
6 Commutative ring spectra

by Birgit Richter

6.1 Introduction

Since the 1990s we have had several symmetric monoidal categories of spectra at our
disposal whose homotopy category is the stable homotopy category. The monoidal
structure is usually denoted by ∧ and is called the smash product of spectra. So
since then we can talk about commutative monoids in any of these categories — these
are commutative ring spectra. Even before such symmetric monoidal categories were
constructed, the consequences of their existence were described. In [296, §2] Friedhelm
Waldhausen outlines the role of “rings up to homotopy”. He also coined the expression
“brave new rings” in a 1988 talk at Northwestern University.

So what is the problem? Why don’t we just write down nice commutative models of
our favorite homotopy types and be done with it? Why does it make sense to have a
whole chapter about this topic?

In algebra, if someone tells you to check whether a given ring is commutative, you
can sit down and check the axiom for commutativity and you should be fine. In stable
homotopy theory the problem is more involved, since strict commutativity may only
be satisfied by some preferred point set level model of the underlying associative ring
spectrum and the operadic incarnation of commutativity is an extra structure rather
than a condition.

There is one class of commutative ring spectra that is easy to construct. If you
take singular cohomology with coefficients in a commutative ring R, then this is
represented by the Eilenberg–Mac Lane spectrum HR and this can be represented by
a commutative ring spectrum.

So it would be nice if we could have explicit models for other homotopy types
that come naturally equipped with a commutative ring structure. Sometimes this is
possible. If you are interested in real (or complex) vector bundles over your space, then
you want to understand real (or complex) topological K-theory, and Michael Joachim
[136, 137] for instance has produced explicit analytically flavored models for periodic
real and complex topological K-theory with commutative ring structures.

There are a few general constructions that produce commutative ring spectra for
you. For instance, the construction of Thom spectra often gives rise to commutative
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ring spectra. We will discuss this important class of examples in Section 6.4. A classical
construction due to Graeme Segal also produces small nice models of commutative
ring spectra (see Section 6.5).

Quite often, however, the spectra that we like are constructed in a synthetic way: You
have some commutative ring spectrum R and you kill a regular sequence of elements
in its graded commutative ring of homotopy groups, (x1,x2, . . . ), xi ∈ π∗(R), and you
consider a spectrum E with homotopy groups π∗(E) � π∗(R)/(x1,x2, . . . ). Then it is
not clear that E is a commutative ring spectrum.

A notorious example is the Brown–Peterson spectrum, BP . Take the complex
cobordism spectrum MU . Its homotopy groups are

π∗(MU ) = Z[x1,x2, . . . ],

where each xi is a generator in degree 2i. If you fix a large even degree, then you have
a lot of possible elements in that degree, so you might wish to consider a spectrum
with sparser homotopy groups. Using the theory of (commutative, 1-dimensional)
formal group laws you can do that: If you consider a prime p, then there is a spectrum,
called the Brown–Peterson spectrum, that corresponds to p-typical formal group laws.
It can be realized as the image of an idempotent on MU and satisfies

π∗(BP ) �Z(p)[v1,v2, . . . ],

but now the algebraic generators are spread out in an exponential manner: The degree
of vi is 2pi − 2. You can actually choose the vi as the xpi−1, so you can think of BP
as a quotient of MU in the above sense. Since its birth in 1966 [60] its multiplicative
properties have been an important issue. In [29], for instance, it was shown that BP
has some partial coherence for homotopy commutativity, but in 2017 Tyler Lawson
[152] finally showed that at the prime 2 BP is not a commutative ring spectrum! For
the non-existence of E∞-structures on BP at odd primes see [271].

There are even worse examples: If you take the sphere spectrum S and you try
to kill the non-regular element 2 ∈ π0(S) then you get the mod-2 Moore spectrum.
That isn’t even a ring spectrum up to homotopy. You can also kill all the generators
vi ∈ π∗(BP ) including p = v0, leaving only one vn alive. The resulting spectrum is the
connective version of Morava K-theory, k(n). At the prime 2 this isn’t even homotopy
commutative. In fact, Pazhitnov, Rudyak and Würgler show more [219, 303]: If π0 of a
homotopy commutative ring spectrum has characteristic two, then it is a generalized
Eilenberg–Mac Lane spectrum. Recent work of Mathew, Naumann and Noel puts
severe restrictions on finite E∞-ring spectra [188].

Quite often, we end up working with ideals in the graded commutative ring of
homotopy groups, but as we saw above, this is not a suitable notion of ideal. There
is a notion of an ideal in the context of (commutative) ring spectra [131] due to Jeff
Smith, but still several algebraic constructions do not have an analog in spectra.

So how can you determine whether a given spectrum is a commutative ring spectrum
if you don’t have a construction that tells you right away that it is commutative? This
is where obstruction theory comes into the story.
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There is an operadic notion of an E∞-ring spectrum that goes back to Boardman–
Vogt and May. Comparison theorems [178, 262] then tell you whether these more
complicated objects are equivalent to commutative ring spectra. In the categories of
symmetric spectra, orthogonal spectra and S-modules they are.

Obstruction theory might help you with a decision whether a spectrum carries
a commutative monoid structure: One version [27] gives obstructions for lifting the
ordinary Postnikov tower to a Postnikov tower that lives within the category of
commutative ring spectra. The other kind finds some obstruction classes that tell
you that you cannot extend some partial bits and pieces of a nice multiplication to a
fully fledged structure of an E∞-ring spectrum or that some homology or homotopy
operation that you observe contradicts such a structure. This can be used for a negative
result (as in [152]) or for positive statements: There are results by Robinson [246] and
Goerss–Hopkins [106, 107] that tell you that you have a (sometimes even unique)
E∞-ring structure on your spectrum if all the obstruction groups vanish. Most notably
Goerss and Hopkins used obstruction theory to prove that the Morava stabilizer
groups acts on the corresponding Lubin–Tate spectrum via E∞-morphisms [107].

The algebraic behavior on the level of homotopy groups can be quite deceiving:
complexification turns a real vector bundle into a complex vector bundle. This induces
a map π∗(KO)→ π∗(KU ) which can be realized as a map of commutative ring spectra
c : KO→ KU . On homotopy groups we get

π∗(c) : π∗(KO) = Z[η,y,ω±1]/ (2η,η3,ηy,y2 − 4w)→Z[u±1] = π∗(KU ). (6.1.1)

Here the degrees are |η| = 1, |y| = 4, |w| = 8, |u| = 2 and y is sent to 2u2. So on the
algebraic level c is horrible. But John Rognes showed that the conjugation action on
KU turns the map c : KO → KU into a C2-Galois extension of commutative ring
spectra!

Even for ordinary rings, viewing a (commutative) ring R as a (commutative) ring
spectrum via the Eilenberg–Mac Lane spectrum functor changes the situation com-
pletely. The ring R has a characteristic map χ : Z→ R because the ring of integers is
the initial ring. As a ring spectrum, HZ is far from being initial. The map Hχ can be
precomposed with the unit map of HZ:

S
η
//HZ

Hχ
//HR,

and the sphere spectrum S is the initial ring spectrum! Now there is a lot of space
between the sphere and any ring. I will discuss two consequences that this has: There
is actually algebraic geometry happening between the sphere spectrum and the prime
field Fp : There is a Galois extension of commutative ring spectra (see 6.8.1) A→HFp!

Another feature is that there exist differential graded algebras A∗ and B∗ that are not
quasi-isomorphic, but whose associated algebra spectra over an Eilenberg–Mac Lane
spectrum [275] are equivalent as ring spectra [80]. Similar phenomena happen if you
consider differential graded E∞-algebras: there are non quasi-isomorphic ones whose
associated commutative algebras over an Eilenberg–Mac Lane spectrum [236] are
equivalent as commutative ring spectra [33].
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Content

The structure of this overview is as follows: We start with some basic features of
commutative ring spectra and their model category structures in Section 6.2. The most
basic way to relate classical algebra to brave new algebra is via the Eilenberg–Mac Lane
spectrum functor. We study chain algebras and algebras over Eilenberg–Mac Lane
ring spectra in Section 6.3. As you can study the group of units of a ring we consider
units of ring spectra and Thom spectra in Section 6.4. In Section 6.5 we present
a construction going back to Segal. Plugging in a bipermutative category yields a
commutative ring spectrum.

In Section 6.6 we introduce topological Hochschild homology and some of its
variants and topological André–Quillen homology. In Section 6.7 we discuss some
versions of obstruction theory that tell you whether a given multiplicative cohomology
theory can be represented by a strict commutative model.

Some concepts from algebra translate directly to spectra but some others don’t.
We discuss the different concepts of étale maps for commutative algebra spectra in
Section 6.8. Picard and Brauer groups for commutative ring spectra are important
invariants and feature in Section 6.9.

Disclaimers

For more than 30 years, the phrase commutative ring spectrum meant a commutative
monoid in the homotopy category of spectra. Since the 1990s this has changed. At the
beginning of this new era people were careful not to use this name, in order to avoid
confusion with the homotopy version. In this paper we reserve the phrase commutative
ring spectrum for a commutative monoid in some symmetric monoidal category of
spectra.

The second disclaimer is that for this paper a space is always compactly generated
weak Hausdorff. I denote the corresponding category just by Top.

Last but not least: Of course, this overview is not complete. I had to omit important
aspects of the field due to space constraints. Most prominently probably is the omission
of topological cyclic homology and its wonderful applications to algebraic K-theory.

I try to give adequate references, but often it was just not feasible to describe the
whole development of a topic and much worse, I probably have forgotten to cite
important contributions. If you read this and it affects you, then I can only apologize.
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6.2 Features of commutative ring spectra

Some basics

Before we actually start with model structures, we state some basic facts about
commutative ring spectra.

Let R be a commutative ring spectrum. Then the category of R-module spectra
is closed symmetric monoidal: For two such R-module spectra M,N the smash
product over R, M ∧RN , is again an R-module and the usual axioms of a symmetric
monoidal category are satisfied. There is an R-module spectrum FR(M,N ), the
function spectrum of R-module maps from M to N .

We denote the category of R-module spectra byMR. The category of commutative
R-algebras is the category of commutative monoids inMR and we denote it by CR.

By definition, every object A of CR receives a unit map from R and hence R is initial
in CR. In particular, the sphere spectrum is the initial commutative ring spectrum.
Every discrete ring is a Z-algebra; similarly, every (commutative) ring spectrum is a
(commutative) S-algebra. If R is a commutative ring spectrum, then the category of
commutative R-algebras is isomorphic to the category of commutative ring spectra
under R, i.e., the category of commutative ring spectra A with a distinguished map
η : R→ A in that category.

We allow the trivial R-algebra corresponding to the one-point spectrum ∗ and this
spectrum is a terminal object in CR.

In any symmetric monoidal category (C,⊗,1, τ) the coproduct of two commutative
monoids A and B in C is A⊗B. So, for two commutative R-algebras A and B, their
coproduct is A∧R B.

Model structures on commutative monoids

I will assume that you are familiar with the concept of model categories and that you
have seen some examples and read Chapter 3 in this book. Good general references
are Hovey’s [130] and Hirschhorn’s [124] books. You could also just skip this section and
have in mind that there are some serious model category issues lurking in the dark.

For this section I will mainly focus on two models for spectra: symmetric spectra
[133] and S-modules [94]. They are different concerning their model structures. In the
model structure in [133] on symmetric spectra the sphere spectrum is cofibrant, whereas
in the one for S-modules it is not, but all objects are fibrant.

The model structures on commutative monoids in either of the categories [94,
133] are special cases of a right induced model structure: We have a functor PR from
R-module spectra to commutative R-algebra spectra assigning the free commutative
R-algebra spectrum on M to any R-module spectrum M : explicitly,

PR(M) =
∨
n>0

M∧Rn/Σn.

The symbol PR should remind you of a polynomial algebra. This functor has a right
adjoint, the forgetful functor U . In a right-induced model structure one determines
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the fibrations and weak equivalences by the right adjoint functor. In our cases, a map
of commutative R-algebra spectra is a fibration or a weak equivalence if it is one in
the underlying category of R-module spectra. Note that establishing right induced
model structures on commutative monoids in some model category does not always
work. The standard example is the category of Fp-chain complexes (say p is an odd
prime). Then the chain complex D

2 is acyclic, having Fp in degrees 1 and 2 with
the identity map as differential, but the free graded commutative monoid generated
by it is Λ

Fp
(x1)⊗Fp[x2] with |xi | = i and the induced differential is determined by

d(x2) = x1 and the Leibniz rule. But then d(xp2) is a cycle that is not a boundary, so
the resulting object is not acyclic.

If R is a commutative S-algebra in the setting of EKMM [94], then the categories
of associative R-algebras and of commutative R-algebras possess a right induced
model structure [94, Corollary VII.4.10]. The existence of the model structure for
commutative monoids is a special case of the existence of right-induced model
structures for T-algebras [94, Theorem VII.4.9], where T is a continuous monad on
the category of R-module spectra that preserves reflexive coequalizers and satisfies the
cofibration hypothesis [94, VII.4]. The category of commutative S-algebras is identified
[94, Proposition II.4.5] with the category of algebras for the monad PS as above on the
category of S-modules.

In diagram categories such as symmetric spectra and orthogonal spectra the
situation is different: In the standard model structures on these categories the sphere
spectrum is cofibrant. If one were to take a right-induced model structure on the
category of commutative monoids, i.e., the model structure such that a map of
commutative ring spectra f : A→ B is a fibration or weak equivalence if it is one in
the underlying category, then the sphere would still be cofibrant. If we take a fibrant
replacement of the sphere S → Sfib, then in particular Sfib would be fibrant in the
model category of symmetric spectra; hence it would be an Ω-spectrum and its zeroth
level would be a strictly commutative model for QS0. However, Moore shows [212,
Theorem 3.29] that this would imply that QS0 has the homotopy type of a product of
Eilenberg–Mac Lane spaces — but this is false.

The usual way to avoid this problem is to consider a positive model structure
on SpΣ (see [178, Definition 6.1] for the general approach). Here the positive level
fibrations (weak equivalences) are maps f ∈ SpΣ(X,Y ) such that f (n) is a fibration
(weak equivalence) for all levels n > 1. The positive cofibrations are then cofibrations
in SpΣ that are isomorphisms in level zero. The positive stable model category is then
obtained by a Bousfield localization that forces the stable equivalences to be the weak
equivalences and the right-induced model structure on the commutative monoids in
SpΣ then has the desired properties.

There is another nice model for connective spectra, given by Γ-spaces [268, 172].
This category is built out of functors from finite pointed sets to spaces, so it is a
very hands-on category with explicit constructions. It is also a symmetric monoidal
category with a suitable model structure. We refer to [172, 264] for background on this.
Its (commutative) monoids are called (commutative) Γ-rings. Beware that commutative
Γ-rings, however, do not model all connective commutative ring spectra. Tyler Lawson
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proves in [151] that commutative Γ-rings satisfy a vanishing condition for Dyer–Lashof
operations of positive degree on classes in their zeroth mod-p-homology (for all
primes p) and that for instance the free E∞-ring spectrum generated by S

0 cannot be
modeled as a commutative Γ-ring.

Behavior of the underlying modules

In the setting of EKMM it is shown that the underlying R-modules of cofibrant
commutative R-algebras have a well-behaved smash product in the derived category
of R-modules:

Theorem 6.2.1 [94, Theorem VII.6.7]. If A and B are two cofibrant commutative
R-algebras, and if ϕA : ΓA −→∼ A and ϕB : ΓB −→∼ B are chosen cell R-module spectra
approximations then

ϕA ∧R ϕB : ΓA∧R ΓB→ A∧R B

is a weak equivalence.

Brooke Shipley developed a model structure for commutative symmetric ring spectra
in [274] in which the underlying symmetric spectrum of a cofibrant commutative ring
spectrum is also cofibrant as a symmetric spectrum [274, Corollary 4.3].

She starts with introducing a different model structure on symmetric spectra. Let M
denote the class of monomorphisms of symmetric sequences in pointed simplicial sets
and let S ⊗M denote the set {S ⊗ f , f ∈M}, where ⊗ denotes the tensor product of
symmetric sequences. An S-cofibration is a morphism in (S ⊗M)-cof, i.e., a morphism
in SpΣ that has the left lifting property with respect to maps that have the right lifting
property with respect to S⊗M . She shows that the classes of S-cofibrations and stable
equivalences determine a model structure with the S-fibrations being the class of
morphisms with the right lifting property with respect to S-cofibrations that are also
stable equivalences [274, Theorem 2.4]. This model structure was already mentioned
in [133, 5.3.6]. Shipley proves that this model structure is cofibrantly generated, is
monoidal and satisfies the monoid axiom [274, 2.4, 2.5].

Note that symmetric spectra are S-modules in symmetric sequences. This allows for
a version of an R-model structure for every associative symmetric ring spectrum R with
R-cofibrations, R-fibrations and stable equivalences [274, Theorem 2.6]. In the positive
variant of this model structure the positive R-cofibrations are R-cofibrations that are
isomorphisms in level zero. Together with the stable equivalences this determines the
positive R-model structure.

The corresponding right induced model structure on commutative R-algebra spectra
for a commutative symmetric ring spectrum R is then the convenient model structure:
The weak equivalences are stable equivalences, the fibrations are positive R-fibrations
and the cofibrations are determined by the structure.

She then shows a remarkable property of this model structure on commutative
R-algebra spectra:
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Theorem 6.2.2 [274, Corollary 4.3]. If A is cofibrant as a commutative R-algebra then
A is R-cofibrant in the R-model structure. If A is fibrant as a commutative R-algebra, then
A is fibrant in the positive R-model structure on R-module spectra.

The positive R-model structure ensures that R is not cofibrant; hence cofibrant
commutative R-algebras will not be positively R-cofibrant!

Comparison, rigidification and En-structures

Stefan Schwede proves [262, Theorem 5.1] that the homotopy category of commutative
S-algebras from [94] is equivalent to the homotopy category of commutative symmetric
ring spectra by establishing a Quillen equivalence between the corresponding model
categories. In [178, Theorem 0.7] the analogous comparison result is proven for
commutative orthogonal ring spectra and commutative symmetric ring spectra.

Even before any symmetric monoidal category of spectra was constructed, the
notion of operadically defined E∞-ring spectra [199] was available. An E∞-structure
on a spectrum is a multiplication that is homotopy commutative in a coherent way.
See Chapter 5 of this book for background on operads and their role in the study of
spectra with additional structure.

There is an explicit comparison of the good old E∞-ring spectra and commutative
ring spectra, see [94, Proposition II.4.5] or [178, Remark 0.14]; in particular, every
E∞-ring spectrum R̃ can be rigidified to a commutative ring spectrum R in such a
way that the homotopy type is preserved.

There are several popular E∞-operads that will show up later: for instance the
linear isometries operad (see (6.4.3)) and the Barratt–Eccles operad. The n-ary part
of the latter is easy to describe: You take O(n) = EΣn, a contractible space with
free Σn-action. For compatibility reasons it is advisable to take the realization of the
standard simplicial model of EΣn whose set of q-simplices is (Σn)q+1.

An operad with a nice geometric description is the little m-cubes operad, that in
arity n consists of the space of n-tuples of linearly embedded m-cubes in the standard
m-cube with disjoint interiors and with axes parallel to that of the ambient cube
[49, Example 5]. We call this (and every equivalent) operad in spaces Em. For m = 1
this operad parametrizes A∞-structures and the colimit is an E∞-operad. Hence
the intermediate Em’s for 1 < m <∞ interpolate between these structures; they give
A∞-structures with homotopy-commutative multiplications that are coherent up to
some order.

Power operations

The extra structure of an E∞-ring spectrum gives homology operations. The general
setting allows for H∞-ring spectra [63]; for simplicity we assume that E and R are two
E∞-ring spectra whose structure is given by the Barratt–Eccles operad, i.e., there are
structure maps

ξnR : (EΣn)+ ∧ΣnR
∧n→ R (6.2.1)
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for R and also for E. McClure describes the general setting of power operations in
[63, IX §1]. Fix a prime p and abbreviate (EΣp)+ ∧ΣpR

∧p by Dp(R); one often calls
DpR the p-th extended power construction on R. A power operation assigns to every class
[x] ∈ EnR and every class e ∈ Em(DpSn) a class Qe[x] ∈ EmR; hence we can view Qe

as a map

Qe : EnR→ EmR.

The construction is as follows. Take a representative x : Sn → E ∧ R of [x] and
e ∈ Em(DpSn) and apply the following composition to e:

Em(DpSn)

%%

Em(Dpx)
// Em(Dp(E ∧R)) δ // Em(DpE ∧DpR)

Em(ξpE∧id)
��

Em(E ∧DpR)

µ∗

��

Em(DpR)

Em(ξpR)
��

Em(R).

(6.2.2)

Here,

δ : (EΣp)+ ∧Σp (E ∧R)∧p→ (EΣp)+ ∧ΣpE
∧p∧ (EΣp)+ ∧ΣpR

∧p

is the canonical map induced by the diagonal on the space EΣp and µ denotes the
multiplication in E, so it induces

µ∗ : π∗(E ∧E ∧DpR)→ π∗(E ∧DpR).

There are several important special cases of this construction:

1. For E the sphere spectrum one obtains operations on the homotopy groups of an
E∞-ring spectrum; see [63, IV §7].

2. For E = HFp the power operations for certain classes ei ∈ Hi(Σp;Fp) are often
called (Araki–Kudo–)Dyer–Lashof operations. These are natural homomorphisms

Qi : (HFp)n(R)→ (HFp)n+2i(p−1)(R) (6.2.3)

for odd primes and Qi : (HF2)n(R)→ (HF2)n+i(R) at the prime 2 that satisfy a
list of axioms [63, Theorem III.1.1] and compatibility relations with the homology
Bockstein and the dual Steenrod operations.

3. There are also important K(n)-local versions of such operations and we will
encounter them later.
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6.3 Chain algebras and algebras over Eilenberg–MacLane

spectra

The derived category of a ring is an important object in many subjects. The initial ring
is the ring of integers. Every ring R has an associated Eilenberg–Mac Lane spectrum,
HR.

HR-module and algebra spectra

We collect some results that compare the category of chain complexes of R-modules
with the category of module spectra over HR. We start with additive statements
and move to comparison results for flavors of differential graded R-algebras. For an
overview of algebraic applications of these equivalences see for instance [111].

In the 1980s, so before any strict symmetric monoidal category of spectra was
constructed, Alan Robinson developed the notion of the derived category, D(E), of
right E-module spectra for every A∞-ring spectrum E. He showed the following result.

Theorem 6.3.1 [249, Theorem 3.1]. For every associative ring R there is an equivalence
of categories between the derived category of R, D(R), and the derived category of the
associated Eilenberg–Mac Lane spectrum, D(HR).

Later, in the context of S-modules this corresponds to [94, IV, Theorem 2.4]. Work
of Schwede and Shipley strengthened the result to a Quillen equivalence of the
corresponding model categories:

Theorem 6.3.2 [266, Theorem 5.1.6]. The model category of unbounded chain complexes
of R-modules is Quillen equivalent to the model category of HR-module spectra .

Stefan Schwede uses the setting of Γ-spaces [264] to embed simplicial rings and
modules into the stable world: He constructs a lax symmetric monoidal Eilenberg–
Mac Lane functor H from simplicial abelian groups to Γ-spaces together with a
linearization functor L in the opposite direction and proves the following comparison
result:

Theorem 6.3.3 [264, Theorems 4.4 and 4.5]. If R is a simplicial ring, then the adjoint
functors H and L constitute a Quillen equivalence between the categories of simplicial
R-modules and HR-module spectra. If R is in addition commutative, then H and L induce
a Quillen equivalence between the categories of simplicial R-algebras and HR-algebra
spectra.

Here, the functor L is left inverse to H and induces an isomorphism of Γ-spaces

Hom(HA,HB) �H(HomsAb(A,B))

[264, Lemma 2.1]; thus H embeds algebra into brave new algebra.
Brooke Shipley extends this equivalence to corresponding categories of monoids in

the differential graded setting:
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Theorem 6.3.4 [275, Theorem 1.1]. For any commutative ring R, the model categories of
unbounded differential graded R-algebras and HR-algebra spectra are Quillen equivalent.

Dugger and Shipley show in [80] that there are examples of HR-algebras that
are weakly equivalent as S-algebras, but that are not quasi-isomorphic. A concrete
example is the differential graded ring A∗ which is generated by an element in degree
1, e1, and has d(e1) = 2 and satisfies e4

1 = 0. The corresponding HZ-algebra spectrum
is equivalent as a ring spectrum to the one on the exterior algebra B∗ =Λ

F2
(x2) (with

|x2| = 2) but A∗ and B∗ are not quasi-isomorphic. You find more examples and proofs
in [80, §§4,5].

We cannot expect that commutative HR-algebra spectra correspond to commutative
differential graded R-algebras unless R is of characteristic zero, because of cohomology
operations, but we get the following result:

Theorem 6.3.5 [236, Corollary 8.3]. If R is a commutative ring, then there is a chain
of Quillen equivalences between the model category of commutative HR-algebra spectra and
E∞-monoids in the category of unbounded R-chain complexes.

Haldun Özgür Bayındır shows [33] that one can find E∞-differential graded algebras
that are not quasi-isomorphic, but whose corresponding commutative HR-algebra
spectra are equivalent as commutative ring spectra.

Cochain algebras

A prominent class of examples of commutative HR-algebra spectra consists of function
spectra F(X+,HR). Here, X is an arbitrary space and R is a commutative ring. The
diagonal ∆ : X→ X ×X and the multiplication on HR, µHR, induce a multiplication

F(X+,HR)∧F(X+,HR) // F(X+ ∧X+,HR∧HR) � F((X ×X)+,HR∧HR)

∆∗,µHR
��

F(X+,HR)

that turns F(X+,HR) into a HR-algebra spectrum. As the diagonal is cocommutative
and as µHR is commutative, the resulting multiplication is commutative.

These function spectra are models for the singular cochains of a space X with
coefficients in R:

π∗(F(X+,HR)) �H−∗(X;R).

Beware that the homotopy groups of F(X+,HR) are concentrated in non-positive
degrees — i.e., F(X+,HR) is coconnective.

Studying the singular cochains of a space S∗(X;R) as a differential graded R-module
is not enough in order to recover the homotopy type of X. If we work over the rational
numbers, then Quillen showed that rational homotopy theory is algebraic in the sense
that one can use rational differential graded Lie algebras or coalgebras as models
for rational homotopy theory [228]. Sullivan [286] constructed a functor, assigning a
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rational differential graded commutative algebra to a space, that is closely related to
the singular cochain functor with rational coefficients. He used this to classify rational
homotopy types.

For a general commutative ring R, the singular cochains are an E∞-algebra. Mike
Mandell proves [181, Main Theorem] that the singular cochain functor with coefficients
in an algebraic closure of Fp, Fp, induces an equivalence between the homotopy
category of connected p-complete nilpotent spaces of finite p-type and a full sub-
category of the homotopy category of E∞-Fp-algebras. He also characterizes those

E∞-Fp-algebras that arise as cochain algebras of 1-connected p-complete spaces
of finite p-type explicitly [181, Characterization Theorem]. There is also an integral
version of this result, stating that finite type nilpotent spaces are weakly equivalent if
and only if their E∞-algebras of integral cochains are quasi-isomorphic [180, Main
Theorem].

A strictly commutative integral model of the E∞-algebra of cochains on a space is
constructed in [235] using chain complexes indexed by the category of finite sets and
injections.

6.4 Units of ring spectra and Thom spectra

One construction that can give rise to highly structured multiplications on a spectrum
is the Thom spectrum construction: For instance, complex bordism, MU , obtains a
commutative ring structure this way. Mahowald emphasized [175] early on that multi-
plicative properties of the structure maps for Thom spectra translate to multiplicative
structures on the resulting Thom spectra. Their properties and the corresponding
orientation theory is systematically studied in [199, 196]. There is the following general
result by Lewis:

Theorem 6.4.1 [155, Theorem IX.7.1 and Remark IX.7.2]. Assume that f is a map of
spaces from X to the classifying space for stable spherical fibrations, BG, that is a C-map for
some operad C over the linear isometries operad. Then the Thom spectrum M(f ) associated
to f carries a C-structure. In particular, infinite loop maps from X to BG give rise to
E∞-ring spectra.

Note that BG is the classifying space of the units of the sphere spectrum, GL1(S).
A seemingly naive definition of GL1(S) is given by the pullback of the diagram

GL1S //

��

Ω∞S

��

π0(S)× = {±1} // π0(S) = Z

(6.4.1)

so by the components of QS0 corresponding to ±1 ∈Z.
We next give a short overview of Thom spectra that arise in a more general context,

where the target of the map is the space of units, GL1(R), for a commutative ring
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spectrum R. The first idea is to define the space GL1(R) as the space that represents
the functor that sends a space X to the units in R0(X). Copying the definition from
(6.4.1) above with S replaced by R gives a valid definition of GL1(R) and it was shown
in [199] that for commutative R this model is an E∞-space.

In the approaches [6] and [31], the idea is to replace the above model of GL1(R) with
its E∞-structure with a strictly commutative model. As spaces with an E∞-structure are
not equivalent to strictly commutative spaces (that’s the problem again that then QS0

would be a product of Eilenberg–Mac Lane spaces [212]), one has to find a different
category with the property that there is a Quillen equivalence between commutative
monoids in that category and E∞-monoids in spaces and such that there are models
of Ω∞(R) and GL1(R) in this category.

In [6] the authors work with ∗-modules and in [31] the authors use Schlichtkrull’s
model of GL1(R) in commutative I-spaces, where I is the skeleton of the category of
finite sets and injections.

The idea is to construct a spectrum version of the assembly map for discrete rings:
If R is a discrete ring and if R× is its group of units, then there is a canonical map

Z[R×]→ R (6.4.2)

from the group ring Z[R×] to R that takes an element
∑n
i=1 airi of Z[R×] (with ai ∈Z

and ri ∈ R×) to the same sum, but now we use the ring structure of R to convert the
formal sum into an actual sum

∑n
i=1 airi ∈ R. Note that R× is an abelian group if R is

a commutative ring.
We will sketch both constructions of Thom spectra and briefly discuss the applica-

tion in [6] to the question of when a Thom spectrum allows for an E∞-map to some
other E∞-ring spectrum: for instance, whether one can realize an E∞-version of the
string orientation MO〈8〉 → tmf [7] or an E∞-version of a complex orientation [127].

The focus in [31] is on multiplicative properties of the Thom spectrum functor and
on applications to topological Hochschild homology. We present the results about
multiplicative structures and discuss their results on THH of Thom spectra in Section
6.6. We’ll also describe how the concept of I-spaces can be generalized to a setting in
which the units can be adapted to non-connective ring spectra.

Thom spectra via L-spaces and orientations

Fix a countably infinite-dimensional real vector space U and consider

L = L(1) = L(U,U ),

the space of linear isometries from U to itself. The notation L(1) is due to the fact
that L(1) is the 1-ary part of the famous linear isometries operad [49, §1] whose term
of arity n is

L(n) = L(Un,U ). (6.4.3)

See [49] or [6] for details. Note that L is a monoid with respect to composition.
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Definition 6.4.2. The category of L-spaces, Top[L], is the category of spaces with a
left action of the monoid L.

Using the 2-ary part of the linear isometries operad, one can manufacture a product
on Top[L]: For objects X,Y of Top[L] their product X ×

L
Y is the coequalizer

L(2)× (L(1)×L(1))×X ×Y //
// L(2)×X ×Y //X ×

L
Y .

Here, one map uses the L(1)-action on the spaces X and Y and the other map uses
the operad product L(2)×L(1)×L(1)→L(2).

As L(2) = L(U2,U ) has a left L(1)-action, X ×
L
Y is an L(1)-space. The product

is associative and has a symmetry, but it is only weakly unital. See [45, §4] for a careful
discussion.

By [45, Proposition 4.7] there is an isomorphism of categories between commutative
monoids with respect to ×

L
and E∞-spaces whose E∞-structure is parametrized by

the linear isometries operad.
For strict unitality, one restricts to the full subcategory M∗ of objects of Top[L]

for which the unit map is a homeomorphism. Such objects are called ∗-modules. The
commutative monoids inM∗ again model E∞-spaces [45, Proposition 4.11].

For an associative ring spectrum R, there is a strictly associative model inM∗ of
the space of units GL1(R) and the functor GL1 is right adjoint to the inclusion of
grouplike objects. One can form a bar construction, B×

L
, of a cofibrant replacement,

GL1(R)c, of GL1(R) with respect to the monoidal product ×
L

, where B×
L

(GL1(R)c)
is the geometric realization of the simplicialM∗ object

[n] 7→ ∗ ×
L
GLc1(R)×

L
. . .×

L
GLc1(R)︸                         ︷︷                         ︸

n

×
L
∗ .

Similarly, E×
L

(GL1(R)c) is constructed out of the simplicial object

[n] 7→ ∗ ×
L
GLc1(R)×

L
. . .×

L
GLc1(R)︸                         ︷︷                         ︸

n+1

.

Adapted to the situation there are suspension spectrum and underlying infinite loop
space functors [159, Lemma 7.5]

M∗
(Σ∞

L
)+

//MS
Ω∞S

oo (6.4.4)

that are a Quillen adjoint pair of functors. Here, the suspension functor is strong
symmetric monoidal and the underlying loop space functor is lax symmetric monoidal.

The spectrum version of the assembly map from (6.4.2) is

(Σ∞
L

)+(GLc1(R))→ (Σ∞
L

)+(GL1(R))→ R,

where the first map comes from the cofibrant replacement of the units and the second
one is the counit of an adjunction [6, (3.1)].
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Definition 6.4.3 [6, Definition 3.12]. Given a map f : X→ B×
L

(GLc1(R)), the Thom
spectrum for f inM∗ is the R-module spectrum (in the world of [94])

M(f ) = (Σ∞
L

)+P
c∧(Σ∞

L
)+GL

c
1(R) R. (6.4.5)

Here, P c is a cofibrant replacement as a right GLc1(R)-module of the pullback

P //

��

E×
L

(GLc1(R))

��

X // B×
L

(GLc1(R))

Remark 6.4.4 . Because of the cofibrancy of P c, the smash product in (6.4.5) is actually
a derived smash product. See [6, §3] for the necessary background on the model
structures involved.

In the commutative case, [6, §4, §5] is set in the classical framework of E∞-ring
spectra and E∞-spaces as in [199]. For an E∞-ring spectrum R, the space Ω∞R
is actually an E∞-ring space [197, Corollary 7.5]; this is a space on which a pair of
E∞-operads acts: one codifying the additive structure that is present in every spectrum
and one encoding the multiplicative structure [197, §1]. Actually more is true. Call an
E∞-ring space ring-like if its π0 is actually a ring and not just a rig — a ring without
negatives. The homotopy category of ring-like E∞-ring spaces is equivalent to the
homotopy category of connective E∞-ring spectra [197, Theorem 9.12].

If R is a commutative ring spectrum or an E∞-ring spectrum then the space of
units, GL1(R), is a group-like E∞-space and hence is an infinite loop space that has
an associated connective spectrum, gl1(R), with Ω∞gl1(R) = GL1(R).

The crucial ingredient in this case is the pair of functors (Σ∞+ Ω
∞, gl1) that is an

adjunction between the homotopy category of connective spectra and the homotopy
category of E∞-ring spectra in the sense of Lewis–May–Steinberger.

In particular, one gets a version of the assembly map from (6.4.2):

Σ∞+ Ω
∞(gl1(R))→ R

for every E∞-ring spectrum. By [94] one can replace E∞-ring spectra with commutative
S-algebras, i.e., with commutative ring spectra. This simplifies the discussion of
pushouts and allows us to replace Σ∞+ Ω

∞ by (Σ∞
L

)+Ω
∞
S from (6.4.4) to get

(Σ∞
L

)+Ω
∞
S (gl1(R))→ R.

Note that a map of infinite loop spaces f : B→ BGL1(R) encodes the same data as
a map of spectra f : b→ bgl1(R), where the lowercase letters denote the associated
connective spectra. As before we consider the pullback p:

p //

��

egl1(R)

��

b
f
// bgl1(R)
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and form the corresponding derived smash product:

Definition 6.4.5. Let f : b → bgl1(R) be a map of connective spectra. The Thom
spectrum associated to f , M(f ), is the homotopy pushout in the category of commuta-
tive S-algebras

M(f ) = (R∧ (Σ∞
L

)+Ω
∞
S p)∧LR∧(Σ∞

L
)+Ω

∞
S gl1(R) R.

As the (homotopy) pushout is the (derived) smash product, this resembles the
construction from (6.4.5).

In the commutative ring spectrum setting the question about orientations is the
following problem: Assume that there is a map of commutative ring spectra α : R→ A,
then A is a commutative R-algebra spectrum. For a map of spectra f : b→ bgl1(R)
as above we can ask whether there is a morphism of commutative R-algebra spectra
from M(f ) to A. As M(f ) is defined as a (homotopy) pushout, we get a condition
that says that we need maps from the ingredients of the derived smash product. As we
start with a map α from R to A, we get an induced map

gl1(α) : gl1(R)→ gl1(A).

So what is missing is a map

(Σ∞
L

)+Ω
∞
S p→ A

that is compatible with the map (Σ∞
L

)+Ω
∞
S gl1(R)→ A. With the help of the adjunction

this means that we need a map

p→ gl1(A)

whose precomposition with the map gl1(R)→ p gives gl1(α). This argument can be
turned into a proof for the following result:

Theorem 6.4.6 [6, Theorem 4.6]. The derived mapping space of commutative R-algebras
from M(f ) to A, MapCR(M(f ),A), is weakly equivalent to the fiber in the map between
derived mapping spaces

MapMS
(p,gl1(A))→MapMS

(gl1(R), gl1(A))

at the basepoint gl1(α) of MapMS
(gl1(R), gl1(A)).

An important example is the question of the string orientation of the spectrum
of topological modular forms, tmf . For background on tmf and its variants see [74],
whose Chapter 10 contains André Henriques’ notes of Mike Hopkins’ lecture on the
string orientation. Let BO〈8〉 be the 7-connected cover of BO and let bo〈8〉 be the
associated spectrum with the canonical map f : bo〈8〉 → bgl1(S). So we are in the
situation where R = S and we take A = tmf . Ando, Hopkins and Rezk [7] establish the
existence of an E∞-map

MString =MO〈8〉 → tmf

by showing a fiber property as above.
An approach to orientations of the form MU → E is described in [127]: You start
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with an E∞-ring spectrum E and an ordinary complex orientation of E [234, §6.1]
and want to know whether you can refine this to an E∞-map MU → E. Hopkins and
Lawson establish a filtration of MU by E∞-Thom spectra

S→MX1→MX2→ ·· · →MU

and for a given E∞-map MXn → E they identify the space of extensions to an
E∞-map MXn+1→ E [127, Theorem 1].

Remark 6.4.7 . In [6] the authors present a different approach to Thom spectra and
questions about orientations that uses ∞-categorical techniques. In certain cases it
is unrealistic to hope for E∞-maps out of Thom spectra, for instance if one doesn’t
know that the target spectrum carries an E∞ structure. The space of En-maps out of
Thom spectra is described in [68, Theorem 4.2] and [11, Corollary 3.18].

Thom spectra via I-spaces

Let I be the skeleton of the category of finite sets and injective maps. As objects
we choose the sets n = {1, . . . ,n} for n > 0 with the convention that 0 denotes the
empty set. A morphism f ∈ I(n,m) is an injective function from n to m. Hence 0 is
an initial object of I and the permutation group Σn is the group of automorphisms
of n in I . The category I is symmetric monoidal with respect to the disjoint union:
ntm = n + m with unit 0 and non-trivial symmetry n + m→m + n given by the
shuffle permutation that moves the first n elements to the positions m+ 1, . . . ,m+n.

The functor category of I-spaces, TopI , i.e., the category of functors X : I → Top

together with natural transformations as morphisms, inherits a symmetric monoidal
structure from I and Top via the Day convolution product. Explicitly, one gets:

Definition 6.4.8. The product X �Y of two I-spaces X,Y is the I-space given by

(X �Y )(n) = colimptq→nX(p)×Y (q).

The unit 1I is the discrete I-space n 7→ I(0,n).

As 0 is initial, the unit 1I is the terminal object in TopI . Commutative monoids in
TopI are called commutative I-space monoids in [31] and their category is denoted by
C(TopI ). A general fact about Day convolution products is that commutative monoids
correspond to lax symmetric monoidal functors.

For an I-space X let’s denote by XhI the Bousfield–Kan homotopy colimit of X.

Definition 6.4.9 [31, Definition 2.2]. A map of I-spaces f : X→ Y is an I-equivalence
if the induced map on homotopy colimits fhI : XhI → YhI is a weak homotopy equiv-
alence in Top.

With the corresponding I-model structure the category of I-spaces is actually
Quillen equivalent to the category of spaces [256, Theorem 3.3], but there is a positive
flat model structure on I-spaces (see [31, §2]) that lifts to a right-induced model structure
on C(TopI ) that makes it Quillen equivalent to E∞-spaces.



266 Richter: Commutative ring spectra

Let SpΣ denote the category of symmetric spectra. There is a canonical Quillen
adjoint functor pair

TopI
S
I

// SpΣ

ΩI
oo (6.4.6)

modeling the suspension spectrum functor and the underlying infinite loop space
functor with

S
IX(n) = S

n ∧X(n), ΩI (E)(n) =ΩnEn,

where S
n is the n-fold smash product of the 1-sphere with Σn-action given by

permutation of the smash factors.
Stable equivalences in symmetric spectra do not in general agree with stable

homotopy equivalences, but there is a notion of semistable symmetric spectra that
has the feature that a map f : E→ F between two semistable symmetric spectra is a
stable equivalence if and only if it is a stable homotopy equivalence. See [133, §5.6] for
details and other characterizations.

Definition 6.4.10. For a commutative semistable symmetric ring spectrum R the
commutative I-space monoid of units, GLI1(R), has as GLI1(R)(n) those components
of the commutative I-space monoid ΩI (R)(n) =ΩnRn that represent units in π0(R).

The adjunction from (6.4.6) gives a version of the assembly map from (6.4.2) as

S
I (GLI1(R))→ S

IΩI (R)→ R.

For technical reasons one has to work with a cofibrant replacement of GLI1(R),
G→ GLI1(R) in the positive flat model structure on C(TopI ). The construction of a
Thom spectrum associated to a map f : X→ BG is now similar to the approach in [6];
one defines BG and EG via two sided-bar constructions and takes a suitable pushout:

Definition 6.4.11 [31, Definitions 2.10, 2.12, 3.6].

– Let BG = B�(1I ,G,1I ) and let EG be defined via a functorial factorization

B�(1I ,G,G) // ∼ // EG // // BG.

– For any I-space X over BG define U (X) as the I-space with G-action given by the
pullback

U (X) //

��

X

��

EG // BG.

Here, X and BG are considered as I-spaces with trivial G-action.
– Let R be a semistable commutative symmetric ring spectrum that is S-cofibrant.

The Thom spectrum associated with a map of I-spaces f : X→ BG is

MI (f ) = B�(SI (UX),SIG,R). (6.4.7)
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You should think of this two-sided bar construction as

S
I (UX)�L

S
IG
R

and then you have to admit that this looks very similar to (6.4.5). This Thom spec-
trum functor is homotopically meaningful (see [31, Proposition 3.8]). Concerning
multiplicative structures one obtains the following result.

Proposition 6.4.12 [31, Proposition 3.10, Corollary 3.11]. The functor MI (−) is lax
symmetric monoidal and if D is an operad in spaces, then it sends D-algebras in
TopI over BG to D-algebras in R-modules in symmetric spectra over MIGL1(R) :=
B�(SI (EG),SI (G),R).

If you dislike diagram categories for some reason, there is also an I-spacification
functor [31, §4.1] that transforms a map of topological spaces

f : X→ BGhI (6.4.8)

into a map of I-spaces over BG, so you can associate a Thom spectrum to such a map
as well. By abuse of notation, we will still denote this Thom spectrum by MI (f ). This
construction respects actions of operads augmented over the Barratt–Eccles operad
and hence it also provides an E∞ Thom spectrum functor.

An important question is: Can a given ring spectrum A be realized as a Thom
spectrum with respect to a loop map, i.e., in the setting of [31] is A equivalent to
MI (f ) with f a loop map to BGhI ? A striking result is that one can identify certain
quotients as such Thom spectra!

Theorem 6.4.13 [31, Theorem 5.6]. Let R be a commutative ring spectrum whose
homotopy groups are concentrated in even degrees and let ui ∈ π2i(R) be arbitrary elements
with 1 6 i 6 n− 1. Then the iterative cofiber R/(u1, . . . ,un−1) of the multiplication maps
by the ui ’s can be realized as the Thom spectrum of a loop map from SU (n) to BGhI . In
particular, R/(u1, . . . ,un−1) can be realized as an associative ring spectrum.

An example of such a quotient is R = ku → ku/u = HZ. Note that there is no
assumption on the regularity of the elements ui in the above statement. For periodic
ring spectra the assumptions on the degree of the elements can be relaxed and the
two-periodic version of Morava K-theory can be constructed as a Thom spectrum
relative to R = En, the n-th Morava E-theory or Lubin–Tate spectrum [31, Corollary
5.7]. A related but different construction of quotients of Lubin–Tate spectra modeling
versions of Morava K-theory is carried out in [128, §3].

Graded units

There is one problem with the constructions of spaces and spectra of units as above.
As they are constructed from the underlying infinite loop space of a spectrum and just
take into account the units in π0, they ignore graded units coming from periodicity
elements in the homotopy groups of a spectrum. So for instance, the Bott class
u ∈ π2(KU ) is not represented in GL1(KU ) or GLI1(KU ).
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There is a construction of graded units. We’ll sketch the construction and mention
two of its applications: graded Thom spectra and logarithmic ring spectra.

Definition 6.4.14 [256, Definition 4.2]. The category J has as objects pairs of objects
of I . A morphism in J((n1,n2), (m1,m2)) is a triple (α,β,σ ) where α ∈ I(n1,m1),
β ∈ I(n2,m2) and σ is a bijection

σ : m1 \α(n1)→m2 \ β(n2).

For another morphism (γ,δ,ξ) ∈ J((m1,m2), (l1, l2)) the composition is the mor-
phism (γ ◦α,δ ◦ β,τ(ξ,σ )) where τ(ξ,σ ) is the permutation

τ(ξ,σ )(s) =

ξ(s) if s ∈ l1 \γ(m1),

δ(σ (t)) if s = γ(t) ∈ γ(m1 \α(n1)).

Note that l1 \γ(α(n1)) is the disjoint union of l1 \γ(m1) and γ(m1 \α(n1)).
With these definitions J is actually a category and it inherits a symmetric monoidal

structure from I via componentwise disjoint union [256, Proposition 4.3]. In particular,
the category of J-spaces, TopJ , is symmetric monoidal with the Day convolution
product. Note, however, that the unit for the monoidal structure �J is J((0,0), (−,−));
this is not a constant functor, but J((0,0), (n,n)) can be identified with the symmetric
group Σn!

Proposition 6.4.15 [256, 4.4, 4.5]. For every J-space X the homotopy colimit, XhJ , is a
space over QS0.

Proof. It is not hard to see that J is isomorphic to Quillen’s category Σ−1Σ [256,
Proposition 4.4] and its classifying space is QS0 by the Barratt–Priddy–Quillen result.
Therefore BJ is QS0. Every J-space has a map to the terminal J-space that is the
constant J-diagram on a point and this induces a map

XhJ → ∗hJ = BJ 'QS0.

For any I-space X we also get that XhI is a space over BI , but as I has an initial
object this just gives a map to BI ' ∗, the terminal object.

Let C(TopJ ) denote the category of commutative J-space monoids, i.e., commutative
monoids in TopJ . The following result is crucial:

Theorem 6.4.16 [256, Theorem 4.11]. There is a model structure on C(TopJ ) such that
there is a Quillen equivalence between C(TopJ ) and the category of E∞-spaces over BJ .

Here, the E∞-structure is parametrized by the Barratt–Eccles operad.
For a (commutative) J-space monoid, one can associate units:

Definition 6.4.17 [256, §4]. Let A be a J-space monoid. Then let A× be the J-
space monoid with A×(n1,n2) being the union of those components of A(n1,n2)
that represent units in π0(AhJ ).

So now one has to construct a functor from spectra to J-spaces that sees all the
homotopy groups, not just the ones in non-negative degrees:



6.5 Constructing commutative ring spectra from bipermutative categories 269

Definition 6.4.18 [256, (4.5)].

– Let ΩJ be the functor from symmetric spectra to J-spaces that takes a symmetric
spectrum E and sends it to the J-space with

ΩJ (E)(n1,n2) =Ωn2En1
.

– If R is a symmetric ring spectrum, then its J-space of units is

GLJ1(R) = (ΩJ (R))×.

Sagave and Schlichtkrull show that this is homotopically meaningful and that for a
commutative symmetric ring spectrum R, the units GLJ1(R) are actually in C(TopJ )
[256, §4]. Most importantly, the inclusion GLJ1(R) ↪→ΩJ (R) realizes the inclusion of
graded units π∗(R)× into π∗(R) for positively fibrant R.

Hence, for instance GLI1(KU ) (and any other model of the “usual” units) only
detects the units ±1 in π0(KU ) whereas GLJ1(KU ) also detects the Bott class.

Remark 6.4.19 .
1. John Rognes developed the concept of logarithmic ring spectra and in [255] and

[253] this concept is fully explored with the help of graded units. The idea is
that you want a spectrum that sits between a commutative ring spectrum like ku
and its localization KU , so you remember the Bott class as the extra datum of
a logarithmic structure. This concept has its origin in algebraic geometry and is
useful in stable homotopy theory, for instance for obtaining localization sequences
in topological Hochschild homology [253].

2. In [257] Sagave and Schlichtkrull use graded units adapted to the setting of orthog-
onal spectra, GLW1 , to construct graded Thom spectra associated to virtual vector
bundles, i.e., associated to a map f : X → Z × BO in such a way that uses the
E∞-structure on Z × BO. They use this for orientation theory and relate GLW1 -
orientations to logarithmic structures. They provide an E∞-Thom isomorphism
that allows to compute the homology of spectra appearing in connection with
logarithmic ring spectra [257, §§ 7,8].

6.5 Constructing commutative ring spectra from bipermutative

categories

In section 6.4 we saw that Thom spectra give rise to commutative ring spectra.
Algebraic K-theory is another machine that takes a commutative ring (spectrum)
R and produces a commutative ring spectrum K(R). In this section we focus on
a classical construction that takes a small bipermutative category R and turns it
into a commutative ring spectrum. This construction goes back to Segal [268]; its
multiplicative properties were investigated by May [199, 195, 192, 193], Shimada–
Shimakawa [273], Woolfson [302] and Elmendorf–Mandell [95].

We sketch a simplified version of the construction, present some important examples
and refer to [95] for a discussion of the multiplicative properties.
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Definition 6.5.1. A permutative category (C,⊕,0, τ) is a category C together with an
object 0 of C, a functor ⊕ : C ×C → C and a natural isomorphism τC1,C2

: C1 ⊕C2→
C2 ⊕C1 for all objects C1,C2 of C such that

– ⊕ is strictly associative, i.e., for all objects C1,C2,C3 of C

C1 ⊕ (C2 ⊕C3) = (C1 ⊕C2)⊕C3.

– 0 is a strict unit, i.e., for all objects C of C: C ⊕ 0 = C = 0⊕C.

– τ2 is the identity, i.e., for all objects C1,C2 of C the composite

C1 ⊕C2
τC1 ,C2 //C2 ⊕C1

τC2 ,C1 //C1 ⊕C2

is the identity on C1 ⊕C2.

– The diagrams

C⊕0
τC,0

// 0⊕C

C,

C1⊕C2⊕C3

idC1⊕τC2 ,C3 ''

τC1⊕C2 ,C3 // C3⊕C1⊕C2

C1⊕C3⊕C2

τC1 ,C3⊕idC2

77

commute for all objects C,C1,C2,C3 of C.

We work with small permutative categories, i.e., we require that the objects of C
form a set (and not a proper class). We recall Segal’s construction from [268, §2]:

Definition 6.5.2. Let C be a small permutative category and let X be a finite set
with basepoint + ∈ X. Let C(X) be the category whose objects are families (CS ,%S,T )
such that:

– S ⊂ X and + < S ;

– S and T are pairs of such subsets that are disjoint;

– the CS are objects of C and %S,T is an isomorphism in C:

%S,T : CS ⊕CT → CS∪T ;

– C
∅

= 0 and %
∅,T = idCT for all T ; and

– for pairwise disjoint S,T ,U that don’t contain + the following diagrams commute:

CS ⊕CT
%S,T

//

τ

��

CS∪T

CT ⊕CS
%T ,S

// CT∪S ,

CS ⊕CT ⊕CU
%S,T ⊕idCU //

idCS⊕%T ,U
��

CS∪T ⊕CU
%S∪T ,U
��

CS ⊕CT∪U
%S,T∪U

// CS∪T∪U.

Morphisms α : (CS ,%S,T )→ (C′S ,%
′
S,T ) consist of a family of morphisms αS ∈ C(CS ,C′S )
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for all S ⊂ X with + < S such that α
∅

= id0 and for all S,T ∈ X with + < S,T and
S ∩ T = ∅ the diagram

CS ⊕CT
%S,T

//

αS⊕αT
��

CS∪T

αS∪T
��

C′S ⊕C
′
T

%′S,T
// C′S∪T

commutes.

So up to isomorphism, every object CS for S = {x1, . . . ,xn} can be decomposed as

CS � C{x1} ⊕ · · · ⊕C{xn}

by an iterated application of the isomorphisms %, but these isomorphisms are part
of the data. Segal shows [268, Corollary 2.2] that this construction gives rise to a
so-called Γ-space (see [268, Definition 1.2] for a definition) that sends a finite pointed
set X to the classifying space of C(X). Every Γ-space gives rise to a spectrum, and we
denote the spectrum associated to C by HC.
Remark 6.5.3 . Segal’s construction actually works for symmetric monoidal categories
and it produces a spectrum whose associated infinite loop space is the group com-
pletion of the classifying space of the category C, BC, and the latter is the geometric
realization of the nerve of C.

Definition 6.5.4. A bipermutative category R is a category with two permutative cate-
gory structures, (R,⊕,0R, τ⊕) and (R,⊗,1R, τ⊗), that are compatible in the following
sense:

1. 0R ⊗ C = 0R = C ⊗ 0R

for all objects C of R.
2. For all objects A,B,C we have an equality between (A⊕B)⊗C and A⊗C⊕B⊗C,

and the diagram

(A ⊕ B) ⊗ C

τ⊕⊗ id
��

A⊗C ⊕ B⊗C

τ⊕
��

(B ⊕ A) ⊗ C B⊗C ⊕ A⊗C

commutes.
3. We define the distributivity isomorphism d` : A⊗ (B⊕C)→ A⊗B⊕A⊗C for all

A,B,C in R via the diagram

A ⊗ (B ⊕ C)
τ⊗
//

d`
��

(B ⊕ C) ⊗ A

A⊗B ⊕ A⊗C B⊗A ⊕ C⊗A
τ⊗⊕τ⊗
oo
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Then the diagram

(A ⊕ B) ⊗ (C ⊕D)
d`

,,

(A ⊕ B) ⊗ C ⊕ (A ⊕ B) ⊗D

A ⊗ (C ⊕D) ⊕ B ⊗ (C ⊕D)

d` ⊕d`

��

A⊗C ⊕ B⊗C ⊕ A⊗D ⊕ B⊗D

A⊗C ⊕ A⊗D ⊕ B⊗C ⊕ B⊗D

id⊕τ⊕⊕ id 22

commutes.

This definition is taken from [199, Definition VI.3.3, p. 154]. The definition in [95] is
less strict, but bipermutative categories in the above sense are also bipermutative in
the sense of [95, Definition 3.6]. We refer to Elmendorf and Mandell for a proof that for
a bipermutative category R, one actually obtains a commutative ring spectrum HR:

Theorem 6.5.5 [95, Corollary 3.9]. If R is a bipermutative category, then HR is
equivalent to a strictly commutative symmetric ring spectrum.

There is an alternative construction of an E∞-ring spectrum from a bipermutative
category in [193]: May first constructs an E∞-ring space associated to a bipermutative
category and then builds the corresponding E∞-ring spectrum.

Segal’s construction enables us to find small and explicit models for certain connec-
tive commutative ring spectra. Famous examples of bipermutative categories and their
associated commutative ring spectra are the following:

1. If R is a commutative discrete ring, then the category RR which has the elements
of R as objects and only identity morphisms is a bipermutative category with
the addition in the ring being ⊕ and the multiplication being ⊗. The associated
spectrum, HRR is the Eilenberg–Mac Lane spectrum of the ring R, HR.

2. Let E denote the bipermutative category of finite sets whose objects are the finite
sets n = {1, . . . ,n} for n ∈N0. By convention 0 is the empty set. The morphisms
in E are

E(n,m) =
{
∅ for n ,m,
Σn for n =m.

For the full structure see [199, VI, Example 5.1]. Here HE is the sphere spectrum, S .
3. The bipermutative category of complex vector spaces, V

C
, with objects the natural

numbers with zero and morphisms

V
C

(n,m) =
{

∅ for n ,m,
U (n) for n =m,

is bipermutative. On objects we set n⊕m = n+m and n⊗m = nm and on mor-
phisms we use the block sum and the tensor product of matrices. The associated
spectrum is HV

C
= ku, the connective version of topological complex K-theory.

Its real analog, V
R

, gives a model for connective topological real K-theory, ko. You
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can also work with the general linear group instead of the unitary or orthogonal
group.

4. If R is a discrete commutative ring, then we define the category FR as the one
with objects N0 again. As morphisms we have

FR(n,m) =
{

∅ for n ,m,
GLn(R) for n =m.

This category is often called the small category of free R-modules. Its spectrum is the
free algebraic K-theory of R, Kf (R). Its homotopy groups agree with the algebraic
K-groups of R from degree 1 on.

6.6 From topological Hochschild to topological André–Quillen

homology

For rings and algebras Hochschild homology contains a lot of information. For com-
mutative rings and algebras André–Quillen homology is the adequate tool. There are
spectrum level versions of these homology theories: topological Hochschild homology,
THH, and topological André–Quillen homology, TAQ.

We can determine classes in the algebraic K-theory of a ring spectrum using the
trace to topological Hochschild homology or to topological cyclic homology:

tr : K(R)→ THH(R). (6.6.1)

For instance the trace from K(Z) to THH(Z) detects important classes. Bökstedt,
Madsen and Rognes [50, 252] show for instance that

tr : K2p−1(Z)→ THH2p−1(Z) �Z/pZ

is surjective for all primes p.
We give a construction of topological Hochschild homology and, more generally,

for commutative ring spectra R we define X ⊗ R for X a finite pointed simplicial
set. We give some examples of calculations of such X-homology groups of R and
tell you about topological Hochschild cohomology as a derived center of an algebra
spectrum. We define topological André–Quillen homology and we will see applications
to Postnikov towers for commutative ring spectra later in Section 6.7.

THH and friends

Let X be a finite pointed simplicial set and let R be a cofibrant commutative ring
spectrum.

Definition 6.6.1. We denote by X ⊗R the simplicial spectrum with

(X ⊗R)n =
∧
x∈Xn

R.

By slight abuse of notation we will use the same symbol for the geometric realization
of X ⊗R.
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Remarks 6.6.2 . – As the smash product is the coproduct in CS , the simplicial struc-
ture maps of X ⊗R are induced from the ones on X.

– As X is pointed, X ⊗R comes with maps

R→ X ⊗R→ R

whose composition is the identity.
– The commutative multiplication on R induces a commutative multiplication on
X⊗R; hence X⊗R is an augmented commutative (simplicial) R-algebra spectrum.

– One could also use the fact that the spectra of [94] are tensored over topological
spaces or, similarly, that symmetric spectra [133] in topological spaces are enriched
over simplicial sets and over topological spaces. This gives an equivalent situation.
It is for instance shown in [94, Corollary VII.3.4] that |X⊗A| ' |X |⊗A for simplicial
spaces X and commutative R-algebra spectra A.

– The above definition can be extended to tensoring with an arbitrary pointed sim-
plicial set by expressing such a simplicial set as the colimit of its finite pointed
simplicial subcomplexes.

There are many important special cases of this construction.

Definition 6.6.3.

1. For the simplicial 1-sphere X = S
1 the commutative R-algebra spectrum S

1 ⊗R
is the topological Hochschild homology of R and is denoted by THH(R).

2. More generally, for an n-sphere, we denote by THH[n](R) the spectrum S
n ⊗R;

this is called topological Hochschild homology of order n.
3. If Tn denotes the torus (S1)n, then T

n ⊗R is the n-torus homology of R.

For the small model of the simplicial 1-sphere with just one non-degenerate 0- and
1-simplex we have (S1)n = {0,1, . . . ,n} and the simplicial spectrum S

1 ⊗R is precisely
the cyclic bar construction on R:

R // R∧Roo
oo //

// R∧R∧Roo
oo
oo

//
//
// · · · ,oo

oo
oo
oo

where the degeneracy map si : Rn+1 → Rn+2 inserts the unit map η : S → R after
the i-th factor of R and the face maps di : Rn+1 → Rn for 0 6 i < n are given by
the multiplication in R of the i-th and (i + 1)-st smash factor. The last face map dn
cyclically permutes the smash factors to bring the last one to the front and then it
multiplies the former factors numbered n and 0.

As for Hochschild homology you should think about this as a genuine cyclic object:

R
R

R

∧ ∧

∧

∧ · · ·

···

The original definition of THH is due to Marcel Bökstedt [52]. McClure, Schwänzl
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and Vogt [203] show that for an E∞-ring spectrum R, THH(R) is equivalent to
tensoring R with the topological 1-sphere. Kuhn systematically studies constructions
like X ⊗R in a reduced setting [150] for pointed spaces X. So the above definition is
an unreduced variant of this that uses simplicial sets instead of topological spaces.

Lemma 6.6.4. Let X and Y be finite simplicial pointed sets. Then

(X ×Y )⊗R ' X ⊗ (Y ⊗R).

Proof. Observe that

((X ×Y )⊗R)n =
∧

(x,y)∈Xn×Yn
R �

∧
x∈Xn

( ∧
y∈Yn

R

)
and this is the diagonal of the bisimplicial spectrum

([m], [`]) 7→ (X ⊗ ((Y ⊗R)`))m

in degree n.

One of the important features of THH(R) is that it receives a trace map from
algebraic K-theory (see (6.6.1)), which we can now write as

tr : K(R)→ S
1 ⊗R.

Taking higher-dimensional tori gives targets for iterated trace maps. Algebraic K-theory
of a commutative ring spectrum is again a commutative ring spectrum and the trace
map is a map of commutative ring spectra; hence one can iterate the process of
forming K-theory and traces. If we denote by Kn(R) the n-fold iteration, then, since
we have the product formula from Lemma 6.6.4, we get an iterated trace to T

n ⊗R.
Explicitly, for n = 2 this is

K(K(R))→ S
1 ⊗ (S1 ⊗R) ' (S1 ×S1)⊗R = T

2 ⊗R.

There are variants of Definition 6.6.1: As we work with pointed simplicial sets, we
can glue an R-module to the base point and use the R-module structure for the face
maps. A second variant is to work relative to some commutative ring spectrum R:
in Definition 6.6.1 the smash products were over the sphere spectrum, but if we work
with a commutative R-algebra spectrum A, then we can take smash products over R
instead of S . Recall that ∧R is the coproduct in the category of commutative R-algebra
spectra, CR.

Definition 6.6.5. Let R be a cofibrant commutative ring spectrum, A a cofibrant
commutative R-algebra spectrum, M an A-module spectrum over R and let X be a
finite pointed simplicial set. We denote by LRX(A;M) the simplicial spectrum with

LRX(A;M)n =M ∧R
∧

x∈Xn\∗
R
A.

We call LRX(A;M) the Loday construction of A over R with coefficients in M .
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As M is just an A-module spectrum, the resulting simplicial spectrum and also its
realization carries an A-module structure over R, but no multiplicative structure in
general. However, if we place a commutative A-algebra C at the basepoint, then the
resulting spectrum is an augmented commutative C-algebra spectrum.

We will see in Section 6.8 that for instance

THHR(A) := LR
S

1(A)

measures properties of A as a commutative R-algebra spectrum. The case of X = S
0

gives

LR
S

0(A) = A∧R A,

so there is a Künneth spectral sequence [94, IV.4.1] for calculating its homotopy groups.
An important example of a Loday construction is Pirashvili’s construction of higher-

order Hochschild homology. He works with discrete commutative k-algebras A and
A-modules M and defines HHkX(A;M) [223, §5.1]. For X = S

n this is his notion of
higher-order Hochschild homology (in his notation H [n](A;M)). In our setting this
corresponds to LHkX (HA;HM) if A is flat over k.

Examples

1. A classical example of a THH-calculation is the one of HZ and HFp by Marcel
Bökstedt ([51]; see [161, Chapter 13] and the references for published accounts of these
results):

Proposition 6.6.6. THH∗(HFp) � Fp[µ] , |µ| = 2.

THH i (HZ) �


Z if i = 0,
Z/jZ if i = 2j − 1,
0 otherwise.

A crucial ingredient for these and many other calculations of THH is Bökstedt’s
spectral sequence: If R is a commutative ring spectrum and if E∗ is a homotopy
commutative ring spectrum such that E∗(R) is flat over E∗ then there is a multiplicative
spectral sequence

E2
p,q = HH

E∗
p,q(E∗(R))⇒ Ep+qTHH(R).

Here HHp,q denotes Hochschild homology in homological degree p and internal
degree q ([51], [94, Theorem IV.1.9]).

2. If we apply THH to Eilenberg–Mac Lane spectra of number rings, Lindenstrauss
and Madsen show that THH detects arithmetic properties:

Proposition 6.6.7 [160, Theorem 1.1]. Let K be a number field and let OK be its ring
of integers. Then

THHn(HOK ) =


OK if n = 0,
D−1
OK /`OK if n = 2` − 1,

0 otherwise.
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Here, D−1
OK is the inverse different. This is the set of those x ∈ K such that the

trace tr(xy) is an integer for all y ∈ OK . The inverse different detects ramified primes.
Dundas, Lindenstrauss and I calculate higher-order THH of number rings with

reduced coefficients in [82, Theorem 4.3].

3. For a suspension spectrum on a based (Moore) loop space, Σ∞+ ΩMX, the cyclic
bar construction reduces to the suspension spectrum of the cyclic bar construction on
ΩMX and Goodwillie [109, Proof of Theorem V.1.1] identifies the latter with the free
loop space on X, LX. Hence one obtains

THH(Σ∞+ ΩMX) ' Σ∞+ LX.

4. Let R be a ring spectrum and let Π be a pointed monoid. Hesselholt and Madsen
show that THH(R[Π]) splits as

THH(R[Π]) ' THH(R)∧ |N cyΠ|,

where |N cyΠ| denotes the cyclic nerve of Π [119, Theorem 7.1].

5. As a sample calculation for second order THH Dundas, Lindenstrauss and I get
[83, Theorem 2.1]:

THH
[2]
∗ (HZ(p)) �Z(p)[x1,x2, . . . ]/(p

nxn,x
p
n − pxn+1,n > 1) (6.6.2)

with |x1| = 2p.

6. At an odd prime KU(p) splits as

KU(p) '
p−2∨
i=0

Σ2iL.

Here, L is the Adams summand of KU(p) with π∗(L) � Z(p)[v
±1
1 ] and |v1| = 2p − 2.

For consistency we set L = KU(2) at the prime 2. We denote by ku, ` and ko the
connective covers of KU , L and KO.

McClure and Staffeldt determine the mod p-homotopy of THH(`) at odd primes
[202] and they show that THH(L)p ' Lp∨ (ΣLp)

Q
[202, Corollary 7.2, Theorem 8.1].

Ausoni [13] determines the mod p and mod v1 homotopy of THH(ku) as an input
for his work on K(ku).

Angeltveit, Hill and Lawson show [9, Theorem 2.6] that for all primes,

THH∗(`) � `∗ ⊕Σ2p−1F ⊕ T

as `∗-modules, where F is a torsionfree summand and T is an infinite direct sum of
torsion modules concentrated in even degrees. They describe F explicitly using a
rational calculation. Determining the torsion is way more involved [9, Theorem 2.8].
The calculation of THH∗(`) uses the method of dueling Bockstein spectral sequences for
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the Bockstein spectral sequences associated to

`

��

// `/p

��

`/v1 =HZ(p)
// HFp = `/(p,v1)

They describe the 2-local homotopy groups of THH(ko) [9, §7] by first determining
THH∗(ko;ku) and then using the Bockstein spectral sequence associated to the cofiber
sequence Σko→ ko→ ku.

Again, things are way easier for the periodic versions (see [13, Proposition 7.13] and
[9, Corollary 7.9]):

THH(KO) ' KO∨ΣKO
Q
, THH(KU ) ' KU ∨ΣKU

Q
.

7. John Greenlees uses a generalization of the concept of Gorenstein maps of commu-
tative rings to the spectral world in order to determine Gorenstein descent properties
for cofiber sequences of connective commutative ring spectra [110, Theorem 7.4].

Topological Hochschild homology of Thom spectra

We start with a general statement about X ⊗MI (f ) if MI (f ) is a Thom spectrum
associated to an E∞-map to BGhI with BGhI as in (6.4.8) with R = S ; hence G is a
cofibrant replacement of GLI1(S).

Theorem 6.6.8 [259, Theorem 1.1]. For any pointed simplicial set X and any map of
grouplike E∞-spaces f : A→ BGhI there is an equivalence of E∞-ring spectra,

X ⊗MI (f ) 'MI (f )∧Ω∞(a∧ |X |)+ ,

where a is the spectrum associated to A with Ω∞a = A.

This result generalizes [45], where the case of X = S
1 is covered. In general, for

X = S
n Theorem 6.6.8 determines the higher-order topological Hochschild homology

of MI (f ) [259, (1.6)] as

THH[n](MI (f )) 'MI (f )∧BnA+ .

As an example, for the canonical map f : BU → BGhI one obtains

X ⊗MU 'MU ∧Ω∞(bu ∧ |X |),

THH[n](MU ) 'MU ∧Ω∞(bu ∧Sn) 'MU ∧BnBU+ .

There is also a statement about THH of Thom spectra associated to single loop
maps in [45, Theorem 1]. We state the relative version of this, so in the following G is
a cofibrant replacement of GLI1(R).

Theorem 6.6.9 [31, Theorem 6.6]. Assume that R is a commutative symmetric ring
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spectrum that is semistable and S-cofibrant. Let MI (f ) be a Thom spectrum associated to a
map f : M→ BGhI of topological monoids, where M is grouplike and well-pointed. Then

THHR(MI (f )) 'MI (Lη(B(f ))).

Here, MI (Lη(B(f ))) is the Thom spectrum associated to the map

L(B(M))
L(B(f ))

//

Lη (B(f ))
��

LBBGhI ' BGhI ×BBGhI
id×η
��

BGhI BGhI ×BGhI
µ

oo

Note that BBGhI is an H-group, so we can split the free loop space LBBGhI into the
base space and the based loops

LBBGhI ' BBGhI ×ΩBBGhI

and the second factor is equivalent to BGhI . As usual, η denotes the Hopf map
η : S3→ S

2 and it induces a map η : BBGhI → BGhI as above via

BBGhI 'Ω2B4GhI →Ω3B4GhI ' BGhI

by reducing the loop coordinates by precomposition.
For quotient spectra, this result gives a new way of calculating THHR(R/I). For

related results see [8] and in the case where R/I is commutative see [83, §7].
A second example comes from viewing HZ(p) as a Thom spectrum associated to a 2-

fold loop map Ω2(S3〈3〉)→ BGhI , which allows for a determination of THH(HZ(p))
as HZ(p) ∧Ω(S3〈3〉)+ [45, Theorem 3.8] and an additive equivalence

THH[2](HZ(p)) 'HZ(p) ∧S3〈3〉+.

This gives a geometric interpretation of (6.6.2), but without an identification of the
multiplicative structure. See also [149, §4], where Klang presents related results, using
the framework of factorization homology.

Topological Hochschild cohomology as a derived center

In the discrete case, i.e., for a commutative ring k and a k-algebra A one can describe
the center of A,

Z(A) = {b ∈ A, ab = ba for all a ∈ A},

as the set of A-bimodule maps from A to A. If f is such a map, f : A→ A with
f (cad) = cf (a)d for all a,c,d ∈ A, then f is determined by f (1) =: b and this b
satisfies

ab = af (1) = f (a · 1) = f (a) = f (1 · a) = f (1)a = ba,

so the set of such morphisms gives rise to an element in the center; conversely, for any
b ∈ Z(A) we get such an f by setting f (1) = b.
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Hochschild cohomology of A over k can be described as

HH∗k(A) = Ext∗A⊗kAo (A,A)

if A is k-projective. Hence HH0
k(A) = Z(A) and the Hochschild cohomology of A is

the derived center of A. Hochschild cohomology has a graded commutative algebra
structure via a cup product, but the solved Deligne conjecture [204] says that the
Hochschild cochain complex is in general not a differential graded commutative
algebra, but that it has an E2-algebra structure.

For ring spectra there is no homotopically meaningful definition of a center:
requiring equality translates to an equalizer diagram and this wouldn’t be homotopy
invariant. For a commutative ring spectrum R and an R-algebra spectrum A this
equalizer corresponds precisely to taking not just R-module endomorphisms but
A-bimodule endomorphisms. So a homotopy invariant version is as follows.

Definition 6.6.10. For a commutative ring spectrum R and an R-algebra spectrum A,
the topological Hochschild cohomology groups of A over R are

THH∗R(A) = π∗ExtA∧RAo (A,A)

and the derived center of A over R is

THHR(A) = ExtA∧RAo (A,A).

Here, ExtA∧RAo (A,A) denotes the derived endomorphism spectrum of A as an A-
bimodule [94, IV §1].

McClure and Smith’s proof of the Deligne conjecture also provides a spectrum
version for topological Hochschild cohomology, giving the derived center an E2-
structure:

Theorem 6.6.11 [204]. If A is an associative R-algebra spectrum, then THHR(A) is an
E2-ring spectrum.

An important example of a calculation of such a derived center is Angeltveit’s
calculation of THHEn(Kn). Here En denotes Morava E-theory with

π∗(En) �W (Fq)[[u1, . . . ,un−1]][u±1],

where the ui are deformation parameters for the height-n Honda formal group law
with |ui | = 0 and u is a periodicity element with |u| = 2. The sequence of elements
(p,u1, . . . ,un−1) is a regular sequence and Kn is the 2-periodic version of Morava
K-theory:

Kn = En/(p,u1, . . . ,un−1), (Kn)∗ = Fq[u
±1].

Angeltveit shows that the derived center of Kn over En depends on the chosen
A∞-algebra structure of Kn over En:

Theorem 6.6.12 [8, Theorems 5.21, 5.22]. 1. For any prime p and any n > 1 there is
an A∞-structure on Kn such that THHEn(Kn) ' En.
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2. For n = 1 and any d with 1 6 d < p − 1 and any a with 1 6 a 6 p − 1 there is an
A∞-structure on K1 with

THH∗E1
(K1) � π∗(E1)[[q]]/(p+ a(uq)d).

Here, the structure in statement 1 occurs as the one coming from the least commu-
tative A∞-structure on Kn (see [8, Theorem 5.8] for a precise statement). The case
n = 1,p = 2 of statement 1 is due to Baker and Lazarev [16, Proof of Theorem 3.1] who
show that at the prime 2

THHKU2
(K(1)) ' KU2.

Topological André–Quillen homology

We will first sketch the definition of ordinary André–Quillen homology. See [225] for
the original account and [134] for a very readable modern introduction.

Definition 6.6.13. Let k be a commutative ring with unit and let A be a commutative
k-algebra. The A-module of Kähler differentials of A over k is the A-module generated
by elements d(a) for a ∈ A subject to the relations that d is k-linear and satisfies the
Leibniz rule:

d(ab) = d(a)b+ ad(b).

This A-module is denoted by Ω1
A|k .

The conditions imply d(1) = d(1 · 1) = 2d(1) and hence d(1) = 0. For a polynomial
algebra A = k[x1, . . . ,xn] the A-module Ω1

k[x1,...,xn]|k is freely generated by dx1, . . . ,dxn.

By induction one shows d(xmi ) =mxm−1
i d(xi) for all m > 2.

Consider for instance the Fp-algebra Fp[x]/(xp − x). Then the module of Kähler
differentials is generated by d(x). However, as we are in characteristic p we get

d(x) = d(xp) = pxp−1d(x) = 0

and hence Ω1
Fp[x]/(xp−x)|Fp

= 0.

Remark 6.6.14 . For a commutative k-algebra A there is an isomorphism between
Ω1
A|k and the first Hochschild homology group of A over k: Every a⊗b in Hochschild

chain degree one is a cycle and if you send a⊗b to ad(b) then this gives a well-defined
map modulo Hochschild boundaries and it induces an isomorphism HHk1(A) �Ω1

A|k
[161, Proposition 1.1.10].

Definition 6.6.15. Let M be an A-module. A k-linear derivation from A to M is a
k-linear map δ : A→M which satisfies the Leibniz rule.

The set of all such derivations, Derk(A,M), is an A-submodule of the A-module of
all k-linear maps. The symbol d in the definition of Ω1

A|k satisfies the conditions of a
derivation; hence the map

d : A→Ω1
A|k , a 7→ da

is a derivation, in fact, it is the universal derivation:
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Proposition 6.6.16 [134]. For all A-modules M the canonical map

HomA(Ω1
A|k ,M)→ Derk(A,M), f 7→ f ◦ d,

is an A-linear isomorphism.

There is another crucial reformulation of the above isomorphism: Derk(A,M) can
also be identified with the morphisms of commutative k-algebras over A from A to
the square-zero extension A⊕M . The latter is the commutative augmented A-algebra
with underlying module A⊕M with multiplication

(a1,m1)(a2,m2) = (a1a2, a1m2 + a2m1), a1, a2 ∈ A, m1,m2 ∈M.

A derivation δ : A→M corresponds to the map into the second component of A⊕M .
The idea of André–Quillen homology is to take the derived functor of A 7→

M ⊗AΩ1
A|k . But in which sense? As A is a commutative algebra, we need a resolution

of A as such an algebra. The category of differential graded commutative k-algebras
in general doesn’t have a (right-induced) model structure, so instead one works with
simplicial resolutions. The category of simplicial commutative k-algebras does have a
nice model structure. Let P•→ A be a cofibrant resolution. Each Pn can be chosen to
be a polynomial algebra [134, §4].

Definition 6.6.17. The André–Quillen homology of A over k with coefficients in M is

AQ∗(A|k :M) = π∗(M ⊗P• Ω
1
P• |k).

A definition of Ω1
A|k in terms of generators and relations is not suitable for a

generalization to commutative ring spectra. Instead we use the following description:

Lemma 6.6.18. Denote by I the kernel of the multiplication map µ : A⊗k A→ A. Then
Ω1
A|k is isomorphic to I/I2.

Proof. The ideal I is generated by elements of the form a⊗1−1⊗a. Such an element
is identified with d(a). Taking the quotient by I2 corresponds to the Leibniz rule
for d.

The ideal I can also be viewed as a non-unital k-algebra and I/I2 is the module
of indecomposables of I . This definition translates to brave new commutative rings.
Basterra’s work is formulated in the setting of [94]:

Definition 6.6.19. Let A be a commutative R-algebra spectrum.

– We define I(A∧R A) as the pullback

I(A∧R A) //

��

A∧R A

µ

��

∗ // A
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– If N is a non-unital commutative R-algebra spectrum, then its R-module of inde-
composables, Q(N ), is defined as the pushout

N ∧RN

µN
��

// ∗

��

N // Q(N )

– For an A-module spectrum M we define the topological André–Quillen homology of
A over R with coefficients in M as

TAQ(A|R;M) = LQ(RI(A∧R A)) (6.6.3)

and denote its homotopy groups as TAQ∗(A|R;M). We use the abbreviation ΩA|R
for LQ(RI(A∧R A)).

Thus for ΩA|R we take homotopy invariant versions of the kernel of the multiplica-
tion map followed by taking indecomposables by applying the right derived functor
of I and the left derived functor of Q.

Definition 6.6.20. Dually, topological André–Quillen cohomology of A over R with
coefficients in M is FA(ΩA|R,M) and we set TAQn(A|R;M) = π−nFA(ΩA|R,M).

Basterra proves [27, Proposition 3.2] that maps from ΩA|R to M in the homotopy
category of A-modules correspond to maps in the homotopy category of commutative
R-algebra maps over A from A to A ∨M, where A ∨M carries the square-zero
multiplication.

For example, if f : B→ BGL1(S) is an infinite loop map and M(f ) is the associated
Thom spectrum, then Basterra and Mandell show [28, Theorem 5 and Corollary] that

TAQ(M(f )) 'M(f )∧ b,

where Ω∞b ' B. In the case of an E∞-space B the spherical group ring Σ∞+ B has

TAQ(Σ∞+ B) ' Σ+B∧ b.

6.7 How do we recognize ring spectra as being (non)

commutative?

If you have a concrete model of a homotopy type, say in symmetric spectra, then you
can be lucky and this model possesses a commutative structure and you should be
able to check this by hand. Of course you could also try to disprove commutativity by
showing that your spectrum doesn’t have power operations as in (6.2.2) and this has
been done in many cases, but sometimes you might need a different approach.
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Obstructions via filtrations and resolutions

An obstruction theory for A∞-structures on homotopy ring spectra was developed
as early as 1989 [247] by Alan Robinson. Obstruction theories for E∞-structures
came much later: Goerss–Hopkins [107] and Robinson [246] independently developed
one with obstruction groups that later turned out to be isomorphic [30]. The idea is
to use a filtration or resolution of an operad such that the corresponding filtration
quotients or the corresponding spectral sequence give rise to obstruction groups that
contain obstructions for lifting a partial structure to a full E∞-ring structure ([246,
Theorem 5.6] and [107, Corollary 5.9]). The Goerss–Hopkins approach also allows one
to calculate the homotopy groups of the derived E∞ mapping space between two such
E∞-ring spectra [107, Theorem 4.5].

The obstruction groups have as input the algebra of cooperations E∗E of a spectrum
E and they compute André–Quillen cohomology groups of the graded commutative
E∗-algebra E∗E in the setting of differential graded (or simplicial) E∞-algebras. See
[185] or [106, §2.4] for background on these cohomology groups and see [30, §2] for
the comparison results. In Robinson’s setting these groups are called Γ-cohomology.
The obstruction groups vanish if for instance E∗E is étale as an E∗-algebra.

If you prefer to work with explicit chain complexes, then there are several equivalent
ones computing Γ-cohomology groups in Robinson’s setting (see [246, §2.5], [250, §6],
[222, §2]) and therefore, by the comparison result from [30, Theorem 2.6], computing
the obstruction groups in the Goerss–Hopkins setting as well.

There is another version of obstruction theory for promoting a homotopy T -algebra
structure to an actual one, where T is a monad, by Johnson and Noel [139]. This
includes obstructions for operadic structures on spectra but also includes for instance
group actions. Noel shows that in certain situations the obstruction theory [139] can
be compared to the one of [107].

We list some important applications:

1. The development of the Hopkins–Miller and Goerss–Hopkins obstruction theory
was motivated by the Morava-E-theory spectra En, also known as Lubin–Tate spectra,
and their variants. These are Landweber exact cohomology theories that govern the
deformation theory of height n formal group laws. In [234] an obstruction theory
was established leading to a proof that the En are A∞-spectra and that the Morava
stabilizer group Gn acts on En via maps of A∞-spectra. In [107] the corresponding
obstruction theory for E∞-structures was developed and [107, Corollaries 7.6, 7.7]
shows that the Gn-action is via E∞-maps.

2. It was known that KU and KO are E∞-spectra and it was also known that the
p-completed Adams summand Lp is E∞. In [18] Andy Baker and I use Robinson’s
version of the E∞-obstruction theory to show that these E∞-structures are unique
and that the p-local Adams summand also has a unique E∞-structure. Uniqueness
also holds for the connective covers [19]. It is important to have uniqueness results for
E∞-structures because calculations can depend on a choice of such a structure.

3. For an E∞-ring spectrum R there is a θ-algebra structure on its p-adic K-theory,
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π∗LK(1)(KUp ∧R) [106, Theorem 2.2.4], and in good cases

π∗LK(1)(KUp ∧R) � limk(KUp)∗(R∧M(pk)),

whereM(pk) is the mod-pk Moore spectrum. The study of such structures was initiated
by McClure in [63, Chapter IX]. There is a variant of the Goerss–Hopkins obstruction
theory for realizing for instance a θ-algebra (see [106, §2.4.4] and [153, Theorem 5.14])
as a K(1)-local E∞-ring spectrum.

There is one for realizing an E∞-Hk-algebra spectrum with a fixed Dyer–Lashof
structure on its homotopy [217, Proposition 2.2] (for k a field of characteristic p). Other
variants can be found in the literature.

The θ-algebra version was successfully applied by Lawson and Naumann [153] to
show that BP 〈2〉 at 2 has an E∞-structure. By a different method Hill and Lawson
[122, Theorem 4.2] find a commutative model for BP 〈2〉 at the prime 3.

4. Mathew, Naumann and Noel use operations in Morava-E-theory to prove May’s
nilpotence conjecture:

Theorem 6.7.1 [188, Theorem A]. If R is an H∞-ring spectrum and if x ∈ π∗(R) is in
the kernel of the Hurewicz homomorphism π∗(R)→H∗(R;Z), then x is nilpotent.

They use this — among many other applications — for the following result about
E∞-ring spectra:

Theorem 6.7.2 [188, Proposition 4.2]. If R is an E∞-ring spectrum and if there is an
m ∈Z, m , 0 with m · 1 = 0 ∈ π0(R), then, for all primes p and all n > 1,

K(n)∗(R) � 0.

Lawson observed that using K(n)-techniques (see [231] for background) this implies
that for finite E∞-ring spectra R either the rational homology is non-trivial or R is
weakly contractible, because if H∗(R;Q) � 0, then by the above result all the Morava
K-theories also vanish on R, but then the finiteness of R implies weak contractibility
(see [188, Remark 4.3] for the full argument).

The Dyer–Lashof variant is for instance important when one wants to decide
whether a given H∞-map can be upgraded to an E∞-map: roughly speaking, an H∞-
spectrum is like an E∞-spectrum in the homotopy category. You can find applications
of this approach for instance in Noel’s work [217] and in [139].

Other spectra, such as BP , come with homology operations just because they sit
in the right place: analyzing the maps MU → BP → HFp gives [63, p. 63] that
(HFp)∗(BP ) embeds into the dual of the Steenrod algebra such that (HFp)∗(BP ) is
closed under the action of the Dyer–Lashof algebra — even without establishing a
structured multiplication on BP . This led Lawson [152] to look for the right obstructions
for an E∞-structure of BP at 2 via secondary operations (see Theorem 6.7.5).
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Obstructions via Postnikov towers

A different approach to obstruction theory is to consider Postnikov towers in the world
of commutative ring spectra [27] or in the setting of En-algebras [29].

To this end Basterra uses TAQ-cohomology to lift ordinary k-invariants of a
connective commutative ring spectrum to k-invariants in a multiplicative Postnikov
tower:

Assume that R is a connective commutative ring spectrum. Then there is a map of
commutative ring spectra

p0 : R→H(π0(R))

and without loss of generality we can assume that p0 is a cofibration of commutative
ring spectra that realizes the identity on π0, i.e., π0(p0) = idπ0(R).

If we abbreviate π0(R) to B and if M is a B-module, an element in TAQn(A|R;HM)
corresponds to a morphism ϕ : A→ A∨ΣnHM in the homotopy category of R-algebra
spectra over A and we can form the pullback of

A

iA
��

A
ϕ
// A∨ΣnHM

If we postcompose ϕ with the projection map to ΣnHM

A
ϕ
//A∨ΣnHM //ΣnHM (6.7.1)

such a TAQ-class forgets to an Ext-class in ExtnR(A;HM), specifically to an ordinary
cohomology class if R is the sphere spectrum. Basterra shows that this projection maps
k-invariants in the world of commutative ring spectra to ordinary k-invariants of the
underlying spectrum.

Theorem 6.7.3 [27, Theorem 8.1]. For any connective commutative ring spectrum A
there is a sequence of commutative ring spectra Ai , π0(A)-modules Mi and elements

k̃i ∈ TAQi+2(Ai |S;HMi+1)

such that

– A0 =Hπ0(A) and Ai+1 is the pullback of Ai with respect to k̃i ,
– πjAi = 0 for all j > i,
– there are maps of commutative ring spectra λi : A→ Ai which induce an isomorphism

in homotopy groups up to degree i such that the diagram

Ai+1

��

A
λi //

λi+1
==

Ai

commutes in the homotopy category of commutative ring spectra.
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You start with A0 = Hπ0(A) and then you have to find a suitable map A0 →
A0 ∨Σ2H(π1(A)) as a starting point of the multiplicative Postnikov tower.

Basterra’s result can be used as an obstruction theory as follows. If A is a connective
spectrum then it has an ordinary Postnikov tower with k-invariants living in ordinary
cohomology groups

ki ∈H i+2(Ai ;πi+1(A)).

You can then investigate whether it is possible to find multiplicative k-invariants

k̃i ∈ TAQi+2(Ai |S;Hπi+1(A))

that forget to the ki ’s under the map from (6.7.1).
Using Postnikov towers for En-algebra spectra, Basterra and Mandell show:

Theorem 6.7.4 [29, Theorem 1.1]. The Brown Peterson spectrum, BP , has an E4-structure
at every prime.

This ensures by the main result of [184] that the derived category of BP -module
spectra has a symmetric monoidal smash product. Tyler Lawson, however, showed that
there are certain secondary operations in the F2-homology of every such spectrum
with an E12-structure and he could show that these are not present in the F2-homology
of BP at 2. Let BP 〈n〉 denote the spectrum BP /(vn+1,vn+2, . . . ).

Theorem 6.7.5 [152, Theorem 1.1.2]. The Brown–Peterson spectrum at the prime 2 does
not possess an En-structure for any n with 12 6 n 6∞. The truncated Brown–Peterson
spectrum BP 〈n〉 for n > 4 cannot have an En-structure for any n with 12 6 n 6∞.

See [271] for the corresponding results at odd primes.

Realization of E∞-spectra via derived algebraic geometry

There is a completely different important and highly successful approach to realization
problems, using derived algebraic geometry, for which see Chapter 8 of this volume.

6.8 What are étale maps?

We first recall the algebraic notion of an étale k-algebra from [161, E.1]: Let k be a com-
mutative ring and let A be a finitely generated commutative k-algebra. Then A is étale
if A is flat over k and if the module of Kähler differentials Ω1

A|k is trivial. If Ω1
A|k = 0,

then k→ A is called unramified. A k-algebra B (not necessarily commutative) is called
separable if the multiplication map

B⊗k Bo→ B

has a section as a B-bimodule map. In algebra, a commutative separable algebra
has Hochschild homology concentrated in homological degree zero, in particular the
module of Kähler differentials is trivial.
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Rognes’ Galois extensions of commutative ring spectra

Definition 6.8.1 [251, Definition 4.1.3]. Let A→ B be a map of commutative ring
spectra and let G be a finite group acting on B via commutative A-algebra maps.
Assume that S → A → B is a sequence of cofibrations in the model structure on
commutative ring spectra of [94, Corollary VII.4.10]. Then A → B is a G-Galois
extension if

1. the canonical map ι : A→ BhG is a weak equivalence and

2. h : B∧A B→
∏
G
B (6.8.1)

is a weak equivalence.

The first condition is the familiar fixed points condition from classical Galois theory
of fields. The map ι comes from taking the adjoint of the map

A∧EG+
id∧p
//A∧ S0 � A // B,

where p : EG+→ S0 collapses EG to the non-base point of S0.
The map h is adjoint to the composite

B∧A B∧G+→ B∧A B→ B

that comes from the G-action on the right factor of B∧A B followed by the multiplica-
tion in B. (Informally, if smashes were tensors, then h(b1 ⊗ b2) = (b1 · g(b2))g∈G.) Note
that

∏
GB is isomorphic to F(G+,B), so we could rewrite the condition in (6.8.1) as

the requirement that

h : B∧A B→ F(G+,B)

is a weak equivalence.
The condition that the map h from (6.8.1) is a weak equivalence is crucial. It is

also necessary for Galois extensions of discrete commutative rings in order to ensure
that the extension is unramified. For instance, Z ⊂ Z[i] satisfies Z[i]C2 = Z, but
h : Z[i] ⊗

Z
Z[i] → Z[i] ×Z[i] is not surjective: h detects the ramification at the

prime 2. Therefore Z→ Z[i] is not a C2-Galois extension but Z[ 1
2 ]→ Z[ 1

2 , i] is
C2-Galois.

Galois extensions of commutative ring spectra can have rather bad properties as
modules. So the following definition is actually an additional assumption (this does
not happen in the discrete setting).

Definition 6.8.2 [251, Definition 4.3.1]. A Galois extension A→ B is faithful if it is
faithful as an A-module, i.e., for every A-module M with M∧AB ' ∗ we have M ' ∗ .

Important examples of Galois extensions of commutative ring spectra are the
following. By Cn we denote the cyclic group of order n.

1. The concept of Galois extensions of commutative ring spectra corresponds to
the one for commutative rings via the Eilenberg–Mac Lane spectrum functor [251,
Proposition 4.2]: Let R→ T be a homomorphism of discrete commutative rings and
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let G be a finite group acting on T via R-algebra homomorphisms. Then R→ T is
a G-Galois extension of commutative rings if and only if HR→ HT is a G-Galois
extension of commutative ring spectra.

2. The complexification of real vector bundles gives rise to a map of commutative ring
spectra KO→ KU from real to complex topological K-theory. There is a C2-action
on KU corresponding to complex conjugation of complex vector bundles. Rognes
shows [251, Proposition 5.3.1] that this turns KO→ KU into a C2-Galois extension.

3. At an odd prime p there is a p-adic Adams operation on KUp that gives rise to a
Cp−1-action on KUp such that Lp→ KUp is a Cp−1-Galois extension [251, §5.5.4].

4. There is a notion of pro-Galois extensions of commutative ring spectra and
LK(n)S→ En is a K(n)-local pro-Galois extension with the extended Morava stabilizer
group as the Galois group [251, Theorem 5.4.4].

5. Let p be an arbitrary prime. The projection map π : ECp→ BCp induces a map
on function spectra

F(π+,HFp) : F((BCp)+,HFp)→ F((ECp)+,HFp) ∼HFp

which identifies HFp as a Cp-Galois extension over F((BCp)+,HFp) [251, Proposition
5.6.3]. Hence in the world of commutative ring spectra group cohomology sits between
S and HFp as the base of a Galois extension! Beware, this Galois extension is not
faithful. This observation is due to Ben Wieland: the Tate construction HF

tCp
p isn’t

trivial and it is actually killed by the Galois extension (in the spectral sequence you
augment a Laurent generator to zero).

6. Studying elliptic curves with level structures gives C2-Galois extensions TMF0(3)→
TMF1(3) and Tmf0(3) → Tmf1(3) [187, Theorems 7.6, 7.12]. For TMF1(3) and
Tmf1(3) you consider elliptic curves with one chosen point of exact order 3 and for
TMF0(3) and Tmf0(3) you only remember a subgroup of order 3. As C2 �Z/3Z×

this gives a C2-action. This can be made rigorous; see [121, 122, 187].

Notions of étale morphisms

Weibel–Geller [298] show that for an étale extension of commutative rings ϕ : A→ B
Hochschild homology satisfies étale descent: The map HH(ϕ)∗ induces an isomorphism

B⊗A HH∗(A) � HH∗(B) (6.8.2)

and for finite G-Galois extensions ϕ : A→ B one obtains Galois descent:

HH∗(A) � HH∗(B)G. (6.8.3)

It is easy to see that for a G-Galois extension of discrete commutative rings ϕ : A→ B
with finite G, the induced extension of graded commutative rings HH∗(ϕ) : HH∗(A)→
HH∗(B) is again G-Galois. In addition to having the right fixed-point property it
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satisfies

HH∗(B)⊗HH∗(A) HH∗(B) � B⊗A HH∗(A)⊗HH∗(A) B⊗A HH∗(A)

� B⊗A B⊗A HH∗(A)

�
∏
G
B⊗A HH∗(A)

�
∏
G
HH∗(B).

If ϕ : A→ B is étale, then the module of Kähler differentials Ω1
B|A is trivial and

it can be easily seen that the map B→ HHA∗ (B) is an isomorphism and that André–
Quillen homology of B over A is trivial, because étale algebras are smooth.

For commutative ring spectra the situation is different. There are several non-
equivalent notions of étale maps:

Definition 6.8.3. Let ϕ : A→ B be a morphism of commutative ring spectra.

1. [168, Definition 7.5.1.4] We call ϕ Lurie-étale if π0(ϕ) : π0(A)→ π0(B) is an étale
map of commutative rings and if the canonical map

π∗(A)⊗π0(A) π0(B)→ π∗(B)

is an isomorphism. In Chapter 8, this will be the only notion of étale map con-
sidered, and the adjective “Lurie” will be dropped.

2. [201, Definiton 3.2], [251, Definition 9.2.1] The morphism ϕ is (formally) THH-étale
if B→ THHA(B) is a weak equivalence.

3. [201, Definiton 3.2], [251, Definition 9.4.1] We define ϕ to be (formally) TAQ-étale
if TAQ(B|A) is weakly equivalent to ∗.

Remark 6.8.4 .
– Rognes [251] reserves the labels THH-étale and TAQ-étale for maps that, in addi-

tion to the conditions above, identify B as a dualizable A-module.
– The condition of being Lurie-étale is strong and is a very algebraic one. It is for

instance not satisfied by the C2-Galois extension KO→ KU because on the level
of homotopy groups this extension is rather appalling, compare (6.1.1).

– McCarthy and Minasian show that THH-étale implies TAQ-étale and they show
that for n > 1 the map HFp → F(K(Z/pZ,n)+,HFp) is a TAQ-étale morphism
that is not THH-étale. They attribute this example to Mandell [201, Example 3.5].
Minasian [211, Corollary 2.8] proves that both notions are equivalent for morphisms
between connective commutative ring spectra.

– For connective spectra, the notion of Lurie-étaleness has good features [168, §7.5]
and Mathew shows in [186, Corollary 3.1] that one can use [165, Lemma 8.9] to
show that under some finiteness condition TAQ-étaleness implies Lurie-étaleness
in the connective case.

Definition 6.8.5 [251, Definition 9.1.1]. Let C be a cofibrant associative A-algebra
spectrum. Then C is separable if the multiplication map µ : C∧ACo→ C has a section
in the homotopy category of C-bimodule spectra.
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Proposition 6.8.6 [251, Lemma 9.2.6]. If C is a commutative separable A-algebra
spectrum, then C is THH-étale.

Proof. Recall from Remark 6.6.2 that THHA(C) is an augmented commutative C-
algebra spectrum, so the composite of the unit map C→ THHA(C) with the augmen-
tation

C→ THHA(C)→ C

is the identity. We also get a splitting in the homotopy category of C-bimodule spectra,

C
s //C ∧A C

µ
//C,,

i.e., the above composite is the identity on C. Taking the derived smash product
C ∧LC∧AC (−) of the above sequence gives the sequence

THHA(C)→ C→ THHA(C),

in which the last map is equivalent to the unit map of THHA(C) and whose composite
is the identity. So the unit map C→ THHA(C) has a right and a left inverse in the
homotopy category of C-module spectra.

Definition 6.8.7. Let A→ B be a map of commutative ring spectra and let G be
a finite group acting on B via maps of commutative A-algebra spectra. Assume that
S→ A→ B is a sequence of cofibrations in the model structure on commutative ring
spectra of [94, Corollary VII.4.10]. Then A→ B is unramified if

h : B∧A B→
∏
G

B

is a weak equivalence.

Proposition 6.8.8 (compare [251, Lemma 9.1.2]). If A→ B is unramified, then B is
separable over A.

Proof. The canonical inclusion map i : B→ F(G+,B) can be modeled by the pointed
map from G+ to S0 that sends the neutral element e ∈ G to the non-basepoint of S0

and sends all other elements to the basepoint. We define a section to the multiplication
map of B to be

B
i //F(G+,B) B∧A B.

h,∼
oo

Note that h is not a B-bimodule map, but we are only interested in its e-component of
F(G+,B).

Thus we can conclude that unramified maps of commutative ring spectra are THH-
étale and that the failure of the map B→ THHA(B) to be a weak equivalence detects
ramification. This idea was exploited in [83] in order to show that the inclusion of
the Adams summand ` → ku(p) is tamely ramified [83, Theorem 4.1]. Sagave also
identifies this map as being log-étale [255, Theorem 1.6].
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Versions of étale descent

Transferring the Geller–Weibel result to the setting of commutative ring spectra, it
seems natural to define two versions of descent:

Definition 6.8.9. In the following ϕ : A→ B is a cofibration and A is cofibrant.

– The morphism ϕ : A→ B satisfies étale descent if the canonical morphism

B∧A THH(A)→ THH(B) (6.8.4)

is a weak equivalence.

– If ϕ : A→ B is a map of commutative ring spectra and if G is a finite group acting
on B via commutative A-algebra maps, then we say that ϕ satisfies Galois descent
if the map

THH(A)→ THH(B)hG (6.8.5)

is a weak equivalence.

Akhil Mathew clarifies the relationship between the different notions of étale
morphisms and the notions of descent. He proves that Lurie-étale morphisms satisfy
étale descent [186, Theorem 1.3] and that for a faithful G-Galois extension with finite
Galois group G, both descent properties are equivalent [186, Proposition 4.3] and they
are in turn equivalent to the property that THH(A)→ THH(B) is again a G-Galois
extension.

Moreover, he shows that the morphism

ϕ : F(S1
+,HFp)→ F(S1

+,HFp)

that is induced by the degree-p map on S
1 is a faithful Cp-Galois extension, but that

it does not satisfy étale descent [186, Theorem 2.1] and hence it doesn’t satisfy Galois
descent.

The Hopf fibration S
1→ S

3→ S
2 is a principal S1-bundle. The corresponding

morphism of commutative HQ-algebra spectra of cochains

F(η,HQ) : F(S2
+,HQ)→ F(S3

+,HQ)

is therefore an S
1-Galois extension [251, Proposition 5.6.3].

In joint work with Christian Ausoni we show that the morphism F(η,HQ) does not
satisfy Galois descent, i.e.,

THH(F(S2
+,HQ)) / THH(F(S3

+,HQ))hS
1
.

Indeed, the homotopy groups of THH(F(S2
+,HQ)) contain an element in degree −1

that is not present in π∗(THH(F(S3
+,HQ))hS

1
).

Mathew identifies the problem with étale descent of finite faithful Galois extensions
for THH as being caused by the non-trivial fundamental group of S1. He shows the
following result.
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Theorem 6.8.10 [186, Proposition 5.2]. Let X be a simply connected pointed space and
let A→ B be a faithful G-Galois extension of commutative ring spectra with finite G.
Then the map

B∧A (X ⊗A)→ X ⊗B

is a weak equivalence.

In particular, higher-order topological Hochschild homology, THH[n] for n > 2,
does satisfy étale descent for faithful finite Galois extensions. However, étale descent
remains for instance an issue for torus homology.

Sometimes THH does satisfy descent, even for ramified maps of commutative
ring spectra. For instance, Ausoni shows in [13, Theorem 10.2] that THH(`p) is p-
adically equivalent to THH(kup)hCp−1 and even that K(`p) is p-adically equivalent to
K(kup)hCp−1 .

Remark 6.8.11 . In [69] Clausen, Mathew, Naumann and Noel prove far-reaching
Galois descent results for topological Hochschild homology and algebraic K-theory;
in particular they confirm a Galois descent conjecture for algebraic K-theory by
Ausoni and Rognes in many important cases. They identify THH as a weakly additive
invariant (see [69, Definition 3.10]) and prove descent in the form of [69, Theorems
5.1 and 5.6].

6.9 Picard and Brauer groups

Picard groups in the setting of a symmetric monoidal category

Let (C,⊗,1, τ) be a symmetric monoidal category. An important class of objects in C
are those objects C that have an inverse with respect to ⊗ , i.e., such that there is an
object C′ of C satisfying

C ⊗C′ � 1.

One wants to gather such objects in a category and build a space and spectrum out
of them:

Definition 6.9.1. The Picard groupoid of C, Picard(C), is the category whose ob-
jects are the invertible objects of C and whose morphisms are isomorphisms between
invertible objects.

If C1 and C2 are objects of Picard(C), then so is C1 ⊗C2; in fact, Picard(C) is itself
a symmetric monoidal category. But in general, this category might not be small.

Definition 6.9.2. Let C be as above and assume that Picard(C) is small. Then PIC(C)
is the classifying space of the symmetric monoidal category Picard(C) and let pic(C)
denote the connective spectrum associated to the infinite loop space associated to
PIC(C). The Picard group of C, Pic(C), is π0PIC(C).
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If the Picard groupoid of C is small, then the Picard group can also be described as
the set of isomorphism classes of invertible objects of C with the product

[C1]⊗ [C2] := [C1 ⊗C2].

The neutral element is the isomorphism class of the unit, [1].

Definition 6.9.3. Let R be a (discrete) commutative ring; we denote by Pic(R) the
Picard group of the symmetric monoidal category of the category of R-modules and
by PIC(R) (and pic(R)) the Picard space (and Picard spectrum) of this category.

For instance the Picard group of a ring of integers in a number ring is its ideal class
group.

Picard group for commutative ring spectra

For commutative ring spectra R, the above definition of PIC(R) and pic(R) would
either be much too rigid (if one chose C to be the category of R-module spectra and
isomorphisms) or not strict enough (if one took C to be the homotopy category of
R-module spectra). See [189, §2] for an adequate background for a suitable definition
and see [103, §4] for a dictionary how to pass from a commutative ring spectrum R and
its category of modules to the∞-categorical setting. Instead of working with symmetric
monoidal categories, one uses presentable symmetric monoidal ∞-categories C. Then
the Picard ∞-groupoid of C is the maximal subgroupoid of the underlying ∞-category
of C spanned by the invertible objects. This groupoid is equivalent to a grouplike
E∞-space PIC(C) and hence there is a connective ring spectrum, pic(C), associated to
C [103, §5].

Let R be a commutative ring spectrum. The operadic nerve of the category of
cofibrant-fibrant R-modules is a stable presentable symmetric monoidal ∞-category
[168, Proposition 4.1.3.10] and we will abbreviate this as the ∞-category of R-modules,
Rmod.

Definition 6.9.4. The Picard group of a commutative ring spectrum R, Pic(R), is the
group π0(PIC(Rmod)).

Again, these Picard groups can also be described as the set of isomorphism classes
of invertible R-modules in the homotopy category of R-module spectra.

The Picard space PIC(R) is a delooping of the units of R ([189, §2.2], [289, §5]):
There is an equivalence

PIC(R) ' Pic(R)×BGL1(R).

Remark 6.9.5 . There is a map Pic(π∗R)→ Pic(R) that realizes an element in the
algebraic Picard group of invertible graded π∗R-modules as a module over R and in
many cases this map is an isomorphism [17, Theorem 43]. In this case we call Pic(R)
algebraic. A notable exception comes from Galois extensions of ring spectra: As in
algebra, if A→ B is a G-Galois extension of commutative ring spectra with abelian
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Galois group G, then [B] ∈ Pic(A[G]) [251, Proposition 6.5.2]. But for instance [KU∗]
is certainly not an element in the algebraic Picard group Pic(KO∗[C2]); see (6.1.1).

The equivalence classes of suspensions of R are always in Pic(R), but if R is periodic,
these suspensions don’t generate a free abelian group. Let us mention some crucial
examples of Picard groups of commutative ring spectra:

– The Picard group of the initial commutative ring spectrum S is Pic(S) �Z, where
n ∈Z corresponds to the class of Sn [129].

– For connective commutative ring spectra the Picard group of R is algebraic; see
[17, Theorem 21], [189, Theorem 2.4.4].

– For periodic real and complex K-theory the Picard groups just notice the suspensions
of the ground ring: the Picard group of KU is algebraic, with Pic(KU ) � Z/2Z,
and Pic(KO) �Z/8Z (Hopkins, [189, Example 7.1.1] and [103, §7]).

– The same applies to the periodic version of the spectrum of topological modular
forms: Pic(TMF) � Z/576Z [189, Theorem A]. But for Tmf, the spectrum of
topological forms that mediates between TMF and its connective version tmf, one
gets [189, Theorem B]

Pic(Tmf) �Z⊕Z/24Z,

where the copy of the integers comes from the suspensions of Tmf and the generator
of the Z/24Z-summand is described in [189, Construction 8.4.2].

– Using Galois descent techniques for pic, Heard, Mathew and Stojanoska prove in
[116, Theorem 1.5] that, for any odd prime and any finite subgroup G of the full
Morava stabilizer group Gp−1, the Picard group of EhGp−1 is a cyclic group generated
by the suspension of EhGp−1.

A Picard group that contains more elements than just the ones coming from suspen-
sions of the commutative ring spectrum says that there are more self-equivalences of
the homotopy category of R-modules than the standard suspensions. One might view
these as twisted suspensions. Gepner and Lawson explore the concept of having a
Picard grading on the category of R-module spectra and they develop a Pic-resolution
model category structure in the sense of Bousfield [103, §3.2].

Descent method and local versions

A crucial method for calculating Picard groups is Galois descent. If A → B is a
G-Galois extension (for G finite), then for the Picard spectra and spaces the following
equivalences hold [103, 189]:

pic(A) ' τ>0pic(B)hG, PIC(A) ' PIC(B)hG. (6.9.1)

Here, τ>0 denotes the connective cover of a spectrum. In general, the extension B
is easier to understand than A; for instance, in the case of the C2-Galois extension
KO→ KU , one obtains information about pic(A) using the homotopy fixed point
spectral sequence

H−s(G;πtpic(B))⇒ πt−s(pic(B)hG).
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In [121, §6], for instance, Hill and Meier use Galois descent to determine the Picard
groups of TMF0(3) and Tmf0(3):

Theorem 6.9.6 [121, Theorems 6.9, 6.12].

Pic(TMF0(3)) �Z/48Z, Pic(Tmf0(3)) �Z⊕Z/8Z.

Hopkins–Mahowald–Sadofsky started the investigation of the Picard groups of the
K(n)-local homotopy categories for varying n [129]. They denote these Picard groups
by Picn. Note that the relevant symmetric monoidal product for fixed n is

X ⊗Y = LK(n)(X ∧Y )

for K(n)-local X and Y . They determined Pic1 for all primes p:

Theorem 6.9.7 [129, Theorem 3.3, Proposition 2.7].

– At the prime 2, Pic1 �Z
×
2 ×Z/4Z.

– For all odd primes p, Pic1 �Zp ×Z/qZ with q = 2p − 2.

In the K(n)-local setting the notion of algebraic elements in Picn is slightly more
involved. Hopkins, Mahowald and Sadofsky show [129] (see also [108, Theorem 2.4])
that a K(n)-local spectrum X is K(n)-locally invertible if and only if π∗(LK(n)(En∧X))
is a free (En)∗-module of rank one and if and only if π∗(LK(n)(En∧X)) is invertible as
a continuous module over the completed group ring (En)∗[[Gn]]. Here, Gn is the full
Morava-stabilizer group. Hence applying π∗(LK(n)(En ∧−)) gives a map from Picn to

the Picard group of continuous (En)∗[[Gn]]-modules and this group is called Pic
alg
n .

The kernel of the map, κn, collects the exotic elements in Picn:

0→ κn→ Picn→ Pic
alg
n .

For odd primes, all elements in Pic1 can be detected algebraically but for p = 2 one
has a non-trivial element in κ1. See [108] for Pic2 at p = 3 and a general overview.
There is ongoing work on Pic2 at p = 2 by Agnès Beaudry, Irina Bobkova, Paul Goerss
and Hans-Werner Henn.

Brauer groups of commutative rings

Probably most of you will know the definition of the Brauer group of a field. But as
for many features that we want to transfer to the spectral world we need to consider
algebraic concepts developed for commutative rings (not fields).

Azumaya started to think about general Brauer groups [14] in the setting of local
rings. A general definition of the Brauer group of a commutative ring R was given
by Auslander and Goldman [12] as Morita equivalence classes of Azumaya algebras.
The Brauer group was then globalized to schemes by Grothendieck [114]. He also
shows that the Brauer group of the initial ring Z is trivial; this is a byproduct of his
identification of Brauer groups of number rings in [114, III, Proposition (2.4)].
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Brave new Brauer groups

Baker and Lazarev define in [16] what an Azumaya algebra spectrum is. We use one
version of this definition in [20] to develop Brauer groups for commutative ring spectra.
Related concepts can be found in [138] and [291].

Fix a cofibrant commutative ring spectrum R.

Definition 6.9.8. A cofibrant associative R-algebra A is called an Azumaya R-algebra
spectrum if A is dualizable and faithful as an R-module spectrum and if the canonical
map

A∧R Ao→ FR(A,A)

is a weak equivalence.

We list some crucial properties of Azumaya algebra spectra. For the first property
recall the discussion of derived centers from Definition 6.6.10.

Proposition 6.9.9.
1. [16, Proposition 2.3] If A is an Azumaya R-algebra spectrum, then A is homotopically

central over R, i.e., R→ THHR(A) is a weak equivalence.
2. [20, Proposition 1.5] If A is Azumaya over R and if C is a cofibrant commutative
R-algebra then A∧RC is Azumaya over C. Conversely, if C is as above and dualizable
and faithful as an R-module, then A∧R C being Azumaya over C implies that A is
Azumaya over R.

If A and B are Azumaya over R, then A∧R B is also Azumaya over R.
3. [20, 2.2] If M is a faithful, dualizable, cofibrant R–module, then (a cofibrant replace-

ment of ) FR(M,M) is an R-Azumaya algebra spectrum.

Thus the endomorphism Azumaya algebras are the ones that are always there and
you want to ignore them.

Definition 6.9.10. Let A and B be two Azumaya R-algebra spectra. We call them
Brauer equivalent if there are dualizable, faithful R-modules N and M such that there
is an R-algebra equivalence

A∧R FR(M,M) ' B∧R FR(N,N ).

We denote by Br(R) the set of Brauer equivalence classes of R-Azumaya algebra
spectra.

Note that Br(R) is an abelian group with multiplication induced by the smash
product over R. Johnson shows [138, Lemma 5.7] that one can reduce the above
relation to what he calls Eilenberg–Watts equivalence. This implies that one can still think
about the Brauer group of a commutative ring spectrum as the Morita equivalence
classes of Azumaya algebra spectra.

We showed a Galois descent result [20, Proposition 3.3], saying that under a natural
condition you can descent an Azumaya algebra C over B to an Azumaya algebra ChG

over A if A→ B is a faithful G-Galois extension with finite Galois group G.



298 Richter: Commutative ring spectra

Examples of Brauer groups

As we know that Br(Z) = 0, we conjectured [20] that the Brauer group of the initial
ring spectrum is also trivial. This conjecture was proven in [10, Corollary 7.17]. The
authors actually showed a much stronger result:

Theorem 6.9.11 [10, Theorem 7.16]. If R is a connective commutative ring spectrum such
that π0(R) is either Z or the Witt vectors W (Fq), then the Brauer group of R is trivial.

Different approaches — see [10, Definition 7.1], [103, §5], and [289] — can be used to
construct a Brauer space, BrR, for a commutative ring spectrum R and to show that
this space is a delooping of the Picard space, PIC

ΩBrR ' PIC(R)

with π0(BrR) � Br(R).
An important question in the classical context of Brauer groups of schemes is

to which extent these groups can be controlled by the second étale cohomology
group. See the introduction of [291] for a nice overview. Toën shows that for quasi-
compact and quasi-separated schemes X one can identify the derived Brauer group of
X with H1

ét(X;Gm)×H2
ét(X;Gm). The work of Antieau and Gepner [10, §7.4] relates

Brauer groups of connective commutative ring spectra to étale cohomology groups
by establishing a spectral sequence starting from étale cohomology groups for étale
sheaves over a connective commutative ring spectrum converging to the homotopy
groups of the Brauer space [10, Theorem 7.12].

The integral version of the quaternions gives a non-trivial element in Br(S[ 1
2 ]) [20,

Proposition 6.3]. Antieau and Gepner show in [10, Corollary 7.18]

Br(S[ 1
p ]) �Z/2Z for all primes p

and they prove the existence of a short exact sequence

0→ Br(S(p))→Z/2Z⊕
⊕
q,p

Q/Z→Q/Z→ 0

by applying [10, Corollary 7.13], where they calculate the homotopy groups of the
Brauer space of any connective commutative ring spectrum R in terms of étale
cohomology groups and the homotopy groups of R.

They use the classical exact sequence for the Brauer group of the rationals [114, §2]
coming from the Albert–Brauer–Hasse–Noether theorem:

0→ Br(Q)→Z/2Z⊕
⊕
p prime

Br(Qp)→Q/Z→ 0,

with Br(Qp) = Q/Z. This determines Br(Z[ 1
p ]) and Br(Z(p)) and this in turn gives

the above result for the sphere spectra with p inverted or localized at p.
In [20, Theorem 10.1] we show that the K(n)-local Brauer group of the K(n)-local

sphere is non-trivial at least for odd primes and n > 1.
Gepner and Lawson prove a version of Galois descent for a suitable ∞-category of

Azumaya algebras:
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Theorem 6.9.12 [103, Theorem 6.15]. There is an equivalence of symmetric monoidal
∞-categories

AzA→ (AzB)hG

for every G-Galois extension A→ B with finite G.

They also construct a map of ∞-groupoids AzR→ BrR for any commutative ring
spectrum R and show that this map is essentially surjective, so that equality in π0(BrR)
corresponds precisely to Morita equivalence. They investigate the algebraic Brauer
groups (i.e., the Morita classes of Azumaya algebras over the coefficients) [103, §7.1]
of 2-periodic commutative ring spectra with vanishing odd homotopy groups, such
as KU or En, by relating them to the classical Brauer–Wall group of π0 of the ring
spectrum and they identify a non-trivial Morita class of a quaternion KO-algebra that
becomes Morita-trivial over KU .

There is recent work by Hopkins and Lurie [128] who identify the K(n)-local Brauer
group of a Lubin–Tate spectrum E at all primes. For odd primes they obtain:

Theorem 6.9.13 [128, Theorem 1.0.11]. The K(n)-local Brauer group of E is the product
of the Brauer–Wall group of the residue field π0(E)/m and a group Br ′(E) which in
turn can be expressed as an inverse limit of abelian groups Br ′` such that the kernel of
Br ′`→ Br ′`−1 is non-canonically isomorphic to m`+2/m`+3.

One ingredient is their construction of atomic E-algebra spectra [128, Definition 1.0.2]
via a Thom spectrum construction relative to E for polarizations of lattices [128,
Definition 3.2.1] using the machinery from [6, 5]. Here, the starting point is a lattice Λ
of finite rank together with a polarization map

Q : K(Λ,1)→ PIC(E) ' Pic(E)×BGL1(E).




