
8 Spectral algebraic geometry

by Charles Rezk

8.1 Introduction

This chapter is a very modest introduction to some of the ideas of spectral algebraic
geometry, following the approach due to Lurie. The goal is to introduce a few of the
basic ideas and definitions, with the goal of understanding Lurie’s characterization of
highly structured elliptic cohomology theories.

A motivating example: elliptic cohomology theories

Generalized cohomology theories are functors which take values in some abelian category.
Traditionally, we consider ones which take values in abelian groups, but we can work
more generally. For instance, take cohomology theories which take values in sheaves of
graded abelian groups (or rings) on some given topological space, or in sheaves of graded
OS -modules (or rings) on S, where S is a scheme, or possibly a more general kind of
geometric object, such as a Deligne–Mumford stack, and OS is its structure sheaf.

Given a scheme (or Deligne–Mumford stack) S , it is easy to construct an example
of a cohomology theory taking values in graded OS-algebras; for instance, using
ordinary cohomology, we can form

F ∗(X) :=
(
U 7→H ∗(X,OS (U ))

)
,

which is a presheaf of graded OS -algebras on S , which in turn can be sheafified into a
sheaf of graded OS -modules on S .

A more interesting example is given by elliptic cohomology theories. These consist of

1. an elliptic curve π : C → S (which is in particular an algebraic group with an
identity section e : S→ C),

2. a multiplicative generalized cohomology theory F ∗ taking values in sheaves
graded commutative OS-algebras, which is even and weakly 2-periodic in the
sense that F odd(point) ≈ 0 while F 0(point) ≈ OS and F 2(point) is an invertible
OS -module, together with
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3. a choice of isomorphism

α : SpfF 0(CP∞)→∼ C∧e

of formal groups, where the right-hand side denotes the formal completion of the
elliptic curve π : C→ S at the identity section.

This is easiest to think about when S is affine, i.e., S = SpecA for some ring A.
Then the above data corresponds exactly to what is known as an elliptic spectrum [4]:
a weakly 2-periodic spectrum E with π0E = A, together an isomorphism of formal
groups SpfE0

CP
∞ ≈ C∧e , where C is an elliptic curve defined over the ring A. Many

such elliptic spectra exist, including some which are structured commutative ring
spectra.

For a more general elliptic cohomology theory defined over some base scheme (or
stack) S , one may ask that it be “represented” by a sheaf of (commutative ring) spectra
on S, which I’ll call Otop

S . E.g., for an open subset U of the scheme S, and a finite
CW-complex X, we would have

F q(X)(U ) ≈ π0 MapSpectra(Σ−qΣ∞X,Otop
S (U ))

where Otop
S (U ) ∈ Spectra are the sections of Otop

S (U ) over U .
Goerss, Hopkins, and Miller showed that such an object exists, where S =MEll is

the moduli stack of (smooth) elliptic curves, and C→ S is the universal elliptic curve.
This can be viewed as giving a “universal” example of an elliptic cohomology theory.
As a consequence you can take global sections of Otop

S over the entire moduli stack S ,
obtaining a ring spectrum called TMF, the topological modular forms. (There is
also an extension of this theory to the “compactification” ofMEll, the moduli stack of
generalized elliptic curves; I will not discuss this version of the theory here.)

From the point of view of spectral algebraic geometry, the pair (MEll,Otop) is an
example of a nonconnective spectral Deligne–Mumford stack, i.e., an object in spectral
algebraic geometry.

Lurie proves a further result, which precisely characterizes the nonconnective
spectral Deligne–Mumford stack S = (MEll,Otop). Namely, it is the classifying object
for a suitable type of “derived elliptic curve”, called an oriented elliptic curve. More
precisely, for each nonconnective spectral Deligne–Mumford stack X there is an
equivalence of ∞-groupoids

MapSpDMnc(X,S) ≈ {oriented elliptic curves over X},

natural in X; here SpDMnc denotes the∞-category of nonconnective spectral Deligne–
Mumford stacks. In particular, there is a “universal” oriented elliptic curve C→ S .

Organization of this chapter

We describe some of the basic concepts of spectral algebraic geometry. This chapter is
written for algebraic topologists, with the example of elliptic cohomology as a prime
motivation. This chapter will only give an overview of some of the ideas. I’ll give
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precise definitions and complete proofs when I can (rarely); more often, I will try
to give an idea of a definition and/or proof, sometimes by appealing to an explicit
example, or to a “classical” analogue.

I will not try to describe applications to geometry or representation theory. The
reader should look at Lurie’s introduction to [170], as well as Toën’s survey [290], to
get a better idea of motivations from classical geometry.

We will follow Lurie’s approach. This was originally presented in the book Higher
Topos Theory [169], together with the sequence of “DAG” preprints [163]. Some of the
DAG preprints have been incorporated in/superseded by the book Higher Algebra [168],
while others have been absorbed by the book-in-progress Spectral Algebraic Geometry
[170]. I try to use notation consistent with [170], and give references to it when possible
(references are to the February 2018 version). Note that [170] is still under construction
and its numbering and organization is likely to change. Lurie’s approach to elliptic
cohomology is sketched in [162], and described in detail in [166] and [167].

Derived algebraic geometry had its origins in problems in algebraic geometry, and
was first pursued by geometers. We note in particular the work of Toën and Vezzosi,
which develops a theory broadly similar to Lurie’s; the aforementioned survey [290] is
a good introduction.

Notation and terminology

I’ll use the “naive” language of ∞-categories pretty freely. When I say “category”
I really mean “∞-category”, unless “1-category” or “ordinary category” is explicitly
indicated. An “isomorphism” in an ∞-category is the same thing as an “equivalence”;
I use the two terms interchangeably. Sometimes I will say that a construction is
“essentially unique”, which means it is defined up to contractible choice.

I write Cat∞ and Ĉat∞ for the∞-categories of small and locally small∞-categories
respectively. I write S for the ∞-category of small ∞-groupoids. “Sets” are implicitly
identified with the full subcategory of “0-truncated ∞-groupoids”: thus, Set ≈ τ≤0S ⊆
S . I write MapC(X,Y ) for the space (= ∞-groupoid) of maps between two objects in
an ∞-category C. I use the notations CX/ and C/X for the slice categories under and
over an object X of C.

I will consistently notate adjoint pairs of functors in the following way. In

L : C�D :R or R : D� C :L,

the arrow corresponding to the left adjoint is always above that for the right adjoint.
I use the notation C�D for a fully faithful functor, and C�D for a localization

functor, i.e., the universal example of formally inverting a class of arrows in C. Note
that any adjoint (left or right) of a fully faithful functor is a localization, and any
adjoint (left or right) of a localization functor is fully faithful.

I’d like to thank those who suffered through some talks I gave based on an early
version of this at University of Illinois, and for the corrections which have been
provided by various people, including a careful and detailed list of errata from Ko
Aoki.
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8.2 The notion of an∞-topos

A scheme is a particular kind of ringed space, i.e., a topological space equipped with
a sheaf of rings. Spectral algebraic geometry replaces “rings” with an ∞-categorical
generalization, namely commutative ring spectra, which (following Lurie) we will here
call E∞-rings. Similarly, spectral algebraic geometry replaces “topological space” with
its ∞-categorical generalization, which is called an ∞-topos.

The key observation motivating∞-topoi is that a topological space X is determined1

by the ∞-category of sheaves of ∞-groupoids on X. I will try to justify this in the next
few sections.

The notion of ∞-topos is itself a generalization of a more classical notion, that
of a 1-topos (or Grothendieck topos), which can be thought of as the 1-categorical
generalization of topological space. I will not have much to say about these, instead
passing directly to the ∞-case (but see (8.2) below). However, the theory of ∞-topoi
does parallel the classical case in many respects; a good introduction to 1-topoi is [173].

There is a great deal to say about ∞-topoi, so I’ll try to say as little as possible.
Note that to merely understand the basic definitions of spectral algebraic geometry,
only a small part of the theory is necessary: much as, to understand the definition of
a scheme, you need enough topology to understand the “Zariski spectrum” of a ring,
without any need to inhale large quantities of esoteric results in point-set topology.

We refer to a functor F : Cop→S as a presheaf of ∞-groupoids on C, and write

PSh(C) = Fun(Cop,S)

for the ∞-category of presheaves.
We first describe two examples of ∞-topoi arising from “classical” constructions.

The∞-topos of a topological space

Let X be a topological space, with OpenX = its poset of open subsets. A sheaf of
∞-groupoids on X is a functor F : Openop

X → S such that, for every open cover
{Ui →U }i∈I of an element U of OpenX , the evident map

F(U )→∼ lim∆

[
[n] 7→

∏
i0,...,in∈I

F(Ui0 ∩ · · · ∩Uin )
]

(8.2.1)

is an equivalence; the target is the limit of functor ∆→S , i.e., of a cosimplicial space.
We let Shv(X) ⊆ PSh(OpenX ) denote the full subcategory of sheaves. It turns out that
this embedding admits a left adjoint a : PSh(OpenX )→ Shv(X) which is left exact,
i.e., a preserves finite limits.

The∞-topos of sheaves on the étale site of a scheme

Let X be a scheme, and let ÉtX = a full subcategory of the category of schemes over X
spanned by a suitable collection of étale morphisms U → X, (e.g., morphisms which

1 This is not exactly true; see (8.5) below.
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factor as U
f
−→ V � X where f is a finitely presented étale map to an open affine

subset of X). An étale cover is a collection of étale maps {Ui →U }i∈I in ÉtX which
are jointly surjective on Zariski spectra. We get full subcategory Shv(X ét) ⊆ PSh(ÉtX )
of étale sheaves on X, whose objects are functors F : Étop

X →S such that the evident
map

F(U )→∼ lim∆

[
[n] 7→

∏
i0,...,in∈I

F(Ui0 ×X · · · ×X Uin )
]

is an equivalence for every étale cover. (This makes sense because ÉtX is an essen-
tially small category which is closed under finite limits.) As in (8.2), the embedding
Shv(X ét) ⊆ PSh(ÉtX ) admits a left exact left adjoint.

Definition of∞-topos

An ∞-topos is an ∞-category X such that

1. there exists a small ∞-category C, and
2. an adjoint pair

i : X // // PSh(C) :aoooo

where the right adjoint i is fully faithful (whence a is a localization), and such that
3. i is accessible, i.e., there exists a regular cardinal λ such that i preserves all

λ-filtered colimits, and
4. a is left exact.

Remark 8.2.1 (Presentable ∞-categories). An X for which there exists data (1)–(3)
is called a presentable ∞-category [169, 5.5]. This class includes many familiar
examples such as: small∞-groupoids, chain complexes of modules, spectra, E∞-ring
spectra, functors from a small ∞-category to a presentable ∞-category, etc. (Note:
[169, 5.5.0.1] defines this a little differently, but it is equivalent to what I just said by
[169, 5.5.1.1].)

All presentable ∞-categories are complete and cocomplete. The “presentation”
(C, i,a) of X leads to an explicit recipe for computing limits and colimits in X : apply
i to your diagram in X to get a diagram in PSh(C), take limits or colimits there, and
apply a to get the desired answer. (Since i is a fully faithful right adjoint, the last step
of applying a is not even needed when computing limits.)

Remark 8.2.2 (Adjoint functors between presentable∞-categories). It turns out that a
very strong form of an “adjoint functor theorem” applies to presentable ∞-categories
[169, 5.5.2.9].

1. If A is presentable, then a functor F : A→B admits a right adjoint if and only if
it preserves small colimits.

2. If A and B are presentable, then a functor F : A→B admits a left adjoint if and
only if it preserves small limits and is accessible.
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In particular, if A is presentable, then a functor Aop → S to ∞-groupoids is repre-
sentable if and only if it preserves limits, and A→S is corepresentable if and only if it
preserves limits and is accessible.

Remark 8.2.3 . The presentation (C, i,a) is not part of the structure of an∞-topos (or
presentable ∞-category): it merely needs to exist, and it is not in any sense unique.

Any presheaf category PSh(C) is an ∞-topos, and in particular S is one.
Both the examples (8.2) and (8.2) given above are ∞-topoi. They are special cases

of sheaves on a Grothendieck topology on an ∞-category C; see (8.5) below and [169,
6.1, 6.2].

Relation to the classical notion of topos

Recall that an object U of any ∞-category X is 0-truncated if MapX (−,U ) takes
values in τ≤0S ⊆ S , i.e., in “sets”. For an ∞-topos X , its full subcategory X♥ ⊆ X
of 0-truncated objects is called the underlying 1-topos of X . This X♥ is equivalent
to a 1-category, and is a “classical” topos in the sense of Grothendieck; in fact all
Grothendieck topoi arise from ∞-topoi in this way.

For instance, if X is a topological space then Shv(X)♥ is the 1-category of sheaves
of sets on X.

Example 8.2.4. As we’ll see (8.4), the slice category S/X is an∞-topos for any X ∈ S ,
and it is easy to verify that (S/X )♥ ≈ Fun(Π1X,Set). Thus (S/X )♥ only depends on
the fundamental groupoid of X, while S/X itself depends on the homotopy type of X.
Thus, non-equivalent ∞-topoi can share the same underlying 1-topos.

8.3 Sheaves on an∞-topos

There is an obvious notion of sheaves on a topological space which take values in an
arbitrary complete ∞-category A. These are functors F : Openop

X →A which satisfy
the “sheaf condition”, i.e., that the map in (8.2.1) is an equivalence for every open
cover. We can reformulate this definition so that it depends only on the ∞-category
X = Shv(X), rather than on the category of open sets in X. This leads to a definition
of A-valued sheaf which makes sense in an arbitrary ∞-topos.

Sheaves valued in an∞-category

For a general ∞-topos, an A-valued sheaf on X is a limit preserving functor
F : X op→A. These objects form a full subcategory ShvA(X ) ⊆ Fun(X op,A).

Example 8.3.1 (A-valued sheaves on a presheaf ∞-topos). If X = PSh(C), then
ShvA(X ) is equivalent to the category Fun(Cop,A) of “A-valued presheaves” on C.
This is because the Yoneda embedding ρ : C → PSh(C) is the “free colimit comple-
tion” of C [169, 5.1.5]: for any cocomplete B, restriction along ρ gives an equivalence

Fun(PSh(C),B) ⊇ Funcolim pres.(PSh(C),B)→∼ Fun(C,B)
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between the full subcategory of colimit preserving functors PSh(C)→B and all func-
tors C → B; the inverse of this equivalence is defined by left Kan extension along ρ.
Taking B =Aop we obtain the equivalence

Fun(PSh(C)op,A) ⊇ Funlim pres.(PSh(C)op,A)→∼ Fun(Cop,A).

Example 8.3.2 (A-valued sheaves on a space, revisited). For X = Shv(X) the two
definitions coincide: limit preserving functors F′ : X op → A correspond to functors
F : Openop

X →A satisfying the sheaf condition.

To see this, recall the adjoint pair i : Shv(X) // // PSh(OpenX ) :a.oooo For each

open cover U = {Ui →U }i∈I in X, the functor a carries the evident map

sU : colim∆op

[
[n] 7→

∐
i0,...,in∈I

ρUi0∩···∩Uin

]
→ ρU

in PSh(OpenX ) to an isomorphism in Shv(X), where ρU := MapOpenX
(−,U ) de-

notes the representable functor. (Proof: applying MapPSh(OpenX )(−,F) to this exactly
recovers the map (8.2.1) exhibiting the sheaf condition for a presheaf F, and if F′ is a
sheaf we have MapPSh(OpenX )(−, iF′) = MapShv(X)(a(−),F′).)

More is true: the functor a is the initial example of a colimit preserving functor
which takes all such maps sU to isomorphisms. (In the terminology of [169, 5.5.4]
Shv(X) is the localization of PSh(OpenX ) with respect to the strongly saturated class
generated by {sU }, and universality is [169, 5.5.4.20].)

Thus, objects F ∈ ShvA(X ) coincide with limit preserving F′ : PSh(OpenX )op →
A such that F′(sU ) is an equivalence for every open cover U , which coincide with
functors F : Openop

X →A satisfying the sheaf condition.

Example 8.3.3 (Sheaves of ∞-groupoids). Every limit preserving functor X op→S
is representable by an object of X (8.2.2). Therefore, the Yoneda embedding restricts
to an equivalence X →∼ ShvS (X ) ⊆ Fun(X op,S): the underlying ∞-category of the
∞-topos X is also the category of sheaves of ∞-groupoids on X .

Example 8.3.4 (Sheaves of sets). We have that ShvSet(X ) ≈ X♥.

Remark 8.3.5 (Sheaves of ∞-groupoids as “generalized open sets”). The above dis-
plays the first instance of a philosophy you encounter a lot of in this theory. For an
∞-topos X , objects U ∈ X can be thought of either as “sheaves of ∞-groupoids” on
X via X ≈ ShvS (X ), or as “generalized open sets of X ”, in the sense that it makes
sense to evaluate any sheaf F ∈ ShvA(X ) at any object U .

Given an A-valued sheaf F : X op→A on X , its global sections are defined to be

Γ (X ,F) := F(1X ).

8.4 Slices of∞-topoi

We give a quick tour through some basic general constructions and properties involving
∞-topoi. First, we look at slices of ∞-topoi, which give more examples of ∞-topoi.
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Slices of∞-topoi are∞-topos

Given an object U in an ∞-category X , we get a slice ∞-category X/U .

Proposition 8.4.1 ([169, 6.3.5.1]). Every slice X/U of an ∞-topos X is an ∞-topos.

Proof. Choose a presentation (C, i,a) of X with fully faithful i : X � PSh(C), which
induces a fully faithful i′ : X/U � PSh(C)/iU , which furthermore admits a left adjoint
a′ induced by a (since U → aiU is an equivalence). The functor a′ is seen to be
accessible and left exact since a is.

Note that PSh(C)/iU is itself equivalent to presheaves on C/iU := C×PSh(C)PSh(C)/iU ,
which is itself a equivalent to small ∞-category. We therefore obtain a presentation
for X/U as a full subcategory of PSh(C/iU ).

Example 8.4.2. Let X be a topological space. The Yoneda functor OpenX →
Shv(X) factors through the full subcategory Shv(X). Thus for any open set U of
X, we have the representable sheaf ρU ∈ Shv(X), which we simply denote U by
abuse of notation. It is straightforward to show that Shv(X)/U ≈ Shv(U ): the slice
category over the sheaf U is exactly sheaves on the topological space U .

Remark 8.4.3 (Relativized notions). Any morphism f : V → U in an ∞-topos X
is also an object in an ∞-topos (namely X/U ). Thus any general concept defined
for objects in an ∞-topos can be “relativized” to a concept defined on morphisms
(assuming the definition is preserved by equivalence of ∞-topoi). Conversely, any
concept defined for morphisms in an arbitrary∞-topos can be specialized to objects,
by applying it to projection maps U → 1.

Colimits are universal in∞-topoi

Given a morphism f : U → V in an ∞-topos X , we get an induced pullback functor
f ∗ : X/V →X/U , which on objects sends V ′→ V to V ′ ×V U →U .

Proposition 8.4.4. Colimits are “universal” in ∞-topoi; i.e., f ∗ : X/V →X/U preserves
small colimits.

Proof. The statement of the proposition only involves colimits and finite limits in
X . Thus via a choice of presentation (C, i,a) for X we can reduce to the case of
X = PSh(C). As colimits and limits of presheaves are computed “objectwise”, we
can reduce to the case of infinity groupoids X = S . In this case the statement is
“well-known” [169, 6.1.3.14].

∞-topoi have internal homs

A consequence of universality of colimits is that U × (−) : X →X is colimit preserving,
and therefore (8.2.2) has a right adjoint which we may denote [U,−] : X → X . This
is an internal function object, so any ∞-topos is cartesian closed, and so is locally
cartesian closed (i.e., every slice is cartesian closed).
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∞-topoi have descent

Given any ∞-category X , let Cart(X ) ⊆ Fun({0→ 1},X ) denote the (non-full) subcat-
egory of the arrow category of X , consisting of all the objects, and morphisms f → g
which are pullback squares in X . This is a subcategory because pullback squares paste
together.

We say that X has descent if Cart(X ) has small colimits, and if the inclusion
functor Cart(X )→ Fun({0→ 1},X ) preserves small colimits.

Proposition 8.4.5 (Descent [169, 6.1.3]). Every ∞-topos has descent.

Let’s spell out the consequences of this. Suppose given a functor F : C → X from a
small ∞-category to an ∞-topos. We obtain a family of slice categories X/F(c), which
is a contravariant functor of C via the functors F(α)∗ : X/F(c′)→X/F(c) for α : c→ c′

in C. This functor Cop→ Ĉat∞ extends to a cone (CB)op→ Ĉat∞, where the value at
the cone point is the slice category X/F over the colimit F = colimc∈C F(c) of F.2

We can also form the limit limc∈Cop X/F(c) in Ĉat∞. An object of this limit amounts
to: a functor A : C → X and a natural transformation f : A→ F such that for each
α : c→ c′ in C the square

A(c′)
A(α)

//

��

A(c)

��

F(c′)
F(α)

// F(c)

is a pullback in X . Descent implies the following.

Proposition 8.4.6. The functor

X/F → limc∈Cop X/F(c)

sending A→ F to
(
c 7→ (A×F F(c)→ F(c))

)
is an equivalence. The inverse equivalence

is a functor which sends (A→ F) ∈ limCop X/F(c) to the object of X/F represented by the
evident map

colimCA→ colimC F.

Thus, descent in an ∞-topos has a very beautiful interpretation in terms of the
definition of “sheaves on X ” as functors: the functor X op → Ĉat∞ which sends
U 7→ X/U is limit preserving, and so is a sheaf on X valued in locally small ∞-
categories.

Example 8.4.7. Let X be a topological space. Recall that (after identifying an open
set U with its representable sheaf on X), we have that Shv(X)/U ≈ Shv(U ). If U and

2 This is not a complete description of a functor (CB)op→ Ĉat∞, as there is also “higher coherence”
data to keep track of. A correct description is implemented using the theory of Cartesian fibrations
[169, 2.4]. I am not going to try to be precise about such matters here.



354 Rezk: Spectral algebraic geometry

V are open sets of X, then U ∪ V is the pushout of U ← U ∩ V → V as sheaves.
Given this, descent says that there is an equivalence

Shv(U ∪V )→∼ lim [ Shv(U )→ Shv(U ∩V )← Shv(V ) ].

That is, the category of sheaves of ∞-groupoids on U ∪V is equivalent to a category
of “descent data” involving sheaves on U , V , and U ∩V .

This particular example works “the same way” in the classical topos Shv(X)♥ of
sheaves of sets on X: the category of sheaves of sets on U ∪V can be reconstructed
from appropriate descent data, i.e., as an ∞-categorical pullback of a diagram of
categories of sheaves of sets on U , V , and U ∩V . However, 1-categorical descent in
this form fails for general pushout diagrams in Shv(X)♥. This is one way in which
the theory of ∞-topoi shows advantages over the classical theory.

8.5 Truncation and connectivity in∞-topoi

n-Truncation and n-connectivity in∞-categories

An ∞-groupoid X is n-truncated if

πk(X,x0) ≈ {∗} for all k > n and all x0 ∈ X.

In particular, 0-truncated ∞-groupoids are equivalent to sets (discrete spaces), while
(−1)-truncated ∞-groupoids are equivalent to either the empty set ∅ or the terminal
object. By fiat, (−2)-truncated ∞-groupoids are those which are equivalent to the
terminal object.

An object X ∈ A in a general ∞-category is n-truncated if MapA(A,X) is an
n-truncated ∞-groupoid for all objects A in A. We relativize to the notion of n-
truncated morphism: i.e., an f : X → Y which is n-truncated as an object of the
slice A/Y . I write τ≤nA ⊆A for the full subcategory of n-truncated objects.

In many ∞-categories (including all presentable ∞-categories and thus all ∞-
topoi), there is an n-truncation functor which associates to each object X the initial
example X→ τ≤nX of a map to an n-truncated object. When this exists, the essential
image of the n-truncation functor τ≤n : A→A is τ≤nA, and we have an adjoint pair
τ≤nA // // Aoooo .

Relativized, we obtain for a morphism f : X→ Y in A an n-truncation factorization

X
g
−→ τ≤n(f )

h−→ Y ,

so that h is the initial example of an n-truncated map over Y which factors f .
Following Lurie, we say that an object U in an ∞-category is n-connective if

τ≤n−1U ≈ 1. Likewise an n-connective morphism f : X → Y in A is one which is
an n-connective object of A/Y .

Remark 8.5.1 . In S , an n-connective object is the same as what is usually called an
(n−1)-connected space (so 1-connective means connected). However, an n-connective
map is the same as what is classically called an n-connected map of spaces.
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The n-truncation factorization is in fact a factorization into “(n + 1)-connective
followed by n-truncated”.

Proposition 8.5.2. If X
g
−→ τ≤n(f )

h−→ Y is the n-truncation factorization of f : X→ Y
in A, then g is an (n+ 1)-connective map in A. (Assuming all the relevant truncations
exist in A.)

Proof. By replacing A with A/Y , we can assume Y ≈ 1. Thus we need to show
that g : X→ τ≤nX, the “absolute” n-truncation of the object X, is also the “relative”
n-truncation of the map g , i.e., that in the n-truncation factorization

X
g ′

−−→ τ≤n(g)
g ′′

−−→ τ≤nX

of the object g of A/τ≤nX , the map g ′′ is an equivalence.
Both τ≤nX→ 1 and g ′′ are n-truncated maps of A, from which it is straightforward

to show that τ≤n(g) is an n-truncated object of A. Thus, the universal property for
g : X → τ≤nX gives s : τ≤nX → τ≤n(g) such that sg = g ′ and g ′′s = idτ≤nX . The
universal property for g ′ : X→ τ≤n(g) then implies that sg ′′ = idτ≤n(g).

Remark 8.5.3 . n-truncation of objects in an∞-topos preserves finite products, as can
be seen by choosing a presentation and reducing to the case of S [169, 6.5.1.2].

Čech nerves and effective epimorphisms

For ∞-topoi, the case of truncation when n = −1 is especially important. An (−1)-
truncated map in an ∞-category is the same thing as a monomorphism, i.e., a map
i : A→ B such that all the fibers of all induced maps Map(C,A)→Map(C,B) are
either empty or contractible. Equivalently, i is a monomorphism if and only if the
diagonal map A→ A ×B A is an equivalence (if the pullback exists), if and only if
either projection A×B A→ A is an equivalence.

In an ∞-topos, an effective epimorphism is defined to be a 0-connective mor-
phism. The (−1)-truncation factorization in an ∞-topos (also called epi/mono fac-
torization) can be computed using Čech nerves.

Given a morphism f : U → V in an ∞-topos X , its Čech nerve is an augmented
simplicial object Č(f ) : ∆op

+ →X of the form

· · ·
//
//
//
//
U ×V U ×V U

//
//
// U ×V U

//
// U

f
// V

Proposition 8.5.4. Given a map f : U → V in an ∞-topos, the factorization

U
p
−→ colim∆op Č(f )

i−→ V

defined by taking the colimit of the underlying simplicial object of the Čech nerve is
equivalent to the factorization of f into an effective epimorphism p followed by a
monomorphism i.
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Proof. Without loss of generality assume V ≈ 1 (since the slice X/V is an ∞-topos).
Write U = colim∆op Č(F) = colim [[n] 7→Un+1 ]. Because colimits are universal in an
∞-topos (8.4.4), we have that U ×U k+1 ≈ colim [[n] 7→Un+1 ×U k+1 ]. For any k ≥ 0
the augmented simplicial object [n] 7→Un+1 ×U k+1 admits a contracting homotopy,
so U ×U k+1→∼ U k+1. Universality of colimits again gives U ×U →∼ U , whence U → 1
is monomorphism, i.e., U is a (−1)-truncated object

To show that p : U →U is the universal (−1)-truncation is easy: for any f : U → Z
to a (−1)-truncated object, we have

MapXU/ (p,f ) ≈ lim
∆

[[n] 7→MapXU/ (U →Un+1, f ) ],

which is easy to evaluate since all the mapping spaces must be contractible if non-
empty, since Z is (−1)-truncated.

Warning 8.5.5. In an ∞-topos the class of effective epimorphisms contains, but is not
equal to the class of epimorphisms. This is very unlike the classical case: in a 1-topos
the two classes coincide.

Remark 8.5.6 (Covers). A set {Ui} of objects in an ∞-topos X is called a cover of X
if

∐
Ui → 1 is an effective epimorphism in X . We also speak of a cover of an object

V in X , which is a set {Ui → V } of maps in X such that
∐
Ui → V is an effective

epi.
If X is a topological space, then a set {Ui} ⊆ OpenX of open sets of X is a open

cover of X if and only if the corresponding set {Ui} ⊆ Shv(X) of sheaves on X is a
cover in the above sense.

Sometimes we see the following condition on a collection {Ui} of objects in X : that
it generates X under small colimits. This condition implies that there exists a subset
of {Ui} which covers X .

Example 8.5.7 (Effective epis in ∞-groupoids). A map in S is an effective epimor-
phism if and only if it induces a surjection on sets of path components. The epi/mono
factorization of a map f : U → V in S is through U ⊆ V , the disjoint union of path
components of V which are in the image of f .

Homotopy groups

Given a pointed object (U, u0 : 1→U ) in an ∞-topos X , there is an object (U,u0)K

in X for every pointed space K ∈ S∗, which represents the functor

MapS∗(K,MapX (−,U )) : X op→S

(which is clearly limit preserving, so by (8.2.2) defines a S-valued sheaf on X ). We let

πn(U,u0) := τ≤0((U,u0)S
n
) ∈ X♥,

the nth homotopy sheaf of (U,u0). This is in general a sheaf of based sets on X ,
a sheaf of groups for n ≥ 1, and a sheaf of abelian groups for n ≥ 2.
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Remark 8.5.8 . An object U in an ∞-topos can easily fail to have “enough” global
sections, or even any global sections. Thus it is often necessary to use a more sophis-
ticated formulation of homotopy sheaves of U allowing for arbitrary “local” choices
of basepoint. These are objects πnU ∈ (X/U )♥, defined as the homotopy sheaves (as
defined above) of (proj2 : U ×U → U, ∆ : U → U ×U ) in X/U , the projection map
“pointed” by the diagonal map. See [169, 6.5.1].

For instance, with this more sophisticated definition, an object U is n-connective
if and only if πkU ≈ 1 for all k < n [169, 6.5.1.12].

Example 8.5.9 (Eilenberg–Mac Lane objects and sheaf cohomology). An Eilenberg–
Mac Lane object of dimension n is a pointed object (K,k0) in X such that K is both
n-truncated and n-connective. One can show [169, 7.2.2.12] that taking (K,k0) 7→
πn(K,k0) gives a correspondence between Eilenberg–Mac Lane objects of dimension
n and: abelian group objects in X♥ (if n ≥ 2), group objects in X♥ (if n = 1), and
pointed objects in X♥ (if n = 0).

Thus, given a sheaf A of (classical) abelian groups on X , we can define the coho-
mology group

Hn(X ;A) := π0 MapX (1,K(A,n))

of the ∞-topos X .

∞-connectedness and hypercompletion

An object or morphism is ∞-connected if it is n-connective for all n. It turns out that
the obvious analogue of the “Whitehead theorem” can fail in an∞-topos:∞-connected
maps need not be equivalences.

We say that an object U in X is hypercomplete if Map(V ′ ,U )→Map(V ,U ) is
an equivalence for any ∞-connected map V → V ′ .

Example 8.5.10. All n-truncated objects are hypercomplete, for any n. Any limit of
hypercomplete objects is hypercomplete.

We write X hyp ⊆ X for the full subcategory of hypercomplete objects of X . It turns
out that the inclusion is accessible, and admits a left adjoint which is itself left exact.
So X hyp is an ∞-topos in its own right [169, 6.5.2].

We say that X is itself hypercomplete if all ∞-connected maps are equivalences,
i.e., if X hyp = X .

Example 8.5.11. Any presheaf ∞-category is hypercomplete, including S itself.

Truncation towers

Given an object U in X , we may consider the tower

U → ·· · → τ≤nU → τ≤n−1U → ·· · → τ≤−1U → ∗



358 Rezk: Spectral algebraic geometry

of truncations of U . There is a limit U∞ := limτ≤nU , together with a tautological
map U → U∞. It is generally not the case that U → U∞ is an equivalence. For
instance, U∞ is necessarily hypercomplete, whereas U may not be. Furthermore, even
if U is hypercomplete, U →U∞ can fail to be an equivalence.

There are various general conditions which ensure that U →∼ U∞ for all objects U
in X (and in fact ensure a stronger fact, called convergence of Postnikov towers). For
instance, this is the case when X is locally of homotopy dimension ≤ n for some n [169,
7.2.1.12]. (Say X is of homotopy dimension ≤ n if every n-connective object U ∈ X
admits a global section 1→U . We say X is locally of homotopy dimension ≤ n if
there exists a set {Ui} of objects which generate X under colimits and such that each
X/Ui is of homotopy dimension ≤ n.)

Constructing∞-topoi

We defined an ∞-topos X to be an ∞-category which admits a presentation (C, i,a).
It is natural to ask: given a small ∞-category C, can we classify the presentations of
∞-topoi which use it?

Given any left exact accessible localization X ⊆ PSh(C), let T denote the collection
of morphisms j in PSh(C) which

1. are monomorphisms of the form S� ρC for some object C of C, and
2. are such that a(j) is an isomorphism in X .

The class of maps T is an example of a Grothendieck topology on C. When C is a
1-category this precisely recovers the classical notion of a Grothendieck topology on a
1-category.

It can be shown [169, 6.4.1.5] that if F ∈ PSh(C) is n-truncated for some n <∞, then
F ∈ X if and only if F(j) is an isomorphism for all j ∈ T . That is, the n-truncated
objects in left exact accessible localizations of PSh(C) are entirely determined by T .

Conversely, given a Grothendieck topology T on C, the full subcategory Shv(C,T ) :=
{F | F(j) iso for all j ∈ T } ⊆ PSh(C) is an example of an ∞-topos. This includes the
examples (8.2) and (8.2).

A general left exact localization of PSh(C) can be obtained by (i) choosing a
Grothendieck topology T on C, and then (ii) possibly localizing Shv(C,T ) further
with respect to a suitable class of ∞-connected maps [169, 6.5.2.20].

Remark 8.5.12 (1-localic reflection). Given any classical topos, i.e., a 1-topos X1, we
can upgrade it to an∞-topos denoted ShvS (X1); this is called its 1-localic reflection.
In general this can be difficult to describe. In the case that X1 ≈ ShvSet(C,T ) is an
identification of X1 as a category of sheaves of sets on a 1-category C equipped with
a Grothendieck topology T , and if C has finite limits, then ShvS (X1) := Shv(C,T ) is
the 1-localic reflection of X1 [169, 6.4.5, esp. 6.4.5.6].

For instance, we constructed Shv(X) and Shv(X ét), sheaves on a topological space
or on the étale site of a scheme, in exactly this way, so they are 1-localic.

As can be seen from (8.2.4), an ∞-topos X is not generally equivalent to the
1-localic reflection of ShvS (X♥) of its underlying 1-topos X♥.
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Warning: ShvS (X1) is not the same as the construction of (8.3): it is not equivalent
to limit preserving functors X op

1 →S .

Remark 8.5.13 (Simplicial presheaves). Given a small 1-category C with a Grothendieck
topology T , Jardine [135] produced a model category structure on the category
Fun(Cop,sSet) of presheaves of simplicial sets. The ∞-category associated to that
model category is equivalent to what we have called Shv(C,T )hyp [169, 6.5.2].

8.6 Morphisms of∞-topoi

To justify the claim that ∞-topoi are the ∞-categorical generalization of topological
spaces, we need an appropriate notion of morphism between ∞-topoi that generalizes
the notion of continuous map. This is called a geometric morphism. In fact, I won’t
consider any other kind of morphism between ∞-topoi here.

Geometric morphisms

A geometric morphism (or just morphism) of ∞-topoi f : X →Y is an adjoint pair
of functors

f∗ : X � Y :f ∗

such that the left adjoint f ∗ is left exact (i.e., preserves finite limits). The functor f∗ is
direct image, and f∗ is pullback or preimage.

The collection of geometric morphisms from X to Y , together with natural transfor-
mations between the left adjoints of the geometric morphisms, forms an ∞-category,
sometimes denoted Fun∗(Y ,X ). We note that this ∞-category is not in general equiv-
alent to a small ∞-category, although it is in some cases; it is always an accessible
∞-category [169, 6.3.1.13]. We will mostly be concerned with the maximal ∞-groupoid
inside this ∞-category, which we denote Map∞T op(X ,Y ), and regard as mapping
spaces of ∞T op, the ∞-category of ∞-topoi.

Remark 8.6.1 . Since ∞-topoi are presentable ∞-categories, to construct a geometric
morphism f : X → Y it suffices to produce a functor f ∗ : Y → X which preserves
colimits and finite limits; presentability then implies (8.2.2) that a right adjoint f∗
exists. Typically, having a “presentation” for Y gives an explicit recipe for describing
colimit preserving f ∗, so constructing morphisms amounts to finding such functors
which also preserve finite limits.

Example 8.6.2 (The terminal ∞-topos). The ∞-category S of infinity groupoids is
the terminal ∞-topos, i.e., there is an essentially unique geometric morphism X → S
from any ∞-topos. To see this, note that a colimit preserving π∗ : S →X is precisely
determined by its value on the terminal object 1S of S , while to preserve finite limits
it is necessary that π∗ take 1S to the terminal object of X . This is also sufficient, by
the fact the colimits are universal in X (8.4.4). Thus Map∞T op(X ,S) ≈ ∗ for any X .
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Example 8.6.3. Every presentation of an ∞-topos X ⊆ PSh(C) as in (8.2) corre-
sponds to a geometric morphism X → PSh(C).

Example 8.6.4. Hypercompletion (8.5) gives a geometric morphism X hyp→X .

Continuous maps vs. geometric morphisms

Let X = Shv(X) for some topological space X, and let Y be any ∞-topos. We can
describe Fun∗(Shv(X),Y ) as follows. It is equivalent to the full subcategory of

Funcolim pres.(PSh(OpenX ),Y )→∼ Fun(OpenX ,Y ),

spanned by those φ : OpenX →Y such that

1. for each open cover {Ui →U }, the map
∐
i
φ(Ui)→ φ(U ) is an effective epi in Y ,

2. φ(X) ≈ ∗ , and
3. φ(U ∩V ) ≈ φ(U )×φ(X) φ(V ).

Condition (1) ensures that PSh(OpenX )→Y factors through the localization

a : PSh(OpenX )� Shv(X),

while conditions (2) and (3) ensure that the resulting functor f ∗ : Shv(X)→ Y pre-
serves finite limits. (This is a special case of [169, 6.1.5.2].)

Note that since U ∩U ≈ U , (2) and (3) imply that each φ(U )→ φ(X) ≈ ∗ , is a
monomorphism, i.e., that each φ(U ) is a (−1)-truncated object of Y .

For instance, if Y = Shv(Y ) for some topological space Y , then τ≤−1Y ≈ OpenY .
Under this identification, morphisms of topoi Y →X correspond to functors OpenX→
OpenY which (1) take covers to covers, (2) take X to Y , and (3) preserve finite inter-
sections.

Example 8.6.5. If X is a scheme, we have both Shv(XZar) (sheaves on the underlying
Zariski space of X) and Shv(X ét) (sheaves in the étale topology (8.2)). There is an evi-
dent geometric morphism Shv(X ét)→ Shv(XZar) induced by OpenXZar → Shv(X ét)
sending an open set to the étale sheaf it represents.

A space X is sober if every irreducible closed subset is the closure of a unique
point (e.g., Hausdorff spaces, or the Zariski space of a scheme). One can show that if
X is sober, then

Map∞T op(Shv(Y ),Shv(X)) ≈ (set of continuous maps Y → X).

This justifies the assertion that “∞-topos” is a generalization of the notion of a
topological space.

Remark 8.6.6 . The sobriety condition is necessary. For instance, if Y = {∗}, then
the φ : OpenX →OpenY ≈ {0→ 1} satisfying (1)–(3) are in bijective correspondence
with irreducible closed C ⊆ X: we have(

φ↔ C
)
⇐⇒

(
C =

⋂
φ(U )=0(X rU )

)
⇐⇒

(
φ(U ) = 0 iff U ∩C = ∅

)
.
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That is, the underlying point set of X can be recovered from OpenX only if X is
sober.

Locales

We see that it is not quite correct to say that ∞-topoi generalize topological spaces;
rather, they generalize locales.

A locale is a poset O equipped with all the formal algebraic properties of the poset
of open sets of a space: i.e., it is a complete lattice such that finite meets distribute
over infinite joins. A map f : O′ → O of locales is a function f ∗ : O → O′ which
preserves all joins and all finite meets. Any locale O has an ∞-category of sheaves
Shv(O) (defined exactly as sheaves on a space), and Map∞T op(Shv(O),Shv(O′)) ≈
{locale maps O→O′}.

Every topological space determines a locale, though not every locale comes from
a space. From the point of view of sheaf theory, a space is indistinguishable from its
locale. For spaces we care about (i.e., sober spaces), we can recover their point sets
from their locale, and this is good enough for us.

Remark 8.6.7 . From the point of view that “objects in an ∞-topos are generalized
open sets” (8.3.5), the preimage functor f ∗ : Y → X of a geometric morphism is the
operation of “preimage of generalized open sets”.

Remark 8.6.8 . Every ∞-topos X has an associated locale, whose lattice of “open
sets” OpenX consists precisely of the (−1)-truncated objects of X .

Limits and colimits of∞-topoi

The ∞-category of ∞-topoi itself (remarkably) has all small limits and colimits.
Colimits are easy to describe (modulo the technical issues involved in making precise

statements; see [169, 6.3.2]): given F : C → ∞T op, consider the functor F∗ : Cop →
Ĉat∞ which sends an arrow α : C → C′ to the left adjoint F(α)∗ : F(C′)→ F(C) of
the geometric morphism. Then the underlying ∞-category of the colimit of F in
∞-topoi is just the limit of the diagram F∗ of ∞-categories.

Limits are more difficult. As we have seen, the terminal object in∞T op is S . Filtered
limits are computed by a pointwise construction much like colimits [169, 6.3.3]. To get
general limits we also need pullbacks; see [169, 6.3.4] for details.

Remark 8.6.9 . The product of two ∞-topoi X and Y has a nice description. It is
equivalent to

Funlim pres./lim pres.(X op ×Yop,S) ⊆ Fun(X op ×Yop,S),

the full subcategory consisting of functors F which preserve limits separately in
each variable, i.e., such that F(colimiUi ,V )→∼ limi F(Ui ,V ) and F(U,colimj Vj )→∼

limj F(U,Vj ). This ∞-category is also equivalent to both of

Funlim pres.(X op,Y ) ≈ Funlim pres.(Yop,X ),
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by the adjoint functor theorem for presentable ∞-categories (8.2.2). That is,

X ×∞T op Y ≈ ShvY (X ) ≈ ShvX (Y )

[168, 4.8.1.18]. This construction is a special case of the “tensor product” of pre-
sentable ∞-categories; see [168, 4.8].

Remark 8.6.10 . Recall that in scheme theory, the underlying topological space of the
pullback of schemes is not usually equivalent to the pullback of the underlying spaces
of the schemes, as is already easily seen in the case of affine schemes. The analogous
fact applies in the setting of derived geometry. Thus, we won’t actually need to worry
about general limits of ∞-topoi.

Sheaves and geometric morphisms

We are going to be interested in sheaves on∞-topoi with values in things like spectra or
E∞-ring spectra. Thus we need to know how these behave under geometric morphisms.

For any complete ∞-category A, any geometric morphism f : X → Y induces a
direct image functor f∗ : ShvA(X )→ ShvA(Y ), which is defined by precomposition
with f ∗. That is, it sends a limit preserving F : X op→A to the composite functor

Yop (f ∗)op

−−−−−→X op F−→A,

which is limit preserving because f ∗ is colimit preserving. The construction F 7→ f∗F
is itself limit preserving, and thus, if A is presentable, admits a left adjoint f ∗.

The left adjoint f ∗ is in general difficult to describe explicitly. However, in many
of the cases we are interested in (e.g., spectra, E∞-rings, topological abelian groups)
A is a compactly generated ∞-category (see [169, 5.5.7]). This means3 that there
exists a small and finite cocomplete A0, and a left exact functor A0→A inducing an
equivalence

A 7→MapA(−,A) : A→∼ Funlex((A0)op,S) ⊆ Fun((A0)op,S),

where “lex” indicates the full subcategory of left exact (= finite limit preserving)
functors.

Example 8.6.11. For instance, if A = Sp is the ∞-category of spectra, we can take
A0 to be the full subcategory of “finite” spectra, i.e., those built from finitely many
cells.

For such A, we then have equivalences

ShvA(X ) = Funlim. pres(X op,A) ≈ Funlim. pres(Aop,X ) ≈ Funlex((A0)op,X ),

(where the middle equivalence sends a limit preserving functor X op→A to the right
adjoint of its opposite, using (8.2.2)). It turns out that in this case a geometric morphism
f : X → Y induces direct image and pullback functors ShvA(X ) � ShvA(Y ) by

3 To see this combine [169, 5.3.5.10] and [169, 5.5.1.9].
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postcomposition with f∗ : X →Y and f ∗ : Y →X respectively (defined because both of
these are left exact). (See [163, V 1.1.8].)

Remark 8.6.12 (Descent for sheaves). An immediate consequence of this is descent
for sheaves with values in compactly generated ∞-categories A: if X ≈ colimi Xi
in ∞T op, then ShvA(X ) ≈ limi ShvA(Xi), where the limit is taken over pullback
functors. In particular, if U ≈ colimiUi in X , then ShvA(X/U ) ≈ limi ShvA(X/Ui ).

8.7 Étale morphisms

Any morphism f : U → V in X gives rise to a geometric morphism, denoted
f : X/U → X/V , where the left exact left adjoint f ∗ is defined by pullback along
f . (We already met this functor in (8.4).) In particular, for any U ∈ X there is a
geometric morphism π : X/U →X .

Maps to slices of∞-topoi

Proposition 8.7.1. Given U ∈ X and a geometric morphism f : Y → X , there is an
equivalence 

X/U
π
��

Y
f
//

s 99

X

→∼
{

1 // f ∗U
}

between the ∞-category of “sections” of π over Y , and the ∞-groupoid of global sections
of f ∗U on Y . It is defined by sending s to s∗(t), where t : 1→ π∗U is the map in X/U
represented by the diagonal map ∆ : U → U ×U . (See [169, 6.3.5.5] for a more precise
statement and proof.)

As a consequence, we see that U 7→ X/U describes a fully faithful functor X �
∞T op/X . Thus, objects of X , which as we have seen (8.3.5) can be thought of as
“generalized open sets” of X , can also be identified with particular kinds of geometric
morphisms to X , and we lose no information by doing so.

Example 8.7.2 (Espace étalé). Given a sheaf of sets F on a topological space X, the
espace étalé of F is a topological space XF equipped with a map π : XF → X, defined
so that OpenXF =

∐
U∈OpenX

F(U ). It is not hard to show that Shv(XF) ≈ Shv(X)/F ,
and that there is a bijection between maps F→ F′ in ShvSet(X), and maps XF → XF′
of topological spaces which are compatible with the projection to X.

Any local homeomorphism f : Y → X of spaces is equivalent to the espace étalé
of a sheaf of sets. Local homeomorphisms are also called étale maps of spaces, which
motivates the terminology of the next section.
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Étale morphisms of∞-topoi

A geometric morphism is étale if it is equivalent to a morphism of the form π : X/U →
X for some∞-topos X and object U ∈ X . This class includes the geometric morphism
X/U → X/V induced by a map f : U → V in X , as f also represents object of the
∞-topos X/V .

Remark 8.7.3 (Pullbacks of étale morphisms). Pullbacks of étale morphisms of ∞-
topoi are étale: (8.7.1) implies a pullback diagram

Y/f ∗U //

��

X/U

��

Y
f
// X

in ∞T op.

Remark 8.7.4 (Characterization of étale morphisms). For any étale morphism f :Y→X,
the pullback functor f ∗ admits a left adjoint f! : Y →X . In the case of the projection
π : X/U →X , this is the evident functor which on objects sends V →U to V .

The left adjoint f! associated to an étale morphism f : Y →X is conservative, and
has the property that the evident map f!(f ∗U ×f ∗V Z)→∼ U ×V f!Z is an equivalence
for all Z ∈ Y and all U → V and f!Z → V in X . Furthermore, étale morphisms f
are characterized by the existence of an f! with these properties [169, 6.3.5.11].

Remark 8.7.5 (“Restriction” of sheaves along étale maps). For an étale morphism
f : Y → X and any ∞-category A, the induced functor f ∗ : ShvA(X )→ ShvA(Y )
on A-valued sheaves admits a very simple description using f!: it sends F : X op→A
to F(f!)op : Yop → A. When f is the projection X/U → X this amounts to saying
that (f ∗F)(V → U ) ≈ F(V ). It is easy to think of this as a “restriction” functor, so
sometimes we will use the notation “F|U ” for f ∗F in this case.

Colimits along étale maps of∞-topoi

Let ∞T opét ⊆∞T op denote the (non-full) subcategory consisting of étale morphisms
between arbitrary ∞-topoi.

Proposition 8.7.6 ([169, 6.3.5.13]). The∞-category∞T opét has all small colimits, and
the inclusion ∞T opét→∞T op preserves small colimits.

For instance, given an ∞-topos X , the descent property (8.4.5), plus the fact that
colimits in ∞T op are computed as limits in Ĉat∞ (8.5), implies that the functor

U 7→ X/U : X →∞T op

is itself colimit preserving. This functor clearly factors through the subcategory
∞T opét. In fact, every colimit in ∞T opét is equivalent to one of this form.

Example 8.7.7. Any equivalence of ∞-topoi is étale. Thus, if X : G → ∞T op is
a functor from a small ∞-groupoid G, it factors through ∞T opét → ∞T op, so its
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colimit is a “quotient ∞-topos” X //G, with the property that X (c)→ X //G is étale
for all objects c ∈ G.

For instance, let X = Shv(X) be the ∞-topos of sheaves on a topological space X,
and let G be a discrete group acting on X. Then X //G is equivalent to an∞-category
of “G-equivariant sheaves on X”, and the projection map π : X →X //G is étale.

Remark 8.7.8 . The proof of (8.7.6) is pretty technical, but ultimately it is a gen-
eralization of the following observation: given open immersions U ← W → V of
topological spaces, the pushout X in spaces can be constructed so that a basis of
open sets is described by the category colim[OpenU ←OpenW →OpenV ].

8.8 Spectra and commutative ring spectra

Now that we have ∞-categorical versions of spaces, we can put sheaves of spectra
or commutative ring spectra on them. In this section I collect some notation and
observations about these; some familiarity with spectra and structured ring spectra
on the part of the reader is assumed.

Spectra

We write Sp for the ∞-category of spectra. It is an example of a stable∞-category [168,
1.1.1.9], and so is pointed, has suspension and loop functors which are inverse to each
other, has fiber sequences and cofiber sequences which coincide, and so forth.

The ∞-category Sp has a symmetric monoidal structure with respect to “smash
product”, here denoted “⊗”, with unit object being the sphere spectrum S. The
monoidal structure is closed, so there are internal hom objects.

We write Ω∞−n : Sp→S for the usual “forgetful” functors, and define homotopy
groups of spectra by πnX = πn+kΩ

∞−kX for n ∈ Z, and any k ≥ −n. We say that a
spectrum X is n-truncated if Ω∞−kX ≈ 1, or equivalently if πkX ≈ 0 for k < n. We
say a spectrum is n-connective if πkX ≈ 0 for k > n, and connective if 0-connective.

We write Sp≤n and Sp≥n respectively for the full subcategories in Sp of n-truncated
and n-connective objects. The intersection

Sp♥ = Sp≥0 ∩ Sp≤0

is equivalent to the ordinary category of abelian groups: every abelian group A
corresponds to an Eilenberg–MacLane spectrum in Sp♥, which we also denote A by
abuse of notation.

Warning 8.8.1. The notion of n-truncated spectrum described above is not the same
as the general notion of n-truncation in an∞-category that we described earlier (8.5):
since every spectrum is a suspension of one, every n-truncated object in Sp (in the
earlier sense) is equivalent to 0. The pair (Sp≤0,Sp≥0) is instead an example of a
t-structure on Sp [168, 1.2.1].
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Commutative ring spectra

By an E∞-ring, we mean a commutative ring object with respect to the symmetric
monoidal structure on the ∞-category of spectra. The ∞-category of commutative
rings is denoted CAlg. (We are following the notation and terminology of [170] here.
This notion of E∞-ring is an ∞-categorical manifestation of the notion of structured
commutative ring spectrum/commutative S-algebra as defined in, e.g., [94].)

Given A ∈ CAlg we write CAlgA = CAlgA/ for the category of E∞-rings under A,
also called commutative A-algebras. The initial E∞-algebra is the sphere spectrum
S, so CAlg = CAlg

S
.

There is a forgetful functor CAlg → Sp which is conservative. The homotopy
groups of an E∞-algebra are those of its underlying spectrum, and likewise we may
speak of an E∞-ring being n-truncated or n-connective by reference to its underlying
spectrum. In particular we distinguish the full subcategory CAlgcn of connective
E∞-rings, i.e., those A ∈ CAlg such that πkA ≈ 0 for k < 0.

We further consider the full subcategory CAlg♥ of E∞-algebras which are both
0-connective and 0-truncated. This is equivalent to the ordinary category of commu-
tative rings, so we will identify an ordinary commutative ring with its corresponding
Eilenberg–Mac Lane spectrum in CAlg♥.

We have adjoint pairs

CAlg♥ // // CAlgcnoooo // // CAlgoooo

of fully faithful and localization functors relating these subcategories; the localization
functors of these pairs are denoted τ≥0 : CAlg→ CAlgcn and τ≤0 : CAlgcn→ CAlg♥.
Note that S ∈ CAlgcn and that S→ τ≤0S ≈Z.

Remark 8.8.2 (General truncation of E∞-rings). The ∞-category CAlg of E∞-rings,
being a presentable ∞-category, has n-truncation functors τ≤n : CAlg → CAlg for
n ≥ −1 (8.5). However, these are not generally compatible with the n-truncation
functors on spectra defined in (8.8). For example, the periodic complex K-theory
spectrum KU admits the structure of an E∞-ring, but its nth truncation as an E∞-
ring is equivalent to 0 for all n ≥ −1.

However, the n-truncation functors on CAlg restrict to functors on connective E∞-
rings τ≤n : CAlgcn→ CAlgcn, which are in fact the n-truncation functors for CAlgcn,
and which are in fact compatible with n-truncation of the underlying spectra.

Modules

To each E∞-ring A there is an associated ∞-category of (left) modules ModA, which
is itself closed symmetric monoidal: we write M ⊗AN for the monoidal product and
HomA(M,N ) for the internal hom. We have that Mod

S
≈ Sp, an equivalence of

symmetric monoidal ∞-categories.

Example 8.8.3. If A ∈ CAlg♥ is an ordinary ring, then ModA is equivalent to the
∞-category obtained from chain complexes of A-modules and quasi-isomorphisms
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[266]. Thus, the homotopy category of ModA is the derived category of the ring A. The
tensor product on ModA corresponds to the derived tensor product of complexes.

Remark 8.8.4 (Z-modules are abelian groups). We will write Modcn
Z
⊆Mod

Z
for the

full subcategory of (−1)-connected Z-modules. The ∞-category Modcn
Z

is equivalent
to those obtained from each of the following examples by inverting the evident weak
equivalences: (−1)-connected chain complexes of abelian groups, simplicial abelian
groups, topological abelian groups.

An object X in an ∞-category A is called an abelian group object if it represents
a functor Aop→Modcn

Z
.

Every commutative A-algebra has an underlying A-module. The coproduct of A-
algebras coincides with tensor product of A-modules. For this reason, we typically
denote coproduct in CAlgA by B⊗A C.

The homotopy groups π∗M of an A-module are automatically a graded π∗A-
module. To get a feel for how these things behave, it is useful to be aware of two
spectral sequences:

E2 = Torπ∗A∗ (π∗M,π∗N ) =⇒ π∗(M ⊗AN ),

E2 = Ext∗π∗A(π∗M,π∗N ) =⇒ π∗HomA(M,N ).

The Tor spectral sequence satisfies complete convergence, while the Ext spectral
sequence satisfies conditional convergence [94, Ch. IV].

Flat modules and E∞-rings

An A-module M is said to be flat if

1. π0M is flat as a π0A-module, and
2. the evident maps π0M ⊗π0A πnA→ πnM are isomorphisms for all n.

Likewise, a map A→ B of E∞-rings is flat if B is flat as an A-module, In view of the
tor spectral sequence, we see that if A→ B is flat then π∗(B⊗AN ) ≈ π0B⊗π0A π∗N
for N ∈ModA.

Remark 8.8.5 (Flatness and connective covers). Let’s pause to note the following.
Consider the map τ≥0A→ A from the connective cover to an E∞-ring A. The base
change functor A⊗τ≥0A − : Modτ≥0A→ModA restricts to an equivalence

Mod[τ≥0A
→∼ Mod[A

of full subcategories of flat modules; the inverse equivalence sends an A-module
N to its connective cover τ≥0N viewed as a τ≥0A-module. Similarly, we obtain an
equivalence

CAlg[τ≥0A
→∼ CAlg[A

of full subcategories of algebras which are flat over the ground ring. Thus, any flat
morphism of E∞-rings is a base change of one between connective E∞-rings. This
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phenomenon turns out to extend to nonconnective spectral Deligne–Mumford stacks
(8.13.6).

Examples of E∞-rings

Example 8.8.6 (Polynomial rings). Given any space K , we obtain a spectrum S[K] =
the suspension spectrum of K+. If K is equipped with the structure of an E∞-space
(i.e., space with an action by an E∞-operad), then S[K] is equipped with a corre-
sponding structure of E∞-ring. A particular example of this is when K is a discrete
commutative monoid.

For instance, we can form polynomial rings: S[x] := S[Z≥0], and more generally
A[x1, . . . ,xn] := A⊗S[(Z≥0)n] ≈ A⊗S[Z≥0]⊗n. We have

π∗
(
A[x1, . . . ,xn]

)
≈ (π∗A)[x1, . . . ,xn].

Thus, A[x1, . . . ,xn] is a flat A-algebra. In particular, if A is an ordinary ring, then
A[x1, . . . ,xn] is also an ordinary ring.

Example 8.8.7 (Free rings). Let S{x} denote the free E∞-ring on one generator,
which is characterized by the existence of isomorphisms

MapCAlg(S{x},R)→∼ Ω∞(R)

natural in R ∈ CAlg. We have that S{x} ≈ S[
∐
k BΣk].

We may similarly define A{x1, . . . ,xn} := A ⊗ S{x}⊗n, the free commutative A-
algebra on n generators.

There is a canonical map A{x1,...,xn} → A[x1,...,xn] from the free ring to the
polynomial ring. It is generally not an equivalence, but is an equivalence if Q⊆π0A.
When A is connective so is A{x1,...,xn}, and then π0

(
A{x1,...,xn}

)
≈ π0A[x1,...,xn];

however, no such isomorphism on π0 holds for general non-connective E∞-rings.

E∞-rings of finite characteristic

We note the following curious fact, conjectured by May and proved by Hopkins; see
[188]. It is a generalization of the Nishida nilpotence theorem, which is the special
case R = S.

Theorem 8.8.8. For any R ∈ CAlg, all elements in the kernel of the evident map
π∗R→ π∗(R⊗Z) are nilpotent. In particular, R⊗Z ≈ 0 implies R ≈ 0.

Many spectra which arise in chromatic homotopy theory have the property that

R⊗Z→∼ R⊗Q; e.g., if R ≈ LfnR for some n at some prime p. Therefore, if R ∈ CAlg

is such that R(p) ≈ L
f
nR(p) 0 0 for some prime p and some n <∞, then 1 ∈ π0R has

infinite order. So there are no non-trivial E∞-rings of finite characteristic in chromatic
homotopy.

A related result of Hopkins–Mahowald is: any R ∈ CAlg such that p = 0 ∈ π0R
admits the structure of a Z/p-module [188, Theorem 4.18]. In particular, the underlying
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spectrum of an E∞-ring of positive characteristic p is always a product of Eilenberg–
MacLane spectra.

Other kinds of commutative rings

We note several other flavors of commutative ring which can be used in derived
versions of algebraic geometry.

1. Given an ordinary ring R, there is a notion of chain-level E∞-R-algebra, consisting
of an unbounded chain complex of abelian groups equipped with the action of a
chain-level E∞-operad. The resulting ∞-category of chain level E∞-R-algebras is
equivalent to CAlgR [236].

2. Over any ordinary ring R we may consider the category of differential graded
commutative R-algebras. In general it is not possible to extract a useful∞-category
from this notion. However, it is possible when R ⊇Q, in which case the resulting
∞-category is equivalent to CAlgR.

3. The category of simplicial commutative rings gives rise to an ∞-category CAlg∆.
This ∞-category is related to CAlg

Z
but is quite distinct from it. In fact, there is

a conservative “forgetful” functor

CAlg∆→ CAlgcn
Z

which is both limit and colimit preserving. This implies that simplicial commutative
rings are intrinsically connective objects, and that pushouts in CAlg∆ are computed
as tensor products on underlying Z-modules.

However, the above functor is far from being an equivalence. For instance, the
“free simplicial commutative ring on one generator” maps to Z[x] ∈ CAlgcn

Z
, rather

than to Z{x}. See [170, 25.1].

Spectrally ringed∞-topoi

The categories Sp and CAlg are presentable ∞-categories (and in fact are compactly
generated), so it is straightforward to consider sheaves on an ∞-topos valued in each
of these. For any such sheaf O on X we have homotopy sheaves πkO on X♥.

A spectrally ringed ∞-topos is a pair X = (X ,OX ) consisting of an ∞-topos
X and a sheaf OX ∈ ShvCAlg(X ) of E∞-rings. These are objects of an ∞-category
∞T opCAlg, in which morphisms X→ Y are pairs consisting of a geometric morphism
f : X → Y together with a map φ : OY → f∗OX of sheaves of E∞-rings on Y (see
[170, 1.4.1.3]).

8.9 The étale site of a commutative ring

Our objects of study will be spectrally ringed ∞-topoi which are “locally affine”. There
are two such notions of affine we can use here, corresponding in the classical case
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to the Zariski and étale topologies of a ring. We are going to focus on the étale case
(which is in some sense strictly more general). Thus, in this section we describe the
spectrally ringed ∞-topos SpétA associated to an E∞-ring A. It is an “étale topology
version” of an analogous construction of a spectrally ringed ∞-topos SpecA, which
generalizes the classical construction of affine schemes.

Warning: this notion of “étale” map of rings is not to be confused with that of étale
maps of ∞-topoi (8.7), though the notions will be linked later on (8.13).

Étale maps of E∞-rings

A map R→ S of ordinary commutative rings is étale if:

1. S is finitely presented over R,
2. R→ S is flat, and
3. the fold map S ⊗R S→ S is projection onto a factor (or equivalently, there exists

idempotent e ∈ S ⊗R S inducing (S ⊗R S)[e−1]→∼ S).

Example 8.9.1. If K is a field, then K → R is étale if and only if R ≈
∏d
i=1Fi , where

each K → Fi is a finite separable field extension.

We say that a map A→ B of E∞-rings is étale if

1. the underlying map π0A→ π0B of ordinary commutative rings is étale, and
2. πnA⊗π0A π0B→ πnB is an isomorphism for all n (so that A→ B is flat in the

sense of (8.8)).

Remark 8.9.2 . If A ∈ CAlg♥ is an ordinary commutative ring, then the two notions
of étale coincide.

Theorem 8.9.3 (Goerss–Hopkins–Miller). Let A ∈ CAlg.

1. For every étale map ψ : π0A→ B0 of ordinary rings, there exists an étale map φ : A→
B of E∞-rings and an isomorphism π0B ≈ B0 with respect to which π0φ : π0A→ π0B
is identified with ψ.

2. Let φ : A→ B be an étale map of E∞-rings. Then for every C ∈ CAlgA, the evident
map

MapCAlgA
(B,C)→MapCAlg♥π0A

(π0B,π0C)

is an equivalence.

See [168, 7.5.4] for a proof of a generalized formulation of this.

Remark 8.9.4 . A consequence of this theorem is that MapCAlgA
(B,C) is a set (i.e.,

0-truncated) whenever φ : A→ B is étale. This consequence can be proved directly
from the definition of étale morphism. In fact, when φ is étale, then the evident map
B⊗(B⊗AB) B→ B must be an equivalence (using that both A→ B and B⊗A B→ B
are flat). Writing X = MapCAlgA

(B,C), this equivalence implies that X→ X ×(X×X)X
is an equivalence, which says exactly that X is 0-truncated.
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Remark 8.9.5 . Given an étale morphism π0A→ B0 of ordinary rings, it is not hard to
show that the functor CAlgA→ Set ⊆ S defined by MapCAlg♥π0A

(B0,π0(−)) preserves

limits4 and is accessible, so is corepresentable by a B ∈ CAlgA. The hard part of
(8.9.3) is to show that B0→ π0B is an isomorphism.

Remark 8.9.6 . Statement (2) of the theorem is equivalent to: for every étale map
A→ B and R ∈ CAlg, the square

MapCAlg(B,R) //

��

MapCAlg(π0B,π0R)

��

MapCAlg(A,R) // MapCAlg(π0A,π0R)

is a pullback of ∞-groupoids.

Let CAlgét
A ⊆ CAlgA be the full subcategory of A-algebras whose objects are maps

A→ B which are étale. As we have seen, it is equivalent to a 1-category.

Remark 8.9.7 . If A
f
−→ B

g
−→ C are maps of E∞-rings such that f and gf are étale,

then g is also étale [168, 7.5.1.7]. Thus every morphism in CAlgét
A is itself étale.

Corollary 8.9.8. For any A ∈ CAlg, the functor CAlgét
A → CAlgét

π0A
defined by taking

π0 is an equivalence of ∞-categories.

Example 8.9.9 (Localization of E∞-rings). Let A ∈ CAlg, and suppose f ∈ π0A.
Then π0A→ (π0A)[f −1] is an étale morphism of commutative rings. By (8.9.3), (i)
there exists a map A→ A[f −1] of E∞-rings such that (i) π∗(A[f −1]) ≈ (π∗A)[f −1],
and (ii) for any C ∈ CAlg, MapCAlg(A[f −1],C)→MapCAlg(A,C) is the inclusion of
those path components consisting of φ : A→ C which take f to a unit in π0C.

This special case predates the proof of the Goerss–Hopkins–Miller theorem for
E∞-rings. In fact, one can in a similar way invert any multiplicative subset S ⊆ π∗A
of the graded homotopy ring to obtain AS with π∗(AS ) ≈ (π∗A)S .

Example 8.9.10 (Adjoining primitive roots of unity). Here is a hands-on construction
of an étale morphism, due to [260]. Given any E∞-ring A, prime p, and k ≥ 1,

consider the group ring B′ := A[Z/pk] (8.8.6), with π0B
′ ≈ (π0A)[t]/(tp

k − 1). Let

f =
∑p−1
j=0 (1− tjpk−1

) in π0B
′ , and note that f 2 = pf . Formally inverting f we obtain

B := B′[f −1], with π∗B ≈ (π∗A)[ 1
p , t]/(1 + tp

k−1
+ · · ·+ t(p−1)pk−1

).

It turns out that A→ B is an étale morphism, and π0B is obtained from π0A by (i)
inverting p and (ii) adjoining a primitive pkth root of unity.

Remark 8.9.11 . In general, you can always construct étale maps of E∞-rings using
“generators and relations” (using free rings (8.8.7)), which in fact leads to an alternate
proof of (8.9.3); see [170, B.1]. In particular, this shows that every étale map in CAlg
is a base change of one between compact objects in CAlg ([170, B.1.3.3] with R = S).

4 Using the fact that étale maps of rings are also “formally étale”.
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(An object A in an ∞-category is compact if MapA(A,−) : A→S preserves filtered
colimits.)

The étale site of an E∞-ring

Given A ∈ CAlg, consider the category CAlgét
A of étale morphisms under A. A finite

set {A→ Ai}di=1 of maps in CAlgét
A is an étale cover if π0A→

∏d
i=1π0Ai is faithfully

flat.
We define Shvét

A ⊆ Fun(CAlgét
A ,S) to be the full subcategory of functors F such

that

F(A)→ lim∆

[
[n] 7→

∏
i0,...,in

F(Ai0 ⊗A · · · ⊗A Ain )
]

is an equivalence for every étale cover {A→ Ai}i in CAlgét
R . This Shvét

A is an ∞-
topos; in fact, it is equivalent to the ∞-topos Shvét

π0A
of étale sheaves on the ordinary

commutative ring π0A. I’ll call its objects of sheaves on the étale site of A.

The étale spectrum of an E∞-ring

Let O : CAlgét
A → CAlg denote the forgetful functor.

Proposition 8.9.12. The functor O is a sheaf of E∞-rings on the étale site of A.

We thus define the étale spectrum of A ∈ CAlg to be the spectrally ringed∞-topos
SpétA = (Shvét

A ,O).

Proof of (8.9.12). We must show that for every finite étale cover {A → Ai}di=1 the
evident map

A→ lim∆

[
[n] 7→

∏
i0,...,in

Ai0 ⊗A · · · ⊗A Ain
]

is an equivalence of E∞-rings. This is a special case of a much more general statement,
called flat descent for E∞-rings; see [170, D.5] for the general theory.

In this case, the proof amounts to computing the spectral sequence computing the
homotopy groups of the inverse limit, whose E1-term takes the form

Es,t1 = πt(Ai0 ⊗A · · · ⊗A Ais ) ≈ πtA⊗π0A (π0Ai0 ⊗π0A · · · ⊗π0A π0Ais )

because étale morphisms are flat. The classical version of flat descent for ordinary
rings implies that

Es,t2 ≈H
s[πtA⊗π0A (π0Ai0 ⊗π0A · · · ⊗π0A π0Ais ) ] ≈

{
πtA if s = 0,
0 if s > 0,

so the spectral sequence collapses to a single line at E2. The claim follows because
the inverse limit spectral sequence has conditional convergence.
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Remark 8.9.13 . We actually have that O is a hypercomplete sheaf of spectra Shvét
A .

In fact, the argument of the proof of (8.9.12) shows that for each n ≥ 0 the presheaf
τ≤nO : A 7→ τ≤nA of spectra obtained by truncation is a sheaf on the étale site,
whence O ≈ limn τ≤nO; this relies on the fact that CAlgét

τ≤nA
≈ CAlgét

π0A
for all

n ≥ 0, so all these rings have the same étale site.

The Zariski site and spectrum of an E∞-ring

In the above we can replace CAlgét
A with the full subcategory CAlgZar

A spanned by
objects equivalent to localizations A→ A[f −1]. Then {A→ A[f −1

i ]}di=1 is a Zariski

cover if π0A →
∏d
i=1π0A[f −1

i ] is faithfully flat; equivalently, if (f1, . . . , fd)π0A =
π0A. We obtain an ∞-topos ShvZar

A ⊆ Fun(CAlgZar
A ,S) of Zariski sheaves. We have

ShvZar
A ≈ ShvZar

π0A
, and these are equivalent to the ∞-categories of sheaves on a

topological space, namely the prime ideal spectrum of π0A equipped with the Zariski
topology.

We can likewise define the Zariski spectrum to be the spectrally ringed ∞-topos
SpecA = (ShvZar

A ,O), as the forgetful functor O : CAlgZar
A → CAlg is sheaf of E∞-

rings on the Zariski site.

Example 8.9.14 (Points in étale site vs. the Zariski site). To get a sense of the
difference between the Zariski and étale sites, let’s compare Map∞T op(S ,ShvZar

A )
with Map∞T op(S ,Shvét

A ). (A map of ∞-topoi of the form S → X is called a point
of X .)

First, suppose K ∈ CAlg♥ is an ordinary field. Then CAlgZar
K ≈ 1, so ShvZar

K ≈ S ,
so there is a unique map S → ShvZar

K of ∞-topoi. On the other hand, any separable
closure K → Ksep induces a geometric morphism f : S → Shvét

K , characterized by
the property that f ∗U ≈MapCAlgK

(R,Ksep) when U ∈ Shvét
K is the sheaf represented

by a map K → R ∈ CAlgét
K . Therefore,

Map∞T op(S ,Shvét
K ) ≈ BGal(K),

the classifying space of the absolute Galois group of K viewed as an ∞-groupoid.
For general A ∈ CAlg, the ∞-groupoid Map∞T op(S ,ShvZar

A ) is equivalent to the
set |SpecA| of prime ideals in π0A (i.e., the prime ideal spectrum as a discrete
set), while Map∞T op(S ,Shvét

A ) is equivalent to a 1-groupoid whose objects are pairs
(p, π0A/p→ F) consisting of a prime ideal p ⊂ π0A and a separable closure F of the
residue field π0A/p.

8.10 Spectral Deligne–Mumford stacks

We can now define the main notion, that of a spectral Deligne–Mumford stack.
First note that given a spectrally ringed ∞-topos X = (X ,OX ) and an object U ∈ X ,

we obtain a new spectrally ringed ∞-topos

XU := (X/U ,OX |U )
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where OX |U := π∗OX is the preimage of OX along the projection π : X/U → X .
Furthermore, this comes with an evident map XU → X of spectrally ringed ∞-topoi.

Example 8.10.1. If X = SpétA = (Shvét
A ,O) and U ∈ Shvét

A ⊆ PSh((CAlgét
A )op) is the

sheaf represented by an étale map (A→ B) ∈ CAlgét
A , then XU ≈ ((Shvét

A )/U ,O|U ) ≈
(Shvét

B ,O) = SpétB.

The definition of spectral Deligne–Mumford stacks

We say that a spectrally ringed ∞-topos X = (X ,OX ) is affine if it is isomorphic to
SpétA for some A ∈ CAlg. Likewise, we say that an object U ∈ X is affine if XU (as
defined above) is affine.

A nonconnective spectral Deligne–Mumford (DM) stack is a spectrally ringed
∞-topos X = (X ,OX ) for which there exists a set of objects {Ui} in X such that

1. the set {Ui} covers X (i.e.,
∐
Ui → 1 is effective epi in X ), and

2. each Ui is affine.

Remark 8.10.2 . The structure sheaf of a nonconnective spectral DM stack is always
hypercomplete, as a consequence of the fact that this is so in the affine case (8.9.13).

A spectral Deligne–Mumford (DM) stack is a nonconnective DM stack (X ,OX )
such that the sheaf OX is connective; i.e., such that the homotopy sheaves πkOX ∈ X♥
satisfy πkOX ≈ 0 for k < 0.

Remark 8.10.3 . SpétA is always a nonconnective spectral DM stack, and is a spectral
DM stack if and only if A is connective.

Remark 8.10.4 . If X = (X ,OX ) is a nonconnective spectral DM stack and U ∈ X ,
then XU is also a nonconnective spectral DM stack. Furthermore, if X is a spectral
DM stack, so is XU .

This is a consequence of the following claim: for a nonconnective spectral DM
stack X, the collection A = {Vj } of all affine objects in X generates X under colimits
[170, 1.4.7.9]. In particular, this implies that for any U we can find a set of maps of
the form Vj →U with all Vj ∈ A which is a cover of X/U (8.5.6).

Here’s a proof that affines generate X under colimits. First note that if X ≈ SpétA
is itself affine, then X ≈ Shvét

A which is manifestly generated by affines (i.e., by the
image of (CAlgét

A )op� Shvét
A (8.10.1)). In the general case, if {Ui} is an affine cover

of X , choose for each i a set {Vi,j → Ui} of affine objects of X/Ui which generate
X/Ui under colimits. Then the collection {Vi,j } in X is a collection of affines which
generate X under colimits (since (XUi )Vi,j ≈ XVi,j ).

Spectral schemes

We can carry out an analogous definition using the Zariski topology. A special case
of this is a nonconnective spectral scheme, which is a spectrally ringed ∞-topos
X = (X ,OX ) such that
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1. X ≈ Shv(Xtop) for some topological space Xtop, and
2. there exists an open cover {Ui} of Xtop such that XUi ≈ SpecAi for some Ai ∈

CAlg.

It is a spectral scheme if also πkOX ≈ 0 for k < 0. (This is not the definition given
as [170, 1.1.2.8], but is equivalent to it by [170, 1.1.6.3, 1.1.6.4].)

8.11 Morphisms of spectral DM stacks

We need to work rather harder to get the correct notion of morphism of spectral DM
stacks. Our goal is produce a category SpDMnc of nonconnective spectral DM stacks
which includes SpétR for any R ∈ CAlg, with the property that

MapSpDMnc(SpétS,SpétR) ≈MapCAlg(R,S).

More generally, we would like to have

MapSpDMnc(X,SpétR) ≈MapCAlg(R,Γ (X ,OX )),

for any object X ∈ SpDMnc, where Γ (X ,OX ) ∈ CAlg is the global sections of the
structure sheaf OX .

Let’s make this more precise. Given a map (f ,ψ) : X→ SpétR of spectrally ringed
∞-topoi, we obtain a map R→ Γ (X ,OX ) of E∞-rings, by evaluating the composite of

O→ f∗f
∗O

f∗(ψ)
−−−−→ f∗OX

at global sections over Shvét
R . Thus we get a map of ∞-groupoids

Map∞T opCAlg
(X,SpétR)→MapCAlg(R,Γ (X ,OX )). (8.11.1)

This map is rarely an equivalence, even when X is affine. It turns out that we obtain
an equivalence when we require X to be strictly Henselian, and restrict to a full
subgroupoid Map∞T opsHen

CAlg
(X,SpétR) ⊆Map∞T opCAlg

(X,SpétR), consisting of local
maps.

Solution sheaves

To carry out this definition, we need to think locally. Given a spectrally ringed
∞-topos X = (X ,OX ) and an E∞-ring R, define the solution sheaf SolR(OX ) ∈
Funlim. pres.(X op,S) ≈ X by

SolR(OX )(U ) := MapCAlg(R,OX(U )).

Note that R 7→ SolR(OX ) is itself a functor CAlgop→X , and is limit preserving.
We obtain a map of sheaves of ∞-groupoids on X ,[

U 7→Map∞T opCAlg
(XU ,SpétR)

]
→ SolR(OX ),

which can be thought of as a “local” version of the map (8.11.1), since evaluating the
above map at the terminal object U = 1X of X recovers the map (8.11.1).
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Strictly Henselian sheaves

A sheaf O of E∞-rings is strictly Henselian if for every étale cover {R→ Ri} in
CAlgét, the induced map ∐

SolRi (O)→ SolR(O) (8.11.2)

is an effective epi in X . (This is not the definition of [170, 1.4.2.1], but is equivalent to
it by [170, 1.4.3.9].)

Remark 8.11.1 . The strictly Henselian condition on O gives rise to a map

MapCAlg(R,Γ (X ,O))→Map∞T op(X ,Shvét
R ),

i.e., from an E∞-ring map α : R→ Γ (X ,O) we can get a map X → Shvét
R of∞-topoi.

To see how this works, note that in the diagram

(CAlgét
R )op Sol•(O)=(R′ 7→SolR′ (O))

//

��

��

X/ SolR(O)

PSh((CAlgét
R )op)

a ����

τ

33

Shvét
R

t∗

77

there is an essentially unique colimit preserving functor τ extending Sol•(O). The
strictly Henselian condition on O implies that τ factors through an essentially unique
colimit preserving functor t∗. Because Sol•(O) preserves limits, t∗ preserves finite
limits. That is, t∗ is the preimage of a geometric morphism t : Shvét

R →XSolR(O).
An E∞-ring map α : R→ Γ (X ,O) corresponds to a section 1X → SolR(O), which

induces an étale geometric morphism α : X → X/ SolR(O). The composite t ◦α is the
desired map of ∞-topoi.

Remark 8.11.2 . It can be shown [170, 1.4.3.8] that the map in (8.11.2) is a pullback of∐
Solπ0Ri (π0O)→ Solπ0R(π0O), so O is strictly Henselian (or local) if and only if

π0O is so; this recovers the definition in [170, 1.4.2.1]. (The proof rather subtle: you
need to use the fact that every étale map is a base change of an étale map between
compact objects in CAlg (8.9.11), in order to reduce to the case of the pullback square
(8.9.6) of mapping spaces. The issue here is that it is not the case that f ∗ SolR(O)→
SolR(f ∗O) is an isomorphism in general, unless R is a compact object of CAlg.)

There is an analogous definition of local sheaf, in which étale covers are replaced
with Zariski covers in the definition given above.

Example 8.11.3 (Local and strictly Henselian sheaves on a point). Let X = S , so
ShvCAlg(S) ≈ CAlg, and for O ∈ CAlg we have SolR(O) ≈Map(R,O) ∈ S .

From the definitions and the universal property of localization maps R→ R[f −1]
in CAlg, we see that O is local if and only if, for every pair (R, {f1, . . . , fd} ⊆ π0R)
consisting of R ∈ CAlg such that (f1, . . . , fd)π0R = π0R, every map α : R → O in
CAlg is such that α(fk) is an invertible element of π0O for some k ∈ {1, . . . ,d}.
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It follows that O must be a local sheaf whenever π0O is a local ring in the usual
sense. The converse also holds: if O is a local sheaf, apply the condition with (R = 0,
∅ ⊆ π0R) to see that π0O 0 0, and with (R = S{x,y}[(x + y)−1], {x,y} ⊆ π0R) to see
that m := π0O r (π0O)× is an ideal.

A similar argument shows that O ∈ ShvCAlg(S) is strictly Henselian if and only
if π0O is a strictly Henselian ring in the classical sense, i.e., as defined in [281, Tag
04GE].

Spectral DM stacks are strictly Henselian

For an affine object X = SpétA = (Shvét
A ,O), we see that SolR(O)(U ) ≈MapCAlg(R,B)

when U ∈ Shvét
A is the object represented by the étale A-algebra A→ B. Using this it

is straightforward to show that O is strictly Henselian.

Remark 8.11.4 (Spectral DM stacks are strictly Henselian). Observe that π∗ SolR(O) ≈
SolR(π∗O) when π : X/U → X is the etale map of ∞-topoi associated to an object
U ∈ X . (Use (8.7.5).) Given this it is straightforward to prove that any nonconnective
DM stack is strictly Henselian.

The category of strictly Henselian spectrally ringed∞-topoi

We let ∞T opsHen
CAlg denote the (non-full) subcategory of ∞T opCAlg whose objects are

X = (X ,OX ) such that OX is strictly Henselian, and whose morphisms f : (X ,OX )→
(Y ,OY ) are such that

f ∗ SolR′ (OY ) //

��

SolR′ (OX )

��

f ∗ SolR(OY ) // SolR(OX )

is a pullback in X for every étale map R→ R′ in CAlg. Such morphisms are called
local.

Remark 8.11.5 . This is different than the definition given as [170, 1.4.2.1], but is
equivalent by [170, 1.4.3.9].

Remark 8.11.6 . If X = (X ,OX ) is a nonconnective spectral DM stack and U ∈ X ,
then the evident map XU → X of spectrally ringed ∞-topoi is local.

We can now state our goal.

Theorem 8.11.7. For any strictly Henselian spectrally ringed ∞-topos X = (X ,OX ) and
E∞-ring R, the evident map

Map∞T opsHen
CAlg

(X,SpétR)→∼ MapCAlg(R,Γ (X ,OX ))

is an equivalence.
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Sketch proof. This is [170, 1.4.2.4]. Here is a brief sketch.
Geometric morphisms f : Shvét

R →X correspond (by restriction to representable
sheaves) exactly to left-exact functors χ : (CAlgét

R )op → X which send étale covers
to effective epis. Given such an f , maps φ : O → f∗OX of sheaves of E∞-rings on
Shvét

R correspond to natural transformations φ′ : χ → Sol•(O) of functors; to see
this, use the evident equivalence MapX (χ(R′),SolR′ (O)) ≈MapCAlg(R′ ,OX(χ(R′)))
for R′ ∈ CAlgét

R , and that f∗OX |(CAlgét
R )op ≈ OX ◦χ as functors (CAlgét

R )op→ CAlg.
One shows that if φ is local, then φ′ is Cartesian, i.e., φ′ takes morphisms in

(CAlgét
R )op to pullback squares of sheaves. But since (CAlgét

R ) has R as a terminal
object, we discover that pairs (χ,φ′) with φ′ Cartesian correspond exactly to maps
1X = χ(R)→ SolR(OX ), i.e., to maps R→ Γ (X ,OX ) of E∞-rings. In particular, we
learn that Map∞T opsHen

CAlg
(X,SpétR)→MapCAlg(R,Γ (X ,OX )) is a monomorphism.

Finally, given a map α : R→ Γ (X ,OX ), there is an explicit procedure to construct
a morphism X → SpétR in ∞T opsHen

CAlg which projects to α; the underlying map
X → Shvét

R of ∞-topoi is produced by the procedure of (8.11.1).

The category of locally spectrally ringed∞-topoi

We can play the same game with “local” replacing “strictly Henselian” as the condition
on objects, resulting in a full subcategory ∞T oploc

CAlg of ∞T opsHen
CAlg and a version of

(8.11.7) with Spét replaced with Spec [170, 1.1.5].

8.12 The category of spectral DM stacks

We have achieved our goal. We have full subcategories

SpDM ⊆ SpDMnc ⊆∞T opsHen
CAlg

of spectral DM stacks and nonconnective DM stacks respectively, inside the∞-category
of strictly Henselian spectrally ringed∞-topoi and local maps, which is itself a non-full
subcategory of the category ∞T opCAlg of spectrally ringed ∞-topoi. By (8.11.7) we see
that there are adjoint pairs

Spét : CAlgop
// // SpDMnc :Γoooo and Spét : (CAlgcn)op

// // SpDM :Γ .oooo

Remark 8.12.1 . There are analogous full subcategories of spectral schemes and noncon-
nective spectral schemes in ∞T oploc

CAlg.

Finite limits of DM stacks

The categories SpDM and SpDMnc have finite limits, and finite limits are preserved
by the functors Spét : (CAlgcn)op→ SpDM and Spét : CAlgop→ SpDMnc. In par-
ticular, for a diagram B← A→ B′ of rings, we have

Spét(B⊗A B′) ≈ SpétB×SpétA SpétB′ ,

as an immediate consequence of (8.11.7). (See [170, 1.4.11.1], [163, V 2.3.21].)
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Connective covers and truncation of DM stacks

The adjoint pairs

CAlg♥ // // CAlgcnoooo // // CAlgoooo

relating classical, connective, and arbitrary E∞-rings are paralleled by adjoint pairs

SpDM≤0 // // SpDMoooo // // SpDMncoooo

where SpDM≤0 is the ∞-category of 0-truncated spectral DM stacks, consisting of
X = (X ,OX ) such that πqOX ≈ 0 for q , 0. The localization functors are obtained
respectively by 0-truncating or taking connective cover of the structure sheaf [170,
1.4.5–6].

Classical objects as spectral DM stacks

We would like to connect this spectral geometry to some more “classical” (i.e., 1-
categorical) kind of algebraic geometry.

Note that objects of SpDM≤0 are ∞-topoi X equipped with structure sheaves OX
of classical rings. However, the ∞-topos X is not necessarily a “classical” one, i.e., is
not necessarily equivalent to the 1-localic ∞-topos ShvS (X♥) (8.5.12). So 0-truncated
spectral DM stacks are not necessarily classical objects.

The classical analogue of spectral Deligne–Mumford stack is a Deligne–Mumford
stack, which is a pair X0 = (X ,OX0

) consisting of a 1-topos X with a sheaf OX0
of

ordinary commutative rings on it, which is “locally” affine, i.e., there exists a set {Ui}
of objects in X such that (i)

∐
Ui → 1 is effective epi in X and (ii) (X/Ui ,O|Ui ) ≈

((Shvét
Ai

)♥,O) for some ordinary ring Ai .
Given a nonconnective spectral DM stack X = (X ,OX ), we can form XDM :=

(X♥,π0OX ), which is in fact a classical Deligne–Mumford stack, called the underlying
DM stack of X.

Conversely, given a classical DM stack X0 = (X ,O), we can upgrade it to a 0-
truncated spectral DM stack

XSpDM = (ShvS (X ),O′)

where ShvS (X ) is the 1-localic reflection of X (8.5.12), and O′ is the sheaf of connective
E∞-rings represented by the composite functor

ShvS (X )op (τ≤0)op

−−−−−−→X op O−→ CAlg♥� CAlgcn.

It turns out that this construction describes a fully faithful embedding

(classical DM stacks)� SpDM≤0.

See [170, 1.4.8] for more on the relation between DM stacks and spectral DM stacks.

Example 8.12.2. Here is a simple example which exhibits some of these phenomena.
Let K ∈ CAlg♥ be an ordinary separably closed field, so that Shvét

K ≈ S . Then
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SpétK ≈ (S ,K), where K ∈ CAlg ≈ ShvCAlg(S), is an example of a 0-truncated
spectral DM stack, whose ∞-topos is equivalent to sheaves on the 1-point space. It
corresponds to the classical DM stack associated to K .

For any∞-groupoid U ∈ S we can form (SpétK)U = (S/U ,π∗K), i.e.,∞-groupoids
over U equipped with the constant sheaf associated to K . Then (SpétK)U is also a 0-
truncated spectral DM stack. If U is not a 1-truncated space, then S/U is not 1-localic,
and (SpétK)U does not arise as a classical DM stack in this case.

In short, spectral DM stacks expand DM stacks in two ways: spectral DM stacks
are allowed to have underlying ∞-topoi which are not classical, i.e., not 1-localic, and
spectral DM stacks are also allowed to have structure sheaves which are not classical,
i.e., not merely sheaves of ordinary rings.

Relation to schemes and spectral schemes

There are analogous statements for spectral schemes [170, 1.1]. Thus, a morphism
of nonconnective spectral schemes is just a morphism (X,OX )→ (Y ,OY ) of spec-
trally ringed ∞-topoi which is local; we get full subcategories SpSch ⊆ SpSchnc ⊆
∞T oploc

CAlg; we have fully faithful Spec: (CAlgcn)op→ SpSch and Spec: CAlgop→
SpSchnc; and we have fully faithful embeddings

Sch→∼ SpSch≤0� SpSch,

where Sch≤0 is the full subcategory of 0-truncated spectral schemes. In this case we
have an equivalence Sch ≈ SpSch≤0, since underlying topos of a spectral scheme is
already assumed to be a space.

What is the relation between spectral schemes and spectral DM stacks? Note that
although both spectral schemes and spectral DM stacks are both types of spectrally
ringed ∞-topoi, there is very little overlap between the two classes. What is true [170,
1.6.6] is that there exist fully faithful functors

SpSch� SpDM and SpSchnc� SpDMnc

which promote spectral schemes to spectral DM stacks. Objects in the essentially
image of these functors are called schematic, and this property is easy to characterize:
X = (X ,OX ) is schematic if and only if there exists a set {Ui} of (−1)-truncated objects
of X which are affine and which cover X [170, 1.6.7.3].

8.13 Étale and flat morphisms of spectral DM stacks

Étale morphisms in spectral geometry

A map (X ,OX )→ (Y ,OY ) of spectrally ringed ∞-topoi is called étale if

1. the underlying map f : X →Y of ∞-topoi is étale (8.7), and
2. the map f ∗OY →OX is an isomorphism in ShvCAlg(X ).
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For instance, for any X = (X ,OX ) and U ∈ X , the projection map XU → X is
étale in this sense, where XU = (X/U ,OX |U ). In fact, any etale morphism of spectrally
ringed ∞-topoi is equivalent to one of this form.

If f : X→ Y is an étale map of spectrally ringed ∞-topoi and Y ∈ SpDMnc, then
also X ∈ SpDMnc (8.10.4), and in fact f is a morphism of SpDMnc (8.11.6).

This terminology turns out to be compatible with that of “étale map of E∞-rings”.

Proposition 8.13.1 ([170, 1.4.10.2]). A map A→ B of E∞-rings is étale if and only if
the corresponding map SpétB→ SpétA is étale.

We have the following for “lifting” maps over étale morphisms.

Proposition 8.13.2. Given nonconnective spectral DM stacks X = (X ,OX ) and Y =
(Y ,OY ), a map f : Y → X of nonconnective spectral DM stacks, and an object U ∈ X ,
there is an equivalence 

XU
π
��

Y
f
//

s 99

X

→∼
{

1 // f ∗U
}

between the ∞-groupoid of “sections” of π over Y in SpDMnc, and the ∞-groupoid of
global sections of f ∗U on Y .

Proof sketch. A map s : Y → XU consists of a geometric morphism s : Y → X/U
together with a local map s̃ : s∗OXU →OY of sheaves of E∞-rings. We already know
(8.7.1) that geometric morphisms s which lift f correspond exactly to global sections
of f ∗U . We then have that s∗OXU = s∗π∗OX ≈ f ∗OX , so there is an evident map

s∗OXU →OY , namely the one equivalent to the map f̃ : f ∗OX →OY which is part
of the description of f : Y → X. This is in fact the unique map making the diagram
commute in SpDMnc. (See [170, 21.4.6].)

Corollary 8.13.3. For any f : Y → X in SpDMnc and U ∈ X the square

Yf ∗U //

��

XU

��

Y
f
// X

is a pullback in SpDMnc. It is a pullback in SpDM if X,Y ∈ SpDM.

Colimits along étale maps of spectral DM stacks

It turns out that we can “glue” spectral DM stacks along étale maps, much as one can
construct new schemes by gluing together ones along open immersions.

Let SpDMét ⊆ SpDM and SpDMnc
ét ⊆ SpDMnc be the (non-full) subcategories

containing just the étale maps.

Proposition 8.13.4. The categories SpDMét and SpDMnc
ét have all small colimits, and

the inclusions SpDMét→ SpDM and SpDMnc
ét → SpDMnc preserves colimits.
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Proof. Here is a brief sketch; I’ll describe the nonconnective case. (See [170, 21.4.4] or
[163, V 2.3.5] for more details.)

Suppose
(
c 7→ Xc = (Xc,OXc )

)
: C → SpDMnc

ét is a functor from a small ∞-category.
We know (8.7.6) that we can form the colimit X := colim∞T op

c∈C Xc of ∞-topoi, and that
each Xc →X is étale. In fact, there exists a functor U : C → X so that (c 7→ Xc) is
equivalent to (c 7→ X/Uc ) as functors C →∞T op/X .

We also know (8.6.12) that we have descent for sheaves of E∞-rings. That is,
ShvCAlg(X ) ≈ limc∈C ShvCAlg(Xc), so there exists OX ∈ ShvCAlg(X ) together with
a compatible family of equivalences π∗cOX →

∼ OXc . In particular, we obtain a cone
CB→∞T opCAlg, which in fact lands in the non-full subcategory consisting of étale
maps. This cone is a colimit cone, presenting X = (X ,OX ) as the colimit of the
diagram in spectrally ringed ∞-topoi.

To show that X is a nonconnective spectral DM stack, we need a set {Vj } of objects
in X such that each XVj is affine, and

∐
Vj → 1 is an effective epi in X . This is

straightforward: there are sets {Vc,i → Uc} of maps for each object c ∈ C such that
each XVc,i is affine and

∐
i Vc,i → Uc is effective epi in X/Uc , so just take the union⋃

c{Vc,i}.
Finally, show that the maps XUi → X of the cone are local, so that the cone factors

through CB → SpDMnc; this amounts to the fact that being “local” is itself a local
condition in the domain.

Spectral DM stacks are colimits of affine objects

We obtain the following interesting consequence: every nonconnective spectral DM
stack X = (X ,OX ) is a colimit of a small diagram of affines. That is,

X ≈ colimSpDMnc

c∈C XUc

where c 7→ Uc : C → X is a functor such that colimc∈CUc ≈ 1 and each Uc is affine
(which exists by (8.10.4)), and so each XUc ≈ SpétAc for some E∞-ring Ac. Analogous
remarks apply to spectral DM stacks, which have the form

X ≈ colimSpDM
c∈C XUc

with each XUc ≈ SpétAc for some connective E∞-ring Ac.

Flat morphisms in spectral geometry

A map f : Y → X of nonconnective spectral DM stacks is flat if for every commutative
square

SpétB //

g

��

Y

f

��

SpétA // X
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in SpDMnc such that the horizontal maps are étale, the map g is induced by a flat
morphism A→ B of E∞-rings [170, 2.8.2].

It is immediate that the base change of any flat morphism is flat. Also, if Y → X is
flat and X is a spectral DM stack, then Y is a spectral DM stack.

Remark 8.13.5 . A map SpétB→ SpétA of nonconnective spectral DM stacks is flat
in the above sense if and only if A→ B is a flat morphism of E∞-rings.

Given A ∈ CAlg, let SpDMnc
A = (SpDMnc)/ SpétA, and let SpDM[

A ⊆ SpDMnc
A

denote the full subcategory spanned by objects which are flat morphisms X→ SpétA.
It turns out that although the functor SpDMnc

τ≥0A
→ SpDMnc

A induced by base change
is not an equivalence, it induces an equivalence on full subcategories of flat objects
flat objects.

Proposition 8.13.6. Base change induces an equivalence of ∞-categories

SpDM[
τ≥0A
→∼ SpDM[

A.

Proof. See [170, 2.8.2]. The inverse equivalence sends X → SpétA to τ≥0X →
Spét(τ≥0A); compare (8.8.5).

8.14 Affine space and projective space

Let’s think about two basic examples: affine n-space and projective n-space. It turns
out that these come in two distinct versions, depending on whether we use polynomial
rings (8.8.6) or free rings (8.8.7).

Affine spaces

Given a connective E∞-ring R ∈ CAlgcn, define affine n-space over R to be the affine
spectral DM stack

An
R := SpétR[x1, . . . ,xn]

on a polynomial ring (8.8.6) over R. When R ∈ CAlg♥ is an ordinary ring, this is the
“usual” affine n-space. In general, An

R ≈An
S
×SpétS SpétR.

What are the “points” of An
S
? If B is an ordinary ring, then

An
S

(B) = MapSpDM/ SpétR
(SpétB,An

S
) ≈MapCAlg(S[x1, . . . ,xn],B) ≈ Bn.

However, if B is not an ordinary ring, then things can be very different. For instance,
the image of the evident map

An
S

(S)→An
S

(Z) ≈Z
n

consists exactly of the ordered n-tuples (a1, . . . , an) ∈Zn such that each ai ∈ {0,1}.5

5 Here’s a quick proof. We need to understand the image of
MapCAlg(S[x],S)→MapCAlg♥ (S[x],Z) ≈Z induced by evaluation at x ∈ π0S[x]. It is

straightforward to construct maps realizing 0 or 1. To show these are the only possibilities, argue as
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From this, we see that An
S

is not a group object with respect to addition; i.e., there
is no map S[x]→ S[x]⊗

S
S[x] of E∞-rings which on π0 sends x 7→ x⊗ 1 + 1⊗ x.

It is however true that A1
S

is a monoid object under multiplication (the coproduct
on S[x] is obtained by applying suspension spectrum to the diagonal map on Z≥0).
Likewise,

Gm := SpétS[x,x−1]

is an abelian group object in spectral DM stacks.
There is another affine n-space, which I’ll call the smooth affine space, namely

An
sm := SpétS{x1, . . . ,xn},

defined using a free ring (8.8.7) instead of a polynomial ring. The points of this are
easier to explain:

An
sm(B) = MapSpDM(SpétB,An

sm) ≈MapCAlg(S{x1, . . . ,xn},B) ≈ (Ω∞B)n.

The evident map An
S
→An

sm, though not an equivalence, becomes an equivalence
after base-change to any R ∈ CAlg

Q
.

Projective spaces

Given R ∈ CAlgcn
R we define projective n-space as follows [170, 5.4.1]. Let [n] =

{0,1, . . . ,n}, and let P ◦([n]) denote the poset of non-empty subsets. For each I ∈ P ◦([n])
let

MI := { (m0, . . . ,mn) ∈Zn+1 |m0 + · · ·+mn = 0, mi ≥ 0 if i ∈ I }.

We obtain a functor P ◦([n])op→ SpDMét by

I 7→ Spét(R[MI ]).

Define Pn
R := colimI∈P 0([n])op Spét(R[MI ]), which exists by (8.13.4).

Example 8.14.1. P1
R is the colimit of

Spét(R[x])← Spét(R[x,x−1])→ Spét(R[x−1]).

This construction is compatible with base change, and for ordinary rings R recovers
the “usual” projective n-space. You can use the same idea to construct spectral versions
of toric varieties.

As for affine n-space, it is difficult to understand the functor that Pn
R represents when

R is not an ordinary ring. On the other hand, one can import some of the classical
apparatus associated to projective spaces. For instance, there are quasicoherent sheaves

follows. Given f : S[x]→ S, tensor with complex K-theory KU and take p-completions. The π0 of
p-complete commutative KU -algebras carries a natural “Adams operation” ψp , which is a ring
endomorphism such that ψp(a) ≡ ap mod p, and on π0(KU [x])∧p acts via ψp(f (x)) = f (xp). Using
this we can show that a ∈Z is in the image if and only if ap = a for all primes p.
The same kind of argument shows that if R = S[ 1

n ,ζn] where ζn is a primitive nth root of unity as in

(8.9.10), then the image of MapCAlg(S[x],R)→ π0R = Z[ 1
n ,ζn] is {0} ∪ {ζkn | 0 ≤ k < n }.
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O(m) over Pn
R for any R ∈ CAlgcn, constructed exactly as their classical counterparts,

and Γ (Pn
R,O(m)) has the expected value [170, 5.4.2.6].

There is another projective n-space, the smooth projective space Pn
sm, defined

to be the spectral DM stack representing a functor R 7→ {“lines in Rn+1”}; see [170,
19.2.6].

8.15 Functor of points

We have defined an ∞-category SpDMnc of nonconnective spectral DM stacks. How-
ever, we have not yet shown that it is a locally small ∞-category: the definition of
morphism involves morphisms of underlying ∞-topoi, and ∞T op is not locally small.
However, it is true that SpDMnc is locally small.

Proposition 8.15.1. For any X,Y ∈ SpDMnc, the space MapSpDMnc(Y ,X) is essentially
small, i.e., equivalent to a small ∞-groupoid.

Note that when X is affine, (8.11.7) already implies that MapSpDMnc(Y ,X) is essen-
tially small: MapSpDMnc(Y ,SpétB) ≈MapCAlg(B,Γ (Y ,OY )).

Given this proposition, we can define the functor of points of a nonconnective
spectral DM stack:

hnc
X : CAlg→S by hnc

X (A) := MapSpDMnc(SpétA,X).

For a spectral DM stack, we consider the restriction of hnc
X to connective E∞-rings:

hX : CAlgcn→S by hX(A) := MapSpDM(SpétA,X).

Note that if B ∈ CAlg, then hnc
SpétB ≈ MapCAlg(B,−) by the Yoneda lemma, and

similarly in the connective case.

Proposition 8.15.2 ([170, 1.6.4.3]). The functors

X 7→ hnc
X : SpDMnc� Fun(CAlg,S) and X 7→ hX : SpDM� Fun(CAlgcn,S)

are fully faithful.

I’ll sketch proofs of these below (giving arguments only in the nonconnective case).

Sheaves of maps into a spectral DM stack

To prove (8.15.1) that MapSpDMnc(Y ,X) is essentially small, we can immediately reduce
to the case that Y is affine, since every nonconnective spectral DM stack is a colimit
of a small diagram of affines (8.8). So assume Y = SpétA for some A ∈ CAlg.

Given a nonconnective spectral DM stack X, consider the functor

HA
X : CAlgét

A → Ŝ defined by HA
X (A′) := MapSpDMnc(SpétA′ ,X).

This functor is in fact an object of the full subcategory�Shvét
A ⊆ Fun(CAlgét

A , Ŝ)



386 Rezk: Spectral algebraic geometry

of sheaves on the étale site of A taking values in the category Ŝ of “large”∞-groupoids;
this is because for an étale cover {R→ Ri} in CAlgét

A , the evident map

colimSpDMnc

∆op

(
[n] 7→

∐
SpétRi0 ×SpétR · · · ×SpétR SpétRin

)
→∼ SpétR

is an equivalence by (8.13.4), which exactly provides the sheaf condition for HA
X .

Note: the ∞-category �Shvét
A , although not locally small, behaves in many respects

like an∞-topos. For instance, it has descent for small diagrams, and in particular small

colimits are universal in �Shvét
A . Furthermore, the inclusion Shvét

A ⊆
�Shvét

A preserves
small colimits.

The key fact we need is the following.

Proposition 8.15.3. The functor

X 7→HA
X : SpDMnc

ét →
�Shvét

A

preserves small colimits.

Recall (8.8) that X ≈ colimc∈CVc for some functor V : C → SpDMnc
ét from a small

∞-category. Writing Vc = SpétBc, the proposition gives us the “formula”

MapSpDMnc(SpétA,X) ≈ (aF)(A),

where aF is the sheafification of the presheaf F : CAlgét
A → Ŝ defined by

F(A′) = colimcH
A
Vc

(A′)≈ colimcMapSpDMnc(SpétA′ ,Vc)≈ colimcMapCAlg(Bc,A
′),

where the colimit is taken in Ŝ . Since C and each MapCAlg(Bc,A′) are small, we see
that the value F(A) is a small ∞-groupoid, as desired.

Sketch proof of (8.15.3). Let X = colim
SpDMnc

ét
c∈C Vc with V : C → SpDMnc

ét . If X is the
underlying∞-topos of X, then we can factor this functor through a functor U : C → X ,
so that Vc = XUc and colimXc∈CUc ≈ 1.

To show that

colim
�Shvét

A
c∈C HA

XUc
→∼ HA

X ,

it suffices to show that for any small sheaf V ∈ Shvét
A and any map f : V → HA

X in�Shvét
A , the map

colim
�Shvét

A
c∈C (HA

XUc
×HA

X
V )→ V

induced by base change along f is an equivalence. (This is using descent in �Shvét
A ,

and the fact that any small sheaf is a small colimit of representables MapCAlgét
A

(B,−),
which are themselves small sheaves.)

Note that for small sheaves V ∈ Shvét
A there is a natural equivalence

HomSpDMnc((SpétA)V ,X)→∼ Hom �Shvét
A

(V ,HA
X ),
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This is because V 7→ (SpétA)v is colimit preserving (8.13.4) and the map is certainly
an equivalence when V is representable. So let g : (SpétA)V → X be the map
corresponding to f : V → HA

X , and use (8.13.3) to obtain for any U ∈ X a pullback
square

(SpétA)g∗U //

��

XU

��

(SpétA)V g
// X

in SpDMnc, which on applying the functor Y 7→HA
Y gives a pullback square

g∗U //

��

HA
XU

��

V
f
// HA

X

in �Shvét
A . Because g∗ : X → (Shvét

A )/V is colimit preserving, we see that we get an

equivalence colim
(Shvét

A )/V
c∈C g∗(Uc)→∼ 1(Shvét

A )/V
, and the claim follows.

Example 8.15.4 (Geometric points). Let K be a (classical) separable field, so that
Shvét

K ≈ S . If X = colimc∈C SpétBc is a colimit of affines along étale morphisms, then
our “formula” reduces to

MapSpDMnc(SpétK,X) ≈ colimc∈CMapCAlg(Bc,K).

Functor of points

Here is an idea of a proof of (8.15.2) (in the nonconnective case; the connective case is
similar); see [163, V 2.4] which proves a more general statement in the framework of
“geometries”, or [170, 8.1.5] which proves a generalization to formal geometry. We want
to show that

MapSpDMnc(Y ,X)→MapFun(CAlg,S)(h
nc
Y ,h

nc
X )

is an equivalence for all X,Y ∈ SpDMnc. Since nonconnective spectral DM stacks are
colimits of small diagrams of affines along étale maps (8.13.4), we reduce to the case of
affine Y = SpétB. Furthermore, if X = SpétA is also affine, then MapSpDMnc(Y ,X) ≈
MapCAlg(A,B) by (8.11.7), and since hnc

Y ≈MapCAlg(B,−) we see that the map is an
equivalence by Yoneda.

Note that the composite functor CAlgét
A → CAlg

hnc
X−−−→ S is precisely the functor HA

X
of the previous section. Thus hnc

X lives in the full subcategory

Shvét ⊆ Fun(CAlg,S)

spanned by F such that F|CAlgét
A

is an étale sheaf for all A ∈ CAlg.

It turns out that Shvét is equivalent to the ∞-category of sections of a Cartesian
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fibration D → CAlg, whose fiber over A ∈ CAlg is equivalent to Shvét
A . Thus, by a

standard argument, we see that (8.15.3) implies that

X 7→ hnc
X : SpDMnc

ét → Shvét

preserves colimits. The result then follows using X is also a colimit of a small diagram
of affines along étale maps.

8.16 Formal spectral geometry

Let’s briefly describe the generalization of these ideas to the spectral analogue of
formal geometry.

Adic E∞-rings

An adic E∞-ring is a connective E∞-ring A equipped with a topology on π0A which
is equal to the I-adic topology for some finitely generated ideal I ⊆ π0A. A map of
adic E∞-rings is a map f : A→ B of E∞-rings which induces a continuous map on
π0. Any finitely generated ideal I generating the topology of π0A is called an ideal
of definition for the topology; note that the ideal of definition is not itself part of the
data of an adic E∞-ring, only the topology it generates.

Remark 8.16.1 . The vanishing locus of an adic E∞-ring A is the set XA ⊆ |SpecA| of
prime ideals which are open neighborhoods of 0 in π0A; equivalently, primes which
contain some (hence any) ideal of definition I ⊆ π0A. A map φ : A→ B of E∞-rings
is an adic map if and only if it sends XB into XA; equivalently, if φ(In) ⊆ J for some
n where I and J are ideals of definition for A and B respectively [170, 8.1.1.3–4].

In particular, the topology on π0A of an adic E∞-ring A is entirely determined by
the vanishing locus.

Completion at finitely generated ideals

Let A ∈ CAlg be an E∞-ring (not necessarily connective). For every finitely generated
ideal I ⊆ π0A there is a notion of I-complete A-module. An A-algebra is called
I-complete if its underlying module is so. There are adjoint pairs

M 7→M∧I : ModA
// // ModCpt(I)

Aoooo , B 7→ B∧I : CAlgA
// // CAlgCpt(I)

Aoooo

whose right adjoint is the fully faithful inclusion of the category of I-complete objects,
and whose left adjoint, called I-completion, is left exact. Furthermore, the notion of
I-completeness and its associated completion functors depend only on the radical of
I ; hence, all ideals of definition of an adic E∞-ring provide equivalent completion
functors. See [170, 7.3] for more details.
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Remark 8.16.2 . Here is an explicit formula for I-completion on the level of modules.
Given a ∈ π0A let Σ−1(A/a∞) ∈ModA denote the homotopy fiber of the evident map
A→ A[a−1]. Then

M∧I ≈HomA(Σ−1(A/a∞1 )⊗A · · · ⊗A Σ−1(A/a∞r ), M)

where (a1, . . . , ar ) is any finite sequence which generates the ideal I . The unit M →
M∧I of the adjunction is induced by restriction along the evident map Σ−1(A/a∞1 )⊗A
· · · ⊗A Σ−1(A/a∞r )→ A⊗A · · · ⊗A A ≈ A.

Example 8.16.3. If the vanishing ideal is 0 ⊆ π0A, so that π0A is equipped with the
discrete topology, then every A-module is I-complete.

Example 8.16.4. If the vanishing ideal is I = π0A, so that π0A is equipped with the
trivial topology, then only the trivial A-module is I-complete.

Example 8.16.5. For a prime p ∈ Z = π0S, an S-module is (p)-complete in the
above sense if and only if it is a p-complete spectrum in the conventional sense, and
(p)-completion coincides with the usual p-completion of spectra.

Example 8.16.6 (Completion and K(n)-localization). Suppose A is an E∞-ring
which p-local for some prime p, and is weakly 2-periodic and complex orientable
(see (8.17) below). The complex orientation gives rise to a sequence of ideals In =
(p,u1, . . . ,un−1) ⊆ π0A; the ideal In is called the nth Landweber ideal. It turns out that
the underlying spectrum of A is K(n)-local if and only if (i) A is In-complete and (ii)
In+1(π0A) = π0A [167, 4.5.2].

The formal spectrum of an adic E∞-ring

Recall the ∞-topos Shvét
A of sheaves on the étale site of an E∞-ring A. Given an

adic E∞-ring A, say that F ∈ Shvét
A is an adic sheaf if F(A → B) ≈ ∗ for étale

morphisms A→ B such that the image of |Specπ0B| → |Specπ0A| is disjoint from
the vanishing locus XA; i.e., if I(π0B) = π0B for some (hence any) ideal of definition
I ⊆ π0B. We thus obtain a full subcategory Shvad

A ⊆ Shvét
A of adic sheaves, which in

fact is an ∞-topos, and this inclusion is the right-adjoint of a geometric morphism
Shvad

A → Shvét
A .

Remark 8.16.7 . That Shvad
A is an∞-topos follows from the observation that Shvad

A ≈
Shvét

π0A/I
, where I is an ideal of definition for A. See [170, 3.1.4].

We can now define the formal spectrum of an adic E∞-ring A to be the spectrally
ringed ∞-topos SpfA := (Shvad

A ,OSpfA), where OSpfA is the composite functor

CAlgét
A � CAlg

(−)∧I−−−−→ CAlg.

Note that OSpfA is an adic sheaf because B∧I ≈ 0 if I(π0B) = π0B and because
I-completion is limit preserving. It can be shown that SpfA is strictly Henselian and
its structure sheaf is connective [170, 8.1.1.13].
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Formal spectral DM stacks

A formal spectral Deligne–Mumford stack is a spectrally ringed ∞-topos X =
(X ,OX ) which admits a cover {Ui} ⊆ X such that each XUi = (X/Ui ,OX |Ui ) is equiva-
lent to SpfAi for some adic E∞-ring Ai . There is a full subcategory

fSpDM ⊆∞T opsHen
CAlg

of formal spectral Deligne–Mumford stacks and local maps between them.

Example 8.16.8 (Spectral DM stacks are formal spectral DM stacks). If A ∈ CAlgad

is an adic E∞-ring equipped with the discrete topology, then SpfA ≈ SpétA. In
particular, any spectral DM stack is automatically a formal spectral DM stack, and
SpDM� fSpDM.

Example 8.16.9 (Formal functor of points). There is a fully faithful embedding
fSpDM� Fun(CAlgcn,S) defined by sending X to its functor of points hX(R) =
MapfSpDM(SpétR,X) on affine (not adic) spectral DM stacks [170, 8.1.5].

Furthermore, there is an explicit description of the functor of points of SpfA:

hSpfA(R) = MapfSpDM(SpétR,SpfA) ≈MapCAlgad(A,R) ⊆MapCAlg(A,R).

Here R is regarded as an adic E∞-ring equipped with the discrete topology, so that
φ : A→ R is a map of adic E∞-rings if and only if φ(In) = 0 for some n and ideal
of definition I ⊆ π0A [170, 8.1.5].

Remark 8.16.10 . The formal spectrum functor Spf : (CAlgad)op→ fSpDM is not fully
faithful, or even conservative. However, we have the following. Say that B ∈ CAlgad is
complete if B→∼ B∧I for some (and hence any) ideal of definition I ⊆ π0B. For com-
plete adic E∞-rings B the evident map MapCAlgad(B,R)→∼ MapfSpDM(SpfR,SpfB)
is always an equivalence [170, 8.1.5.4]. From this and the formal functor of points
we see that the full subcategory of formal spectral DM stacks which are equivalent
to SpfA for some adic ring A is equivalent to opposite of the full subcategory of
complete objects in CAlgad.

Formal completion

Given a spectral DM stack X, one may form the formal completion X∧K of X with
respect to a “cocompact closed subset K ⊆ |X |”, which is a formal spectral DM stack
equipped with a map X∧K → X. We refer to [170, 8.1.6] for details, but note that in
the case X = SpétA for A ∈ CAlgcn we have that |X | is precisely the prime ideal
spectrum |SpecA|, while X∧K = SpfA, where A is given the evident adic structure.

8.17 Formal groups in spectral geometry

Fix a connective E∞-ring R. An n-dimensional formal group over R is, roughly speaking,
a formal spectral DM stack Ĝ over SpétR which (i) is an abelian group object in
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formal spectral DM stacks, and (ii) as a formal spectral DM stack is equivalent to
Spf(A) where A is an adic E∞-ring which “looks like a ring of power series in n
variables over R”.

Smooth coalgebras

To make this precise, we need the notion of a smooth commutative coalgebra. Any
symmetric monoidal ∞-category admits a notion of commutative coalgebra objects
[166, 3.1]. If C is a commutative coalgebra object in ModR, then its R-linear dual
C∨ := HomR(C,R) comes with the structure of a adic commutative R-algebra [167,
1.3.2].

We say that a commutative R-coalgebra C is smooth if (i) C is flat as an R-module
and if (ii) there is an isomorphism of π0R-coalgebras

π0C ≈
⊕
k≥0

Γ kπ0R
(M),

where the right-hand side is the divided polynomial coalgebra on some finitely
generated projective π0R-module M; the rank of M (if defined) is also called the
dimension of C [167, 1.2]. There is an associated ∞-category cCAlgsm

R of smooth
commutative R-coalgebras.

Remark 8.17.1 . The R-linear dual C∨ of C as above satisfies

π0C
∨ ≈

∏
k≥0

Symk
π0R

(M∨), M∨ = HomR(M,R).

In particular, if M is free of rank n then π∗C
∨ ≈ π∗R[[t1, . . . , tn]] [167, 1.3.8].

For a connective E∞-ring R, a functor CAlgcn
R → S represented by Spf(C∨) for

some smooth commutative R-coalgebra is called a formal hyperplane over R [167,
1.5.3]. It is said to be n-dimensional if C is n-dimensional in the sense above. (The
“hyperplane” terminology arises because our Spf(C∨) does not come equipped with a
“base-point”, i.e., there is no distinguished R-algebra map C∨→ R, despite the fact
that π0C

∨ is equipped with an adic topology.)

Formal groups

An n-dimensional formal group over a connective E∞-ring R is a functor

Ĝ : CAlgcn
R →Modcn

Z

such that the composite

CAlgcn
R

Ĝ−→Modcn
Z

Ω∞−−−→ S

is represented by Spf(C∨) for some smooth commutative R-coalgebra C of dimension n.
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Remark 8.17.2 . The definition of formal group I have given here is different than, but
equivalent to, the one given in [167, 1.6]; see [167, 1.6.7]. In particular, the basic defi-
nitions given there are expressed more directly in terms of commutative coalgebras.

In particular, the functor CAlgcn
R → S represented by Spf(C∨), where C is a

commutative R-coalgebra, is equivalent to the cospectrum of C. The cospectrum
is a functor sending an R′ ∈ CAlgcn

R to a suitable space of “grouplike elements” in
R′ ⊗R C [167, 1.51].

Remark 8.17.3 . What about the nonconnective case? Although smooth commutative
coalgebras may be defined over any E∞-ring, formal hyperplanes and formal groups
have only been defined (following Lurie) over connective E∞-rings.

This is awkward but it’s okay! For instance, because smooth commutative R-
coalgebras are flat over R, taking 0-connective covers gives an equivalence

τ≥0 : cCAlgsm
R →
∼ cCAlgsm

τ≥0R

between the ∞-categories of smooth commutative coalgebras over R and over its
connective cover τ≥0R [167, 1.2.8]; compare (8.13.6).

So you can extend the notions of formal hyperplane and formal group to noncon-
nective ground rings, so that a formal hyperplane or formal group over R is defined to
be one over τ≥0R. In particular, for any E∞-ring R you get an∞-category FGroup(R)
of formal groups over R, which by definition satisfies FGroup(R) = FGroup(τ≥0R).

The Quillen formal group in spectral geometry

A complex oriented cohomology theory R gives rise to a 1-dimensional formal group
over π∗R, whose function ring is R∗CP∞. When the theory is represented by an
E∞-ring which is suitably periodic, then we can upgrade this formal group to an
object in spectral geometry.

Given R ∈ CAlg and X ∈ S , write C∗(X;R) := R ⊗
S
Σ∞+ X ∈ ModR for the “R-

module of R-chains on X”. This object is in fact a commutative R-coalgebra, via the
diagonal map on X [168, 2.4.3.10].

An E∞-ring R is weakly 2-periodic if π2R⊗π0RπnR→ πn+2R is an isomorphism
for all n ∈ Z. If R is both weakly 2-periodic and complex orientable, then one can
show that C∗(CP

∞;R) is a smooth commutative R-coalgebra. Furthermore, it is a
commutative group object in cCAlgR (via the abelian group structure on CP

∞), and

hence it gives rise to a 1-dimensional formal group ĜQR , called the Quillen formal
group of R [167, 4.1.3].

Remark 8.17.4 . In view of what I said about connectivity in relation to formal groups
(8.17.3), the formal spectral DM stack associated to the Quillen formal group of
R is Spf((τ≥0C∗(CP

∞;R))∨). Note that τ≥0C∗(CP
∞;R) is not at all the same as

C∗(CP
∞;τ≥0R), and that the latter does not give rise to a formal group in the sense

defined above.

Remark 8.17.5 . Let R be an E∞-ring which is weakly 2-periodic and complex ori-
entable, with Quillen formal group ĜQR . Then every commutative R-algebra R→ R′
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is also weakly 2-periodic and complex orientable, and so also has a Quillen formal
group, and in fact ĜQR′ ≈ Ĝ

Q
R ×Spétτ≥0R Spétτ≥0R

′ .

Preorientations and orientations

Let R be an E∞-ring, not necessarily assumed to be connective, and Ĝ ∈ FGroup(R)
a 1-dimensional formal group over it. We ask the question: What additional data do
we need to identify Ĝ with the Quillen formal group over R? Note that I don’t want
to presuppose that the Quillen formal group actually exists in this case, i.e., I don’t
assume that R is weakly 2-periodic or complex orientable.

A preorientation of a 1-dimensional formal group Ĝ over a (possibly nonconnective)
E∞-ring R is a map

e : S2→ Ĝ(τ≥0R)

of based spaces, where the base point goes to the identity of the group structure. We
write Pre(Ĝ) = MapS∗(S

2, Ĝ(τ≥0R)) for the space of preorientations.

Proposition 8.17.6. Suppose R is weakly 2-periodic and complex orientable. Then there
is an equivalence

Pre(Ĝ) ≈MapFGroup(R)(Ĝ
Q
R , Ĝ)

between the space of preorientations and the space of maps from the Quillen formal group.

Proof. See [167, 4.3]. This is basically a formal consequence of the observation that
the free abelian group on the based space S2 is equivalent to CP

∞.

Note that Pre(Ĝ) is defined even when R does not admit a Quillen formal group.
We will now describe a condition on a preorientation e ∈ Pre(Ĝ) which implies
simultaneously (i) that R is weakly 2-periodic and complex orientable, and (ii) that the
map ĜQR → Ĝ induced by e is an isomorphism in FGroup(R).

Given Ĝ ∈ FGroup(R), let OĜ denote its ring of functions, so that Ĝ ≈ Spf(OĜ).
Note that by our definitions (8.17.3) the ring OĜ is a connective τ≥0R-algebra, even if
R is not connective.

The dualizing line of a 1-dimensional formal group Ĝ is an R-module defined by

ωĜ := R⊗OĜ OĜ(−η), where OĜ(−η) := fiber of (OĜ
η
−→ τ≥0R→ R),

where η ∈ Ĝ(τ≥0R) is the identity element of the group structure. The R-module ωĜ
is in fact an R-module which is locally free of rank 1, and its construction is functorial
with respect to isomorphisms of 1-dimensional formal groups [167, 4.1 and 4.2].

Example 8.17.7. Let R be weakly 2-periodic and complex orientable, and ĜQR its
Quillen formal group. Then there is a canonical equivalence of R-modules

ωĜQR
≈ Σ−2R.

This object is also canonically identified with C∗red(CP1;R), the function spectrum
representing the reduced R-cohomology of CP1 ≈ S2 as a C∗(S2;R)-module.
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For a 1-dimensional formal group Ĝ over an E∞-ring R, any preorientation e ∈
Pre(Ĝ) determines a map

βe : ωĜ→ Σ−2R

of R-modules, called the Bott map associated to e. This map is constructed in [167,
4.2–3].

Remark 8.17.8 . Here is one way to describe the construction of the Bott map [167,
4.2.10].

For any suspension X = ΣY of a based space, the object C∗red(X;R) is equivalent
as a C∗(X;R)-module to the restriction of an R-module along the augmentation
π : C∗(X;R)→ R corresponding to the basepoint of X. (“The cup product is trivial
on a suspension.”) For instance if X = S2 = ΣS1 we have C∗red(X;R) ≈ π∗(Σ−2R).

A preorientation e : S2 → Ĝ(τ≥0R) corresponds exactly to a map of E∞-rings,
ẽ : OĜ→ C∗(S2;τ≥0R), compatible with augmentations to τ≥0R, and in turn induces
a map

OĜ(−η)→ C∗red(S2;R) ≈ π∗(Σ−2R)

of OĜ-modules, which by the previous paragraph is adjoint to a map ωĜ = R ⊗OĜ
OĜ(−η)→ Σ−2R of R-modules, which is the Bott map of e.

An orientation of Ĝ is a preorientation e whose Bott map βe : ωĜ → Σ−1R is

an equivalence. We write OrDat(Ĝ) ⊆ Pre(Ĝ) for the full subgroupoid consisting of
orientations.

Now we can state the criterion for a preoriented 1-dimensional formal group to be
isomorphic to the Quillen formal group.

Proposition 8.17.9. A preorientation e ∈ Pre(Ĝ) of a formal group Ĝ over an E∞-ring
R is an orientation if and only if (i) R is weakly 2-periodic and complex orientable, and
(ii) the map ĜQR → Ĝ of formal groups corresponding to e is an isomorphism.

Proof. See [167, 4.3.23]. That R is weakly 2-periodic and complex orientable given
the existence of an orientation is immediate from the fact that ωĜ is locally free of
rank 1, and also equivalent to Σ−2R.

8.18 Quasicoherent sheaves

Recall that we have defined a sheaf of E∞-rings O ∈ ShvCAlg(X ) on an ∞-topos to
be a limit preserving functor X op → CAlg (8.3). There is an alternate description:
ShvCAlg(X ) is equivalent to the ∞-category of commutative monoid objects in the sym-
metric monoidal ∞-category (ShvSp(X ),⊗) of sheaves of spectra, using a symmetric
monoidal structure inherited from the usual one on spectra [163, VII 1.15].

This leads to notions of sheaves of O-modules on a spectrally ringed ∞-topos, and
eventually to quasicoherent sheaves on a nonconnective spectral DM stack.
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Sheaves of modules

To each spectrally ringed ∞-topos X = (X ,O), there is an associated ∞-category
ModO of sheaves of O-modules on X , whose objects are sheaves of spectra which
are modules over O. (A precise description of this category requires the theory of
∞-operads; see [168, 3.3].)

The ∞-category ModO is presentable (so is complete and cocomplete), stable, and
symmetric monoidal, and the monoidal structure ⊗O preserves colimits and finite
limits in each variable [170, 2.1].

Example 8.18.1. Given an E∞-ring A, any A-module M ∈ModA can be promoted
to a sheaf M ∈ModO of O-modules on SpétA = (Shvét

A ,O), so that the underlying
sheaf of spectra ofM is

(A→ B) 7→ B⊗AM : CAlgét
A → Sp.

The resulting tuple (Shvét
A ,O,M) of ∞-topos, sheaf of rings, and sheaf of modules,

is denoted Spét(A,M); see [170, 2.2.1] for details.

Quasicoherent sheaves

Now let X = (X ,OX ) be a nonconnective spectral DM stack. A sheaf of OX-modules
F ∈ModOX is quasicoherent if there exists a set {Ui} of objects in X which cover it
(i.e., such that

∐
iUi → 1 is effective epi), and there exist pairs (Ai ,Mi), Ai ∈ CAlg,

Mi ∈ModAi , and equivalences

(X/Ui ,OX |Ui ,F |Ui ) ≈ Spét(Ai ,Mi)

of data consisting of (strictly Henselian spectrally ringed ∞-topos and sheaf of
modules), where Spét(Ai ,Mi) is as in (8.18.1).

The ∞-category

QCoh(X) ⊆ModOX

of quasicoherent sheaves on X is defined to be the full subcategory of modules spanned
by quasicoherent objects. It is presentable, stable, and symmetric monoidal (see [170,
2.2.4]).

For affine X, quasicoherent modules are just modules over the evident E∞-ring.

Proposition 8.18.2. If X ≈ SpétA for some A ∈ CAlg, then there is an equivalence

QCoh(X) ≈ModA

of symmetric monoidal ∞-categories. The functor QCoh(X)→ModA sends a sheaf to its
global sections; the functor ModA→QCoh(X) is M 7→ Spét(A,M).

Remark 8.18.3 . If A ∈ CAlg♥ is an ordinary ring, then

QCoh(SpétA) ≈ModA ≈ Ch(Mod♥A)[(quasi-isos)−1],

where Mod♥A ⊆ModA is the ordinary 1-category of A-modules.
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There are other characterizations of quasicoherence. For instance, F ∈ModOX is
quasicoherent if and only if the evident map

F (V )⊗OX (V )OX(U )→F (U )

is an isomorphism for all maps U → V between affine objects in X [170, 2.2.4.3].
There are pairs of adjoint functors

QCoh(X) // // ModOXoooo
forget

// ShvSp(X ).
OX⊗−oo

The left adjoints of these pairs are symmetric monoidal, and preserve finite limits but
not arbitrary limits in general.

Pullbacks and pushforwards of quasicoherent sheaves

Given a map f : X→ Y of nonconnective spectral DM stacks, we have pairs of adjoint
functors

QCoh(X) // //

f∗
��

ModOXoooo //

f∗
��

ShvSp(X )oo

f∗
��

QCoh(Y ) // //

f ∗

OO

ModOYoooo //

f ∗

OO

ShvSp(Y )oo

f ∗
OO

so that each functor labeled f ∗ is (strongly) symmetric monoidal, and such that the
squares of left adjoints commute up to natural isomorphism, and the squares of right
adjoints commute up to natural isomorphism. See [170, 2.5].

Descent for modules and quasicoherent sheaves

It turns out that the formation of categories of either modules or quasicoherent sheaves
satisfies a version of descent. Given a nonconnective spectral DM stack X = (X ,OX ),
we have a functor

U 7→ XU = (X/U ,OX |U ) : X → SpDM,

whose colimit exists and is equivalent to X (8.8). For each f : U → V in X we have
induced functors

f ∗ : ModOXV →ModOXU , f ∗ : QCoh(XV )→QCoh(XU ),

which fit together to give functors X op→ Ĉat∞.

Proposition 8.18.4. The functors X op→ Ĉat∞ defined by U 7→ModOXU and U 7→
QCoh(XU ) are limit preserving.

Proof. See [170, 2.1.0.5] and [170, proof of 2.2.4.1].

Thus, we may regard these constructions as defining sheaves of (presentable, stable,
symmetric monoidal) ∞-categories on X .



8.18 Quasicoherent sheaves 397

Quasicoherent sheaves on quasiaffine spectral DM stacks

We have seen that QCoh(X) ≈ModA if X = SpétA. This generalizes to X which are
quasiaffine.

A nonconnective spectral DM stack X = (X ,OX ) is quasiaffine if

1. the ∞-topos X is quasicompact, i.e., for any set {Ui} of objects of X which is a
cover, there is a finite subset {Uik , k = 1, . . . , r} which is a cover, and

2. it admits an open immersion into an affine, i.e., if there exists A ∈ CAlg and a
(−1)-truncated object U ∈ Shvét

A such that X ≈ (SpétA)U .

Theorem 8.18.5. If X is quasiaffine, then taking global sections defines an equivalence
of categories QCoh(X)→∼ ModA where A = Γ (X ,OX ).

Proof. See [170, 2.4].

Example 8.18.6. Here is an example which illustrates both the theorem and its
proof. Let R = S[x,y], and X = A2 = SpétR = (Shvét

R ,O). Define U ∈ Shvét
R ⊆

Fun(CAlgét
R ,S) by

U (S[x,y]→ B) :=
{∗ if (x,y)π0B = π0B,
∅ if (x,y)π0B , π0B.

Let Y := XU = “A2
r {0}”. Clearly Y is quasiaffine.

We can write U as a colimit in Shvét
R of a diagram Ux ← Uxy → Uy , where

Ux,Uy ⊆ U are the subobjects which are “inhabited” exactly at those S[x,y] → B
such that x ∈ (π0B)× or y ∈ (π0B)× respectively, and Uxy = Ux ×U Uy . There is an
equivalence of commutative squares

XUxy
//

��

XUy

��

XUx
// XU

≈

SpétS[x±, y±] //

��

SpétS[x,y±]

��

SpétS[x±, y] // Y

which are pushout squares in SpDM by (8.8). Taking quasicoherent sheaves, we obtain
a commutative square of ∞-categories

Mod
S[x±,y±] Mod

S[x,y±]
oo

Mod
S[x±,y]

OO

QCoh(Y )

OO

oo

which is a pullback by descent.
On the other hand, consider the ring of global sections

Γ := Γ (X/U ,OX |U ) ≈ lim
(
S[x±, y]→ S[x±, y±]← S[x,y±]

)
.
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We have a commutative diagram

Mod
S[x±,y±] Mod

S[x,y±]
oo

Mod
S[x±,y]

OO

ModΓoo

OO

which is also seen to be a pullback of ∞-categories. The equivalence

Mod
S[x±,y] ×Mod

S[x± ,y±]
Mod

S[x,y±]→ModΓ

is realized by a functor which sends “descent data”(
Mx ∈Mod

S[x±,y], My ∈Mod
S[x,y±], ψ : Mx[y−1]→∼ My[x−1] ∈Mod

S[x±,y±]

)
to the limit lim(Mx→Mx[y−1]→∼ My[x−1]←My) in ModΓ , while the inverse equiv-
alence sends N ∈ModΓ to (S[x±, y]⊗Γ N, S[x,y±]⊗Γ N, id). The key observation
for proving the equivalence is that both these functors preserve arbitrary colimits
and finite limits, and are easy to evaluate on the “generating” objects Γ ∈ModΓ and
(S[x±, y],S[x,y±], id) in the limit.

8.19 Elliptic cohomology and topological modular forms

I return to our motivating example of elliptic cohomology.
First, let us consider the moduli stack of (smooth) elliptic curves. This is an example

of a “classical” Deligne–Mumford stack. However, according to (8.12) we can regard
classical Deligne–Mumford stacks as a particular type of 0-truncated spectral DM
stack, and since that is the language I have introduced in this paper, that is how I will
generally talk about it.

The moduli stack of elliptic curves

The moduli stack of elliptic curves is a (classical) DM stackMEll = (XEll,O) such that,
for ordinary ring A ∈ CAlg♥, we have

MapSpDM(SpétA,MEll) ≈
{
elliptic curves over SpétA}. (8.19.1)

The right-hand side of (8.19.1) represents the 1-groupoid of elliptic curves over
SpétA and isomorphisms between them. (Note that an isomorphism of elliptic curves
is necessarily compatible with the distinguished sections e; we usually omit e from the
notation.)

Remark 8.19.1 . Here “elliptic curve” means a classical smooth elliptic curve, i.e.,
a proper and smooth morphism π : C → SpétA of schemes (i.e., of schematic DM
stacks) whose geometric fibers are curves of genus 1, and which is equipped (as part
of the data), with a section e : SpétA→ C of π.

I will not review the theory of elliptic curves here. However, we should note that
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every elliptic curve is an abelian group scheme; i.e., an elliptic curve C → SpétA is
an abelian group object in the category of schemes over A. Furthermore, as it is
1-dimensional and smooth, the formal completion C∧e at the identity section exists,
and is an example of a 1-dimensional formal group over A.

That there exists such an objectMEll is a theorem, which we will take as given.

Remark 8.19.2 (The étale site ofMEll). As a DM stack, and hence as a spectral DM
stack,MEll is the colimit of a diagram whose objects are étale morphisms SpétA→
MEll, and since MEll is 0-truncated the rings A which appear in this diagram will
be ordinary rings. Thus,MEll can be reconstructed from the “étale site” ofMEll, i.e.,
the category U whose objects are elliptic curves C→ SpétA represented by an étale
map SpétA→MEll, and whose morphisms are commutative squares

C //

��

C′

��

SpétA // SpétA′

such that C→ C′ ×SpétA′ SpétA is an isomorphism of elliptic curves over SpétA.
It remains to characterize the objects of U . Given elliptic curves C→ S and C′→

S ′ , consider the functor

T 7→ IsoC/S,C′ /S ′ (T ) :=
{
(f : T → S, f ′ : T → S ′ , α : f ∗C→∼ f ′∗C′)

}
which sends a scheme T to the set of tuples consisting of maps of schemes f and f ′ ,
and a choice of isomorphism α of elliptic curves over T . It turns out that this functor
is itself representable by a scheme IC/S,C′ /S ′ :

IsoC/S,C′ /S ′ (T ) ≈MapSch(SpecT ,IC/S,C′ /S ′ ).

An elliptic curve C→ S is represented by an étale morphism S →MEll if and only
if for every elliptic curve C′→ S ′ the evident map IC/S,C′ /S ′ → S of schemes is étale.

See [144] for much more on the moduli stack of elliptic curves (although the word
“stack” is rarely used there).

The theorem of Goerss–Hopkins–Miller

Let U denote the étale site ofMEll as in (8.19.2). We note the functor

O : U op→ CAlg♥.

defined by (C→ SpétA) 7→ A. Also recall that for each object (C→ SpétA) ∈ U we
have 1-dimensional formal group law over A.

Question 8.19.3. Does there exist a functor Otop : Uop→ CAlg Otop : CAlg sitting
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in a commutative diagram

CAlg

π0
��

U op
O
//

Otop
::

CAlg♥
such that

1. for each object C → SpétA, the corresponding ring R = Otop(C → SpétA) is
weakly 2-periodic and has homotopy concentrated in even degrees, and hence is
complex orientable; and

2. is equipped with natural isomorphisms Spét(R0(CP∞)) ≈ C∧e of formal groups
between the formal groups of R = Otop(C→ SpétA) and the formal completions
C∧e of elliptic curves

Remark 8.19.4 . The formal groups C∧e of elliptic curves C → SpétA in the étale
site U satisfy the Landweber condition (see [74, Ch. 4]), and thus for each such curve
there we can certainly construct a homotopy-commutative ring spectrum R satisfying
conditions (1) and (2). The point of the theorem is to rigidify this construction to an
honest functor of ∞-categories, and while doing so lift it to a functor to structured
commutative rings.

Theorem 8.19.5 (Goerss–Hopkins–Miller). The answer to (8.19.3) is yes. Furthermore,
the resulting functor Otop defines a sheaf of E∞-rings on the étale site ofMEll.

The pair (XEll,Otop) is an example of a nonconnective spectral DM stack, whose 0-
truncation is the classical DM stackMEll. (That this is the case is because π0Otop ≈ O,
the structure sheaf onMEll.)

Given (8.19.5), we can now define

TMF := Γ (XEll,Otop) ≈ lim(C→SpétA)∈U Otop(C→ SpétA),

the periodic E∞-ring of topological modular forms.

Remark 8.19.6 . See [74] for more on (8.19.5), including details about the original
proof, as well as more information on TMF.

8.20 The classifying stack for oriented elliptic curves

It turns out that the nonconnective spectral Deligne–Mumford stack (XEll,Otop)
admits a modular interpretation in spectral algebraic geometry: it is the classifying
object for oriented elliptic curves.

Elliptic curves in spectral geometry

A variety over an E∞-ring R is a flat morphism X → SpétR of nonconnective
spectral DM stacks, such that the induced map τ≥0X → Spétτ≥0R of spectral DM
stacks is: proper, locally almost of finite presentation, geometrically reduced, and
geometrically connected [166, 1.1], [170, 19.4.5]
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Remark 8.20.1 . We have not and will not describe all the adjectives in the above
definition. See [170, 5.1] for proper, [170, 4.2] for locally almost of finite presentation,
[170, 8.6] for geometrically reduced and geometrically connected.

An abelian variety over an E∞-ring R is a variety X over R which is a commutative
monoid object in SpDMnc

R . It is an elliptic curve if it is of dimension 1.

Remark 8.20.2 . “Commutative monoid object” is here taken in the sense of [168,
2.4.2]. In this case, it means that an abelian variety X over R represents a functor on
SpDMnc

R which takes values in E∞-spaces. In fact, one can show that every abelian
variety in this sense is “grouplike”, i.e., it actually represents a functor to grouplike
E∞-spaces [166, 1.4.4].

A strict abelian variety or elliptic curve is one in which the commutative monoid
structure is equipped with a refinement to an abelian group structure; i.e., X represents
a functor to Modcn

Z
(8.8.4).

Remark 8.20.3 . Over an ordinary ring R, either notion of abelian variety reduces to
the classical notion. In either case, the commutative monoid/abelian group structure
coincides with the unique abelian group structure which exists on a classical abelian
variety.

In the classical case, the underlying variety of an abelian variety admits a unique
group structure compatible with a given identity section. In the spectral setting, this
is no longer the case, and a group structure of some sort needs to be imposed.

There are ∞-categories AbVar(R) and AbVars(R) of abelian varieties and strict
abelian varieties; morphisms are maps of nonconnective spectral DM stacks over
R which preserve the commutative monoid structure or abelian group structure as
the case may be. We are going to be interested in Ells(R) ⊆ AbVars(R), the full
subcategory of strict elliptic curves.

Remark 8.20.4 . Since abelian varieties over R are in particular flat morphisms, we
see that AbVar(R) ≈ AbVar(τ≥0R) and AbVars(R) ≈ AbVars(τ≥0R) by (8.13.6).

There is a moduli stack of strict elliptic curves.

Theorem 8.20.5 (Lurie). There exists a spectral DM stackMs
Ell such that

MapSpDMnc(SpétR,Ms
Ell) ≈ Ells(R)';

the right-hand side is the maximal ∞-groupoid inside Ells(R). The underlying 0-truncated
spectral DM stack ofMs

Ell is equivalent to the classical moduli stackMEll.

This is proved in [166, 2], using the spectral version of the Artin Representability
Theorem [170, 18.3]. That Ms

Ell is a connective object (i.e., not nonconnective) is
immediate from the fact that Ells(R) ≈ Ells(τ≥0R). That the underlying 0-truncated
stack ofMs

Ell is the classical one is a consequence of the fact that strict elliptic curves
over ordinary rings are just classical elliptic curves.



402 Rezk: Spectral algebraic geometry

Oriented elliptic curves

For any strict elliptic curve C→ SpétR, we may consider the formal completion C∧e
along the identity section. It turns out that C∧e is a 1-dimensional formal group over R
[167, 7.1].

Thus, we define an oriented elliptic curve over R to be a pair (C,e) consisting
of a strict elliptic curve C → SpétR together with an orientation e ∈ OrDat(Ĉe) of
its formal completion Ĉ in the sense of (8.17). There is a corresponding ∞-category
Ellor(R) of oriented elliptic curves: morphisms must preserve the orientation.

Theorem 8.20.6 (Lurie). There exists a nonconnective spectral DM stackMor
Ell such that

MapSpDMnc(SpétR,Mor
Ell) ≈ Ellor(R)'.

The map Mor
Ell → M

s
Ell classifying the strict elliptic curve induces an equivalence of

underlying classical DM stacks.

This is proved in [167, 7].

Remark 8.20.7 . Taken together, we have maps of nonconnective spectral DM stacks

MEll
i−→Ms

Ell
p
←−Mor

Ell

in which isMs
Ell is a spectral DM stack (i.e., is connective), andMEll is a 0-truncated

spectral DM stack (and in fact is a DM stack). The map i witnesses the fact that
every classical elliptic curve is a strict elliptic curve, while the map p forgets about
orientation. All of these objects have the same underlying DM stack (i.e., they have
equivalent ∞-topoi and π0 of their structure sheaves coincide); in the case of Mor

Ell
this is a non-trivial observation.

Remark 8.20.8 . Note that if SpétA→Mor
Ell is any map of nonconnective spectral

DM stacks, then the theorem produces an oriented elliptic curve over A, and hence
an oriented formal group over A. Thus (8.17.9) implies that the E∞-ring A must be
weakly 2-periodic and complex orientable.

In fact, the proof of the theorem shows a little more in the case that SpétA→Mor
Ell

is étale. In this case, A is not merely weakly 2-periodic; it also has the property that
πodd(A) ≈ 0.

As the underlying classical DM stack of Mor
Ell is MEll, we have that the full sub-

category U ′ ⊆ SpDMnc
/Mor

Ell
spanned by étale morphisms SpétA→Mor

Ell is equivalent

to the étale site of the classical stackMEll, which we called U in (8.19.2). Putting all
this together, we see that we have functors

U op ∼←− U ′op→ CAlg

given by

(Spétπ0A→MEll)←[ (SpétA→Mor
Ell) 7→ A.

We see that the resulting functor U op→ CAlg is precisely of the sort demanded by
(8.19.3).


