

(([0,1], [1,2], . . . , [m− 1,m]),m)

of C`(m). Using the map j , an LC`-algebra has the underlying structure of a �-monoid.
A straightforward check of universal properties proves the following proposition.

Proposition 5.10.7. The functor that takes a C1-algebra A to its Moore algebra MA
is naturally isomorphic to the functor that takes A to the underlying �-monoid of the
pushforward PLiA for the map of operads Li : LC1→ LC` .

The C`-action map LC`(m)� (MA)(m)→MA is induced by the map

C`(m)× (R>0)n→C`(m)×C`(1)n
Γm1,...,1−−−−−→ C`(m) �R

>0 ×C1(m)

that includes R>0 in C`(1) by r 7→ (([0, r]), r), where the isomorphism is the map that
takes an element (([x1, y1], . . . , [xm, ym]), r) of C`(m) to the element

(r,([ x1
r ,

y1
r ], . . . ,[ xmr ,

ym
r ]))

of R>0 ×C1(m).
The map of C1-algebras that is the unit of the change of operads adjunction

A→ PLiA is induced by the inclusion of 1 in R
>0 and is a homotopy equivalence by
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a (simpler) version of the homotopy argument of Proposition 5.10.3. I do not see how
to do a similar argument for the pushforward PLj from �-monoids to C`-algebras, so
we do not get a direct comparison of C1-algebras between A (or PLiA) and MA with
the C1-algebra structure inherited from its �-monoid structure without some kind
of rectification result (such as Example Theorem 5.9.5) comparing the category of
LC`-algebras with the category of Ass-algebras.

The argument in [184, 2.5] that identifies UC1A as DA generalizes to identify
UC

`
PLiA as NA; the maps in Theorem 5.10.5 can then be viewed as the natural maps

on enveloping algebras induced by maps of operads and maps of algebras.

5.11 En spaces and iterated loop space theory

The recognition principle for iterated loop spaces provided the first application for
operads. Although the summary here has been spiced up with model category notions
and terminology (in the adjoint functor formulation of [196, §8]), the mathematics has
not changed significantly from the original treatment by May in [194], except for the
improvements noted in the appendix to [71], which extend the results from connected
to grouplike En spaces. (En spaces = En algebras in spaces.)

The original idea for the little n-cubes operads Cn and the start of the relationship
between En spaces and n-fold loop spaces is the Boardman–Vogt observation that
every n-fold loop space comes with the natural structure of a Cn-algebra. The action
map

Cn(m)×ΩnX × · · · ×ΩnX→ΩnX

is defined as follows. We view Sn as [0,1]n/∂. Given an element c ∈ Cn(m), and
elements f1, . . . , fm : Sn→ X of ΩnX, let fc;f1,...,fn : Sn→ X be the function that sends
a point x in Sn to the basepoint if x is not in one of the embedded cubes; the i-th
embedded cube gets sent to X using the inverse of the embedding and the quotient
map [0,1]n → Sn followed by the map fi : Sn → X. This is a continuous based
map Sn→ X since the boundary of each embedded cube gets sent to the basepoint.
Phrased another way, c defines a based map

Sn→ Sn ∨ · · · ∨ Sn

with the i-th embedded cube mapping to the i-th wedge summand of Sn by collapsing
all points not in an open cube to the basepoint and rescaling; we then apply fi : Sn→
X to the i-th summand to get a composite map Sn→ X.

The construction of the previous paragraph factors Ωn as a functor from based
spaces to Cn-spaces (= Cn-algebras in spaces). It is clear that not every Cn-space arises
as ΩnX because π0Ω

nX is a group (for its canonical multiplication), whereas for the
free Cn-space CnX, π0CnX is not a group unless X is the empty set; for example,
π0CnX �N when X is path connected. We say that a Cn-space A is grouplike when
π0A is a group (for its canonical multiplication). The following is the fundamental
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theorem of iterated loop space theory; it gives an equivalence of homotopy theories
between n-fold loop spaces and grouplike Cn-spaces.

Theorem 5.11.1 (May [194], Boardman–Vogt [48, §6]). The functor Ωn from based
spaces to Cn-spaces is a Quillen right adjoint. The unit of the derived adjunction

A→ΩnBnA

is an isomorphism in the homotopy category of Cn-spaces if (and only if ) A is grouplike. The
counit of the derived adjunction

BnΩnX→ X

is an isomorphism in the homotopy category of spaces if (and only if ) X is (n−1)-connected;
in general it is an (n−1)-connected cover.

We have written the derived functor of the left adjoint in Theorem 5.11.1 as Bn,
suggesting an iterated bar construction. Although neither the point-set adjoint functor
nor the model for its derived functor used in the argument of Theorem 5.11.1 is
constructed iteratively, Dunn [86] shows that the derived functor is naturally equivalent
to an iterated bar construction.

As a consequence of the statement of the theorem, the unit of the derived adjunction
A→ΩnBnA is the initial map in the homotopy category of Cn-spaces from A to a
grouplike Cn-space and so deserves to be called “group completion”. Group completion
has various characterizations and for the purposes of sketching the ideas behind the
proof of the theorem, it works best to choose one of them as the definition and
state the property of the unit map as a theorem. One such characterization uses the
classifying space construction, which we understand as the Eilenberg–Mac Lane bar
construction (after converting the underlying C1-spaces to topological monoids) or the
Stasheff bar construction (choosing compatible maps from the Stasheff associahedra
into the spaces Cn(m)).

Definition 5.11.2. A map f : A → G of Cn-spaces is a group completion if G is
grouplike and f induces a weak equivalence of classifying spaces.

In the case n > 1 (and under some hypotheses if n = 1), Quillen [227] gives a
homological criterion for a map to be group completion: if G is grouplike, then a map
A→ G of Cn-spaces is group completion if and only if

H∗(A)[(π0A)−1]→H∗(G)

is an isomorphism. Counterexamples exist in the case n = 1 (indeed, McDuff [208]
gives a counterexample for every loop space homotopy type), but recent work of Braun,
Chuang, and Lazarev [59] gives an analogous derived category criterion in terms
of derived localization at the multiplicative set π0A. Using Definition 5.11.2 or any
equivalent independent characterization of group completion, we have the following
addendum to Theorem 5.11.1.

Addendum 5.11.3. The unit of the derived adjunction in Theorem 5.11.1 is group comple-
tion.
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The homotopical heart of the proof of Theorem 5.11.1 is the May–Cohen–Segal
Approximation Theorem ([194, §6–7], [70], [270]), which we now review. This theorem
studies a version of the free Cn-algebra functor C̃n whose domain is the category of
based spaces, where the basepoint becomes the identity element in the Cn-algebra
structure. This version of the free functor has the advantage that for a connected
space X, C̃X is also a connected space; May’s Approximation Theorem identifies
C̃X in this case as a model for ΩnΣnX. Cohen (following conjectures of May) and
Segal (working independently) then extended this to non-connected spaces: the group
completion of C̃X is a model for ΩnΣnX.

For a based space X, C̃nX is formed as a quotient of

CX =
∐
Cn(m)×Σm X

m

by the equivalence relation that identifies (c, (x1, . . . ,xi ,∗, . . . ,∗)) ∈ Cn(m) ×Xm with
(c′, (x1, . . . ,xi)) ∈ Cn(i) ×Xi for c′ = Γ (c;1, . . . ,1,0, . . . ,0) where 1 denotes the iden-
tity element in Cn(1) and 0 denotes the unique element in Cn(0). This is actu-
ally an instance of the operad pushforward construction: let Idbp be the operad
with Idbp(0) = Idbp(1) = ∗ and Idbp(m) = ∅ for m > 1. The functor associated to
Idbp is the functor (−)+ that adds a disjoint basepoint with the monad structure
((−)+)+ → (−)+ that identifies the two disjoint basepoints; the category of algebras
for this monad is the category of based spaces. The functor C̃n from based spaces
to Cn-algebras is the pushforward Pf for f the unique map of operads Idbp → Cn:
formally Pf is the coequalizer described in Section 5.9, that in this case takes the form

Cn(X+) //
// CnX //

C̃nX.

As mentioned in an aside in that section (or as can be seen concretely here using the
operad multiplication on Cn directly), the endofunctor C̃n on based spaces (i.e., Uf Pf )
has the structure of a monad, and we can identify the category of Cn-spaces as the
category of algebras over the monad C̃n.

The factorization of the functor Ωn through Cn-spaces has the formal consequence
of producing a map of monads (in based spaces)

C̃n→ΩnΣn.

Formally the map is induced by the composite

C̃nX
C̃nη−−−−→ C̃nΩ

nΣnX
ξ
−→ΩnΣnX,

where η is the unit of the Σn,Ωn-adjunction and ξ is the Cn-action map. This map
has the following concrete description: an element (c, (x1, . . . ,xm)) ∈ Cn(m)×Xm maps
to the element γ : Sn→ ΣnX of ΩnΣnX given by the composite of the map

Sn→ Sn ∨ · · · ∨ Sn

associated to c (as described above) and the map

Sn � Σn{xi}+ ⊂ ΣnX
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on the i-th factor of Sn. Either using this concrete description, or following diagrams
in a formal categorical argument, it is straightforward to check that this defines a map
of monads. We can now state the May–Cohen–Segal Approximation Theorem.

Theorem 5.11.4 (May–Cohen–Segal Approximation Theorem [194, 6.1], [70, 3.3], [270,
Theorem 2]).
For any non-degenerately based space X, the map of Cn-spaces C̃nX→ΩnΣnX is group
completion.

(“Non-degenerately based” means that the inclusion of the basepoint is a cofibration.
Both C̃n and ΩnΣn preserve weak equivalences in non-degenerately based spaces,
but for other spaces, either or both may have the wrong weak homotopy type.)

From here a sketch of the proof of Theorem 5.11.1 goes as follows. Since Ωn as a
functor from based spaces to based spaces has left adjoint Σn, a check of universal
properties shows that the functor from Cn-spaces to based spaces defined by the
coequalizer

ΣnC̃nA //
//
ΣnA // Σn ⊗

Cn
A

is the left adjoint to Ωn viewed as a functor from based spaces to Cn-spaces. (In
the coequalizer, one map is induced by the Cn-action map on A and the other is
adjoint to the map of monads C̃→ΩnΣn.) Because Ωn preserves fibrations and weak
equivalences, this is a Quillen adjunction.

The main tool to study the Σn ⊗
Cn

(−),Ωn-adjunction is the two-sided monadic bar
construction, invented in [194, §9] for this purpose. Given a monad T and a right action
of T on a functor F (say, to based spaces), the two-sided monadic bar construction
is the functor on T-algebras B(F,T ,−) defined as the geometric realization of the
simplicial object

Bm(F,T ,A) = FT · · ·T︸ ︷︷ ︸
m

A,

with face maps induced by the action map FT → F, the multiplication map TT → T

and the action map TA→ A, and degeneracy maps induced by the unit map Id→ T .
In the case when F = T , the simplicial object B•(T ,T ,A) has an extra degeneracy
and the map from B•(T ,T ,A) to the constant simplicial object on A is a simplicial
homotopy equivalence (in the underlying category for T , though not generally in the
category of T-algebras).

Because geometric realization commutes with colimits and finite cartesian products,
we have a canonical isomorphism

C̃nB(C̃n,C̃n,A)→ B(C̃nC̃n,C̃n,A)

and the multiplication map C̃nC̃n→ C̃n then gives B(C̃n,C̃n,A) the natural structure
of a Cn-algebra. (See Section 5.7 for a more general discussion.) For the same reason,
the canonical map

Σn ⊗
Cn
B(C̃n,C̃n,A)→ B(Σn ⊗

Cn
C̃n,C̃n,A) = B(Σn,C̃n,A)
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is an isomorphism. The latter functor clearly3 preserves weak equivalences of Cn-
spaces A whose underlying based spaces are non-degenerately based. (Besides being
a hypothesis of the May–Cohen–Segal Approximation Theorem, non-degenerately
based here also ensures that the inclusion of the degenerate subspace (or latching
object) is a cofibration.) As a consequence of Theorem 5.7.3 it follows that when the
underlying based space of A is cofibrant (which is the case in particular when A is
cofibrant as a Cn-space), then B(C̃n,C̃n,A) is a cofibrant Cn-space. Because Σn⊗

Cn
(−)

is a Quillen left adjoint, it preserves weak equivalences between cofibrant objects, and
looking at a cofibrant approximation A′→∼ A, we see from the weak equivalences

B(Σn,C̃n,A)←∼ B(Σn,C̃n,A
′) � Σn ⊗

Cn
B(C̃n,C̃n,A

′)→∼ Σn ⊗
Cn
A′

that B(Σn,C̃n,A) models the derived functor BnA of Σn ⊗
Cn

(−) whenever A is non-
degenerately based.

To complete the argument, we need the theorem of [194, §12] that Ωn commutes up
to weak equivalence with geometric realization of (proper) simplicial spaces that are
(n− 1)-connected in each level. Then for A non-degenerately based, we have that the
vertical maps are weak equivalences of Cn-spaces

B(C̃n,C̃n,A) //

��

B(ΩnΣn,C̃n,A)

��

A ΩnB(Σn,C̃n,A)

while by the May–Cohen–Segal Approximation Theorem, the horizontal map is group
completion. This proves that the unit of the derived adjunction is group completion.

For the counit of the derived adjunction, we have from the model above that Bn is
always (n− 1)-connected and the unit

ΩnX→ΩnBnΩnX

on ΩnX is a weak equivalence. Looking at Ωn of the counit,

ΩnBnΩnX→ΩnX,

the composite with the unit is the identity on ΩnX, and so it follows that Ωn of
the counit is a weak equivalence. Thus, the counit of the derived adjunction is an
(n− 1)-connected cover map.

5.12 E∞ algebras in rational and p-adic homotopy theory

In the 1960’s and 1970’s, Quillen [228] and Sullivan [284, 286] showed that the rational
homotopy theory of simply connected spaces (or simplicial sets) has an algebraic model

3 At the time when May wrote the argument, this was far from clear: some of the first observations about
when geometric realization of simplicial spaces preserves levelwise weak equivalences were developed
in [194, §11] precisely for this argument.
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in terms of rational differential graded commutative algebras or coalgebras. In the
1990’s, I proved a mostly analogous theorem relating E∞ differential graded algebras
and p-adic homotopy theory and a bit later some results for using E∞ differential
graded algebras or E∞ ring spectra to identify integral homotopy types. In this section,
we summarize this theory following mostly the memoir of Bousfield–Gugenheim [57],
and the papers [181]4 and [180]. In what follows k denotes a commutative ring, which
is often further restricted to be a field.

In both the rational commutative differential graded algebra case and the E∞
k-algebra case, the theory simplifies by working with simplicial sets instead of spaces,
and the functor is some variant of the cochain complex. Sullivan’s approach to rational
homotopy theory uses a rational version of the de Rham complex, originally due
to Thom (unpublished), consisting of forms that are polynomial on simplices and
piecewise matched on faces:

Definition 5.12.1.The algebra∇∗[n] of polynomial forms on the standard simplex ∆[n]
is the rational commutative differential graded algebra free on generators t0, . . . , tn
(of degree zero), dt0, . . . ,dtn (of degree one) subject to the relations t0 + · · · + tn = 1
and dt0 + · · ·+ dtn = 0 (as well as the differential relation implicit in the notation).

Viewing t0, . . . , tn as the barycentric coordinate functions on ∆[n] determines
their behavior under face and degeneracy maps, making ∇∗[•] a simplicial rational
commutative differential graded algebra.

Definition 5.12.2. For a simplicial set X, the rational de Rham complex A∗(X) is
the rational graded commutative algebra of maps of simplicial sets from X to ∇∗[•],
or equivalently, the end over the simplex category

A∗(X) := ∆opSet(X,∇∗[•]) =
∫

∆op
Set(Xn,∇∗[n]) =

∫
∆op

∏
Xn

∇∗[n]

(the last formula indicating how to regard A∗(X) as a rational commutative differential
graded algebra).

More concretely, A∗(X) is the rational commutative differential graded algebra
where an element of degree q consists of a choice of element of ∇q[n] for each non-
degenerate n-simplex of X (for all n) which agree under restriction by face maps, with
multiplication and differential done on each simplex. (When X is a finite simplicial
complex A∗(X) also has a Stanley–Reisner ring style description; see [284, G.i)].) The
simplicial differential graded Q-module ∇q[n] is a contractible Kan complex for each
fixed q (the extension lemma [57, 1.1]) and is acyclic in the sense that the inclusion of
the unit Q→∇∗[n] is a chain homotopy equivalence for each fixed n (the Poincaré
lemma [57, 1.3]). These formal properties imply that the cohomology of A∗(X) is
canonically naturally isomorphic to H ∗(X;Q), the rational cohomology of X (even

4 In the published version, in addition to several other unauthorized changes, the copy editors changed
the typefaces with the result that the same symbols are used for multiple different objects or concepts;
the preprint version available at https://pages.iu.edu/∼mmandell/papers/einffinal.pdf does not have these
changes and should be much more readable.
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uniquely naturally isomorphic, relative to the canonical isomorphism Q � A∗(∆[0])).
The canonical isomorphism can be realized as a chain map to the normalized cochain
complex C∗(X;Q) defined in terms of integrating differential forms; see [57, 1.4,2.1,2.2].

In the p-adic case, we can use the normalized cochain complex C∗(X;k) directly
as it is naturally an E∞ k-algebra. In the discussion below, we use the E∞ k-algebra
structure constructed by Berger–Fresse [37, §2.2] for the Barratt–Eccles operad E
(the normalized chains of the Barratt–Eccles operad of categories or simplicial sets
described in Example 5.3.3). Hinich–Schechtmann [123] and (independently) Smirnov
[279] appear to have been the first to explicitly describe a natural operadic algebra
structure on cochains; McClure–Smith [205] describes a natural E∞ structure that
generalizes classical ∪i product and bracket operations. The “cochain theory” theory
of [179] shows that all these structures are equivalent in the sense that they give
naturally quasi-isomorphic functors into a common category of E∞ k-algebras, as
does the polynomial de Rham complex functor A∗ when k = Q.

Both A∗(X) and C∗(X;k) fit into adjunctions of the contravariant type that send
colimits to limits. Concretely, for a rational commutative differential graded algebra A
and an E∞ k-algebra E, define simplicial sets by the formulas

T (A) :=C
Q

(A,∇∗[•]), U (E) := Ek(E,C
∗(∆[•])),

where C
Q

denotes the category of rational commutative differential graded algebras
and Ek denotes the category of E∞ k-algebras (over the Barratt–Eccles operad). An
easy formal argument shows that

A∗ : ∆opSet //
oo C

op
Q

:T , C∗ : ∆opSet //
oo E

op
k :U,

are adjunctions. As discussed in Section 5.8, both C
Q

and Ek have closed model struc-
tures with weak equivalences the quasi-isomorphisms and fibrations the surjections.
Because both A∗ and C∗ preserve homology isomorphisms and convert injections to
surjections, these are Quillen adjunctions. The main theorems of [57] and [181] then
identify subcategories of the homotopy categories on which the adjunction restricts to
an equivalence.

Before stating the theorems, first recall the H∗(−;k)-local model structure on sim-
plicial sets: this has cofibrations the inclusions and weak equivalences the H∗(−;k)
homology isomorphisms. When k is a field, the weak equivalences depend only on
the characteristic, and we also call this the rational model structure (in the case of
characteristic zero) or the p-adic model structure (in the case of characteristic p > 0);
we call the associated homotopy categories, the rational homotopy category and p-adic
homotopy category, respectively. As with any localization, the local homotopy category
is the homotopy category of local objects (that is to say, the fibrant objects): in the case
of rational homotopy theory, the local objects are the Kan complexes of the homotopy
type of rational spaces. In p-adic homotopy theory, the local objects are the Kan
complexes that satisfy a p-completeness property described explicitly in [54, §5,7–8].

We say that a simplicial set X is finite H∗(−;k)-type (or finite rational type when
k is a field of characteristic zero or finite p-type when k is a field of characteristic
p > 0) when H∗(X;k) is finitely generated over k in each degree (or, equivalently if



5.12 E∞ algebras in rational and p-adic homotopy theory 243

k is a field, when H ∗(X;k) is finite dimensional in each degree). Similarly a rational
commutative differential graded algebra or E∞ k-algebra A is finite type when its
homology is finitely generated over k in each degree. It is simply connected when the
inclusion of the unit induces an isomorphism k→H0(A), H1(A) � 0, and Hn(A) � 0
for n < 0 (with the usual cohomological grading convention that Hn(A) := H−n(A)).
With this terminology, the main theorem of [57] is the following:

Theorem 5.12.3 ([57, Section 8, Theorem 9.4]). The polynomial de Rham complex
functor, A∗ : ∆opSet→C op

Q
, is a left Quillen adjoint for the rational model structure on

simplicial sets. The left derived functor restricts to an equivalence of the full subcategory
of the rational homotopy category consisting of the simply connected simplicial sets of
finite rational type and the full subcategory of the homotopy category of rational commuta-
tive differential graded algebras consisting of the simply connected rational commutative
differential graded algebras of finite type.

For the p-adic version below, we need to take into account Steenrod operations. For
k = Fp, the Steenrod operations arise from the coherent homotopy commutativity of
the p-fold multiplication, which is precisely encoded in the action of the E∞ operad.
Specifically, the p-th complex E(p) of the operad is a k[Σp]-free resolution of k, and
by neglect of structure, we can regard it as a k[Cp]-free resolution of k where Cp
denotes the cyclic group of order p. The operad action induces a map

E(p)⊗k[Cp] (C∗(X;k))(p)→E(p)⊗k[Σp] (C∗(X;k))(p)→ C∗(X;k).

The homology of E(p)⊗k[Cp] (C∗(X;k))(p) is a functor of the homology of C∗(X;k)
and the Steenrod operations P s are precisely the images of certain classes under this
map; see, for example, [198, 2.2]. This process works for any E∞ k-algebra, not just the
cochains on spaces, to give natural operations on the homology of E-algebras, usually
called Dyer–Lashof operations. The numbering conventions for these are opposite
those of the Steenrod operations: on the cohomology of C∗(X;Fp), the Dyer–Lashof
operation Qs performs the Steenrod operation P −s. If k is of characteristic p but not
Fp, the operations constructed this way are Fp-linear but satisfy Qs(ax) = φ(a)Qs(x)
for a ∈ k, where φ denotes the Frobenius automorphism of k.

The Fp cochain algebra of a space has the special property that the Steenrod
operation P 0 = Q0 is the identity operation on its cohomology; this is not true of
the zeroth Dyer–Lashof operation in general. Indeed for a commutative Fp-algebra
regarded as E∞ Fp-algebra, Q0 is the Frobenius. (That Q0 is the identity for the
Fp-cochain algebra of a space is related to the fact that it comes from a cosimplicial
Fp-algebra where the Frobenius in each degree is the identity.) So when X is finite
p-type, C∗(X;k) in each degree has a basis that is fixed by Q0. We say that a finite
type E∞ k-algebra is spacelike when in each degree its homology has a basis that is
fixed by Q0.

Theorem 5.12.4 ([181, Main Theorem, Theorem A.1]). The cochain complex with
coefficients in k, C∗(−;k) : ∆opSet→ E op

k , is a left Quillen adjoint for the H∗(−;k)-local
model structure on simplicial sets. If k = Q or k is characteristic p and 1−φ is surjective
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on k, then the left derived functor restricts to an equivalence of the full subcategory of the
H∗(−;k)-local homotopy category consisting of the simply connected simplicial sets of finite
H∗(−;k)-type and the full subcategory of the homotopy category of E∞ k-algebras consisting
of the spacelike simply connected E∞ k-algebras of finite type.

Given the Quillen equivalence between rational commutative differential graded
algebras and E∞ Q-algebras (Theorem 5.9.5) and the natural quasi-isomorphism
(zigzag) between A∗(−) and C∗(−;Q) [179, p. 549], the rational statement in Theorem
5.12.4 is equivalent to Theorem 5.12.3. The Sullivan theory in the latter often includes
observations on minimal models. A simply connected finite type rational commutative
differential graded algebra A has a cofibrant approximation A′→ A whose underlying
graded commutative algebra is free and such that the differential of every element is
decomposable (i.e., is a sum of terms, all of which have word length greater than 1 in
the generators); A′ is called a minimal model and is unique up to isomorphism. As a
consequence, simply connected simplicial sets of finite rational type are rationally
equivalent if and only if their minimal models are isomorphic. The corresponding
theory also works in the context of E∞ Q-algebras with the analogous definitions and
proofs. The corresponding theory does not work in the context of E∞ algebras in
characteristic p for reasons closely related to the fact that unlike the rational homotopy
groups, the p-adic homotopy groups of a simplicial set are not vector spaces.

The equivalences in Theorems 5.12.3 and 5.12.4 also extend to the nilpotent simpli-
cial sets of finite type, but the corresponding category of E∞ k-algebras does not have
a known intrinsic description in the p-adic homotopy case; in the rational case, the
corresponding algebraic category consists of the finite type algebras whose homology
is zero in negative cohomological degrees and whose H0 is isomorphic as a Q-algebra
to the cartesian product of copies of Q (cf. [182, §3]).

For other fields not addressed in the second part of Theorem 5.12.4, the adjunction
does not necessarily restrict to the indicated subcategories and even when it does, it is
never an equivalence. To be an equivalence, the unit of the derived adjunction would
have to be an H∗(−;k)-isomorphism for simply connected simplicial sets of finite type.
If k ,Q is characteristic zero, then the right derived functor of U takes C∗(S2;k) to a
simplicial set with π2 isomorphic to k; if k is characteristic p, then the right derived
functor of U takes C∗(S2;k) to a simplicial set with π1 isomorphic to the cokernel of
1−φ. See [181, Appendix A] for more precise results. Because the algebraic closure of
a field k of characteristic p does have 1−φ surjective, even when C∗(−;k) is not an
equivalence, it can be used to detect p-adic equivalences. This kind of observation
extends to the case k = Z:

Theorem 5.12.5 ([180, Main Theorem]). Finite type nilpotent spaces or simplicial sets X
and Y are weakly equivalent if and only if C∗(X;Z) and C∗(Y ;Z) are quasi-isomorphic
as E∞ Z-algebras.

Using the spectral version of Theorem 5.12.4 in [181, Appendix C], the proof of the
previous theorem in [180] extends to show that when X and Y are finite nilpotent
simplicial sets then X and Y are weakly equivalent if and only if their Spanier–
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Whitehead dual spectra are weakly equivalent as E∞ ring spectra. (This was the
subject of a talk by the author at the Newton Institute in December 2002.)

We use the rest of the section to outline the argument for Theorems 5.12.3 and 5.12.4,
using the notation of the latter. We fix a field k, which is either Q or is characteristic
p > 0 and has 1−φ surjective. We write C∗ for C∗(−;k) or when k = Q and we are
working in the context of Theorem 5.12.3, we understand C∗ as A∗. We also use C∗ to
denote the derived functor and write U for the derived functor of its adjoint. The idea
of the proof, going back to Sullivan, is to work with Postnikov towers, and so the first
step is to find cofibrant approximations for C∗(K(π,n)). For k = Q, this is easy since
H ∗(K(Q,n);Q) is the free graded commutative algebra on a generator in degree n.

Proposition 5.12.6. If k = Q then C∗(K(Q,n)) is quasi-isomorphic to the free (E∞ or
commutative differential graded) Q-algebra on a generator in cohomological degree n.

We use the notation Ek[n] to denote the free E∞ k-algebra on a generator in
cohomological degree n. When k is characteristic p, there is a unique map in the
homotopy category from Ek[n]→ C∗(K(Z/p,n)) that sends the generator xn to a
class in representing the image of the tautological element of Hn(K(Z/p,n);Z/p).
Unlike the characteristic zero case, this is not a quasi-isomorphism since Q0[in] = [in]
in H ∗(C∗(K(Z/p,n))), but Q0[xn] , [xn] in H ∗(Ek[n]). Let Bn be the homotopy
pushout of a map Ek[n] → Ek[n] sending the generator to a class representing
[xn] −Q0[xn] and the map Ek[n]→ k sending the generator to 0. Then the map
Ek[n]→ C∗(K(Z/p,n)) factors through a map Bn→ C∗(K(Z/p,n)). (The map in the
homotopy category turns out to be independent of the choices.) The following is a key
result of [181], whose proof derives from a calculation of the relationship between the
Dyer–Lashof algebra and the Steenrod algebra.

Theorem 5.12.7 ([181, 6.2]). Let k be a field of characteristic p > 0. Then

Bn→ C∗(K(Z/p,n))

is a cofibrant approximation.

(As suggested by the hypothesis, we do not need 1 − φ to be surjective in the
previous theorem; indeed, the easiest way to proceed is to prove it in the case k = Fp

and it then follows easily for all fields of characteristic p by extension of scalars.)
The two previous results can be used to calculate U(C∗(K(Q,n))) and

U(C∗(K(Z/p,n))). In the rational case,

U(C∗(K(Q,n))) 'U (EQ[n]) = Z(Cn(∆[•])),

the simplicial set of n-cocycles of C∗(∆[•];Q); this is the original model for K(Q,n),
and a straightforward argument shows that the unit map K(Q,n)→ K(Q,n) is a weak
equivalence (the identity map with this model). In the context of Theorem 5.12.3, the
same kind of argument is made in [57, 10.2]. In the p-adic case, we likewise have that
U (Ek[n]) is the original model for K(k,n), and so we get a fiber sequence

ΩK(k,n)→U(K(Z/p,n))→ K(k,n)→ K(k,n).
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The map K(k,n)→ K(k,n) is calculated in [181, 6.3] to be the map that on πn induces
1−φ. The kernel of 1−φ is Fp and the unit map K(Z/p,n)→U(C∗(K,Z/p,n)) is an
isomorphism on πn. As a consequence, when 1−φ is surjective (as we are assuming),
the unit map is a weak equivalence for K(Z/p,n).

The game now is to show that for all finite type simply connected (or nilpotent)
simplicial sets, the derived unit map X→UC∗(X) is a rational or p-adic equivalence.
The next result tells how to construct a cofibrant approximation for a homotopy
pullback; it is not a formal consequence of the Quillen adjunction, but rather a version
of the Eilenberg–Moore theorem.

Proposition 5.12.8 ([57, §3], [181, §3]). Let

W //

��

Y

��

Z // X

be a homotopy fiber square of simplicial sets. If X,Y ,Z are finite H∗(−;k)-type and X is
simply connected, then

C∗(X) //

��

C∗(Y )

��

C∗(Z) // C∗(W )

is a homotopy pushout square of E∞ k-algebras or rational commutative differential graded
algebras.

Since we can write K(Z/pm,n) as the homotopy fiber of a map

K(Z/pm−1,n)→ K(Z/p,n+ 1),

we see that the unit of the derived adjunction is a weak equivalence also for K(Z/pm,n)
(when k is characteristic p). Likewise, since products are homotopy pullbacks, we also
get that the unit of the derived adjunction is a weak equivalence for K(A,n) when A is
a Q vector space (when k = Q) or when A is a finite p-group (when k is characteristic
p). Although also not a formal consequence of the adjunction, it is elementary to see
that when a simplicial set X is the homotopy limit of a sequence Xj and the map
colimH ∗(Xj ;k)→H ∗(X;k) is an isomorphism, then C∗(X) is the homotopy colimit
of C∗(Xj ) and UC∗(X) is the homotopy limit of UC∗(Xj ). It follows that for K(Z∧p ,n),
the unit of the derived adjunction is a weak equivalence (when k is characteristic p).
For any finitely generated abelian group, the map K(A,n)→ K(A⊗Q,n) is a rational
equivalence and the map K(A,n)→ K(A∧p ,n) is a p-adic equivalence. Putting these
results and tools all together, we see that the unit of the derived equivalence is an
H∗(−;k) equivalence for any X that can be built as a sequential homotopy limit
holimXj where X0 = ∗, the connectivity of the map X→ Xj goes to infinity, and each
Xj+1 is the homotopy fiber of a map Xj → K(πj+1,n) for πj+1 a finitely generated
abelian group, or the rationalization (when k = Q) or p-completion (when k is
characteristic p) of a finitely generated abelian group. In particular, for a simply
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connected simplicial set, applying this to the Postnikov tower, we get the following
result.

Theorem 5.12.9. Assume k = Q or k is characteristic p > 0 and 1−φ is surjective. If
X is a simply connected simplicial set of finite H∗(−;k)-type, then the unit of the derived
adjunction X→UC∗(X) is an H∗(−;k)-equivalence.

The previous theorem formally implies that C∗ induces an equivalence of the
H∗(−;k)-local homotopy category of simply connected simplicial sets of finite H∗(−;k)-
type with the full subcategory of the homotopy category E∞ k-algebras or rational
commutative differential graded algebras of objects in its image. The remainder of
Theorems 5.12.3 and 5.12.4 is identifying this image subcategory. In the case when
k = Q, it is straightforward to see that a finite type simply connected algebra has a
cofibrant approximation that U turns into a simply connected principal rational finite
type Postnikov tower. The argument for k of characteristic p is analogous, but more
complicated; see [181, §7].





6 Commutative ring spectra

by Birgit Richter

6.1 Introduction

Since the 1990s we have had several symmetric monoidal categories of spectra at our
disposal whose homotopy category is the stable homotopy category. The monoidal
structure is usually denoted by ∧ and is called the smash product of spectra. So
since then we can talk about commutative monoids in any of these categories — these
are commutative ring spectra. Even before such symmetric monoidal categories were
constructed, the consequences of their existence were described. In [296, §2] Friedhelm
Waldhausen outlines the role of “rings up to homotopy”. He also coined the expression
“brave new rings” in a 1988 talk at Northwestern University.

So what is the problem? Why don’t we just write down nice commutative models of
our favorite homotopy types and be done with it? Why does it make sense to have a
whole chapter about this topic?

In algebra, if someone tells you to check whether a given ring is commutative, you
can sit down and check the axiom for commutativity and you should be fine. In stable
homotopy theory the problem is more involved, since strict commutativity may only
be satisfied by some preferred point set level model of the underlying associative ring
spectrum and the operadic incarnation of commutativity is an extra structure rather
than a condition.

There is one class of commutative ring spectra that is easy to construct. If you
take singular cohomology with coefficients in a commutative ring R, then this is
represented by the Eilenberg–Mac Lane spectrum HR and this can be represented by
a commutative ring spectrum.

So it would be nice if we could have explicit models for other homotopy types
that come naturally equipped with a commutative ring structure. Sometimes this is
possible. If you are interested in real (or complex) vector bundles over your space, then
you want to understand real (or complex) topological K-theory, and Michael Joachim
[136, 137] for instance has produced explicit analytically flavored models for periodic
real and complex topological K-theory with commutative ring structures.

There are a few general constructions that produce commutative ring spectra for
you. For instance, the construction of Thom spectra often gives rise to commutative
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ring spectra. We will discuss this important class of examples in Section 6.4. A classical
construction due to Graeme Segal also produces small nice models of commutative
ring spectra (see Section 6.5).

Quite often, however, the spectra that we like are constructed in a synthetic way: You
have some commutative ring spectrum R and you kill a regular sequence of elements
in its graded commutative ring of homotopy groups, (x1,x2, . . . ), xi ∈ π∗(R), and you
consider a spectrum E with homotopy groups π∗(E) � π∗(R)/(x1,x2, . . . ). Then it is
not clear that E is a commutative ring spectrum.

A notorious example is the Brown–Peterson spectrum, BP . Take the complex
cobordism spectrum MU . Its homotopy groups are

π∗(MU ) = Z[x1,x2, . . . ],

where each xi is a generator in degree 2i. If you fix a large even degree, then you have
a lot of possible elements in that degree, so you might wish to consider a spectrum
with sparser homotopy groups. Using the theory of (commutative, 1-dimensional)
formal group laws you can do that: If you consider a prime p, then there is a spectrum,
called the Brown–Peterson spectrum, that corresponds to p-typical formal group laws.
It can be realized as the image of an idempotent on MU and satisfies

π∗(BP ) �Z(p)[v1,v2, . . . ],

but now the algebraic generators are spread out in an exponential manner: The degree
of vi is 2pi − 2. You can actually choose the vi as the xpi−1, so you can think of BP
as a quotient of MU in the above sense. Since its birth in 1966 [60] its multiplicative
properties have been an important issue. In [29], for instance, it was shown that BP
has some partial coherence for homotopy commutativity, but in 2017 Tyler Lawson
[152] finally showed that at the prime 2 BP is not a commutative ring spectrum! For
the non-existence of E∞-structures on BP at odd primes see [271].

There are even worse examples: If you take the sphere spectrum S and you try
to kill the non-regular element 2 ∈ π0(S) then you get the mod-2 Moore spectrum.
That isn’t even a ring spectrum up to homotopy. You can also kill all the generators
vi ∈ π∗(BP ) including p = v0, leaving only one vn alive. The resulting spectrum is the
connective version of Morava K-theory, k(n). At the prime 2 this isn’t even homotopy
commutative. In fact, Pazhitnov, Rudyak and Würgler show more [219, 303]: If π0 of a
homotopy commutative ring spectrum has characteristic two, then it is a generalized
Eilenberg–Mac Lane spectrum. Recent work of Mathew, Naumann and Noel puts
severe restrictions on finite E∞-ring spectra [188].

Quite often, we end up working with ideals in the graded commutative ring of
homotopy groups, but as we saw above, this is not a suitable notion of ideal. There
is a notion of an ideal in the context of (commutative) ring spectra [131] due to Jeff
Smith, but still several algebraic constructions do not have an analog in spectra.

So how can you determine whether a given spectrum is a commutative ring spectrum
if you don’t have a construction that tells you right away that it is commutative? This
is where obstruction theory comes into the story.
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There is an operadic notion of an E∞-ring spectrum that goes back to Boardman–
Vogt and May. Comparison theorems [178, 262] then tell you whether these more
complicated objects are equivalent to commutative ring spectra. In the categories of
symmetric spectra, orthogonal spectra and S-modules they are.

Obstruction theory might help you with a decision whether a spectrum carries
a commutative monoid structure: One version [27] gives obstructions for lifting the
ordinary Postnikov tower to a Postnikov tower that lives within the category of
commutative ring spectra. The other kind finds some obstruction classes that tell
you that you cannot extend some partial bits and pieces of a nice multiplication to a
fully fledged structure of an E∞-ring spectrum or that some homology or homotopy
operation that you observe contradicts such a structure. This can be used for a negative
result (as in [152]) or for positive statements: There are results by Robinson [246] and
Goerss–Hopkins [106, 107] that tell you that you have a (sometimes even unique)
E∞-ring structure on your spectrum if all the obstruction groups vanish. Most notably
Goerss and Hopkins used obstruction theory to prove that the Morava stabilizer
groups acts on the corresponding Lubin–Tate spectrum via E∞-morphisms [107].

The algebraic behavior on the level of homotopy groups can be quite deceiving:
complexification turns a real vector bundle into a complex vector bundle. This induces
a map π∗(KO)→ π∗(KU ) which can be realized as a map of commutative ring spectra
c : KO→ KU . On homotopy groups we get

π∗(c) : π∗(KO) = Z[η,y,ω±1]/ (2η,η3,ηy,y2 − 4w)→Z[u±1] = π∗(KU ). (6.1.1)

Here the degrees are |η| = 1, |y| = 4, |w| = 8, |u| = 2 and y is sent to 2u2. So on the
algebraic level c is horrible. But John Rognes showed that the conjugation action on
KU turns the map c : KO → KU into a C2-Galois extension of commutative ring
spectra!

Even for ordinary rings, viewing a (commutative) ring R as a (commutative) ring
spectrum via the Eilenberg–Mac Lane spectrum functor changes the situation com-
pletely. The ring R has a characteristic map χ : Z→ R because the ring of integers is
the initial ring. As a ring spectrum, HZ is far from being initial. The map Hχ can be
precomposed with the unit map of HZ:

S
η
//HZ

Hχ
//HR,

and the sphere spectrum S is the initial ring spectrum! Now there is a lot of space
between the sphere and any ring. I will discuss two consequences that this has: There
is actually algebraic geometry happening between the sphere spectrum and the prime
field Fp : There is a Galois extension of commutative ring spectra (see 6.8.1) A→HFp!

Another feature is that there exist differential graded algebras A∗ and B∗ that are not
quasi-isomorphic, but whose associated algebra spectra over an Eilenberg–Mac Lane
spectrum [275] are equivalent as ring spectra [80]. Similar phenomena happen if you
consider differential graded E∞-algebras: there are non quasi-isomorphic ones whose
associated commutative algebras over an Eilenberg–Mac Lane spectrum [236] are
equivalent as commutative ring spectra [33].
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Content

The structure of this overview is as follows: We start with some basic features of
commutative ring spectra and their model category structures in Section 6.2. The most
basic way to relate classical algebra to brave new algebra is via the Eilenberg–Mac Lane
spectrum functor. We study chain algebras and algebras over Eilenberg–Mac Lane
ring spectra in Section 6.3. As you can study the group of units of a ring we consider
units of ring spectra and Thom spectra in Section 6.4. In Section 6.5 we present
a construction going back to Segal. Plugging in a bipermutative category yields a
commutative ring spectrum.

In Section 6.6 we introduce topological Hochschild homology and some of its
variants and topological André–Quillen homology. In Section 6.7 we discuss some
versions of obstruction theory that tell you whether a given multiplicative cohomology
theory can be represented by a strict commutative model.

Some concepts from algebra translate directly to spectra but some others don’t.
We discuss the different concepts of étale maps for commutative algebra spectra in
Section 6.8. Picard and Brauer groups for commutative ring spectra are important
invariants and feature in Section 6.9.

Disclaimers

For more than 30 years, the phrase commutative ring spectrum meant a commutative
monoid in the homotopy category of spectra. Since the 1990s this has changed. At the
beginning of this new era people were careful not to use this name, in order to avoid
confusion with the homotopy version. In this paper we reserve the phrase commutative
ring spectrum for a commutative monoid in some symmetric monoidal category of
spectra.

The second disclaimer is that for this paper a space is always compactly generated
weak Hausdorff. I denote the corresponding category just by Top.

Last but not least: Of course, this overview is not complete. I had to omit important
aspects of the field due to space constraints. Most prominently probably is the omission
of topological cyclic homology and its wonderful applications to algebraic K-theory.

I try to give adequate references, but often it was just not feasible to describe the
whole development of a topic and much worse, I probably have forgotten to cite
important contributions. If you read this and it affects you, then I can only apologize.
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6.2 Features of commutative ring spectra

Some basics

Before we actually start with model structures, we state some basic facts about
commutative ring spectra.

Let R be a commutative ring spectrum. Then the category of R-module spectra
is closed symmetric monoidal: For two such R-module spectra M,N the smash
product over R, M ∧RN , is again an R-module and the usual axioms of a symmetric
monoidal category are satisfied. There is an R-module spectrum FR(M,N ), the
function spectrum of R-module maps from M to N .

We denote the category of R-module spectra byMR. The category of commutative
R-algebras is the category of commutative monoids inMR and we denote it by CR.

By definition, every object A of CR receives a unit map from R and hence R is initial
in CR. In particular, the sphere spectrum is the initial commutative ring spectrum.
Every discrete ring is a Z-algebra; similarly, every (commutative) ring spectrum is a
(commutative) S-algebra. If R is a commutative ring spectrum, then the category of
commutative R-algebras is isomorphic to the category of commutative ring spectra
under R, i.e., the category of commutative ring spectra A with a distinguished map
η : R→ A in that category.

We allow the trivial R-algebra corresponding to the one-point spectrum ∗ and this
spectrum is a terminal object in CR.

In any symmetric monoidal category (C,⊗,1, τ) the coproduct of two commutative
monoids A and B in C is A⊗B. So, for two commutative R-algebras A and B, their
coproduct is A∧R B.

Model structures on commutative monoids

I will assume that you are familiar with the concept of model categories and that you
have seen some examples and read Chapter 3 in this book. Good general references
are Hovey’s [130] and Hirschhorn’s [124] books. You could also just skip this section and
have in mind that there are some serious model category issues lurking in the dark.

For this section I will mainly focus on two models for spectra: symmetric spectra
[133] and S-modules [94]. They are different concerning their model structures. In the
model structure in [133] on symmetric spectra the sphere spectrum is cofibrant, whereas
in the one for S-modules it is not, but all objects are fibrant.

The model structures on commutative monoids in either of the categories [94,
133] are special cases of a right induced model structure: We have a functor PR from
R-module spectra to commutative R-algebra spectra assigning the free commutative
R-algebra spectrum on M to any R-module spectrum M : explicitly,

PR(M) =
∨
n>0

M∧Rn/Σn.

The symbol PR should remind you of a polynomial algebra. This functor has a right
adjoint, the forgetful functor U . In a right-induced model structure one determines
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the fibrations and weak equivalences by the right adjoint functor. In our cases, a map
of commutative R-algebra spectra is a fibration or a weak equivalence if it is one in
the underlying category of R-module spectra. Note that establishing right induced
model structures on commutative monoids in some model category does not always
work. The standard example is the category of Fp-chain complexes (say p is an odd
prime). Then the chain complex D

2 is acyclic, having Fp in degrees 1 and 2 with
the identity map as differential, but the free graded commutative monoid generated
by it is Λ

Fp
(x1)⊗Fp[x2] with |xi | = i and the induced differential is determined by

d(x2) = x1 and the Leibniz rule. But then d(xp2) is a cycle that is not a boundary, so
the resulting object is not acyclic.

If R is a commutative S-algebra in the setting of EKMM [94], then the categories
of associative R-algebras and of commutative R-algebras possess a right induced
model structure [94, Corollary VII.4.10]. The existence of the model structure for
commutative monoids is a special case of the existence of right-induced model
structures for T-algebras [94, Theorem VII.4.9], where T is a continuous monad on
the category of R-module spectra that preserves reflexive coequalizers and satisfies the
cofibration hypothesis [94, VII.4]. The category of commutative S-algebras is identified
[94, Proposition II.4.5] with the category of algebras for the monad PS as above on the
category of S-modules.

In diagram categories such as symmetric spectra and orthogonal spectra the
situation is different: In the standard model structures on these categories the sphere
spectrum is cofibrant. If one were to take a right-induced model structure on the
category of commutative monoids, i.e., the model structure such that a map of
commutative ring spectra f : A→ B is a fibration or weak equivalence if it is one in
the underlying category, then the sphere would still be cofibrant. If we take a fibrant
replacement of the sphere S → Sfib, then in particular Sfib would be fibrant in the
model category of symmetric spectra; hence it would be an Ω-spectrum and its zeroth
level would be a strictly commutative model for QS0. However, Moore shows [212,
Theorem 3.29] that this would imply that QS0 has the homotopy type of a product of
Eilenberg–Mac Lane spaces — but this is false.

The usual way to avoid this problem is to consider a positive model structure
on SpΣ (see [178, Definition 6.1] for the general approach). Here the positive level
fibrations (weak equivalences) are maps f ∈ SpΣ(X,Y ) such that f (n) is a fibration
(weak equivalence) for all levels n > 1. The positive cofibrations are then cofibrations
in SpΣ that are isomorphisms in level zero. The positive stable model category is then
obtained by a Bousfield localization that forces the stable equivalences to be the weak
equivalences and the right-induced model structure on the commutative monoids in
SpΣ then has the desired properties.

There is another nice model for connective spectra, given by Γ-spaces [268, 172].
This category is built out of functors from finite pointed sets to spaces, so it is a
very hands-on category with explicit constructions. It is also a symmetric monoidal
category with a suitable model structure. We refer to [172, 264] for background on this.
Its (commutative) monoids are called (commutative) Γ-rings. Beware that commutative
Γ-rings, however, do not model all connective commutative ring spectra. Tyler Lawson
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proves in [151] that commutative Γ-rings satisfy a vanishing condition for Dyer–Lashof
operations of positive degree on classes in their zeroth mod-p-homology (for all
primes p) and that for instance the free E∞-ring spectrum generated by S

0 cannot be
modeled as a commutative Γ-ring.

Behavior of the underlying modules

In the setting of EKMM it is shown that the underlying R-modules of cofibrant
commutative R-algebras have a well-behaved smash product in the derived category
of R-modules:

Theorem 6.2.1 [94, Theorem VII.6.7]. If A and B are two cofibrant commutative
R-algebras, and if ϕA : ΓA −→∼ A and ϕB : ΓB −→∼ B are chosen cell R-module spectra
approximations then

ϕA ∧R ϕB : ΓA∧R ΓB→ A∧R B

is a weak equivalence.

Brooke Shipley developed a model structure for commutative symmetric ring spectra
in [274] in which the underlying symmetric spectrum of a cofibrant commutative ring
spectrum is also cofibrant as a symmetric spectrum [274, Corollary 4.3].

She starts with introducing a different model structure on symmetric spectra. Let M
denote the class of monomorphisms of symmetric sequences in pointed simplicial sets
and let S ⊗M denote the set {S ⊗ f , f ∈M}, where ⊗ denotes the tensor product of
symmetric sequences. An S-cofibration is a morphism in (S ⊗M)-cof, i.e., a morphism
in SpΣ that has the left lifting property with respect to maps that have the right lifting
property with respect to S⊗M . She shows that the classes of S-cofibrations and stable
equivalences determine a model structure with the S-fibrations being the class of
morphisms with the right lifting property with respect to S-cofibrations that are also
stable equivalences [274, Theorem 2.4]. This model structure was already mentioned
in [133, 5.3.6]. Shipley proves that this model structure is cofibrantly generated, is
monoidal and satisfies the monoid axiom [274, 2.4, 2.5].

Note that symmetric spectra are S-modules in symmetric sequences. This allows for
a version of an R-model structure for every associative symmetric ring spectrum R with
R-cofibrations, R-fibrations and stable equivalences [274, Theorem 2.6]. In the positive
variant of this model structure the positive R-cofibrations are R-cofibrations that are
isomorphisms in level zero. Together with the stable equivalences this determines the
positive R-model structure.

The corresponding right induced model structure on commutative R-algebra spectra
for a commutative symmetric ring spectrum R is then the convenient model structure:
The weak equivalences are stable equivalences, the fibrations are positive R-fibrations
and the cofibrations are determined by the structure.

She then shows a remarkable property of this model structure on commutative
R-algebra spectra:
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Theorem 6.2.2 [274, Corollary 4.3]. If A is cofibrant as a commutative R-algebra then
A is R-cofibrant in the R-model structure. If A is fibrant as a commutative R-algebra, then
A is fibrant in the positive R-model structure on R-module spectra.

The positive R-model structure ensures that R is not cofibrant; hence cofibrant
commutative R-algebras will not be positively R-cofibrant!

Comparison, rigidification and En-structures

Stefan Schwede proves [262, Theorem 5.1] that the homotopy category of commutative
S-algebras from [94] is equivalent to the homotopy category of commutative symmetric
ring spectra by establishing a Quillen equivalence between the corresponding model
categories. In [178, Theorem 0.7] the analogous comparison result is proven for
commutative orthogonal ring spectra and commutative symmetric ring spectra.

Even before any symmetric monoidal category of spectra was constructed, the
notion of operadically defined E∞-ring spectra [199] was available. An E∞-structure
on a spectrum is a multiplication that is homotopy commutative in a coherent way.
See Chapter 5 of this book for background on operads and their role in the study of
spectra with additional structure.

There is an explicit comparison of the good old E∞-ring spectra and commutative
ring spectra, see [94, Proposition II.4.5] or [178, Remark 0.14]; in particular, every
E∞-ring spectrum R̃ can be rigidified to a commutative ring spectrum R in such a
way that the homotopy type is preserved.

There are several popular E∞-operads that will show up later: for instance the
linear isometries operad (see (6.4.3)) and the Barratt–Eccles operad. The n-ary part
of the latter is easy to describe: You take O(n) = EΣn, a contractible space with
free Σn-action. For compatibility reasons it is advisable to take the realization of the
standard simplicial model of EΣn whose set of q-simplices is (Σn)q+1.

An operad with a nice geometric description is the little m-cubes operad, that in
arity n consists of the space of n-tuples of linearly embedded m-cubes in the standard
m-cube with disjoint interiors and with axes parallel to that of the ambient cube
[49, Example 5]. We call this (and every equivalent) operad in spaces Em. For m = 1
this operad parametrizes A∞-structures and the colimit is an E∞-operad. Hence
the intermediate Em’s for 1 < m <∞ interpolate between these structures; they give
A∞-structures with homotopy-commutative multiplications that are coherent up to
some order.

Power operations

The extra structure of an E∞-ring spectrum gives homology operations. The general
setting allows for H∞-ring spectra [63]; for simplicity we assume that E and R are two
E∞-ring spectra whose structure is given by the Barratt–Eccles operad, i.e., there are
structure maps

ξnR : (EΣn)+ ∧ΣnR
∧n→ R (6.2.1)
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for R and also for E. McClure describes the general setting of power operations in
[63, IX §1]. Fix a prime p and abbreviate (EΣp)+ ∧ΣpR

∧p by Dp(R); one often calls
DpR the p-th extended power construction on R. A power operation assigns to every class
[x] ∈ EnR and every class e ∈ Em(DpSn) a class Qe[x] ∈ EmR; hence we can view Qe

as a map

Qe : EnR→ EmR.

The construction is as follows. Take a representative x : Sn → E ∧ R of [x] and
e ∈ Em(DpSn) and apply the following composition to e:

Em(DpSn)

%%

Em(Dpx)
// Em(Dp(E ∧R)) δ // Em(DpE ∧DpR)

Em(ξpE∧id)
��

Em(E ∧DpR)

µ∗

��

Em(DpR)

Em(ξpR)
��

Em(R).

(6.2.2)

Here,

δ : (EΣp)+ ∧Σp (E ∧R)∧p→ (EΣp)+ ∧ΣpE
∧p∧ (EΣp)+ ∧ΣpR

∧p

is the canonical map induced by the diagonal on the space EΣp and µ denotes the
multiplication in E, so it induces

µ∗ : π∗(E ∧E ∧DpR)→ π∗(E ∧DpR).

There are several important special cases of this construction:

1. For E the sphere spectrum one obtains operations on the homotopy groups of an
E∞-ring spectrum; see [63, IV §7].

2. For E = HFp the power operations for certain classes ei ∈ Hi(Σp;Fp) are often
called (Araki–Kudo–)Dyer–Lashof operations. These are natural homomorphisms

Qi : (HFp)n(R)→ (HFp)n+2i(p−1)(R) (6.2.3)

for odd primes and Qi : (HF2)n(R)→ (HF2)n+i(R) at the prime 2 that satisfy a
list of axioms [63, Theorem III.1.1] and compatibility relations with the homology
Bockstein and the dual Steenrod operations.

3. There are also important K(n)-local versions of such operations and we will
encounter them later.
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6.3 Chain algebras and algebras over Eilenberg–MacLane

spectra

The derived category of a ring is an important object in many subjects. The initial ring
is the ring of integers. Every ring R has an associated Eilenberg–Mac Lane spectrum,
HR.

HR-module and algebra spectra

We collect some results that compare the category of chain complexes of R-modules
with the category of module spectra over HR. We start with additive statements
and move to comparison results for flavors of differential graded R-algebras. For an
overview of algebraic applications of these equivalences see for instance [111].

In the 1980s, so before any strict symmetric monoidal category of spectra was
constructed, Alan Robinson developed the notion of the derived category, D(E), of
right E-module spectra for every A∞-ring spectrum E. He showed the following result.

Theorem 6.3.1 [249, Theorem 3.1]. For every associative ring R there is an equivalence
of categories between the derived category of R, D(R), and the derived category of the
associated Eilenberg–Mac Lane spectrum, D(HR).

Later, in the context of S-modules this corresponds to [94, IV, Theorem 2.4]. Work
of Schwede and Shipley strengthened the result to a Quillen equivalence of the
corresponding model categories:

Theorem 6.3.2 [266, Theorem 5.1.6]. The model category of unbounded chain complexes
of R-modules is Quillen equivalent to the model category of HR-module spectra .

Stefan Schwede uses the setting of Γ-spaces [264] to embed simplicial rings and
modules into the stable world: He constructs a lax symmetric monoidal Eilenberg–
Mac Lane functor H from simplicial abelian groups to Γ-spaces together with a
linearization functor L in the opposite direction and proves the following comparison
result:

Theorem 6.3.3 [264, Theorems 4.4 and 4.5]. If R is a simplicial ring, then the adjoint
functors H and L constitute a Quillen equivalence between the categories of simplicial
R-modules and HR-module spectra. If R is in addition commutative, then H and L induce
a Quillen equivalence between the categories of simplicial R-algebras and HR-algebra
spectra.

Here, the functor L is left inverse to H and induces an isomorphism of Γ-spaces

Hom(HA,HB) �H(HomsAb(A,B))

[264, Lemma 2.1]; thus H embeds algebra into brave new algebra.
Brooke Shipley extends this equivalence to corresponding categories of monoids in

the differential graded setting:
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Theorem 6.3.4 [275, Theorem 1.1]. For any commutative ring R, the model categories of
unbounded differential graded R-algebras and HR-algebra spectra are Quillen equivalent.

Dugger and Shipley show in [80] that there are examples of HR-algebras that
are weakly equivalent as S-algebras, but that are not quasi-isomorphic. A concrete
example is the differential graded ring A∗ which is generated by an element in degree
1, e1, and has d(e1) = 2 and satisfies e4

1 = 0. The corresponding HZ-algebra spectrum
is equivalent as a ring spectrum to the one on the exterior algebra B∗ =Λ

F2
(x2) (with

|x2| = 2) but A∗ and B∗ are not quasi-isomorphic. You find more examples and proofs
in [80, §§4,5].

We cannot expect that commutative HR-algebra spectra correspond to commutative
differential graded R-algebras unless R is of characteristic zero, because of cohomology
operations, but we get the following result:

Theorem 6.3.5 [236, Corollary 8.3]. If R is a commutative ring, then there is a chain
of Quillen equivalences between the model category of commutative HR-algebra spectra and
E∞-monoids in the category of unbounded R-chain complexes.

Haldun Özgür Bayındır shows [33] that one can find E∞-differential graded algebras
that are not quasi-isomorphic, but whose corresponding commutative HR-algebra
spectra are equivalent as commutative ring spectra.

Cochain algebras

A prominent class of examples of commutative HR-algebra spectra consists of function
spectra F(X+,HR). Here, X is an arbitrary space and R is a commutative ring. The
diagonal ∆ : X→ X ×X and the multiplication on HR, µHR, induce a multiplication

F(X+,HR)∧F(X+,HR) // F(X+ ∧X+,HR∧HR) � F((X ×X)+,HR∧HR)

∆∗,µHR
��

F(X+,HR)

that turns F(X+,HR) into a HR-algebra spectrum. As the diagonal is cocommutative
and as µHR is commutative, the resulting multiplication is commutative.

These function spectra are models for the singular cochains of a space X with
coefficients in R:

π∗(F(X+,HR)) �H−∗(X;R).

Beware that the homotopy groups of F(X+,HR) are concentrated in non-positive
degrees — i.e., F(X+,HR) is coconnective.

Studying the singular cochains of a space S∗(X;R) as a differential graded R-module
is not enough in order to recover the homotopy type of X. If we work over the rational
numbers, then Quillen showed that rational homotopy theory is algebraic in the sense
that one can use rational differential graded Lie algebras or coalgebras as models
for rational homotopy theory [228]. Sullivan [286] constructed a functor, assigning a



260 Richter: Commutative ring spectra

rational differential graded commutative algebra to a space, that is closely related to
the singular cochain functor with rational coefficients. He used this to classify rational
homotopy types.

For a general commutative ring R, the singular cochains are an E∞-algebra. Mike
Mandell proves [181, Main Theorem] that the singular cochain functor with coefficients
in an algebraic closure of Fp, Fp, induces an equivalence between the homotopy
category of connected p-complete nilpotent spaces of finite p-type and a full sub-
category of the homotopy category of E∞-Fp-algebras. He also characterizes those

E∞-Fp-algebras that arise as cochain algebras of 1-connected p-complete spaces
of finite p-type explicitly [181, Characterization Theorem]. There is also an integral
version of this result, stating that finite type nilpotent spaces are weakly equivalent if
and only if their E∞-algebras of integral cochains are quasi-isomorphic [180, Main
Theorem].

A strictly commutative integral model of the E∞-algebra of cochains on a space is
constructed in [235] using chain complexes indexed by the category of finite sets and
injections.

6.4 Units of ring spectra and Thom spectra

One construction that can give rise to highly structured multiplications on a spectrum
is the Thom spectrum construction: For instance, complex bordism, MU , obtains a
commutative ring structure this way. Mahowald emphasized [175] early on that multi-
plicative properties of the structure maps for Thom spectra translate to multiplicative
structures on the resulting Thom spectra. Their properties and the corresponding
orientation theory is systematically studied in [199, 196]. There is the following general
result by Lewis:

Theorem 6.4.1 [155, Theorem IX.7.1 and Remark IX.7.2]. Assume that f is a map of
spaces from X to the classifying space for stable spherical fibrations, BG, that is a C-map for
some operad C over the linear isometries operad. Then the Thom spectrum M(f ) associated
to f carries a C-structure. In particular, infinite loop maps from X to BG give rise to
E∞-ring spectra.

Note that BG is the classifying space of the units of the sphere spectrum, GL1(S).
A seemingly naive definition of GL1(S) is given by the pullback of the diagram

GL1S //

��

Ω∞S

��

π0(S)× = {±1} // π0(S) = Z

(6.4.1)

so by the components of QS0 corresponding to ±1 ∈Z.
We next give a short overview of Thom spectra that arise in a more general context,

where the target of the map is the space of units, GL1(R), for a commutative ring
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spectrum R. The first idea is to define the space GL1(R) as the space that represents
the functor that sends a space X to the units in R0(X). Copying the definition from
(6.4.1) above with S replaced by R gives a valid definition of GL1(R) and it was shown
in [199] that for commutative R this model is an E∞-space.

In the approaches [6] and [31], the idea is to replace the above model of GL1(R) with
its E∞-structure with a strictly commutative model. As spaces with an E∞-structure are
not equivalent to strictly commutative spaces (that’s the problem again that then QS0

would be a product of Eilenberg–Mac Lane spaces [212]), one has to find a different
category with the property that there is a Quillen equivalence between commutative
monoids in that category and E∞-monoids in spaces and such that there are models
of Ω∞(R) and GL1(R) in this category.

In [6] the authors work with ∗-modules and in [31] the authors use Schlichtkrull’s
model of GL1(R) in commutative I-spaces, where I is the skeleton of the category of
finite sets and injections.

The idea is to construct a spectrum version of the assembly map for discrete rings:
If R is a discrete ring and if R× is its group of units, then there is a canonical map

Z[R×]→ R (6.4.2)

from the group ring Z[R×] to R that takes an element
∑n
i=1 airi of Z[R×] (with ai ∈Z

and ri ∈ R×) to the same sum, but now we use the ring structure of R to convert the
formal sum into an actual sum

∑n
i=1 airi ∈ R. Note that R× is an abelian group if R is

a commutative ring.
We will sketch both constructions of Thom spectra and briefly discuss the applica-

tion in [6] to the question of when a Thom spectrum allows for an E∞-map to some
other E∞-ring spectrum: for instance, whether one can realize an E∞-version of the
string orientation MO〈8〉 → tmf [7] or an E∞-version of a complex orientation [127].

The focus in [31] is on multiplicative properties of the Thom spectrum functor and
on applications to topological Hochschild homology. We present the results about
multiplicative structures and discuss their results on THH of Thom spectra in Section
6.6. We’ll also describe how the concept of I-spaces can be generalized to a setting in
which the units can be adapted to non-connective ring spectra.

Thom spectra via L-spaces and orientations

Fix a countably infinite-dimensional real vector space U and consider

L = L(1) = L(U,U ),

the space of linear isometries from U to itself. The notation L(1) is due to the fact
that L(1) is the 1-ary part of the famous linear isometries operad [49, §1] whose term
of arity n is

L(n) = L(Un,U ). (6.4.3)

See [49] or [6] for details. Note that L is a monoid with respect to composition.
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Definition 6.4.2. The category of L-spaces, Top[L], is the category of spaces with a
left action of the monoid L.

Using the 2-ary part of the linear isometries operad, one can manufacture a product
on Top[L]: For objects X,Y of Top[L] their product X ×

L
Y is the coequalizer

L(2)× (L(1)×L(1))×X ×Y //
// L(2)×X ×Y //X ×

L
Y .

Here, one map uses the L(1)-action on the spaces X and Y and the other map uses
the operad product L(2)×L(1)×L(1)→L(2).

As L(2) = L(U2,U ) has a left L(1)-action, X ×
L
Y is an L(1)-space. The product

is associative and has a symmetry, but it is only weakly unital. See [45, §4] for a careful
discussion.

By [45, Proposition 4.7] there is an isomorphism of categories between commutative
monoids with respect to ×

L
and E∞-spaces whose E∞-structure is parametrized by

the linear isometries operad.
For strict unitality, one restricts to the full subcategory M∗ of objects of Top[L]

for which the unit map is a homeomorphism. Such objects are called ∗-modules. The
commutative monoids inM∗ again model E∞-spaces [45, Proposition 4.11].

For an associative ring spectrum R, there is a strictly associative model inM∗ of
the space of units GL1(R) and the functor GL1 is right adjoint to the inclusion of
grouplike objects. One can form a bar construction, B×

L
, of a cofibrant replacement,

GL1(R)c, of GL1(R) with respect to the monoidal product ×
L

, where B×
L

(GL1(R)c)
is the geometric realization of the simplicialM∗ object

[n] 7→ ∗ ×
L
GLc1(R)×

L
. . .×

L
GLc1(R)︸                         ︷︷                         ︸

n

×
L
∗ .

Similarly, E×
L

(GL1(R)c) is constructed out of the simplicial object

[n] 7→ ∗ ×
L
GLc1(R)×

L
. . .×

L
GLc1(R)︸                         ︷︷                         ︸

n+1

.

Adapted to the situation there are suspension spectrum and underlying infinite loop
space functors [159, Lemma 7.5]

M∗
(Σ∞

L
)+

//MS
Ω∞S

oo (6.4.4)

that are a Quillen adjoint pair of functors. Here, the suspension functor is strong
symmetric monoidal and the underlying loop space functor is lax symmetric monoidal.

The spectrum version of the assembly map from (6.4.2) is

(Σ∞
L

)+(GLc1(R))→ (Σ∞
L

)+(GL1(R))→ R,

where the first map comes from the cofibrant replacement of the units and the second
one is the counit of an adjunction [6, (3.1)].
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Definition 6.4.3 [6, Definition 3.12]. Given a map f : X→ B×
L

(GLc1(R)), the Thom
spectrum for f inM∗ is the R-module spectrum (in the world of [94])

M(f ) = (Σ∞
L

)+P
c∧(Σ∞

L
)+GL

c
1(R) R. (6.4.5)

Here, P c is a cofibrant replacement as a right GLc1(R)-module of the pullback

P //

��

E×
L

(GLc1(R))

��

X // B×
L

(GLc1(R))

Remark 6.4.4 . Because of the cofibrancy of P c, the smash product in (6.4.5) is actually
a derived smash product. See [6, §3] for the necessary background on the model
structures involved.

In the commutative case, [6, §4, §5] is set in the classical framework of E∞-ring
spectra and E∞-spaces as in [199]. For an E∞-ring spectrum R, the space Ω∞R
is actually an E∞-ring space [197, Corollary 7.5]; this is a space on which a pair of
E∞-operads acts: one codifying the additive structure that is present in every spectrum
and one encoding the multiplicative structure [197, §1]. Actually more is true. Call an
E∞-ring space ring-like if its π0 is actually a ring and not just a rig — a ring without
negatives. The homotopy category of ring-like E∞-ring spaces is equivalent to the
homotopy category of connective E∞-ring spectra [197, Theorem 9.12].

If R is a commutative ring spectrum or an E∞-ring spectrum then the space of
units, GL1(R), is a group-like E∞-space and hence is an infinite loop space that has
an associated connective spectrum, gl1(R), with Ω∞gl1(R) = GL1(R).

The crucial ingredient in this case is the pair of functors (Σ∞+ Ω
∞, gl1) that is an

adjunction between the homotopy category of connective spectra and the homotopy
category of E∞-ring spectra in the sense of Lewis–May–Steinberger.

In particular, one gets a version of the assembly map from (6.4.2):

Σ∞+ Ω
∞(gl1(R))→ R

for every E∞-ring spectrum. By [94] one can replace E∞-ring spectra with commutative
S-algebras, i.e., with commutative ring spectra. This simplifies the discussion of
pushouts and allows us to replace Σ∞+ Ω

∞ by (Σ∞
L

)+Ω
∞
S from (6.4.4) to get

(Σ∞
L

)+Ω
∞
S (gl1(R))→ R.

Note that a map of infinite loop spaces f : B→ BGL1(R) encodes the same data as
a map of spectra f : b→ bgl1(R), where the lowercase letters denote the associated
connective spectra. As before we consider the pullback p:

p //

��

egl1(R)

��

b
f
// bgl1(R)
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and form the corresponding derived smash product:

Definition 6.4.5. Let f : b → bgl1(R) be a map of connective spectra. The Thom
spectrum associated to f , M(f ), is the homotopy pushout in the category of commuta-
tive S-algebras

M(f ) = (R∧ (Σ∞
L

)+Ω
∞
S p)∧LR∧(Σ∞

L
)+Ω

∞
S gl1(R) R.

As the (homotopy) pushout is the (derived) smash product, this resembles the
construction from (6.4.5).

In the commutative ring spectrum setting the question about orientations is the
following problem: Assume that there is a map of commutative ring spectra α : R→ A,
then A is a commutative R-algebra spectrum. For a map of spectra f : b→ bgl1(R)
as above we can ask whether there is a morphism of commutative R-algebra spectra
from M(f ) to A. As M(f ) is defined as a (homotopy) pushout, we get a condition
that says that we need maps from the ingredients of the derived smash product. As we
start with a map α from R to A, we get an induced map

gl1(α) : gl1(R)→ gl1(A).

So what is missing is a map

(Σ∞
L

)+Ω
∞
S p→ A

that is compatible with the map (Σ∞
L

)+Ω
∞
S gl1(R)→ A. With the help of the adjunction

this means that we need a map

p→ gl1(A)

whose precomposition with the map gl1(R)→ p gives gl1(α). This argument can be
turned into a proof for the following result:

Theorem 6.4.6 [6, Theorem 4.6]. The derived mapping space of commutative R-algebras
from M(f ) to A, MapCR(M(f ),A), is weakly equivalent to the fiber in the map between
derived mapping spaces

MapMS
(p,gl1(A))→MapMS

(gl1(R), gl1(A))

at the basepoint gl1(α) of MapMS
(gl1(R), gl1(A)).

An important example is the question of the string orientation of the spectrum
of topological modular forms, tmf . For background on tmf and its variants see [74],
whose Chapter 10 contains André Henriques’ notes of Mike Hopkins’ lecture on the
string orientation. Let BO〈8〉 be the 7-connected cover of BO and let bo〈8〉 be the
associated spectrum with the canonical map f : bo〈8〉 → bgl1(S). So we are in the
situation where R = S and we take A = tmf . Ando, Hopkins and Rezk [7] establish the
existence of an E∞-map

MString =MO〈8〉 → tmf

by showing a fiber property as above.
An approach to orientations of the form MU → E is described in [127]: You start
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with an E∞-ring spectrum E and an ordinary complex orientation of E [234, §6.1]
and want to know whether you can refine this to an E∞-map MU → E. Hopkins and
Lawson establish a filtration of MU by E∞-Thom spectra

S→MX1→MX2→ ·· · →MU

and for a given E∞-map MXn → E they identify the space of extensions to an
E∞-map MXn+1→ E [127, Theorem 1].

Remark 6.4.7 . In [6] the authors present a different approach to Thom spectra and
questions about orientations that uses ∞-categorical techniques. In certain cases it
is unrealistic to hope for E∞-maps out of Thom spectra, for instance if one doesn’t
know that the target spectrum carries an E∞ structure. The space of En-maps out of
Thom spectra is described in [68, Theorem 4.2] and [11, Corollary 3.18].

Thom spectra via I-spaces

Let I be the skeleton of the category of finite sets and injective maps. As objects
we choose the sets n = {1, . . . ,n} for n > 0 with the convention that 0 denotes the
empty set. A morphism f ∈ I(n,m) is an injective function from n to m. Hence 0 is
an initial object of I and the permutation group Σn is the group of automorphisms
of n in I . The category I is symmetric monoidal with respect to the disjoint union:
ntm = n + m with unit 0 and non-trivial symmetry n + m→m + n given by the
shuffle permutation that moves the first n elements to the positions m+ 1, . . . ,m+n.

The functor category of I-spaces, TopI , i.e., the category of functors X : I → Top

together with natural transformations as morphisms, inherits a symmetric monoidal
structure from I and Top via the Day convolution product. Explicitly, one gets:

Definition 6.4.8. The product X �Y of two I-spaces X,Y is the I-space given by

(X �Y )(n) = colimptq→nX(p)×Y (q).

The unit 1I is the discrete I-space n 7→ I(0,n).

As 0 is initial, the unit 1I is the terminal object in TopI . Commutative monoids in
TopI are called commutative I-space monoids in [31] and their category is denoted by
C(TopI ). A general fact about Day convolution products is that commutative monoids
correspond to lax symmetric monoidal functors.

For an I-space X let’s denote by XhI the Bousfield–Kan homotopy colimit of X.

Definition 6.4.9 [31, Definition 2.2]. A map of I-spaces f : X→ Y is an I-equivalence
if the induced map on homotopy colimits fhI : XhI → YhI is a weak homotopy equiv-
alence in Top.

With the corresponding I-model structure the category of I-spaces is actually
Quillen equivalent to the category of spaces [256, Theorem 3.3], but there is a positive
flat model structure on I-spaces (see [31, §2]) that lifts to a right-induced model structure
on C(TopI ) that makes it Quillen equivalent to E∞-spaces.
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Let SpΣ denote the category of symmetric spectra. There is a canonical Quillen
adjoint functor pair

TopI
S
I

// SpΣ

ΩI
oo (6.4.6)

modeling the suspension spectrum functor and the underlying infinite loop space
functor with

S
IX(n) = S

n ∧X(n), ΩI (E)(n) =ΩnEn,

where S
n is the n-fold smash product of the 1-sphere with Σn-action given by

permutation of the smash factors.
Stable equivalences in symmetric spectra do not in general agree with stable

homotopy equivalences, but there is a notion of semistable symmetric spectra that
has the feature that a map f : E→ F between two semistable symmetric spectra is a
stable equivalence if and only if it is a stable homotopy equivalence. See [133, §5.6] for
details and other characterizations.

Definition 6.4.10. For a commutative semistable symmetric ring spectrum R the
commutative I-space monoid of units, GLI1(R), has as GLI1(R)(n) those components
of the commutative I-space monoid ΩI (R)(n) =ΩnRn that represent units in π0(R).

The adjunction from (6.4.6) gives a version of the assembly map from (6.4.2) as

S
I (GLI1(R))→ S

IΩI (R)→ R.

For technical reasons one has to work with a cofibrant replacement of GLI1(R),
G→ GLI1(R) in the positive flat model structure on C(TopI ). The construction of a
Thom spectrum associated to a map f : X→ BG is now similar to the approach in [6];
one defines BG and EG via two sided-bar constructions and takes a suitable pushout:

Definition 6.4.11 [31, Definitions 2.10, 2.12, 3.6].

– Let BG = B�(1I ,G,1I ) and let EG be defined via a functorial factorization

B�(1I ,G,G) // ∼ // EG // // BG.

– For any I-space X over BG define U (X) as the I-space with G-action given by the
pullback

U (X) //

��

X

��

EG // BG.

Here, X and BG are considered as I-spaces with trivial G-action.
– Let R be a semistable commutative symmetric ring spectrum that is S-cofibrant.

The Thom spectrum associated with a map of I-spaces f : X→ BG is

MI (f ) = B�(SI (UX),SIG,R). (6.4.7)
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You should think of this two-sided bar construction as

S
I (UX)�L

S
IG
R

and then you have to admit that this looks very similar to (6.4.5). This Thom spec-
trum functor is homotopically meaningful (see [31, Proposition 3.8]). Concerning
multiplicative structures one obtains the following result.

Proposition 6.4.12 [31, Proposition 3.10, Corollary 3.11]. The functor MI (−) is lax
symmetric monoidal and if D is an operad in spaces, then it sends D-algebras in
TopI over BG to D-algebras in R-modules in symmetric spectra over MIGL1(R) :=
B�(SI (EG),SI (G),R).

If you dislike diagram categories for some reason, there is also an I-spacification
functor [31, §4.1] that transforms a map of topological spaces

f : X→ BGhI (6.4.8)

into a map of I-spaces over BG, so you can associate a Thom spectrum to such a map
as well. By abuse of notation, we will still denote this Thom spectrum by MI (f ). This
construction respects actions of operads augmented over the Barratt–Eccles operad
and hence it also provides an E∞ Thom spectrum functor.

An important question is: Can a given ring spectrum A be realized as a Thom
spectrum with respect to a loop map, i.e., in the setting of [31] is A equivalent to
MI (f ) with f a loop map to BGhI ? A striking result is that one can identify certain
quotients as such Thom spectra!

Theorem 6.4.13 [31, Theorem 5.6]. Let R be a commutative ring spectrum whose
homotopy groups are concentrated in even degrees and let ui ∈ π2i(R) be arbitrary elements
with 1 6 i 6 n− 1. Then the iterative cofiber R/(u1, . . . ,un−1) of the multiplication maps
by the ui ’s can be realized as the Thom spectrum of a loop map from SU (n) to BGhI . In
particular, R/(u1, . . . ,un−1) can be realized as an associative ring spectrum.

An example of such a quotient is R = ku → ku/u = HZ. Note that there is no
assumption on the regularity of the elements ui in the above statement. For periodic
ring spectra the assumptions on the degree of the elements can be relaxed and the
two-periodic version of Morava K-theory can be constructed as a Thom spectrum
relative to R = En, the n-th Morava E-theory or Lubin–Tate spectrum [31, Corollary
5.7]. A related but different construction of quotients of Lubin–Tate spectra modeling
versions of Morava K-theory is carried out in [128, §3].

Graded units

There is one problem with the constructions of spaces and spectra of units as above.
As they are constructed from the underlying infinite loop space of a spectrum and just
take into account the units in π0, they ignore graded units coming from periodicity
elements in the homotopy groups of a spectrum. So for instance, the Bott class
u ∈ π2(KU ) is not represented in GL1(KU ) or GLI1(KU ).
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There is a construction of graded units. We’ll sketch the construction and mention
two of its applications: graded Thom spectra and logarithmic ring spectra.

Definition 6.4.14 [256, Definition 4.2]. The category J has as objects pairs of objects
of I . A morphism in J((n1,n2), (m1,m2)) is a triple (α,β,σ ) where α ∈ I(n1,m1),
β ∈ I(n2,m2) and σ is a bijection

σ : m1 \α(n1)→m2 \ β(n2).

For another morphism (γ,δ,ξ) ∈ J((m1,m2), (l1, l2)) the composition is the mor-
phism (γ ◦α,δ ◦ β,τ(ξ,σ )) where τ(ξ,σ ) is the permutation

τ(ξ,σ )(s) =

ξ(s) if s ∈ l1 \γ(m1),

δ(σ (t)) if s = γ(t) ∈ γ(m1 \α(n1)).

Note that l1 \γ(α(n1)) is the disjoint union of l1 \γ(m1) and γ(m1 \α(n1)).
With these definitions J is actually a category and it inherits a symmetric monoidal

structure from I via componentwise disjoint union [256, Proposition 4.3]. In particular,
the category of J-spaces, TopJ , is symmetric monoidal with the Day convolution
product. Note, however, that the unit for the monoidal structure �J is J((0,0), (−,−));
this is not a constant functor, but J((0,0), (n,n)) can be identified with the symmetric
group Σn!

Proposition 6.4.15 [256, 4.4, 4.5]. For every J-space X the homotopy colimit, XhJ , is a
space over QS0.

Proof. It is not hard to see that J is isomorphic to Quillen’s category Σ−1Σ [256,
Proposition 4.4] and its classifying space is QS0 by the Barratt–Priddy–Quillen result.
Therefore BJ is QS0. Every J-space has a map to the terminal J-space that is the
constant J-diagram on a point and this induces a map

XhJ → ∗hJ = BJ 'QS0.

For any I-space X we also get that XhI is a space over BI , but as I has an initial
object this just gives a map to BI ' ∗, the terminal object.

Let C(TopJ ) denote the category of commutative J-space monoids, i.e., commutative
monoids in TopJ . The following result is crucial:

Theorem 6.4.16 [256, Theorem 4.11]. There is a model structure on C(TopJ ) such that
there is a Quillen equivalence between C(TopJ ) and the category of E∞-spaces over BJ .

Here, the E∞-structure is parametrized by the Barratt–Eccles operad.
For a (commutative) J-space monoid, one can associate units:

Definition 6.4.17 [256, §4]. Let A be a J-space monoid. Then let A× be the J-
space monoid with A×(n1,n2) being the union of those components of A(n1,n2)
that represent units in π0(AhJ ).

So now one has to construct a functor from spectra to J-spaces that sees all the
homotopy groups, not just the ones in non-negative degrees:
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Definition 6.4.18 [256, (4.5)].

– Let ΩJ be the functor from symmetric spectra to J-spaces that takes a symmetric
spectrum E and sends it to the J-space with

ΩJ (E)(n1,n2) =Ωn2En1
.

– If R is a symmetric ring spectrum, then its J-space of units is

GLJ1(R) = (ΩJ (R))×.

Sagave and Schlichtkrull show that this is homotopically meaningful and that for a
commutative symmetric ring spectrum R, the units GLJ1(R) are actually in C(TopJ )
[256, §4]. Most importantly, the inclusion GLJ1(R) ↪→ΩJ (R) realizes the inclusion of
graded units π∗(R)× into π∗(R) for positively fibrant R.

Hence, for instance GLI1(KU ) (and any other model of the “usual” units) only
detects the units ±1 in π0(KU ) whereas GLJ1(KU ) also detects the Bott class.

Remark 6.4.19 .
1. John Rognes developed the concept of logarithmic ring spectra and in [255] and

[253] this concept is fully explored with the help of graded units. The idea is
that you want a spectrum that sits between a commutative ring spectrum like ku
and its localization KU , so you remember the Bott class as the extra datum of
a logarithmic structure. This concept has its origin in algebraic geometry and is
useful in stable homotopy theory, for instance for obtaining localization sequences
in topological Hochschild homology [253].

2. In [257] Sagave and Schlichtkrull use graded units adapted to the setting of orthog-
onal spectra, GLW1 , to construct graded Thom spectra associated to virtual vector
bundles, i.e., associated to a map f : X → Z × BO in such a way that uses the
E∞-structure on Z × BO. They use this for orientation theory and relate GLW1 -
orientations to logarithmic structures. They provide an E∞-Thom isomorphism
that allows to compute the homology of spectra appearing in connection with
logarithmic ring spectra [257, §§ 7,8].

6.5 Constructing commutative ring spectra from bipermutative

categories

In section 6.4 we saw that Thom spectra give rise to commutative ring spectra.
Algebraic K-theory is another machine that takes a commutative ring (spectrum)
R and produces a commutative ring spectrum K(R). In this section we focus on
a classical construction that takes a small bipermutative category R and turns it
into a commutative ring spectrum. This construction goes back to Segal [268]; its
multiplicative properties were investigated by May [199, 195, 192, 193], Shimada–
Shimakawa [273], Woolfson [302] and Elmendorf–Mandell [95].

We sketch a simplified version of the construction, present some important examples
and refer to [95] for a discussion of the multiplicative properties.
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Definition 6.5.1. A permutative category (C,⊕,0, τ) is a category C together with an
object 0 of C, a functor ⊕ : C ×C → C and a natural isomorphism τC1,C2

: C1 ⊕C2→
C2 ⊕C1 for all objects C1,C2 of C such that

– ⊕ is strictly associative, i.e., for all objects C1,C2,C3 of C

C1 ⊕ (C2 ⊕C3) = (C1 ⊕C2)⊕C3.

– 0 is a strict unit, i.e., for all objects C of C: C ⊕ 0 = C = 0⊕C.

– τ2 is the identity, i.e., for all objects C1,C2 of C the composite

C1 ⊕C2
τC1 ,C2 //C2 ⊕C1

τC2 ,C1 //C1 ⊕C2

is the identity on C1 ⊕C2.

– The diagrams

C⊕0
τC,0

// 0⊕C

C,

C1⊕C2⊕C3

idC1⊕τC2 ,C3 ''

τC1⊕C2 ,C3 // C3⊕C1⊕C2

C1⊕C3⊕C2

τC1 ,C3⊕idC2

77

commute for all objects C,C1,C2,C3 of C.

We work with small permutative categories, i.e., we require that the objects of C
form a set (and not a proper class). We recall Segal’s construction from [268, §2]:

Definition 6.5.2. Let C be a small permutative category and let X be a finite set
with basepoint + ∈ X. Let C(X) be the category whose objects are families (CS ,%S,T )
such that:

– S ⊂ X and + < S ;

– S and T are pairs of such subsets that are disjoint;

– the CS are objects of C and %S,T is an isomorphism in C:

%S,T : CS ⊕CT → CS∪T ;

– C
∅

= 0 and %
∅,T = idCT for all T ; and

– for pairwise disjoint S,T ,U that don’t contain + the following diagrams commute:

CS ⊕CT
%S,T

//

τ

��

CS∪T

CT ⊕CS
%T ,S

// CT∪S ,

CS ⊕CT ⊕CU
%S,T ⊕idCU //

idCS⊕%T ,U
��

CS∪T ⊕CU
%S∪T ,U
��

CS ⊕CT∪U
%S,T∪U

// CS∪T∪U.

Morphisms α : (CS ,%S,T )→ (C′S ,%
′
S,T ) consist of a family of morphisms αS ∈ C(CS ,C′S )
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for all S ⊂ X with + < S such that α
∅

= id0 and for all S,T ∈ X with + < S,T and
S ∩ T = ∅ the diagram

CS ⊕CT
%S,T

//

αS⊕αT
��

CS∪T

αS∪T
��

C′S ⊕C
′
T

%′S,T
// C′S∪T

commutes.

So up to isomorphism, every object CS for S = {x1, . . . ,xn} can be decomposed as

CS � C{x1} ⊕ · · · ⊕C{xn}

by an iterated application of the isomorphisms %, but these isomorphisms are part
of the data. Segal shows [268, Corollary 2.2] that this construction gives rise to a
so-called Γ-space (see [268, Definition 1.2] for a definition) that sends a finite pointed
set X to the classifying space of C(X). Every Γ-space gives rise to a spectrum, and we
denote the spectrum associated to C by HC.
Remark 6.5.3 . Segal’s construction actually works for symmetric monoidal categories
and it produces a spectrum whose associated infinite loop space is the group com-
pletion of the classifying space of the category C, BC, and the latter is the geometric
realization of the nerve of C.

Definition 6.5.4. A bipermutative category R is a category with two permutative cate-
gory structures, (R,⊕,0R, τ⊕) and (R,⊗,1R, τ⊗), that are compatible in the following
sense:

1. 0R ⊗ C = 0R = C ⊗ 0R

for all objects C of R.
2. For all objects A,B,C we have an equality between (A⊕B)⊗C and A⊗C⊕B⊗C,

and the diagram

(A ⊕ B) ⊗ C

τ⊕⊗ id
��

A⊗C ⊕ B⊗C

τ⊕
��

(B ⊕ A) ⊗ C B⊗C ⊕ A⊗C

commutes.
3. We define the distributivity isomorphism d` : A⊗ (B⊕C)→ A⊗B⊕A⊗C for all

A,B,C in R via the diagram

A ⊗ (B ⊕ C)
τ⊗
//

d`
��

(B ⊕ C) ⊗ A

A⊗B ⊕ A⊗C B⊗A ⊕ C⊗A
τ⊗⊕τ⊗
oo
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Then the diagram

(A ⊕ B) ⊗ (C ⊕D)
d`

,,

(A ⊕ B) ⊗ C ⊕ (A ⊕ B) ⊗D

A ⊗ (C ⊕D) ⊕ B ⊗ (C ⊕D)

d` ⊕d`

��

A⊗C ⊕ B⊗C ⊕ A⊗D ⊕ B⊗D

A⊗C ⊕ A⊗D ⊕ B⊗C ⊕ B⊗D

id⊕τ⊕⊕ id 22

commutes.

This definition is taken from [199, Definition VI.3.3, p. 154]. The definition in [95] is
less strict, but bipermutative categories in the above sense are also bipermutative in
the sense of [95, Definition 3.6]. We refer to Elmendorf and Mandell for a proof that for
a bipermutative category R, one actually obtains a commutative ring spectrum HR:

Theorem 6.5.5 [95, Corollary 3.9]. If R is a bipermutative category, then HR is
equivalent to a strictly commutative symmetric ring spectrum.

There is an alternative construction of an E∞-ring spectrum from a bipermutative
category in [193]: May first constructs an E∞-ring space associated to a bipermutative
category and then builds the corresponding E∞-ring spectrum.

Segal’s construction enables us to find small and explicit models for certain connec-
tive commutative ring spectra. Famous examples of bipermutative categories and their
associated commutative ring spectra are the following:

1. If R is a commutative discrete ring, then the category RR which has the elements
of R as objects and only identity morphisms is a bipermutative category with
the addition in the ring being ⊕ and the multiplication being ⊗. The associated
spectrum, HRR is the Eilenberg–Mac Lane spectrum of the ring R, HR.

2. Let E denote the bipermutative category of finite sets whose objects are the finite
sets n = {1, . . . ,n} for n ∈N0. By convention 0 is the empty set. The morphisms
in E are

E(n,m) =
{
∅ for n ,m,
Σn for n =m.

For the full structure see [199, VI, Example 5.1]. Here HE is the sphere spectrum, S .
3. The bipermutative category of complex vector spaces, V

C
, with objects the natural

numbers with zero and morphisms

V
C

(n,m) =
{

∅ for n ,m,
U (n) for n =m,

is bipermutative. On objects we set n⊕m = n+m and n⊗m = nm and on mor-
phisms we use the block sum and the tensor product of matrices. The associated
spectrum is HV

C
= ku, the connective version of topological complex K-theory.

Its real analog, V
R

, gives a model for connective topological real K-theory, ko. You
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can also work with the general linear group instead of the unitary or orthogonal
group.

4. If R is a discrete commutative ring, then we define the category FR as the one
with objects N0 again. As morphisms we have

FR(n,m) =
{

∅ for n ,m,
GLn(R) for n =m.

This category is often called the small category of free R-modules. Its spectrum is the
free algebraic K-theory of R, Kf (R). Its homotopy groups agree with the algebraic
K-groups of R from degree 1 on.

6.6 From topological Hochschild to topological André–Quillen

homology

For rings and algebras Hochschild homology contains a lot of information. For com-
mutative rings and algebras André–Quillen homology is the adequate tool. There are
spectrum level versions of these homology theories: topological Hochschild homology,
THH, and topological André–Quillen homology, TAQ.

We can determine classes in the algebraic K-theory of a ring spectrum using the
trace to topological Hochschild homology or to topological cyclic homology:

tr : K(R)→ THH(R). (6.6.1)

For instance the trace from K(Z) to THH(Z) detects important classes. Bökstedt,
Madsen and Rognes [50, 252] show for instance that

tr : K2p−1(Z)→ THH2p−1(Z) �Z/pZ

is surjective for all primes p.
We give a construction of topological Hochschild homology and, more generally,

for commutative ring spectra R we define X ⊗ R for X a finite pointed simplicial
set. We give some examples of calculations of such X-homology groups of R and
tell you about topological Hochschild cohomology as a derived center of an algebra
spectrum. We define topological André–Quillen homology and we will see applications
to Postnikov towers for commutative ring spectra later in Section 6.7.

THH and friends

Let X be a finite pointed simplicial set and let R be a cofibrant commutative ring
spectrum.

Definition 6.6.1. We denote by X ⊗R the simplicial spectrum with

(X ⊗R)n =
∧
x∈Xn

R.

By slight abuse of notation we will use the same symbol for the geometric realization
of X ⊗R.



274 Richter: Commutative ring spectra

Remarks 6.6.2 . – As the smash product is the coproduct in CS , the simplicial struc-
ture maps of X ⊗R are induced from the ones on X.

– As X is pointed, X ⊗R comes with maps

R→ X ⊗R→ R

whose composition is the identity.
– The commutative multiplication on R induces a commutative multiplication on
X⊗R; hence X⊗R is an augmented commutative (simplicial) R-algebra spectrum.

– One could also use the fact that the spectra of [94] are tensored over topological
spaces or, similarly, that symmetric spectra [133] in topological spaces are enriched
over simplicial sets and over topological spaces. This gives an equivalent situation.
It is for instance shown in [94, Corollary VII.3.4] that |X⊗A| ' |X |⊗A for simplicial
spaces X and commutative R-algebra spectra A.

– The above definition can be extended to tensoring with an arbitrary pointed sim-
plicial set by expressing such a simplicial set as the colimit of its finite pointed
simplicial subcomplexes.

There are many important special cases of this construction.

Definition 6.6.3.

1. For the simplicial 1-sphere X = S
1 the commutative R-algebra spectrum S

1 ⊗R
is the topological Hochschild homology of R and is denoted by THH(R).

2. More generally, for an n-sphere, we denote by THH[n](R) the spectrum S
n ⊗R;

this is called topological Hochschild homology of order n.
3. If Tn denotes the torus (S1)n, then T

n ⊗R is the n-torus homology of R.

For the small model of the simplicial 1-sphere with just one non-degenerate 0- and
1-simplex we have (S1)n = {0,1, . . . ,n} and the simplicial spectrum S

1 ⊗R is precisely
the cyclic bar construction on R:

R // R∧Roo
oo //

// R∧R∧Roo
oo
oo

//
//
// · · · ,oo

oo
oo
oo

where the degeneracy map si : Rn+1 → Rn+2 inserts the unit map η : S → R after
the i-th factor of R and the face maps di : Rn+1 → Rn for 0 6 i < n are given by
the multiplication in R of the i-th and (i + 1)-st smash factor. The last face map dn
cyclically permutes the smash factors to bring the last one to the front and then it
multiplies the former factors numbered n and 0.

As for Hochschild homology you should think about this as a genuine cyclic object:

R
R

R

∧ ∧

∧

∧ · · ·

···

The original definition of THH is due to Marcel Bökstedt [52]. McClure, Schwänzl
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and Vogt [203] show that for an E∞-ring spectrum R, THH(R) is equivalent to
tensoring R with the topological 1-sphere. Kuhn systematically studies constructions
like X ⊗R in a reduced setting [150] for pointed spaces X. So the above definition is
an unreduced variant of this that uses simplicial sets instead of topological spaces.

Lemma 6.6.4. Let X and Y be finite simplicial pointed sets. Then

(X ×Y )⊗R ' X ⊗ (Y ⊗R).

Proof. Observe that

((X ×Y )⊗R)n =
∧

(x,y)∈Xn×Yn
R �

∧
x∈Xn

( ∧
y∈Yn

R

)
and this is the diagonal of the bisimplicial spectrum

([m], [`]) 7→ (X ⊗ ((Y ⊗R)`))m

in degree n.

One of the important features of THH(R) is that it receives a trace map from
algebraic K-theory (see (6.6.1)), which we can now write as

tr : K(R)→ S
1 ⊗R.

Taking higher-dimensional tori gives targets for iterated trace maps. Algebraic K-theory
of a commutative ring spectrum is again a commutative ring spectrum and the trace
map is a map of commutative ring spectra; hence one can iterate the process of
forming K-theory and traces. If we denote by Kn(R) the n-fold iteration, then, since
we have the product formula from Lemma 6.6.4, we get an iterated trace to T

n ⊗R.
Explicitly, for n = 2 this is

K(K(R))→ S
1 ⊗ (S1 ⊗R) ' (S1 ×S1)⊗R = T

2 ⊗R.

There are variants of Definition 6.6.1: As we work with pointed simplicial sets, we
can glue an R-module to the base point and use the R-module structure for the face
maps. A second variant is to work relative to some commutative ring spectrum R:
in Definition 6.6.1 the smash products were over the sphere spectrum, but if we work
with a commutative R-algebra spectrum A, then we can take smash products over R
instead of S . Recall that ∧R is the coproduct in the category of commutative R-algebra
spectra, CR.

Definition 6.6.5. Let R be a cofibrant commutative ring spectrum, A a cofibrant
commutative R-algebra spectrum, M an A-module spectrum over R and let X be a
finite pointed simplicial set. We denote by LRX(A;M) the simplicial spectrum with

LRX(A;M)n =M ∧R
∧

x∈Xn\∗
R
A.

We call LRX(A;M) the Loday construction of A over R with coefficients in M .
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As M is just an A-module spectrum, the resulting simplicial spectrum and also its
realization carries an A-module structure over R, but no multiplicative structure in
general. However, if we place a commutative A-algebra C at the basepoint, then the
resulting spectrum is an augmented commutative C-algebra spectrum.

We will see in Section 6.8 that for instance

THHR(A) := LR
S

1(A)

measures properties of A as a commutative R-algebra spectrum. The case of X = S
0

gives

LR
S

0(A) = A∧R A,

so there is a Künneth spectral sequence [94, IV.4.1] for calculating its homotopy groups.
An important example of a Loday construction is Pirashvili’s construction of higher-

order Hochschild homology. He works with discrete commutative k-algebras A and
A-modules M and defines HHkX(A;M) [223, §5.1]. For X = S

n this is his notion of
higher-order Hochschild homology (in his notation H [n](A;M)). In our setting this
corresponds to LHkX (HA;HM) if A is flat over k.

Examples

1. A classical example of a THH-calculation is the one of HZ and HFp by Marcel
Bökstedt ([51]; see [161, Chapter 13] and the references for published accounts of these
results):

Proposition 6.6.6. THH∗(HFp) � Fp[µ] , |µ| = 2.

THH i (HZ) �


Z if i = 0,
Z/jZ if i = 2j − 1,
0 otherwise.

A crucial ingredient for these and many other calculations of THH is Bökstedt’s
spectral sequence: If R is a commutative ring spectrum and if E∗ is a homotopy
commutative ring spectrum such that E∗(R) is flat over E∗ then there is a multiplicative
spectral sequence

E2
p,q = HH

E∗
p,q(E∗(R))⇒ Ep+qTHH(R).

Here HHp,q denotes Hochschild homology in homological degree p and internal
degree q ([51], [94, Theorem IV.1.9]).

2. If we apply THH to Eilenberg–Mac Lane spectra of number rings, Lindenstrauss
and Madsen show that THH detects arithmetic properties:

Proposition 6.6.7 [160, Theorem 1.1]. Let K be a number field and let OK be its ring
of integers. Then

THHn(HOK ) =


OK if n = 0,
D−1
OK /`OK if n = 2` − 1,

0 otherwise.
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Here, D−1
OK is the inverse different. This is the set of those x ∈ K such that the

trace tr(xy) is an integer for all y ∈ OK . The inverse different detects ramified primes.
Dundas, Lindenstrauss and I calculate higher-order THH of number rings with

reduced coefficients in [82, Theorem 4.3].

3. For a suspension spectrum on a based (Moore) loop space, Σ∞+ ΩMX, the cyclic
bar construction reduces to the suspension spectrum of the cyclic bar construction on
ΩMX and Goodwillie [109, Proof of Theorem V.1.1] identifies the latter with the free
loop space on X, LX. Hence one obtains

THH(Σ∞+ ΩMX) ' Σ∞+ LX.

4. Let R be a ring spectrum and let Π be a pointed monoid. Hesselholt and Madsen
show that THH(R[Π]) splits as

THH(R[Π]) ' THH(R)∧ |N cyΠ|,

where |N cyΠ| denotes the cyclic nerve of Π [119, Theorem 7.1].

5. As a sample calculation for second order THH Dundas, Lindenstrauss and I get
[83, Theorem 2.1]:

THH
[2]
∗ (HZ(p)) �Z(p)[x1,x2, . . . ]/(p

nxn,x
p
n − pxn+1,n > 1) (6.6.2)

with |x1| = 2p.

6. At an odd prime KU(p) splits as

KU(p) '
p−2∨
i=0

Σ2iL.

Here, L is the Adams summand of KU(p) with π∗(L) � Z(p)[v
±1
1 ] and |v1| = 2p − 2.

For consistency we set L = KU(2) at the prime 2. We denote by ku, ` and ko the
connective covers of KU , L and KO.

McClure and Staffeldt determine the mod p-homotopy of THH(`) at odd primes
[202] and they show that THH(L)p ' Lp∨ (ΣLp)

Q
[202, Corollary 7.2, Theorem 8.1].

Ausoni [13] determines the mod p and mod v1 homotopy of THH(ku) as an input
for his work on K(ku).

Angeltveit, Hill and Lawson show [9, Theorem 2.6] that for all primes,

THH∗(`) � `∗ ⊕Σ2p−1F ⊕ T

as `∗-modules, where F is a torsionfree summand and T is an infinite direct sum of
torsion modules concentrated in even degrees. They describe F explicitly using a
rational calculation. Determining the torsion is way more involved [9, Theorem 2.8].
The calculation of THH∗(`) uses the method of dueling Bockstein spectral sequences for
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the Bockstein spectral sequences associated to

`

��

// `/p

��

`/v1 =HZ(p)
// HFp = `/(p,v1)

They describe the 2-local homotopy groups of THH(ko) [9, §7] by first determining
THH∗(ko;ku) and then using the Bockstein spectral sequence associated to the cofiber
sequence Σko→ ko→ ku.

Again, things are way easier for the periodic versions (see [13, Proposition 7.13] and
[9, Corollary 7.9]):

THH(KO) ' KO∨ΣKO
Q
, THH(KU ) ' KU ∨ΣKU

Q
.

7. John Greenlees uses a generalization of the concept of Gorenstein maps of commu-
tative rings to the spectral world in order to determine Gorenstein descent properties
for cofiber sequences of connective commutative ring spectra [110, Theorem 7.4].

Topological Hochschild homology of Thom spectra

We start with a general statement about X ⊗MI (f ) if MI (f ) is a Thom spectrum
associated to an E∞-map to BGhI with BGhI as in (6.4.8) with R = S ; hence G is a
cofibrant replacement of GLI1(S).

Theorem 6.6.8 [259, Theorem 1.1]. For any pointed simplicial set X and any map of
grouplike E∞-spaces f : A→ BGhI there is an equivalence of E∞-ring spectra,

X ⊗MI (f ) 'MI (f )∧Ω∞(a∧ |X |)+ ,

where a is the spectrum associated to A with Ω∞a = A.

This result generalizes [45], where the case of X = S
1 is covered. In general, for

X = S
n Theorem 6.6.8 determines the higher-order topological Hochschild homology

of MI (f ) [259, (1.6)] as

THH[n](MI (f )) 'MI (f )∧BnA+ .

As an example, for the canonical map f : BU → BGhI one obtains

X ⊗MU 'MU ∧Ω∞(bu ∧ |X |),

THH[n](MU ) 'MU ∧Ω∞(bu ∧Sn) 'MU ∧BnBU+ .

There is also a statement about THH of Thom spectra associated to single loop
maps in [45, Theorem 1]. We state the relative version of this, so in the following G is
a cofibrant replacement of GLI1(R).

Theorem 6.6.9 [31, Theorem 6.6]. Assume that R is a commutative symmetric ring
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spectrum that is semistable and S-cofibrant. Let MI (f ) be a Thom spectrum associated to a
map f : M→ BGhI of topological monoids, where M is grouplike and well-pointed. Then

THHR(MI (f )) 'MI (Lη(B(f ))).

Here, MI (Lη(B(f ))) is the Thom spectrum associated to the map

L(B(M))
L(B(f ))

//

Lη (B(f ))
��

LBBGhI ' BGhI ×BBGhI
id×η
��

BGhI BGhI ×BGhI
µ

oo

Note that BBGhI is an H-group, so we can split the free loop space LBBGhI into the
base space and the based loops

LBBGhI ' BBGhI ×ΩBBGhI

and the second factor is equivalent to BGhI . As usual, η denotes the Hopf map
η : S3→ S

2 and it induces a map η : BBGhI → BGhI as above via

BBGhI 'Ω2B4GhI →Ω3B4GhI ' BGhI

by reducing the loop coordinates by precomposition.
For quotient spectra, this result gives a new way of calculating THHR(R/I). For

related results see [8] and in the case where R/I is commutative see [83, §7].
A second example comes from viewing HZ(p) as a Thom spectrum associated to a 2-

fold loop map Ω2(S3〈3〉)→ BGhI , which allows for a determination of THH(HZ(p))
as HZ(p) ∧Ω(S3〈3〉)+ [45, Theorem 3.8] and an additive equivalence

THH[2](HZ(p)) 'HZ(p) ∧S3〈3〉+.

This gives a geometric interpretation of (6.6.2), but without an identification of the
multiplicative structure. See also [149, §4], where Klang presents related results, using
the framework of factorization homology.

Topological Hochschild cohomology as a derived center

In the discrete case, i.e., for a commutative ring k and a k-algebra A one can describe
the center of A,

Z(A) = {b ∈ A, ab = ba for all a ∈ A},

as the set of A-bimodule maps from A to A. If f is such a map, f : A→ A with
f (cad) = cf (a)d for all a,c,d ∈ A, then f is determined by f (1) =: b and this b
satisfies

ab = af (1) = f (a · 1) = f (a) = f (1 · a) = f (1)a = ba,

so the set of such morphisms gives rise to an element in the center; conversely, for any
b ∈ Z(A) we get such an f by setting f (1) = b.
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Hochschild cohomology of A over k can be described as

HH∗k(A) = Ext∗A⊗kAo (A,A)

if A is k-projective. Hence HH0
k(A) = Z(A) and the Hochschild cohomology of A is

the derived center of A. Hochschild cohomology has a graded commutative algebra
structure via a cup product, but the solved Deligne conjecture [204] says that the
Hochschild cochain complex is in general not a differential graded commutative
algebra, but that it has an E2-algebra structure.

For ring spectra there is no homotopically meaningful definition of a center:
requiring equality translates to an equalizer diagram and this wouldn’t be homotopy
invariant. For a commutative ring spectrum R and an R-algebra spectrum A this
equalizer corresponds precisely to taking not just R-module endomorphisms but
A-bimodule endomorphisms. So a homotopy invariant version is as follows.

Definition 6.6.10. For a commutative ring spectrum R and an R-algebra spectrum A,
the topological Hochschild cohomology groups of A over R are

THH∗R(A) = π∗ExtA∧RAo (A,A)

and the derived center of A over R is

THHR(A) = ExtA∧RAo (A,A).

Here, ExtA∧RAo (A,A) denotes the derived endomorphism spectrum of A as an A-
bimodule [94, IV §1].

McClure and Smith’s proof of the Deligne conjecture also provides a spectrum
version for topological Hochschild cohomology, giving the derived center an E2-
structure:

Theorem 6.6.11 [204]. If A is an associative R-algebra spectrum, then THHR(A) is an
E2-ring spectrum.

An important example of a calculation of such a derived center is Angeltveit’s
calculation of THHEn(Kn). Here En denotes Morava E-theory with

π∗(En) �W (Fq)[[u1, . . . ,un−1]][u±1],

where the ui are deformation parameters for the height-n Honda formal group law
with |ui | = 0 and u is a periodicity element with |u| = 2. The sequence of elements
(p,u1, . . . ,un−1) is a regular sequence and Kn is the 2-periodic version of Morava
K-theory:

Kn = En/(p,u1, . . . ,un−1), (Kn)∗ = Fq[u
±1].

Angeltveit shows that the derived center of Kn over En depends on the chosen
A∞-algebra structure of Kn over En:

Theorem 6.6.12 [8, Theorems 5.21, 5.22]. 1. For any prime p and any n > 1 there is
an A∞-structure on Kn such that THHEn(Kn) ' En.
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2. For n = 1 and any d with 1 6 d < p − 1 and any a with 1 6 a 6 p − 1 there is an
A∞-structure on K1 with

THH∗E1
(K1) � π∗(E1)[[q]]/(p+ a(uq)d).

Here, the structure in statement 1 occurs as the one coming from the least commu-
tative A∞-structure on Kn (see [8, Theorem 5.8] for a precise statement). The case
n = 1,p = 2 of statement 1 is due to Baker and Lazarev [16, Proof of Theorem 3.1] who
show that at the prime 2

THHKU2
(K(1)) ' KU2.

Topological André–Quillen homology

We will first sketch the definition of ordinary André–Quillen homology. See [225] for
the original account and [134] for a very readable modern introduction.

Definition 6.6.13. Let k be a commutative ring with unit and let A be a commutative
k-algebra. The A-module of Kähler differentials of A over k is the A-module generated
by elements d(a) for a ∈ A subject to the relations that d is k-linear and satisfies the
Leibniz rule:

d(ab) = d(a)b+ ad(b).

This A-module is denoted by Ω1
A|k .

The conditions imply d(1) = d(1 · 1) = 2d(1) and hence d(1) = 0. For a polynomial
algebra A = k[x1, . . . ,xn] the A-module Ω1

k[x1,...,xn]|k is freely generated by dx1, . . . ,dxn.

By induction one shows d(xmi ) =mxm−1
i d(xi) for all m > 2.

Consider for instance the Fp-algebra Fp[x]/(xp − x). Then the module of Kähler
differentials is generated by d(x). However, as we are in characteristic p we get

d(x) = d(xp) = pxp−1d(x) = 0

and hence Ω1
Fp[x]/(xp−x)|Fp

= 0.

Remark 6.6.14 . For a commutative k-algebra A there is an isomorphism between
Ω1
A|k and the first Hochschild homology group of A over k: Every a⊗b in Hochschild

chain degree one is a cycle and if you send a⊗b to ad(b) then this gives a well-defined
map modulo Hochschild boundaries and it induces an isomorphism HHk1(A) �Ω1

A|k
[161, Proposition 1.1.10].

Definition 6.6.15. Let M be an A-module. A k-linear derivation from A to M is a
k-linear map δ : A→M which satisfies the Leibniz rule.

The set of all such derivations, Derk(A,M), is an A-submodule of the A-module of
all k-linear maps. The symbol d in the definition of Ω1

A|k satisfies the conditions of a
derivation; hence the map

d : A→Ω1
A|k , a 7→ da

is a derivation, in fact, it is the universal derivation:
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Proposition 6.6.16 [134]. For all A-modules M the canonical map

HomA(Ω1
A|k ,M)→ Derk(A,M), f 7→ f ◦ d,

is an A-linear isomorphism.

There is another crucial reformulation of the above isomorphism: Derk(A,M) can
also be identified with the morphisms of commutative k-algebras over A from A to
the square-zero extension A⊕M . The latter is the commutative augmented A-algebra
with underlying module A⊕M with multiplication

(a1,m1)(a2,m2) = (a1a2, a1m2 + a2m1), a1, a2 ∈ A, m1,m2 ∈M.

A derivation δ : A→M corresponds to the map into the second component of A⊕M .
The idea of André–Quillen homology is to take the derived functor of A 7→

M ⊗AΩ1
A|k . But in which sense? As A is a commutative algebra, we need a resolution

of A as such an algebra. The category of differential graded commutative k-algebras
in general doesn’t have a (right-induced) model structure, so instead one works with
simplicial resolutions. The category of simplicial commutative k-algebras does have a
nice model structure. Let P•→ A be a cofibrant resolution. Each Pn can be chosen to
be a polynomial algebra [134, §4].

Definition 6.6.17. The André–Quillen homology of A over k with coefficients in M is

AQ∗(A|k :M) = π∗(M ⊗P• Ω
1
P• |k).

A definition of Ω1
A|k in terms of generators and relations is not suitable for a

generalization to commutative ring spectra. Instead we use the following description:

Lemma 6.6.18. Denote by I the kernel of the multiplication map µ : A⊗k A→ A. Then
Ω1
A|k is isomorphic to I/I2.

Proof. The ideal I is generated by elements of the form a⊗1−1⊗a. Such an element
is identified with d(a). Taking the quotient by I2 corresponds to the Leibniz rule
for d.

The ideal I can also be viewed as a non-unital k-algebra and I/I2 is the module
of indecomposables of I . This definition translates to brave new commutative rings.
Basterra’s work is formulated in the setting of [94]:

Definition 6.6.19. Let A be a commutative R-algebra spectrum.

– We define I(A∧R A) as the pullback

I(A∧R A) //

��

A∧R A

µ

��

∗ // A
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– If N is a non-unital commutative R-algebra spectrum, then its R-module of inde-
composables, Q(N ), is defined as the pushout

N ∧RN

µN
��

// ∗

��

N // Q(N )

– For an A-module spectrum M we define the topological André–Quillen homology of
A over R with coefficients in M as

TAQ(A|R;M) = LQ(RI(A∧R A)) (6.6.3)

and denote its homotopy groups as TAQ∗(A|R;M). We use the abbreviation ΩA|R
for LQ(RI(A∧R A)).

Thus for ΩA|R we take homotopy invariant versions of the kernel of the multiplica-
tion map followed by taking indecomposables by applying the right derived functor
of I and the left derived functor of Q.

Definition 6.6.20. Dually, topological André–Quillen cohomology of A over R with
coefficients in M is FA(ΩA|R,M) and we set TAQn(A|R;M) = π−nFA(ΩA|R,M).

Basterra proves [27, Proposition 3.2] that maps from ΩA|R to M in the homotopy
category of A-modules correspond to maps in the homotopy category of commutative
R-algebra maps over A from A to A ∨M, where A ∨M carries the square-zero
multiplication.

For example, if f : B→ BGL1(S) is an infinite loop map and M(f ) is the associated
Thom spectrum, then Basterra and Mandell show [28, Theorem 5 and Corollary] that

TAQ(M(f )) 'M(f )∧ b,

where Ω∞b ' B. In the case of an E∞-space B the spherical group ring Σ∞+ B has

TAQ(Σ∞+ B) ' Σ+B∧ b.

6.7 How do we recognize ring spectra as being (non)

commutative?

If you have a concrete model of a homotopy type, say in symmetric spectra, then you
can be lucky and this model possesses a commutative structure and you should be
able to check this by hand. Of course you could also try to disprove commutativity by
showing that your spectrum doesn’t have power operations as in (6.2.2) and this has
been done in many cases, but sometimes you might need a different approach.
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Obstructions via filtrations and resolutions

An obstruction theory for A∞-structures on homotopy ring spectra was developed
as early as 1989 [247] by Alan Robinson. Obstruction theories for E∞-structures
came much later: Goerss–Hopkins [107] and Robinson [246] independently developed
one with obstruction groups that later turned out to be isomorphic [30]. The idea is
to use a filtration or resolution of an operad such that the corresponding filtration
quotients or the corresponding spectral sequence give rise to obstruction groups that
contain obstructions for lifting a partial structure to a full E∞-ring structure ([246,
Theorem 5.6] and [107, Corollary 5.9]). The Goerss–Hopkins approach also allows one
to calculate the homotopy groups of the derived E∞ mapping space between two such
E∞-ring spectra [107, Theorem 4.5].

The obstruction groups have as input the algebra of cooperations E∗E of a spectrum
E and they compute André–Quillen cohomology groups of the graded commutative
E∗-algebra E∗E in the setting of differential graded (or simplicial) E∞-algebras. See
[185] or [106, §2.4] for background on these cohomology groups and see [30, §2] for
the comparison results. In Robinson’s setting these groups are called Γ-cohomology.
The obstruction groups vanish if for instance E∗E is étale as an E∗-algebra.

If you prefer to work with explicit chain complexes, then there are several equivalent
ones computing Γ-cohomology groups in Robinson’s setting (see [246, §2.5], [250, §6],
[222, §2]) and therefore, by the comparison result from [30, Theorem 2.6], computing
the obstruction groups in the Goerss–Hopkins setting as well.

There is another version of obstruction theory for promoting a homotopy T -algebra
structure to an actual one, where T is a monad, by Johnson and Noel [139]. This
includes obstructions for operadic structures on spectra but also includes for instance
group actions. Noel shows that in certain situations the obstruction theory [139] can
be compared to the one of [107].

We list some important applications:

1. The development of the Hopkins–Miller and Goerss–Hopkins obstruction theory
was motivated by the Morava-E-theory spectra En, also known as Lubin–Tate spectra,
and their variants. These are Landweber exact cohomology theories that govern the
deformation theory of height n formal group laws. In [234] an obstruction theory
was established leading to a proof that the En are A∞-spectra and that the Morava
stabilizer group Gn acts on En via maps of A∞-spectra. In [107] the corresponding
obstruction theory for E∞-structures was developed and [107, Corollaries 7.6, 7.7]
shows that the Gn-action is via E∞-maps.

2. It was known that KU and KO are E∞-spectra and it was also known that the
p-completed Adams summand Lp is E∞. In [18] Andy Baker and I use Robinson’s
version of the E∞-obstruction theory to show that these E∞-structures are unique
and that the p-local Adams summand also has a unique E∞-structure. Uniqueness
also holds for the connective covers [19]. It is important to have uniqueness results for
E∞-structures because calculations can depend on a choice of such a structure.

3. For an E∞-ring spectrum R there is a θ-algebra structure on its p-adic K-theory,
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π∗LK(1)(KUp ∧R) [106, Theorem 2.2.4], and in good cases

π∗LK(1)(KUp ∧R) � limk(KUp)∗(R∧M(pk)),

whereM(pk) is the mod-pk Moore spectrum. The study of such structures was initiated
by McClure in [63, Chapter IX]. There is a variant of the Goerss–Hopkins obstruction
theory for realizing for instance a θ-algebra (see [106, §2.4.4] and [153, Theorem 5.14])
as a K(1)-local E∞-ring spectrum.

There is one for realizing an E∞-Hk-algebra spectrum with a fixed Dyer–Lashof
structure on its homotopy [217, Proposition 2.2] (for k a field of characteristic p). Other
variants can be found in the literature.

The θ-algebra version was successfully applied by Lawson and Naumann [153] to
show that BP 〈2〉 at 2 has an E∞-structure. By a different method Hill and Lawson
[122, Theorem 4.2] find a commutative model for BP 〈2〉 at the prime 3.

4. Mathew, Naumann and Noel use operations in Morava-E-theory to prove May’s
nilpotence conjecture:

Theorem 6.7.1 [188, Theorem A]. If R is an H∞-ring spectrum and if x ∈ π∗(R) is in
the kernel of the Hurewicz homomorphism π∗(R)→H∗(R;Z), then x is nilpotent.

They use this — among many other applications — for the following result about
E∞-ring spectra:

Theorem 6.7.2 [188, Proposition 4.2]. If R is an E∞-ring spectrum and if there is an
m ∈Z, m , 0 with m · 1 = 0 ∈ π0(R), then, for all primes p and all n > 1,

K(n)∗(R) � 0.

Lawson observed that using K(n)-techniques (see [231] for background) this implies
that for finite E∞-ring spectra R either the rational homology is non-trivial or R is
weakly contractible, because if H∗(R;Q) � 0, then by the above result all the Morava
K-theories also vanish on R, but then the finiteness of R implies weak contractibility
(see [188, Remark 4.3] for the full argument).

The Dyer–Lashof variant is for instance important when one wants to decide
whether a given H∞-map can be upgraded to an E∞-map: roughly speaking, an H∞-
spectrum is like an E∞-spectrum in the homotopy category. You can find applications
of this approach for instance in Noel’s work [217] and in [139].

Other spectra, such as BP , come with homology operations just because they sit
in the right place: analyzing the maps MU → BP → HFp gives [63, p. 63] that
(HFp)∗(BP ) embeds into the dual of the Steenrod algebra such that (HFp)∗(BP ) is
closed under the action of the Dyer–Lashof algebra — even without establishing a
structured multiplication on BP . This led Lawson [152] to look for the right obstructions
for an E∞-structure of BP at 2 via secondary operations (see Theorem 6.7.5).
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Obstructions via Postnikov towers

A different approach to obstruction theory is to consider Postnikov towers in the world
of commutative ring spectra [27] or in the setting of En-algebras [29].

To this end Basterra uses TAQ-cohomology to lift ordinary k-invariants of a
connective commutative ring spectrum to k-invariants in a multiplicative Postnikov
tower:

Assume that R is a connective commutative ring spectrum. Then there is a map of
commutative ring spectra

p0 : R→H(π0(R))

and without loss of generality we can assume that p0 is a cofibration of commutative
ring spectra that realizes the identity on π0, i.e., π0(p0) = idπ0(R).

If we abbreviate π0(R) to B and if M is a B-module, an element in TAQn(A|R;HM)
corresponds to a morphism ϕ : A→ A∨ΣnHM in the homotopy category of R-algebra
spectra over A and we can form the pullback of

A

iA
��

A
ϕ
// A∨ΣnHM

If we postcompose ϕ with the projection map to ΣnHM

A
ϕ
//A∨ΣnHM //ΣnHM (6.7.1)

such a TAQ-class forgets to an Ext-class in ExtnR(A;HM), specifically to an ordinary
cohomology class if R is the sphere spectrum. Basterra shows that this projection maps
k-invariants in the world of commutative ring spectra to ordinary k-invariants of the
underlying spectrum.

Theorem 6.7.3 [27, Theorem 8.1]. For any connective commutative ring spectrum A
there is a sequence of commutative ring spectra Ai , π0(A)-modules Mi and elements

k̃i ∈ TAQi+2(Ai |S;HMi+1)

such that

– A0 =Hπ0(A) and Ai+1 is the pullback of Ai with respect to k̃i ,
– πjAi = 0 for all j > i,
– there are maps of commutative ring spectra λi : A→ Ai which induce an isomorphism

in homotopy groups up to degree i such that the diagram

Ai+1

��

A
λi //

λi+1
==

Ai

commutes in the homotopy category of commutative ring spectra.
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You start with A0 = Hπ0(A) and then you have to find a suitable map A0 →
A0 ∨Σ2H(π1(A)) as a starting point of the multiplicative Postnikov tower.

Basterra’s result can be used as an obstruction theory as follows. If A is a connective
spectrum then it has an ordinary Postnikov tower with k-invariants living in ordinary
cohomology groups

ki ∈H i+2(Ai ;πi+1(A)).

You can then investigate whether it is possible to find multiplicative k-invariants

k̃i ∈ TAQi+2(Ai |S;Hπi+1(A))

that forget to the ki ’s under the map from (6.7.1).
Using Postnikov towers for En-algebra spectra, Basterra and Mandell show:

Theorem 6.7.4 [29, Theorem 1.1]. The Brown Peterson spectrum, BP , has an E4-structure
at every prime.

This ensures by the main result of [184] that the derived category of BP -module
spectra has a symmetric monoidal smash product. Tyler Lawson, however, showed that
there are certain secondary operations in the F2-homology of every such spectrum
with an E12-structure and he could show that these are not present in the F2-homology
of BP at 2. Let BP 〈n〉 denote the spectrum BP /(vn+1,vn+2, . . . ).

Theorem 6.7.5 [152, Theorem 1.1.2]. The Brown–Peterson spectrum at the prime 2 does
not possess an En-structure for any n with 12 6 n 6∞. The truncated Brown–Peterson
spectrum BP 〈n〉 for n > 4 cannot have an En-structure for any n with 12 6 n 6∞.

See [271] for the corresponding results at odd primes.

Realization of E∞-spectra via derived algebraic geometry

There is a completely different important and highly successful approach to realization
problems, using derived algebraic geometry, for which see Chapter 8 of this volume.

6.8 What are étale maps?

We first recall the algebraic notion of an étale k-algebra from [161, E.1]: Let k be a com-
mutative ring and let A be a finitely generated commutative k-algebra. Then A is étale
if A is flat over k and if the module of Kähler differentials Ω1

A|k is trivial. If Ω1
A|k = 0,

then k→ A is called unramified. A k-algebra B (not necessarily commutative) is called
separable if the multiplication map

B⊗k Bo→ B

has a section as a B-bimodule map. In algebra, a commutative separable algebra
has Hochschild homology concentrated in homological degree zero, in particular the
module of Kähler differentials is trivial.
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Rognes’ Galois extensions of commutative ring spectra

Definition 6.8.1 [251, Definition 4.1.3]. Let A→ B be a map of commutative ring
spectra and let G be a finite group acting on B via commutative A-algebra maps.
Assume that S → A → B is a sequence of cofibrations in the model structure on
commutative ring spectra of [94, Corollary VII.4.10]. Then A → B is a G-Galois
extension if

1. the canonical map ι : A→ BhG is a weak equivalence and

2. h : B∧A B→
∏
G
B (6.8.1)

is a weak equivalence.

The first condition is the familiar fixed points condition from classical Galois theory
of fields. The map ι comes from taking the adjoint of the map

A∧EG+
id∧p
//A∧ S0 � A // B,

where p : EG+→ S0 collapses EG to the non-base point of S0.
The map h is adjoint to the composite

B∧A B∧G+→ B∧A B→ B

that comes from the G-action on the right factor of B∧A B followed by the multiplica-
tion in B. (Informally, if smashes were tensors, then h(b1 ⊗ b2) = (b1 · g(b2))g∈G.) Note
that

∏
GB is isomorphic to F(G+,B), so we could rewrite the condition in (6.8.1) as

the requirement that

h : B∧A B→ F(G+,B)

is a weak equivalence.
The condition that the map h from (6.8.1) is a weak equivalence is crucial. It is

also necessary for Galois extensions of discrete commutative rings in order to ensure
that the extension is unramified. For instance, Z ⊂ Z[i] satisfies Z[i]C2 = Z, but
h : Z[i] ⊗

Z
Z[i] → Z[i] ×Z[i] is not surjective: h detects the ramification at the

prime 2. Therefore Z→ Z[i] is not a C2-Galois extension but Z[ 1
2 ]→ Z[ 1

2 , i] is
C2-Galois.

Galois extensions of commutative ring spectra can have rather bad properties as
modules. So the following definition is actually an additional assumption (this does
not happen in the discrete setting).

Definition 6.8.2 [251, Definition 4.3.1]. A Galois extension A→ B is faithful if it is
faithful as an A-module, i.e., for every A-module M with M∧AB ' ∗ we have M ' ∗ .

Important examples of Galois extensions of commutative ring spectra are the
following. By Cn we denote the cyclic group of order n.

1. The concept of Galois extensions of commutative ring spectra corresponds to
the one for commutative rings via the Eilenberg–Mac Lane spectrum functor [251,
Proposition 4.2]: Let R→ T be a homomorphism of discrete commutative rings and
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let G be a finite group acting on T via R-algebra homomorphisms. Then R→ T is
a G-Galois extension of commutative rings if and only if HR→ HT is a G-Galois
extension of commutative ring spectra.

2. The complexification of real vector bundles gives rise to a map of commutative ring
spectra KO→ KU from real to complex topological K-theory. There is a C2-action
on KU corresponding to complex conjugation of complex vector bundles. Rognes
shows [251, Proposition 5.3.1] that this turns KO→ KU into a C2-Galois extension.

3. At an odd prime p there is a p-adic Adams operation on KUp that gives rise to a
Cp−1-action on KUp such that Lp→ KUp is a Cp−1-Galois extension [251, §5.5.4].

4. There is a notion of pro-Galois extensions of commutative ring spectra and
LK(n)S→ En is a K(n)-local pro-Galois extension with the extended Morava stabilizer
group as the Galois group [251, Theorem 5.4.4].

5. Let p be an arbitrary prime. The projection map π : ECp→ BCp induces a map
on function spectra

F(π+,HFp) : F((BCp)+,HFp)→ F((ECp)+,HFp) ∼HFp

which identifies HFp as a Cp-Galois extension over F((BCp)+,HFp) [251, Proposition
5.6.3]. Hence in the world of commutative ring spectra group cohomology sits between
S and HFp as the base of a Galois extension! Beware, this Galois extension is not
faithful. This observation is due to Ben Wieland: the Tate construction HF

tCp
p isn’t

trivial and it is actually killed by the Galois extension (in the spectral sequence you
augment a Laurent generator to zero).

6. Studying elliptic curves with level structures gives C2-Galois extensions TMF0(3)→
TMF1(3) and Tmf0(3) → Tmf1(3) [187, Theorems 7.6, 7.12]. For TMF1(3) and
Tmf1(3) you consider elliptic curves with one chosen point of exact order 3 and for
TMF0(3) and Tmf0(3) you only remember a subgroup of order 3. As C2 �Z/3Z×

this gives a C2-action. This can be made rigorous; see [121, 122, 187].

Notions of étale morphisms

Weibel–Geller [298] show that for an étale extension of commutative rings ϕ : A→ B
Hochschild homology satisfies étale descent: The map HH(ϕ)∗ induces an isomorphism

B⊗A HH∗(A) � HH∗(B) (6.8.2)

and for finite G-Galois extensions ϕ : A→ B one obtains Galois descent:

HH∗(A) � HH∗(B)G. (6.8.3)

It is easy to see that for a G-Galois extension of discrete commutative rings ϕ : A→ B
with finite G, the induced extension of graded commutative rings HH∗(ϕ) : HH∗(A)→
HH∗(B) is again G-Galois. In addition to having the right fixed-point property it
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satisfies

HH∗(B)⊗HH∗(A) HH∗(B) � B⊗A HH∗(A)⊗HH∗(A) B⊗A HH∗(A)

� B⊗A B⊗A HH∗(A)

�
∏
G
B⊗A HH∗(A)

�
∏
G
HH∗(B).

If ϕ : A→ B is étale, then the module of Kähler differentials Ω1
B|A is trivial and

it can be easily seen that the map B→ HHA∗ (B) is an isomorphism and that André–
Quillen homology of B over A is trivial, because étale algebras are smooth.

For commutative ring spectra the situation is different. There are several non-
equivalent notions of étale maps:

Definition 6.8.3. Let ϕ : A→ B be a morphism of commutative ring spectra.

1. [168, Definition 7.5.1.4] We call ϕ Lurie-étale if π0(ϕ) : π0(A)→ π0(B) is an étale
map of commutative rings and if the canonical map

π∗(A)⊗π0(A) π0(B)→ π∗(B)

is an isomorphism. In Chapter 8, this will be the only notion of étale map con-
sidered, and the adjective “Lurie” will be dropped.

2. [201, Definiton 3.2], [251, Definition 9.2.1] The morphism ϕ is (formally) THH-étale
if B→ THHA(B) is a weak equivalence.

3. [201, Definiton 3.2], [251, Definition 9.4.1] We define ϕ to be (formally) TAQ-étale
if TAQ(B|A) is weakly equivalent to ∗.

Remark 6.8.4 .
– Rognes [251] reserves the labels THH-étale and TAQ-étale for maps that, in addi-

tion to the conditions above, identify B as a dualizable A-module.
– The condition of being Lurie-étale is strong and is a very algebraic one. It is for

instance not satisfied by the C2-Galois extension KO→ KU because on the level
of homotopy groups this extension is rather appalling, compare (6.1.1).

– McCarthy and Minasian show that THH-étale implies TAQ-étale and they show
that for n > 1 the map HFp → F(K(Z/pZ,n)+,HFp) is a TAQ-étale morphism
that is not THH-étale. They attribute this example to Mandell [201, Example 3.5].
Minasian [211, Corollary 2.8] proves that both notions are equivalent for morphisms
between connective commutative ring spectra.

– For connective spectra, the notion of Lurie-étaleness has good features [168, §7.5]
and Mathew shows in [186, Corollary 3.1] that one can use [165, Lemma 8.9] to
show that under some finiteness condition TAQ-étaleness implies Lurie-étaleness
in the connective case.

Definition 6.8.5 [251, Definition 9.1.1]. Let C be a cofibrant associative A-algebra
spectrum. Then C is separable if the multiplication map µ : C∧ACo→ C has a section
in the homotopy category of C-bimodule spectra.
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Proposition 6.8.6 [251, Lemma 9.2.6]. If C is a commutative separable A-algebra
spectrum, then C is THH-étale.

Proof. Recall from Remark 6.6.2 that THHA(C) is an augmented commutative C-
algebra spectrum, so the composite of the unit map C→ THHA(C) with the augmen-
tation

C→ THHA(C)→ C

is the identity. We also get a splitting in the homotopy category of C-bimodule spectra,

C
s //C ∧A C

µ
//C,,

i.e., the above composite is the identity on C. Taking the derived smash product
C ∧LC∧AC (−) of the above sequence gives the sequence

THHA(C)→ C→ THHA(C),

in which the last map is equivalent to the unit map of THHA(C) and whose composite
is the identity. So the unit map C→ THHA(C) has a right and a left inverse in the
homotopy category of C-module spectra.

Definition 6.8.7. Let A→ B be a map of commutative ring spectra and let G be
a finite group acting on B via maps of commutative A-algebra spectra. Assume that
S→ A→ B is a sequence of cofibrations in the model structure on commutative ring
spectra of [94, Corollary VII.4.10]. Then A→ B is unramified if

h : B∧A B→
∏
G

B

is a weak equivalence.

Proposition 6.8.8 (compare [251, Lemma 9.1.2]). If A→ B is unramified, then B is
separable over A.

Proof. The canonical inclusion map i : B→ F(G+,B) can be modeled by the pointed
map from G+ to S0 that sends the neutral element e ∈ G to the non-basepoint of S0

and sends all other elements to the basepoint. We define a section to the multiplication
map of B to be

B
i //F(G+,B) B∧A B.

h,∼
oo

Note that h is not a B-bimodule map, but we are only interested in its e-component of
F(G+,B).

Thus we can conclude that unramified maps of commutative ring spectra are THH-
étale and that the failure of the map B→ THHA(B) to be a weak equivalence detects
ramification. This idea was exploited in [83] in order to show that the inclusion of
the Adams summand ` → ku(p) is tamely ramified [83, Theorem 4.1]. Sagave also
identifies this map as being log-étale [255, Theorem 1.6].
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Versions of étale descent

Transferring the Geller–Weibel result to the setting of commutative ring spectra, it
seems natural to define two versions of descent:

Definition 6.8.9. In the following ϕ : A→ B is a cofibration and A is cofibrant.

– The morphism ϕ : A→ B satisfies étale descent if the canonical morphism

B∧A THH(A)→ THH(B) (6.8.4)

is a weak equivalence.

– If ϕ : A→ B is a map of commutative ring spectra and if G is a finite group acting
on B via commutative A-algebra maps, then we say that ϕ satisfies Galois descent
if the map

THH(A)→ THH(B)hG (6.8.5)

is a weak equivalence.

Akhil Mathew clarifies the relationship between the different notions of étale
morphisms and the notions of descent. He proves that Lurie-étale morphisms satisfy
étale descent [186, Theorem 1.3] and that for a faithful G-Galois extension with finite
Galois group G, both descent properties are equivalent [186, Proposition 4.3] and they
are in turn equivalent to the property that THH(A)→ THH(B) is again a G-Galois
extension.

Moreover, he shows that the morphism

ϕ : F(S1
+,HFp)→ F(S1

+,HFp)

that is induced by the degree-p map on S
1 is a faithful Cp-Galois extension, but that

it does not satisfy étale descent [186, Theorem 2.1] and hence it doesn’t satisfy Galois
descent.

The Hopf fibration S
1→ S

3→ S
2 is a principal S1-bundle. The corresponding

morphism of commutative HQ-algebra spectra of cochains

F(η,HQ) : F(S2
+,HQ)→ F(S3

+,HQ)

is therefore an S
1-Galois extension [251, Proposition 5.6.3].

In joint work with Christian Ausoni we show that the morphism F(η,HQ) does not
satisfy Galois descent, i.e.,

THH(F(S2
+,HQ)) / THH(F(S3

+,HQ))hS
1
.

Indeed, the homotopy groups of THH(F(S2
+,HQ)) contain an element in degree −1

that is not present in π∗(THH(F(S3
+,HQ))hS

1
).

Mathew identifies the problem with étale descent of finite faithful Galois extensions
for THH as being caused by the non-trivial fundamental group of S1. He shows the
following result.
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Theorem 6.8.10 [186, Proposition 5.2]. Let X be a simply connected pointed space and
let A→ B be a faithful G-Galois extension of commutative ring spectra with finite G.
Then the map

B∧A (X ⊗A)→ X ⊗B

is a weak equivalence.

In particular, higher-order topological Hochschild homology, THH[n] for n > 2,
does satisfy étale descent for faithful finite Galois extensions. However, étale descent
remains for instance an issue for torus homology.

Sometimes THH does satisfy descent, even for ramified maps of commutative
ring spectra. For instance, Ausoni shows in [13, Theorem 10.2] that THH(`p) is p-
adically equivalent to THH(kup)hCp−1 and even that K(`p) is p-adically equivalent to
K(kup)hCp−1 .

Remark 6.8.11 . In [69] Clausen, Mathew, Naumann and Noel prove far-reaching
Galois descent results for topological Hochschild homology and algebraic K-theory;
in particular they confirm a Galois descent conjecture for algebraic K-theory by
Ausoni and Rognes in many important cases. They identify THH as a weakly additive
invariant (see [69, Definition 3.10]) and prove descent in the form of [69, Theorems
5.1 and 5.6].

6.9 Picard and Brauer groups

Picard groups in the setting of a symmetric monoidal category

Let (C,⊗,1, τ) be a symmetric monoidal category. An important class of objects in C
are those objects C that have an inverse with respect to ⊗ , i.e., such that there is an
object C′ of C satisfying

C ⊗C′ � 1.

One wants to gather such objects in a category and build a space and spectrum out
of them:

Definition 6.9.1. The Picard groupoid of C, Picard(C), is the category whose ob-
jects are the invertible objects of C and whose morphisms are isomorphisms between
invertible objects.

If C1 and C2 are objects of Picard(C), then so is C1 ⊗C2; in fact, Picard(C) is itself
a symmetric monoidal category. But in general, this category might not be small.

Definition 6.9.2. Let C be as above and assume that Picard(C) is small. Then PIC(C)
is the classifying space of the symmetric monoidal category Picard(C) and let pic(C)
denote the connective spectrum associated to the infinite loop space associated to
PIC(C). The Picard group of C, Pic(C), is π0PIC(C).
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If the Picard groupoid of C is small, then the Picard group can also be described as
the set of isomorphism classes of invertible objects of C with the product

[C1]⊗ [C2] := [C1 ⊗C2].

The neutral element is the isomorphism class of the unit, [1].

Definition 6.9.3. Let R be a (discrete) commutative ring; we denote by Pic(R) the
Picard group of the symmetric monoidal category of the category of R-modules and
by PIC(R) (and pic(R)) the Picard space (and Picard spectrum) of this category.

For instance the Picard group of a ring of integers in a number ring is its ideal class
group.

Picard group for commutative ring spectra

For commutative ring spectra R, the above definition of PIC(R) and pic(R) would
either be much too rigid (if one chose C to be the category of R-module spectra and
isomorphisms) or not strict enough (if one took C to be the homotopy category of
R-module spectra). See [189, §2] for an adequate background for a suitable definition
and see [103, §4] for a dictionary how to pass from a commutative ring spectrum R and
its category of modules to the∞-categorical setting. Instead of working with symmetric
monoidal categories, one uses presentable symmetric monoidal ∞-categories C. Then
the Picard ∞-groupoid of C is the maximal subgroupoid of the underlying ∞-category
of C spanned by the invertible objects. This groupoid is equivalent to a grouplike
E∞-space PIC(C) and hence there is a connective ring spectrum, pic(C), associated to
C [103, §5].

Let R be a commutative ring spectrum. The operadic nerve of the category of
cofibrant-fibrant R-modules is a stable presentable symmetric monoidal ∞-category
[168, Proposition 4.1.3.10] and we will abbreviate this as the ∞-category of R-modules,
Rmod.

Definition 6.9.4. The Picard group of a commutative ring spectrum R, Pic(R), is the
group π0(PIC(Rmod)).

Again, these Picard groups can also be described as the set of isomorphism classes
of invertible R-modules in the homotopy category of R-module spectra.

The Picard space PIC(R) is a delooping of the units of R ([189, §2.2], [289, §5]):
There is an equivalence

PIC(R) ' Pic(R)×BGL1(R).

Remark 6.9.5 . There is a map Pic(π∗R)→ Pic(R) that realizes an element in the
algebraic Picard group of invertible graded π∗R-modules as a module over R and in
many cases this map is an isomorphism [17, Theorem 43]. In this case we call Pic(R)
algebraic. A notable exception comes from Galois extensions of ring spectra: As in
algebra, if A→ B is a G-Galois extension of commutative ring spectra with abelian
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Galois group G, then [B] ∈ Pic(A[G]) [251, Proposition 6.5.2]. But for instance [KU∗]
is certainly not an element in the algebraic Picard group Pic(KO∗[C2]); see (6.1.1).

The equivalence classes of suspensions of R are always in Pic(R), but if R is periodic,
these suspensions don’t generate a free abelian group. Let us mention some crucial
examples of Picard groups of commutative ring spectra:

– The Picard group of the initial commutative ring spectrum S is Pic(S) �Z, where
n ∈Z corresponds to the class of Sn [129].

– For connective commutative ring spectra the Picard group of R is algebraic; see
[17, Theorem 21], [189, Theorem 2.4.4].

– For periodic real and complex K-theory the Picard groups just notice the suspensions
of the ground ring: the Picard group of KU is algebraic, with Pic(KU ) � Z/2Z,
and Pic(KO) �Z/8Z (Hopkins, [189, Example 7.1.1] and [103, §7]).

– The same applies to the periodic version of the spectrum of topological modular
forms: Pic(TMF) � Z/576Z [189, Theorem A]. But for Tmf, the spectrum of
topological forms that mediates between TMF and its connective version tmf, one
gets [189, Theorem B]

Pic(Tmf) �Z⊕Z/24Z,

where the copy of the integers comes from the suspensions of Tmf and the generator
of the Z/24Z-summand is described in [189, Construction 8.4.2].

– Using Galois descent techniques for pic, Heard, Mathew and Stojanoska prove in
[116, Theorem 1.5] that, for any odd prime and any finite subgroup G of the full
Morava stabilizer group Gp−1, the Picard group of EhGp−1 is a cyclic group generated
by the suspension of EhGp−1.

A Picard group that contains more elements than just the ones coming from suspen-
sions of the commutative ring spectrum says that there are more self-equivalences of
the homotopy category of R-modules than the standard suspensions. One might view
these as twisted suspensions. Gepner and Lawson explore the concept of having a
Picard grading on the category of R-module spectra and they develop a Pic-resolution
model category structure in the sense of Bousfield [103, §3.2].

Descent method and local versions

A crucial method for calculating Picard groups is Galois descent. If A → B is a
G-Galois extension (for G finite), then for the Picard spectra and spaces the following
equivalences hold [103, 189]:

pic(A) ' τ>0pic(B)hG, PIC(A) ' PIC(B)hG. (6.9.1)

Here, τ>0 denotes the connective cover of a spectrum. In general, the extension B
is easier to understand than A; for instance, in the case of the C2-Galois extension
KO→ KU , one obtains information about pic(A) using the homotopy fixed point
spectral sequence

H−s(G;πtpic(B))⇒ πt−s(pic(B)hG).
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In [121, §6], for instance, Hill and Meier use Galois descent to determine the Picard
groups of TMF0(3) and Tmf0(3):

Theorem 6.9.6 [121, Theorems 6.9, 6.12].

Pic(TMF0(3)) �Z/48Z, Pic(Tmf0(3)) �Z⊕Z/8Z.

Hopkins–Mahowald–Sadofsky started the investigation of the Picard groups of the
K(n)-local homotopy categories for varying n [129]. They denote these Picard groups
by Picn. Note that the relevant symmetric monoidal product for fixed n is

X ⊗Y = LK(n)(X ∧Y )

for K(n)-local X and Y . They determined Pic1 for all primes p:

Theorem 6.9.7 [129, Theorem 3.3, Proposition 2.7].

– At the prime 2, Pic1 �Z
×
2 ×Z/4Z.

– For all odd primes p, Pic1 �Zp ×Z/qZ with q = 2p − 2.

In the K(n)-local setting the notion of algebraic elements in Picn is slightly more
involved. Hopkins, Mahowald and Sadofsky show [129] (see also [108, Theorem 2.4])
that a K(n)-local spectrum X is K(n)-locally invertible if and only if π∗(LK(n)(En∧X))
is a free (En)∗-module of rank one and if and only if π∗(LK(n)(En∧X)) is invertible as
a continuous module over the completed group ring (En)∗[[Gn]]. Here, Gn is the full
Morava-stabilizer group. Hence applying π∗(LK(n)(En ∧−)) gives a map from Picn to

the Picard group of continuous (En)∗[[Gn]]-modules and this group is called Pic
alg
n .

The kernel of the map, κn, collects the exotic elements in Picn:

0→ κn→ Picn→ Pic
alg
n .

For odd primes, all elements in Pic1 can be detected algebraically but for p = 2 one
has a non-trivial element in κ1. See [108] for Pic2 at p = 3 and a general overview.
There is ongoing work on Pic2 at p = 2 by Agnès Beaudry, Irina Bobkova, Paul Goerss
and Hans-Werner Henn.

Brauer groups of commutative rings

Probably most of you will know the definition of the Brauer group of a field. But as
for many features that we want to transfer to the spectral world we need to consider
algebraic concepts developed for commutative rings (not fields).

Azumaya started to think about general Brauer groups [14] in the setting of local
rings. A general definition of the Brauer group of a commutative ring R was given
by Auslander and Goldman [12] as Morita equivalence classes of Azumaya algebras.
The Brauer group was then globalized to schemes by Grothendieck [114]. He also
shows that the Brauer group of the initial ring Z is trivial; this is a byproduct of his
identification of Brauer groups of number rings in [114, III, Proposition (2.4)].
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Brave new Brauer groups

Baker and Lazarev define in [16] what an Azumaya algebra spectrum is. We use one
version of this definition in [20] to develop Brauer groups for commutative ring spectra.
Related concepts can be found in [138] and [291].

Fix a cofibrant commutative ring spectrum R.

Definition 6.9.8. A cofibrant associative R-algebra A is called an Azumaya R-algebra
spectrum if A is dualizable and faithful as an R-module spectrum and if the canonical
map

A∧R Ao→ FR(A,A)

is a weak equivalence.

We list some crucial properties of Azumaya algebra spectra. For the first property
recall the discussion of derived centers from Definition 6.6.10.

Proposition 6.9.9.
1. [16, Proposition 2.3] If A is an Azumaya R-algebra spectrum, then A is homotopically

central over R, i.e., R→ THHR(A) is a weak equivalence.
2. [20, Proposition 1.5] If A is Azumaya over R and if C is a cofibrant commutative
R-algebra then A∧RC is Azumaya over C. Conversely, if C is as above and dualizable
and faithful as an R-module, then A∧R C being Azumaya over C implies that A is
Azumaya over R.

If A and B are Azumaya over R, then A∧R B is also Azumaya over R.
3. [20, 2.2] If M is a faithful, dualizable, cofibrant R–module, then (a cofibrant replace-

ment of ) FR(M,M) is an R-Azumaya algebra spectrum.

Thus the endomorphism Azumaya algebras are the ones that are always there and
you want to ignore them.

Definition 6.9.10. Let A and B be two Azumaya R-algebra spectra. We call them
Brauer equivalent if there are dualizable, faithful R-modules N and M such that there
is an R-algebra equivalence

A∧R FR(M,M) ' B∧R FR(N,N ).

We denote by Br(R) the set of Brauer equivalence classes of R-Azumaya algebra
spectra.

Note that Br(R) is an abelian group with multiplication induced by the smash
product over R. Johnson shows [138, Lemma 5.7] that one can reduce the above
relation to what he calls Eilenberg–Watts equivalence. This implies that one can still think
about the Brauer group of a commutative ring spectrum as the Morita equivalence
classes of Azumaya algebra spectra.

We showed a Galois descent result [20, Proposition 3.3], saying that under a natural
condition you can descent an Azumaya algebra C over B to an Azumaya algebra ChG

over A if A→ B is a faithful G-Galois extension with finite Galois group G.
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Examples of Brauer groups

As we know that Br(Z) = 0, we conjectured [20] that the Brauer group of the initial
ring spectrum is also trivial. This conjecture was proven in [10, Corollary 7.17]. The
authors actually showed a much stronger result:

Theorem 6.9.11 [10, Theorem 7.16]. If R is a connective commutative ring spectrum such
that π0(R) is either Z or the Witt vectors W (Fq), then the Brauer group of R is trivial.

Different approaches — see [10, Definition 7.1], [103, §5], and [289] — can be used to
construct a Brauer space, BrR, for a commutative ring spectrum R and to show that
this space is a delooping of the Picard space, PIC

ΩBrR ' PIC(R)

with π0(BrR) � Br(R).
An important question in the classical context of Brauer groups of schemes is

to which extent these groups can be controlled by the second étale cohomology
group. See the introduction of [291] for a nice overview. Toën shows that for quasi-
compact and quasi-separated schemes X one can identify the derived Brauer group of
X with H1

ét(X;Gm)×H2
ét(X;Gm). The work of Antieau and Gepner [10, §7.4] relates

Brauer groups of connective commutative ring spectra to étale cohomology groups
by establishing a spectral sequence starting from étale cohomology groups for étale
sheaves over a connective commutative ring spectrum converging to the homotopy
groups of the Brauer space [10, Theorem 7.12].

The integral version of the quaternions gives a non-trivial element in Br(S[ 1
2 ]) [20,

Proposition 6.3]. Antieau and Gepner show in [10, Corollary 7.18]

Br(S[ 1
p ]) �Z/2Z for all primes p

and they prove the existence of a short exact sequence

0→ Br(S(p))→Z/2Z⊕
⊕
q,p

Q/Z→Q/Z→ 0

by applying [10, Corollary 7.13], where they calculate the homotopy groups of the
Brauer space of any connective commutative ring spectrum R in terms of étale
cohomology groups and the homotopy groups of R.

They use the classical exact sequence for the Brauer group of the rationals [114, §2]
coming from the Albert–Brauer–Hasse–Noether theorem:

0→ Br(Q)→Z/2Z⊕
⊕
p prime

Br(Qp)→Q/Z→ 0,

with Br(Qp) = Q/Z. This determines Br(Z[ 1
p ]) and Br(Z(p)) and this in turn gives

the above result for the sphere spectra with p inverted or localized at p.
In [20, Theorem 10.1] we show that the K(n)-local Brauer group of the K(n)-local

sphere is non-trivial at least for odd primes and n > 1.
Gepner and Lawson prove a version of Galois descent for a suitable ∞-category of

Azumaya algebras:
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Theorem 6.9.12 [103, Theorem 6.15]. There is an equivalence of symmetric monoidal
∞-categories

AzA→ (AzB)hG

for every G-Galois extension A→ B with finite G.

They also construct a map of ∞-groupoids AzR→ BrR for any commutative ring
spectrum R and show that this map is essentially surjective, so that equality in π0(BrR)
corresponds precisely to Morita equivalence. They investigate the algebraic Brauer
groups (i.e., the Morita classes of Azumaya algebras over the coefficients) [103, §7.1]
of 2-periodic commutative ring spectra with vanishing odd homotopy groups, such
as KU or En, by relating them to the classical Brauer–Wall group of π0 of the ring
spectrum and they identify a non-trivial Morita class of a quaternion KO-algebra that
becomes Morita-trivial over KU .

There is recent work by Hopkins and Lurie [128] who identify the K(n)-local Brauer
group of a Lubin–Tate spectrum E at all primes. For odd primes they obtain:

Theorem 6.9.13 [128, Theorem 1.0.11]. The K(n)-local Brauer group of E is the product
of the Brauer–Wall group of the residue field π0(E)/m and a group Br ′(E) which in
turn can be expressed as an inverse limit of abelian groups Br ′` such that the kernel of
Br ′`→ Br ′`−1 is non-canonically isomorphic to m`+2/m`+3.

One ingredient is their construction of atomic E-algebra spectra [128, Definition 1.0.2]
via a Thom spectrum construction relative to E for polarizations of lattices [128,
Definition 3.2.1] using the machinery from [6, 5]. Here, the starting point is a lattice Λ
of finite rank together with a polarization map

Q : K(Λ,1)→ PIC(E) ' Pic(E)×BGL1(E).





7 An introduction to Bousfield
localization

by Tyler Lawson

7.1 Introduction

Bousfield localization encodes a wide variety of constructions in homotopy theory,
analogous to localization and completion in algebra. Our goal in this chapter is to give
an overview of Bousfield localization, sketch how basic results in this area are proved,
and illustrate some applications of these techniques. Near the end we will give more
details about how localizations are constructed using the small object argument. The
underlying methods apply in many contexts, and we provide examples that exhibit a
variety of behaviors.

We will begin by discussing categorical localizations. Given a collection of maps
in a category, the corresponding localization of that category is formed by making
these maps invertible in a universal way; this technique is often applied to discard
irrelevant information and focus on a particular type of phenomenon. In certain
cases, localization can be carried out internally to the category itself: this happens
when there is a sufficiently ample collection of objects that already see these maps as
isomorphisms. This leads naturally to the study of reflective localizations.

Bousfield localization generalizes this by taking place in a category where there are
spaces of functions, rather than sets, with uniqueness only being true up to contractible
choice. Bousfield codified these properties, for spaces in [54] and for spectra in [55].
The definitions are straightforward, but proving that localizations exist takes work,
some of it of a set-theoretic nature.

Our presentation is close in spirit to Bousfield’s work, but the reader should go to
the books of Farjoun [96] and Hirschhorn [124] for more advanced information on
this material. We will focus, for the most part, on left Bousfield localization, since the
techniques there are easier and this is where most of our applications lie. In [25] right
Bousfield localization is discussed at greater length.

Historical background

The story of localization techniques in algebraic topology probably begins with Serre
classes of abelian groups [272]. After choosing a class C of abelian groups that is
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closed under subobjects, quotients, and extensions, Serre showed that one could
effectively ignore groups in C when studying the homology and homotopy of a simply
connected space X. In particular, he proved mod-C versions of the Hurewicz and
Whitehead theorems, showed the equivalence between finite generation of homology
and homotopy groups, determined the rational homotopy groups of spheres, and
significantly reduced the technical overhead in computing the torsion in homotopy
groups by allowing one to work with only one prime at a time. His techniques for
computing rational homotopy groups only require rational homology groups; p-local
homotopy groups only require p-local homology groups; p-completed homotopy
groups only require mod-p homology groups.

These techniques received a significant technical upgrade in the late 1960s and early
1970s, starting with the work of Quillen on rational homotopy theory [228] and work
of Sullivan and Bousfield–Kan on localization and completion of spaces [287, 285,
58]. Rather than using Serre’s algebraic techniques to break up the homotopy groups
π∗X and homology groups H∗X into localizations and completions, their insight was
that space-level versions of these constructions provided a more robust theory. For
example, a simply connected space X has an associated space X

Q
whose homotopy

groups and (positive-degree) homology groups are, themselves, rational homotopy and
homology groups of X; similarly for Sullivan’s p-localization X(p) and p-completion X∧p .
Without this, each topological tool requires a proof that it is compatible with Serre’s
mod-C-theory, such as Serre’s mod-C Hurewicz and Whitehead theorems or mod-C
cup products. Now these are simply consequences of the Hurewicz and Whitehead
theorems applied to X

Q
, and any subsequent developments will automatically come

along. Moreover, Sullivan pioneered arithmetic fracture techniques that allowed X
to be recovered from its rationalization X

Q
and its p-adic completions X∧p via a

homotopy pullback diagram:

X //

��

∏
pX
∧
p

��

X
Q α

// (
∏
pX
∧
p )

Q

This allows us to reinterpret homotopy theory. We are no longer using rationalization
and completion just to understand algebraic invariants of X: instead, knowledge of
X is equivalent to knowledge of its localizations, completions, and an “arithmetic
attaching map” α. This entirely changed both the way theorems are proved and the
way that we think about the subject. Later, work of Morava, Ravenel, and others
made extensive use of localization techniques [213, 230], which today gives an explicit
decomposition of the stable homotopy category into layers determined by Quillen’s
relation to the structure theory of formal group laws [226].

Many of the initial definitions of localization and completion were constructive.
One can build X

Q
from X by showing that one can replace the basic cells Sn in a CW-

decomposition with rationalized spheres Sn
Q

, or by showing that the Eilenberg–Mac
Lane spaces K(A,n) in a Postnikov decomposition can be replaced by rationalized
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versions K(A⊗Q,n). One can instead use Bousfield and Kan’s more functorial, but also
more technical, construction as the homotopy limit of a cosimplicial space. Quillen’s
work gives more, in the form of a model structure whose weak equivalences are
isomorphisms on rational homology groups. In his work, the map X→ X

Q
is a fibrant

replacement, and the essential uniqueness of fibrant replacements means that X
Q

has
a form of universality. It is this universal property that Bousfield localization makes
into a definition.

Notation

We will use S to denote a convenient category of spaces (one can use simplicial sets,
but with appropriate modifications throughout) with internal function objects.

Throughout this article we will often be working in categories enriched in spaces: for
any X and Y in C we will write MapC(X,Y ) for the mapping space, or just Map(X,Y )
if the ambient category is understood. Letting [X,Y ] = π0 MapC(X,Y ), we obtain
an ordinary category called the homotopy category hC. Two objects in C are homotopy
equivalent if and only if they become isomorphic in hC.

For us, homotopy limits and colimits in the category of spaces are given by the
descriptions of Vogt or Bousfield–Kan [295, 58]. A homotopy limit or homotopy
colimit in C is characterized by having a natural weak equivalence of spaces:

MapC(X,holimJ Yj ) ' holimJ MapC(X,Yj ),

MapC(hocolimI Xi ,Y ) ' holimI MapC(Xi ,Y ).

Since homotopy limit constructions on spaces preserve objectwise weak equivalences
of diagrams, homotopy limits and colimits also preserve objectwise homotopy equiva-
lences in C.

Some set theory is unavoidable, but we will not spend a great deal of time with it.
For us, a collection or family may be a proper class, rather than a set. Categories will
be what are sometimes called locally small categories: the collection of objects may be
large, but there is a set of maps between any pair of objects.
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7.2 Motivation from categorical localization

In general, we recall that for an ordinary category A and a class W of the maps
called weak equivalences (or simply equivalences), we can attempt to construct a
categorical localization A→A[W−1]. See Chapter 2 of this volume for more details.
This localization is universal among functors A→ D that send the maps in W to
isomorphisms. The category A[W−1] is unique up to isomorphism if it exists.1

Example 7.2.1. We will begin by remembering the case of the category S of spaces,
with W the class of weak homotopy equivalences. The projection p : X × [0,1]→ X
is always a weak equivalence with homotopy inverses it given by it(x) = (x, t). In
the localization, we find that homotopic maps are equal: for a homotopy H from f
to g , we have f =Hi0 =Hp−1 =Hi1 = g . Therefore, localization factors through the
homotopy category hS .

However, within the category of spaces we have a collection with special properties:
the subcategory SCW of CW-complexes. For any CW-complex K , weak equivalences
X → Y induce bijections [K,X] → [K,Y ] — this can be proved, for example, in-
ductively on the cells of K — and any space X has a CW-complex K with a weak
homotopy equivalence K → X. These two properties show, respectively, that the com-
posite

hSCW → hS → S[W−1]

is fully faithful and essentially surjective. Within the homotopy category hS we have
found a large enough library of special objects, and localization can be done by
forcibly moving objects into this subcategory.2

Example 7.2.2. A similar example occurs in the category KR of nonnegatively
graded cochain complexes of modules over a commutative ring R, with W the
class of quasi-isomorphisms. Within KR there is a subcategory KInjR of complexes
of injective modules. Fundamental results of homological algebra show that for a
quasi-isomorphism A → B and a complex Q of injectives, there exists a bijection
[B,Q]→ [A,Q] of chain homotopy classes of maps, and that any complex A has a
quasi-isomorphism A→ Q to a complex of injectives. This similarly shows that the
composite functor

hKInjR → hKR→KR[W−1]

is an equivalence of categories.

1 For the record, this category also satisfies a 2-categorical universal property: for any D, the map of
functor categories

Fun(A[W−1],D)→ Fun(A,D)

is fully faithful, and the image consists of those functors sending W to isomorphisms. If we replace
“image” with “essential image” in this description, we recover a universal property characterizing
A→A[W−1] up to equivalence of categories rather than up to isomorphism.

2 Technically speaking, we often use a result like this to actually show that S[W−1] exists.
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These examples are at the foundation of Quillen’s theory of model categories, and
we will return to examples like them when we discuss localization of model categories.

7.3 Local objects in categories

In this section we will fix an ordinary category A.

Definition 7.3.1. Let S be a class of morphisms in A. An object Y ∈ A is S-local if,
for all f : A→ B in S , the map

HomA(B,Y )
f ∗

−−→HomA(A,Y )

is a bijection. We write LS (A) for the full subcategory of S-local objects.
If S = {f : A→ B} consists of just one map, we simply refer to this property as

being f -local and write Lf (A) for the category of f -local objects.

Remark 7.3.2 . If S = {fα : Aα → Bα} is a set and A has coproducts indexed by S ,
then by defining f =

∐
α fα :

∐
Aα→

∐
Bα we find that S-local objects are equivalent

to f -local objects — so long as we don’t have to worry about cases where Hom(Aα ,Y )
could be the empty set. (For example, there is no problem if A is pointed.)

A special case of localization is when our maps in S are maps to a terminal object.

Definition 7.3.3. Suppose S is a class of maps {Wα → ∗}, where ∗ is a terminal
object. In this case, we refer to such a localization as a nullification of the objects Wα .

Remark 7.3.4 . Nullification often takes place when A is pointed. If S is a set, A is
pointed, and A has coproducts, then any coproduct of copies of ∗ is again ∗ and we
can again replace nullification of a set of objects with nullification of an individual
object.

Definition 7.3.5. A map A→ B in A is an S-equivalence if, for all S-local objects Y ,
the map

HomA(B,Y )→HomA(A,Y )

is a bijection.

The class of S-equivalences contains S by definition.

Definition 7.3.6. A map X → Y is an S-localization if it is an S-equivalence and
Y is S-local, and under these conditions we say that X has an S-localization. If all
objects in A have S-localizations, we say that A has S-localizations.

Proposition 7.3.7. Any two S-localizations f1 : X→ Y1 and f2 : X→ Y2 are isomor-
phic under X in A.

Proof. Because Yi are S-local, Hom(B,Yi)→Hom(A,Yi) is always an isomorphism
for any S-equivalence A→ B. Applying this to the S-equivalences X → Yj , we get
isomorphisms Hom(Yj ,Yi) → Hom(X,Yi) in A: any map X → Yi has a unique
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extension to a map Yj → Yi . Existence allows us to find maps Y1→ Y2 and Y2→ Y1
under X, and uniqueness allows us to conclude that these two maps are inverse to
each other in A.

More concisely, Y1 and Y2 are both initial objects in the comma category of S-local
objects under X in A, and this universal property forces them to be isomorphic.

As a result, it is reasonable to call such an object the S-localization of X and write
it as LSX (or simply LX if S is understood). More generally than this, if X → LX
and X ′→ LX ′ are S-localization maps, any map X→ X ′ in A extends uniquely to a
commutative square. This is encoded by the following result.

Proposition 7.3.8. Let LocS (A) be the category of localization morphisms, whose
objects are S-localization maps X → LX in A and whose morphisms are commuting
squares. Then the forgetful functor

LocS (A)→A,

sending (X→ LX) to X, is fully faithful. The image consists of those objects X that have
S-localizations.

Proposition 7.3.9. The collection of S-local objects is closed under limits, and the
collection of S-equivalences is closed under colimits.

Proof. If f : A→ B is in S and {Yj } is a diagram of S-local objects, then

Hom(B,Yj )→Hom(A,Yj )

is a diagram of isomorphisms, and taking limits we find that we have an isomorphism

Hom(B, limJ Yj )→Hom(A, limJ Yj ).

Since A→ B was an arbitrary map in S , this shows that limJ Yj is S-local.
Similarly, if {Ai → Bi} is a diagram of S-equivalences and Y is S-local, then

Hom(Bi ,Y )→Hom(Ai ,Y )

is a diagram of isomorphisms, and taking limits we find that

Hom(colimI Bi ,Y )→Hom(colimI Ai ,Y )

is also an isomorphism. Since Y was an arbitrary local object, this shows that the map
colimI Ai → colimI Bi is an S-equivalence.

Example 7.3.10. Consider the map f : N → Z in the category of monoids. A
monoid M is f -local if and only if any monoid homomorphism N→M automati-
cally extends to a homomorphism Z→M, which is the same as asking that every
element in M has an inverse. Therefore, f -local monoids are precisely groups. The
natural transformation M → Mgp, from a monoid to its group completion, is an
f -localization.
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Example 7.3.11. Consider the map f : F2→Z
2, from a free group on two generators

x and y to its abelianization. A group G is f -local if and only if every homomorphism
F2 → G, equivalent to choosing a pair of elements x and y of G, can be factored
through Z

2, which happens exactly when the commutator [x,y] is sent to the trivial
element. Therefore, f -local groups are precisely abelian groups. The natural transfor-
mation G→ Gab, from a group to its abelianization, is an f -localization.

These two localizations are left adjoints to the inclusion of a subcategory, and this
phenomenon is completely general.

Proposition 7.3.12. Let S be a class of morphisms in A, and suppose that A has
S-localizations. Then the inclusion LSA→A is part of an adjoint pair

A
L
� LSA.

As a result, L is a reflective localization onto the subcategory LSA.

Proof. In this situation, the functor LocS (A)→A is fully faithful and surjective on
objects. Therefore, it is an equivalence of categories and we can choose an inverse,3

functorially sending X to a pair (X→ LX) in LocS (A). The composite functor sending
X to LX is the desired left adjoint.

Remark 7.3.13 . Embedding the category A as a full subcategory of a larger category
can change localization drastically. Consider a set S of maps in A ⊂ B. The S-local
objects of A are simply the S-local objects of B that happen to be in A, but because
there may be more local objects in B there may be fewer S-equivalences in B than
in A. Localization in B may not preserve objects of A; a localization map in A might
not be an equivalence in B; there might, in general, be no comparison map between
the two localizations.

For example, let S be the set of multiplication-by-p maps Z → Z (as p ranges
over primes) in the category of finitely generated abelian groups, considered as a full
subcategory of all abelian groups. An abelian group is S-local if and only if it is a
rational vector space, and the only finitely generated group of this form is trivial.
A map A→ B of finitely generated abelian groups is an S-equivalence in the larger
category of all abelian groups if and only if it induces an isomorphism A⊗Q→ B⊗Q,
whereas it is always an equivalence within the smaller category of finitely generated
abelian groups because there is only 0 as a local object to test against. Within all
abelian groups, S-localization is rationalization, whereas within finitely generated
abelian groups, S-localization takes all groups to zero.

3 If the category A is large then we need to be a little bit more honest here, and worry about whether a
fully faithful and essentially surjective map between large categories has an inverse equivalence. This
depends on our model for set theory: it is asking for us to make a distinguished choice of objects for our
inverse functor, which may require an axiom of choice for proper classes. It is an awkward situation,
because choosing these inverses isn’t categorically interesting unless we can’t do it.
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7.4 Localization using mapping spaces

We now consider the case where C is a category enriched in spaces. The previous
definitions and results apply perfectly well to the homotopy category hC. The following
illustrates that the homotopy category may be an inappropriate place to carry out
such localizations.

Example 7.4.1. We start with the homotopy category of spaces hS , and fix n ≥ 0.
Suppose that we want to invert the inclusion Sn→ Dn+1. We fairly readily find that
any space X has a map X→ X ′ such that [Dn+1,X ′]→ [Sn,X ′] is an isomorphism:
construct X ′ by attaching (n + 1)-dimensional cells to X until the n-th homotopy
group πn(X ′ ,x) = 0 is trivial at any basepoint.

However, this construction lacks universality. If Y is any other space whose n-th
homotopy groups are trivial, then any map X→ Y can be extended to a map X ′→ Y
because the attaching maps for the cells of X ′ are trivial, but this extension is not
unique up to homotopy: any two extensions Dn+1→ X ′ → Y of a cell Sn→ X → Y
glue together to an obstruction class in [Sn+1,Y ]. As a result, if we construct two
spaces X ′ and X ′′ as attempted localizations of X, we can find maps X ′ → X ′′

and X ′′ → X ′ but cannot establish that they are mutually inverse in the homotopy
category.

In short, in order for Y to have uniqueness for filling maps from n-spheres, we have
to have existence for filling maps from (n+1)-spheres. Thus, to make this localization
work canonically we would need to enlarge our class S to contain Sn+1→Dn+2. The
same argument then repeats, showing that a canonical localization for S requires that
S also contain Sm→Dm+1 for m ≥ n.

The example in the previous section leads to the following principle. In our
definitions, we must replace isomorphism on the path components of mapping spaces
with homotopy equivalence.

Definition 7.4.2. Let S be a class of morphisms in the category C. An object Y ∈ C
is S-local if, for all f : A→ B in S , the map

MapC(B,Y )
f ∗

−−→MapC(A,Y )

is a weak equivalence.4 We write LS (C) for the full subcategory of S-local objects.
If S = {f : A→ B} consists of just one map, we simply refer to this property as

being f -local and write Lf (C) for the category of f -local objects.

Definition 7.4.3. A map A→ B in C is an S-equivalence if, for all S-local objects Y ,
the map

MapC(B,Y )→MapC(A,Y )

is a weak equivalence.

4 This property of the map MapC(B,Y )→MapC(A,Y ) only depends on the image of f : A→ B in the
homotopy category hC, and so we may simply view S as a collection of representatives for a class of
maps S in hC.
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Definition 7.4.4. A map X → Y is an S-localization if it is an S-equivalence and
Y is S-local, and under these conditions we say that X has an S-localization. If all
objects in C have S-localizations, we say that C has S-localizations.

By applying π0 to mapping spaces, we find that some of this passes to the homotopy
category.

Proposition 7.4.5. Let S be the image of S in the homotopy category hC. If Y is S-local
in C, then its image in the homotopy category hC is S-local.

Remark 7.4.6 . An S-equivalence in C does not necessarily becomes an S-equivalence
in hC because there is potentially a larger supply of S-local objects.

Proposition 7.4.7. Any two S-localizations f1 : X → Y1 and f2 : X → Y2 become
isomorphic under X in the homotopy category hC.

Proof. This proceeds exactly as in the proof of Proposition 7.3.7. Applying MapC(− ,Yi)
to the S-equivalence X→ Yj , we find that the maps X→ Yi extend to maps Yj → Yi
which are unique up to homotopy. By first taking i , j we construct maps between the
Yi whose restrictions to X are homotopic to the originals, and taking i = j shows that
the double composites are homotopic under X.

Remark 7.4.8 . At this point it would be very useful to show that, if they exist, local-
izations can be made functorial in the spirit of Proposition 7.3.8. There is typically
no easy way to produce a functorial localization because many choices are made up
to homotopy equivalence, and this leads to coherence issues: for example, if we have
a diagram

X //

��

X ′

��

LX // LX ′

where the vertical maps are S-localization, then we can construct at best the dotted
map together with a homotopy between the two double composites. Larger diagrams
do get more extensive families of homotopies, but these take work to describe. This
is a rectification problem and in general it is not solvable without asking for more
structure on C. The small object argument, which we will discuss in §7.6, can often be
done carefully enough to give some form of functorial construction of the localization.

Proposition 7.4.9. The following properties hold for a class S of morphisms in C.

1. The collection of S-local objects is closed under equivalence in the homotopy category.
2. The collection of S-equivalences is closed under equivalence in the homotopy category.
3. The collection of S-local objects is closed under homotopy limits.
4. The collection of S-equivalences is closed under homotopy colimits.
5. The homotopy pushout of an S-equivalence is an S-equivalence.
6. The S-equivalences satisfy the two-out-of-three axiom: given maps A

f
−→ B

g
−→ C, if any

two of f , g , and gf are S-equivalences then so is the third.
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Proof. If X→ Y becomes an isomorphism in the homotopy category, then one can
choose an inverse map and homotopies between the double composites. Composing
with these makes MapC(− ,X)→ MapC(− ,Y ) a homotopy equivalence of functors
on C, and so X is S-local if and only if Y is.

Similarly, if two maps f : A → B and f ′ : A′ → B′ become isomorphic in the
homotopy category, there exist homotopy equivalences A′→ A and B→ B′ such that
the composite A′ → A→ B→ B′ is homotopic to f ′ , and applying MapC(− ,Y ) we
obtain the desired result.

If f : A→ B is in S and {Yj } is a diagram of S-local objects, then

MapC(B,Yj )→MapC(A,Yj )

is a diagram of weak equivalences of spaces, and taking homotopy limits we find that
we have an equivalence

MapC(B,holimJ Yj )→MapC(A,holimJ Yj ).

Since A→ B was an arbitrary map in S , this shows that holimJ Yj is S-local.
Similarly, if {Ai → Bi} is a diagram of S-equivalences and Y is S-local, then

MapC(Bi ,Y )→MapC(Ai ,Y )

is a diagram of weak equivalences of spaces, and so

MapC(hocolimI Bi ,Y )→MapC(hocolimI Ai ,Y )

is also a weak equivalence. Since Y was an arbitrary S-local object, this shows that
the map hocolimI Ai → hocolimI Bi is an S-equivalence.

Suppose that we have a homotopy pushout diagram

A
f
//

��

B

��

A′
f ′
// B′

where f : A→ B is an S-equivalence. Given any S-local object Y , we get a homotopy
pullback diagram

MapC(A,Y ) MapC(B,Y )oo

MapC(A
′ ,Y )

OO

MapC(B
′ ,Y )oo

OO

The top arrow is an equivalence by the assumption that f is an S-equivalence, and
hence the bottom arrow is an equivalence. Since Y was an arbitrary S-local object, we
find that f ′ is an S-equivalence.

The 2-out-of-3 property is obtained by first applying MapC(− ,Y ) to the diagram
A→ B→ C and then using the 2-out-of-3 axiom for weak equivalences.

If we expand a class S to a larger class T of equivalences, our work so far gives us
an automatic relation between S-localization and T -localization.
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Proposition 7.4.10. Suppose that S and T are classes of morphisms such that every map
in S is a T -equivalence. Then the following properties hold.

1. Every T -local object is also S-local.
2. Every S-equivalence is also a T -equivalence.
3. Suppose X → LSX is an S-localization and X → LTX is a T -localization. Then

there exists an essentially unique factorization X → LSX → LTX, and the map
LSX→ LTX is a T -localization.

Proof. 1. By assumption, every map f : A→ B in S is a T -equivalence, and so for
any T -local object Y we get an equivalence MapC(B,Y ) → MapC(A,Y ). Thus by
definition Y is S-local.

2. If f : A→ B is an S-equivalence, and Y is any T -local object, then by the previous
point Y is also S-local, and so we get an equivalence MapC(B,Y )→ MapC(A,Y ).
Since Y was an arbitrary T -local object, f is therefore a T -equivalence.

3. Since X→ LSX is an S-equivalence, part 2 shows that it is a T -equivalence and so
we have an equivalence

MapC(LSX,LTX)→MapC(X,LTX).

As a result, the chosen map X → LTX has a contractible space of homotopy com-
muting factorizations X→ LSX→ LTX. As the maps X→ LSX and X→ LTX are
both T -equivalences, the 2-out-of-3 property implies that LSX → LTX is also a T -
equivalence whose target is T -local. By definition, this makes LTX into a T -localization
of LSX.

7.5 Lifting criteria for localizations

In this section we will observe that, if C has homotopy pushouts, we can characterize
local objects in terms of a lifting criterion. To do so, we will need to establish a few
preliminaries. Fix a collection S of maps in C.

Proposition 7.5.1. Suppose that f : A→ B is an S-equivalence, and that C has homotopy
pushouts. Then the map

hocolim(B← A→ B)→ B

is an S-equivalence.

Proof. The map in question is equivalent to the map of homotopy pushouts induced
by the diagram

B A
f
oo

f
//

f
��

B

B Boo // B

However, the vertical maps are S-equivalences, and so by Proposition 7.4.9 the map
hocolim(B← A→ B)→ B is an S-equivalence.
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The lifting criterion we are about to describe rests on the following useful charac-
terization of connectivity of a map.

Lemma 7.5.2. Suppose that f : X → Y is a map of spaces and N ≥ 0. Then f is
N -connected if and only if the following two criteria are satisfied:

1. The map π0(X)→ π0(Y ) is surjective.
2. The diagonal map X→ holim(X→ Y ← X) is (N − 1)-connected.

Proof. The map f is N -connected if and only if it is surjective on π0 and, for all
basepoints x ∈ X, the homotopy fiber Ff over f (x) is (N − 1)-connective.

However, Ff is equivalent to the homotopy fiber of holim(X → Y ← X) → X
over x, and so this second condition is equivalent to holim(X → Y ← X) → X
being N -connected. The composite X → holim(X → Y ← X)→ X is the identity,
and the map holim(X → Y ← X) → X is N -connected if and only if the map
X→ holim(X→ Y ← X) is (N − 1)-connected.

Corollary 7.5.3. Suppose that C has homotopy pushouts and that we have a map
f0 : A0→ B in C. Inductively define the n-fold double mapping cylinder fn as the map

An = hocolim(B← An−1→ B)→ B.

Then an object Y is f0-local if and only if the maps

HomhC(B,Y )→HomhC(An,Y )

are surjective; equivalently, for any map An → Y there is a map B→ Y such that the
diagram

An //

fn
��

Y

B

>>

is homotopy commutative.

Proof. The definition of An gives an identification

MapC(An,Y ) ' holim[MapC(B,Y )→MapC(An−1,Y )←MapC(B,Y )].

Inductive application of Lemma 7.5.2 shows that the map

MapC(B,Y )→MapC(A0,Y )

is N -connected if and only if the maps

HomhC(B,Y )→HomhC(An,Y )

are surjective for 0 ≤ n ≤ N . Letting N grow arbitrarily large, we find that Y is
f0-local if and only of the maps

HomhC(B,Y )→HomhC(An,Y )

are surjective for all n ≥ 0.
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Example 7.5.4. Suppose that C has homotopy pushouts and that f : W → ∗ is a
map to a homotopy terminal object of C. Then the iterated double mapping cylinders
are the maps ΣtW → ∗ , and an object of C is f -local if and only if every map
ΣtW → Y factors, up to homotopy, through ∗.

Example 7.5.5. In the category of spaces S , the iterated double mapping cylinders
fn of a cofibration f0 : A→ B have a more familiar description as the pushout-product
maps

fn : (Sn−1 ×B) ∪
Sn−1×A

(Dn ×A)→Dn ×B→ B.

7.6 The small object argument

We now sketch how, when we have some form of colimits in our category, Bousfield
localizations can often be constructed using the small object argument.

From the previous section we know that we can replace the mapping space criterion
for local objects with a lifting criterion when C has homotopy colimits, as follows. Given
a map f0 : A0→ B, we construct iterated double mapping cylinders fn : An→ B, and
we find that an object is Y is f0-local if and only if we can solve extension problems:
every map g : An→ Y can be extended to a map g̃ : B→ Y up to homotopy. More
generally we can enlarge a collection of maps S to a collection T closed under
double mapping cylinders, and ask whether Y satisfies an extension property with
respect to T .

This leads to an inductive method.

1. Start with Y0 = Y .

2. Given Yα , either Yα is local (in which case we are done) or there exists some set
of maps Ai → Bi in T and maps gi : Ai → Yα which do not extend to Bi up to
homotopy. Form the homotopy pushout of the diagram∐

i

Bi ←
∐
i

Ai → Yα

and call it Yα+1. The map Yα→ Yα+1 is an S-equivalence because it is a homotopy
pushout along an S-equivalence, and all the extension problems that Yα had now
have solutions in Yα+1.

3. Once we have constructed Y0,Y1,Y2, . . . , define Yω = hocolimYn. More generally,
once we have constructed Yα for all ordinals α less than some limit ordinal
β, we define Yβ = hocolimYα . The map Y → Yβ is a homotopy colimit of
S-equivalences and hence an S-equivalence.

The critical thing that we need is that this procedure can be stopped at some point, and
for this we typically need to know that there will be some ordinal β which is so big
that any map Ai → Yβ automatically factors, up to homotopy, through some object
Yα with α < β. This is a categorical compactness property of the objects Ai , and this
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argument is called the small object argument. If we work on the point-set level this
can be addressed using Smith’s theory of combinatorial model categories; if we work
on the homotopical level this can be addressed using Lurie’s theory of presentable
∞-categories. We will discuss these approaches in §7.10 and §7.11.

Another important aspect of the small object argument is that it can prove additional
properties about localization maps. If S is a collection of maps all satisfying some
property P of maps in the homotopy category, and property P is preserved under
homotopy pushouts and transfinite homotopy colimits, then this process constructs
a localization Y → LY that also has property P . Since localizations are essentially
unique, any localization automatically has property P as well.

Remark 7.6.1 . If our category C does not have enough colimits, the small object
argument may not apply. However, Bousfield localizations may still exist even if this
particular construction cannot be applied.

7.7 Unstable settings

The classical examples of Bousfield localization are localizations of spaces. It is
worthwhile first relating the localization condition to based mapping spaces.

Proposition 7.7.1. Suppose f : A→ B is a map of well-pointed spaces with basepoint.
Then a space Y is f -local in the category of unbased spaces if and only if, for all basepoints
y ∈ Y , the restriction

f ∗ : Map∗(B,Y )→Map∗(A,Y )

of based mapping spaces is a weak equivalence.

Proof. Evaluation at the basepoint gives a map of fibration sequences

Map∗(B,Y )

��

// Map(B,Y )

��

// Y

Map∗(A,Y ) // Map(A,Y ) // Y .

The center vertical map is an isomorphism on π∗ at any basepoint if and only if the
left-hand map is.

Remark 7.7.2 . As S-equivalences are preserved under homotopy pushouts and the
2-out-of-3 axiom, we find that any space Y local with respect to f : A→ B is also
local with respect to the map B/A→ ∗ from the homotopy cofiber to a point, and thus
that every path component of Y has a contractible space of based maps B/A→ Y .
However, we will see shortly that the converse does not hold in general.

Example 7.7.3. Let S be the category of spaces, and take f to be the map Sn→ ∗ .
Then a space X is f -local if and only if, for any basepoint x ∈ X, the iterated loop
space ΩnX at x is weakly contractible. Equivalently, for n ≥ 1 the space X is f -local
if and only if it is (n− 1)-truncated : πk(X,x) is trivial for all k ≥ n and all x ∈ X.
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A map A→ B of CW-complexes, by obstruction theory, is an f -equivalence if and
only if it is (n−1)-connected. Therefore, for n > 0 a map A→ B of CW-complexes is
an f -localization if and only if πk(A)→ πk(B) is an isomorphism for 0 ≤ k < n and
all basepoints, but πkB vanishes for all k ≥ n and all basepoints.5 This characterizes
a stage Pn−1(X) in the Postnikov tower of X.

Example 7.7.4. Let f be the inclusion Sn∨Sm→ Sn ×Sm of spaces. The Cartesian
product is formed by attaching an (n +m)-cell to Sn ∨ Sm along an attaching map
given by a Whitehead product [ιn, ιm] ∈ πn+m−1(Sn ∨ Sm). Any map Sn ∨ Sm → X,
classifying a pair of elements α ∈ πn(X) and β ∈ πm(X) at some basepoint x, sends
this attaching map to [α,β]. The fiber of Map(Sn ×Sm,X)→Map(Sn∨Sm,X) over
the corresponding point is either empty (if [α,β] is nontrivial) or equivalent to the
iterated loop space Ωn+mX at x (if [α,β] is trivial). A space X is therefore local with
respect to f if and only if, at any basepoint, the homotopy groups πk(X) are zero for
all k ≥ n+m and the Whitehead products

πn(X,x)×πm(X,x)→ πn+m−1(X,x)

vanish at any basepoint x.
Consider the case n = m = 1. For a path-connected CW-complex X with funda-

mental group G, the map X→ K(Gab,1) is an f -localization.

Example 7.7.5. If A is nonempty, then a space Y is local with respect to f : ∅ → A
if and only if Y is weakly contractible. All maps are f -equivalences, and X → ∗ is
always an f -localization.

Example 7.7.6. Consider a degree-p map f : S1→ S1. A space Y is f -local if and
only if, at any basepoint of Y , the p-th power map ΩY →ΩY is an equivalence. For
this to occur, the p-th power map π1(Y )→ π1(Y ) must be an isomorphism.6

By contrast, let M(Z/p,1) be the Moore space constructed as the cofiber of f ,
and consider the map g : M(Z/p,1) → ∗. A space Y is g-local if and only if, for
any basepoint of Y , the homotopy fiber (over the trivial loop) of the p-th power map
ΩY →ΩY is contractible. In particular, the p-th power map need only be injective
on π1(Y ).7

5 We should be careful about edge cases. When n = 0, X is (−1)-truncated if and only if it is either empty
or weakly contractible. By convention, S−1 = ∅, and X is (−2)-truncated if and only if it is weakly
contractible.
When n = 0 a map A→ B is an f -equivalence if and only if either both A and B are empty or neither
of them is, and a map A→ X is an f -localization if and only if either A is nonempty and X is weakly
contractible, or A and X are both empty. When n = −1 any map is an f -equivalence, and a map A→ X
is an f -localization if and only if X is weakly contractible.

6 We would especially like to thank Carles Casacuberta for a correction. We erroneously stated that a
space was f -local if, in addition, the p-th power maps were isomorphisms on all higher πn. This is the
result of forgetting that, to show a map ΩY →ΩY is an equivalence, we have to vary over choices of
basepoint of ΩY . The correct criterion is this: for any basepoint y and any γ ∈ π1(Y ,y), the operator
1+γ+ · · · +γp−1 must act as an isomorphism on πn(Y ,y) [67]. Our only consolation is that we are,
apparently, in good company.

7 This localization is called Anderson localization [65].
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Example 7.7.7 ([215]). Let S be the set of maps {K(Z/p,1)→ ∗} as p ranges over
the prime numbers. Then the Sullivan conjecture, as proven by Miller [210], is equiv-
alent to the statement that any finite CW-complex X is S-local. Since S-equivalences
are closed under products and homotopy colimits, the expression of K(Z/p,n + 1)
as the geometric realization of the bar construction {K(Z/p,n)q} shows inductively
that the maps K(Z/p,n)→ ∗ are all S-equivalences. However, if Y is any nontrivial
1-connected space with finitely generated homotopy groups and a finite Postnikov
tower, then Y accepts a nontrivial map from some K(Z/p,n) and hence cannot
be S-local. This argument shows that a simply connected finite CW-complex with
nonzero mod-p homology has p-torsion in infinitely many nonzero homotopy groups,
which was conjectured by Serre in the early 1950s and proven by McGibbon and
Neisendorfer [209].

Localization still applies to other categories closely related to topological spaces.

Example 7.7.8. Let C be the category of based spaces. A based space Y is local
with respect to the based map ∗ → S1 if and only if the loop space ΩY is weakly
contractible, or equivalently if and only if the path component Y0 of the basepoint is
weakly contractible. A model for the Bousfield localization is given by the mapping
cone of the map Y0→ Y .

Example 7.7.9. Fix a discrete group G, and consider the category of G-spaces:
spaces with a continuous action of a group G, with maps being G-equivariant con-
tinuous maps. For example, the empty space has a unique G-action, while the orbit
spaces G/H have continuous actions under the discrete topology. Every G-space has
fixed-point subspaces XH � MapG(G/H,X) for subgroups H of G. In this context,
there is an abundance of examples of localizations.

A G-space Y is local with respect to ∅ → ∗ if and only if the fixed-point subspace
YG is contractible. A model for Bousfield localization is given by the mapping cone
of the map YG→ Y .

Fix a model for the universal contractible G-space EG. A G-space Y is local with
respect to EG → ∗ if and only if the map from the fixed point space YG to the
homotopy fixed point space MapG(EG,Y ) = Y hG is a weak equivalence. Since the
projections EG × EG→ EG are G-equivariant homotopy equivalences, a model for
the Bousfield localization is the space of nonequivariant maps Map(EG,Y ), with G
acting by conjugation.

A G-space Y is local with respect to ∅ → G if and only if the underlying space Y
is contractible. A model for the Bousfield localization is given by the mapping cone
of the map EG ×Y → Y , sometimes called ẼG∧Y+.

Example 7.7.10. Fix a collection S of maps and a space Z, letting C be the category
of spaces over Z . We say that a map X → Y of spaces over Z is a fiberwise S-
equivalence if the map of homotopy fibers over any point z ∈ Z is an S-equivalence,
and refer to the corresponding localizations as fiberwise S-localizations.

A map X → Y over Z which is a weak equivalence on underlying spaces is in
particular a fiberwise S-equivalence. Applying this to the lifting characterization of
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fibrations, we can find that for an object Y → Z of C to be fiberwise S-local the map
Y → Z must be a fibration. Moreover, for fibrations Y → Z we can recharacterize
being local. Given any map f : A→ B in S and any point z ∈ Z, there is a map in
C of the form fz : A→ B→ {z} ⊂ Z concentrated entirely over the point z; let SZ be
the set of all such maps. A fibration Y → Z in C is fiberwise S-local if and only if it
is SZ -local in C.

Fiberwise localizations were constructed by Farjoun in [96, 1.F.3]; they are also
constructed in [124, §7] and characterized from several perspectives.

Example 7.7.11. The category of topological monoids and continuous homomor-
phisms has its own homotopy theory. Consider the inclusion f : N → Z of dis-
crete monoids. Then Mapmon(Z,M) → Mapmon(N,M) is isomorphic to the map
M× →M from the space of invertible elements of M to the space M .8 An f -local
object is a topological group, and localization is a topologized version of group-
completion.

However, the map N → Z does not participate well with weak equivalences of
topological monoids: weakly equivalent topological monoids do not have weakly
equivalent spaces of invertible elements because homomorphisms out of Z are not
homotopical. We can get a version that respects weak equivalences in two ways. With

model categories, we can factor the map N → Z as N ↪→ Zc
'−→ Z in the cate-

gory of topological monoids, where Zc is a cofibrant topological monoid, and there
are explicit models for such. We could instead use coherent multiplications, where a
map Z→M is no longer required to strictly be a homomorphism but instead be a
coherently multiplicative map.

Using either correction, the space M× of strict units becomes replaced, up to
equivalence, by the pullback

M inv //

��

M

��

π0(M)× // π0M

the union of the components of M whose image in π0(M) has an inverse. A local
object is then a grouplike topological monoid, and localization is homotopy-theoretic
group completion. These play a key role the study of iterated loop spaces and alge-
braic K-theory [194, 268, 207].

7.8 Stable settings

One of the great benefits of the stable homotopy category, and stable settings in
general, is that a map f : X→ Y becoming an equivalence is roughly the same as the
cofiber Y /X becoming trivial.

8 As a point-set digression the reader should, as usual, be warned that the source may not have the
subspace topology. The space of invertible elements is, instead, homeomorphic to the subspace of
M ×M of pairs of elements (x,y) such that xy = yx = 1.
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We recall the definition of stability from [168, §1.1.1].

Definition 7.8.1. The category C is stable if it satisfies the following properties:

1. C is (homotopically) pointed : there is an object ∗ such that, for all X ∈ C, the
spaces MapC(X,∗) and MapC(∗,X) are contractible.

2. C has homotopy pushouts of diagrams ∗ ← X → Y and homotopy pullbacks of
diagrams ∗ → Y ← X.

As a special case, we have suspension and loop objects:

ΣX = hocolim(∗ ← X→ ∗), ΩX = holim(∗ → X← ∗).

3. Suppose that we have a homotopy coherent diagram

X //

��

Y

��

∗ // Z

meaning maps as given and a homotopy between the double composites. Then
the induced map

hocolim(∗ ← X→ Y )→ Z

is a homotopy equivalence if and only if the map

X→ holim(∗ → Z← Y )

is a homotopy equivalence.
Taking Y = ∗ , we find that a map X→ΩZ is an equivalence if and only if the

homotopical adjoint ΣX→ Z is an equivalence.

Example 7.8.2. The category of (cofibrant–fibrant) spectra is the canonical example
of a stable category.

Example 7.8.3. For any ring R, there is a category KR of chain complexes of R-
modules. Any two complexes C and D have a Hom-complex HomR(C,D), and the
Dold–Kan correspondence produces a simplicial set MapKR(C,D) whose homotopy
groups satisfy

πnMapKR(C,D) �HnHomR(C,D)

for n ≥ 0.9 This gives the category KR of complexes an enrichment in simplicial sets,
and these mapping spaces make the category KR stable. Within this category there
are many stable subcategories: categories of complexes which are bounded above or
below or both, or with homology groups bounded above or below or both, or which
are made up of projectives or injectives, and so on.

We will sometimes write CR ⊂ KR for the subcategory of cofibrant objects in
the projective model structure on R, whose homotopy category is the derived cat-
egory h(R).
9 More generally, if R[m] is the complex equal to R in degree m and zero elsewhere, then for all

complexes C we have [R[m],C]hKR �Hm(C).
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Theorem 7.8.4 (see [168, Theorem 1.1.2.14]). If C is stable, then the homotopy category
hC has the structure of a triangulated category.

In a stable category, every object Y has an equivalence Y →ΩΣY . However, there
is a natural weak equivalence

MapC(X,ΩZ) ' holim[MapC(X,∗)→MapC(X,Z)←MapC(X,∗)]
' holim(∗ →MapC(X,Z)← ∗)
'ΩMapC(X,Z),

and hence the mapping spaces

MapC(X,Y ) 'ΩnMapC(X,Σ
nY )

can be extended to be valued in Ω-spectra. This makes it much easier to detect
equivalences: we only need to check the homotopy groups of ΩtMapC(X,Y ) at the
basepoint.

Definition 7.8.5. Suppose that C is stable and S is a class of maps in C. We say that
S is shift-stable if the image S in hC is closed under suspension and desuspension, up
to isomorphism.

Proposition 7.8.6. Suppose that C is stable and S is a shift-stable class of maps
{fα : Aα → Bα}. Then an object Y in C is S-local if and only if the homotopy classes of
maps [Bα/Aα ,X]hC are trivial.

Proof. The individual fiber sequences

ΩtMapC(Bα/Aα ,Y )→ΩtMapC(Bα ,Y )→ΩtMapC(Aα ,Y ),

on homotopy classes of maps, are part of a long exact sequence

· · ·→ [ΣtBα /Aα ,Y ]hC→πtMapC(Bα ,Y )→πtMapC(Aα ,Y )→ [Σt−1Bα /Aα ,Y ]hC→·· ·

from the triangulated structure. We get an isomorphism on homotopy groups if and
only if the terms [ΣtBα/Aα ,Y ]hC vanish for all values of t.

By contrast with the unstable case where basepoints are a continual issue, these
shift-stable localizations in a stable category are always nullifications, and they are
equivalent to nullifications of the triangulated homotopy category by a class S that is
closed under shift operations.

Definition 7.8.7. Suppose that D is a triangulated category. A full subcategory T
is called a thick subcategory if its objects are closed under closed under isomorphism,
shifts, cofibers, and retracts. If D has coproducts, a thick subcategory T is localizing
if it is also closed under coproducts.

Proposition 7.8.8. Suppose that D is a triangulated category and that T ⊂ D is a thick
subcategory. Then there exists a triangulated category D/T called the Verdier quotient of
D by T , with a functor D→D/T . The Verdier quotient is universal among triangulated
categories under D such that the objects of T map to trivial objects.
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This universal characterization allows us to strongly relate Bousfield localization of
stable categories to localization of the homotopy category.

Proposition 7.8.9. Suppose that C is stable, and that S is a shift-stable collection of
maps in C.

1. An object in C is S-local if and only if its image in the homotopy category hC is S-local.

2. A map in C is an S-equivalence if and only if its image in the homotopy category is an
S-equivalence.

3. The subcategories LSC of S-local objects and T of S-trivial objects are thick subcategories
of C.

4. The subcategory T of S-trivial objects is closed under all coproducts that exist in C. If
C has small coproducts then T is a localizing subcategory.

5. If all objects in C have S-localizations, then the left adjoint to the inclusion hLSC → hC
has a factorization

hC → hC/hT → hLSC.

The latter functor is an equivalence of categories.

Remark 7.8.10 . The fact that Bousfield localization of C is determined by a construc-
tion purely in terms of hC is special to the stable setting.

Remark 7.8.11 . This relates Bousfield localization to Verdier quotients in a stable cate-
gory, but only quotients by a localizing subcategory. For a homotopical interpretation
of more general Verdier quotients, see [216, §I.3].

Example 7.8.12. Let S be the collection of multiplication-by-m maps Sn → Sn

for n ∈ Z, m > 0. A spectrum Y is S-local if and only if multiplication by m is an
isomorphism on the homotopy groups π∗Y for all positive m, or equivalently if the
maps π∗Y →Q⊗π∗Y are isomorphisms. Such spectra are called rational.

If Y is such a spectrum, we can calculate that the natural map

[X,Y ]→
∏
n

Hom(πnX,πnY )

is an isomorphism for any spectrum X: because πnY is a graded vector space,
Hom(− ,πnY ) is exact and so both sides are cohomology theories in X that satisfy
the wedge axiom and agree on spheres. Therefore, A→ B is an S-equivalence if and
only if Q⊗πn(A)→Q⊗πn(B) is an isomorphism for all n, and such maps are called
rational equivalences. In this case, this is the same as the map H∗(A;Q)→ H∗(B;Q)
being an isomorphism.

This analysis allows us to conclude that X → HQ∧X = X
Q

is a rationalization
for all X.

Example 7.8.13. In the above, we can make S smaller. If S is the set of multiplication-
by-p maps Sn→ Sn, we similarly find that S-local spectra are those whose homotopy
groups are Z[1/p]-modules, and that equivalences are those maps which induce
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isomorphisms on homotopy groups after inverting p. The localization of S is the
homotopy colimit

S[1/p] = hocolim(S
p
−→ S

p
−→ S

p
−→ ·· · ),

which is also a Moore spectrum for Z[1/p]. We similarly find that X → S[1/p]∧X
is an S-localization for all X.

We could also let S be the set of multiplication-by-m maps for m relatively prime
to p, which replaces the ring Z[1/p] with the local ring Z(p) in the above.

Example 7.8.14. Fix a commutative ring R and a multiplicatively closed subset
W ⊂ R, recalling that localization with respect to W is exact. If we define S to be
the set of maps of the form R[n]

w−→ R[n] for w ∈W , a complex C of R-modules is
S-local if and only if the multiplication-by-w maps H∗(C)→H∗(C) are isomorphisms,
or equivalently if and only if H∗(C)→W −1H∗(C) � H∗(W −1C) is an isomorphism.
A map A→B of complexes is an S-equivalence if and only if the mapW −1A→W −1B
is an equivalence.

The natural map C→W −1C �W −1R⊗R C is an S-localization.

These examples have such nice properties that it is convenient to axiomatize them.

Definition 7.8.15. A stable Bousfield localization on spectra10 is a smashing local-
ization if either of the following equivalent conditions hold.

1. There is a map of spectra S→ LS such that, for any X, the map X→ LS∧X is
a localization.

2. Local objects are closed under arbitrary homotopy colimits.

The equivalence between these two characterizations is not immediately obvious.
The first implies the second, because

LS∧hocolimXi → hocolim(LS∧Xi)

is always an equivalence and the former is always local. The converse follows because
the only homotopy-colimit preserving functors on spectra are all equivalent to functors
of the form X 7→ A∧X for some A, and the resulting localization map S→ A is of
the desired form.

Example 7.8.16. A spectrum Y is local for the maps S[1/p]∧ Sn→ ∗ if and only if
the homotopy limit

holim(· · · → Y
p
−→ Y

p
−→ Y ) ' F(S[1/p],Y )

of function spectra is weakly contractible. However, taking homotopy limits of the

10 This definition extends if we have a stable category C with a symmetric monoidal structure
appropriately compatible with the stable structure.



322 Lawson: An introduction to Bousfield localization

natural fiber sequences

· · · // Y
p

//

p2

��

Y
p
//

p

��

Y

1
��

· · · // Y
1 //

��

Y
1 //

��

Y

��
· · · // Y /p2 // Y /p // ∗

shows that Y is local if and only if the map Y → Y ∧p = holimY /pk is an equivalence.
Therefore, we refer to a spectrum local for these maps as p-complete; a Bousfield
localization of Y will be called the p-completion; a trivial object is called p-adically
trivial; an equivalence is called a p-adic equivalence. The above presents Y ∧p as a
candidate for the p-completion of Y .

If we construct the fiber sequence

Σ−1
S/p∞→ S→ S[1/p],

we find that we can identify Y ∧p with the function spectrum F(Σ−1
S/p∞,Y ). More-

over, the map Y ∧p → (Y ∧p )∧p is always an equivalence. Therefore, Y ∧p is always p-
complete.

If multiplication-by-p is an equivalence on Z, then Z ' Z ∧S[1/p], and so maps
Z → Y are equivalent to maps Z → F(S[1/p],Y ). For any Y which is p-adically
complete, this is trivial, so such objects Z are p-adically trivial. In particular, the
fiber of Y → Y ∧p is always trivial and so Y → Y ∧p is a p-adic equivalence. Therefore,
this is a p-adic completion.

If each homotopy group of Y has a bound on the order of p-power torsion, we can
further identify the homotopy groups of Y ∧p as the ordinary p-adic completions of
the homotopy groups of Y ; if the homotopy groups of Y are finitely generated, then
π∗(Y ∧p )→ π∗(Y )⊗Zp.

11

Remark 7.8.17 . The previous example is not a smashing localization. For any con-
nective spectrum X, the map S

∧
p ∧X→ X∧p induces the map π∗(X)⊗Zp→ π∗(X)∧p

on homotopy groups; this is typically only an isomorphism if the homotopy groups
π∗(X) are finitely generated.

Example 7.8.18. For an element x in a commutative ring R, let Kx be the complex

· · · → 0→ R→ x−1R→ 0→ ·· ·

concentrated in degrees 0 and −1, with a map KX → R. For a sequence of ele-
ments (x1, . . . ,xn), let K(x1,...,xn) =

⊗
RKxi be the stable Koszul complex. If y is in the

ideal generated by (x1, . . . ,xn), then the inclusion K(x1,...,xn)→ K(x1,...,xn,y) is a quasi-
isomorphism, and so up to quasi-isomorphism the Koszul complex only depends on
the ideal. Let KI be a cofibrant replacement.

11 In general, the homotopy groups of the p-adic completion are somewhat sensitive and one needs to be
careful about derived functors of completion.
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We say that a complex C is I-complete if and only if it is local with respect to the
shifts of the map KI → R. This is true if and only if the homology groups of C are
I-complete in the derived sense. If R is Noetherian and the homology groups of C are
finitely generated, this is true if and only if the homology groups of C are I-adically
complete in the ordinary sense.

These frameworks for the study of localization and completion, and many general-
izations of it, were developed by Greenlees and May [112].

Example 7.8.19. Fix a Noetherian ring R, and let C be the category of unbounded
complexes of finitely generated projective left R-modules that only have nonzero
homology groups in finitely many degrees. Consider the set S of maps R[n] → 0.
An object C is S-local if and only if its homology groups are trivial.

We can inductively take mapping cones of maps R[n]→ C to construct a local-
ization C → LC, embedding C into an unbounded complex of finitely generated
projective modules with trivial homology groups. Therefore, localizations exist in this
category.

For two such complexes C and D with trivial homology, we have

HomhC(C,D) � lim
n

HomR(ZnC,ZnD)/HomR(ZnC,Dn+1),

where Dn+1 → Zn(D) is the boundary map — a surjective map from a projective
module.

This can be interpreted in terms of the stable module category of R. Defining
Wn(C) = Z−n(C), the short exact sequences 0→ Z−n(C)→ C−n → Z−n−1(C)→ 0
determine isomorphisms Wn(C) �ΩWn+1(C) in the stable module category, assem-
bling the Wn into an “Ω-spectrum”. Maps C → D are then equivalent to maps of
Ω-spectra in the stable module category.12

7.9 Homology localizations

Homology localization of spaces

Definition 7.9.1. Suppose E∗ is a homology theory on spaces. We say that a map
f : A→ B of spaces is an E∗-equivalence if it induces an isomorphism f∗ : E∗A→ E∗B.
A space is E∗-local if it is local with respect to the class of E∗-equivalences.

Example 7.9.2. Suppose that E∗ is integral homology H∗. Any Eilenberg–Mac Lane
space K(A,n) is H∗-local by the universal coefficient theorem for cohomology. More-
over, any simply connected space X is the homotopy limit of a Postnikov tower built
from fibration sequences PnX → Pn−1X → K(πnX,n + 1). Since local objects are
closed under homotopy limits, we find that simply connected spaces are H∗-local.13

12 In certain cases, such as for Frobenius algebras, Ω is an autoequivalence. This definition then simply
recovers the stable module category of R by itself. If R has finite projective dimension, Ω-spectrum
objects are necessarily trivial.

13 This argument can be refined to show that nilpotent spaces (where π1(X) is nilpotent, and acts
nilpotently on the higher homotopy groups) are H∗-local.
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Remark 7.9.3 . This example illustrates a very different approach to the construction
of localizations. Because homology isomorphisms are detected by the K(A,n), these
spaces are automatically local; therefore, any object built from these using homotopy
limits is automatically local. Such objects are often called nilpotent. Thus gives us a
dual approach to building the Bousfield localization of X: construct a natural diagram
of nilpotent objects that receive maps from X, and try to verify that the homotopy
limit is a localization of X.

Example 7.9.4. Serre’s rational Hurewicz theorem implies that a map of simply
connected spaces is an isomorphism on rational homology groups if and only if it is
an isomorphism on rational homotopy groups. A simply connected space is local for
rational homology if and only if it its homotopy groups are rational vector spaces.

The same is not true for general spaces. The map RP
2→ ∗ is a rational homology

isomorphism, and the covering map S2→RP
2 is an isomorphism on rational homo-

topy groups, but the composite S2→ ∗ is neither. The problem here is the failure of
a simple Postnikov tower for RP

2 due to the action of π1 on the higher homotopy
groups.

Example 7.9.5. If X is a connected space with perfect fundamental group, then
Quillen’s plus-construction gives a map X → X+ that induces an H∗-isomorphism
such that X+ is simply connected. This makes X+ into an H∗-localization of X.

Classically, Quillen’s plus-construction can be applied to groups with a perfect
subgroup. In order to properly identify the universal property, we need to work in a
relative situation.

Example 7.9.6. Fix a group G, and let C be the category of spaces over BG. Given
an abelian group A with G-action, there is an associated local coefficient system A
on BG, and so given any object X → BG of C we can define the homology groups
H∗(X;A). We say that a map X → Y over BG is a relative homology equivalence
if it induces isomorphisms on homology with coefficients in any A. Taking A to be
the group algebra Z[G], we find that this is equivalent to the map of homotopy
fibers FX → FY being a homology isomorphism, so this is the same as a fiberwise
H∗-equivalence. If an object Y over BG has simply connected homotopy fiber it is
automatically local.

Suppose that X is any connected space such that π1(X) contains a perfect nor-
mal subgroup P with quotient group G. The homomorphism π1(X)→ G lifts to a
map X → BG. The plus-construction with respect to P is a fiber homology equiva-
lence X→ X+ where X+→ BG has simply connected homotopy fiber, and thus is a
localization in C.

Localization with respect to homology is very difficult to analyze in the case when
a space is not simply connected, especially if the space is not simple (either the
fundamental group is not nilpotent or it does not act nilpotently on the higher
homotopy groups). Many natural spaces are not local. Here are some basic tools to
prove this.
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Lemma 7.9.7. Suppose that Fn is a free group on n generators and α : Fn→ Fn is a homo-
morphism, with induced map αab : Z

n→Z
n. Under the identification Hom(Fn,G) � Gn

for any group G, write α∗ for the natural map of sets Gn→ Gn.
Suppose the map αab becomes an isomorphism after tensoring with a ring R. For any space

X, a necessary condition for X to be H∗(−;R)-local is that α∗ : π1(X,x)n→ π1(X,x)n

must be a bijection at any basepoint.

Proof. The map αab, after tensoring with R, can be identified with the map on first
homology, H1(Fn;R)→ H1(Fn;R), induced by α. If αab becomes an isomorphism
after tensoring with R, then α : K(Fn,1)→ K(Fn,1) is an H∗(−;R)-equivalence.

For a space X to be H∗(−;R)-local, the induced map

Map∗(K(Fn,1),X)→Map∗(K(Fn,1),X)

must be a weak equivalence. Taking a wedge of circles as our model, we find that the
induced map

(ΩX)n→ (ΩX)n

must be a weak equivalence. On π0, this is the map α∗ on π1(X)n.

Example 7.9.8. For n , 0, the multiplication-by-n map Z→Z is a rational isomor-
phism. Therefore, for X to be rationally local, the n-th power map π1(X)→ π1(X)
should be a bijection: every element g ∈ π1(X) has a unique n-th root g1/n. Such
groups are called uniquely divisible, or sometimes Q-groups. The structure of free
Q-groups was studied in [32].

Example 7.9.9. Let F2 be free on generators x and y, and define α : F2→ F2 by

α(x) = x−9y−20(y2x)10, α(y) = x−9y10(yx−1)−9.

The map αab is the identity map. Therefore, for a space with fundamental group G
to be local with respect to integral homology, any pair of elements (z,w) ∈ G has to
be uniquely of the form (z,w) = (x−9y−20(y2x)10, x−9y−10(yx−1)−9) for some x and
y in G. Most groups do not satisfy this property.

We can use this to show that any space whose fundamental group G has a surjective
homomorphism φ : G→ A5 cannot be local with respect to integral homology — in
particular, this applies to a free group F2. Choose elements x and y in G with
φ(x) = (123) and φ(y) = (12345). Then φ(y2x) = (14)(25) and φ(yx−1) = (145),
and φ ◦α is the trivial homomorphism while φ is surjective.14

Several other, more easily defined, maps α can be shown to not be bijective. For
example, the map (x,y) 7→ (x[x,y], y[x,y]) can be shown not to be a bijection by
using Fox’s free differential calculus [99].

Lemma 7.9.10. Let G be a group, R a ring, and β ∈ Z[G] an element such that the

composite ring homomorphism Z[G]
ε−→Z→ R sends β to zero.

14 In order to use this particular technique to show that φ was not a bijection, we needed to have a
homomorphism φ whose image was a perfect group — the image of αab is contained in the kernel of
φab . This particular map α is complicated because it was reverse-engineered from φ.
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Then, for any based space X with fundamental group G, a necessary condition for X to
be H∗(−;R)-local is that πk(X) must be complete in the topology defined by β.15

Proof. Fix the space X and basepoint and consider the space Y = X ∨Sk . The group
πk(Y ) is isomorphic to πk(X)⊕Z[G], and so the element β ∈ Z[G] lifts to a map
β : Y → Y given by the identity on X together with the map Sk → Y corresponding
to the element (0,β) ∈ πk(X)⊕Z[G]. The induced self-map of

H∗(Y ;R) �H∗(X;R)⊕ H̃∗(Sk ;R)

is given by the identity on H∗(X;R) together with the map ε(β) tensored with R on
the second factor. If ε(β) becomes zero after tensoring with R, then this map is zero
on the second factor.

Define

X ′ = hocolim(Y
β
−→ Y

β
−→ ·· · ).

By construction, the map

H∗(X;R)→H∗(X
′ ;R) = colimH∗(Y ;R)

is an isomorphism. Therefore, X→ X ′ is an H∗(−;R)-equivalence.
For X to be H∗(−;R)-local, the induced map

Map(X ′ ,X)→Map(X,X)

must be a weak equivalence. Taking the fiber over the identity map of X, we find that
there is an induced equivalence

holim(· · ·
β
−→ΩkX

β
−→ΩkX)→∼ ∗.

Using the Milnor lim1-sequence, we find that all of the homotopy groups of X must
be derived-complete with respect to β.

Remark 7.9.11 . If R = Z, then this implies that any element s ∈Z[G] with ε(s) = ±1
must act invertibly on the higher homotopy groups of X, and so the action must
factor through a large localization S−1

Z[G].

Example 7.9.12. Consider X = S1 ∨ S2, whose fundamental group is isomorphic to
Z with generator t. The second homotopy group satisfies

π2(S1 ∨ S2) �Z[t±1]

as a module over Z[t±1]. This is not complete with respect to the ideal generated
by β = (t − 1) even though ε(β) = 0. Therefore, S1 ∨ S2 is not local with respect to
integral homology.

Example 7.9.13. The space RP
2 has fundamental group Z/2 generated by an

element σ , and the second homotopy group Z satisfies σ (y) = −y. The element

15 This refers to being derived complete in the sense of Example 7.8.18.
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(1− σ ) has ε(1− σ ) = 0 and acts as multiplication by 2. Since Z is not complete in
the 2-adic topology we find that RP

2 is not local with respect to integral homology.16

Example 7.9.14. If R = Q, then any element S ∈ Z[G] with ε(s) , 0 must act
invertibly on the higher homotopy groups of X for X to be local with respect to
rational homology. The homotopy groups of K(Q,1)∨ (S3)

Q
are Q in degree 1 and

the rational group algebra Q[Q] in degree 3. If t is the generator of Z ⊂ Q, the
element 2t − 1 has ε(2t − 1) = 1 and does not act invertibly on this group algebra.
Therefore, this space is not local with respect to rational homology even though its
homotopy groups are rational.

Remark 7.9.15 . Bousfield localization with respect to E∗-equivalences leads us to
some uncomfortable pressure with our previous notation. At first glance, it is not
clear whether being an equivalence on E∗-homology is the same as having the same
mapping spaces into any E∗-local object.17 To prove this, one needs to prove that
there is a sufficient supply of E∗-local objects: for any X, we need to be able to
construct an E∗-homology isomorphism X → LEX such that LEX is E∗-local. Here
is how Bousfield addressed this in [54, Theorem 11.1]. It is essentially a cardinality
argument, whose general form is called the Bousfield–Smith cardinality argument
in [124, §2.3].

Let E∗ be a homology theory on spaces. We then have a class S of E∗-equivalences,
which are those maps which induce equivalences on E∗-homology. Unfortunately, this
is a proper class of morphisms, and so we cannot immediately apply the small object
argument to construct localizations. Moreover, because we do not know anything
about local objects we cannot assert that an S-equivalence X → Y is the same as a
map inducing an isomorphism E∗X→ E∗Y .

Bousfield addresses this by showing the following. Suppose K → L is an inclusion
of simplicial sets such that E∗K → E∗L is an isomorphism, and that we choose any
simplex σ of L. Then there exists a subcomplex L′ ⊂ L with the following properties:

1. The simplex σ is contained in L′ .
2. The map E∗(K ∩L′)→ E∗(L′) is an isomorphism on E∗.
3. The complex L′ has size bounded by a cardinal κ, which depends only on E.

Because of the cardinality bound on L′ , we can find a set T of E∗-equivalences A→ B
so that any such map K ∩ L′ → L′ must be isomorphic to one of them; an arbitrary
E∗-equivalence K → L can then be factored as a (possibly transfinite) sequence of
pushouts along the maps in the set T followed by an equivalence. The maps in T are
E∗-isomorphisms, and an object is S-local if and only if it is T -local. The small object
argument then applies to T , allowing us to construct T -localizations Y → LY which
are also E∗-isomorphisms.

We will see in § 7.10 and § 7.11, in general constructions of Bousfield localization,
that this verification is the key step.

16 The homology localization of RP
2 has, in fact, a fiber sequence (S2)∧2 → LRP

2→ K(Z/2,1).
17 One could, but should not, say it this way: it is not clear that an (E∗-equivalence)-equivalence is

automatically an E∗-equivalence.
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Homology localization of spectra

Definition 7.9.16. For a spectrum E, a map f : X→ Y is an E-homology equivalence
(or simply an E-equivalence) if the corresponding map E∗X → E∗Y is an isomor-
phism, and we say that Z is E-trivial if E∗Z = 0. A map f is an E-equivalence if and
only if the cofiber of f is E-trivial.18

This is most often employed when E is a ring spectrum.

Proposition 7.9.17. If E has a multiplication m : E∧E→ E with a left unit η : S→ E
in the homotopy category, then any spectrum Y with a unital map E ∧Y → Y is E-local.

Remark 7.9.18 . Such spectra Y are sometimes called homotopy E-modules. Any spec-
trum of the form E ∧W is a homotopy E-module.

Proof. Any map f : Z→ Y has the following factorization in the homotopy category:

Z
η∧1
−−−→ E ∧Z

1∧f
−−−→ E ∧Y m−→ Y

If Z has trivial E-homology, then E ∧ Z is trivial and so the composite Z → Y is
nullhomotopic. Therefore, [Z,Y ] = 0 for all E-trivial Z, as desired.

Corollary 7.9.19. If E has a multiplication m : E ∧E→ E with a left unit η : S→ E
in the homotopy category, then any homotopy limit of spectra that admit homotopy E-module
structures is E-local.

Example 7.9.20. A particular case of interest is when E =HZ. Any Eilenberg–Mac
Lane spectrum HA is HZ-local, being of the form HZ∧MA for a Moore spectrum
for A.

Then any connective spectrum Y is HZ-local, as follows. As HZ-local objects
form a thick subcategory, any spectrum with finitely many nonzero homotopy groups
is therefore HZ-local. If Y is connective then PnY is HZ-local due to having a
finite Postnikov tower. Therefore, Y = holimPnY is the homotopy limit of HZ-local
spectra, and is thus HZ-local.

Similarly, any product of Eilenberg–Mac Lane spectra
∏
ΣnHAn is also HZ-local.

Any rational spectrum is of this form.
However, not all spectra are HZ-local. For any prime p and any integer n > 0,

there are p-primary Morava K-theories K(n) such that HZ∧K(n) is trivial; these
are HZ-acyclic. The complex K-theory spectrum KU satisfies the property that
H∗(KU ;Z)→H∗(KU ;Q) is an isomorphism: from this we can find that KU → KU

Q

is an HZ-equivalence. The target is also HZ-local because it is rational, and so KU
Q

is the HZ-localization of KU .

Example 7.9.21. We can consider the case where E =HZ/p. By a similar argument,
we find that any connective spectrum which is p-adically complete in the sense of

18 Again, the definitions of this section can be applied to a stable category C with a compatible symmetric
monoidal structure.
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Example 7.8.16 is also HZ/p-complete. Again, in connective cases there is not a
difference between being p-adically complete and being HZ/p-local.

For nonconnective spectra, these are quite different. The Morava K-theories K(n)
are p-adically complete but HZ/p-trivial. The periodic complex K-theory spectrum
KU has π∗(KU∧p ) � (π∗KU )∧p , but KU is also HZ/p-trivial.

These localizations have the flavor of completion with respect to an ideal. In some
cases we can express them as such.

Definition 7.9.22. Suppose that E has a binary multiplication m with a left unit
η : S → E, and let j : I → S be the fiber of η : S → E. Assemble these into the
inverse system

· · · → I∧3 j∧1∧1
−−−−−→ I ∧ I

j∧1
−−−→ I

j
−→ S

The E-nilpotent completion X∧E is the homotopy limit

holimn(S/I∧n)∧X,

with map X→ X∧E induced by the maps S→ S/I∧n.

Proposition 7.9.23. The E-nilpotent completion is always E-local.
If E is a finite complex, or X and I are connective and E is of finite type, then the map

X→ X∧E is an E-localization.

Proof. The cofiber sequence I → S→ E, after smashing with I∧(n−1), becomes a
cofiber sequence I∧n→ I∧(n−1)→ E ∧ I∧(n−1), and so there are cofiber sequences

S/I∧n ∧X→ S/I∧(n−1) ∧X→ E ∧ I∧(n−1) ∧X.

By induction on n we find that S/I∧n∧X is E-local, and so the homotopy limit X∧E is
E-local.

After smashing with E, the cofiber sequence

E ∧ I∧n ∧X→ E ∧ I∧(n−1) ∧X→ E ∧E ∧ I∧(n−1) ∧X

has a retraction of the second map via the (opposite) multiplication of E, and so
the first map is nullhomotopic. Therefore, the homotopy limit holimE ∧ (I∧n ∧X) is
trivial, and from the cofiber sequences

E ∧ (I∧n ∧X)→ E ∧X→ E ∧ (S/I∧n ∧X)

we find that E ∧X→ holim(E ∧ (S/I∧n ∧X)) is an equivalence.
This reduces us to proving that the map

E ∧holim(S/I∧n ∧X)→ holim(E ∧S/I∧n ∧X)

is an equivalence: we can move the smash product with E inside the homotopy limit.
This is always true if E is finite or if E is of finite type and the homotopy limit is of
connective objects.
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Remark 7.9.24 . The spectral sequence arising from the inverse system defining X∧E
is the generalized Adams–Novikov spectral sequence based on E-homology. It often abuts
to the homotopy groups of the Bousfield localization with respect to E.

We can generalize our construction by allowing more general towers with a nilpo-
tence property, after Bousfield in [55], or by extending these methods to the category
of modules over a ring spectrum, as Baker–Lazarev did in [15] or Carlsson did in [64].

Example 7.9.25. For any prime p and any n > 0, we have the Johnson–Wilson
homology theories E(n)∗ and the Morava K-theories K(n)∗. Associated to these we
have E(n)-localization functors and K(n)-localization functors, as well as categories
of E(n)-local and K(n)-local spectra, which play an essential role in chromatic homo-
topy theory. Ravenel conjectured, and Devinatz–Hopkins–Smith proved, that the lo-
calization LE(n) is a smashing localization [230, 73, 231]. These localizations also have
chromatic fractures which are built using the following result.

Proposition 7.9.26. Suppose that E and K are spectra such that LKLEX is always
trivial. Then, for all X, there is a homotopy pullback diagram

LE∨KX //

��

LEX

��

LKX // LELKX.

Proof. The objects in the diagram

LEX→ LELKX← LKX

are either E-local or K-local, and hence automatically E ∨ K-local; therefore, the
homotopy pullback P is E ∨K-local. It then suffices to show that the fiber of the map
X→ P is E ∨K-trivial, which is equivalent to showing that

X //

��

LEX

��

LKX // LELKX.

becomes a homotopy pullback after smashing with E ∨K . After smashing with E,
the horizontal maps become equivalences, and so the diagram is a pullback. After
smashing with K , the left-hand vertical map is an equivalence and the right-hand
vertical map is between trivial objects, so the diagram is also a pullback. Therefore,
the diagram becomes a pullback after smashing with E ∨K .

7.10 Model categories

The lifting characterization of local objects from §7.5 falls very naturally into the
framework of Quillen’s model categories. The groundwork for this is in [54, §10]. See
also Chapter 3 of this volume for more on localization of model categories.
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Definition 7.10.1. Suppose thatM is a category with a model structure. We say that
a second model structure M′ with the same underlying category is a left Bousfield
localization of M if M′ has the same family of cofibrations but a larger family of
weak equivalences thanM.

As a first consequence, note that the identity functor (which is its own right and
left adjoint) preserves cofibrations and takes the weak equivalences in M to weak
equivalences inM′ . This makes it part of a Quillen adjunction

M�M′ .

This has the immediate consequence that the induced adjunction on homotopy
categories is a reflective localization.

Proposition 7.10.2. Suppose that L : M�M′ : R is the adjunction associated to a left
Bousfield localization. Then the right adjoint R identifies the homotopy category hM′ with
a full subcategory of hM.

Proof. It is necessary and sufficient to show that the counit ε : LRx → x of the
adjunction on homotopy categories is always an isomorphism, for this is the same as
asking that, in the factorization

HomhM(Rx,Ry) �HomhM′ (LRx,y)→HomhM′ (x,y),

the second map is an isomorphism.
For an object of y, the composite functor LR on homotopy categories is calculated

as follows: find a fibrant replacement y→'′ yf ′ inM′ , apply the identity functor to get
toM, find a cofibrant replacement (yf ′ )c→' yf ′ inM, and apply the identity functor
to get toM′ . The counit of the adjunction is represented in the homotopy category of
M′ by the composite

(yf ′ )c→' yf ′ ←'
′
y.

However, equivalences inM are automatically equivalences inM′ , and so the counit
is an isomorphism in the homotopy category ofM′ .

Because fibrations and acyclic fibrations are determined by having the right lifting
property against acyclic cofibrations and fibrations, the new model structure has the
same acyclic fibrations but fewer fibrations. For example, a fibrant object in the left
Bousfield localization has to have a lifting property against the cofibrations which are
weak equivalences inM′ .

The next proposition establishes the connection between left Bousfield localization
and ordinary Bousfield localization when both are defined and compatible: the case of
a simplicial model category.

Proposition 7.10.3. Suppose thatM is a simplicially enriched category with two model
structures, makingM→M′ into a left Bousfield localization of simplicial model categories.
Let S be the collection of weak equivalences between cofibrant objects inM′ . Then, in the
category of cofibrant-fibrant objects ofM, the objects which are fibrant inM′ are precisely
the S-local fibrant objects.
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Proof. Fix an object Y ofM′ . For it to be fibrant inM′ , it must also be fibrant inM.
Suppose Y is a fibrant object in M′ . Given any acyclic cofibration A→ B in M′ ,
the map of simplicial sets MapM′ (A,Y )→ MapM′ (B,Y ) is an acyclic fibration by
the SM7 axiom of simplicial model categories. Thus, the functor MapM′ (− ,Y ) from
M′ to the homotopy category of spaces takes acyclic cofibrations to isomorphisms.
Ken Brown’s lemma then implies that it also takes weak equivalences between cofibrant
objects inM′ to isomorphisms in the homotopy category of spaces.

Suppose that we have a map f : A→ B in S between cofibrant objects ofM that is
also a weak equivalence inM′ . Then f is also a weak equivalence between cofibrant
objects ofM′ . The induced map MapM(B,Y )→MapM(A,Y ) is a weak equivalence
because the mapping spaces inM andM′ are the same. Thus, Y is S-local.

We would now like to establish results in the other direction. Namely, given a model
categoryM and a collection S of maps Ai → Bi inM, we would like to establish the
existence of a Bousfield localizationM′ ofM. Because we want to work within the
already-established homotopy theory ofM, we want to use derived mapping spaces
out of A and B and replace homotopy lifting properties with strict lifting properties.
We assume without loss of generality that our set S is made up of cofibrations Ai → Bi
between cofibrant objects.

Definition 7.10.4. Suppose thatM is a simplicial model category, and that f : A→ B
is a map. Then the iterated double mapping cylinders are the maps

(B⊗∂∆n)
∐

A⊗∂∆n
(A⊗∆n)→ B⊗∆n.

This definition is rigged in such a way that an object Y has the right lifting
property with respect to the iterated double mapping cylinders if and only if the
map MapM(B,Y )→MapM(A,Y ) is an acyclic fibration of simplicial sets. One of the
equivalent formulations of the SM7 axioms for a simplicial model category is that
double mapping cylinders are always cofibrations, as follows.

Proposition 7.10.5. Suppose that f : A→ B is a map. If f is a cofibration, then the
iterated double mapping cylinders are cofibrations. If A is also cofibrant, then the iterated
double mapping cylinders have cofibrant source.

Remark 7.10.6 . If M does not have a simplicial model structure, we can obtain
replacements for these objects by iteratively replacing the maps BqA B → B with
equivalent cofibrations (see Corollary 7.5.3).

Definition 7.10.7. Suppose that M is a simplicial model category, that S is a col-
lection of maps, and that T is the collection of iterated double mapping cylinders of
maps in S . We say that a map in M is an S-cofibration if it is a cofibration in M,
and that it is an S-fibration if it has the right lifting property with respect to the maps
in T . If these determine a new model structure M′ , we call this the left Bousfield
localization with respect to S .

This gives us two fundamentally different approaches to the process of constructing
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a left Bousfield localization. In the first, we may try to expand our family of weak
equivalences to some new familyW ; we must then prove that we can construct enough
fibrations and fibrant objects to make the model structure work. In the second, we
may try to start with some collection of maps S which serve as new “cells” to build
acyclic cofibrations, and use them to contract our family of fibrations; we then lose
control over the weak equivalences, and typically must work to prove that cofibrations
which are weak equivalences can be built out of our new cells.

The most advanced technology available for Bousfield localization is Jeff Smith’s
theory of combinatorial model categories.

Definition 7.10.8. A model category M is cofibrantly generated if there are sets I
and J of maps satisfying the following properties:

1. the fibrations inM are the maps that have the right lifting property with respect
to J ;

2. the acyclic fibrations inM are the maps that have the right lifting property with
respect to I ;

3. I permits the small object argument, so that from any object X we can construct
a map X → X ′ , as a transfinite composition of pushouts along coproducts of
maps in I , that has the right lifting property with respect to I ;

4. J also permits the small object argument.

We refer to I as the set of generating cofibrations and to J as the set of generating acyclic
cofibrations.

Further, the cofibrantly generated model category is combinatorial if it is also
locally presentable, meaning there exists a regular cardinal κ and a setM0 of objects
satisfying the following properties:

1. Any small diagram inM has a colimit.
2. For any object x in M0, the functor HomM(x,−) commutes with κ-filtered

colimits.
3. Every object inM is a κ-filtered colimit of objects inM0.

Theorem 7.10.9 (Dugger’s theorem [79]). Any combinatorial model category is Quillen
equivalent to a left proper simplicial model category.

Remark 7.10.10 . The axioms of a cofibrantly generated model category and a locally
presentable category have nontrivial overlap. In one direction, the model category
axioms already ask that M has all colimits. In the other direction, being locally
presentable means that every set of maps admits the small object argument.

Example 7.10.11. Simplicial sets are the motivating example of a combinatorial
model category. Fibrations and acyclic fibrations are defined as having the right lift-
ing property with respect to the generating acyclic cofibrations Λni → ∆n and the
generating cofibrations ∂∆n → ∆n. The category is also locally presentable because
it is generated by finite simplicial sets. Every simplicial set is the filtered colimit of its
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finite subobjects; there are only countably many isomorphism classes of finite simpli-
cial sets; for any finite simplicial set X, Hom(X,−) commutes with filtered colimits.

Theorem 7.10.12 (Smith’s theorem [35, 25, 169]). Suppose thatM is a locally presentable
category with a familyW of weak equivalences and a set I of generating cofibrations.
Call those maps which have the right lifting property with respect to I the acyclic fibrations,
and those maps which have the left lifting property with respect to acyclic fibrations the
cofibrations. Suppose further that

1. W satisfies the 2-out-of-3 axiom;

2. acyclic fibrations are inW ;

3. the class of cofibrations which are in W is closed under pushout and transfinite
composition; and

4. maps in W are closed under κ-filtered colimits for some regular cardinal κ, and
generated under κ-filtered colimits by some set of maps inW .

Then there exists a combinatorial model structure onM with set I of generating cofibrations
and set W of weak equivalences. This model structure on M has cofibrant and fibrant
replacement functors. Moreover, any combinatorial model structure arises in this fashion.

Corollary 7.10.13. Suppose that M is a combinatorial model category with set I of
generating cofibrations and class W of weak equivalences. Given a functor E : M→D
factoring through the homotopy category hM, define a map to be an E-equivalence if its
image under E is an isomorphism. Then there exists a left Bousfield localizationME , whose
equivalences are the E-equivalences, if the following conditions hold:

1. E-equivalence is preserved by transfinite composition along cofibrations.

2. Pushouts of E-acyclic cofibrations are E-equivalences.

3. There exists a set of E-acyclic cofibrations that generate all E-acyclic cofibrations under
κ-filtered colimits.

Proof. The 2-out-of-3 axiom is automatic: if two of E(g), E(f ) and E(gf ) = E(g)E(f )
are isomorphisms, then so is the third. The fact that E factors through the homotopy
category automatically implies that acyclic fibrations are taken by E to isomorphisms.

Example 7.10.14. Let E∗ be a homology theory on the category of simplicial sets.
The excision and direct limit axioms for homology imply that E-equivalences are
preserved by homotopy pushouts and transfinite compositions. Therefore, the veri-
fication that we have a model structure is immediately reduced to the core of the
Bousfield–Smith cardinality argument of Example 7.9.15: that there is a set of E-
acyclic cofibrations generating all others under filtered colimits.

The great utility of combinatorial model structures is that they allow us to build
new model categories: categories of diagrams and Bousfield localizations.
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Theorem 7.10.15 ([169, A.2.8.2, A.3.3.2]). Suppose that M is a combinatorial model
category and that I is a small category. Then there exists a projective (resp. injective) model
structure on the functor categoryMI , where a natural transformation of diagrams is an
equivalence or fibration (resp. cofibration) if and only if it is an objectwise equivalence or
fibration (resp. cofibration).

If M is a simplicial model category, then the natural simplicial enrichment on MI

makes the injective and projective model structures into simplicial model categories.

Theorem 7.10.16 ([169, A.3.7.3]). Suppose that M is a left proper combinatorial sim-
plicial model category and that S is a set of cofibrations in M. Let S−1M have the
same underlying category asM and the same cofibrations, but with weak equivalences the
S-equivalences.

Then S−1M has the structure of a left proper combinatorial model category, whose
fibrant objects are precisely the S-local fibrant objects ofM.

7.11 Presentable∞-categories

Bousfield localization for model categories has the useful property that it keeps the
category in place and merely changes the equivalences. One cost is that making
localization canonical or extending monoidal structures to localized objects takes
hard work. By contrast, localization for ∞-categories has the useful property that it is
genuinely defined by a universal property, automatically making localization canonical
and making it much easier to extend a monoidal structure to local objects without
rectifying structure. Of course, this comes at the cost of coming to grips with coherent
category theory itself.

The homotopy theory of presentable ∞-categories is equivalent, in a precise sense,
to the homotopy theory of combinatorial model categories [169, A.3.7.6]. However,
by contrast with our techniques for Bousfield localization using model categories
and fibrant replacement functors, it allows us to rephrase some of our localization
techniques in a way that connects more directly with the homotopical techniques that
we originally used in §7.5.

In this section, we will let C be an ∞-category in the sense of [169]. (It is outside the
scope of this chapter to give a technically correct discussion of ∞-categories; please
see Chapter 2 of this volume for a more detailed introduction to them). The study
of ∞-categories is equivalent to the study of categories with morphism spaces, and
where possible we will attempt to make connection with classical techniques. With this
in mind, if C is an enriched category we will say that a coherent diagram I → C is a
coherent functor in the sense of Vogt [295]. This is equivalent to either the notion of
a functor C[I]→C from a certain simplicially enriched category or to the notion of
a functor I → NC of simplicial sets to the coherent nerve in the sense of [169]. As
before a homotopy colimit for such a diagram is based on classical homotopy limits
and colimits in spaces, and is characterized by having natural weak equivalences

MapC(hocolimI F(i),Y ) ' holimI MapC(F(i),Y ).
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Definition 7.11.1 ([169, 5.5.1.1]). An∞-category C is presentable if there exists a regular
cardinal κ and a set C0 of objects satisfying the following properties:

1. Any small diagram in C has a homotopy colimit.
2. For any object x in C0, the functor HomC(x,−) commutes with κ-filtered homo-

topy colimits.
3. Every object in C is a κ-filtered homotopy colimit of objects in C0.

This definition is precisely parallel to the definition of local presentability in an
ordinary category (see Definition 7.10.8). In essence, C is a large category that is
formally generated under colimits by a small category.

Given such an ∞-category C and a collection S of morphisms in C, it makes sense
to define the S-local objects and S-equivalences just as in §7.4: an object Y is S-local if
and only if the mapping spaces MapC(− ,Y ) take maps in S to equivalences of spaces.

Definition 7.11.2 ([169, 5.5.4.5]). Suppose that C is an∞-category with small colimits
and that W is a collection of maps in C. We say that W is strongly saturated if it
satisfies the following conditions:
1. Given a homotopy pushout diagram

C
f
//

��

D

��

C′
f ′
// D ′

if f is in W then so is f ′ .
2. The class W is closed under homotopy colimits.
3. The classW is closed under equivalence, and its image in the homotopy category

satisfies the 2-out-of-3 axiom.

Proposition 7.11.3 ([169, 5.5.4.7]). Given a set S of morphisms in C, there is a smallest
saturated class of morphisms containing S . We denote it by S . If W = S for some set S,
then we say that W is of small generation.

Example 7.11.4. Suppose that E : C → C′ is a functor of ∞-categories that preserves
homotopy colimits. Then the setWE of maps in C that map to equivalences is strongly
saturated.

The presentability axioms for an ∞-category provide a homotopical version of what
we needed to construct localizations by ensuring that the small object argument goes
through. As a result, we obtain a result on the existence of Bousfield localizations for
presentable ∞-categories.

Theorem 7.11.5 ([169, 5.5.4.15]). Let C be a presentable ∞-category and S a set of
morphisms in C, generating the saturated class S̄ . Let LSC be the full subcategory of S-local
objects. Then

1. for every object C ∈ C, there is a map C→ C′ in S such that C′ is S-local;
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2. the ∞-category LSC is presentable;
3. the inclusion LSC → C has a (homotopical) left adjoint L;
4. the class of S-equivalences coincides with both the saturated class S and the set of maps

taken to equivalences by L.

Remark 7.11.6 . The homotopical left adjoint can be rephrased as follows. If we write
LocS (C) for the category of S-localizations C→ C′ , then the forgetful functor

LocS (C)→C,

sending (C → C′) to C, is an equivalence of categories (in fact, a trivial fibration
of quasicategories). By choosing a section, given by C 7→ (C → LC), we obtain a
localization functor L.

As in the case of Bousfield localization of combinatorial model categories, this
connects the two approaches to Bousfield localization. We can start with a set S of
generating equivalences and construct localizations from those, so for a given classW
of weak equivalences we are reduced to showing that W is generated by a set S of
maps. Moreover, if the maps in S all happen to be in a particular saturated class, then
so are the maps in W .

7.12 Multiplicative properties

Many of the categories where we carry out Bousfield localization have monoidal
structures, and under good circumstances localization is compatible with them. In
this section we will briefly discuss the circumstances under which this is true. The
interested reader should consult [301, 66] for further information.

Enriched monoidal structures

In order to begin work, we need a monoidal or symmetric monoidal structure on C
that respects morphism spaces.

Definition 7.12.1. Suppose C is a category enriched in spaces. The structure of an
enriched monoidal category on C consists of a functor ⊗ : C ×C → C of enriched cate-
gories, a unit object I of C, and natural associativity and commutativity isomorphisms
that satisfy the axioms for a monoidal category.

A compatible symmetric monoidal structure on C is defined similarly.

Throughout this section we will fix such an enriched monoidal category C.

Definition 7.12.2. Suppose that S is a class of morphisms in C. We say that S-
equivalences are compatible with the monoidal structure (or simply that S is compatible)
if, for any S-equivalence f : Y → Y ′ and any object X ∈ C, the maps idX ⊗ f and
f ⊗ idX are S-equivalences.
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Proposition 7.12.3. Suppose that S is compatible with the monoidal structure. Then
localization respects the monoidal structure: any choices of localization give an equivalence

L(X1 ⊗ · · · ⊗Xn)→ L(LX1 ⊗ · · · ⊗LXn).

Proof. By induction, the map X1 ⊗ · · · ⊗Xn→ LX1 ⊗ · · · ⊗ LXn is an S-equivalence,
and therefore any S-localization of the latter is equivalent to any S-localization of the
former.

Corollary 7.12.4. The monoidal structure on the homotopy category of C induces a mon-
oidal structure on the homotopy category of the localization LSC, making any localization
functor into a monoidal functor. If C was symmetric monoidal, then so is the localization.

Remark 7.12.5 . The inclusion LSC → C is almost never monoidal. For example, it
usually does not preserve the unit.

Example 7.12.6. Let C be the category of spaces with cartesian product, and let
E∗ be a homology theory. Then any map X → X ′ which induces an isomorphism
on E∗-homology also induces isomorphisms E∗(X × Y ) → E∗(X ′ × Y ) for any CW-
complex Y : one can prove this inductively on the cells of Y . Therefore, E-homology
equivalences are compatible with the Cartesian product monoidal structure.

Similarly, E-homology equivalences are compatible with the smash product on
based spaces (using that based spaces are built from S0) or the smash product on
spectra (using that all spectra are built from spheres Sn).

Example 7.12.7. Let C be the category of spectra, and f be the map Sn → ∗.
Then f -equivalences are maps inducing isomorphisms in degree strictly less than n.
This is not compatible with the smash product on spectra: for example, smashing
with Σ−1

S does not preserve f -equivalences. If one restricts to the subcategory of
connective spectra, however, one finds that f -equivalences are compatible with the
smash product.

Example 7.12.8. Consider the map f : Sn→ ∗ of spaces, so that S-equivalences are
maps inducing an isomorphism on all homotopy groups in degrees less than n. This
map is compatible with several symmetric monoidal structures, such as

1. spaces with Cartesian product,
2. spaces with disjoint union,
3. based spaces with wedge product. and
4. based spaces with smash product.

Despite the usefulness of these results, the existence of a (symmetric) monoidal
localization functor on the homotopy category does not, by itself, allow us to extend
very structured multiplication from an object X to its localization LX. To counter
this we typically require the theory of operads. See Chapter 5 of this volume for an
introduction to operads.

Definition 7.12.9. Suppose that C is (symmetric) monoidal, and that X is an object
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of C. The endomorphism operad EndC(X) is the (symmetric) sequence of spaces
MapC(X ⊗ · · · ⊗X,X), with (symmetric) operad structure given by composition.

Given a map f : X → Y , the endomorphism operad EndC(f ) is the (symmetric)
sequence which in degree n is the pullback diagram

EndC(f )n //

��

MapC(X ⊗ · · · ⊗X,X)

��

MapC(Y ⊗ · · · ⊗Y ,Y ) // MapC(X ⊗ · · · ⊗X,Y )

The space EndC(f )n is the space of strictly commutative diagrams

X⊗n //

f ⊗n

��

X

f
��

Y ⊗n // Y

and as such the operad structure is given by composition.

The operad EndC(f ) has forgetful maps to EndC(X) and EndC(Y ). The following
results are a special case of [66, 6.1].

Proposition 7.12.10. Suppose that the (symmetric) monoidal structure on C is compatible
with S and that f : X → LX is an S-localization. If the maps MapC(LX

⊗n,LX) →
MapC(X

⊗n,LX) are fibrations for all n ≥ 0, then in the diagram of operads

EndC(X)← EndC(f )→ EndC(LX),

the left-hand arrow is an equivalence on the level of underlying spaces.

Proof. This is merely the observation that EndC(f )→ EndC(X) is, level by level, a
homotopy pullback of the equivalences MapC(LX

⊗n,LX)→MapC(X
⊗n,LX).

This condition then allows us to lift structured multiplication.

Corollary 7.12.11. Suppose a (symmetric) operad O acts on X via a map C → EndC(X).
Then there exists a weak equivalence O′→O of operads and an action of O′ on LX such
that f is a map of O′-algebras.

Proof. We define O′ to be the fiber product of the diagram O→ EndC(X)← EndC(f ).
The map O′→O is an equivalence by the fibration condition, and the map of operads
O′→ EndC(f ) precisely states that f is a map of O′-algebras.19

This means that A∞ and E∞ multiplications on X extend automatically to A∞ and
E∞ multiplications on LX. However, this is the best we can do in general: lifting more
refined multiplicative structures requires stronger assumptions.

In cases where the category C has more structure, it is typically easier to verify that
S is compatible with the monoidal structure.

19 If O happens to be a cofibrant (symmetric) operad O in Berger–Moerdijk’s model structure [39] we can
do better. Any map O→ EndC(X) lifts, up to homotopy, to a map O→ EndC(f )→ EndC(LX).
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Proposition 7.12.12. Suppose that the monoidal structure on C has internal function
objects FL(X,Y ) and FR(X,Y ) that are adjoint to the monoidal structure: there are
isomorphisms

MapC(X,F
L(Y ,Z)) �Map(X ⊗Y ,Z) �MapC(Y ,F

R(X,Z))

that are natural in X, Y , and Z . Then S is compatible with the monoidal structure on C if
and only if, for any f : A→ B in S and any object X ∈ C, the maps idX ⊗ f and f ⊗ idX
are S-equivalences.

Proof. Suppose that for any f : A→ B in S and any object X ∈ C, the maps idX ⊗ f
are S-equivalences. Using the unit isomorphisms, we find that if Z is S-local the maps
in the diagram

MapC(X ⊗B,Z) //

��

MapC(X ⊗A,Z)

��

MapC(B,F
R(X,Z)) // MapC(A,FR(X,Z))

are equivalences. Thus, FR(X,Z) is S-local, and so for any S-equivalence f : Y → Y ′

the maps in the diagram

MapC(X ⊗Y ′ ,Z) //

��

MapC(X ⊗Y ,Z)

��

MapC(Y
′ ,FR(X,Z)) // MapC(Y ,FR(X,Z))

are all equivalences. Similar considerations apply to FL.

Monoidal model categories

The necessary conditions for compatibility between model structures and monoidal
structures were determined by Schwede–Shipley [267] and Hovey [130, §4.2], in the
symmetric and nonsymmetric cases respectively. This structure allows us, after [267],
to construct model structures on categories of algebras and modules inM′ such that
the localization functorM→M′ preserves this structure. See, also, Chapter 3 of this
volume for a detailed discussion of monoidal model categories.

Definition 7.12.13. A (symmetric) monoidal model category M is a model category
with a (symmetric) monoidal closed structure20 satisfying the following axioms.

1. (Pushout-product) Given cofibrations i : A→ A and j : B→ B′ inM, the induced
pushout-product map

i � j : (A⊗B′)
∐
A⊗B

(A′ ⊗B)→ A′ ⊗B′

is a cofibration, which is acyclic if either i or j is.

20 Analogously to the previous section, this means that the symmetric monoidal structure must have left
and right function objects which are adjoints in each variable.
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2. (Unit) Let QI→ I be a cofibrant replacement of the unit. Then the natural maps
QI⊗X→ X← X ⊗QI are isomorphisms for all cofibrant X.

Proposition 7.12.14. Suppose thatM is a monoidal model category. Then, for cofibrant
objects X, the functors X ⊗ (−) and (−)⊗X preserve cofibrations, acyclic cofibrations, and
weak equivalences between cofibrant objects.

Proof. Since ⊗ has adjoints, it preserves colimits in each variable. In particular, any
object tensored with an initial object of M is an initial object of M. Applying the
pushout-product axiom to the map ∅ → X in either variable, we find that the two
functors in question preserve cofibrations and acyclic cofibrations. By Ken Brown’s
lemma, they also automatically take weak equivalences between cofibrant objects to
weak equivalences.

This connects with the previous section, which only asked that the tensor product
preserved equivalences in each variable. The pushout-product axiom for monoidal
model categories looks stronger, in principle, but Proposition 7.12.14 has a partial
converse.

Proposition 7.12.15. Suppose that j : B→ B′ is a map such that (−)⊗B preserves acyclic
cofibrations and that (−)⊗B′ preserves weak equivalences between cofibrant objects. If i
is an acyclic cofibration with cofibrant source, then the pushout-product map i � j is an
equivalence.

Proof. Without loss of generality, let i : A→ A′ be an acyclic cofibration and j : B→
B′ a cofibration, with all four objects cofibrant. Then the pushout-product i � j is part
of the following diagram:

A′ ⊗B

�� $$

A⊗B

∼
::

$$

P
i�j

// A′ ⊗B′

A⊗B′
∼

OO

∼

::

The upper-left and lower-right maps are equivalences because they are obtained
by tensoring an acyclic cofibration with the cofibrant objects B and B′ . The map
A⊗B′→ P is the pushout of an acyclic cofibration, and so it is an acyclic cofibration.
Therefore, by the 2-out-of-3 axiom the map i � j is an equivalence.

The adjunction isomorphism HomM(X ⊗Y ,Z) �HomM(X,FR(Y ,Z)), and simi-
larly for the left, allows us to rephrase the pushout-product axiom in multiple ways.

Proposition 7.12.16 ([130, 4.2.2]). The following are equivalent for a model categoryM
with a closed monoidal structure.

1. The model categoryM satisfies the pushout-product axiom.
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2. For a cofibration i : A→ B and a fibration p : X→ Y inM, the induced map

FR(B,X)→ FR(B,Y )×FR(A,Y ) F
R(A,X)

is a fibration, which is acyclic if either i or p are.
3. For a cofibration i : A→ B and a fibration p : X→ Y inM, the induced map

FL(B,X)→ FL(B,Y )×FL(A,Y ) F
L(A,X)

is a fibration, which is acyclic if either i or p are.

Corollary 7.12.17 ([130, 4.2.5]). Suppose thatM is a cofibrantly generated model category
with a closed monoidal structure, a set I of generating cofibrations and J of generating
acyclic cofibrations. Then the pushout-product axiom for M holds if and only if the
pushout-product takes I × I to cofibrations inM and takes both I × J and J × I to acyclic
cofibrations.

Because left Bousfield localization doesn’t change the cofibrations in a model
structure, to verify compatibility of a monoidal model structure with a localization we
are reduced to a few key verifications.

Proposition 7.12.18 ([300, 4.5, 4.6], [301]). Suppose thatM is a (symmetric) monoidal
closed model category with left Bousfield localization M′ . Then M′ is compatibly a
(symmetric) monoidal model category if and only if, for cofibrations i and j such that one is
acyclic, the pushout-product map i � j is acyclic.

If M′ is cofibrantly generated, then it suffices to check that the pushout-product of a
generating acyclic cofibration with a generating cofibration, in either order, is a weak
equivalence.

Remark 7.12.19 . If the generating cofibrations and generating acyclic cofibrations
of M′ have cofibrant source, then by Proposition 7.12.15 we only need to show that
tensoring with the sources or target of any map in I or J takes generating cofibrations
inM′ to weak equivalences.

Remark 7.12.20 . Bousfield localization of stable model categories has been more
extensively studied by Barnes and Roitzheim [22, 21]. To have homotopical control
over commutative algebra objects in a symmetric monoidal model category, one needs
to obtain control over the extended power constructions; see [299].

Monoidal∞-categories

We will begin by giving a brief background on monoidal structures on ∞-categories
which is light on technical details.

Recall that a multicategory O is equivalent to the following data:

1. a collection of objects of O;
2. for any object Y and indexed set of objects {Xs}s∈S of O, a space MapO({Xs}s∈S ;Y )

of multimaps; and
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3. for a surjection p : S→ T of finite sets, natural composition maps

MapO({Yt}t∈T ;Z)×
∏
t∈T

MapO({Xs}s∈p−1(t);Yt)→MapO({Xs}s∈S ;Z)

that are compatible with composing surjections S→ T →U .

Remark 7.12.21 . As a special case, for σ a permutation of S there is an isomorphism
MapO({Xs}s∈S ;Y )→ MapO({Xσ (s)}s∈S ;Y ), and the composition operations are ap-
propriately equivariant with respect to these isomorphisms.

For such a multicategory, we could give a prototype definition of an O-monoidal
∞-category C as an enriched functor from O to ∞-categories. This data specifies,
for each object X of O, a category CX . For each object Y and indexed set {Xs}s∈S of
objects, there is a specified continuous map from MapO({Xs}s∈S ;Y ) to the space of
functors

∏
s∈S CXs →CY . Moreover, these maps must be compatible with composition

on both sides.
The definition of an ∞-operad O and an O-monoidal ∞-category C is slightly

different from this [168, §2.1]. Roughly, it is an unstraightened definition where the
spaces of multimaps in O and the product functors on C are only specified up to a
contractible space of choices; the technical details are related in spirit to Segal’s work
[268]. Even though the functors induced from O are specified only up to contractible
indeterminacy, it still makes sense to ask about compatibility of the monoidal structure
with localization.

The following very general result encodes the situations under which homotopical
localization is compatible with monoidal structures.

Theorem 7.12.22 ([168, 2.2.1.9]).Let O⊗be an∞-operad and C an O-monoidal∞-category.
Suppose that for all objects X of O we have a localization functor LX : CX → CX , and
that for any map α : {Xs}s∈S → Y in O⊗ the induced functor

∏
s∈S CXs → CY preserves

L-equivalences in each variable. Then there exists an O-monoidal structure on the category
LC of local objects making the localization L : C → LC into an O-monoidal functor.

Corollary 7.12.23. Suppose that C is a (symmetric) monoidal ∞-category and that L is a
localization functor on C such that L(X⊗Y )→ L(LX⊗LY ) is always an equivalence. Then
the subcategory LC of local objects has the structure of a (symmetric) monoidal ∞-category
and any localization functor L has the structure of a (symmetric) monoidal functor.

Example 7.12.24. In the category of spaces, we can use the mapping space adjunc-
tions and find that for any S-local object Z, we have

Map(X ×Y ,Z) 'Map(X,Map(Y ,Z))

'Map(X,Map(LY ,Z)

'Map(X ×LY ,Z)

and similarly on the other side, showing that LX ×LY is a localization of X ×Y . This
gives the cartesian product on spaces the special property that it is compatible with
all localization functors.
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Example 7.12.25. Fix an En-operad O and an O-algebra B in spaces representing
an n-fold loop space. Consider the category C of functors B → S , viewed as local
systems of spaces over B. Then the category C has a Day convolution, developed by
Glasman [105] in the E∞-case and by Lurie [168, §2.2.6] in general, making C into
an O-monoidal category. The category C is equivalent (via unstraightening) to the
category of spaces over B. In these terms the O-monoidal structure is given by maps

O(n)→Map(Bn,B)

→ Fun((S/B)n,S/B)

that respect composition. Here f ∈ O(n) first goes to f : Bn→ B, then to the functor
sending {Xi → B} to the map ∏

Xi → Bn
f
−→ B.

An O-algebra in C is equivalent to an En-space X with a map X→ B of En-spaces.
Suppose L is a Bousfield localization on spaces and that B is connected. Consider

the associated pointwise localization on the functor category C (which corresponds to
the fiberwise localization on spaces over B). All operations in O are, up to homotopy,
composites of the binary multiplication operation, and so it suffices to show that this
preserves localization. However, if the maps Xi → B have homotopy fibers Fi , then
the homotopy fiber of the map X1 × X2 → B × B → B is, up to equivalence, the
geometric realization of the bar construction

B(F1,ΩB,F2).

Since any localization preserves homotopy colimits and products of spaces, this bar
construction preserves it also. Therefore, fiberwise localization is an En-monoidal
functor on the category of spaces over B.21

21 For grouplike En-spaces over B, this is roughly the statement that we can take n-fold classifying spaces,
apply the fiberwise localization, and then take n-fold loop spaces.



8 Spectral algebraic geometry

by Charles Rezk

8.1 Introduction

This chapter is a very modest introduction to some of the ideas of spectral algebraic
geometry, following the approach due to Lurie. The goal is to introduce a few of the
basic ideas and definitions, with the goal of understanding Lurie’s characterization of
highly structured elliptic cohomology theories.

A motivating example: elliptic cohomology theories

Generalized cohomology theories are functors which take values in some abelian category.
Traditionally, we consider ones which take values in abelian groups, but we can work
more generally. For instance, take cohomology theories which take values in sheaves of
graded abelian groups (or rings) on some given topological space, or in sheaves of graded
OS -modules (or rings) on S, where S is a scheme, or possibly a more general kind of
geometric object, such as a Deligne–Mumford stack, and OS is its structure sheaf.

Given a scheme (or Deligne–Mumford stack) S , it is easy to construct an example
of a cohomology theory taking values in graded OS-algebras; for instance, using
ordinary cohomology, we can form

F ∗(X) :=
(
U 7→H ∗(X,OS (U ))

)
,

which is a presheaf of graded OS -algebras on S , which in turn can be sheafified into a
sheaf of graded OS -modules on S .

A more interesting example is given by elliptic cohomology theories. These consist of

1. an elliptic curve π : C → S (which is in particular an algebraic group with an
identity section e : S→ C),

2. a multiplicative generalized cohomology theory F ∗ taking values in sheaves
graded commutative OS-algebras, which is even and weakly 2-periodic in the
sense that F odd(point) ≈ 0 while F 0(point) ≈ OS and F 2(point) is an invertible
OS -module, together with
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3. a choice of isomorphism

α : SpfF 0(CP∞)→∼ C∧e

of formal groups, where the right-hand side denotes the formal completion of the
elliptic curve π : C→ S at the identity section.

This is easiest to think about when S is affine, i.e., S = SpecA for some ring A.
Then the above data corresponds exactly to what is known as an elliptic spectrum [4]:
a weakly 2-periodic spectrum E with π0E = A, together an isomorphism of formal
groups SpfE0

CP
∞ ≈ C∧e , where C is an elliptic curve defined over the ring A. Many

such elliptic spectra exist, including some which are structured commutative ring
spectra.

For a more general elliptic cohomology theory defined over some base scheme (or
stack) S , one may ask that it be “represented” by a sheaf of (commutative ring) spectra
on S, which I’ll call Otop

S . E.g., for an open subset U of the scheme S, and a finite
CW-complex X, we would have

F q(X)(U ) ≈ π0 MapSpectra(Σ−qΣ∞X,Otop
S (U ))

where Otop
S (U ) ∈ Spectra are the sections of Otop

S (U ) over U .
Goerss, Hopkins, and Miller showed that such an object exists, where S =MEll is

the moduli stack of (smooth) elliptic curves, and C→ S is the universal elliptic curve.
This can be viewed as giving a “universal” example of an elliptic cohomology theory.
As a consequence you can take global sections of Otop

S over the entire moduli stack S ,
obtaining a ring spectrum called TMF, the topological modular forms. (There is
also an extension of this theory to the “compactification” ofMEll, the moduli stack of
generalized elliptic curves; I will not discuss this version of the theory here.)

From the point of view of spectral algebraic geometry, the pair (MEll,Otop) is an
example of a nonconnective spectral Deligne–Mumford stack, i.e., an object in spectral
algebraic geometry.

Lurie proves a further result, which precisely characterizes the nonconnective
spectral Deligne–Mumford stack S = (MEll,Otop). Namely, it is the classifying object
for a suitable type of “derived elliptic curve”, called an oriented elliptic curve. More
precisely, for each nonconnective spectral Deligne–Mumford stack X there is an
equivalence of ∞-groupoids

MapSpDMnc(X,S) ≈ {oriented elliptic curves over X},

natural in X; here SpDMnc denotes the∞-category of nonconnective spectral Deligne–
Mumford stacks. In particular, there is a “universal” oriented elliptic curve C→ S .

Organization of this chapter

We describe some of the basic concepts of spectral algebraic geometry. This chapter is
written for algebraic topologists, with the example of elliptic cohomology as a prime
motivation. This chapter will only give an overview of some of the ideas. I’ll give
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precise definitions and complete proofs when I can (rarely); more often, I will try
to give an idea of a definition and/or proof, sometimes by appealing to an explicit
example, or to a “classical” analogue.

I will not try to describe applications to geometry or representation theory. The
reader should look at Lurie’s introduction to [170], as well as Toën’s survey [290], to
get a better idea of motivations from classical geometry.

We will follow Lurie’s approach. This was originally presented in the book Higher
Topos Theory [169], together with the sequence of “DAG” preprints [163]. Some of the
DAG preprints have been incorporated in/superseded by the book Higher Algebra [168],
while others have been absorbed by the book-in-progress Spectral Algebraic Geometry
[170]. I try to use notation consistent with [170], and give references to it when possible
(references are to the February 2018 version). Note that [170] is still under construction
and its numbering and organization is likely to change. Lurie’s approach to elliptic
cohomology is sketched in [162], and described in detail in [166] and [167].

Derived algebraic geometry had its origins in problems in algebraic geometry, and
was first pursued by geometers. We note in particular the work of Toën and Vezzosi,
which develops a theory broadly similar to Lurie’s; the aforementioned survey [290] is
a good introduction.

Notation and terminology

I’ll use the “naive” language of ∞-categories pretty freely. When I say “category”
I really mean “∞-category”, unless “1-category” or “ordinary category” is explicitly
indicated. An “isomorphism” in an ∞-category is the same thing as an “equivalence”;
I use the two terms interchangeably. Sometimes I will say that a construction is
“essentially unique”, which means it is defined up to contractible choice.

I write Cat∞ and Ĉat∞ for the∞-categories of small and locally small∞-categories
respectively. I write S for the ∞-category of small ∞-groupoids. “Sets” are implicitly
identified with the full subcategory of “0-truncated ∞-groupoids”: thus, Set ≈ τ≤0S ⊆
S . I write MapC(X,Y ) for the space (= ∞-groupoid) of maps between two objects in
an ∞-category C. I use the notations CX/ and C/X for the slice categories under and
over an object X of C.

I will consistently notate adjoint pairs of functors in the following way. In

L : C�D :R or R : D� C :L,

the arrow corresponding to the left adjoint is always above that for the right adjoint.
I use the notation C�D for a fully faithful functor, and C�D for a localization

functor, i.e., the universal example of formally inverting a class of arrows in C. Note
that any adjoint (left or right) of a fully faithful functor is a localization, and any
adjoint (left or right) of a localization functor is fully faithful.

I’d like to thank those who suffered through some talks I gave based on an early
version of this at University of Illinois, and for the corrections which have been
provided by various people, including a careful and detailed list of errata from Ko
Aoki.
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8.2 The notion of an∞-topos

A scheme is a particular kind of ringed space, i.e., a topological space equipped with
a sheaf of rings. Spectral algebraic geometry replaces “rings” with an ∞-categorical
generalization, namely commutative ring spectra, which (following Lurie) we will here
call E∞-rings. Similarly, spectral algebraic geometry replaces “topological space” with
its ∞-categorical generalization, which is called an ∞-topos.

The key observation motivating∞-topoi is that a topological space X is determined1

by the ∞-category of sheaves of ∞-groupoids on X. I will try to justify this in the next
few sections.

The notion of ∞-topos is itself a generalization of a more classical notion, that
of a 1-topos (or Grothendieck topos), which can be thought of as the 1-categorical
generalization of topological space. I will not have much to say about these, instead
passing directly to the ∞-case (but see (8.2) below). However, the theory of ∞-topoi
does parallel the classical case in many respects; a good introduction to 1-topoi is [173].

There is a great deal to say about ∞-topoi, so I’ll try to say as little as possible.
Note that to merely understand the basic definitions of spectral algebraic geometry,
only a small part of the theory is necessary: much as, to understand the definition of
a scheme, you need enough topology to understand the “Zariski spectrum” of a ring,
without any need to inhale large quantities of esoteric results in point-set topology.

We refer to a functor F : Cop→S as a presheaf of ∞-groupoids on C, and write

PSh(C) = Fun(Cop,S)

for the ∞-category of presheaves.
We first describe two examples of ∞-topoi arising from “classical” constructions.

The∞-topos of a topological space

Let X be a topological space, with OpenX = its poset of open subsets. A sheaf of
∞-groupoids on X is a functor F : Openop

X → S such that, for every open cover
{Ui →U }i∈I of an element U of OpenX , the evident map

F(U )→∼ lim∆

[
[n] 7→

∏
i0,...,in∈I

F(Ui0 ∩ · · · ∩Uin )
]

(8.2.1)

is an equivalence; the target is the limit of functor ∆→S , i.e., of a cosimplicial space.
We let Shv(X) ⊆ PSh(OpenX ) denote the full subcategory of sheaves. It turns out that
this embedding admits a left adjoint a : PSh(OpenX )→ Shv(X) which is left exact,
i.e., a preserves finite limits.

The∞-topos of sheaves on the étale site of a scheme

Let X be a scheme, and let ÉtX = a full subcategory of the category of schemes over X
spanned by a suitable collection of étale morphisms U → X, (e.g., morphisms which

1 This is not exactly true; see (8.5) below.
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factor as U
f
−→ V � X where f is a finitely presented étale map to an open affine

subset of X). An étale cover is a collection of étale maps {Ui →U }i∈I in ÉtX which
are jointly surjective on Zariski spectra. We get full subcategory Shv(X ét) ⊆ PSh(ÉtX )
of étale sheaves on X, whose objects are functors F : Étop

X →S such that the evident
map

F(U )→∼ lim∆

[
[n] 7→

∏
i0,...,in∈I

F(Ui0 ×X · · · ×X Uin )
]

is an equivalence for every étale cover. (This makes sense because ÉtX is an essen-
tially small category which is closed under finite limits.) As in (8.2), the embedding
Shv(X ét) ⊆ PSh(ÉtX ) admits a left exact left adjoint.

Definition of∞-topos

An ∞-topos is an ∞-category X such that

1. there exists a small ∞-category C, and
2. an adjoint pair

i : X // // PSh(C) :aoooo

where the right adjoint i is fully faithful (whence a is a localization), and such that
3. i is accessible, i.e., there exists a regular cardinal λ such that i preserves all

λ-filtered colimits, and
4. a is left exact.

Remark 8.2.1 (Presentable ∞-categories). An X for which there exists data (1)–(3)
is called a presentable ∞-category [169, 5.5]. This class includes many familiar
examples such as: small∞-groupoids, chain complexes of modules, spectra, E∞-ring
spectra, functors from a small ∞-category to a presentable ∞-category, etc. (Note:
[169, 5.5.0.1] defines this a little differently, but it is equivalent to what I just said by
[169, 5.5.1.1].)

All presentable ∞-categories are complete and cocomplete. The “presentation”
(C, i,a) of X leads to an explicit recipe for computing limits and colimits in X : apply
i to your diagram in X to get a diagram in PSh(C), take limits or colimits there, and
apply a to get the desired answer. (Since i is a fully faithful right adjoint, the last step
of applying a is not even needed when computing limits.)

Remark 8.2.2 (Adjoint functors between presentable∞-categories). It turns out that a
very strong form of an “adjoint functor theorem” applies to presentable ∞-categories
[169, 5.5.2.9].

1. If A is presentable, then a functor F : A→B admits a right adjoint if and only if
it preserves small colimits.

2. If A and B are presentable, then a functor F : A→B admits a left adjoint if and
only if it preserves small limits and is accessible.
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In particular, if A is presentable, then a functor Aop → S to ∞-groupoids is repre-
sentable if and only if it preserves limits, and A→S is corepresentable if and only if it
preserves limits and is accessible.

Remark 8.2.3 . The presentation (C, i,a) is not part of the structure of an∞-topos (or
presentable ∞-category): it merely needs to exist, and it is not in any sense unique.

Any presheaf category PSh(C) is an ∞-topos, and in particular S is one.
Both the examples (8.2) and (8.2) given above are ∞-topoi. They are special cases

of sheaves on a Grothendieck topology on an ∞-category C; see (8.5) below and [169,
6.1, 6.2].

Relation to the classical notion of topos

Recall that an object U of any ∞-category X is 0-truncated if MapX (−,U ) takes
values in τ≤0S ⊆ S , i.e., in “sets”. For an ∞-topos X , its full subcategory X♥ ⊆ X
of 0-truncated objects is called the underlying 1-topos of X . This X♥ is equivalent
to a 1-category, and is a “classical” topos in the sense of Grothendieck; in fact all
Grothendieck topoi arise from ∞-topoi in this way.

For instance, if X is a topological space then Shv(X)♥ is the 1-category of sheaves
of sets on X.

Example 8.2.4. As we’ll see (8.4), the slice category S/X is an∞-topos for any X ∈ S ,
and it is easy to verify that (S/X )♥ ≈ Fun(Π1X,Set). Thus (S/X )♥ only depends on
the fundamental groupoid of X, while S/X itself depends on the homotopy type of X.
Thus, non-equivalent ∞-topoi can share the same underlying 1-topos.

8.3 Sheaves on an∞-topos

There is an obvious notion of sheaves on a topological space which take values in an
arbitrary complete ∞-category A. These are functors F : Openop

X →A which satisfy
the “sheaf condition”, i.e., that the map in (8.2.1) is an equivalence for every open
cover. We can reformulate this definition so that it depends only on the ∞-category
X = Shv(X), rather than on the category of open sets in X. This leads to a definition
of A-valued sheaf which makes sense in an arbitrary ∞-topos.

Sheaves valued in an∞-category

For a general ∞-topos, an A-valued sheaf on X is a limit preserving functor
F : X op→A. These objects form a full subcategory ShvA(X ) ⊆ Fun(X op,A).

Example 8.3.1 (A-valued sheaves on a presheaf ∞-topos). If X = PSh(C), then
ShvA(X ) is equivalent to the category Fun(Cop,A) of “A-valued presheaves” on C.
This is because the Yoneda embedding ρ : C → PSh(C) is the “free colimit comple-
tion” of C [169, 5.1.5]: for any cocomplete B, restriction along ρ gives an equivalence

Fun(PSh(C),B) ⊇ Funcolim pres.(PSh(C),B)→∼ Fun(C,B)
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between the full subcategory of colimit preserving functors PSh(C)→B and all func-
tors C → B; the inverse of this equivalence is defined by left Kan extension along ρ.
Taking B =Aop we obtain the equivalence

Fun(PSh(C)op,A) ⊇ Funlim pres.(PSh(C)op,A)→∼ Fun(Cop,A).

Example 8.3.2 (A-valued sheaves on a space, revisited). For X = Shv(X) the two
definitions coincide: limit preserving functors F′ : X op → A correspond to functors
F : Openop

X →A satisfying the sheaf condition.

To see this, recall the adjoint pair i : Shv(X) // // PSh(OpenX ) :a.oooo For each

open cover U = {Ui →U }i∈I in X, the functor a carries the evident map

sU : colim∆op

[
[n] 7→

∐
i0,...,in∈I

ρUi0∩···∩Uin

]
→ ρU

in PSh(OpenX ) to an isomorphism in Shv(X), where ρU := MapOpenX
(−,U ) de-

notes the representable functor. (Proof: applying MapPSh(OpenX )(−,F) to this exactly
recovers the map (8.2.1) exhibiting the sheaf condition for a presheaf F, and if F′ is a
sheaf we have MapPSh(OpenX )(−, iF′) = MapShv(X)(a(−),F′).)

More is true: the functor a is the initial example of a colimit preserving functor
which takes all such maps sU to isomorphisms. (In the terminology of [169, 5.5.4]
Shv(X) is the localization of PSh(OpenX ) with respect to the strongly saturated class
generated by {sU }, and universality is [169, 5.5.4.20].)

Thus, objects F ∈ ShvA(X ) coincide with limit preserving F′ : PSh(OpenX )op →
A such that F′(sU ) is an equivalence for every open cover U , which coincide with
functors F : Openop

X →A satisfying the sheaf condition.

Example 8.3.3 (Sheaves of ∞-groupoids). Every limit preserving functor X op→S
is representable by an object of X (8.2.2). Therefore, the Yoneda embedding restricts
to an equivalence X →∼ ShvS (X ) ⊆ Fun(X op,S): the underlying ∞-category of the
∞-topos X is also the category of sheaves of ∞-groupoids on X .

Example 8.3.4 (Sheaves of sets). We have that ShvSet(X ) ≈ X♥.

Remark 8.3.5 (Sheaves of ∞-groupoids as “generalized open sets”). The above dis-
plays the first instance of a philosophy you encounter a lot of in this theory. For an
∞-topos X , objects U ∈ X can be thought of either as “sheaves of ∞-groupoids” on
X via X ≈ ShvS (X ), or as “generalized open sets of X ”, in the sense that it makes
sense to evaluate any sheaf F ∈ ShvA(X ) at any object U .

Given an A-valued sheaf F : X op→A on X , its global sections are defined to be

Γ (X ,F) := F(1X ).

8.4 Slices of∞-topoi

We give a quick tour through some basic general constructions and properties involving
∞-topoi. First, we look at slices of ∞-topoi, which give more examples of ∞-topoi.
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Slices of∞-topoi are∞-topos

Given an object U in an ∞-category X , we get a slice ∞-category X/U .

Proposition 8.4.1 ([169, 6.3.5.1]). Every slice X/U of an ∞-topos X is an ∞-topos.

Proof. Choose a presentation (C, i,a) of X with fully faithful i : X � PSh(C), which
induces a fully faithful i′ : X/U � PSh(C)/iU , which furthermore admits a left adjoint
a′ induced by a (since U → aiU is an equivalence). The functor a′ is seen to be
accessible and left exact since a is.

Note that PSh(C)/iU is itself equivalent to presheaves on C/iU := C×PSh(C)PSh(C)/iU ,
which is itself a equivalent to small ∞-category. We therefore obtain a presentation
for X/U as a full subcategory of PSh(C/iU ).

Example 8.4.2. Let X be a topological space. The Yoneda functor OpenX →
Shv(X) factors through the full subcategory Shv(X). Thus for any open set U of
X, we have the representable sheaf ρU ∈ Shv(X), which we simply denote U by
abuse of notation. It is straightforward to show that Shv(X)/U ≈ Shv(U ): the slice
category over the sheaf U is exactly sheaves on the topological space U .

Remark 8.4.3 (Relativized notions). Any morphism f : V → U in an ∞-topos X
is also an object in an ∞-topos (namely X/U ). Thus any general concept defined
for objects in an ∞-topos can be “relativized” to a concept defined on morphisms
(assuming the definition is preserved by equivalence of ∞-topoi). Conversely, any
concept defined for morphisms in an arbitrary∞-topos can be specialized to objects,
by applying it to projection maps U → 1.

Colimits are universal in∞-topoi

Given a morphism f : U → V in an ∞-topos X , we get an induced pullback functor
f ∗ : X/V →X/U , which on objects sends V ′→ V to V ′ ×V U →U .

Proposition 8.4.4. Colimits are “universal” in ∞-topoi; i.e., f ∗ : X/V →X/U preserves
small colimits.

Proof. The statement of the proposition only involves colimits and finite limits in
X . Thus via a choice of presentation (C, i,a) for X we can reduce to the case of
X = PSh(C). As colimits and limits of presheaves are computed “objectwise”, we
can reduce to the case of infinity groupoids X = S . In this case the statement is
“well-known” [169, 6.1.3.14].

∞-topoi have internal homs

A consequence of universality of colimits is that U × (−) : X →X is colimit preserving,
and therefore (8.2.2) has a right adjoint which we may denote [U,−] : X → X . This
is an internal function object, so any ∞-topos is cartesian closed, and so is locally
cartesian closed (i.e., every slice is cartesian closed).
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∞-topoi have descent

Given any ∞-category X , let Cart(X ) ⊆ Fun({0→ 1},X ) denote the (non-full) subcat-
egory of the arrow category of X , consisting of all the objects, and morphisms f → g
which are pullback squares in X . This is a subcategory because pullback squares paste
together.

We say that X has descent if Cart(X ) has small colimits, and if the inclusion
functor Cart(X )→ Fun({0→ 1},X ) preserves small colimits.

Proposition 8.4.5 (Descent [169, 6.1.3]). Every ∞-topos has descent.

Let’s spell out the consequences of this. Suppose given a functor F : C → X from a
small ∞-category to an ∞-topos. We obtain a family of slice categories X/F(c), which
is a contravariant functor of C via the functors F(α)∗ : X/F(c′)→X/F(c) for α : c→ c′

in C. This functor Cop→ Ĉat∞ extends to a cone (CB)op→ Ĉat∞, where the value at
the cone point is the slice category X/F over the colimit F = colimc∈C F(c) of F.2

We can also form the limit limc∈Cop X/F(c) in Ĉat∞. An object of this limit amounts
to: a functor A : C → X and a natural transformation f : A→ F such that for each
α : c→ c′ in C the square

A(c′)
A(α)

//

��

A(c)

��

F(c′)
F(α)

// F(c)

is a pullback in X . Descent implies the following.

Proposition 8.4.6. The functor

X/F → limc∈Cop X/F(c)

sending A→ F to
(
c 7→ (A×F F(c)→ F(c))

)
is an equivalence. The inverse equivalence

is a functor which sends (A→ F) ∈ limCop X/F(c) to the object of X/F represented by the
evident map

colimCA→ colimC F.

Thus, descent in an ∞-topos has a very beautiful interpretation in terms of the
definition of “sheaves on X ” as functors: the functor X op → Ĉat∞ which sends
U 7→ X/U is limit preserving, and so is a sheaf on X valued in locally small ∞-
categories.

Example 8.4.7. Let X be a topological space. Recall that (after identifying an open
set U with its representable sheaf on X), we have that Shv(X)/U ≈ Shv(U ). If U and

2 This is not a complete description of a functor (CB)op→ Ĉat∞, as there is also “higher coherence”
data to keep track of. A correct description is implemented using the theory of Cartesian fibrations
[169, 2.4]. I am not going to try to be precise about such matters here.
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V are open sets of X, then U ∪ V is the pushout of U ← U ∩ V → V as sheaves.
Given this, descent says that there is an equivalence

Shv(U ∪V )→∼ lim [ Shv(U )→ Shv(U ∩V )← Shv(V ) ].

That is, the category of sheaves of ∞-groupoids on U ∪V is equivalent to a category
of “descent data” involving sheaves on U , V , and U ∩V .

This particular example works “the same way” in the classical topos Shv(X)♥ of
sheaves of sets on X: the category of sheaves of sets on U ∪V can be reconstructed
from appropriate descent data, i.e., as an ∞-categorical pullback of a diagram of
categories of sheaves of sets on U , V , and U ∩V . However, 1-categorical descent in
this form fails for general pushout diagrams in Shv(X)♥. This is one way in which
the theory of ∞-topoi shows advantages over the classical theory.

8.5 Truncation and connectivity in∞-topoi

n-Truncation and n-connectivity in∞-categories

An ∞-groupoid X is n-truncated if

πk(X,x0) ≈ {∗} for all k > n and all x0 ∈ X.

In particular, 0-truncated ∞-groupoids are equivalent to sets (discrete spaces), while
(−1)-truncated ∞-groupoids are equivalent to either the empty set ∅ or the terminal
object. By fiat, (−2)-truncated ∞-groupoids are those which are equivalent to the
terminal object.

An object X ∈ A in a general ∞-category is n-truncated if MapA(A,X) is an
n-truncated ∞-groupoid for all objects A in A. We relativize to the notion of n-
truncated morphism: i.e., an f : X → Y which is n-truncated as an object of the
slice A/Y . I write τ≤nA ⊆A for the full subcategory of n-truncated objects.

In many ∞-categories (including all presentable ∞-categories and thus all ∞-
topoi), there is an n-truncation functor which associates to each object X the initial
example X→ τ≤nX of a map to an n-truncated object. When this exists, the essential
image of the n-truncation functor τ≤n : A→A is τ≤nA, and we have an adjoint pair
τ≤nA // // Aoooo .

Relativized, we obtain for a morphism f : X→ Y in A an n-truncation factorization

X
g
−→ τ≤n(f )

h−→ Y ,

so that h is the initial example of an n-truncated map over Y which factors f .
Following Lurie, we say that an object U in an ∞-category is n-connective if

τ≤n−1U ≈ 1. Likewise an n-connective morphism f : X → Y in A is one which is
an n-connective object of A/Y .

Remark 8.5.1 . In S , an n-connective object is the same as what is usually called an
(n−1)-connected space (so 1-connective means connected). However, an n-connective
map is the same as what is classically called an n-connected map of spaces.
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The n-truncation factorization is in fact a factorization into “(n + 1)-connective
followed by n-truncated”.

Proposition 8.5.2. If X
g
−→ τ≤n(f )

h−→ Y is the n-truncation factorization of f : X→ Y
in A, then g is an (n+ 1)-connective map in A. (Assuming all the relevant truncations
exist in A.)

Proof. By replacing A with A/Y , we can assume Y ≈ 1. Thus we need to show
that g : X→ τ≤nX, the “absolute” n-truncation of the object X, is also the “relative”
n-truncation of the map g , i.e., that in the n-truncation factorization

X
g ′

−−→ τ≤n(g)
g ′′

−−→ τ≤nX

of the object g of A/τ≤nX , the map g ′′ is an equivalence.
Both τ≤nX→ 1 and g ′′ are n-truncated maps of A, from which it is straightforward

to show that τ≤n(g) is an n-truncated object of A. Thus, the universal property for
g : X → τ≤nX gives s : τ≤nX → τ≤n(g) such that sg = g ′ and g ′′s = idτ≤nX . The
universal property for g ′ : X→ τ≤n(g) then implies that sg ′′ = idτ≤n(g).

Remark 8.5.3 . n-truncation of objects in an∞-topos preserves finite products, as can
be seen by choosing a presentation and reducing to the case of S [169, 6.5.1.2].

Čech nerves and effective epimorphisms

For ∞-topoi, the case of truncation when n = −1 is especially important. An (−1)-
truncated map in an ∞-category is the same thing as a monomorphism, i.e., a map
i : A→ B such that all the fibers of all induced maps Map(C,A)→Map(C,B) are
either empty or contractible. Equivalently, i is a monomorphism if and only if the
diagonal map A→ A ×B A is an equivalence (if the pullback exists), if and only if
either projection A×B A→ A is an equivalence.

In an ∞-topos, an effective epimorphism is defined to be a 0-connective mor-
phism. The (−1)-truncation factorization in an ∞-topos (also called epi/mono fac-
torization) can be computed using Čech nerves.

Given a morphism f : U → V in an ∞-topos X , its Čech nerve is an augmented
simplicial object Č(f ) : ∆op

+ →X of the form

· · ·
//
//
//
//
U ×V U ×V U

//
//
// U ×V U

//
// U

f
// V

Proposition 8.5.4. Given a map f : U → V in an ∞-topos, the factorization

U
p
−→ colim∆op Č(f )

i−→ V

defined by taking the colimit of the underlying simplicial object of the Čech nerve is
equivalent to the factorization of f into an effective epimorphism p followed by a
monomorphism i.
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Proof. Without loss of generality assume V ≈ 1 (since the slice X/V is an ∞-topos).
Write U = colim∆op Č(F) = colim [[n] 7→Un+1 ]. Because colimits are universal in an
∞-topos (8.4.4), we have that U ×U k+1 ≈ colim [[n] 7→Un+1 ×U k+1 ]. For any k ≥ 0
the augmented simplicial object [n] 7→Un+1 ×U k+1 admits a contracting homotopy,
so U ×U k+1→∼ U k+1. Universality of colimits again gives U ×U →∼ U , whence U → 1
is monomorphism, i.e., U is a (−1)-truncated object

To show that p : U →U is the universal (−1)-truncation is easy: for any f : U → Z
to a (−1)-truncated object, we have

MapXU/ (p,f ) ≈ lim
∆

[[n] 7→MapXU/ (U →Un+1, f ) ],

which is easy to evaluate since all the mapping spaces must be contractible if non-
empty, since Z is (−1)-truncated.

Warning 8.5.5. In an ∞-topos the class of effective epimorphisms contains, but is not
equal to the class of epimorphisms. This is very unlike the classical case: in a 1-topos
the two classes coincide.

Remark 8.5.6 (Covers). A set {Ui} of objects in an ∞-topos X is called a cover of X
if

∐
Ui → 1 is an effective epimorphism in X . We also speak of a cover of an object

V in X , which is a set {Ui → V } of maps in X such that
∐
Ui → V is an effective

epi.
If X is a topological space, then a set {Ui} ⊆ OpenX of open sets of X is a open

cover of X if and only if the corresponding set {Ui} ⊆ Shv(X) of sheaves on X is a
cover in the above sense.

Sometimes we see the following condition on a collection {Ui} of objects in X : that
it generates X under small colimits. This condition implies that there exists a subset
of {Ui} which covers X .

Example 8.5.7 (Effective epis in ∞-groupoids). A map in S is an effective epimor-
phism if and only if it induces a surjection on sets of path components. The epi/mono
factorization of a map f : U → V in S is through U ⊆ V , the disjoint union of path
components of V which are in the image of f .

Homotopy groups

Given a pointed object (U, u0 : 1→U ) in an ∞-topos X , there is an object (U,u0)K

in X for every pointed space K ∈ S∗, which represents the functor

MapS∗(K,MapX (−,U )) : X op→S

(which is clearly limit preserving, so by (8.2.2) defines a S-valued sheaf on X ). We let

πn(U,u0) := τ≤0((U,u0)S
n
) ∈ X♥,

the nth homotopy sheaf of (U,u0). This is in general a sheaf of based sets on X ,
a sheaf of groups for n ≥ 1, and a sheaf of abelian groups for n ≥ 2.
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Remark 8.5.8 . An object U in an ∞-topos can easily fail to have “enough” global
sections, or even any global sections. Thus it is often necessary to use a more sophis-
ticated formulation of homotopy sheaves of U allowing for arbitrary “local” choices
of basepoint. These are objects πnU ∈ (X/U )♥, defined as the homotopy sheaves (as
defined above) of (proj2 : U ×U → U, ∆ : U → U ×U ) in X/U , the projection map
“pointed” by the diagonal map. See [169, 6.5.1].

For instance, with this more sophisticated definition, an object U is n-connective
if and only if πkU ≈ 1 for all k < n [169, 6.5.1.12].

Example 8.5.9 (Eilenberg–Mac Lane objects and sheaf cohomology). An Eilenberg–
Mac Lane object of dimension n is a pointed object (K,k0) in X such that K is both
n-truncated and n-connective. One can show [169, 7.2.2.12] that taking (K,k0) 7→
πn(K,k0) gives a correspondence between Eilenberg–Mac Lane objects of dimension
n and: abelian group objects in X♥ (if n ≥ 2), group objects in X♥ (if n = 1), and
pointed objects in X♥ (if n = 0).

Thus, given a sheaf A of (classical) abelian groups on X , we can define the coho-
mology group

Hn(X ;A) := π0 MapX (1,K(A,n))

of the ∞-topos X .

∞-connectedness and hypercompletion

An object or morphism is ∞-connected if it is n-connective for all n. It turns out that
the obvious analogue of the “Whitehead theorem” can fail in an∞-topos:∞-connected
maps need not be equivalences.

We say that an object U in X is hypercomplete if Map(V ′ ,U )→Map(V ,U ) is
an equivalence for any ∞-connected map V → V ′ .

Example 8.5.10. All n-truncated objects are hypercomplete, for any n. Any limit of
hypercomplete objects is hypercomplete.

We write X hyp ⊆ X for the full subcategory of hypercomplete objects of X . It turns
out that the inclusion is accessible, and admits a left adjoint which is itself left exact.
So X hyp is an ∞-topos in its own right [169, 6.5.2].

We say that X is itself hypercomplete if all ∞-connected maps are equivalences,
i.e., if X hyp = X .

Example 8.5.11. Any presheaf ∞-category is hypercomplete, including S itself.

Truncation towers

Given an object U in X , we may consider the tower

U → ·· · → τ≤nU → τ≤n−1U → ·· · → τ≤−1U → ∗
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of truncations of U . There is a limit U∞ := limτ≤nU , together with a tautological
map U → U∞. It is generally not the case that U → U∞ is an equivalence. For
instance, U∞ is necessarily hypercomplete, whereas U may not be. Furthermore, even
if U is hypercomplete, U →U∞ can fail to be an equivalence.

There are various general conditions which ensure that U →∼ U∞ for all objects U
in X (and in fact ensure a stronger fact, called convergence of Postnikov towers). For
instance, this is the case when X is locally of homotopy dimension ≤ n for some n [169,
7.2.1.12]. (Say X is of homotopy dimension ≤ n if every n-connective object U ∈ X
admits a global section 1→U . We say X is locally of homotopy dimension ≤ n if
there exists a set {Ui} of objects which generate X under colimits and such that each
X/Ui is of homotopy dimension ≤ n.)

Constructing∞-topoi

We defined an ∞-topos X to be an ∞-category which admits a presentation (C, i,a).
It is natural to ask: given a small ∞-category C, can we classify the presentations of
∞-topoi which use it?

Given any left exact accessible localization X ⊆ PSh(C), let T denote the collection
of morphisms j in PSh(C) which

1. are monomorphisms of the form S� ρC for some object C of C, and
2. are such that a(j) is an isomorphism in X .

The class of maps T is an example of a Grothendieck topology on C. When C is a
1-category this precisely recovers the classical notion of a Grothendieck topology on a
1-category.

It can be shown [169, 6.4.1.5] that if F ∈ PSh(C) is n-truncated for some n <∞, then
F ∈ X if and only if F(j) is an isomorphism for all j ∈ T . That is, the n-truncated
objects in left exact accessible localizations of PSh(C) are entirely determined by T .

Conversely, given a Grothendieck topology T on C, the full subcategory Shv(C,T ) :=
{F | F(j) iso for all j ∈ T } ⊆ PSh(C) is an example of an ∞-topos. This includes the
examples (8.2) and (8.2).

A general left exact localization of PSh(C) can be obtained by (i) choosing a
Grothendieck topology T on C, and then (ii) possibly localizing Shv(C,T ) further
with respect to a suitable class of ∞-connected maps [169, 6.5.2.20].

Remark 8.5.12 (1-localic reflection). Given any classical topos, i.e., a 1-topos X1, we
can upgrade it to an∞-topos denoted ShvS (X1); this is called its 1-localic reflection.
In general this can be difficult to describe. In the case that X1 ≈ ShvSet(C,T ) is an
identification of X1 as a category of sheaves of sets on a 1-category C equipped with
a Grothendieck topology T , and if C has finite limits, then ShvS (X1) := Shv(C,T ) is
the 1-localic reflection of X1 [169, 6.4.5, esp. 6.4.5.6].

For instance, we constructed Shv(X) and Shv(X ét), sheaves on a topological space
or on the étale site of a scheme, in exactly this way, so they are 1-localic.

As can be seen from (8.2.4), an ∞-topos X is not generally equivalent to the
1-localic reflection of ShvS (X♥) of its underlying 1-topos X♥.
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Warning: ShvS (X1) is not the same as the construction of (8.3): it is not equivalent
to limit preserving functors X op

1 →S .

Remark 8.5.13 (Simplicial presheaves). Given a small 1-category C with a Grothendieck
topology T , Jardine [135] produced a model category structure on the category
Fun(Cop,sSet) of presheaves of simplicial sets. The ∞-category associated to that
model category is equivalent to what we have called Shv(C,T )hyp [169, 6.5.2].

8.6 Morphisms of∞-topoi

To justify the claim that ∞-topoi are the ∞-categorical generalization of topological
spaces, we need an appropriate notion of morphism between ∞-topoi that generalizes
the notion of continuous map. This is called a geometric morphism. In fact, I won’t
consider any other kind of morphism between ∞-topoi here.

Geometric morphisms

A geometric morphism (or just morphism) of ∞-topoi f : X →Y is an adjoint pair
of functors

f∗ : X � Y :f ∗

such that the left adjoint f ∗ is left exact (i.e., preserves finite limits). The functor f∗ is
direct image, and f∗ is pullback or preimage.

The collection of geometric morphisms from X to Y , together with natural transfor-
mations between the left adjoints of the geometric morphisms, forms an ∞-category,
sometimes denoted Fun∗(Y ,X ). We note that this ∞-category is not in general equiv-
alent to a small ∞-category, although it is in some cases; it is always an accessible
∞-category [169, 6.3.1.13]. We will mostly be concerned with the maximal ∞-groupoid
inside this ∞-category, which we denote Map∞T op(X ,Y ), and regard as mapping
spaces of ∞T op, the ∞-category of ∞-topoi.

Remark 8.6.1 . Since ∞-topoi are presentable ∞-categories, to construct a geometric
morphism f : X → Y it suffices to produce a functor f ∗ : Y → X which preserves
colimits and finite limits; presentability then implies (8.2.2) that a right adjoint f∗
exists. Typically, having a “presentation” for Y gives an explicit recipe for describing
colimit preserving f ∗, so constructing morphisms amounts to finding such functors
which also preserve finite limits.

Example 8.6.2 (The terminal ∞-topos). The ∞-category S of infinity groupoids is
the terminal ∞-topos, i.e., there is an essentially unique geometric morphism X → S
from any ∞-topos. To see this, note that a colimit preserving π∗ : S →X is precisely
determined by its value on the terminal object 1S of S , while to preserve finite limits
it is necessary that π∗ take 1S to the terminal object of X . This is also sufficient, by
the fact the colimits are universal in X (8.4.4). Thus Map∞T op(X ,S) ≈ ∗ for any X .
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Example 8.6.3. Every presentation of an ∞-topos X ⊆ PSh(C) as in (8.2) corre-
sponds to a geometric morphism X → PSh(C).

Example 8.6.4. Hypercompletion (8.5) gives a geometric morphism X hyp→X .

Continuous maps vs. geometric morphisms

Let X = Shv(X) for some topological space X, and let Y be any ∞-topos. We can
describe Fun∗(Shv(X),Y ) as follows. It is equivalent to the full subcategory of

Funcolim pres.(PSh(OpenX ),Y )→∼ Fun(OpenX ,Y ),

spanned by those φ : OpenX →Y such that

1. for each open cover {Ui →U }, the map
∐
i
φ(Ui)→ φ(U ) is an effective epi in Y ,

2. φ(X) ≈ ∗ , and
3. φ(U ∩V ) ≈ φ(U )×φ(X) φ(V ).

Condition (1) ensures that PSh(OpenX )→Y factors through the localization

a : PSh(OpenX )� Shv(X),

while conditions (2) and (3) ensure that the resulting functor f ∗ : Shv(X)→ Y pre-
serves finite limits. (This is a special case of [169, 6.1.5.2].)

Note that since U ∩U ≈ U , (2) and (3) imply that each φ(U )→ φ(X) ≈ ∗ , is a
monomorphism, i.e., that each φ(U ) is a (−1)-truncated object of Y .

For instance, if Y = Shv(Y ) for some topological space Y , then τ≤−1Y ≈ OpenY .
Under this identification, morphisms of topoi Y →X correspond to functors OpenX→
OpenY which (1) take covers to covers, (2) take X to Y , and (3) preserve finite inter-
sections.

Example 8.6.5. If X is a scheme, we have both Shv(XZar) (sheaves on the underlying
Zariski space of X) and Shv(X ét) (sheaves in the étale topology (8.2)). There is an evi-
dent geometric morphism Shv(X ét)→ Shv(XZar) induced by OpenXZar → Shv(X ét)
sending an open set to the étale sheaf it represents.

A space X is sober if every irreducible closed subset is the closure of a unique
point (e.g., Hausdorff spaces, or the Zariski space of a scheme). One can show that if
X is sober, then

Map∞T op(Shv(Y ),Shv(X)) ≈ (set of continuous maps Y → X).

This justifies the assertion that “∞-topos” is a generalization of the notion of a
topological space.

Remark 8.6.6 . The sobriety condition is necessary. For instance, if Y = {∗}, then
the φ : OpenX →OpenY ≈ {0→ 1} satisfying (1)–(3) are in bijective correspondence
with irreducible closed C ⊆ X: we have(

φ↔ C
)
⇐⇒

(
C =

⋂
φ(U )=0(X rU )

)
⇐⇒

(
φ(U ) = 0 iff U ∩C = ∅

)
.
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That is, the underlying point set of X can be recovered from OpenX only if X is
sober.

Locales

We see that it is not quite correct to say that ∞-topoi generalize topological spaces;
rather, they generalize locales.

A locale is a poset O equipped with all the formal algebraic properties of the poset
of open sets of a space: i.e., it is a complete lattice such that finite meets distribute
over infinite joins. A map f : O′ → O of locales is a function f ∗ : O → O′ which
preserves all joins and all finite meets. Any locale O has an ∞-category of sheaves
Shv(O) (defined exactly as sheaves on a space), and Map∞T op(Shv(O),Shv(O′)) ≈
{locale maps O→O′}.

Every topological space determines a locale, though not every locale comes from
a space. From the point of view of sheaf theory, a space is indistinguishable from its
locale. For spaces we care about (i.e., sober spaces), we can recover their point sets
from their locale, and this is good enough for us.

Remark 8.6.7 . From the point of view that “objects in an ∞-topos are generalized
open sets” (8.3.5), the preimage functor f ∗ : Y → X of a geometric morphism is the
operation of “preimage of generalized open sets”.

Remark 8.6.8 . Every ∞-topos X has an associated locale, whose lattice of “open
sets” OpenX consists precisely of the (−1)-truncated objects of X .

Limits and colimits of∞-topoi

The ∞-category of ∞-topoi itself (remarkably) has all small limits and colimits.
Colimits are easy to describe (modulo the technical issues involved in making precise

statements; see [169, 6.3.2]): given F : C → ∞T op, consider the functor F∗ : Cop →
Ĉat∞ which sends an arrow α : C → C′ to the left adjoint F(α)∗ : F(C′)→ F(C) of
the geometric morphism. Then the underlying ∞-category of the colimit of F in
∞-topoi is just the limit of the diagram F∗ of ∞-categories.

Limits are more difficult. As we have seen, the terminal object in∞T op is S . Filtered
limits are computed by a pointwise construction much like colimits [169, 6.3.3]. To get
general limits we also need pullbacks; see [169, 6.3.4] for details.

Remark 8.6.9 . The product of two ∞-topoi X and Y has a nice description. It is
equivalent to

Funlim pres./lim pres.(X op ×Yop,S) ⊆ Fun(X op ×Yop,S),

the full subcategory consisting of functors F which preserve limits separately in
each variable, i.e., such that F(colimiUi ,V )→∼ limi F(Ui ,V ) and F(U,colimj Vj )→∼

limj F(U,Vj ). This ∞-category is also equivalent to both of

Funlim pres.(X op,Y ) ≈ Funlim pres.(Yop,X ),
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by the adjoint functor theorem for presentable ∞-categories (8.2.2). That is,

X ×∞T op Y ≈ ShvY (X ) ≈ ShvX (Y )

[168, 4.8.1.18]. This construction is a special case of the “tensor product” of pre-
sentable ∞-categories; see [168, 4.8].

Remark 8.6.10 . Recall that in scheme theory, the underlying topological space of the
pullback of schemes is not usually equivalent to the pullback of the underlying spaces
of the schemes, as is already easily seen in the case of affine schemes. The analogous
fact applies in the setting of derived geometry. Thus, we won’t actually need to worry
about general limits of ∞-topoi.

Sheaves and geometric morphisms

We are going to be interested in sheaves on∞-topoi with values in things like spectra or
E∞-ring spectra. Thus we need to know how these behave under geometric morphisms.

For any complete ∞-category A, any geometric morphism f : X → Y induces a
direct image functor f∗ : ShvA(X )→ ShvA(Y ), which is defined by precomposition
with f ∗. That is, it sends a limit preserving F : X op→A to the composite functor

Yop (f ∗)op

−−−−−→X op F−→A,

which is limit preserving because f ∗ is colimit preserving. The construction F 7→ f∗F
is itself limit preserving, and thus, if A is presentable, admits a left adjoint f ∗.

The left adjoint f ∗ is in general difficult to describe explicitly. However, in many
of the cases we are interested in (e.g., spectra, E∞-rings, topological abelian groups)
A is a compactly generated ∞-category (see [169, 5.5.7]). This means3 that there
exists a small and finite cocomplete A0, and a left exact functor A0→A inducing an
equivalence

A 7→MapA(−,A) : A→∼ Funlex((A0)op,S) ⊆ Fun((A0)op,S),

where “lex” indicates the full subcategory of left exact (= finite limit preserving)
functors.

Example 8.6.11. For instance, if A = Sp is the ∞-category of spectra, we can take
A0 to be the full subcategory of “finite” spectra, i.e., those built from finitely many
cells.

For such A, we then have equivalences

ShvA(X ) = Funlim. pres(X op,A) ≈ Funlim. pres(Aop,X ) ≈ Funlex((A0)op,X ),

(where the middle equivalence sends a limit preserving functor X op→A to the right
adjoint of its opposite, using (8.2.2)). It turns out that in this case a geometric morphism
f : X → Y induces direct image and pullback functors ShvA(X ) � ShvA(Y ) by

3 To see this combine [169, 5.3.5.10] and [169, 5.5.1.9].
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postcomposition with f∗ : X →Y and f ∗ : Y →X respectively (defined because both of
these are left exact). (See [163, V 1.1.8].)

Remark 8.6.12 (Descent for sheaves). An immediate consequence of this is descent
for sheaves with values in compactly generated ∞-categories A: if X ≈ colimi Xi
in ∞T op, then ShvA(X ) ≈ limi ShvA(Xi), where the limit is taken over pullback
functors. In particular, if U ≈ colimiUi in X , then ShvA(X/U ) ≈ limi ShvA(X/Ui ).

8.7 Étale morphisms

Any morphism f : U → V in X gives rise to a geometric morphism, denoted
f : X/U → X/V , where the left exact left adjoint f ∗ is defined by pullback along
f . (We already met this functor in (8.4).) In particular, for any U ∈ X there is a
geometric morphism π : X/U →X .

Maps to slices of∞-topoi

Proposition 8.7.1. Given U ∈ X and a geometric morphism f : Y → X , there is an
equivalence 

X/U
π
��

Y
f
//

s 99

X

→∼
{

1 // f ∗U
}

between the ∞-category of “sections” of π over Y , and the ∞-groupoid of global sections
of f ∗U on Y . It is defined by sending s to s∗(t), where t : 1→ π∗U is the map in X/U
represented by the diagonal map ∆ : U → U ×U . (See [169, 6.3.5.5] for a more precise
statement and proof.)

As a consequence, we see that U 7→ X/U describes a fully faithful functor X �
∞T op/X . Thus, objects of X , which as we have seen (8.3.5) can be thought of as
“generalized open sets” of X , can also be identified with particular kinds of geometric
morphisms to X , and we lose no information by doing so.

Example 8.7.2 (Espace étalé). Given a sheaf of sets F on a topological space X, the
espace étalé of F is a topological space XF equipped with a map π : XF → X, defined
so that OpenXF =

∐
U∈OpenX

F(U ). It is not hard to show that Shv(XF) ≈ Shv(X)/F ,
and that there is a bijection between maps F→ F′ in ShvSet(X), and maps XF → XF′
of topological spaces which are compatible with the projection to X.

Any local homeomorphism f : Y → X of spaces is equivalent to the espace étalé
of a sheaf of sets. Local homeomorphisms are also called étale maps of spaces, which
motivates the terminology of the next section.
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Étale morphisms of∞-topoi

A geometric morphism is étale if it is equivalent to a morphism of the form π : X/U →
X for some∞-topos X and object U ∈ X . This class includes the geometric morphism
X/U → X/V induced by a map f : U → V in X , as f also represents object of the
∞-topos X/V .

Remark 8.7.3 (Pullbacks of étale morphisms). Pullbacks of étale morphisms of ∞-
topoi are étale: (8.7.1) implies a pullback diagram

Y/f ∗U //

��

X/U

��

Y
f
// X

in ∞T op.

Remark 8.7.4 (Characterization of étale morphisms). For any étale morphism f :Y→X,
the pullback functor f ∗ admits a left adjoint f! : Y →X . In the case of the projection
π : X/U →X , this is the evident functor which on objects sends V →U to V .

The left adjoint f! associated to an étale morphism f : Y →X is conservative, and
has the property that the evident map f!(f ∗U ×f ∗V Z)→∼ U ×V f!Z is an equivalence
for all Z ∈ Y and all U → V and f!Z → V in X . Furthermore, étale morphisms f
are characterized by the existence of an f! with these properties [169, 6.3.5.11].

Remark 8.7.5 (“Restriction” of sheaves along étale maps). For an étale morphism
f : Y → X and any ∞-category A, the induced functor f ∗ : ShvA(X )→ ShvA(Y )
on A-valued sheaves admits a very simple description using f!: it sends F : X op→A
to F(f!)op : Yop → A. When f is the projection X/U → X this amounts to saying
that (f ∗F)(V → U ) ≈ F(V ). It is easy to think of this as a “restriction” functor, so
sometimes we will use the notation “F|U ” for f ∗F in this case.

Colimits along étale maps of∞-topoi

Let ∞T opét ⊆∞T op denote the (non-full) subcategory consisting of étale morphisms
between arbitrary ∞-topoi.

Proposition 8.7.6 ([169, 6.3.5.13]). The∞-category∞T opét has all small colimits, and
the inclusion ∞T opét→∞T op preserves small colimits.

For instance, given an ∞-topos X , the descent property (8.4.5), plus the fact that
colimits in ∞T op are computed as limits in Ĉat∞ (8.5), implies that the functor

U 7→ X/U : X →∞T op

is itself colimit preserving. This functor clearly factors through the subcategory
∞T opét. In fact, every colimit in ∞T opét is equivalent to one of this form.

Example 8.7.7. Any equivalence of ∞-topoi is étale. Thus, if X : G → ∞T op is
a functor from a small ∞-groupoid G, it factors through ∞T opét → ∞T op, so its
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colimit is a “quotient ∞-topos” X //G, with the property that X (c)→ X //G is étale
for all objects c ∈ G.

For instance, let X = Shv(X) be the ∞-topos of sheaves on a topological space X,
and let G be a discrete group acting on X. Then X //G is equivalent to an∞-category
of “G-equivariant sheaves on X”, and the projection map π : X →X //G is étale.

Remark 8.7.8 . The proof of (8.7.6) is pretty technical, but ultimately it is a gen-
eralization of the following observation: given open immersions U ← W → V of
topological spaces, the pushout X in spaces can be constructed so that a basis of
open sets is described by the category colim[OpenU ←OpenW →OpenV ].

8.8 Spectra and commutative ring spectra

Now that we have ∞-categorical versions of spaces, we can put sheaves of spectra
or commutative ring spectra on them. In this section I collect some notation and
observations about these; some familiarity with spectra and structured ring spectra
on the part of the reader is assumed.

Spectra

We write Sp for the ∞-category of spectra. It is an example of a stable∞-category [168,
1.1.1.9], and so is pointed, has suspension and loop functors which are inverse to each
other, has fiber sequences and cofiber sequences which coincide, and so forth.

The ∞-category Sp has a symmetric monoidal structure with respect to “smash
product”, here denoted “⊗”, with unit object being the sphere spectrum S. The
monoidal structure is closed, so there are internal hom objects.

We write Ω∞−n : Sp→S for the usual “forgetful” functors, and define homotopy
groups of spectra by πnX = πn+kΩ

∞−kX for n ∈ Z, and any k ≥ −n. We say that a
spectrum X is n-truncated if Ω∞−kX ≈ 1, or equivalently if πkX ≈ 0 for k < n. We
say a spectrum is n-connective if πkX ≈ 0 for k > n, and connective if 0-connective.

We write Sp≤n and Sp≥n respectively for the full subcategories in Sp of n-truncated
and n-connective objects. The intersection

Sp♥ = Sp≥0 ∩ Sp≤0

is equivalent to the ordinary category of abelian groups: every abelian group A
corresponds to an Eilenberg–MacLane spectrum in Sp♥, which we also denote A by
abuse of notation.

Warning 8.8.1. The notion of n-truncated spectrum described above is not the same
as the general notion of n-truncation in an∞-category that we described earlier (8.5):
since every spectrum is a suspension of one, every n-truncated object in Sp (in the
earlier sense) is equivalent to 0. The pair (Sp≤0,Sp≥0) is instead an example of a
t-structure on Sp [168, 1.2.1].
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Commutative ring spectra

By an E∞-ring, we mean a commutative ring object with respect to the symmetric
monoidal structure on the ∞-category of spectra. The ∞-category of commutative
rings is denoted CAlg. (We are following the notation and terminology of [170] here.
This notion of E∞-ring is an ∞-categorical manifestation of the notion of structured
commutative ring spectrum/commutative S-algebra as defined in, e.g., [94].)

Given A ∈ CAlg we write CAlgA = CAlgA/ for the category of E∞-rings under A,
also called commutative A-algebras. The initial E∞-algebra is the sphere spectrum
S, so CAlg = CAlg

S
.

There is a forgetful functor CAlg → Sp which is conservative. The homotopy
groups of an E∞-algebra are those of its underlying spectrum, and likewise we may
speak of an E∞-ring being n-truncated or n-connective by reference to its underlying
spectrum. In particular we distinguish the full subcategory CAlgcn of connective
E∞-rings, i.e., those A ∈ CAlg such that πkA ≈ 0 for k < 0.

We further consider the full subcategory CAlg♥ of E∞-algebras which are both
0-connective and 0-truncated. This is equivalent to the ordinary category of commu-
tative rings, so we will identify an ordinary commutative ring with its corresponding
Eilenberg–Mac Lane spectrum in CAlg♥.

We have adjoint pairs

CAlg♥ // // CAlgcnoooo // // CAlgoooo

of fully faithful and localization functors relating these subcategories; the localization
functors of these pairs are denoted τ≥0 : CAlg→ CAlgcn and τ≤0 : CAlgcn→ CAlg♥.
Note that S ∈ CAlgcn and that S→ τ≤0S ≈Z.

Remark 8.8.2 (General truncation of E∞-rings). The ∞-category CAlg of E∞-rings,
being a presentable ∞-category, has n-truncation functors τ≤n : CAlg → CAlg for
n ≥ −1 (8.5). However, these are not generally compatible with the n-truncation
functors on spectra defined in (8.8). For example, the periodic complex K-theory
spectrum KU admits the structure of an E∞-ring, but its nth truncation as an E∞-
ring is equivalent to 0 for all n ≥ −1.

However, the n-truncation functors on CAlg restrict to functors on connective E∞-
rings τ≤n : CAlgcn→ CAlgcn, which are in fact the n-truncation functors for CAlgcn,
and which are in fact compatible with n-truncation of the underlying spectra.

Modules

To each E∞-ring A there is an associated ∞-category of (left) modules ModA, which
is itself closed symmetric monoidal: we write M ⊗AN for the monoidal product and
HomA(M,N ) for the internal hom. We have that Mod

S
≈ Sp, an equivalence of

symmetric monoidal ∞-categories.

Example 8.8.3. If A ∈ CAlg♥ is an ordinary ring, then ModA is equivalent to the
∞-category obtained from chain complexes of A-modules and quasi-isomorphisms



8.8 Spectra and commutative ring spectra 367

[266]. Thus, the homotopy category of ModA is the derived category of the ring A. The
tensor product on ModA corresponds to the derived tensor product of complexes.

Remark 8.8.4 (Z-modules are abelian groups). We will write Modcn
Z
⊆Mod

Z
for the

full subcategory of (−1)-connected Z-modules. The ∞-category Modcn
Z

is equivalent
to those obtained from each of the following examples by inverting the evident weak
equivalences: (−1)-connected chain complexes of abelian groups, simplicial abelian
groups, topological abelian groups.

An object X in an ∞-category A is called an abelian group object if it represents
a functor Aop→Modcn

Z
.

Every commutative A-algebra has an underlying A-module. The coproduct of A-
algebras coincides with tensor product of A-modules. For this reason, we typically
denote coproduct in CAlgA by B⊗A C.

The homotopy groups π∗M of an A-module are automatically a graded π∗A-
module. To get a feel for how these things behave, it is useful to be aware of two
spectral sequences:

E2 = Torπ∗A∗ (π∗M,π∗N ) =⇒ π∗(M ⊗AN ),

E2 = Ext∗π∗A(π∗M,π∗N ) =⇒ π∗HomA(M,N ).

The Tor spectral sequence satisfies complete convergence, while the Ext spectral
sequence satisfies conditional convergence [94, Ch. IV].

Flat modules and E∞-rings

An A-module M is said to be flat if

1. π0M is flat as a π0A-module, and
2. the evident maps π0M ⊗π0A πnA→ πnM are isomorphisms for all n.

Likewise, a map A→ B of E∞-rings is flat if B is flat as an A-module, In view of the
tor spectral sequence, we see that if A→ B is flat then π∗(B⊗AN ) ≈ π0B⊗π0A π∗N
for N ∈ModA.

Remark 8.8.5 (Flatness and connective covers). Let’s pause to note the following.
Consider the map τ≥0A→ A from the connective cover to an E∞-ring A. The base
change functor A⊗τ≥0A − : Modτ≥0A→ModA restricts to an equivalence

Mod[τ≥0A
→∼ Mod[A

of full subcategories of flat modules; the inverse equivalence sends an A-module
N to its connective cover τ≥0N viewed as a τ≥0A-module. Similarly, we obtain an
equivalence

CAlg[τ≥0A
→∼ CAlg[A

of full subcategories of algebras which are flat over the ground ring. Thus, any flat
morphism of E∞-rings is a base change of one between connective E∞-rings. This
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phenomenon turns out to extend to nonconnective spectral Deligne–Mumford stacks
(8.13.6).

Examples of E∞-rings

Example 8.8.6 (Polynomial rings). Given any space K , we obtain a spectrum S[K] =
the suspension spectrum of K+. If K is equipped with the structure of an E∞-space
(i.e., space with an action by an E∞-operad), then S[K] is equipped with a corre-
sponding structure of E∞-ring. A particular example of this is when K is a discrete
commutative monoid.

For instance, we can form polynomial rings: S[x] := S[Z≥0], and more generally
A[x1, . . . ,xn] := A⊗S[(Z≥0)n] ≈ A⊗S[Z≥0]⊗n. We have

π∗
(
A[x1, . . . ,xn]

)
≈ (π∗A)[x1, . . . ,xn].

Thus, A[x1, . . . ,xn] is a flat A-algebra. In particular, if A is an ordinary ring, then
A[x1, . . . ,xn] is also an ordinary ring.

Example 8.8.7 (Free rings). Let S{x} denote the free E∞-ring on one generator,
which is characterized by the existence of isomorphisms

MapCAlg(S{x},R)→∼ Ω∞(R)

natural in R ∈ CAlg. We have that S{x} ≈ S[
∐
k BΣk].

We may similarly define A{x1, . . . ,xn} := A ⊗ S{x}⊗n, the free commutative A-
algebra on n generators.

There is a canonical map A{x1,...,xn} → A[x1,...,xn] from the free ring to the
polynomial ring. It is generally not an equivalence, but is an equivalence if Q⊆π0A.
When A is connective so is A{x1,...,xn}, and then π0

(
A{x1,...,xn}

)
≈ π0A[x1,...,xn];

however, no such isomorphism on π0 holds for general non-connective E∞-rings.

E∞-rings of finite characteristic

We note the following curious fact, conjectured by May and proved by Hopkins; see
[188]. It is a generalization of the Nishida nilpotence theorem, which is the special
case R = S.

Theorem 8.8.8. For any R ∈ CAlg, all elements in the kernel of the evident map
π∗R→ π∗(R⊗Z) are nilpotent. In particular, R⊗Z ≈ 0 implies R ≈ 0.

Many spectra which arise in chromatic homotopy theory have the property that

R⊗Z→∼ R⊗Q; e.g., if R ≈ LfnR for some n at some prime p. Therefore, if R ∈ CAlg

is such that R(p) ≈ L
f
nR(p) 0 0 for some prime p and some n <∞, then 1 ∈ π0R has

infinite order. So there are no non-trivial E∞-rings of finite characteristic in chromatic
homotopy.

A related result of Hopkins–Mahowald is: any R ∈ CAlg such that p = 0 ∈ π0R
admits the structure of a Z/p-module [188, Theorem 4.18]. In particular, the underlying
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spectrum of an E∞-ring of positive characteristic p is always a product of Eilenberg–
MacLane spectra.

Other kinds of commutative rings

We note several other flavors of commutative ring which can be used in derived
versions of algebraic geometry.

1. Given an ordinary ring R, there is a notion of chain-level E∞-R-algebra, consisting
of an unbounded chain complex of abelian groups equipped with the action of a
chain-level E∞-operad. The resulting ∞-category of chain level E∞-R-algebras is
equivalent to CAlgR [236].

2. Over any ordinary ring R we may consider the category of differential graded
commutative R-algebras. In general it is not possible to extract a useful∞-category
from this notion. However, it is possible when R ⊇Q, in which case the resulting
∞-category is equivalent to CAlgR.

3. The category of simplicial commutative rings gives rise to an ∞-category CAlg∆.
This ∞-category is related to CAlg

Z
but is quite distinct from it. In fact, there is

a conservative “forgetful” functor

CAlg∆→ CAlgcn
Z

which is both limit and colimit preserving. This implies that simplicial commutative
rings are intrinsically connective objects, and that pushouts in CAlg∆ are computed
as tensor products on underlying Z-modules.

However, the above functor is far from being an equivalence. For instance, the
“free simplicial commutative ring on one generator” maps to Z[x] ∈ CAlgcn

Z
, rather

than to Z{x}. See [170, 25.1].

Spectrally ringed∞-topoi

The categories Sp and CAlg are presentable ∞-categories (and in fact are compactly
generated), so it is straightforward to consider sheaves on an ∞-topos valued in each
of these. For any such sheaf O on X we have homotopy sheaves πkO on X♥.

A spectrally ringed ∞-topos is a pair X = (X ,OX ) consisting of an ∞-topos
X and a sheaf OX ∈ ShvCAlg(X ) of E∞-rings. These are objects of an ∞-category
∞T opCAlg, in which morphisms X→ Y are pairs consisting of a geometric morphism
f : X → Y together with a map φ : OY → f∗OX of sheaves of E∞-rings on Y (see
[170, 1.4.1.3]).

8.9 The étale site of a commutative ring

Our objects of study will be spectrally ringed ∞-topoi which are “locally affine”. There
are two such notions of affine we can use here, corresponding in the classical case
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to the Zariski and étale topologies of a ring. We are going to focus on the étale case
(which is in some sense strictly more general). Thus, in this section we describe the
spectrally ringed ∞-topos SpétA associated to an E∞-ring A. It is an “étale topology
version” of an analogous construction of a spectrally ringed ∞-topos SpecA, which
generalizes the classical construction of affine schemes.

Warning: this notion of “étale” map of rings is not to be confused with that of étale
maps of ∞-topoi (8.7), though the notions will be linked later on (8.13).

Étale maps of E∞-rings

A map R→ S of ordinary commutative rings is étale if:

1. S is finitely presented over R,
2. R→ S is flat, and
3. the fold map S ⊗R S→ S is projection onto a factor (or equivalently, there exists

idempotent e ∈ S ⊗R S inducing (S ⊗R S)[e−1]→∼ S).

Example 8.9.1. If K is a field, then K → R is étale if and only if R ≈
∏d
i=1Fi , where

each K → Fi is a finite separable field extension.

We say that a map A→ B of E∞-rings is étale if

1. the underlying map π0A→ π0B of ordinary commutative rings is étale, and
2. πnA⊗π0A π0B→ πnB is an isomorphism for all n (so that A→ B is flat in the

sense of (8.8)).

Remark 8.9.2 . If A ∈ CAlg♥ is an ordinary commutative ring, then the two notions
of étale coincide.

Theorem 8.9.3 (Goerss–Hopkins–Miller). Let A ∈ CAlg.

1. For every étale map ψ : π0A→ B0 of ordinary rings, there exists an étale map φ : A→
B of E∞-rings and an isomorphism π0B ≈ B0 with respect to which π0φ : π0A→ π0B
is identified with ψ.

2. Let φ : A→ B be an étale map of E∞-rings. Then for every C ∈ CAlgA, the evident
map

MapCAlgA
(B,C)→MapCAlg♥π0A

(π0B,π0C)

is an equivalence.

See [168, 7.5.4] for a proof of a generalized formulation of this.

Remark 8.9.4 . A consequence of this theorem is that MapCAlgA
(B,C) is a set (i.e.,

0-truncated) whenever φ : A→ B is étale. This consequence can be proved directly
from the definition of étale morphism. In fact, when φ is étale, then the evident map
B⊗(B⊗AB) B→ B must be an equivalence (using that both A→ B and B⊗A B→ B
are flat). Writing X = MapCAlgA

(B,C), this equivalence implies that X→ X ×(X×X)X
is an equivalence, which says exactly that X is 0-truncated.
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Remark 8.9.5 . Given an étale morphism π0A→ B0 of ordinary rings, it is not hard to
show that the functor CAlgA→ Set ⊆ S defined by MapCAlg♥π0A

(B0,π0(−)) preserves

limits4 and is accessible, so is corepresentable by a B ∈ CAlgA. The hard part of
(8.9.3) is to show that B0→ π0B is an isomorphism.

Remark 8.9.6 . Statement (2) of the theorem is equivalent to: for every étale map
A→ B and R ∈ CAlg, the square

MapCAlg(B,R) //

��

MapCAlg(π0B,π0R)

��

MapCAlg(A,R) // MapCAlg(π0A,π0R)

is a pullback of ∞-groupoids.

Let CAlgét
A ⊆ CAlgA be the full subcategory of A-algebras whose objects are maps

A→ B which are étale. As we have seen, it is equivalent to a 1-category.

Remark 8.9.7 . If A
f
−→ B

g
−→ C are maps of E∞-rings such that f and gf are étale,

then g is also étale [168, 7.5.1.7]. Thus every morphism in CAlgét
A is itself étale.

Corollary 8.9.8. For any A ∈ CAlg, the functor CAlgét
A → CAlgét

π0A
defined by taking

π0 is an equivalence of ∞-categories.

Example 8.9.9 (Localization of E∞-rings). Let A ∈ CAlg, and suppose f ∈ π0A.
Then π0A→ (π0A)[f −1] is an étale morphism of commutative rings. By (8.9.3), (i)
there exists a map A→ A[f −1] of E∞-rings such that (i) π∗(A[f −1]) ≈ (π∗A)[f −1],
and (ii) for any C ∈ CAlg, MapCAlg(A[f −1],C)→MapCAlg(A,C) is the inclusion of
those path components consisting of φ : A→ C which take f to a unit in π0C.

This special case predates the proof of the Goerss–Hopkins–Miller theorem for
E∞-rings. In fact, one can in a similar way invert any multiplicative subset S ⊆ π∗A
of the graded homotopy ring to obtain AS with π∗(AS ) ≈ (π∗A)S .

Example 8.9.10 (Adjoining primitive roots of unity). Here is a hands-on construction
of an étale morphism, due to [260]. Given any E∞-ring A, prime p, and k ≥ 1,

consider the group ring B′ := A[Z/pk] (8.8.6), with π0B
′ ≈ (π0A)[t]/(tp

k − 1). Let

f =
∑p−1
j=0 (1− tjpk−1

) in π0B
′ , and note that f 2 = pf . Formally inverting f we obtain

B := B′[f −1], with π∗B ≈ (π∗A)[ 1
p , t]/(1 + tp

k−1
+ · · ·+ t(p−1)pk−1

).

It turns out that A→ B is an étale morphism, and π0B is obtained from π0A by (i)
inverting p and (ii) adjoining a primitive pkth root of unity.

Remark 8.9.11 . In general, you can always construct étale maps of E∞-rings using
“generators and relations” (using free rings (8.8.7)), which in fact leads to an alternate
proof of (8.9.3); see [170, B.1]. In particular, this shows that every étale map in CAlg
is a base change of one between compact objects in CAlg ([170, B.1.3.3] with R = S).

4 Using the fact that étale maps of rings are also “formally étale”.
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(An object A in an ∞-category is compact if MapA(A,−) : A→S preserves filtered
colimits.)

The étale site of an E∞-ring

Given A ∈ CAlg, consider the category CAlgét
A of étale morphisms under A. A finite

set {A→ Ai}di=1 of maps in CAlgét
A is an étale cover if π0A→

∏d
i=1π0Ai is faithfully

flat.
We define Shvét

A ⊆ Fun(CAlgét
A ,S) to be the full subcategory of functors F such

that

F(A)→ lim∆

[
[n] 7→

∏
i0,...,in

F(Ai0 ⊗A · · · ⊗A Ain )
]

is an equivalence for every étale cover {A→ Ai}i in CAlgét
R . This Shvét

A is an ∞-
topos; in fact, it is equivalent to the ∞-topos Shvét

π0A
of étale sheaves on the ordinary

commutative ring π0A. I’ll call its objects of sheaves on the étale site of A.

The étale spectrum of an E∞-ring

Let O : CAlgét
A → CAlg denote the forgetful functor.

Proposition 8.9.12. The functor O is a sheaf of E∞-rings on the étale site of A.

We thus define the étale spectrum of A ∈ CAlg to be the spectrally ringed∞-topos
SpétA = (Shvét

A ,O).

Proof of (8.9.12). We must show that for every finite étale cover {A → Ai}di=1 the
evident map

A→ lim∆

[
[n] 7→

∏
i0,...,in

Ai0 ⊗A · · · ⊗A Ain
]

is an equivalence of E∞-rings. This is a special case of a much more general statement,
called flat descent for E∞-rings; see [170, D.5] for the general theory.

In this case, the proof amounts to computing the spectral sequence computing the
homotopy groups of the inverse limit, whose E1-term takes the form

Es,t1 = πt(Ai0 ⊗A · · · ⊗A Ais ) ≈ πtA⊗π0A (π0Ai0 ⊗π0A · · · ⊗π0A π0Ais )

because étale morphisms are flat. The classical version of flat descent for ordinary
rings implies that

Es,t2 ≈H
s[πtA⊗π0A (π0Ai0 ⊗π0A · · · ⊗π0A π0Ais ) ] ≈

{
πtA if s = 0,
0 if s > 0,

so the spectral sequence collapses to a single line at E2. The claim follows because
the inverse limit spectral sequence has conditional convergence.
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Remark 8.9.13 . We actually have that O is a hypercomplete sheaf of spectra Shvét
A .

In fact, the argument of the proof of (8.9.12) shows that for each n ≥ 0 the presheaf
τ≤nO : A 7→ τ≤nA of spectra obtained by truncation is a sheaf on the étale site,
whence O ≈ limn τ≤nO; this relies on the fact that CAlgét

τ≤nA
≈ CAlgét

π0A
for all

n ≥ 0, so all these rings have the same étale site.

The Zariski site and spectrum of an E∞-ring

In the above we can replace CAlgét
A with the full subcategory CAlgZar

A spanned by
objects equivalent to localizations A→ A[f −1]. Then {A→ A[f −1

i ]}di=1 is a Zariski

cover if π0A →
∏d
i=1π0A[f −1

i ] is faithfully flat; equivalently, if (f1, . . . , fd)π0A =
π0A. We obtain an ∞-topos ShvZar

A ⊆ Fun(CAlgZar
A ,S) of Zariski sheaves. We have

ShvZar
A ≈ ShvZar

π0A
, and these are equivalent to the ∞-categories of sheaves on a

topological space, namely the prime ideal spectrum of π0A equipped with the Zariski
topology.

We can likewise define the Zariski spectrum to be the spectrally ringed ∞-topos
SpecA = (ShvZar

A ,O), as the forgetful functor O : CAlgZar
A → CAlg is sheaf of E∞-

rings on the Zariski site.

Example 8.9.14 (Points in étale site vs. the Zariski site). To get a sense of the
difference between the Zariski and étale sites, let’s compare Map∞T op(S ,ShvZar

A )
with Map∞T op(S ,Shvét

A ). (A map of ∞-topoi of the form S → X is called a point
of X .)

First, suppose K ∈ CAlg♥ is an ordinary field. Then CAlgZar
K ≈ 1, so ShvZar

K ≈ S ,
so there is a unique map S → ShvZar

K of ∞-topoi. On the other hand, any separable
closure K → Ksep induces a geometric morphism f : S → Shvét

K , characterized by
the property that f ∗U ≈MapCAlgK

(R,Ksep) when U ∈ Shvét
K is the sheaf represented

by a map K → R ∈ CAlgét
K . Therefore,

Map∞T op(S ,Shvét
K ) ≈ BGal(K),

the classifying space of the absolute Galois group of K viewed as an ∞-groupoid.
For general A ∈ CAlg, the ∞-groupoid Map∞T op(S ,ShvZar

A ) is equivalent to the
set |SpecA| of prime ideals in π0A (i.e., the prime ideal spectrum as a discrete
set), while Map∞T op(S ,Shvét

A ) is equivalent to a 1-groupoid whose objects are pairs
(p, π0A/p→ F) consisting of a prime ideal p ⊂ π0A and a separable closure F of the
residue field π0A/p.

8.10 Spectral Deligne–Mumford stacks

We can now define the main notion, that of a spectral Deligne–Mumford stack.
First note that given a spectrally ringed ∞-topos X = (X ,OX ) and an object U ∈ X ,

we obtain a new spectrally ringed ∞-topos

XU := (X/U ,OX |U )
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where OX |U := π∗OX is the preimage of OX along the projection π : X/U → X .
Furthermore, this comes with an evident map XU → X of spectrally ringed ∞-topoi.

Example 8.10.1. If X = SpétA = (Shvét
A ,O) and U ∈ Shvét

A ⊆ PSh((CAlgét
A )op) is the

sheaf represented by an étale map (A→ B) ∈ CAlgét
A , then XU ≈ ((Shvét

A )/U ,O|U ) ≈
(Shvét

B ,O) = SpétB.

The definition of spectral Deligne–Mumford stacks

We say that a spectrally ringed ∞-topos X = (X ,OX ) is affine if it is isomorphic to
SpétA for some A ∈ CAlg. Likewise, we say that an object U ∈ X is affine if XU (as
defined above) is affine.

A nonconnective spectral Deligne–Mumford (DM) stack is a spectrally ringed
∞-topos X = (X ,OX ) for which there exists a set of objects {Ui} in X such that

1. the set {Ui} covers X (i.e.,
∐
Ui → 1 is effective epi in X ), and

2. each Ui is affine.

Remark 8.10.2 . The structure sheaf of a nonconnective spectral DM stack is always
hypercomplete, as a consequence of the fact that this is so in the affine case (8.9.13).

A spectral Deligne–Mumford (DM) stack is a nonconnective DM stack (X ,OX )
such that the sheaf OX is connective; i.e., such that the homotopy sheaves πkOX ∈ X♥
satisfy πkOX ≈ 0 for k < 0.

Remark 8.10.3 . SpétA is always a nonconnective spectral DM stack, and is a spectral
DM stack if and only if A is connective.

Remark 8.10.4 . If X = (X ,OX ) is a nonconnective spectral DM stack and U ∈ X ,
then XU is also a nonconnective spectral DM stack. Furthermore, if X is a spectral
DM stack, so is XU .

This is a consequence of the following claim: for a nonconnective spectral DM
stack X, the collection A = {Vj } of all affine objects in X generates X under colimits
[170, 1.4.7.9]. In particular, this implies that for any U we can find a set of maps of
the form Vj →U with all Vj ∈ A which is a cover of X/U (8.5.6).

Here’s a proof that affines generate X under colimits. First note that if X ≈ SpétA
is itself affine, then X ≈ Shvét

A which is manifestly generated by affines (i.e., by the
image of (CAlgét

A )op� Shvét
A (8.10.1)). In the general case, if {Ui} is an affine cover

of X , choose for each i a set {Vi,j → Ui} of affine objects of X/Ui which generate
X/Ui under colimits. Then the collection {Vi,j } in X is a collection of affines which
generate X under colimits (since (XUi )Vi,j ≈ XVi,j ).

Spectral schemes

We can carry out an analogous definition using the Zariski topology. A special case
of this is a nonconnective spectral scheme, which is a spectrally ringed ∞-topos
X = (X ,OX ) such that
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1. X ≈ Shv(Xtop) for some topological space Xtop, and
2. there exists an open cover {Ui} of Xtop such that XUi ≈ SpecAi for some Ai ∈

CAlg.

It is a spectral scheme if also πkOX ≈ 0 for k < 0. (This is not the definition given
as [170, 1.1.2.8], but is equivalent to it by [170, 1.1.6.3, 1.1.6.4].)

8.11 Morphisms of spectral DM stacks

We need to work rather harder to get the correct notion of morphism of spectral DM
stacks. Our goal is produce a category SpDMnc of nonconnective spectral DM stacks
which includes SpétR for any R ∈ CAlg, with the property that

MapSpDMnc(SpétS,SpétR) ≈MapCAlg(R,S).

More generally, we would like to have

MapSpDMnc(X,SpétR) ≈MapCAlg(R,Γ (X ,OX )),

for any object X ∈ SpDMnc, where Γ (X ,OX ) ∈ CAlg is the global sections of the
structure sheaf OX .

Let’s make this more precise. Given a map (f ,ψ) : X→ SpétR of spectrally ringed
∞-topoi, we obtain a map R→ Γ (X ,OX ) of E∞-rings, by evaluating the composite of

O→ f∗f
∗O

f∗(ψ)
−−−−→ f∗OX

at global sections over Shvét
R . Thus we get a map of ∞-groupoids

Map∞T opCAlg
(X,SpétR)→MapCAlg(R,Γ (X ,OX )). (8.11.1)

This map is rarely an equivalence, even when X is affine. It turns out that we obtain
an equivalence when we require X to be strictly Henselian, and restrict to a full
subgroupoid Map∞T opsHen

CAlg
(X,SpétR) ⊆Map∞T opCAlg

(X,SpétR), consisting of local
maps.

Solution sheaves

To carry out this definition, we need to think locally. Given a spectrally ringed
∞-topos X = (X ,OX ) and an E∞-ring R, define the solution sheaf SolR(OX ) ∈
Funlim. pres.(X op,S) ≈ X by

SolR(OX )(U ) := MapCAlg(R,OX(U )).

Note that R 7→ SolR(OX ) is itself a functor CAlgop→X , and is limit preserving.
We obtain a map of sheaves of ∞-groupoids on X ,[

U 7→Map∞T opCAlg
(XU ,SpétR)

]
→ SolR(OX ),

which can be thought of as a “local” version of the map (8.11.1), since evaluating the
above map at the terminal object U = 1X of X recovers the map (8.11.1).
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Strictly Henselian sheaves

A sheaf O of E∞-rings is strictly Henselian if for every étale cover {R→ Ri} in
CAlgét, the induced map ∐

SolRi (O)→ SolR(O) (8.11.2)

is an effective epi in X . (This is not the definition of [170, 1.4.2.1], but is equivalent to
it by [170, 1.4.3.9].)

Remark 8.11.1 . The strictly Henselian condition on O gives rise to a map

MapCAlg(R,Γ (X ,O))→Map∞T op(X ,Shvét
R ),

i.e., from an E∞-ring map α : R→ Γ (X ,O) we can get a map X → Shvét
R of∞-topoi.

To see how this works, note that in the diagram

(CAlgét
R )op Sol•(O)=(R′ 7→SolR′ (O))

//

��

��

X/ SolR(O)

PSh((CAlgét
R )op)

a ����

τ

33

Shvét
R

t∗

77

there is an essentially unique colimit preserving functor τ extending Sol•(O). The
strictly Henselian condition on O implies that τ factors through an essentially unique
colimit preserving functor t∗. Because Sol•(O) preserves limits, t∗ preserves finite
limits. That is, t∗ is the preimage of a geometric morphism t : Shvét

R →XSolR(O).
An E∞-ring map α : R→ Γ (X ,O) corresponds to a section 1X → SolR(O), which

induces an étale geometric morphism α : X → X/ SolR(O). The composite t ◦α is the
desired map of ∞-topoi.

Remark 8.11.2 . It can be shown [170, 1.4.3.8] that the map in (8.11.2) is a pullback of∐
Solπ0Ri (π0O)→ Solπ0R(π0O), so O is strictly Henselian (or local) if and only if

π0O is so; this recovers the definition in [170, 1.4.2.1]. (The proof rather subtle: you
need to use the fact that every étale map is a base change of an étale map between
compact objects in CAlg (8.9.11), in order to reduce to the case of the pullback square
(8.9.6) of mapping spaces. The issue here is that it is not the case that f ∗ SolR(O)→
SolR(f ∗O) is an isomorphism in general, unless R is a compact object of CAlg.)

There is an analogous definition of local sheaf, in which étale covers are replaced
with Zariski covers in the definition given above.

Example 8.11.3 (Local and strictly Henselian sheaves on a point). Let X = S , so
ShvCAlg(S) ≈ CAlg, and for O ∈ CAlg we have SolR(O) ≈Map(R,O) ∈ S .

From the definitions and the universal property of localization maps R→ R[f −1]
in CAlg, we see that O is local if and only if, for every pair (R, {f1, . . . , fd} ⊆ π0R)
consisting of R ∈ CAlg such that (f1, . . . , fd)π0R = π0R, every map α : R → O in
CAlg is such that α(fk) is an invertible element of π0O for some k ∈ {1, . . . ,d}.



8.11 Morphisms of spectral DM stacks 377

It follows that O must be a local sheaf whenever π0O is a local ring in the usual
sense. The converse also holds: if O is a local sheaf, apply the condition with (R = 0,
∅ ⊆ π0R) to see that π0O 0 0, and with (R = S{x,y}[(x + y)−1], {x,y} ⊆ π0R) to see
that m := π0O r (π0O)× is an ideal.

A similar argument shows that O ∈ ShvCAlg(S) is strictly Henselian if and only
if π0O is a strictly Henselian ring in the classical sense, i.e., as defined in [281, Tag
04GE].

Spectral DM stacks are strictly Henselian

For an affine object X = SpétA = (Shvét
A ,O), we see that SolR(O)(U ) ≈MapCAlg(R,B)

when U ∈ Shvét
A is the object represented by the étale A-algebra A→ B. Using this it

is straightforward to show that O is strictly Henselian.

Remark 8.11.4 (Spectral DM stacks are strictly Henselian). Observe that π∗ SolR(O) ≈
SolR(π∗O) when π : X/U → X is the etale map of ∞-topoi associated to an object
U ∈ X . (Use (8.7.5).) Given this it is straightforward to prove that any nonconnective
DM stack is strictly Henselian.

The category of strictly Henselian spectrally ringed∞-topoi

We let ∞T opsHen
CAlg denote the (non-full) subcategory of ∞T opCAlg whose objects are

X = (X ,OX ) such that OX is strictly Henselian, and whose morphisms f : (X ,OX )→
(Y ,OY ) are such that

f ∗ SolR′ (OY ) //

��

SolR′ (OX )

��

f ∗ SolR(OY ) // SolR(OX )

is a pullback in X for every étale map R→ R′ in CAlg. Such morphisms are called
local.

Remark 8.11.5 . This is different than the definition given as [170, 1.4.2.1], but is
equivalent by [170, 1.4.3.9].

Remark 8.11.6 . If X = (X ,OX ) is a nonconnective spectral DM stack and U ∈ X ,
then the evident map XU → X of spectrally ringed ∞-topoi is local.

We can now state our goal.

Theorem 8.11.7. For any strictly Henselian spectrally ringed ∞-topos X = (X ,OX ) and
E∞-ring R, the evident map

Map∞T opsHen
CAlg

(X,SpétR)→∼ MapCAlg(R,Γ (X ,OX ))

is an equivalence.
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Sketch proof. This is [170, 1.4.2.4]. Here is a brief sketch.
Geometric morphisms f : Shvét

R →X correspond (by restriction to representable
sheaves) exactly to left-exact functors χ : (CAlgét

R )op → X which send étale covers
to effective epis. Given such an f , maps φ : O → f∗OX of sheaves of E∞-rings on
Shvét

R correspond to natural transformations φ′ : χ → Sol•(O) of functors; to see
this, use the evident equivalence MapX (χ(R′),SolR′ (O)) ≈MapCAlg(R′ ,OX(χ(R′)))
for R′ ∈ CAlgét

R , and that f∗OX |(CAlgét
R )op ≈ OX ◦χ as functors (CAlgét

R )op→ CAlg.
One shows that if φ is local, then φ′ is Cartesian, i.e., φ′ takes morphisms in

(CAlgét
R )op to pullback squares of sheaves. But since (CAlgét

R ) has R as a terminal
object, we discover that pairs (χ,φ′) with φ′ Cartesian correspond exactly to maps
1X = χ(R)→ SolR(OX ), i.e., to maps R→ Γ (X ,OX ) of E∞-rings. In particular, we
learn that Map∞T opsHen

CAlg
(X,SpétR)→MapCAlg(R,Γ (X ,OX )) is a monomorphism.

Finally, given a map α : R→ Γ (X ,OX ), there is an explicit procedure to construct
a morphism X → SpétR in ∞T opsHen

CAlg which projects to α; the underlying map
X → Shvét

R of ∞-topoi is produced by the procedure of (8.11.1).

The category of locally spectrally ringed∞-topoi

We can play the same game with “local” replacing “strictly Henselian” as the condition
on objects, resulting in a full subcategory ∞T oploc

CAlg of ∞T opsHen
CAlg and a version of

(8.11.7) with Spét replaced with Spec [170, 1.1.5].

8.12 The category of spectral DM stacks

We have achieved our goal. We have full subcategories

SpDM ⊆ SpDMnc ⊆∞T opsHen
CAlg

of spectral DM stacks and nonconnective DM stacks respectively, inside the∞-category
of strictly Henselian spectrally ringed∞-topoi and local maps, which is itself a non-full
subcategory of the category ∞T opCAlg of spectrally ringed ∞-topoi. By (8.11.7) we see
that there are adjoint pairs

Spét : CAlgop
// // SpDMnc :Γoooo and Spét : (CAlgcn)op

// // SpDM :Γ .oooo

Remark 8.12.1 . There are analogous full subcategories of spectral schemes and noncon-
nective spectral schemes in ∞T oploc

CAlg.

Finite limits of DM stacks

The categories SpDM and SpDMnc have finite limits, and finite limits are preserved
by the functors Spét : (CAlgcn)op→ SpDM and Spét : CAlgop→ SpDMnc. In par-
ticular, for a diagram B← A→ B′ of rings, we have

Spét(B⊗A B′) ≈ SpétB×SpétA SpétB′ ,

as an immediate consequence of (8.11.7). (See [170, 1.4.11.1], [163, V 2.3.21].)
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Connective covers and truncation of DM stacks

The adjoint pairs

CAlg♥ // // CAlgcnoooo // // CAlgoooo

relating classical, connective, and arbitrary E∞-rings are paralleled by adjoint pairs

SpDM≤0 // // SpDMoooo // // SpDMncoooo

where SpDM≤0 is the ∞-category of 0-truncated spectral DM stacks, consisting of
X = (X ,OX ) such that πqOX ≈ 0 for q , 0. The localization functors are obtained
respectively by 0-truncating or taking connective cover of the structure sheaf [170,
1.4.5–6].

Classical objects as spectral DM stacks

We would like to connect this spectral geometry to some more “classical” (i.e., 1-
categorical) kind of algebraic geometry.

Note that objects of SpDM≤0 are ∞-topoi X equipped with structure sheaves OX
of classical rings. However, the ∞-topos X is not necessarily a “classical” one, i.e., is
not necessarily equivalent to the 1-localic ∞-topos ShvS (X♥) (8.5.12). So 0-truncated
spectral DM stacks are not necessarily classical objects.

The classical analogue of spectral Deligne–Mumford stack is a Deligne–Mumford
stack, which is a pair X0 = (X ,OX0

) consisting of a 1-topos X with a sheaf OX0
of

ordinary commutative rings on it, which is “locally” affine, i.e., there exists a set {Ui}
of objects in X such that (i)

∐
Ui → 1 is effective epi in X and (ii) (X/Ui ,O|Ui ) ≈

((Shvét
Ai

)♥,O) for some ordinary ring Ai .
Given a nonconnective spectral DM stack X = (X ,OX ), we can form XDM :=

(X♥,π0OX ), which is in fact a classical Deligne–Mumford stack, called the underlying
DM stack of X.

Conversely, given a classical DM stack X0 = (X ,O), we can upgrade it to a 0-
truncated spectral DM stack

XSpDM = (ShvS (X ),O′)

where ShvS (X ) is the 1-localic reflection of X (8.5.12), and O′ is the sheaf of connective
E∞-rings represented by the composite functor

ShvS (X )op (τ≤0)op

−−−−−−→X op O−→ CAlg♥� CAlgcn.

It turns out that this construction describes a fully faithful embedding

(classical DM stacks)� SpDM≤0.

See [170, 1.4.8] for more on the relation between DM stacks and spectral DM stacks.

Example 8.12.2. Here is a simple example which exhibits some of these phenomena.
Let K ∈ CAlg♥ be an ordinary separably closed field, so that Shvét

K ≈ S . Then
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SpétK ≈ (S ,K), where K ∈ CAlg ≈ ShvCAlg(S), is an example of a 0-truncated
spectral DM stack, whose ∞-topos is equivalent to sheaves on the 1-point space. It
corresponds to the classical DM stack associated to K .

For any∞-groupoid U ∈ S we can form (SpétK)U = (S/U ,π∗K), i.e.,∞-groupoids
over U equipped with the constant sheaf associated to K . Then (SpétK)U is also a 0-
truncated spectral DM stack. If U is not a 1-truncated space, then S/U is not 1-localic,
and (SpétK)U does not arise as a classical DM stack in this case.

In short, spectral DM stacks expand DM stacks in two ways: spectral DM stacks
are allowed to have underlying ∞-topoi which are not classical, i.e., not 1-localic, and
spectral DM stacks are also allowed to have structure sheaves which are not classical,
i.e., not merely sheaves of ordinary rings.

Relation to schemes and spectral schemes

There are analogous statements for spectral schemes [170, 1.1]. Thus, a morphism
of nonconnective spectral schemes is just a morphism (X,OX )→ (Y ,OY ) of spec-
trally ringed ∞-topoi which is local; we get full subcategories SpSch ⊆ SpSchnc ⊆
∞T oploc

CAlg; we have fully faithful Spec: (CAlgcn)op→ SpSch and Spec: CAlgop→
SpSchnc; and we have fully faithful embeddings

Sch→∼ SpSch≤0� SpSch,

where Sch≤0 is the full subcategory of 0-truncated spectral schemes. In this case we
have an equivalence Sch ≈ SpSch≤0, since underlying topos of a spectral scheme is
already assumed to be a space.

What is the relation between spectral schemes and spectral DM stacks? Note that
although both spectral schemes and spectral DM stacks are both types of spectrally
ringed ∞-topoi, there is very little overlap between the two classes. What is true [170,
1.6.6] is that there exist fully faithful functors

SpSch� SpDM and SpSchnc� SpDMnc

which promote spectral schemes to spectral DM stacks. Objects in the essentially
image of these functors are called schematic, and this property is easy to characterize:
X = (X ,OX ) is schematic if and only if there exists a set {Ui} of (−1)-truncated objects
of X which are affine and which cover X [170, 1.6.7.3].

8.13 Étale and flat morphisms of spectral DM stacks

Étale morphisms in spectral geometry

A map (X ,OX )→ (Y ,OY ) of spectrally ringed ∞-topoi is called étale if

1. the underlying map f : X →Y of ∞-topoi is étale (8.7), and
2. the map f ∗OY →OX is an isomorphism in ShvCAlg(X ).
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For instance, for any X = (X ,OX ) and U ∈ X , the projection map XU → X is
étale in this sense, where XU = (X/U ,OX |U ). In fact, any etale morphism of spectrally
ringed ∞-topoi is equivalent to one of this form.

If f : X→ Y is an étale map of spectrally ringed ∞-topoi and Y ∈ SpDMnc, then
also X ∈ SpDMnc (8.10.4), and in fact f is a morphism of SpDMnc (8.11.6).

This terminology turns out to be compatible with that of “étale map of E∞-rings”.

Proposition 8.13.1 ([170, 1.4.10.2]). A map A→ B of E∞-rings is étale if and only if
the corresponding map SpétB→ SpétA is étale.

We have the following for “lifting” maps over étale morphisms.

Proposition 8.13.2. Given nonconnective spectral DM stacks X = (X ,OX ) and Y =
(Y ,OY ), a map f : Y → X of nonconnective spectral DM stacks, and an object U ∈ X ,
there is an equivalence 

XU
π
��

Y
f
//

s 99

X

→∼
{

1 // f ∗U
}

between the ∞-groupoid of “sections” of π over Y in SpDMnc, and the ∞-groupoid of
global sections of f ∗U on Y .

Proof sketch. A map s : Y → XU consists of a geometric morphism s : Y → X/U
together with a local map s̃ : s∗OXU →OY of sheaves of E∞-rings. We already know
(8.7.1) that geometric morphisms s which lift f correspond exactly to global sections
of f ∗U . We then have that s∗OXU = s∗π∗OX ≈ f ∗OX , so there is an evident map

s∗OXU →OY , namely the one equivalent to the map f̃ : f ∗OX →OY which is part
of the description of f : Y → X. This is in fact the unique map making the diagram
commute in SpDMnc. (See [170, 21.4.6].)

Corollary 8.13.3. For any f : Y → X in SpDMnc and U ∈ X the square

Yf ∗U //

��

XU

��

Y
f
// X

is a pullback in SpDMnc. It is a pullback in SpDM if X,Y ∈ SpDM.

Colimits along étale maps of spectral DM stacks

It turns out that we can “glue” spectral DM stacks along étale maps, much as one can
construct new schemes by gluing together ones along open immersions.

Let SpDMét ⊆ SpDM and SpDMnc
ét ⊆ SpDMnc be the (non-full) subcategories

containing just the étale maps.

Proposition 8.13.4. The categories SpDMét and SpDMnc
ét have all small colimits, and

the inclusions SpDMét→ SpDM and SpDMnc
ét → SpDMnc preserves colimits.
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Proof. Here is a brief sketch; I’ll describe the nonconnective case. (See [170, 21.4.4] or
[163, V 2.3.5] for more details.)

Suppose
(
c 7→ Xc = (Xc,OXc )

)
: C → SpDMnc

ét is a functor from a small ∞-category.
We know (8.7.6) that we can form the colimit X := colim∞T op

c∈C Xc of ∞-topoi, and that
each Xc →X is étale. In fact, there exists a functor U : C → X so that (c 7→ Xc) is
equivalent to (c 7→ X/Uc ) as functors C →∞T op/X .

We also know (8.6.12) that we have descent for sheaves of E∞-rings. That is,
ShvCAlg(X ) ≈ limc∈C ShvCAlg(Xc), so there exists OX ∈ ShvCAlg(X ) together with
a compatible family of equivalences π∗cOX →

∼ OXc . In particular, we obtain a cone
CB→∞T opCAlg, which in fact lands in the non-full subcategory consisting of étale
maps. This cone is a colimit cone, presenting X = (X ,OX ) as the colimit of the
diagram in spectrally ringed ∞-topoi.

To show that X is a nonconnective spectral DM stack, we need a set {Vj } of objects
in X such that each XVj is affine, and

∐
Vj → 1 is an effective epi in X . This is

straightforward: there are sets {Vc,i → Uc} of maps for each object c ∈ C such that
each XVc,i is affine and

∐
i Vc,i → Uc is effective epi in X/Uc , so just take the union⋃

c{Vc,i}.
Finally, show that the maps XUi → X of the cone are local, so that the cone factors

through CB → SpDMnc; this amounts to the fact that being “local” is itself a local
condition in the domain.

Spectral DM stacks are colimits of affine objects

We obtain the following interesting consequence: every nonconnective spectral DM
stack X = (X ,OX ) is a colimit of a small diagram of affines. That is,

X ≈ colimSpDMnc

c∈C XUc

where c 7→ Uc : C → X is a functor such that colimc∈CUc ≈ 1 and each Uc is affine
(which exists by (8.10.4)), and so each XUc ≈ SpétAc for some E∞-ring Ac. Analogous
remarks apply to spectral DM stacks, which have the form

X ≈ colimSpDM
c∈C XUc

with each XUc ≈ SpétAc for some connective E∞-ring Ac.

Flat morphisms in spectral geometry

A map f : Y → X of nonconnective spectral DM stacks is flat if for every commutative
square

SpétB //

g

��

Y

f

��

SpétA // X
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in SpDMnc such that the horizontal maps are étale, the map g is induced by a flat
morphism A→ B of E∞-rings [170, 2.8.2].

It is immediate that the base change of any flat morphism is flat. Also, if Y → X is
flat and X is a spectral DM stack, then Y is a spectral DM stack.

Remark 8.13.5 . A map SpétB→ SpétA of nonconnective spectral DM stacks is flat
in the above sense if and only if A→ B is a flat morphism of E∞-rings.

Given A ∈ CAlg, let SpDMnc
A = (SpDMnc)/ SpétA, and let SpDM[

A ⊆ SpDMnc
A

denote the full subcategory spanned by objects which are flat morphisms X→ SpétA.
It turns out that although the functor SpDMnc

τ≥0A
→ SpDMnc

A induced by base change
is not an equivalence, it induces an equivalence on full subcategories of flat objects
flat objects.

Proposition 8.13.6. Base change induces an equivalence of ∞-categories

SpDM[
τ≥0A
→∼ SpDM[

A.

Proof. See [170, 2.8.2]. The inverse equivalence sends X → SpétA to τ≥0X →
Spét(τ≥0A); compare (8.8.5).

8.14 Affine space and projective space

Let’s think about two basic examples: affine n-space and projective n-space. It turns
out that these come in two distinct versions, depending on whether we use polynomial
rings (8.8.6) or free rings (8.8.7).

Affine spaces

Given a connective E∞-ring R ∈ CAlgcn, define affine n-space over R to be the affine
spectral DM stack

An
R := SpétR[x1, . . . ,xn]

on a polynomial ring (8.8.6) over R. When R ∈ CAlg♥ is an ordinary ring, this is the
“usual” affine n-space. In general, An

R ≈An
S
×SpétS SpétR.

What are the “points” of An
S
? If B is an ordinary ring, then

An
S

(B) = MapSpDM/ SpétR
(SpétB,An

S
) ≈MapCAlg(S[x1, . . . ,xn],B) ≈ Bn.

However, if B is not an ordinary ring, then things can be very different. For instance,
the image of the evident map

An
S

(S)→An
S

(Z) ≈Z
n

consists exactly of the ordered n-tuples (a1, . . . , an) ∈Zn such that each ai ∈ {0,1}.5

5 Here’s a quick proof. We need to understand the image of
MapCAlg(S[x],S)→MapCAlg♥ (S[x],Z) ≈Z induced by evaluation at x ∈ π0S[x]. It is

straightforward to construct maps realizing 0 or 1. To show these are the only possibilities, argue as
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From this, we see that An
S

is not a group object with respect to addition; i.e., there
is no map S[x]→ S[x]⊗

S
S[x] of E∞-rings which on π0 sends x 7→ x⊗ 1 + 1⊗ x.

It is however true that A1
S

is a monoid object under multiplication (the coproduct
on S[x] is obtained by applying suspension spectrum to the diagonal map on Z≥0).
Likewise,

Gm := SpétS[x,x−1]

is an abelian group object in spectral DM stacks.
There is another affine n-space, which I’ll call the smooth affine space, namely

An
sm := SpétS{x1, . . . ,xn},

defined using a free ring (8.8.7) instead of a polynomial ring. The points of this are
easier to explain:

An
sm(B) = MapSpDM(SpétB,An

sm) ≈MapCAlg(S{x1, . . . ,xn},B) ≈ (Ω∞B)n.

The evident map An
S
→An

sm, though not an equivalence, becomes an equivalence
after base-change to any R ∈ CAlg

Q
.

Projective spaces

Given R ∈ CAlgcn
R we define projective n-space as follows [170, 5.4.1]. Let [n] =

{0,1, . . . ,n}, and let P ◦([n]) denote the poset of non-empty subsets. For each I ∈ P ◦([n])
let

MI := { (m0, . . . ,mn) ∈Zn+1 |m0 + · · ·+mn = 0, mi ≥ 0 if i ∈ I }.

We obtain a functor P ◦([n])op→ SpDMét by

I 7→ Spét(R[MI ]).

Define Pn
R := colimI∈P 0([n])op Spét(R[MI ]), which exists by (8.13.4).

Example 8.14.1. P1
R is the colimit of

Spét(R[x])← Spét(R[x,x−1])→ Spét(R[x−1]).

This construction is compatible with base change, and for ordinary rings R recovers
the “usual” projective n-space. You can use the same idea to construct spectral versions
of toric varieties.

As for affine n-space, it is difficult to understand the functor that Pn
R represents when

R is not an ordinary ring. On the other hand, one can import some of the classical
apparatus associated to projective spaces. For instance, there are quasicoherent sheaves

follows. Given f : S[x]→ S, tensor with complex K-theory KU and take p-completions. The π0 of
p-complete commutative KU -algebras carries a natural “Adams operation” ψp , which is a ring
endomorphism such that ψp(a) ≡ ap mod p, and on π0(KU [x])∧p acts via ψp(f (x)) = f (xp). Using
this we can show that a ∈Z is in the image if and only if ap = a for all primes p.
The same kind of argument shows that if R = S[ 1

n ,ζn] where ζn is a primitive nth root of unity as in

(8.9.10), then the image of MapCAlg(S[x],R)→ π0R = Z[ 1
n ,ζn] is {0} ∪ {ζkn | 0 ≤ k < n }.
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O(m) over Pn
R for any R ∈ CAlgcn, constructed exactly as their classical counterparts,

and Γ (Pn
R,O(m)) has the expected value [170, 5.4.2.6].

There is another projective n-space, the smooth projective space Pn
sm, defined

to be the spectral DM stack representing a functor R 7→ {“lines in Rn+1”}; see [170,
19.2.6].

8.15 Functor of points

We have defined an ∞-category SpDMnc of nonconnective spectral DM stacks. How-
ever, we have not yet shown that it is a locally small ∞-category: the definition of
morphism involves morphisms of underlying ∞-topoi, and ∞T op is not locally small.
However, it is true that SpDMnc is locally small.

Proposition 8.15.1. For any X,Y ∈ SpDMnc, the space MapSpDMnc(Y ,X) is essentially
small, i.e., equivalent to a small ∞-groupoid.

Note that when X is affine, (8.11.7) already implies that MapSpDMnc(Y ,X) is essen-
tially small: MapSpDMnc(Y ,SpétB) ≈MapCAlg(B,Γ (Y ,OY )).

Given this proposition, we can define the functor of points of a nonconnective
spectral DM stack:

hnc
X : CAlg→S by hnc

X (A) := MapSpDMnc(SpétA,X).

For a spectral DM stack, we consider the restriction of hnc
X to connective E∞-rings:

hX : CAlgcn→S by hX(A) := MapSpDM(SpétA,X).

Note that if B ∈ CAlg, then hnc
SpétB ≈ MapCAlg(B,−) by the Yoneda lemma, and

similarly in the connective case.

Proposition 8.15.2 ([170, 1.6.4.3]). The functors

X 7→ hnc
X : SpDMnc� Fun(CAlg,S) and X 7→ hX : SpDM� Fun(CAlgcn,S)

are fully faithful.

I’ll sketch proofs of these below (giving arguments only in the nonconnective case).

Sheaves of maps into a spectral DM stack

To prove (8.15.1) that MapSpDMnc(Y ,X) is essentially small, we can immediately reduce
to the case that Y is affine, since every nonconnective spectral DM stack is a colimit
of a small diagram of affines (8.8). So assume Y = SpétA for some A ∈ CAlg.

Given a nonconnective spectral DM stack X, consider the functor

HA
X : CAlgét

A → Ŝ defined by HA
X (A′) := MapSpDMnc(SpétA′ ,X).

This functor is in fact an object of the full subcategory�Shvét
A ⊆ Fun(CAlgét

A , Ŝ)
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of sheaves on the étale site of A taking values in the category Ŝ of “large”∞-groupoids;
this is because for an étale cover {R→ Ri} in CAlgét

A , the evident map

colimSpDMnc

∆op

(
[n] 7→

∐
SpétRi0 ×SpétR · · · ×SpétR SpétRin

)
→∼ SpétR

is an equivalence by (8.13.4), which exactly provides the sheaf condition for HA
X .

Note: the ∞-category �Shvét
A , although not locally small, behaves in many respects

like an∞-topos. For instance, it has descent for small diagrams, and in particular small

colimits are universal in �Shvét
A . Furthermore, the inclusion Shvét

A ⊆
�Shvét

A preserves
small colimits.

The key fact we need is the following.

Proposition 8.15.3. The functor

X 7→HA
X : SpDMnc

ét →
�Shvét

A

preserves small colimits.

Recall (8.8) that X ≈ colimc∈CVc for some functor V : C → SpDMnc
ét from a small

∞-category. Writing Vc = SpétBc, the proposition gives us the “formula”

MapSpDMnc(SpétA,X) ≈ (aF)(A),

where aF is the sheafification of the presheaf F : CAlgét
A → Ŝ defined by

F(A′) = colimcH
A
Vc

(A′)≈ colimcMapSpDMnc(SpétA′ ,Vc)≈ colimcMapCAlg(Bc,A
′),

where the colimit is taken in Ŝ . Since C and each MapCAlg(Bc,A′) are small, we see
that the value F(A) is a small ∞-groupoid, as desired.

Sketch proof of (8.15.3). Let X = colim
SpDMnc

ét
c∈C Vc with V : C → SpDMnc

ét . If X is the
underlying∞-topos of X, then we can factor this functor through a functor U : C → X ,
so that Vc = XUc and colimXc∈CUc ≈ 1.

To show that

colim
�Shvét

A
c∈C HA

XUc
→∼ HA

X ,

it suffices to show that for any small sheaf V ∈ Shvét
A and any map f : V → HA

X in�Shvét
A , the map

colim
�Shvét

A
c∈C (HA

XUc
×HA

X
V )→ V

induced by base change along f is an equivalence. (This is using descent in �Shvét
A ,

and the fact that any small sheaf is a small colimit of representables MapCAlgét
A

(B,−),
which are themselves small sheaves.)

Note that for small sheaves V ∈ Shvét
A there is a natural equivalence

HomSpDMnc((SpétA)V ,X)→∼ Hom �Shvét
A

(V ,HA
X ),
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This is because V 7→ (SpétA)v is colimit preserving (8.13.4) and the map is certainly
an equivalence when V is representable. So let g : (SpétA)V → X be the map
corresponding to f : V → HA

X , and use (8.13.3) to obtain for any U ∈ X a pullback
square

(SpétA)g∗U //

��

XU

��

(SpétA)V g
// X

in SpDMnc, which on applying the functor Y 7→HA
Y gives a pullback square

g∗U //

��

HA
XU

��

V
f
// HA

X

in �Shvét
A . Because g∗ : X → (Shvét

A )/V is colimit preserving, we see that we get an

equivalence colim
(Shvét

A )/V
c∈C g∗(Uc)→∼ 1(Shvét

A )/V
, and the claim follows.

Example 8.15.4 (Geometric points). Let K be a (classical) separable field, so that
Shvét

K ≈ S . If X = colimc∈C SpétBc is a colimit of affines along étale morphisms, then
our “formula” reduces to

MapSpDMnc(SpétK,X) ≈ colimc∈CMapCAlg(Bc,K).

Functor of points

Here is an idea of a proof of (8.15.2) (in the nonconnective case; the connective case is
similar); see [163, V 2.4] which proves a more general statement in the framework of
“geometries”, or [170, 8.1.5] which proves a generalization to formal geometry. We want
to show that

MapSpDMnc(Y ,X)→MapFun(CAlg,S)(h
nc
Y ,h

nc
X )

is an equivalence for all X,Y ∈ SpDMnc. Since nonconnective spectral DM stacks are
colimits of small diagrams of affines along étale maps (8.13.4), we reduce to the case of
affine Y = SpétB. Furthermore, if X = SpétA is also affine, then MapSpDMnc(Y ,X) ≈
MapCAlg(A,B) by (8.11.7), and since hnc

Y ≈MapCAlg(B,−) we see that the map is an
equivalence by Yoneda.

Note that the composite functor CAlgét
A → CAlg

hnc
X−−−→ S is precisely the functor HA

X
of the previous section. Thus hnc

X lives in the full subcategory

Shvét ⊆ Fun(CAlg,S)

spanned by F such that F|CAlgét
A

is an étale sheaf for all A ∈ CAlg.

It turns out that Shvét is equivalent to the ∞-category of sections of a Cartesian
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fibration D → CAlg, whose fiber over A ∈ CAlg is equivalent to Shvét
A . Thus, by a

standard argument, we see that (8.15.3) implies that

X 7→ hnc
X : SpDMnc

ét → Shvét

preserves colimits. The result then follows using X is also a colimit of a small diagram
of affines along étale maps.

8.16 Formal spectral geometry

Let’s briefly describe the generalization of these ideas to the spectral analogue of
formal geometry.

Adic E∞-rings

An adic E∞-ring is a connective E∞-ring A equipped with a topology on π0A which
is equal to the I-adic topology for some finitely generated ideal I ⊆ π0A. A map of
adic E∞-rings is a map f : A→ B of E∞-rings which induces a continuous map on
π0. Any finitely generated ideal I generating the topology of π0A is called an ideal
of definition for the topology; note that the ideal of definition is not itself part of the
data of an adic E∞-ring, only the topology it generates.

Remark 8.16.1 . The vanishing locus of an adic E∞-ring A is the set XA ⊆ |SpecA| of
prime ideals which are open neighborhoods of 0 in π0A; equivalently, primes which
contain some (hence any) ideal of definition I ⊆ π0A. A map φ : A→ B of E∞-rings
is an adic map if and only if it sends XB into XA; equivalently, if φ(In) ⊆ J for some
n where I and J are ideals of definition for A and B respectively [170, 8.1.1.3–4].

In particular, the topology on π0A of an adic E∞-ring A is entirely determined by
the vanishing locus.

Completion at finitely generated ideals

Let A ∈ CAlg be an E∞-ring (not necessarily connective). For every finitely generated
ideal I ⊆ π0A there is a notion of I-complete A-module. An A-algebra is called
I-complete if its underlying module is so. There are adjoint pairs

M 7→M∧I : ModA
// // ModCpt(I)

Aoooo , B 7→ B∧I : CAlgA
// // CAlgCpt(I)

Aoooo

whose right adjoint is the fully faithful inclusion of the category of I-complete objects,
and whose left adjoint, called I-completion, is left exact. Furthermore, the notion of
I-completeness and its associated completion functors depend only on the radical of
I ; hence, all ideals of definition of an adic E∞-ring provide equivalent completion
functors. See [170, 7.3] for more details.
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Remark 8.16.2 . Here is an explicit formula for I-completion on the level of modules.
Given a ∈ π0A let Σ−1(A/a∞) ∈ModA denote the homotopy fiber of the evident map
A→ A[a−1]. Then

M∧I ≈HomA(Σ−1(A/a∞1 )⊗A · · · ⊗A Σ−1(A/a∞r ), M)

where (a1, . . . , ar ) is any finite sequence which generates the ideal I . The unit M →
M∧I of the adjunction is induced by restriction along the evident map Σ−1(A/a∞1 )⊗A
· · · ⊗A Σ−1(A/a∞r )→ A⊗A · · · ⊗A A ≈ A.

Example 8.16.3. If the vanishing ideal is 0 ⊆ π0A, so that π0A is equipped with the
discrete topology, then every A-module is I-complete.

Example 8.16.4. If the vanishing ideal is I = π0A, so that π0A is equipped with the
trivial topology, then only the trivial A-module is I-complete.

Example 8.16.5. For a prime p ∈ Z = π0S, an S-module is (p)-complete in the
above sense if and only if it is a p-complete spectrum in the conventional sense, and
(p)-completion coincides with the usual p-completion of spectra.

Example 8.16.6 (Completion and K(n)-localization). Suppose A is an E∞-ring
which p-local for some prime p, and is weakly 2-periodic and complex orientable
(see (8.17) below). The complex orientation gives rise to a sequence of ideals In =
(p,u1, . . . ,un−1) ⊆ π0A; the ideal In is called the nth Landweber ideal. It turns out that
the underlying spectrum of A is K(n)-local if and only if (i) A is In-complete and (ii)
In+1(π0A) = π0A [167, 4.5.2].

The formal spectrum of an adic E∞-ring

Recall the ∞-topos Shvét
A of sheaves on the étale site of an E∞-ring A. Given an

adic E∞-ring A, say that F ∈ Shvét
A is an adic sheaf if F(A → B) ≈ ∗ for étale

morphisms A→ B such that the image of |Specπ0B| → |Specπ0A| is disjoint from
the vanishing locus XA; i.e., if I(π0B) = π0B for some (hence any) ideal of definition
I ⊆ π0B. We thus obtain a full subcategory Shvad

A ⊆ Shvét
A of adic sheaves, which in

fact is an ∞-topos, and this inclusion is the right-adjoint of a geometric morphism
Shvad

A → Shvét
A .

Remark 8.16.7 . That Shvad
A is an∞-topos follows from the observation that Shvad

A ≈
Shvét

π0A/I
, where I is an ideal of definition for A. See [170, 3.1.4].

We can now define the formal spectrum of an adic E∞-ring A to be the spectrally
ringed ∞-topos SpfA := (Shvad

A ,OSpfA), where OSpfA is the composite functor

CAlgét
A � CAlg

(−)∧I−−−−→ CAlg.

Note that OSpfA is an adic sheaf because B∧I ≈ 0 if I(π0B) = π0B and because
I-completion is limit preserving. It can be shown that SpfA is strictly Henselian and
its structure sheaf is connective [170, 8.1.1.13].
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Formal spectral DM stacks

A formal spectral Deligne–Mumford stack is a spectrally ringed ∞-topos X =
(X ,OX ) which admits a cover {Ui} ⊆ X such that each XUi = (X/Ui ,OX |Ui ) is equiva-
lent to SpfAi for some adic E∞-ring Ai . There is a full subcategory

fSpDM ⊆∞T opsHen
CAlg

of formal spectral Deligne–Mumford stacks and local maps between them.

Example 8.16.8 (Spectral DM stacks are formal spectral DM stacks). If A ∈ CAlgad

is an adic E∞-ring equipped with the discrete topology, then SpfA ≈ SpétA. In
particular, any spectral DM stack is automatically a formal spectral DM stack, and
SpDM� fSpDM.

Example 8.16.9 (Formal functor of points). There is a fully faithful embedding
fSpDM� Fun(CAlgcn,S) defined by sending X to its functor of points hX(R) =
MapfSpDM(SpétR,X) on affine (not adic) spectral DM stacks [170, 8.1.5].

Furthermore, there is an explicit description of the functor of points of SpfA:

hSpfA(R) = MapfSpDM(SpétR,SpfA) ≈MapCAlgad(A,R) ⊆MapCAlg(A,R).

Here R is regarded as an adic E∞-ring equipped with the discrete topology, so that
φ : A→ R is a map of adic E∞-rings if and only if φ(In) = 0 for some n and ideal
of definition I ⊆ π0A [170, 8.1.5].

Remark 8.16.10 . The formal spectrum functor Spf : (CAlgad)op→ fSpDM is not fully
faithful, or even conservative. However, we have the following. Say that B ∈ CAlgad is
complete if B→∼ B∧I for some (and hence any) ideal of definition I ⊆ π0B. For com-
plete adic E∞-rings B the evident map MapCAlgad(B,R)→∼ MapfSpDM(SpfR,SpfB)
is always an equivalence [170, 8.1.5.4]. From this and the formal functor of points
we see that the full subcategory of formal spectral DM stacks which are equivalent
to SpfA for some adic ring A is equivalent to opposite of the full subcategory of
complete objects in CAlgad.

Formal completion

Given a spectral DM stack X, one may form the formal completion X∧K of X with
respect to a “cocompact closed subset K ⊆ |X |”, which is a formal spectral DM stack
equipped with a map X∧K → X. We refer to [170, 8.1.6] for details, but note that in
the case X = SpétA for A ∈ CAlgcn we have that |X | is precisely the prime ideal
spectrum |SpecA|, while X∧K = SpfA, where A is given the evident adic structure.

8.17 Formal groups in spectral geometry

Fix a connective E∞-ring R. An n-dimensional formal group over R is, roughly speaking,
a formal spectral DM stack Ĝ over SpétR which (i) is an abelian group object in
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formal spectral DM stacks, and (ii) as a formal spectral DM stack is equivalent to
Spf(A) where A is an adic E∞-ring which “looks like a ring of power series in n
variables over R”.

Smooth coalgebras

To make this precise, we need the notion of a smooth commutative coalgebra. Any
symmetric monoidal ∞-category admits a notion of commutative coalgebra objects
[166, 3.1]. If C is a commutative coalgebra object in ModR, then its R-linear dual
C∨ := HomR(C,R) comes with the structure of a adic commutative R-algebra [167,
1.3.2].

We say that a commutative R-coalgebra C is smooth if (i) C is flat as an R-module
and if (ii) there is an isomorphism of π0R-coalgebras

π0C ≈
⊕
k≥0

Γ kπ0R
(M),

where the right-hand side is the divided polynomial coalgebra on some finitely
generated projective π0R-module M; the rank of M (if defined) is also called the
dimension of C [167, 1.2]. There is an associated ∞-category cCAlgsm

R of smooth
commutative R-coalgebras.

Remark 8.17.1 . The R-linear dual C∨ of C as above satisfies

π0C
∨ ≈

∏
k≥0

Symk
π0R

(M∨), M∨ = HomR(M,R).

In particular, if M is free of rank n then π∗C
∨ ≈ π∗R[[t1, . . . , tn]] [167, 1.3.8].

For a connective E∞-ring R, a functor CAlgcn
R → S represented by Spf(C∨) for

some smooth commutative R-coalgebra is called a formal hyperplane over R [167,
1.5.3]. It is said to be n-dimensional if C is n-dimensional in the sense above. (The
“hyperplane” terminology arises because our Spf(C∨) does not come equipped with a
“base-point”, i.e., there is no distinguished R-algebra map C∨→ R, despite the fact
that π0C

∨ is equipped with an adic topology.)

Formal groups

An n-dimensional formal group over a connective E∞-ring R is a functor

Ĝ : CAlgcn
R →Modcn

Z

such that the composite

CAlgcn
R

Ĝ−→Modcn
Z

Ω∞−−−→ S

is represented by Spf(C∨) for some smooth commutative R-coalgebra C of dimension n.
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Remark 8.17.2 . The definition of formal group I have given here is different than, but
equivalent to, the one given in [167, 1.6]; see [167, 1.6.7]. In particular, the basic defi-
nitions given there are expressed more directly in terms of commutative coalgebras.

In particular, the functor CAlgcn
R → S represented by Spf(C∨), where C is a

commutative R-coalgebra, is equivalent to the cospectrum of C. The cospectrum
is a functor sending an R′ ∈ CAlgcn

R to a suitable space of “grouplike elements” in
R′ ⊗R C [167, 1.51].

Remark 8.17.3 . What about the nonconnective case? Although smooth commutative
coalgebras may be defined over any E∞-ring, formal hyperplanes and formal groups
have only been defined (following Lurie) over connective E∞-rings.

This is awkward but it’s okay! For instance, because smooth commutative R-
coalgebras are flat over R, taking 0-connective covers gives an equivalence

τ≥0 : cCAlgsm
R →
∼ cCAlgsm

τ≥0R

between the ∞-categories of smooth commutative coalgebras over R and over its
connective cover τ≥0R [167, 1.2.8]; compare (8.13.6).

So you can extend the notions of formal hyperplane and formal group to noncon-
nective ground rings, so that a formal hyperplane or formal group over R is defined to
be one over τ≥0R. In particular, for any E∞-ring R you get an∞-category FGroup(R)
of formal groups over R, which by definition satisfies FGroup(R) = FGroup(τ≥0R).

The Quillen formal group in spectral geometry

A complex oriented cohomology theory R gives rise to a 1-dimensional formal group
over π∗R, whose function ring is R∗CP∞. When the theory is represented by an
E∞-ring which is suitably periodic, then we can upgrade this formal group to an
object in spectral geometry.

Given R ∈ CAlg and X ∈ S , write C∗(X;R) := R ⊗
S
Σ∞+ X ∈ ModR for the “R-

module of R-chains on X”. This object is in fact a commutative R-coalgebra, via the
diagonal map on X [168, 2.4.3.10].

An E∞-ring R is weakly 2-periodic if π2R⊗π0RπnR→ πn+2R is an isomorphism
for all n ∈ Z. If R is both weakly 2-periodic and complex orientable, then one can
show that C∗(CP

∞;R) is a smooth commutative R-coalgebra. Furthermore, it is a
commutative group object in cCAlgR (via the abelian group structure on CP

∞), and

hence it gives rise to a 1-dimensional formal group ĜQR , called the Quillen formal
group of R [167, 4.1.3].

Remark 8.17.4 . In view of what I said about connectivity in relation to formal groups
(8.17.3), the formal spectral DM stack associated to the Quillen formal group of
R is Spf((τ≥0C∗(CP

∞;R))∨). Note that τ≥0C∗(CP
∞;R) is not at all the same as

C∗(CP
∞;τ≥0R), and that the latter does not give rise to a formal group in the sense

defined above.

Remark 8.17.5 . Let R be an E∞-ring which is weakly 2-periodic and complex ori-
entable, with Quillen formal group ĜQR . Then every commutative R-algebra R→ R′
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is also weakly 2-periodic and complex orientable, and so also has a Quillen formal
group, and in fact ĜQR′ ≈ Ĝ

Q
R ×Spétτ≥0R Spétτ≥0R

′ .

Preorientations and orientations

Let R be an E∞-ring, not necessarily assumed to be connective, and Ĝ ∈ FGroup(R)
a 1-dimensional formal group over it. We ask the question: What additional data do
we need to identify Ĝ with the Quillen formal group over R? Note that I don’t want
to presuppose that the Quillen formal group actually exists in this case, i.e., I don’t
assume that R is weakly 2-periodic or complex orientable.

A preorientation of a 1-dimensional formal group Ĝ over a (possibly nonconnective)
E∞-ring R is a map

e : S2→ Ĝ(τ≥0R)

of based spaces, where the base point goes to the identity of the group structure. We
write Pre(Ĝ) = MapS∗(S

2, Ĝ(τ≥0R)) for the space of preorientations.

Proposition 8.17.6. Suppose R is weakly 2-periodic and complex orientable. Then there
is an equivalence

Pre(Ĝ) ≈MapFGroup(R)(Ĝ
Q
R , Ĝ)

between the space of preorientations and the space of maps from the Quillen formal group.

Proof. See [167, 4.3]. This is basically a formal consequence of the observation that
the free abelian group on the based space S2 is equivalent to CP

∞.

Note that Pre(Ĝ) is defined even when R does not admit a Quillen formal group.
We will now describe a condition on a preorientation e ∈ Pre(Ĝ) which implies
simultaneously (i) that R is weakly 2-periodic and complex orientable, and (ii) that the
map ĜQR → Ĝ induced by e is an isomorphism in FGroup(R).

Given Ĝ ∈ FGroup(R), let OĜ denote its ring of functions, so that Ĝ ≈ Spf(OĜ).
Note that by our definitions (8.17.3) the ring OĜ is a connective τ≥0R-algebra, even if
R is not connective.

The dualizing line of a 1-dimensional formal group Ĝ is an R-module defined by

ωĜ := R⊗OĜ OĜ(−η), where OĜ(−η) := fiber of (OĜ
η
−→ τ≥0R→ R),

where η ∈ Ĝ(τ≥0R) is the identity element of the group structure. The R-module ωĜ
is in fact an R-module which is locally free of rank 1, and its construction is functorial
with respect to isomorphisms of 1-dimensional formal groups [167, 4.1 and 4.2].

Example 8.17.7. Let R be weakly 2-periodic and complex orientable, and ĜQR its
Quillen formal group. Then there is a canonical equivalence of R-modules

ωĜQR
≈ Σ−2R.

This object is also canonically identified with C∗red(CP1;R), the function spectrum
representing the reduced R-cohomology of CP1 ≈ S2 as a C∗(S2;R)-module.
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For a 1-dimensional formal group Ĝ over an E∞-ring R, any preorientation e ∈
Pre(Ĝ) determines a map

βe : ωĜ→ Σ−2R

of R-modules, called the Bott map associated to e. This map is constructed in [167,
4.2–3].

Remark 8.17.8 . Here is one way to describe the construction of the Bott map [167,
4.2.10].

For any suspension X = ΣY of a based space, the object C∗red(X;R) is equivalent
as a C∗(X;R)-module to the restriction of an R-module along the augmentation
π : C∗(X;R)→ R corresponding to the basepoint of X. (“The cup product is trivial
on a suspension.”) For instance if X = S2 = ΣS1 we have C∗red(X;R) ≈ π∗(Σ−2R).

A preorientation e : S2 → Ĝ(τ≥0R) corresponds exactly to a map of E∞-rings,
ẽ : OĜ→ C∗(S2;τ≥0R), compatible with augmentations to τ≥0R, and in turn induces
a map

OĜ(−η)→ C∗red(S2;R) ≈ π∗(Σ−2R)

of OĜ-modules, which by the previous paragraph is adjoint to a map ωĜ = R ⊗OĜ
OĜ(−η)→ Σ−2R of R-modules, which is the Bott map of e.

An orientation of Ĝ is a preorientation e whose Bott map βe : ωĜ → Σ−1R is

an equivalence. We write OrDat(Ĝ) ⊆ Pre(Ĝ) for the full subgroupoid consisting of
orientations.

Now we can state the criterion for a preoriented 1-dimensional formal group to be
isomorphic to the Quillen formal group.

Proposition 8.17.9. A preorientation e ∈ Pre(Ĝ) of a formal group Ĝ over an E∞-ring
R is an orientation if and only if (i) R is weakly 2-periodic and complex orientable, and
(ii) the map ĜQR → Ĝ of formal groups corresponding to e is an isomorphism.

Proof. See [167, 4.3.23]. That R is weakly 2-periodic and complex orientable given
the existence of an orientation is immediate from the fact that ωĜ is locally free of
rank 1, and also equivalent to Σ−2R.

8.18 Quasicoherent sheaves

Recall that we have defined a sheaf of E∞-rings O ∈ ShvCAlg(X ) on an ∞-topos to
be a limit preserving functor X op → CAlg (8.3). There is an alternate description:
ShvCAlg(X ) is equivalent to the ∞-category of commutative monoid objects in the sym-
metric monoidal ∞-category (ShvSp(X ),⊗) of sheaves of spectra, using a symmetric
monoidal structure inherited from the usual one on spectra [163, VII 1.15].

This leads to notions of sheaves of O-modules on a spectrally ringed ∞-topos, and
eventually to quasicoherent sheaves on a nonconnective spectral DM stack.
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Sheaves of modules

To each spectrally ringed ∞-topos X = (X ,O), there is an associated ∞-category
ModO of sheaves of O-modules on X , whose objects are sheaves of spectra which
are modules over O. (A precise description of this category requires the theory of
∞-operads; see [168, 3.3].)

The ∞-category ModO is presentable (so is complete and cocomplete), stable, and
symmetric monoidal, and the monoidal structure ⊗O preserves colimits and finite
limits in each variable [170, 2.1].

Example 8.18.1. Given an E∞-ring A, any A-module M ∈ModA can be promoted
to a sheaf M ∈ModO of O-modules on SpétA = (Shvét

A ,O), so that the underlying
sheaf of spectra ofM is

(A→ B) 7→ B⊗AM : CAlgét
A → Sp.

The resulting tuple (Shvét
A ,O,M) of ∞-topos, sheaf of rings, and sheaf of modules,

is denoted Spét(A,M); see [170, 2.2.1] for details.

Quasicoherent sheaves

Now let X = (X ,OX ) be a nonconnective spectral DM stack. A sheaf of OX-modules
F ∈ModOX is quasicoherent if there exists a set {Ui} of objects in X which cover it
(i.e., such that

∐
iUi → 1 is effective epi), and there exist pairs (Ai ,Mi), Ai ∈ CAlg,

Mi ∈ModAi , and equivalences

(X/Ui ,OX |Ui ,F |Ui ) ≈ Spét(Ai ,Mi)

of data consisting of (strictly Henselian spectrally ringed ∞-topos and sheaf of
modules), where Spét(Ai ,Mi) is as in (8.18.1).

The ∞-category

QCoh(X) ⊆ModOX

of quasicoherent sheaves on X is defined to be the full subcategory of modules spanned
by quasicoherent objects. It is presentable, stable, and symmetric monoidal (see [170,
2.2.4]).

For affine X, quasicoherent modules are just modules over the evident E∞-ring.

Proposition 8.18.2. If X ≈ SpétA for some A ∈ CAlg, then there is an equivalence

QCoh(X) ≈ModA

of symmetric monoidal ∞-categories. The functor QCoh(X)→ModA sends a sheaf to its
global sections; the functor ModA→QCoh(X) is M 7→ Spét(A,M).

Remark 8.18.3 . If A ∈ CAlg♥ is an ordinary ring, then

QCoh(SpétA) ≈ModA ≈ Ch(Mod♥A)[(quasi-isos)−1],

where Mod♥A ⊆ModA is the ordinary 1-category of A-modules.
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There are other characterizations of quasicoherence. For instance, F ∈ModOX is
quasicoherent if and only if the evident map

F (V )⊗OX (V )OX(U )→F (U )

is an isomorphism for all maps U → V between affine objects in X [170, 2.2.4.3].
There are pairs of adjoint functors

QCoh(X) // // ModOXoooo
forget

// ShvSp(X ).
OX⊗−oo

The left adjoints of these pairs are symmetric monoidal, and preserve finite limits but
not arbitrary limits in general.

Pullbacks and pushforwards of quasicoherent sheaves

Given a map f : X→ Y of nonconnective spectral DM stacks, we have pairs of adjoint
functors

QCoh(X) // //

f∗
��

ModOXoooo //

f∗
��

ShvSp(X )oo

f∗
��

QCoh(Y ) // //

f ∗

OO

ModOYoooo //

f ∗

OO

ShvSp(Y )oo

f ∗
OO

so that each functor labeled f ∗ is (strongly) symmetric monoidal, and such that the
squares of left adjoints commute up to natural isomorphism, and the squares of right
adjoints commute up to natural isomorphism. See [170, 2.5].

Descent for modules and quasicoherent sheaves

It turns out that the formation of categories of either modules or quasicoherent sheaves
satisfies a version of descent. Given a nonconnective spectral DM stack X = (X ,OX ),
we have a functor

U 7→ XU = (X/U ,OX |U ) : X → SpDM,

whose colimit exists and is equivalent to X (8.8). For each f : U → V in X we have
induced functors

f ∗ : ModOXV →ModOXU , f ∗ : QCoh(XV )→QCoh(XU ),

which fit together to give functors X op→ Ĉat∞.

Proposition 8.18.4. The functors X op→ Ĉat∞ defined by U 7→ModOXU and U 7→
QCoh(XU ) are limit preserving.

Proof. See [170, 2.1.0.5] and [170, proof of 2.2.4.1].

Thus, we may regard these constructions as defining sheaves of (presentable, stable,
symmetric monoidal) ∞-categories on X .
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Quasicoherent sheaves on quasiaffine spectral DM stacks

We have seen that QCoh(X) ≈ModA if X = SpétA. This generalizes to X which are
quasiaffine.

A nonconnective spectral DM stack X = (X ,OX ) is quasiaffine if

1. the ∞-topos X is quasicompact, i.e., for any set {Ui} of objects of X which is a
cover, there is a finite subset {Uik , k = 1, . . . , r} which is a cover, and

2. it admits an open immersion into an affine, i.e., if there exists A ∈ CAlg and a
(−1)-truncated object U ∈ Shvét

A such that X ≈ (SpétA)U .

Theorem 8.18.5. If X is quasiaffine, then taking global sections defines an equivalence
of categories QCoh(X)→∼ ModA where A = Γ (X ,OX ).

Proof. See [170, 2.4].

Example 8.18.6. Here is an example which illustrates both the theorem and its
proof. Let R = S[x,y], and X = A2 = SpétR = (Shvét

R ,O). Define U ∈ Shvét
R ⊆

Fun(CAlgét
R ,S) by

U (S[x,y]→ B) :=
{∗ if (x,y)π0B = π0B,
∅ if (x,y)π0B , π0B.

Let Y := XU = “A2
r {0}”. Clearly Y is quasiaffine.

We can write U as a colimit in Shvét
R of a diagram Ux ← Uxy → Uy , where

Ux,Uy ⊆ U are the subobjects which are “inhabited” exactly at those S[x,y] → B
such that x ∈ (π0B)× or y ∈ (π0B)× respectively, and Uxy = Ux ×U Uy . There is an
equivalence of commutative squares

XUxy
//

��

XUy

��

XUx
// XU

≈

SpétS[x±, y±] //

��

SpétS[x,y±]

��

SpétS[x±, y] // Y

which are pushout squares in SpDM by (8.8). Taking quasicoherent sheaves, we obtain
a commutative square of ∞-categories

Mod
S[x±,y±] Mod

S[x,y±]
oo

Mod
S[x±,y]

OO

QCoh(Y )

OO

oo

which is a pullback by descent.
On the other hand, consider the ring of global sections

Γ := Γ (X/U ,OX |U ) ≈ lim
(
S[x±, y]→ S[x±, y±]← S[x,y±]

)
.
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We have a commutative diagram

Mod
S[x±,y±] Mod

S[x,y±]
oo

Mod
S[x±,y]

OO

ModΓoo

OO

which is also seen to be a pullback of ∞-categories. The equivalence

Mod
S[x±,y] ×Mod

S[x± ,y±]
Mod

S[x,y±]→ModΓ

is realized by a functor which sends “descent data”(
Mx ∈Mod

S[x±,y], My ∈Mod
S[x,y±], ψ : Mx[y−1]→∼ My[x−1] ∈Mod

S[x±,y±]

)
to the limit lim(Mx→Mx[y−1]→∼ My[x−1]←My) in ModΓ , while the inverse equiv-
alence sends N ∈ModΓ to (S[x±, y]⊗Γ N, S[x,y±]⊗Γ N, id). The key observation
for proving the equivalence is that both these functors preserve arbitrary colimits
and finite limits, and are easy to evaluate on the “generating” objects Γ ∈ModΓ and
(S[x±, y],S[x,y±], id) in the limit.

8.19 Elliptic cohomology and topological modular forms

I return to our motivating example of elliptic cohomology.
First, let us consider the moduli stack of (smooth) elliptic curves. This is an example

of a “classical” Deligne–Mumford stack. However, according to (8.12) we can regard
classical Deligne–Mumford stacks as a particular type of 0-truncated spectral DM
stack, and since that is the language I have introduced in this paper, that is how I will
generally talk about it.

The moduli stack of elliptic curves

The moduli stack of elliptic curves is a (classical) DM stackMEll = (XEll,O) such that,
for ordinary ring A ∈ CAlg♥, we have

MapSpDM(SpétA,MEll) ≈
{
elliptic curves over SpétA}. (8.19.1)

The right-hand side of (8.19.1) represents the 1-groupoid of elliptic curves over
SpétA and isomorphisms between them. (Note that an isomorphism of elliptic curves
is necessarily compatible with the distinguished sections e; we usually omit e from the
notation.)

Remark 8.19.1 . Here “elliptic curve” means a classical smooth elliptic curve, i.e.,
a proper and smooth morphism π : C → SpétA of schemes (i.e., of schematic DM
stacks) whose geometric fibers are curves of genus 1, and which is equipped (as part
of the data), with a section e : SpétA→ C of π.

I will not review the theory of elliptic curves here. However, we should note that
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every elliptic curve is an abelian group scheme; i.e., an elliptic curve C → SpétA is
an abelian group object in the category of schemes over A. Furthermore, as it is
1-dimensional and smooth, the formal completion C∧e at the identity section exists,
and is an example of a 1-dimensional formal group over A.

That there exists such an objectMEll is a theorem, which we will take as given.

Remark 8.19.2 (The étale site ofMEll). As a DM stack, and hence as a spectral DM
stack,MEll is the colimit of a diagram whose objects are étale morphisms SpétA→
MEll, and since MEll is 0-truncated the rings A which appear in this diagram will
be ordinary rings. Thus,MEll can be reconstructed from the “étale site” ofMEll, i.e.,
the category U whose objects are elliptic curves C→ SpétA represented by an étale
map SpétA→MEll, and whose morphisms are commutative squares

C //

��

C′

��

SpétA // SpétA′

such that C→ C′ ×SpétA′ SpétA is an isomorphism of elliptic curves over SpétA.
It remains to characterize the objects of U . Given elliptic curves C→ S and C′→

S ′ , consider the functor

T 7→ IsoC/S,C′ /S ′ (T ) :=
{
(f : T → S, f ′ : T → S ′ , α : f ∗C→∼ f ′∗C′)

}
which sends a scheme T to the set of tuples consisting of maps of schemes f and f ′ ,
and a choice of isomorphism α of elliptic curves over T . It turns out that this functor
is itself representable by a scheme IC/S,C′ /S ′ :

IsoC/S,C′ /S ′ (T ) ≈MapSch(SpecT ,IC/S,C′ /S ′ ).

An elliptic curve C→ S is represented by an étale morphism S →MEll if and only
if for every elliptic curve C′→ S ′ the evident map IC/S,C′ /S ′ → S of schemes is étale.

See [144] for much more on the moduli stack of elliptic curves (although the word
“stack” is rarely used there).

The theorem of Goerss–Hopkins–Miller

Let U denote the étale site ofMEll as in (8.19.2). We note the functor

O : U op→ CAlg♥.

defined by (C→ SpétA) 7→ A. Also recall that for each object (C→ SpétA) ∈ U we
have 1-dimensional formal group law over A.

Question 8.19.3. Does there exist a functor Otop : Uop→ CAlg Otop : CAlg sitting
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in a commutative diagram

CAlg

π0
��

U op
O
//

Otop
::

CAlg♥
such that

1. for each object C → SpétA, the corresponding ring R = Otop(C → SpétA) is
weakly 2-periodic and has homotopy concentrated in even degrees, and hence is
complex orientable; and

2. is equipped with natural isomorphisms Spét(R0(CP∞)) ≈ C∧e of formal groups
between the formal groups of R = Otop(C→ SpétA) and the formal completions
C∧e of elliptic curves

Remark 8.19.4 . The formal groups C∧e of elliptic curves C → SpétA in the étale
site U satisfy the Landweber condition (see [74, Ch. 4]), and thus for each such curve
there we can certainly construct a homotopy-commutative ring spectrum R satisfying
conditions (1) and (2). The point of the theorem is to rigidify this construction to an
honest functor of ∞-categories, and while doing so lift it to a functor to structured
commutative rings.

Theorem 8.19.5 (Goerss–Hopkins–Miller). The answer to (8.19.3) is yes. Furthermore,
the resulting functor Otop defines a sheaf of E∞-rings on the étale site ofMEll.

The pair (XEll,Otop) is an example of a nonconnective spectral DM stack, whose 0-
truncation is the classical DM stackMEll. (That this is the case is because π0Otop ≈ O,
the structure sheaf onMEll.)

Given (8.19.5), we can now define

TMF := Γ (XEll,Otop) ≈ lim(C→SpétA)∈U Otop(C→ SpétA),

the periodic E∞-ring of topological modular forms.

Remark 8.19.6 . See [74] for more on (8.19.5), including details about the original
proof, as well as more information on TMF.

8.20 The classifying stack for oriented elliptic curves

It turns out that the nonconnective spectral Deligne–Mumford stack (XEll,Otop)
admits a modular interpretation in spectral algebraic geometry: it is the classifying
object for oriented elliptic curves.

Elliptic curves in spectral geometry

A variety over an E∞-ring R is a flat morphism X → SpétR of nonconnective
spectral DM stacks, such that the induced map τ≥0X → Spétτ≥0R of spectral DM
stacks is: proper, locally almost of finite presentation, geometrically reduced, and
geometrically connected [166, 1.1], [170, 19.4.5]



8.20 The classifying stack for oriented elliptic curves 401

Remark 8.20.1 . We have not and will not describe all the adjectives in the above
definition. See [170, 5.1] for proper, [170, 4.2] for locally almost of finite presentation,
[170, 8.6] for geometrically reduced and geometrically connected.

An abelian variety over an E∞-ring R is a variety X over R which is a commutative
monoid object in SpDMnc

R . It is an elliptic curve if it is of dimension 1.

Remark 8.20.2 . “Commutative monoid object” is here taken in the sense of [168,
2.4.2]. In this case, it means that an abelian variety X over R represents a functor on
SpDMnc

R which takes values in E∞-spaces. In fact, one can show that every abelian
variety in this sense is “grouplike”, i.e., it actually represents a functor to grouplike
E∞-spaces [166, 1.4.4].

A strict abelian variety or elliptic curve is one in which the commutative monoid
structure is equipped with a refinement to an abelian group structure; i.e., X represents
a functor to Modcn

Z
(8.8.4).

Remark 8.20.3 . Over an ordinary ring R, either notion of abelian variety reduces to
the classical notion. In either case, the commutative monoid/abelian group structure
coincides with the unique abelian group structure which exists on a classical abelian
variety.

In the classical case, the underlying variety of an abelian variety admits a unique
group structure compatible with a given identity section. In the spectral setting, this
is no longer the case, and a group structure of some sort needs to be imposed.

There are ∞-categories AbVar(R) and AbVars(R) of abelian varieties and strict
abelian varieties; morphisms are maps of nonconnective spectral DM stacks over
R which preserve the commutative monoid structure or abelian group structure as
the case may be. We are going to be interested in Ells(R) ⊆ AbVars(R), the full
subcategory of strict elliptic curves.

Remark 8.20.4 . Since abelian varieties over R are in particular flat morphisms, we
see that AbVar(R) ≈ AbVar(τ≥0R) and AbVars(R) ≈ AbVars(τ≥0R) by (8.13.6).

There is a moduli stack of strict elliptic curves.

Theorem 8.20.5 (Lurie). There exists a spectral DM stackMs
Ell such that

MapSpDMnc(SpétR,Ms
Ell) ≈ Ells(R)';

the right-hand side is the maximal ∞-groupoid inside Ells(R). The underlying 0-truncated
spectral DM stack ofMs

Ell is equivalent to the classical moduli stackMEll.

This is proved in [166, 2], using the spectral version of the Artin Representability
Theorem [170, 18.3]. That Ms

Ell is a connective object (i.e., not nonconnective) is
immediate from the fact that Ells(R) ≈ Ells(τ≥0R). That the underlying 0-truncated
stack ofMs

Ell is the classical one is a consequence of the fact that strict elliptic curves
over ordinary rings are just classical elliptic curves.
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Oriented elliptic curves

For any strict elliptic curve C→ SpétR, we may consider the formal completion C∧e
along the identity section. It turns out that C∧e is a 1-dimensional formal group over R
[167, 7.1].

Thus, we define an oriented elliptic curve over R to be a pair (C,e) consisting
of a strict elliptic curve C → SpétR together with an orientation e ∈ OrDat(Ĉe) of
its formal completion Ĉ in the sense of (8.17). There is a corresponding ∞-category
Ellor(R) of oriented elliptic curves: morphisms must preserve the orientation.

Theorem 8.20.6 (Lurie). There exists a nonconnective spectral DM stackMor
Ell such that

MapSpDMnc(SpétR,Mor
Ell) ≈ Ellor(R)'.

The map Mor
Ell → M

s
Ell classifying the strict elliptic curve induces an equivalence of

underlying classical DM stacks.

This is proved in [167, 7].

Remark 8.20.7 . Taken together, we have maps of nonconnective spectral DM stacks

MEll
i−→Ms

Ell
p
←−Mor

Ell

in which isMs
Ell is a spectral DM stack (i.e., is connective), andMEll is a 0-truncated

spectral DM stack (and in fact is a DM stack). The map i witnesses the fact that
every classical elliptic curve is a strict elliptic curve, while the map p forgets about
orientation. All of these objects have the same underlying DM stack (i.e., they have
equivalent ∞-topoi and π0 of their structure sheaves coincide); in the case of Mor

Ell
this is a non-trivial observation.

Remark 8.20.8 . Note that if SpétA→Mor
Ell is any map of nonconnective spectral

DM stacks, then the theorem produces an oriented elliptic curve over A, and hence
an oriented formal group over A. Thus (8.17.9) implies that the E∞-ring A must be
weakly 2-periodic and complex orientable.

In fact, the proof of the theorem shows a little more in the case that SpétA→Mor
Ell

is étale. In this case, A is not merely weakly 2-periodic; it also has the property that
πodd(A) ≈ 0.

As the underlying classical DM stack of Mor
Ell is MEll, we have that the full sub-

category U ′ ⊆ SpDMnc
/Mor

Ell
spanned by étale morphisms SpétA→Mor

Ell is equivalent

to the étale site of the classical stackMEll, which we called U in (8.19.2). Putting all
this together, we see that we have functors

U op ∼←− U ′op→ CAlg

given by

(Spétπ0A→MEll)←[ (SpétA→Mor
Ell) 7→ A.

We see that the resulting functor U op→ CAlg is precisely of the sort demanded by
(8.19.3).



Bibliography

[1] J. F. Adams. “Lectures on generalised cohomology”. In: Category Theory, Ho-
mology Theory and their Applications, III (Battelle Institute Conference, Seattle,
Wash., 1968, Vol. Three). Springer, Berlin, 1969, pp. 1–138.

[2] J. F. Adams. Stable homotopy and generalised homology. Chicago Lectures in
Mathematics. Reprint of the 1974 edition. University of Chicago Press, Chicago,
IL, 1995, pp. x+373. isbn: 0-226-00524-0.

[3] D. W. Anderson. “Convergent functors and spectra”. In: Localization in group
theory and homotopy theory, and related topics (Sympos., Battelle Seattle Res. Center,
Seattle, Wash., 1974). 1974, 1–5. Lecture Notes in Math., Vol. 418.

[4] M. Ando, M. J. Hopkins, and N. P. Strickland. “Elliptic spectra, the Witten
genus and the theorem of the cube”. In: Invent. Math. 146.3 (2001), pp. 595–687.
issn: 0020-9910.

[5] Matthew Ando, Andrew J. Blumberg, David Gepner, Michael J. Hopkins, and
Charles Rezk. “An ∞-categorical approach to R-line bundles, R-module Thom
spectra, and twisted R-homology”. In: J. Topol. 7.3 (2014), pp. 869–893. issn:
1753-8416.

[6] Matthew Ando, Andrew J. Blumberg, David Gepner, Michael J. Hopkins, and
Charles Rezk. “Units of ring spectra, orientations and Thom spectra via rigid
infinite loop space theory”. In: J. Topol. 7.4 (2014), pp. 1077–1117. issn: 1753-8416.

[7] Matthew Ando, Michael J. Hopkins, and Charles Rezk. Multiplicative orien-
tations of KO-theory and the spectrum of topological modular forms. url: http:
//www.math.uiuc.edu/~rezk/papers.html.

[8] Vigleik Angeltveit. “Topological Hochschild homology and cohomology of A∞
ring spectra”. In: Geom. Topol. 12.2 (2008), pp. 987–1032. issn: 1465-3060.

[9] Vigleik Angeltveit, Michael A. Hill, and Tyler Lawson. “Topological Hochschild
homology of ` and ko”. In: Amer. J. Math. 132.2 (2010), pp. 297–330. issn:
0002-9327.

[10] Benjamin Antieau and David Gepner. “Brauer groups and étale cohomology
in derived algebraic geometry”. In: Geom. Topol. 18.2 (2014), pp. 1149–1244. issn:
1465-3060.

[11] Omar Antolín-Camarena and Tobias Barthel. “A simple universal property of
Thom ring spectra”. In: J. Topol. 12.1 (2019), pp. 56–78. issn: 1753-8416.

[12] Maurice Auslander and Oscar Goldman. “The Brauer group of a commutative
ring”. In: Trans. Amer. Math. Soc. 97 (1960), pp. 367–409. issn: 0002-9947.



404 Bibliography

[13] Christian Ausoni. “Topological Hochschild homology of connective complex
K-theory”. In: Amer. J. Math. 127.6 (2005), pp. 1261–1313. issn: 0002-9327.

[14] Gorô Azumaya. “On maximally central algebras”. In: Nagoya Math. J. 2 (1951),
pp. 119–150. issn: 0027-7630.

[15] Andrew Baker and Andrej Lazarev. “On the Adams spectral sequence for
R-modules”. In: Algebr. Geom. Topol. 1 (2001), pp. 173–199. issn: 1472-2747.

[16] Andrew Baker and Andrey Lazarev. “Topological Hochschild cohomology and
generalized Morita equivalence”. In: Algebr. Geom. Topol. 4 (2004), pp. 623–645.
issn: 1472-2747.

[17] Andrew Baker and Birgit Richter. “Invertible modules for commutative S-
algebras with residue fields”. In: Manuscripta Math. 118.1 (2005), pp. 99–119.
issn: 0025-2611.

[18] Andrew Baker and Birgit Richter. “On the Γ -cohomology of rings of numerical
polynomials and E∞ structures on K-theory”. In: Comment. Math. Helv. 80.4
(2005), pp. 691–723. issn: 0010-2571.

[19] Andrew Baker and Birgit Richter. “Uniqueness of E∞ structures for connective
covers”. In: Proc. Amer. Math. Soc. 136.2 (2008), pp. 707–714. issn: 0002-9939.

[20] Andrew Baker, Birgit Richter, and Markus Szymik. “Brauer groups for commu-
tative S-algebras”. In: J. Pure Appl. Algebra 216.11 (2012), pp. 2361–2376. issn:
0022-4049.

[21] David Barnes and Constanze Roitzheim. “Homological localisation of model
categories”. In: Appl. Categ. Structures 23.3 (2015), pp. 487–505. issn: 0927-2852.

[22] David Barnes and Constanze Roitzheim. “Stable left and right Bousfield
localisations”. In: Glasg. Math. J. 56.1 (2014), pp. 13–42. issn: 0017-0895.

[23] C. Barwick and D. M. Kan. “Relative categories: another model for the ho-
motopy theory of homotopy theories”. In: Indag. Math. (N.S.) 23.1-2 (2012),
pp. 42–68. issn: 0019-3577.

[24] Clark Barwick. “On exact ∞-categories and the theorem of the heart”. In:
Compos. Math. 151.11 (2015), pp. 2160–2186. issn: 0010-437X.

[25] Clark Barwick. “On left and right model categories and left and right Bousfield
localizations”. In: Homology Homotopy Appl. 12.2 (2010), pp. 245–320. issn:
1532-0073.

[26] Clark Barwick and Christopher Schommer-Pries. “On the unicity of the theory
of higher categories”. In: J. Amer. Math. Soc. 34.4 (2021), pp. 1011–1058. issn:
0894-0347.

[27] M. Basterra. “André-Quillen cohomology of commutative S-algebras”. In: J.
Pure Appl. Algebra 144.2 (1999), pp. 111–143. issn: 0022-4049.

[28] Maria Basterra and Michael A. Mandell. “Homology and cohomology of E∞
ring spectra”. In: Math. Z. 249.4 (2005), pp. 903–944. issn: 0025-5874.

[29] Maria Basterra and Michael A. Mandell. “The multiplication on BP”. In: J.
Topol. 6.2 (2013), pp. 285–310. issn: 1753-8416.

[30] Maria Basterra and Birgit Richter. “(Co-)homology theories for commutative
(S-)algebras”. In: Structured ring spectra. Vol. 315. London Math. Soc. Lecture
Note Ser. Cambridge Univ. Press, Cambridge, 2004, pp. 115–131.



Bibliography 405

[31] Samik Basu, Steffen Sagave, and Christian Schlichtkrull. “Generalized Thom
spectra and their topological Hochschild homology”. In: J. Inst. Math. Jussieu
19.1 (2020), pp. 21–64. issn: 1474-7480.

[32] Gilbert Baumslag. “Some aspects of groups with unique roots”. In: Acta Math.
104 (1960), pp. 217–303. issn: 0001-5962.

[33] Haldun Özgür Bayındır. “Topological equivalences of E-infinity differential
graded algebras”. In: Algebr. Geom. Topol. 18.2 (2018), pp. 1115–1146. issn: 1472-
2747.

[34] A. A. Beilinson, J. Bernstein, and P. Deligne. “Faisceaux pervers”. In: Analysis
and topology on singular spaces, I (Luminy, 1981). Vol. 100. Astérisque. Soc. Math.
France, Paris, 1982, pp. 5–171.

[35] Tibor Beke. “Sheafifiable homotopy model categories”. In: Math. Proc. Cam-
bridge Philos. Soc. 129.3 (2000), pp. 447–475. issn: 0305-0041.

[36] Clemens Berger. “Combinatorial models for real configuration spaces and
En-operads”. In: Operads: Proceedings of Renaissance Conferences (Hartford,
CT/Luminy, 1995). Vol. 202. Contemp. Math. Amer. Math. Soc., Providence, RI,
1997, pp. 37–52.

[37] Clemens Berger and Benoit Fresse. “Combinatorial operad actions on cochains”.
In: Math. Proc. Cambridge Philos. Soc. 137.1 (2004), pp. 135–174. issn: 0305-0041.

[38] Clemens Berger and Ieke Moerdijk. “On an extension of the notion of Reedy
category”. In: Math. Z. 269.3-4 (2011), pp. 977–1004. issn: 0025-5874.

[39] Clemens Berger and Ieke Moerdijk. “On the homotopy theory of enriched
categories”. In: Q. J. Math. 64.3 (2013), pp. 805–846. issn: 0033-5606.

[40] Julia E. Bergner. “A characterization of fibrant Segal categories”. In: Proc. Amer.
Math. Soc. 135.12 (2007), pp. 4031–4037. issn: 0002-9939.

[41] Julia E. Bergner. “A model category structure on the category of simplicial
categories”. In: Trans. Amer. Math. Soc. 359.5 (2007), pp. 2043–2058. issn:
0002-9947.

[42] Julia E. Bergner. “Three models for the homotopy theory of homotopy theories”.
In: Topology 46.4 (2007), pp. 397–436. issn: 0040-9383.

[43] Andrew J. Blumberg. “Continuous functors as a model for the equivariant
stable homotopy category”. In: Algebr. Geom. Topol. 6 (2006), pp. 2257–2295.
issn: 1472-2747.

[44] Andrew J. Blumberg. Progress towards the calculation of the K-theory of Thom
spectra. Thesis (Ph.D.)–The University of Chicago. ProQuest LLC, Ann Arbor,
MI, 2005, p. 121. isbn: 978-0542-04081-8.

[45] Andrew J. Blumberg, Ralph L. Cohen, and Christian Schlichtkrull. “Topological
Hochschild homology of Thom spectra and the free loop space”. In: Geom.
Topol. 14.2 (2010), pp. 1165–1242. issn: 1465-3060.

[46] Andrew J Blumberg, David Gepner, and Gonçalo Tabuada. “A universal
characterization of higher algebraic K–theory”. In: Geometry & Topology 17.2
(2013), pp. 733–838. doi: 10.2140/gt.2013.17.733.

[47] Andrew J. Blumberg and Michael A. Mandell. “The strong Künneth theorem
for topological periodic cyclic homology”. arXiv:1706.06846. 2017.



406 Bibliography

[48] J. M. Boardman and R. M. Vogt. Homotopy invariant algebraic structures on
topological spaces. Lecture Notes in Mathematics, Vol. 347. Springer-Verlag,
Berlin-New York, 1973, pp. x+257.

[49] J. M. Boardman and R. M. Vogt. “Homotopy-everything H-spaces”. In: Bull.
Amer. Math. Soc. 74 (1968), pp. 1117–1122. issn: 0002-9904.

[50] M. Bökstedt and I. Madsen. “Topological cyclic homology of the integers”. In:
226. K-theory (Strasbourg, 1992). 1994, pp. 7–8, 57–143.

[51] Marcel Bökstedt. The topological Hochschild homology of Z and of Z/pZ.
preprint.

[52] Marcel Bökstedt. Topological Hochschild homology. preprint.
[53] Francis Borceux. Handbook of categorical algebra. 2. Vol. 51. Encyclopedia

of Mathematics and its Applications. Categories and structures. Cambridge
University Press, Cambridge, 1994, pp. xviii+443. isbn: 0-521-44179-X.

[54] A. K. Bousfield. “The localization of spaces with respect to homology”. In:
Topology 14 (1975), pp. 133–150. issn: 0040-9383.

[55] A. K. Bousfield. “The localization of spectra with respect to homology”. In:
Topology 18.4 (1979), pp. 257–281. issn: 0040-9383.

[56] A. K. Bousfield and E. M. Friedlander. “Homotopy theory of Γ -spaces, spectra,
and bisimplicial sets”. In: Geometric applications of homotopy theory (Proc. Conf.,
Evanston, Ill., 1977), II. Vol. 658. Lecture Notes in Math. Springer, Berlin, 1978,
pp. 80–130.

[57] A. K. Bousfield and V. K. A. M. Gugenheim. “On PL de Rham theory and
rational homotopy type”. In: Mem. Amer. Math. Soc. 8.179 (1976), pp. ix+94. issn:
0065-9266.

[58] A. K. Bousfield and D. M. Kan. Homotopy limits, completions and localizations.
Lecture Notes in Mathematics, Vol. 304. Springer-Verlag, Berlin-New York,
1972, pp. v+348.

[59] C. Braun, J. Chuang, and A. Lazarev. “Derived localisation of algebras and
modules”. In: Adv. Math. 328 (2018), pp. 555–622. issn: 0001-8708.

[60] Edgar H. Brown Jr. and Franklin P. Peterson. “A spectrum whose Zp cohomol-
ogy is the algebra of reduced pth powers”. In: Topology 5 (1966), pp. 149–154.
issn: 0040-9383.

[61] Kenneth S. Brown. “Abstract homotopy theory and generalized sheaf cohomol-
ogy”. In: Trans. Amer. Math. Soc. 186 (1973), pp. 419–458. issn: 0002-9947.

[62] Morten Brun, Zbigniew Fiedorowicz, and Rainer M. Vogt. “On the multiplica-
tive structure of topological Hochschild homology”. In: Algebr. Geom. Topol. 7
(2007), pp. 1633–1650. issn: 1472-2747.

[63] R. R. Bruner, J. P. May, J. E. McClure, and M. Steinberger. H∞ ring spectra
and their applications. Vol. 1176. Lecture Notes in Mathematics. Springer-Verlag,
Berlin, 1986, pp. viii+388. isbn: 3-540-16434-0.

[64] Gunnar Carlsson. “Derived completions in stable homotopy theory”. In: J. Pure
Appl. Algebra 212.3 (2008), pp. 550–577. issn: 0022-4049.



Bibliography 407

[65] Carles Casacuberta. “Anderson localization from a modern point of view”. In:
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